WorldWideScience

Sample records for tetrahydrofolate reductase gene

  1. Methylene tetrahydrofolate reductase gene mutation together with anticardiolipin antibody during pregnancy: a case report

    Directory of Open Access Journals (Sweden)

    Egle Couto

    Full Text Available CONTEXT: High plasmatic homocysteine levels have been associated with arterial and venous thrombosis. The C677T methylene tetrahydrofolate reductase (MTHFR gene mutation is one of the known causes for high homocysteine levels in plasma. Anticardiolipin antibody (ACA is also associated with thrombosis and, along with other clinical complications such as recurrent abortion and stillbirth, is part of the antiphospholipid syndrome. DESIGN: Case report. CASE REPORT: A 19-year-old woman with two gestations and one parity (G2P1 had exhibited deep venous thrombosis in her previous puerperal period. Investigation of thrombophilic factors revealed ACA-IgM and heterozygous C677T mutation in the MTHFR gene. Lupus anticoagulant, protein C, protein S and antithrombin III deficiencies, and Leiden factor V and the G20210A mutation in the prothrombin gene, were not detected. The patient received 55,000 IU of subcutaneous heparin daily, from the 15th to the 36th week of pregnancy, when vaginal delivery took place. There were no clinical complications during the puerperal period and she was discharged three days after delivery, while still using oral anticoagulants.

  2. Decreased expression of methylene tetrahydrofolate reductase (MTHFR) gene in patients with rheumatoid arthritis.

    Science.gov (United States)

    Remuzgo-Martínez, Sara; Genre, Fernanda; López-Mejías, Raquel; Ubilla, Begoña; Mijares, Veronica; Pina, Trinitario; Corrales, Alfonso; Blanco, Ricardo; Martín, Javier; Llorca, Javier; González-Gay, Miguel Á

    2016-01-01

    Impairment of methylene tetrahydrofolate reductase (MTHFR), a key enzyme in the folate metabolism, results in an elevated plasma level of homocysteine, considered an independent risk factor for cardiovascular (CV) disease. Rheumatoid arthritis (RA) is a chronic inflammatory disease associated with increased risk of CV death. Polymorphisms in the MTHFR gene increase the frequency of CV disease in RA. The aim of this study was to determine the expression of MTHFR gene in patients with RA, with and without ischaemic heart disease (IHD). Relative expression of MTHFR gene and beta-actin and GAPDH as housekeeping genes was quantified by quantitative real-time polymerase chain reaction. It was analysed by the comparative Ct (threshold cycle) method in peripheral blood from 26 Spanish patients with RA (12 with IHD and 14 without IHD) and 10 healthy controls. MTHFR expression level in RA patients was also assessed according to disease activity, rheumatoid factor (RF) and anti-cyclic citrullinated peptide (anti-CCP) antibodies status. MTHFR expression was significantly reduced in patients with RA compared to controls (fold change = 0.85, p=0.029). It was especially true for RA patients with IHD (fold change= 0.79, p=0.021). However, no statistically significant relationship between MTHFR expression level in patients with RA and DAS28 CRP, DAS28 ESR, RF and anti-CCP status was observed. Patients with RA, in particular those with IHD, show a decreased expression of the MTHFR gene. This may support a potential implication of the transcriptional regulation of MTHFR in the pathogenesis of RA.

  3. Methylene tetrahydrofolate reductase (MTHFR) gene polymorphisms in chronic myeloid leukemia: an Egyptian study.

    Science.gov (United States)

    Khorshied, Mervat Mamdooh; Shaheen, Iman Abdel Mohsen; Abu Khalil, Reham E; Sheir, Rania Elsayed

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) gene plays a pivotal role in folate metabolism. Several genetic variations in MTHFR gene as MTHFR-C677T and MTHFR-A1298C result in decreased MTHFR activity, which could influence efficient DNA methylation and explain susceptibility to different cancers. The etiology of chronic myeloid leukemia (CML) is obscure and little is known about individual's susceptibility to CML. In order to assess the influence of these genetic polymorphisms on the susceptibility to CML and its effect on the course of the disease among Egyptians, we performed an age-gender-ethnic matched case-control study. The study included 97 CML patients and 130 healthy controls. Genotyping of MTHFR-C677T and -A1298C was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. The results showed no statistical difference in the distribution of MTHFR-C677T and -A1298C polymorphic genotypes between CML patients and controls. The frequency of MTHFR 677-TT homozygous variant was significantly higher in patients with accelerated/blastic transformation phase when compared to those in the chronic phase of the disease. In conclusion, our study revealed that MTHFR-C677T and -A1298C polymorphisms could not be considered as genetic risk factors for CML in Egyptians. However, MTHFR 677-TT homozygous variant might be considered as a molecular predictor for disease progression.

  4. Plasma homocysteine levels, methylene tetrahydrofolate reductase A1298C gene polymorphism and risk of retinal vein thrombosis.

    Science.gov (United States)

    Ghaznavi, Habib; Soheili, Zahra; Samiei, Shahram; Soltanpour, Mohammad Soleiman

    2016-09-01

    There are limited data regarding the role of methylene tetrahydrofolate reductase (MTHFR) A1298C polymorphism and hyperhomocysteinemia as risk factors for retinal vein thrombosis (RVT) in Iranians. This study aimed to examine a possible association between fasting plasma total homocysteine (tHcy) levels, MTHFR A1298C polymorphism and RVT development in Iranian patients. Our study population consisted of 73 patients with a diagnosis of RVT (52.7 ± 16.2 years) and 73 age and sex-matched healthy controls (49.1 ± 14.6 years). Genotyping for the MTHFR A1298Cpolymorphism was conducted by PCR-RFLP technique and plasma tHcy levels were measured by an enzyme immunoassay method. Fasting plasma tHcy levels were 20.29 ± 8.5 μmol/l in RVT patients and 10.9 ± 3.1 μmol/l in control subjects. The number of cases with abnormal tHcy values (hyperhomocysteinemia) was significantly higher in the RVT patients than control subjects (P = 0.0001). The prevalence of MTHFR 1298CC homozygote genotype was similar in RVT patients and controls (17.8 vs.15.1%, P = 0.45). There were no significant differences in genotype distribution of MTHFR A1298C polymorphism between males and females in both RVT patients and controls (P > 0.05). The frequency of the 1298C allele was 39.1 and 35.6% in patients and controls, respectively, and did not differ significantly between them (P = 0.23). Moreover, heterozygote and homozygote genotypes in the RVT patients had significantly higher abnormal tHcy values than corresponding genotypes in control subjects (P MTHFR A1298C polymorphism is a significant risk factor for RVT in the Iranian population.

  5. Mutações no gene da metilenotetrahidrofolato redutase e síndrome de Down Mutations in the methylene-tetrahydrofolate reductase gene and Down syndrome

    Directory of Open Access Journals (Sweden)

    Laura Brunelli das Neves Grillo

    2002-12-01

    Full Text Available Sindrome de Down (SD é uma alteração genética e metabólica complexa atribuída à presença de três cópias do cromossomo 21. O cromossomo extra em 93% dos casos é de origem materna e é resultante de uma segregação anormal durante a meiose (não-disjunção. Com exceção da idade materna avançada, fatores de risco para a não-disjunção meiótica não estão bem estabelecidos. Um estudo preliminar sugeriu que o metabolismo anormal do folato e a mutação 677 (C->T no gene da metilenotetrahidrofolato redutase (MTHFR podem ser fatores de risco maternos para a SD. A freqüência das mutações MTHFR 677 (C->T e 1.298 (A->C foram avaliadas em 36 mães de crianças com SD e em 200 indivíduos-controle. Os resultados demonstraram que as mutações 677 (C->T e 1.298 (A->C são mais prevalentes entre mães de crianças com SD do que nos controles. A heterozigose das duas mutações foi a combinação mais freqüente. O resultado desse estudo inicial sugere que mutações no gene da MTHFR seriam um fator de risco para a SD.Down syndrome (DS is a complex genetic and metabolic disorder attributed to the presence of three copies of chromosome 21. The extra chromosome derives from the mother in 93% of cases and is due to abnormal chromosome segregation during meiosis (nondisjunction. Except for advanced age at conception, maternal risk factors for meiotic nondisjunction are not well established. A recent preliminary study suggested that abnormal folate metabolism and the 677 (C->T mutation in the methylene-tetrahydrofolate reductase (MTHFR gene may be maternal risk factors for DS. Frequency of the MTHFR 677 (C->T and 1298 (A->C mutations was evaluated in 36 mothers of children with DS and in 200 controls. The results are consistent with the observation that the MTHFR 677 (C->T and 1298 (A->C mutations are more prevalent among mothers of children with DS than controls. In addition, the most prevalent genotype was the combination of both mutations

  6. phenotype correlation of methylene tetrahydrofolate reductase ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2014-06-21

    Jun 21, 2014 ... risk of ASDs associated with common mutations affecting the folate/methylation cycle. This study aimed at identification of the C677T polymorphic genotypes of MTHFR gene among the Egyptian children with autism and to correlate them with different phenotypes. Subjects and methods: This case-control ...

  7. Influence of methylene tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on toxicity after high dose methotrexate

    DEFF Research Database (Denmark)

    Niekerk, P.B. van Kooten; Schmiegelow, K.; Schroeder, H.

    2008-01-01

    .006-0.027), fever (OR = 2.65; P = 0.037) and interruption of maintenance treatment (OR = 3.04; P = 0.032). No convincing associations were found between the MTHFR C677T or A1298C polymorphisms and toxicity. CONCLUSION: Our findings demonstrate that toxicity after HDMTX is influenced by coadministrated...... in the methylene tetrahydrofolate reductase (MTHFR) gene and coadministration of antimetabolites on post-HDMTX toxicity. METHODS: Toxicity was retrospectively analysed after 656 HDMTX courses administered to 88 paediatric ALL patients at a single treatment centre. RESULTS: High-dose methotrexate with high...

  8. Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Jørgensen, H L; Madsen, J S; Madsen, B

    2002-01-01

    Twin studies indicate a substantial genetic component in the development of osteoporosis. One of the latest studied candidate genes is the one coding for methylene tetrahydrofolate reductase (MTHFR) (C677T) in which a point mutation gives rise to a thermolabile variant of MTHFR. The aim......-matched controls were included. All had broadband ultrasound attenuation (BUA) and speed of sound (SOS) measured at the heel as well as bone mineral density (BMD) measured by dual X-ray absorptiometry at the distal forearm. The MTHFR (C677T) genotypes were determined using polymerase chain reaction restriction...... homozygotic for the C-allele with those homozygotic for the T-allele: lower forearm fracture OR = 3.93 (1.25; 12.40, P = 0.02), hip fracture OR = 6.99 (l.35; 36.92, P = 0.02) and the fractures combined OR = 4.33 (1.73; 10.81, P = 0.002). In this study, the MTHFR (C677T) genotypes were not significantly...

  9. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls

    NARCIS (Netherlands)

    Mamasoula, Chrysovalanto; Prentice, R. Reid; Pierscionek, Tomasz; Pangilinan, Faith; Mills, James L.; Druschel, Charlotte; Pass, Kenneth; Russell, Mark W.; Hall, Darroch; Töpf, Ana; Brown, Danielle L.; Zelenika, Diana; Bentham, Jamie; Cosgrove, Catherine; Bhattacharya, Shoumo; Riveron, Javier Granados; Setchfield, Kerry; Brook, J. David; Bu'lock, Frances A.; Thornborough, Chris; Rahman, Thahira J.; Doza, Julian Palomino; Tan, Huay L.; O'Sullivan, John; Stuart, A. Graham; Blue, Gillian; Winlaw, David; Postma, Alex V.; Mulder, Barbara J. M.; Zwinderman, Aelko H.; van Engelen, Klaartje; Moorman, Antoon F. M.; Rauch, Anita; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Lathrop, G. Mark; Farrall, Martin; Goodship, Judith A.; Cordell, Heather J.; Brody, Lawrence C.; Keavney, Bernard D.

    2013-01-01

    Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. We compared genotypes between CHD cases and controls and between mothers of CHD cases and controls. We placed our results in context by conducting

  10. C677T and A1298C polymorphisms of methylene tetrahydrofolate reductase in non-Hodgkin lymphoma: southeast Iran.

    Science.gov (United States)

    Mashhadi, Mohammad Ali; Miri-Moghaddam, Ebrahim; Arbabi, Narges; Bazi, Ali; Heidari, Zahra; Sepehri, Zahra; Karimkoshte, Azra; Rezvan, Alireza; Hashemi, Seyed Mahdi

    2017-04-14

    Polymorphisms of the methylene tetrahydrofolate reductase (MTHFR) gene have been reported as risk factors for non-Hodgkin lymphoma (NHL) in some populations. Our goal was to evaluate the potential role of A1298C and C677T polymorphisms of MTHFR in risk of NHL in southeast Iran. In the present case-control study, 127 patients with newly diagnosed NHL along with 150 ethnicity- and age-matched controls were examined. The A1298C and C677T polymorphisms were genotyped using the Tetra Amplification Refractory Mutation System polymerase chain reaction method. There were no significant differences in genotype frequencies between cases and controls regarding either A1298C polymorphism. For this polymorphism, 53.8% of the controls and 54.3% of the patients with NHL showed homozygous wild-type (AA) genotype. Variant 1298C allele was recognized with overall frequency of 34.6% in both groups. Frequencies of CC, CT, and TT genotypes of C677T polymorphism were observed in 73.1%, 25.8%, and 1.3% of the controls, and 64.5%, 33.1%, and 2.4% of the patients with NHL (p>0.05). In combination, CT + TT conferred a significantly higher risk of NHL (odds ratio [OR] 1.5, 95% confidence interval [CI] 0.9-2.4, p = 0.03). Overall, variant 677T allele presented with higher frequency in the patients with NHL than the controls (26.7% versus 21.3%, respectively; OR 1.3, 95% CI 0.8-2.1, p>0.05). Although statistically insignificant, the highest risk of NHL was identified in patients with C677T; A1298C: CT; CC haplotype (OR 4.7, 95% CI 0.4-46.4, p = 0.1). Combination of CT and TT genotypes of C677T polymorphism conferred a significantly higher risk for NHL. It is recommended to investigate further the potential role of this polymorphism in NHL development.

  11. Methylene Tetrahydrofolate Reductase (MTHFR) rs868014 Polymorphism Regulated by miR-1203 Associates with Risk and Short Term Outcome of Ischemic Stroke

    OpenAIRE

    Wei He; Minzhi Lu; Guoqing Li; Zhigang Sun; Dinghua Liu; Lujun Gu

    2017-01-01

    Background/Aims: Genetic polymorphisms of methylene tetrahydrofolate reductase (MTHFR) were associated with ischemic stroke risk. This study analyzed MTHFR polymorphisms at the 3'-untranslated region for association with risk and outcome of ischemic stroke in a Chinese Han population. Methods: 500 patients and 600 healthy volunteers were enrolled for MTHFR rs868014 genotyping identified bioinformatically. The binding of miR-1203 to MTHFR rs868014 was determined by luciferase assay, MTHFR expr...

  12. Assessment of Folic Acid Supplementation in Pregnant Women by Estimation of Serum Levels of Tetrahydrofolic Acid, Dihydrofolate Reductase, and Homocysteine

    Directory of Open Access Journals (Sweden)

    Manisha Naithani

    2016-01-01

    Full Text Available Background. Status of folic acid use in pregnant women of the hilly regions in North India was little known. This study was carried out to assess the folic acid use and estimate folate metabolites in pregnant women of this region. Materials and Methods. This cross-sectional study is comprised of 76 pregnant women, whose folic acid supplementation was assessed by a questionnaire and serum levels of homocysteine, tetrahydrofolic acid (THFA, and dihydrofolate reductase (DHFR were estimated using Enzyme Linked Immunoassays. Results. The study data revealed awareness of folic acid use during pregnancy was present in 46.1% and 23.7% were taking folic acid supplements. The study depicted that there was no statistically significant difference between serum levels of THFA and DHFR in pregnant women with and without folic acid supplements (p=0.790. Hyperhomocysteinemia was present in 15.78% of the participants. Conclusion. Less awareness about folic acid supplementation and low use of folic acid by pregnant women were observed in this region. Sufficient dietary ingestion may suffice for the escalated requirements in pregnancy, but since this cannot be ensured, hence folic acid supplementation should be made as an integral part of education and reproductive health programs for its better metabolic use, growth, and development of fetus.

  13. Factor V Leiden, prothrombin G20210A, and methylene tetrahydrofolate reductase mutations and stillbirth: the Stillbirth Collaborative Research Network.

    Science.gov (United States)

    Silver, Robert M; Saade, George R; Thorsten, Vanessa; Parker, Corette B; Reddy, Uma M; Drews-Botsch, Carey; Conway, Deborah; Coustan, Donald; Dudley, Donald J; Bukowski, Radek; Rowland Hogue, Carol J; Pinar, Halit; Varner, Michael W; Goldenberg, Robert; Willinger, Marian

    2016-10-01

    An evaluation for heritable thrombophilias is recommended in the evaluation of stillbirth. However, the association between thrombophilias and stillbirth remains uncertain. We sought to assess the association between maternal and fetal/placental heritable thrombophilias and stillbirth in a population-based, case-control study in a geographically, racially, and ethnically diverse population. We conducted secondary analysis of data from the Stillbirth Collaborative Research Network, a population-based case-control study of stillbirth. Testing for factor V Leiden, prothrombin G20210A, methylene tetrahydrofolate reductase C677T and A1298C, and plasminogen activating inhibitor (PAI)-1 4G/5G mutations was done on maternal and fetal (or placental) DNA from singleton pregnancies. Data analyses were weighted for oversampling and other aspects of the design. Odds ratios (OR) were generated from univariate models regressing stillbirth/live birth status on each thrombophilia marker. Results were available for ≥1 marker in 488 stillbirths and 1342 live birth mothers and 405 stillbirths and 990 live birth fetuses. There was an increased odds of stillbirth for maternal homozygous factor V Leiden mutation (2/488; 0.4% vs 1/1380; 0.0046%; OR, 87.44; 95% confidence interval, 7.88-970.92). However, there were no significant differences in the odds of stillbirth for any other maternal thrombophilia, even after stratified analyses. Fetal 4G/4G PAI-1 (OR, 0.63; 95% confidence interval, 0.43-0.91) was associated with decreased odds of stillbirth. Other fetal thrombophilias were similar among groups. Most maternal and fetal thrombophilias were not associated with stillbirth. Maternal factor V Leiden was weakly associated with stillbirth, and the fetal PAI-1 4G/4G polymorphism was associated with live birth. Our data do not support routine testing for heritable thrombophilias as part of an evaluation for possible causes of stillbirth. Copyright © 2016. Published by Elsevier Inc.

  14. Plasma homocysteine, methylene tetrahydrofolate reductase C677T and factor II G20210A polymorphisms, factor VIII, and VWF in central retinal vein occlusion

    OpenAIRE

    Boyd, S.; Owens, D.; Gin, T; Bunce, K.; Sherafat, H; Perry, D; Hykin, P

    2001-01-01

    AIMS—To determine whether plasma homocysteine, methylene tetrahydrofolate reductase (MTHFR) C677T and factor II G20210A polymorphisms, factor VIII, and vWF are risk factors for central retinal vein occlusion (CRVO).
METHOD—Prospective comparison of 63 consecutive patients with central retinal vein occlusion and 63 age matched controls. Plasma homocysteine and vWF were estimated by ELISA, the MTFHR and factor II G20210A polymorphisms determined by polymerase chain reaction with restriction enz...

  15. Association between C677T polymorphism of methylene tetrahydrofolate reductase and congenital heart disease: meta-analysis of 7697 cases and 13,125 controls.

    Science.gov (United States)

    Mamasoula, Chrysovalanto; Prentice, R Reid; Pierscionek, Tomasz; Pangilinan, Faith; Mills, James L; Druschel, Charlotte; Pass, Kenneth; Russell, Mark W; Hall, Darroch; Töpf, Ana; Brown, Danielle L; Zelenika, Diana; Bentham, Jamie; Cosgrove, Catherine; Bhattacharya, Shoumo; Riveron, Javier Granados; Setchfield, Kerry; Brook, J David; Bu'Lock, Frances A; Thornborough, Chris; Rahman, Thahira J; Doza, Julian Palomino; Tan, Huay L; O'Sullivan, John; Stuart, A Graham; Blue, Gillian; Winlaw, David; Postma, Alex V; Mulder, Barbara J M; Zwinderman, Aelko H; van Engelen, Klaartje; Moorman, Antoon F M; Rauch, Anita; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Lathrop, G Mark; Farrall, Martin; Goodship, Judith A; Cordell, Heather J; Brody, Lawrence C; Keavney, Bernard D

    2013-08-01

    Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. We compared genotypes between CHD cases and controls and between mothers of CHD cases and controls. We placed our results in context by conducting meta-analyses of previously published studies. Among 5814 cases with primary genotype data and 10 056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (odds ratio [OR], 0.96 [95% confidence interval, 0.87-1.07]). A random-effects meta-analysis of all studies (involving 7697 cases and 13 125 controls) suggested the presence of association (OR, 1.25 [95% confidence interval, 1.03-1.51]; P=0.022) but with substantial heterogeneity among contributing studies (I(2)=64.4%) and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR <0.05), which together contributed 83% of all cases, yielded no evidence of association (OR, 0.97 [95% confidence interval, 0.91-1.03]) without significant heterogeneity (I(2)=0). Moreover, meta-analysis of 1781 mothers of CHD cases (829 of whom were genotyped in this study) and 19 861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR, 1.13 [95% confidence interval, 0.87-1.47]). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association.

  16. Association between C677T Polymorphism of Methylene Tetrahydrofolate Reductase and Congenital Heart Disease: Meta-Analysis of 7,697 Cases and 13,125 Controls

    Science.gov (United States)

    Mamasoula, Chrysovalanto; Prentice, R. Reid; Pierscionek, Tomasz; Pangilinan, Faith; Mills, James L.; Druschel, Charlotte; Pass, Kenneth; Russell, Mark W.; Hall, Darroch; Töpf, Ana; Brown, Danielle L.; Zelenika, Diana; Bentham, Jamie; Cosgrove, Catherine; Bhattacharya, Shoumo; Riveron, Javier Granados; Setchfield, Kerry; Brook, J. David; Bu'Lock, Frances A.; Thornborough, Chris; Rahman, Thahira J.; Doza, Julian Palomino; Tan, Huay L.; O'Sullivan, John; Stuart, A. Graham; Blue, Gillian; Winlaw, David; Postma, Alex V.; Mulder, Barbara J.M.; Zwinderman, Aelko H.; van Engelen, Klaartje; Moorman, Antoon F.M.; Rauch, Anita; Gewillig, Marc; Breckpot, Jeroen; Devriendt, Koen; Lathrop, G. Mark; Farrall, Martin; Goodship, Judith A.; Cordell, Heather J.; Brody, Lawrence C.; Keavney, Bernard D.

    2013-01-01

    Background Association between the C677T polymorphism of the methylene tetrahydrofolate reductase (MTHFR) gene and congenital heart disease (CHD) is contentious. Methods and Results We compared genotypes between CHD cases and controls, and between mothers of CHD cases and controls. We placed our results in context by conducting metaanalyses of previously published studies. Among 5,814 cases with primary genotype data and 10,056 controls, there was no evidence of association between MTHFR C677T genotype and CHD risk (OR 0.96 [95% CI 0.87-1.07]). A random-effects meta-analysis of all studies (involving 7,697 cases and 13,125 controls) suggested the presence of association (OR 1.25 [95% CI 1.03-1.51]; p=0.022), but with substantial heterogeneity among contributing studies (I2=64.4%), and evidence of publication bias. Meta-analysis of large studies only (defined by a variance of the log OR less than 0.05), which together contributed 83% of all cases, yielded no evidence of association (OR 0.97 [95% CI 0.91-1.03]), without significant heterogeneity (I2=0). Moreover, meta-analysis of 1,781 mothers of CHD cases (829 of whom were genotyped in this study) and 19,861 controls revealed no evidence of association between maternal C677T genotype and risk of CHD in offspring (OR 1.13 [95% CI 0.87-1.47]). There was no significant association between MTHFR genotype and CHD risk in large studies from regions with different levels of dietary folate. Conclusions The MTHFR C677T polymorphism, which directly influences plasma folate levels, is not associated with CHD risk. Publication biases appear to substantially contaminate the literature with regard to this genetic association. PMID:23876493

  17. Interactions of 5'-UTR thymidylate synthase polymorphism with 677C → T methylene tetrahydrofolate reductase and 66A → G methyltetrahydrofolate homocysteine methyl-transferase reductase polymorphisms determine susceptibility to coronary artery disease.

    Science.gov (United States)

    Vijaya Lakshmi, Sana Venkata; Naushad, Shaik Mahammad; Rupasree, Yedluri; Seshagiri Rao, Damera; Kutala, Vijay Kumar

    2011-01-01

    The current study aimed to address the inconsistencies in association studies, specifically with reference to methylene tetrahydrofolate reductase (MTHFR) C677T polymorphism in the light of gene-gene and gene-nutrient interactions. A case-control study was conducted to analyze four genetic polymorphisms i.e. thymidylate synthase (TYMS) 5'-UTR 28 bp tandem repeat, MTHFR C677T, methyltetrahydrofolate homocysteine methyltransferase (MTR) A2756G, methyltetrahydrofolate homocysteine methyltransferase reductase (MTRR) A66G using PCR-AFLP and PCR-RFLP methods; plasma folate and B12 using AxSYM kits; plasma homocysteine by reverse phase HPLC and nitric oxide using Griess reaction. Fisher's exact test, logistic regression analysis and multifactor dimensionality reduction analysis were used for statistical analysis of genetic parameters. Student's t-test was used for biochemical parameters. MTHFR C677T and MTRR A66G were found to increase the risk for CAD by 1.61-fold (95% CI: 1.04-2.50) and 1.92-fold (95% CI: 1.29-2.87) whereas TYMS 2R allele was found to reduce the risk for CAD (OR: 0.66, 95% CI: 0.49-0.88) by counteracting MTHFR and MTRR variant alleles. Significant gene-gene interactions were observed among TYMS/MTRR (P < 0.0001), MTR/TYMS/MTRR (P < 0.0001), and MTHFR/MTR/TYMS/MTRR (P < 0.0001). MTHFR was found to increase the risk (OR: 2.36, 95% CI: 1.28-4.37) only in the absence of the TYMS 2R allele, with marked impairment of the remethylation process (P = 0.007). This impairment was predominant when the dietary folate was in the lowest tertile. In subjects with dietary folate intake in the highest tertile, no such impairment was observed. Dietary folate status and TYMS 5'-UTR 28bp tandem repeat polymorphism are important effect modifiers of CAD risk associated with genetic variants in remethylating genes.

  18. Retinal Ganglion Cell Loss and Mild Vasculopathy in Methylene Tetrahydrofolate Reductase (Mthfr)-Deficient Mice: A Model of Mild Hyperhomocysteinemia.

    Science.gov (United States)

    Markand, Shanu; Saul, Alan; Roon, Penny; Prasad, Puttur; Martin, Pamela; Rozen, Rima; Ganapathy, Vadivel; Smith, Sylvia B

    2015-04-01

    Methylenetetrahydrofolate reductase (Mthfr) is a key enzyme in homocysteine-methionine metabolism. We investigated Mthfr expression in retina and asked whether mild hyperhomocysteinemia, due to Mthfr deficiency, alters retinal neurovascular structure and function. Expression of Mthfr was investigated at the gene and protein level using quantitative (q) RT-PCR, in situ hybridization, immunoblotting, and immunohistochemistry (IHC). The Mthfr+/+ and Mthfr+/- mice were subjected to comprehensive evaluation using ERG, funduscopy, fluorescein angiography (FA), spectral-domain optical coherence tomography (SD-OCT), HPLC, and morphometric and IHC analysis of glial fibrillary acidic protein (GFAP) at 8 to 24 weeks. Gene and protein analyses disclosed widespread retinal expression of Mthfr. Electroretinography (ERG) revealed a significant decrease in positive scotopic threshold response in retinas of Mthfr+/- mice at 24 weeks. Fundus examination in mice from both groups was normal; FA revealed areas of focal vascular leakage in 20% of Mthfr+/- mice at 12 to 16 weeks and 60% by 24 weeks. The SD-OCT revealed a significant decrease in nerve fiber layer (NFL) thickness at 24 weeks in Mthfr+/- compared to Mthfr+/+ mice. There was a 2-fold elevation in retinal hcy at 24 weeks in Mthfr+/- mice by HPLC and IHC. Morphometric analysis revealed an approximately 20% reduction in cells in the ganglion cell layer of Mthfr+/- mice at 24 weeks. The IHC indicated significantly increased GFAP labeling suggestive of Müller cell activation. Mildly hyperhomocysteinemic Mthfr+/- mice demonstrate reduced ganglion cell function, thinner NFL, and mild vasculopathy by 24 weeks. The retinal phenotype is similar to that of hyperhomocysteinemic mice with deficiency of cystathionine-β-synthase (Cbs) reported earlier. The data support the hypothesis that hyperhomocysteinemia may be causative in certain retinal neurovasculopathies.

  19. Plasma homocysteine, methylene tetrahydrofolate reductase C677T and factor II G20210A polymorphisms, factor VIII, and VWF in central retinal vein occlusion.

    Science.gov (United States)

    Boyd, S; Owens, D; Gin, T; Bunce, K; Sherafat, H; Perry, D; Hykin, P G

    2001-11-01

    To determine whether plasma homocysteine, methylene tetrahydrofolate reductase (MTHFR) C677T and factor II G20210A polymorphisms, factor VIII, and vWF are risk factors for central retinal vein occlusion (CRVO). Prospective comparison of 63 consecutive patients with central retinal vein occlusion and 63 age matched controls. Plasma homocysteine and vWF were estimated by ELISA, the MTFHR and factor II G20210A polymorphisms determined by polymerase chain reaction with restriction enzyme product digestion and factor VIII by one stage automated clotting assay. Plasma homocysteine (patients: median 12.4 micromol/l, controls: median 11.6 micromol OR = 1.05, p=0.20), factor VIII (patients: median = 115 U/dl, controls: median = 113 U/dl), and vWF (patients: median = 115 U/dl, controls: median = 108 U/dl) were not statistically higher in patients than in controls. Five CRVO patients and seven controls were homozygous for the MTHFR C677T mutation. One control was heterozygous for the factor II G20210A mutation. This study has not identified new risk factors for CRVO.

  20. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

    African Journals Online (AJOL)

    Polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene are associated with abortion, early embryo loss and recurrent spontaneous abortion in human. However, information on the association between MTHFR polymorphism and cow abortion is scarce. In the present study, the effects of MTHFR ...

  1. Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased risk of fractures

    DEFF Research Database (Denmark)

    Bathum, Lise; von Bornemann Hjelmborg, Jacob; Christiansen, Lene

    2004-01-01

    established. Previous studies concerning association of the common point mutation C677T in methylentetrahydrofolate reductase (MTHFR) and osteoporosis have revealed contradictory results. The aim of this study was to test the association between the MTHFR polymorphism, homocysteine, and fractures...... in the TT group compared with the CT group. Homocysteine, smoking, and self-reported hormone use provided no significant contribution to fracture risk. Using biometrical modelling, the heritability of the liability to fractures was found to be approximately 0.10, when the effect of the MTHFR locus...

  2. Methylene Tetrahydrofolate Reductase (MTHFR) rs868014 Polymorphism Regulated by miR-1203 Associates with Risk and Short Term Outcome of Ischemic Stroke.

    Science.gov (United States)

    He, Wei; Lu, Minzhi; Li, Guoqing; Sun, Zhigang; Liu, Dinghua; Gu, Lujun

    2017-01-01

    Genetic polymorphisms of methylene tetrahydrofolate reductase (MTHFR) were associated with ischemic stroke risk. This study analyzed MTHFR polymorphisms at the 3'-untranslated region for association with risk and outcome of ischemic stroke in a Chinese Han population. 500 patients and 600 healthy volunteers were enrolled for MTHFR rs868014 genotyping identified bioinformatically. The binding of miR-1203 to MTHFR rs868014 was determined by luciferase assay, MTHFR expression was assessed using qRT-PCR, and plasma homocysteine levels were assayed by ELISA. Cigarette smoking, alcohol consumption, diabetes, hypertension (all P cholesterol concentration was not associated with ischemic stroke. MTHFR rs868014 TC and CC genotypes were significantly associated with increased risk of ischemic stroke compared with the TT genotype (OR: 1.52; 95% CI: 1.01-3.39 for TC genotype, while OR: 1.99; 95% CI: 1.29-3.88 for CC genotype). Furthermore, the MTHFR rs868014 SNP was associated with a poor short-term ischemic stroke outcome. qRT-PCR confirmed that MTHFR rs868014 TC or CC genotypes could facilitate miR-1203 binding leading to low MTHFR levels in cells. In addition, patients carrying the MTHFR rs868014 TC or CC genotypes were associated with accumulation of serum tHcy and a poor ischemic stroke outcome. Linkage disequilibrium analysis indicated that the newly identified SNP rs868014 was strongly linked with the MTHFR A1298C polymorphism. This study demonstrates that the MTHFR rs868014 SNP is associated with increased risk in developing ischemic stroke, miR-1203 binding, low MTHFR levels in cells, and poor shot term outcome of patients. © 2017 The Author(s)Published by S. Karger AG, Basel.

  3. Methylene Tetrahydrofolate Reductase (MTHFR rs868014 Polymorphism Regulated by miR-1203 Associates with Risk and Short Term Outcome of Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Wei He

    2017-02-01

    Full Text Available Background/Aims: Genetic polymorphisms of methylene tetrahydrofolate reductase (MTHFR were associated with ischemic stroke risk. This study analyzed MTHFR polymorphisms at the 3'-untranslated region for association with risk and outcome of ischemic stroke in a Chinese Han population. Methods: 500 patients and 600 healthy volunteers were enrolled for MTHFR rs868014 genotyping identified bioinformatically. The binding of miR-1203 to MTHFR rs868014 was determined by luciferase assay, MTHFR expression was assessed using qRT-PCR, and plasma homocysteine levels were assayed by ELISA. Results: Cigarette smoking, alcohol consumption, diabetes, hypertension (all P <0.001, low levels of serum high-density lipoprotein-C (P = 0.01, and high levels of serum low-density lipoprotein-C (P = 0.005 were associated with an increased risk of developing ischemic stroke. BMI and total serum cholesterol concentration was not associated with ischemic stroke. MTHFR rs868014 TC and CC genotypes were significantly associated with increased risk of ischemic stroke compared with the TT genotype (OR: 1.52; 95% CI: 1.01-3.39 for TC genotype, while OR: 1.99; 95% CI: 1.29-3.88 for CC genotype. Furthermore, the MTHFR rs868014 SNP was associated with a poor short-term ischemic stroke outcome. qRT-PCR confirmed that MTHFR rs868014 TC or CC genotypes could facilitate miR-1203 binding leading to low MTHFR levels in cells. In addition, patients carrying the MTHFR rs868014 TC or CC genotypes were associated with accumulation of serum tHcy and a poor ischemic stroke outcome. Linkage disequilibrium analysis indicated that the newly identified SNP rs868014 was strongly linked with the MTHFR A1298C polymorphism. Conclusion: This study demonstrates that the MTHFR rs868014 SNP is associated with increased risk in developing ischemic stroke, miR-1203 binding, low MTHFR levels in cells, and poor shot term outcome of patients.

  4. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction. So, polymorphism in genes involved in folate metabolism may have a role in vascular disease. This study was designed to evaluate the relationship between methylenetetrahydrofolate reductase (MTHFR) gene polymorphism ...

  5. Plasma total homocysteine levels in children with type 1 diabetes: relationship with vitamin status, methylene tetrahydrofolate reductase genotype, disease parameters and coronary risk factors.

    Science.gov (United States)

    Dinleyici, E C; Kirel, Birgul; Alatas, Ozkan; Muslumanoglu, Hamza; Kilic, Zubeyir; Dogruel, Nesrin

    2006-08-01

    The objectives of this study were: to determine plasma total homocysteine tHcy levels and the prevalence of hyperhomocysteinemia in children with type 1 diabetes, to determine correlates of plasma tHcy levels with nutritional factor such as serum folic acid and vitamin B12 levels, genetic factors as methylenetetrahydrofolate reductase MTHFR gene polymorphism (C677T and A1298C), to attempt to identify possible dependencies between tHcy and the degree of metabolic control, the duration of the disease and presence of complications, and also to determine the relationship between other coronary risk factors. Plasma tHcy levels and other related parameters performed in 32 children with type 1 diabetes and 23 age-sex matched healthy children. Median tHcy level was higher in the patient group (11.38, 3.28 to 66.01 micromol/l) than the control group (8.78, 1.06 to 13.66 mol/l) (p cholesterol, triglyceride, apolipoprotein B, systolic blood pressure, blood urea nitrogen and creatinine levels and lower folate, apolipoprotein A1 levels and glomerular filtration rate values than the control group. Plasma tHcy levels were higher in diabetic children with poor metabolic control. Because of hyperhomocysteinemia is common in diabetic children and plasma tHcy levels correlated with early onset of the disease and disease duration, we recommend the usage of plasma tHcy levels as a risk indicator parameter with other coronary risk factor for detecting and preventing cardiovascular disease in diabetic children.

  6. Pharmacogenetic evaluation of ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase polymorphisms in teratogenicity of anti-epileptic drugs in women with epilepsy

    Directory of Open Access Journals (Sweden)

    Manna Jose

    2014-01-01

    Full Text Available Aim: Pregnancy in women with epilepsy (WWE who are on anti-epileptic drugs (AEDs has two- to three-fold increased risk of fetal malformations. AEDs are mostly metabolized by Cyp2C9, Cyp2C19 and Cyp3A4 and transported by ABCB1. Patients on AED therapy can have folate deficiency. We hypothesize that the polymorphisms in ABCB1, Cyp2C9, Cyp2C19 and methylene tetrahydrofolate reductase (MTHFR might result in differential expression resulting in differential drug transport, drug metabolism and folate metabolism, which in turn may contribute to the teratogenic impact of AEDs. Materials and Methods: The ABCB1, Cyp2C9, Cyp2C19 and MTHFR polymorphisms were genotyped for their role in teratogenic potential and the nature of teratogenecity in response to AED treatment in WWE. The allelic, genotypic associations were tested in 266 WWE comprising of 143 WWE who had given birth to babies with WWE-malformation (WWE-M and 123 WWE who had normal offsprings (WWE-N. Results: In WWE-M, CC genotype of Ex07 + 139C/T was overrepresented (P = 0.0032 whereas the poor metabolizer allele FNx012 and FNx012 FNx012 genotype of CYP2C219 was significantly higher in comparison to WWE-N group (P = 0.007 and P = 0.005, respectively. All these observations were independent of the nature of malformation (cardiac vs. non cardiac malformations. Conclusion: Our study indicates the possibility that ABCB1 and Cyp2C19 may play a pivotal role in the AED induced teratogenesis, which is independent of nature of malformation. This is one of the first reports indicating the pharmacogenetic role of Cyp2C19 and ABCB1 in teratogenesis of AED in pregnant WWE.

  7. The 380 kb pCMU01 Plasmid Encodes Chloromethane Utilization Genes and Redundant Genes for Vitamin B12- and Tetrahydrofolate-Dependent Chloromethane Metabolism in Methylobacterium extorquens CM4: A Proteomic and Bioinformatics Study

    Science.gov (United States)

    Roselli, Sandro; Nadalig, Thierry; Vuilleumier, Stéphane; Bringel, Françoise

    2013-01-01

    Chloromethane (CH3Cl) is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu) was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD), as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2). In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase) are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex), conversion of tetrahydrofolate

  8. The 380 kb pCMU01 plasmid encodes chloromethane utilization genes and redundant genes for vitamin B12- and tetrahydrofolate-dependent chloromethane metabolism in Methylobacterium extorquens CM4: a proteomic and bioinformatics study.

    Directory of Open Access Journals (Sweden)

    Sandro Roselli

    Full Text Available Chloromethane (CH3Cl is the most abundant volatile halocarbon in the atmosphere and contributes to the destruction of stratospheric ozone. The only known pathway for bacterial chloromethane utilization (cmu was characterized in Methylobacterium extorquens CM4, a methylotrophic bacterium able to utilize compounds without carbon-carbon bonds such as methanol and chloromethane as the sole carbon source for growth. Previous work demonstrated that tetrahydrofolate and vitamin B12 are essential cofactors of cmuA- and cmuB-encoded methyltransferases of chloromethane dehalogenase, and that the pathway for chloromethane utilization is distinct from that for methanol. This work reports genomic and proteomic data demonstrating that cognate cmu genes are located on the 380 kb pCMU01 plasmid, which drives the previously defined pathway for tetrahydrofolate-mediated chloromethane dehalogenation. Comparison of complete genome sequences of strain CM4 and that of four other M. extorquens strains unable to grow with chloromethane showed that plasmid pCMU01 harbors unique genes without homologs in the compared genomes (bluB2, btuB, cobA, cbiD, as well as 13 duplicated genes with homologs of chromosome-borne genes involved in vitamin B12-associated biosynthesis and transport, or in tetrahydrofolate-dependent metabolism (folC2. In addition, the presence of both chromosomal and plasmid-borne genes for corrinoid salvaging pathways may ensure corrinoid coenzyme supply in challenging environments. Proteomes of M. extorquens CM4 grown with one-carbon substrates chloromethane and methanol were compared. Of the 49 proteins with differential abundance identified, only five (CmuA, CmuB, PurU, CobH2 and a PaaE-like uncharacterized putative oxidoreductase are encoded by the pCMU01 plasmid. The mainly chromosome-encoded response to chloromethane involves gene clusters associated with oxidative stress, production of reducing equivalents (PntAA, Nuo complex, conversion of

  9. Genetic variation in Glutathione S-Transferase Omega-1, Arsenic Methyltransferase and Methylene-tetrahydrofolate Reductase, arsenic exposure and bladder cancer: a case–control study

    Directory of Open Access Journals (Sweden)

    Beebe-Dimmer Jennifer L

    2012-06-01

    Full Text Available Abstract Background Ingestion of groundwater with high concentrations of inorganic arsenic has been linked to adverse health outcomes, including bladder cancer, however studies have not consistently observed any elevation in risk at lower concentrations. Genetic variability in the metabolism and clearance of arsenic is an important consideration in any investigation of its potential health risks. Therefore, we examined the association between genes thought to play a role in the metabolism of arsenic and bladder cancer. Methods Single nucleotide polymorphisms (SNPs in GSTO-1, As3MT and MTHFR were genotyped using DNA from 219 bladder cancer cases and 273 controls participating in a case–control study in Southeastern Michigan and exposed to low to moderate ( Results While no single SNP in As3MT was significantly associated with bladder cancer overall, several SNPs were associated with bladder cancer among those exposed to higher arsenic levels. Individuals with one or more copies of the C allele in rs11191439 (the Met287Thr polymorphism had an elevated risk of bladder cancer (OR = 1.17; 95% CI = 1.04-1.32 per 1 μg/L increase in average exposure. However, no association was observed between average arsenic exposure and bladder cancer among TT homozygotes in the same SNP. Bladder cancer cases were also 60% less likely to be homozygotes for the A allele in rs1476413 in MTHFR compared to controls (OR = 0.40; 95% CI = 0.18-0.88. Conclusions Variation in As3MT and MTHFR is associated with bladder cancer among those exposed to relatively low concentrations of inorganic arsenic. Further investigation is warranted to confirm these findings.

  10. Study of genotype–phenotype correlation of methylene tetrahydrofolate reductase (MTHFR gene polymorphisms in a sample of Egyptian autistic children

    Directory of Open Access Journals (Sweden)

    Rabah M. Shawky

    2014-10-01

    Conclusion: Although the 677CT variant alleles significantly increased in patients with autism, it is unlikely that this association alone is sufficient to produce the complex array of symptoms associated with autism. Therefore, a search for additional genomic, metabolic, epigenetic and environmental risk factors should be undertaken.

  11. Methylenetetrahydrofolate reductase gene polymorphism in type 1 ...

    African Journals Online (AJOL)

    Mohammed A AboElAsrar

    2012-05-05

    May 5, 2012 ... Elevated homocysteine is a known risk factor for vascular disease. So the polymorphism in methylenetetrahydrofolate reductase may have detrimental consequences [5]. In patients with type-I diabetes mellitus folate deficiency is associated with endothelial dysfunction and folate supplementa- tion improves ...

  12. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    2016-10-26

    Oct 26, 2016 ... The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the.

  13. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-01

    Mar 1, 2010 ... somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic ..... Planta, 183: 17-24. Alexander H, Treusch, Sven L, Arnulf K, Stephan CS, Hans-Peter K,. Christa S (2005). Novel genes for nitrite reductase and Amo-related proteins indicate a role of ...

  14. Transcriptional modulation of genes encoding nitrate reductase in ...

    African Journals Online (AJOL)

    The free aluminum (Al) content in soil can reach levels that are toxic to plants, and this has frequently limited increased productivity of cultures. Four genes encoding nitrate reductase (NR) were identified, named ZmNR1–4. With the aim of evaluating NR activity and the transcriptional modulation of the ZmNR1, ZmNR2, ...

  15. Methylenetetrahydrofolate reductase (MTHFR) C677T gene ...

    Indian Academy of Sciences (India)

    including cardiovascular diseases, pregnancy complications, neural tube defects, Alzheimer disease, schizophrenia, cancer, etc. Available literatures elucidated that both gene and. Keywords. homocysteine; MTHFR; Mendelian population; gene–environment interaction. Journal of Genetics, Vol. 94, No. 1, March 2015. 121 ...

  16. Proanthocyanidin synthesis in Theobroma cacao: genes encoding anthocyanidin synthase, anthocyanidin reductase, and leucoanthocyanidin reductase.

    Science.gov (United States)

    Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J

    2013-12-05

    The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.

  17. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans

    NARCIS (Netherlands)

    de Boer, A P; van der Oost, J.; Reijnders, W N; Westerhoff, H V; Stouthamer, A.H.; van Spanning, R J

    1996-01-01

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N.,

  18. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...... disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism...

  19. Two methylenetetrahydrofolate reductase gene (MTHFR) polymorphisms, schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Jönsson, Erik G; Larsson, Kristina; Vares, Maria

    2008-01-01

    disorder. In a replication attempt the MTHFR C677T and A1298C SNPs were analyzed in three Scandinavian schizophrenia case-control samples. In addition, Norwegian patients with bipolar disorder were investigated. There were no statistically significant allele or genotype case-control differences....... The present Scandinavian results do not verify previous associations between the putative functional MTHFR gene polymorphisms and schizophrenia or bipolar disorder. However, when combined with previous studies in meta-analyses there is still evidence for association between the MTHFR C677T polymorphism......Recent meta-analyses of the methylenetetrahydrofolate reductase gene (MTHFR) have suggested association between two of its functional single gene polymorphisms (SNPs; C677T and A1298C) and schizophrenia. Studies have also suggested association between MTHFR C677T and A1298C variation and bipolar...

  20. Sucrose mimics the light induction of Arabidopsis nitrate reductase gene transcription

    DEFF Research Database (Denmark)

    Cheng, Chi-Lien; Acedo, Gregoria N; Kristensen, Michael

    1992-01-01

    Nitrate reductase, the first enzyme in nitrate assimilation, is located at the crossroad of two energy-consuming pathways: nitrate assimilation and carbon fixation. Light, which regulates the expression of many higher-plant carbon fixation genes, also regulates nitrate reductase gene expression....... Located in the cytosol, nitrate reductase obtains its reductant not from photosynthesis but from carbohydrate catabolism. This relationship prompted us to investigate the indirect role that light might play, via photosynthesis, in the regulation of nitrate reductase gene expression. We show that sucrose...

  1. Methylenetetrahydrofolate reductase gene polymorphisms in Egyptian Turner Syndrome patients.

    Science.gov (United States)

    Ismail, Manal F; Zarouk, Waheba A; Ruby, Mona O; Mahmoud, Wael M; Gad, Randa S

    2015-01-01

    Folate metabolism dysfunctions can result in DNA hypomethylation and abnormal chromosome segregation. Two common polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) encoding gene (C677T and A1298C) reduce MTHFR activity, but when associated with aneuploidy, the results are conflicting. Turner Syndrome (TS) is an interesting model for investigating the association between MTHFR gene polymorphisms and nondisjunction because of the high frequency of chromosomal mosaicism in this syndrome. To investigate the association of MTHFR gene C677T and A1298C polymorphisms in TS patients and their mothers and to correlate these polymorphisms with maternal risk of TS offspring. MTHFR C677T and A1298C polymorphisms were genotyped in 33 TS patients, their mothers and 15 healthy females with their mothers as controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and sequencing technique. Genotype and allele frequencies of both C677T and A1298C were not significantly different between TS cases and controls. There were no significant differences in C677T genotype distribution between the TS mothers and controls (p=1). The MTHFR 1298AA and 1298AC genotypes were significantly increased in TS mothers Vs. control mothers (p=0.002). The C allele frequency of the A1298C polymorphism was significantly different between the TS mothers and controls (p=0.02). The association of A1298C gene polymorphism in TS patients was found to increase with increasing age of both mothers (p=0.026) and fathers (p=0.044) of TS cases. Our findings suggest a strong association between maternal MTHFR A1298C and risk of TS in Egypt.

  2. Methylenetetrahydrofolate Reductase gene polymorphism in children with allergic rhinitis.

    Science.gov (United States)

    Dogru, M; Aydin, H; Aktas, A; Cırık, A A

    2015-01-01

    Methylenetetrahydrofolate Reductase (MTHFR) polymorphisms by impairing folate metabolism may influence the development of allergic diseases. The results of studies evaluating the relationship between MTHFR polymorphisms and atopic disease are controversial. The aim of this study was to investigate the association between the polymorphisms of C677T and A1298C for MTHFR gene and allergic rhinitis (AR) in children. Ninety patients followed up with diagnosis of allergic rhinitis in our clinic and 30 children with no allergic diseases were included in the study. All participants were genotyped for the MTHFR (C677T) and (A1298C) polymorphisms. Vitamin b12, folate and homocysteine levels were measured. The mean age of patients was 9.2±2.9 years; 66.7% of the patients were male. There was no significant difference between patient and control groups regarding gender, age and atopy history of the family (p>0.05). The frequency of homozygotes for MTHFR C677T polymorphism in the patient and control groups was 3.3% and 10%, respectively. The frequency of homozygotes for MTHFR A1298C polymorphism among groups was 26.7% and 16.7%, respectively. The association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene was not statistically significant in patients compared with controls (p>0.05). There were no statistically significant differences between the patients and the control group in terms of serum vitamin b12, folate and homocysteine levels (p>0.05). We found no evidence for an association between allergic rhinitis and polymorphisms of C677T and A1298C for MTHFR gene in children. Further studies investigating the relationship between MTHFR polymorphism and AR are required. Copyright © 2014 SEICAP. Published by Elsevier Espana. All rights reserved.

  3. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from Taxus media: Cloning, characterization and functional identification. Y Sun, M Chen, J Tang, W Liu, C Yang, Y Yang, X Lan, M Hsieh, Z Liao ...

  4. Association study between methylenetetrahydrofolate reductase gene polymorphisms and Graves' disease.

    Science.gov (United States)

    Mao, Renfang; Fan, Yihui; Zuo, Lulu; Geng, Dongfeng; Meng, Fantao; Zhu, Jing; Li, Qiang; Qiao, Hong; Jin, Yan; Bai, Jing; Fu, Songbin

    2010-10-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) catalyzes the metabolism of folate and nucleotides, which are essential for DNA synthesis and methylation. It is highly polymorphic, and its variant genotypes result in lower enzymatic activity and higher plasma homocysteine. Previous studies have provided evidence that a high prevalence of MTHFR gene polymorphisms is frequently detected in patients with autoimmune disease, suggesting a novel genetic association with autoimmune disorders. However, the genetic association between MTHFR and Graves' disease (GD), one of the most common autoimmune diseases, has not been studied. Here, we designed a clinic-based case-control study including 199 GD cases and 235 healthy controls to examine the associations between three common MTHFR polymorphisms (i.e., C677T, A1298C, and G1793A) and GD. Surprisingly, logistic regression analysis shows MTHFR 677CT + TT genotypes are associated with an approximately 42% reduction in the risk of GD in women (adjusted OR = 0.58, 95% CI = 0.3-0.9), compared to the CC genotype, indicating a significant protective effect of 677CT + TT genotypes. Our result provides epidemiological evidence that MTHFR mutation (C677T) protects women from GD. The protective effect, possibly obtained by influencing DNA methylation, should be confirmed in a large number of cohorts. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Methylenetetrahy-drofolate Reductase Gene Polymorphism in Patients Receiving Hemodialysis

    Directory of Open Access Journals (Sweden)

    Ermina Kiseljaković

    2010-04-01

    Full Text Available Methylenetetrahydrofolate Reductase (MTHFR is key enzyme in metabolism of homocysteine. Homozygotes for mutation (TT genotype have hyperhomocysteinemia, risk factor for atherosclerosis development. The aim of the study was to find out distribution of genotype frequencies of C677T MTHFR among patients on maintenance hemodialysis. Possible association of alleles and genotypes of C677T polymorphism of the MTHFR gene with age of onset, duration of dialysis and cause of kidney failure was studied also. Cross-sectional study includes 80 patients from Clinic of Hemodialysis KUCS in Sarajevo. In order to perform genotyping, isolated DNA was analyzed by RFLP-PCR and gel-electrophoresis. From total of 80 patients, 42.5% (n=24 were female, 57.5% (n=46 were male, mean age 54.59±1.78 years and duration of dialysis 79.92±6.32 months. Genotype distribution was: CC 51.2% (n=41, CT 37.5% (n=30 and TT 11.2% (n=9. Patients with wild-type genotype have longer duration of dialysis in month (87.1 ± 63.93 comparing to TT genotype patients (67.06 ± 39.3, with no statistical significance. T allele frequency was significantly higher in group of vascular and congenital cause of kidney failure (Pearson X2 =6.049, P<0.05 comparing to inflammation etiology group. Genotype distribution results are within the results other studies in Europe. Obtained results indicate that C677T polymorphism is not associated with onset, duration and cause of kidney failure in our hemodialysis population. There is an association of T allele of the MTHFR gene and vascular and congenital cause kidney failure.

  6. 5,10-Methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) gene polymorphisms and adult meningioma risk.

    Science.gov (United States)

    Zhang, Jun; Zhou, Yan-Wen; Shi, Hua-Ping; Wang, Yan-Zhong; Li, Gui-Ling; Yu, Hai-Tao; Xie, Xin-You

    2013-11-01

    The causes of meningiomas are not well understood. Folate metabolism gene polymorphisms have been shown to be associated with various human cancers. It is still controversial and ambiguous between the functional polymorphisms of folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) and risk of adult meningioma. A population-based case–control study involving 600 meningioma patients (World Health Organization [WHO] Grade I, 391 cases; WHO Grade II, 167 cases; WHO Grade III, 42 cases) and 600 controls was done for the MTHFR C677T and A1298C, MTRR A66G, and MTR A2756G variants in Chinese Han population. The folate metabolism gene polymorphisms were determined by using a polymerase chain reaction–restriction fragment length polymorphism assay. Meningioma cases had a significantly lower frequency of MTHFR 677 TT genotype [odds ratio (OR) = 0.49, 95 % confidence interval (CI) 0.33–0.74; P = 0.001] and T allele (OR = 0.80, 95 % CI 0.67–0.95; P = 0.01) than controls. A significant association between risk of meningioma and MTRR 66 GG (OR = 1.41, 95 % CI 1.02–1.96; P = 0.04) was also observed. When stratifying by the WHO grade of meningioma, no association was found. Our study suggested that MTHFR C677T and MTRR A66G variants may affect the risk of adult meningioma in Chinese Han population.

  7. A new cotton SDR family gene encodes a polypeptide possessing aldehyde reductase and 3-ketoacyl-CoA reductase activities.

    Science.gov (United States)

    Pang, Yu; Song, Wen-Qiang; Chen, Fang-Yuan; Qin, Yong-Mei

    2010-03-01

    To understand regulatory mechanisms of cotton fiber development, microarray analysis has been performed for upland cotton (Gossypium hirsutum). Based on this, a cDNA (GhKCR3) encoding a polypeptide belonging to short-chain alcohol dehydrogenase/reductase family was isolated and cloned. It contains an open reading frame of 987 bp encoding a polypeptide of 328 amino acid residues. Following its overexpression in bacterial cells, the purified recombinant protein specifically uses NADPH to reduce a variety of short-chain aldehydes. A fragment between Gly180 and Gly191 was found to be essential for its catalytic activity. Though the GhKCR3 gene shares low sequence similarities to the ortholog of Saccharomyces cerevisiae YBR159w that encodes 3-ketoacyl-CoA reductase (KCR) catalyzing the second step of fatty acid elongation, it was surprisingly able to complement the yeast ybr159wDelta mutant. Gas chromatography-mass spectrometry analysis showed that very long-chain fatty acids, especially C26:0, were produced in the ybr159wDelta mutant cells expressing GhKCR3. Applying palmitoyl-CoA and malonyl-CoA as substrates, GhKCR3 showed KCR activity in vitro. Quantitative real time-PCR analysis indicated GhKCR3 transcripts accumulated in rapidly elongating fibers, roots, and stems. Our results suggest that GhKCR3 is probably a novel KCR contributing to very long-chain fatty acid biosynthesis in plants.

  8. CLINICAL SIGNIFICANCE OF 5αα-REDUCTASE AND ANDROGEN RECEPTOR GENE POLYMORPHISMS IN PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    O. B. Loran

    2014-07-01

    Full Text Available The development of prostate cancer is inseparably linked with the effect of androgens on the fundamental prostatic intracellular processes,such as proliferation, apoptosis, which is realized through a number of second messengers. Major of them are the AR gene encoding androgenreceptors and the SRD5A2 gene encoding 5α-reductase enzyme. This paper deals with the study of the role of these genes in prostate cancer.  

  9. CLINICAL SIGNIFICANCE OF 5αα-REDUCTASE AND ANDROGEN RECEPTOR GENE POLYMORPHISMS IN PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    O. B. Loran

    2009-01-01

    Full Text Available The development of prostate cancer is inseparably linked with the effect of androgens on the fundamental prostatic intracellular processes,such as proliferation, apoptosis, which is realized through a number of second messengers. Major of them are the AR gene encoding androgenreceptors and the SRD5A2 gene encoding 5α-reductase enzyme. This paper deals with the study of the role of these genes in prostate cancer.  

  10. Gene Cloning and Expression of the Pyrroline-5-carboxylate Reductase Gene of Perennial Ryegrass (Lolium perenne

    Directory of Open Access Journals (Sweden)

    Cao Li

    2015-09-01

    Full Text Available Salt and drought limit the range of applications of perennial ryegrass (Lolium perenne L., which is one of the important turf and forage grasses. Previous studies have suggested that pyrroline-5-carboxylate reductase (P5CR might play a central role in proline accumulation in plants that are responsive to stresses. In the present study, the Lolium perenne L. pyrroline-5-carboxylate reductase (LpP5CR gene was cloned from leaves of the cultivar ‘Derby’ using the RACE technique. The full-length LpP5CR gene was 1 047 bp in length, which comprised an open reading frame (ORF of 840 bp in size. Sequence alignment revealed that the putative LpP5CR had a 94.3% similarity to TaP5CR. qRT-PCR displayed that the mRNA levels of the LpP5CR gene were almost the same as that in the roots, stems, and leaves of perennial ryegrass seedlings subjected to normal condition or NaCl treatment for 1 h. Moreover, the transcription level of LpP5CR was up- or down-regulated with NaCl, polyethylene glycol (PEG, cold, or abscisic acid (ABA treatment for 3 to 48 h. In addition, confocal microscopy localized the GFP-LpP5CR fusion protein to the cytoplasm of onion epidermal cells. These findings suggest that LpP5CR encodes a cytoplasmic P5CR protein that plays an important role in the response of perennial ryegrass to various stresses.

  11. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.; Rozen. R. [McGill Univ., Montreal (Canada)

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defect that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.

  12. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple

    Directory of Open Access Journals (Sweden)

    Yuepeng eHan

    2015-04-01

    Full Text Available Proanthocyanidins (PAs are the major component of phenolics in apple, but mechanisms involved in PA biosynthesis remain unclear. Here, the relationship between the PA biosynthesis and the expression of genes encoding leucoanthocyanidin reductase (LAR and anthocyanidin reductase (ANR was investigated in fruit skin of one apple cultivar and three crabapples. Transcript levels of LAR1 and ANR2 genes were significantly correlated with the contents of catechin and epicatechin, respectively, which suggests their active roles in PA synthesis. Surprisingly, transcript levels for both LAR1 and LAR2 genes were almost undetectable in two crabapples that accumulated both flavan-3-ols and PAs. This contradicts the previous finding that LAR1 gene is a strong candidate regulating the accumulation of metabolites such as epicatechin and PAs in apple. Ectopic expression of apple MdLAR1 gene in tobacco suppresses expression of the late genes in anthocyanin biosynthetic pathway, resulting in loss of anthocyanin in flowers. Interestingly, a decrease in PA biosynthesis was also observed in flowers of transgenic tobacco plants overexpressing the MdLAR1 gene, which could be attributed to decreased expression of both the NtANR1 and NtANR2 genes. Our study not only confirms the in vivo function of apple LAR1 gene, but it is also helpful for understanding the mechanism of PA biosynthesis.

  13. Ammonium Inhibits Chromomethylase 3-Mediated Methylation of the Arabidopsis Nitrate Reductase Gene NIA2

    OpenAIRE

    Kim, Joo Yong; Kwon, Ye Jin; Kim, Sung-Il; Kim, Do Youn; Song, Jong Tae; Seo, Hak Soo

    2016-01-01

    Gene methylation is an important mechanism regulating gene expression and genome stability. Our previous work showed that methylation of the nitrate reductase (NR) gene NIA2 was dependent on chromomethylase 3 (CMT3). Here, we show that CMT3-mediated NIA2 methylation is regulated by ammonium in Arabidopsis thaliana. CHG sequences (where H can be A, T, or C) were methylated in NIA2 but not in NIA1, and ammonium [(NH4)2SO4] treatment completely blocked CHG methylation in NIA2. By contrast, ammon...

  14. The methylenetetrahydrofolate reductase gene variant (C677T) in ...

    African Journals Online (AJOL)

    This unreeled study aimed to examine the relationship between the genetic polymorphisms C677T in MTHFR gene and mapped this figure with other ethnic populations. The present study examined 70 Saudi females (30 mothers with DS children plus 40 healthy mothers who gave birth only to healthy children) for C677T ...

  15. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  16. FQR1, a Novel Primary Auxin-Response Gene, Encodes a Flavin Mononucleotide-Binding Quinone Reductase1

    Science.gov (United States)

    Laskowski, Marta J.; Dreher, Kate A.; Gehring, Mary A.; Abel, Steffen; Gensler, Arminda L.; Sussex, Ian M.

    2002-01-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress. PMID:11842161

  17. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase.

    Science.gov (United States)

    Laskowski, Marta J; Dreher, Kate A; Gehring, Mary A; Abel, Steffen; Gensler, Arminda L; Sussex, Ian M

    2002-02-01

    FQR1 is a novel primary auxin-response gene that codes for a flavin mononucleotide-binding flavodoxin-like quinone reductase. Accumulation of FQR1 mRNA begins within 10 min of indole-3-acetic acid application and reaches a maximum of approximately 10-fold induction 30 min after treatment. This increase in FQR1 mRNA abundance is not diminished by the protein synthesis inhibitor cycloheximide, demonstrating that FQR1 is a primary auxin-response gene. Sequence analysis reveals that FQR1 belongs to a family of flavin mononucleotide-binding quinone reductases. Partially purified His-tagged FQR1 isolated from Escherichia coli catalyzes the transfer of electrons from NADH and NADPH to several substrates and exhibits in vitro quinone reductase activity. Overexpression of FQR1 in plants leads to increased levels of FQR1 protein and quinone reductase activity, indicating that FQR1 functions as a quinone reductase in vivo. In mammalian systems, glutathione S-transferases and quinone reductases are classified as phase II detoxification enzymes. We hypothesize that the auxin-inducible glutathione S-transferases and quinone reductases found in plants also act as detoxification enzymes, possibly to protect against auxin-induced oxidative stress.

  18. Relationship of the 1793G-A and 677C-T polymorphisms of the 5,10-methylenetetrahydrofolate reductase gene to coronary artery disease.

    Science.gov (United States)

    Kebert, Cory B; Eichner, June E; Moore, William E; Schechter, Eliot; Yaoi, Takuro; Vogel, Steve; Allen, Richard A; Dunn, S Terence

    2006-01-01

    Numerous studies have investigated the relationship between polymorphisms, in particular 677C-T and 1298A-C, of the methylene-tetrahydrofolate reductase (MTHFR) gene and coronary artery disease (CAD) with conflicting results. This study investigates the potential association of two point mutations in MTHFR, 677C-T and 1793G-A, along with other risk factors, with CAD. This is the first hospital-based study to investigate 1793G-A in this context. Genotype analysis was performed on 729 Caucasians and 66 African Americans undergoing coronary angiography using a novel PCR-based assay involving formation of Holliday junctions. Allelic frequencies for 677C-T were 66.2% C and 33.8% T for Caucasians and 90.9% C and 9.1% T for African Americans. With respect to the 1793G-A polymorphism, allelic frequencies were 94.7% G and 5.3% A for Caucasians and 99.2% G and 0.8% A for African Americans. Disease associations were examined in the Caucasian patients due to their greater genotype variability and larger number in the patient cohort. Results suggest that neither 677CT heterozygotes (OR-1.36; 95% CI 0.95 to 1.96) nor mutant homozygotes (OR-0.73; 95% CI 0.44 to 1.20) have either an increased or decreased risk for CAD compared to the 677CC genotype. Likewise, the 1793GA genotype did not demonstrate a statistically significant association with CAD compared to 1793GG patients (OR-0.79; 95% CI 0.47 to 1.33). Mean homocysteine levels (mumol/L) increased from normal to mutant for 677C-T (677CC: 10.2; 677CT: 11.0; 677TT: 11.6) and normal to heterozygous in 1793G-A (1793GG: 10.7; 1793GA: 11.5). These MTHFR polymorphisms did not contribute to the prediction of clinically defined CAD in Caucasians.

  19. Relationship of the 1793G-A and 677C-T Polymorphisms of the 5,10-Methylenetetrahydrofolate Reductase Gene to Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Cory B. Kebert

    2006-01-01

    Full Text Available Numerous studies have investigated the relationship between polymorphisms, in particular 677C-T and 1298A-C, of the methylene-tetrahydrofolate reductase (MTHFR gene and coronary artery disease (CAD with conflicting results. This study investigates the potential association of two point mutations in MTHFR, 677C-T and 1793G-A, along with other risk factors, with CAD. This is the first hospital-based study to investigate 1793G-A in this context. Genotype analysis was performed on 729 Caucasians and 66 African Americans undergoing coronary angiography using a novel PCR-based assay involving formation of Holliday junctions. Allelic frequencies for 677C-T were 66.2% C and 33.8% T for Caucasians and 90.9% C and 9.1% T for African Americans. With respect to the 1793G-A polymorphism, allelic frequencies were 94.7% G and 5.3% A for Caucasians and 99.2% G and 0.8% A for African Americans. Disease associations were examined in the Caucasian patients due to their greater genotype variability and larger number in the patient cohort. Results suggest that neither 677CT heterozygotes (OR-1.36; 95% CI 0.95 to 1.96 nor mutant homozygotes (OR-0.73; 95% CI 0.44 to 1.20 have either an increased or decreased risk for CAD compared to the 677CC genotype. Likewise, the 1793GA genotype did not demonstrate a statistically significant association with CAD compared to 1793GG patients (OR-0.79; 95% CI 0.47 to 1.33. Mean homocysteine levels (μmol/L increased from normal to mutant for 677C-T (677CC: 10.2; 677CT: 11.0; 677TT: 11.6 and normal to heterozygous in 1793G-A (1793GG: 10.7; 1793GA: 11.5. These MTHFR polymorphisms did not contribute to the prediction of clinically defined CAD in Caucasians.

  20. Cloning the putative gene of vinyl phenol reductase of Dekkera bruxellensis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Romano, Diego; Valdetara, Federica; Zambelli, Paolo; Galafassi, Silvia; De Vitis, Valerio; Molinari, Francesco; Compagno, Concetta; Foschino, Roberto; Vigentini, Ileana

    2017-05-01

    Vinylphenol reductase of Dekkera bruxellensis, the characteristic enzyme liable for "Brett" sensory modification of wine, has been recently recognized to belong to the short chain dehydrogenases/reductases family. Indeed, a preliminary biochemical characterisation has conferred to the purified protein a dual significance acting as superoxide dismutase and as a NADH-dependent reductase. The present study aimed for providing a certain identification of the enzyme by cloning the VPR gene in S. cerevisiae, a species not producing ethyl phenols. Transformed clones of S. cerevisiae resulted capable of expressing a biologically active form of the heterologous protein, proving its role in the conversion of 4-vinyl guaiacol to 4-ethyl guaiacol. A VPR specific protein activity of 9 ± 0.6 mU/mg was found in crude extracts of S. cerevisiae recombinant strain. This result was confirmed in activity trials carried out with the protein purified from transformant cells of S. cerevisiae by a his-tag purification approach; in particular, VPR-enriched fractions showed a specific activity of 1.83 ± 0.03 U/mg at pH 6.0. Furthermore, in agreement with literature, the purified protein behaves like a SOD, with a calculated specific activity of approximatively 3.41 U/mg. The comparative genetic analysis of the partial VPR gene sequences from 17 different D. bruxellesis strains suggested that the observed polymorphism (2.3%) and the allelic heterozygosity state of the gene do not justify the well described strain-dependent character in producing volatile phenols of this species. Actually, no correlation exists between genotype membership of the analysed strains and their capability to release off-flavours. This work adds valuable knowledge to the study of D. bruxellensis wine spoilage and prepare the ground for interesting future industrial applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sunflower (Helianthus annuus) fatty acid synthase complex: enoyl-[acyl carrier protein]-reductase genes.

    Science.gov (United States)

    González-Thuillier, Irene; Venegas-Calerón, Mónica; Garcés, Rafael; von Wettstein-Knowles, Penny; Martínez-Force, Enrique

    2015-01-01

    Enoyl-[acyl carrier protein]-reductases from sunflower. A major factor contributing to the amount of fatty acids in plant oils are the first steps of their synthesis. The intraplastidic fatty acid biosynthetic pathway in plants is catalysed by type II fatty acid synthase (FAS). The last step in each elongation cycle is carried out by the enoyl-[ACP]-reductase, which reduces the dehydrated product of β-hydroxyacyl-[ACP] dehydrase using NADPH or NADH. To determine the mechanisms involved in the biosynthesis of fatty acids in sunflower (Helianthus annuus) seeds, two enoyl-[ACP]-reductase genes have been identified and cloned from developing seeds with 75 % identity: HaENR1 (GenBank HM021137) and HaENR2 (HM021138). The two genes belong to the ENRA and ENRB families in dicotyledons, respectively. The genetic duplication most likely originated after the separation of di- and monocotyledons. RT-qPCR revealed distinct tissue-specific expression patterns. Highest expression of HaENR1 was in roots, stems and developing cotyledons whereas that of H a ENR2 was in leaves and early stages of seed development. Genomic DNA gel blot analyses suggest that both are single-copy genes. In vivo activity of the ENR enzymes was tested by complementation experiments with the JP1111 fabI(ts) E. coli strain. Both enzymes were functional demonstrating that they interacted with the bacterial FAS components. That different fatty acid profiles resulted infers that the two Helianthus proteins have different structures, substrate specificities and/or reaction rates. The latter possibility was confirmed by in vitro analysis with affinity-purified heterologous-expressed enzymes that reduced the crotonyl-CoA substrate using NADH with different V max.

  2. Genetic variation of Aflatoxin B(1) aldehyde reductase genes (AFAR) in human tumour cells

    DEFF Research Database (Denmark)

    Praml, Christian; Schulz, Wolfgang; Claas, Andreas

    2008-01-01

    AFAR genes play a key role in the detoxification of the carcinogen Aflatoxin B(1) (AFB(1)). In the rat, Afar1 induction can prevent AFB(1)-induced liver cancer. It has been proposed that AFAR enzymes can metabolise endogenous diketones and dialdehydes that may be cytotoxic and/or genotoxic. Furth...... many aldo-keto reductases. This polarity change may have an effect on the proposed substrate binding amino acids nearby (Met(47), Tyr(48), Asp(50)). Further population analyses and functional studies of the nine variants detected may show if these variants are disease-related....

  3. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency.

    OpenAIRE

    Goyette, P; Frosst, P.; Rosenblatt, D S; ROZEN, R.

    1995-01-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA fo...

  4. Prognostic significance of numeric aberrations of genes for thymidylate synthase, thymidine phosphorylase and dihydrofolate reductase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, B.; Witton, C.J.

    2008-01-01

    BACKGROUND: Most human cancer cells have structural aberrations of chromosomal regions leading to loss or gain of gene specific alleles. This study aimed to assess the range of gene copies per nucleus of thymidylate synthase (TYMS), thymidine phosphorylase (TP) and dihydrofolate reductase (DHFR...

  5. Identification of the bchP gene, encoding geranylgeranyl reductase in Chlorobaculum tepidum

    DEFF Research Database (Denmark)

    Gomez Maqueo Chew, Aline; Frigaard, Niels-Ulrik; Bryant, Donald A

    2008-01-01

    The Chlorobaculum tepidum genome contains two paralogous genes, CT2256 and CT1232, whose products are members of the FixC dehydrogenase superfamily and have sequence similarity to geranylgeranyl reductases. Each gene was insertionally inactivated, and the resulting mutants were characterized. CT2...

  6. Chloromethane-Induced Genes Define a Third C1 Utilization Pathway in Methylobacterium chloromethanicum CM4

    Science.gov (United States)

    Studer, Alex; McAnulla, Craig; Büchele, Rainer; Leisinger, Thomas; Vuilleumier, Stéphane

    2002-01-01

    Methylobacterium chloromethanicum CM4 is an aerobic α-proteobacterium capable of growth with chloromethane as the sole carbon and energy source. Two proteins, CmuA and CmuB, were previously purified and shown to catalyze the dehalogenation of chloromethane and the vitamin B12-mediated transfer of the methyl group of chloromethane to tetrahydrofolate. Three genes located near cmuA and cmuB, designated metF, folD and purU and encoding homologs of methylene tetrahydrofolate (methylene-H4folate) reductase, methylene-H4folate dehydrogenase-methenyl-H4folate cyclohydrolase and formyl-H4folate hydrolase, respectively, suggested the existence of a chloromethane-specific oxidation pathway from methyl-tetrahydrofolate to formate in strain CM4. Hybridization and PCR analysis indicated that these genes were absent in Methylobacterium extorquens AM1, which is unable to grow with chloromethane. Studies with transcriptional xylE fusions demonstrated the chloromethane-dependent expression of these genes. Transcriptional start sites were mapped by primer extension and allowed to define three transcriptional units, each likely comprising several genes, that were specifically expressed during growth of strain CM4 with chloromethane. The DNA sequences of the deduced promoters display a high degree of sequence conservation but differ from the Methylobacterium promoters described thus far. As shown previously for purU, inactivation of the metF gene resulted in a CM4 mutant unable to grow with chloromethane. Methylene-H4folate reductase activity was detected in a cell extract of strain CM4 only in the presence of chloromethane but not in the metF mutant. Taken together, these data provide evidence that M. chloromethanicum CM4 requires a specific set of tetrahydrofolate-dependent enzymes for growth with chloromethane. PMID:12057941

  7. Progesterone 5β-reductase genes of the Brassicaceae family as function-associated molecular markers.

    Science.gov (United States)

    Munkert, J; Costa, C; Budeanu, O; Petersen, J; Bertolucci, S; Fischer, G; Müller-Uri, F; Kreis, W

    2015-11-01

    This study aimed to define progesterone 5β-reductases (P5βR, EC 1.3.99.6, enone 1,4-reductases) as function-associated molecular markers at the plant family level. Therefore cDNAs were isolated from 25 Brassicaceae species, including two species, Erysimum crepidifolium and Draba aizoides, known to produce cardiac glycosides. The sequences were used in a molecular phylogeny study. The cladogram created is congruent to the existing molecular analyses. Recombinant His-tagged forms of the P5βR cDNAs from Aethionema grandiflorum, Draba aizoides, Nasturtium officinale, Raphanus sativus and Sisymbrium officinale were expressed in E. coli. Enone 1,4-reductase activity was demonstrated in vitro using progesterone and 2-cyclohexen-1-one as substrates. Evidence is provided that functional P5βRs are ubiquitous in the Brassicaceae. The recombinant P5βR enzymes showed different substrate preferences towards progesterone and 2-cyclohexen-1-one. Sequence comparison of the catalytic pocket of the P5βR enzymes and homology modelling using Digitalis lanata P5βR (PDB ID: 2V6G) as template highlighted the importance of the hydrophobicity of the binding pocket for substrate discrimination. It is concluded that P5βR genes or P5βR proteins can be used as valuable function-associated molecular markers to infer taxonomic relationship and evolutionary diversification from a metabolic/catalytic perspective. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene.

    Science.gov (United States)

    Pereira, Luiz Miguel; Baroni, Luciana; Yatsuda, Ana Patrícia

    2014-03-01

    Neospora caninum is an Apicomplexa parasite related to abortion and losses of fertility in cattle. The amenability of Toxoplasma gondii and Plasmodium to genetic manipulation offers several tools to determine the invasion and replication processes, which support posterior strategies related to the combat of these diseases. For Plasmodium the use of pyrimethamine as an auxiliary drug on malaria treatment has been affected by the rise of resistant strains and the analyses on Dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene indicated several point mutations. In this work we developed a method for stable insertion of genes based on resistance to pyrimethamine. For that, the coding sequence of NcDHFR-TS (Dihydrofolate reductase-thymidylate synthase) was point mutated in two amino acids, generating DHFRM2M3. The DHFRM2M3 flanked by the promoter and 3'UTR of Ncdhfr-ts (Ncdhfr-DHFRM2M3) conferred resistance to pyrimethamine after transfection. For illustration of stability and expression, the cassette Ncdhfr-DHFRM2M3 was ligated to the reporter gene Lac-Z (β-galactosidase enzyme) controlled by the N. caninum tubulin promoter and was transfected and selected in N. caninum. The cassette was integrated into the genome and the selected tachyzoites expressed Lac-Z, allowing the detection of tachyzoites by the CPRG reaction and X-gal precipitation. The obtainment of transgenic N. caninum resistant to pyrimethamine confirms the effects on DHFR-TS among the Apicomplexa members and will support future approaches on pholate inhibitors for N. caninum prophylaxis. The construction of stable tachyzoites based on vectors with N. caninum promoters initiates the molecular manipulation of this parasite independently of T. gondii. Copyright © 2014. Published by Elsevier Inc.

  9. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR is associated with ADHD in myelomeningocele patients.

    Directory of Open Access Journals (Sweden)

    Catherine J Spellicy

    Full Text Available The objective of this study was to examine the relation between the 5, 10-methylenetetrahydrofolate reductase (MTHFR gene and behaviors related to attention- deficit/hyperactivity disorder (ADHD in individuals with myelomeningocele. The rationale for the study was twofold: folate metabolizing genes, (e.g. MTHFR, are important not only in the etiology of neural tube defects but are also critical to cognitive function; and individuals with myelomeningocele have an elevated incidence of ADHD. Here, we tested 478 individuals with myelomeningocele for attention-deficit hyperactivity disorder behavior using the Swanson Nolan Achenbach Pelham-IV ADHD rating scale. Myelomeningocele participants in this group for whom DNAs were available were genotyped for seven single nucleotide polymorphisms (SNPs in the MTHFR gene. The SNPs were evaluated for an association with manifestation of the ADHD phenotype in children with myelomeningocele. The data show that 28.7% of myelomeningocele participants exhibit rating scale elevations consistent with ADHD; of these 70.1% had scores consistent with the predominantly inattentive subtype. In addition, we also show a positive association between the SNP rs4846049 in the 3'-untranslated region of the MTHFR gene and the attention-deficit hyperactivity disorder phenotype in myelomeningocele participants. These results lend further support to the finding that behavior related to ADHD is more prevalent in patients with myelomeningocele than in the general population. These data also indicate the potential importance of the MTHFR gene in the etiology of the ADHD phenotype.

  10. Folate metabolism gene 5,10-methylenetetrahydrofolate reductase (MTHFR) is associated with ADHD in myelomeningocele patients.

    Science.gov (United States)

    Spellicy, Catherine J; Northrup, Hope; Fletcher, Jack M; Cirino, Paul T; Dennis, Maureen; Morrison, Alanna C; Martinez, Carla A; Au, Kit Sing

    2012-01-01

    The objective of this study was to examine the relation between the 5, 10-methylenetetrahydrofolate reductase (MTHFR) gene and behaviors related to attention- deficit/hyperactivity disorder (ADHD) in individuals with myelomeningocele. The rationale for the study was twofold: folate metabolizing genes, (e.g. MTHFR), are important not only in the etiology of neural tube defects but are also critical to cognitive function; and individuals with myelomeningocele have an elevated incidence of ADHD. Here, we tested 478 individuals with myelomeningocele for attention-deficit hyperactivity disorder behavior using the Swanson Nolan Achenbach Pelham-IV ADHD rating scale. Myelomeningocele participants in this group for whom DNAs were available were genotyped for seven single nucleotide polymorphisms (SNPs) in the MTHFR gene. The SNPs were evaluated for an association with manifestation of the ADHD phenotype in children with myelomeningocele. The data show that 28.7% of myelomeningocele participants exhibit rating scale elevations consistent with ADHD; of these 70.1% had scores consistent with the predominantly inattentive subtype. In addition, we also show a positive association between the SNP rs4846049 in the 3'-untranslated region of the MTHFR gene and the attention-deficit hyperactivity disorder phenotype in myelomeningocele participants. These results lend further support to the finding that behavior related to ADHD is more prevalent in patients with myelomeningocele than in the general population. These data also indicate the potential importance of the MTHFR gene in the etiology of the ADHD phenotype.

  11. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids

    National Research Council Canada - National Science Library

    Li, Yueqing; Liu, Xingxue; Cai, Xinquan; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Han, Taotao; Wang, Shucai; Wang, Li; Gao, Xiang

    2017-01-01

    ... were firstly cloned from Freesia hybrida. Phylogenetic analysis showed that they were classified into different branches, and FhDFR1, FhDFR2 and FhDFR3 were clustered into DFR subgroup, whereas others fell into the group with cinnamoyl-CoA reductase (CCR) proteins. Then, the functions of the three FhDFR genes were further characterized. Different...

  12. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    Science.gov (United States)

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  13. Mutations in the gene for methylenetetrahydrofolate reductase, homocysteine levels, and vitamin status in women with a history of preeclampsia

    NARCIS (Netherlands)

    Lachmeijer, AMA; Arngrimsson, R; Bastiaans, EJ; Pals, G; ten Kate, LP; de Vries, JIP; Kostense, PJ; Aarnoudse, JG; Dekker, GA

    OBJECTIVE: This study was undertaken to assess frequencies of the methylenetetrahydrofolate reductase gene mutations cytosine-to-thymine substitution at base 677 (C677T) and adenine-to-cytosine substitution at base 1298 (A1298C) and their interactions with homocysteine and vitamin levels among Dutch

  14. Conditional gene expression and promoter replacement in Zymoseptoria tritici using fungal nitrate reductase promoters.

    Science.gov (United States)

    Marchegiani, Elisabetta; Sidhu, Yaadwinder; Haynes, Ken; Lebrun, Marc-Henri

    2015-06-01

    Studying essential genes in haploid fungi requires specific tools. Conditional promoter replacement (CPR) is an efficient method for testing gene essentiality. However, this tool requires promoters that can be strongly down-regulated. To this end, we tested the nitrate reductase promoters of Magnaporthe oryzae (pMoNIA1) and Zymoseptoria tritici (pZtNIA1) for their conditional expression in Z. tritici. Expression of EGFP driven by pMoNIA1 or pZtNIA1 was induced on nitrate and down-regulated on glutamate (10-fold less than nitrate). Levels of differential expression were similar for both promoters, demonstrating that the Z. tritici nitrogen regulatory network functions with a heterologous promoter similarly to a native promoter. To establish CPR, the promoter of Z. tritici BGS1, encoding a β-1,3-glucan synthase, was replaced by pZtNIA1 using targeted sequence replacement. Growth of pZtNIA1::BGS1 CPR transformants was strongly reduced in conditions repressing pZtNIA1, while their growth was similar to wild type in conditions inducing pZtNIA1. This differential phenotype demonstrates that BGS1 is important for growth in Z. tritici. In addition, in inducing conditions, pZtNIA1::BGS1 CPR transformants were hyper-sensitive to Calcofluor white, a cell wall disorganizing agent. Nitrate reductase promoters are therefore suitable for conditional promoter replacement in Z. tritici. This tool is a major step toward identifying novel fungicide targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Functional profiling of mercuric reductase (mer A genes in biofilm communities of a technical scale biocatalyzer

    Directory of Open Access Journals (Sweden)

    von Canstein Harald

    2003-10-01

    Full Text Available Abstract Background Bacterial mercury resistance is based on enzymatic reduction of ionic mercury to elemental mercury and has recently been demonstrated to be applicable for industrial wastewater clean-up. The long-term monitoring of such biocatalyser systems requires a cultivation independent functional community profiling method targeting the key enzyme of the process, the merA gene coding for the mercuric reductase. We report on the development of a profiling method for merA and its application to monitor changes in the functional diversity of the biofilm community of a technical scale biocatalyzer over 8 months of on-site operation. Results Based on an alignment of 30 merA sequences from Gram negative bacteria, conserved primers were designed for amplification of merA fragments with an optimized PCR protocol. The resulting amplicons of approximately 280 bp were separated by thermogradient gelelectrophoresis (TGGE, resulting in strain specific fingerprints for mercury resistant Gram negative isolates with different merA sequences. The merA profiling of the biofilm community from a technical biocatalyzer showed persistence of some and loss of other inoculum strains as well as the appearance of new bands, resulting in an overall increase of the functional diversity of the biofilm community. One predominant new band of the merA community profile was also detected in a biocatalyzer effluent isolate, which was identified as Pseudomonas aeruginosa. The isolated strain showed lower mercury reduction rates in liquid culture than the inoculum strains but was apparently highly competitive in the biofilm environment of the biocatalyzer where moderate mercury levels were prevailing. Conclusions The merA profiling technique allowed to monitor the ongoing selection for better adapted strains during the operation of a biocatalyzer and to direct their subsequent isolation. In such a way, a predominant mercury reducing Ps. aeruginosa strain was identified by

  16. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR genes in sorghum

    Directory of Open Access Journals (Sweden)

    Jieqin Li

    2016-05-01

    Full Text Available Cinnamoyl-CoA reductase (CCR is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  17. Cloning and expression analysis of cinnamoyl-CoA reductase (CCR) genes in sorghum.

    Science.gov (United States)

    Li, Jieqin; Fan, Feifei; Wang, Lihua; Zhan, Qiuwen; Wu, Peijin; Du, Junli; Yang, Xiaocui; Liu, Yanlong

    2016-01-01

    Cinnamoyl-CoA reductase (CCR) is the first enzyme in the monolignol-specific branch of the lignin biosynthetic pathway. In this research, three sorghum CCR genes including SbCCR1, SbCCR2-1 and SbCCR2-2 were cloned and characterized. Analyses of the structure and phylogeny of the three CCR genes showed evolutionary conservation of the functional domains and divergence of function. Transient expression assays in Nicotiana benthamiana leaves demonstrated that the three CCR proteins were localized in the cytoplasm. The expression analysis showed that the three CCR genes were induced by drought. But in 48 h, the expression levels of SbCCR1 and SbCCR2-2 did not differ between CK and the drought treatment; while the expression level of SbCCR2-1 in the drought treatment was higher than in CK. The expression of the SbCCR1 and SbCCR2-1 genes was not induced by sorghum aphid [Melanaphis sacchari (Zehntner)] attack, but SbCCR2-2 was significantly induced by sorghum aphid attack. It is suggested that SbCCR2-2 is involved in the process of pest defense. Absolute quantitative real-time PCR revealed that the three CCR genes were mainly expressed in lignin deposition organs. The gene copy number of SbCCR1 was significantly higher than those of SbCCR2-1 and SbCCR2-2 in the tested tissues, especially in stem. The results provide new insight into the functions of the three CCR genes in sorghum.

  18. The impact of low molecular weight heparin on obstetric outcomes among unexplained recurrent miscarriages complicated with methylenetetrahydrofolate reductase gene polymorphism.

    Science.gov (United States)

    Cetin, Orkun; Karaman, Erbil; Cim, Numan; Dirik, Deniz; Sahin, Hanim Guler; Kara, Erdal; Esen, Ramazan

    2017-01-01

    The association between methylenetetrahydrofolate reductase gene polymorphisms and unexplained recurrent miscarriage is elusive. The recommendations for improving pregnancy outcomes in these patients keep changing based on the available evidence. The aim of this study is to analyze the impact of low molecular weight heparin on obstetric outcomes of recurrent miscarriage patients complicated with methylenetetrahydrofolate reductase gene polymorphism. We reviewed medical records of 121 patients with a history of recurrent miscarriage complicated by methylenetetrahydrofolate reductase gene polymorphisms, retrospectively. From among them, 68 patients were treated only with folic acid and iron. The remaining 53 patients were treated with folic acid, iron and prophylactic doses of low molecular weight heparin. The subsequent pregnancy outcomes of these patients were noted. The live birth rate was higher in patients with anticoagulant therapy than in patients without anticoagulant therapy (48.5% vs. 69.8%, respectively, p: 0.015) and the congenital anomaly rate was lower in anticoagulant therapy group (17.6% vs. 3.8%, respectively, p: 0.022). The other obstetric outcomes were found to be similar between the two groups. The current study demonstrated that low molecular weight heparin improved the live birth rates among unex-plained recurrent miscarriage patients complicated with methylenetetrahydrofolate reductase gene polymorphisms. How-ever, the routine use of low molecular weight heparin did not improve the late pregnancy complications in these selected patients in the eastern region of our country. Further studies are needed to discriminate the effect of anticoagulation on the live birth rate of each of methylenetetrahydrofolate reductase gene polymorphism type.

  19. Genotype distribution of methylenetetrahydrofolate reductase A1298C and C677T gene in Indonesian infertile men

    OpenAIRE

    Dwi A. Suryandari; Yurnadi Yurnadi; Budi Wiweko; Luluk Yunaini

    2012-01-01

    Background: Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme of folate and methionin metabolism, making it crucial for DNA synthesis and methylation. Variants of MTHFR C677T and A1298C gene result in reduced plasma folate levels and increase the susceptibility to spermatogenic arrest. This research aims to analyses MTHFR C677T and A1298C gene polymorphism in Indonesian infertile men with azoospermia and oligozoospermia.Methods: This cross sectional study takes 3 mL of blood ...

  20. Two self-splicing group I introns in the ribonucleotide reductase large subunit gene of Staphylococcus aureus phage Twort

    OpenAIRE

    Landthaler, Markus; Begley, Ulrike; Lau, Nelson C.; Shub, David A.

    2002-01-01

    We have recently described three group I introns inserted into a single gene, orf142, of the staphylococcal bacteriophage Twort and suggested the presence of at least two additional self-splicing introns in this phage genome. Here we report that two previously uncharacterized introns, 429 and 1087 nt in length, interrupt the Twort gene coding for the large subunit of ribonucleotide reductase (nrdE). Reverse transcription-polymerase chain reaction (RT-PCR) of RNA isolated from Staphylococcus a...

  1. Molecular Characterization of Dihydrofolate Reductase-Thymidylate Synthase Gene Concerning Antifulate Resistance of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    N Hosseinzadeh

    2009-12-01

    Full Text Available "nBackground: The recently reported resistance to antimalarials contributes to making the control of ma­laria more difficult. There is a need to evaluate the current antimalaria regimens to prevent this emerging problem. The aim of this study was to determine dihydrofolate reductase-thymidylate synthase gene mu­tation (pvdhfr regarding antifulate resistance in Plasmodium vivax. "nMethods: From 2007 to 2009, 117 P. vivax infected blood samples collected from two regions of Hor­mozgan Province, south of Iran were analyzed using PCR, semi-nested-PCR and RFLP methods. "nResults: Eighty four isolates (71.8 % showed no mutation in pvdhfr gene of P. vivax known as wild type and 33 (28.2% of the samples revealed nine single (7.7%, twenty two double (18.8% and two (1.7% triple mutations. "nConclusion: Genetic diversity was observed by molecular methods in pvdhfr gene of p. vivax in Hor­mozgan Province suggests that the antifolate falciparum malaria drug (fansidar is proportionally affecting P. vivax dhfr mutation. Therefore, more studies to evaluate antimalarial drugs that should preferably be effective against both P. vivax and P. falciparum are recommended.

  2. Association of C677T transition of the human methylenetetrahydrofolate reductase (MTHFR) gene with male infertility.

    Science.gov (United States)

    Karimian, Mohammad; Colagar, Abasalt Hosseinzadeh

    2016-04-01

    The human methylenetetrahydrofolate reductase (MTHFR) gene encodes one of the key enzymes in folate metabolism. This gene is located on chromosome 1 (1p36.3), which has 12 exons. The aim of the present study was to investigate the possible association of the two (C677T and A1298C) polymorphisms of this gene with male infertility. In a case-control study, 250 blood samples were collected from IVF centres in Sari and Babol (Iran): 118 samples were from oligospermic men and 132 were from controls. Two single nucleotide polymorphisms of the MTHFR genotype were detected using polymerase chain reaction-restriction fragment length polymorphism. There was no association found between the A1298C variant and male infertility. However, carriers of the 677T allele (CT and TT genotypes) were at a higher risk of infertility than individuals with other genotypes (odds ratio 1.84; 95% confidence interval 1.11-3.04; P=0.0174). Structural analysis of human MTHFR flavoprotein showed that C677T transition played an important role in the change in affinity of the MTHFR-Flavin adenine dinucleotide binding site. Based on our results, we suggest that C677T transition in MTHFR may increase the risk of male infertility, and detection of the C677T polymorphism biomarker may be helpful in the screening of idiopathic male infertility.

  3. Is methylenetetrahydrofolate reductase (MTHFR) gene A1298C polymorphism related with varicocele risk?

    Science.gov (United States)

    Ucar, V B; Nami, B; Acar, H; Kilinç, M

    2015-02-01

    Varicocele is one of the main reasons for male infertility the exact aetiology of which remains unclear. Methylenetetrahydrofolate reductase (MTHFR) is important for DNA synthesis and methylation, which has a key role during spermatogenesis. Numerous literature suggests that the MTHFR polymorphism may be genetic risk factors for male infertility. In this study, we evaluated C677T and A1298C MTHFR gene polymorphism frequency in patients with varicocele and normal men. A total of 107 varicocele patients and 109 fertile healthy individuals were included. Genotyping of the MTHFR gene in C677T and A1298C base pairs carried out by using real-time PCR technique and afterwards, the statistical analysis accomplished. There is a statistical difference for the frequency of 1298AA genotype in patients with varicocele compared with normal controls (P = 0.0051, OR = 2.2750). Instead, subsequently, 1298/A allel frequency in patient group was significantly higher in comparison with control group (P = 0.0174). According to our results, 1298AA genotype in MTHFR gene raises the risk of varicocele approximately 2.3 times more compared with men carrying other genotypes. The results show that genetic factors have an important role in the molecular basis of varicocele. © 2014 Blackwell Verlag GmbH.

  4. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and susceptibility to ischemic stroke: a meta-analysis.

    Science.gov (United States)

    Li, Pingping; Qin, Chao

    2014-02-10

    Associations between 5,10-methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and ischemic stroke have been reported (Ariyaratnam et al., 2007; Banerjee et al., 2007; Casas et al., 2004), but the results of these studies are inconsistent. To investigate the possible associations between the MTHFR gene polymorphism and ischemic stroke, we performed a meta-analysis. Nineteen case-control studies associated with MTHFR gene C667T involving 2223 cases and 2936 controls were included. Heterogeneity among studies was evaluated with I(2) and Egger's test and an inverted funnel plot was used to assess publication bias. Odds ratio (OR) was observed to identify the associations. Statistically significant association with ischemic stroke was identified for allele T polymorphism of MTHFR [fixed-effects OR=1.28, 95% confidence interval (95% CI): 1.17-1.40, PMTHFR (fixed-effects OR=1.13, 95% CI: 1.01-127, P=0.04) and genotype TT of MTHFR (fixed-effects OR=1.43, 95% CI: 1.20-1.70, PMTHFR C667T genetic polymorphism was significantly associated with increased risk of ischemic stroke. © 2013.

  5. Molecular Properties and Functional Divergence of the Dehydroascorbate Reductase Gene Family in Lower and Higher Plants.

    Directory of Open Access Journals (Sweden)

    Yuan-Jie Zhang

    Full Text Available Dehydroascorbate reductase (DHAR, which reduces oxidized ascorbate, is important for maintaining an appropriate ascorbate redox state in plant cells. To date, genome-wide molecular characterization of DHARs has only been conducted in bryophytes (Physcomitrella patens and eudicots (e.g. Arabidopsis thaliana. In this study, to gain a general understanding of the molecular properties and functional divergence of the DHARs in land plants, we further conducted a comprehensive analysis of DHARs from the lycophyte Selaginella moellendorffii, gymnosperm Picea abies and monocot Zea mays. DHARs were present as a small gene family in all of the land plants we examined, with gene numbers ranging from two to four. All the plants contained cytosolic and chloroplastic DHARs, indicating dehydroascorbate (DHA can be directly reduced in the cytoplasm and chloroplast by DHARs in all the plants. A novel vacuolar DHAR was found in Z. mays, indicating DHA may also be reduced in the vacuole by DHARs in Z. mays. The DHARs within each species showed extensive functional divergence in their gene structures, subcellular localizations, and enzymatic characteristics. This study provides new insights into the molecular characteristics and functional divergence of DHARs in land plants.

  6. Association between methylenetetrahydrofolate reductase (MTHFR) gene promoter hypermethylation and the risk of idiopathic male infertility.

    Science.gov (United States)

    Karaca, M Z; Konac, E; Yurteri, B; Bozdag, G; Sogutdelen, E; Bilen, C Y

    2017-09-01

    Epigenetics has become a major field of reproductive medicine after the epigenetic regulation of gene expression was discovered. The aim of this study was to find out whether or not methylenetetrahydrofolate reductase (MTHFR) gene promoter hypermethylation in the spermatozoa of men who were offered assisted reproduction is associated with idiopathic male infertility. Sperm DNAs from 40 idiopathic infertile men with normozoospermia and 40 controls consisting of healthy fertile men were isolated. Following the modification of DNAs by sodium bisulphite, the methylation status of the MTHFR gene promoter was quantified by pyrosequencing. No significant differences were observed between the clinical characteristics of patients and controls. The percentage of MTHFR promoter methylation in infertile men with normozoospermia (11%) was significantly higher than that in the healthy control (4.3%) group (p = .01). A 9.5% of methylation level was determined via receiver operator characteristic (ROC) analysis as the cut-off value. There were 21 (53%) hypermethylated men among the infertile men and 2 (5%) in the control group (p = .0001). The intragroup analysis of the infertile group did not reveal any statistically significant differences in terms of overall clinical characteristics between hyper- and normo-methylated infertile men. Our results suggest that epigenetic silencing (hypermethylation) of MTHFR could result in an elevated risk of male infertility. © 2016 Blackwell Verlag GmbH.

  7. Proanthocyanidin Synthesis and Expression of Genes Encoding Leucoanthocyanidin Reductase and Anthocyanidin Reductase in Developing Grape Berries and Grapevine Leaves

    National Research Council Canada - National Science Library

    Jochen Bogs; Mark O. Downey; John S. Harvey; Anthony R. Ashton; Gregory J. Tanner; Simon P. Robinson

    2005-01-01

    .... We measured PA content and expression of genes encoding ANR, LAR, and leucoanthocyanidin dioxygenase in grape berries during development and in grapevine leaves, which accumulated PA throughout leaf expansion...

  8. Cloning and characterization of nitrate reductase gene in Ulva prolifera (Ulvophyceae, Chlorophyta).

    Science.gov (United States)

    Guo, Yang; Wang, Hao Zhe; Wu, Chun Hui; Fu, Hui Hui; Jiang, Peng

    2017-10-01

    Ulva spp. dominates green tides around the world, which are occurring at an accelerated rate. The competitive nitrogen assimilation efficiency in Ulva is suggested to result in ecological success against other seaweeds. However, molecular characterization of genes involved in nitrogen assimilation has not been conducted. Here, we describe the identification of the nitrate reductase (NR) gene from a green seaweed Ulva prolifera, an alga which is responsible for the world's largest green tide in the Yellow Sea. Using rapid amplification of cDNA ends and genome walking, the NR gene from U. prolifera (UpNR) was cloned, which consisted of six introns and seven exons encoding 863 amino acids. According to sequence alignment, the NR in U. prolifera was shown to possess all five essential domains and 21 key invariant residues in plant NRs. The GC content of third codon position of UpNR (82.75%) was as high as those of green microalgae, and the intron number supported a potential loss issue from green microalga to land plant. Real-time quantitative PCR results showed that UpNR transcript level was induced by nitrate and repressed by ammonium, which could not be removed by addition of extra nitrate, indicating that U. prolifera preferred ammonium to nitrate. Urea would not repress NR transcription by itself, while it weakened the induction effect of nitrate, implying it possibly inhibited nitrate uptake rather than nitrate reduction. These results suggest the use of UpNR as a gene-sensor to probe the N assimilation process in green tides caused by Ulva. © 2017 Phycological Society of America.

  9. Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women

    DEFF Research Database (Denmark)

    Jørgensen, H L; Madsen, J S; Madsen, B

    2002-01-01

    of this study was to investigate the influence of this mutation on peripheral measures of bone density and on the odds ratios (OR) for hip and lower forearm fracture in a case control study of Danish postmenopausal women. A total of 74 women with lower forearm fracture, 41 women with hip fracture, and 207 age...... homozygotic for the C-allele with those homozygotic for the T-allele: lower forearm fracture OR = 3.93 (1.25; 12.40, P = 0.02), hip fracture OR = 6.99 (l.35; 36.92, P = 0.02) and the fractures combined OR = 4.33 (1.73; 10.81, P = 0.002). In this study, the MTHFR (C677T) genotypes were not significantly...... associated with BMD at the lower forearm or with ultrasound parameters measured at the calcaneus. However, a significant increase in the odds ratio of fracture was found for the wild-type C-allele....

  10. Association of C677T polymorphism in the methylenetetrahydrofolate reductase gene (MTHFR gene) with ischemic stroke: a meta-analysis.

    Science.gov (United States)

    Kumar, Amit; Kumar, Pradeep; Prasad, Manya; Sagar, Ram; Yadav, Arun Kumar; Pandit, Awadh Kishor; Jali, Vidishaa Prasad; Pathak, Abhishek

    2015-07-01

    Studies on association between methylenetetrahydrofolate reductase gene (MTHFR) C677T gene polymorphism and ischemic stroke have shown conflicting results. We have conducted a meta-analysis to determine the precise association of the C677T polymorphism of MTHFR gene with risk of ischemic stroke. We searched electronic databases Medline, EMBASE, and Google Scholar (last search dated till August 2014). Pooled odds ratios (ORs) with 95% confidence intervals (CIs) from random or fixed-effects models were calculated. The methodological quality of included studies was determined by the quality assessment scale. Thirty eight case-control studies fulfilled our inclusion criteria comprising 6310 patients and 8297 controls. The significant associations between MTHFR C677T genetic polymorphism and risk of ischemic stroke were observed in dominant (OR, 1·09; 95% CI, 1·06-1·12, P-value MTHFR polymorphism and ischemic stroke was observed (dominant model: OR 1·36, 95% CI 1·23-1·49 and under recessive model OR, 1·29; 95% CI, 1·15-1·45). In the Caucasian population borderline, non-significant association was observed under dominant model of inheritance (OR, 1·05; 95% CI, 0·99-1·10) but significant association was observed under the recessive model of inheritance (OR, 1·33; 95% CI, 1·13-1·58). The present study results suggest that MTHFR C677T genetic polymorphism is a probable risk of ischemic stroke.

  11. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin for arsenate reductase

    Directory of Open Access Journals (Sweden)

    Dugas Sandra L

    2003-07-01

    Full Text Available Abstract Background The ars gene system provides arsenic resistance for a variety of microorganisms and can be chromosomal or plasmid-borne. The arsC gene, which codes for an arsenate reductase is essential for arsenate resistance and transforms arsenate into arsenite, which is extruded from the cell. A survey of GenBank shows that arsC appears to be phylogenetically widespread both in organisms with known arsenic resistance and those organisms that have been sequenced as part of whole genome projects. Results Phylogenetic analysis of aligned arsC sequences shows broad similarities to the established 16S rRNA phylogeny, with separation of bacterial, archaeal, and subsequently eukaryotic arsC genes. However, inconsistencies between arsC and 16S rRNA are apparent for some taxa. Cyanobacteria and some of the γ-Proteobacteria appear to possess arsC genes that are similar to those of Low GC Gram-positive Bacteria, and other isolated taxa possess arsC genes that would not be expected based on known evolutionary relationships. There is no clear separation of plasmid-borne and chromosomal arsC genes, although a number of the Enterobacteriales (γ-Proteobacteria possess similar plasmid-encoded arsC sequences. Conclusion The overall phylogeny of the arsenate reductases suggests a single, early origin of the arsC gene and subsequent sequence divergence to give the distinct arsC classes that exist today. Discrepancies between 16S rRNA and arsC phylogenies support the role of horizontal gene transfer (HGT in the evolution of arsenate reductases, with a number of instances of HGT early in bacterial arsC evolution. Plasmid-borne arsC genes are not monophyletic suggesting multiple cases of chromosomal-plasmid exchange and subsequent HGT. Overall, arsC phylogeny is complex and is likely the result of a number of evolutionary mechanisms.

  12. Methylenetetrahydrofolate reductase gene polymorphism and risk of type 2 diabetes mellitus.

    Directory of Open Access Journals (Sweden)

    Jian-Hong Zhong

    Full Text Available OBJECTIVE: This review aimed to comprehensively assess the literature examining a possible link between the rs1801133 polymorphism (677C → T in the gene encoding the methylenetetrahydrofolate reductase (MTHFR gene and risk of type 2 diabetes mellitus (DM. RESEARCH DESIGN AND METHODS: Several research databases were systematically searched for studies examining the genotype at the rs1801133 polymorphism in healthy control individuals and individuals with type 2 DM. Genotype frequency data were examined across all studies and across subsets of studies according to ethnicity and presence of serious DM-related complications. Odds ratios (ORs and 95% confidence intervals (CIs were calculated. RESULTS: A total of 4855 individuals with type 2 DM and 5242 healthy controls from 15 countries comprising Asian, Caucasian and African ethnicities were found to satisfy the inclusion criteria and included in the review. Genotype at the rs1801133 polymorphism was not consistently associated with either increased or reduced risk of type 2 DM; the OR across all studies was 0.91 (95%CI 0.82 to 1.00 for the C- vs. T-allele, 0.88 (0.75 to 1.03 for CC vs. CT+TT, 0.82 (0.71 to 0.95 for CC vs. TT, and 1.15 (1.03 to 1.29 for TT vs. CC+CT. Similar results were found when the meta-analysis was repeated separately for each ethnic subgroup, and for subgroups with or without serious DM-related complications. CONCLUSIONS: There does not appear to be compelling evidence of an association between the genotype at the rs1801133 polymorphism of the MTHFR gene and risk of type 2 DM.

  13. Methylenetetrahydrofolate reductase gene variants and antipsychotic-induced weight gain and metabolic disturbances.

    Science.gov (United States)

    Kao, A C C; Rojnic Kuzman, M; Tiwari, A K; Zivkovic, M V; Chowdhury, N I; Medved, V; Kekin, I; Zai, C C; Lieberman, J A; Meltzer, H Y; Bozina, T; Bozina, N; Kennedy, J L; Sertic, J; Müller, D J

    2014-07-01

    Weight gain and metabolic disturbances represent serious side-effects in antipsychotic (AP) treatment, particularly with clozapine and olanzapine. The methylenetetrahydrofolate reductase (MTHFR) gene is a key determinant in the folate metabolism and previous studies reported a significant effect on AP-induced weight gain and related metabolic abnormalities. Thus, we investigated MTHFR gene variants and changes in several important metabolic parameters in AP-treated patients. In this study, two functional MTHFR polymorphisms, rs1801133 (C677T) and rs1801131 (A1298C), were investigated for changes in weight and metabolic parameters. Genotypic associations were evaluated in a large population (n = 347 including 66 first episode psychosis, FEP patients) treated mostly with clozapine and olanzapine. We did not detect any genotypic association with weight changes (p > 0.05) in our total sample and in the sample refined for ancestry and medication. In our allelic analyses, we observed a trend for the 677-C allele to be associated with weight gain in the total sample (p = 0.03). This effect appeared to be driven by the FEP patients where those carrying the C-allele gained, on average, twice as much weight. Exploratory analyses revealed a significant association between the C677T and the A1298C polymorphism with HDL cholesterol serum levels in patients (p = 0.031). Overall we did not detect a major effect of two functional MTHFR gene variants and AP-induced weight gain. However, our findings suggest an effect of the C677T polymorphism in FEP patients and changes in weight and cholesterol levels. Further investigations in a larger sample are required. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils.

    Science.gov (United States)

    Sanford, Robert A; Wagner, Darlene D; Wu, Qingzhong; Chee-Sanford, Joanne C; Thomas, Sara H; Cruz-García, Claribel; Rodríguez, Gina; Massol-Deyá, Arturo; Krishnani, Kishore K; Ritalahti, Kirsti M; Nissen, Silke; Konstantinidis, Konstantinos T; Löffler, Frank E

    2012-11-27

    Agricultural and industrial practices more than doubled the intrinsic rate of terrestrial N fixation over the past century with drastic consequences, including increased atmospheric nitrous oxide (N(2)O) concentrations. N(2)O is a potent greenhouse gas and contributor to ozone layer destruction, and its release from fixed N is almost entirely controlled by microbial activities. Mitigation of N(2)O emissions to the atmosphere has been attributed exclusively to denitrifiers possessing NosZ, the enzyme system catalyzing N(2)O to N(2) reduction. We demonstrate that diverse microbial taxa possess divergent nos clusters with genes that are related yet evolutionarily distinct from the typical nos genes of denitirifers. nos clusters with atypical nosZ occur in Bacteria and Archaea that denitrify (44% of genomes), do not possess other denitrification genes (56%), or perform dissimilatory nitrate reduction to ammonium (DNRA; (31%). Experiments with the DNRA soil bacterium Anaeromyxobacter dehalogenans demonstrated that the atypical NosZ is an effective N(2)O reductase, and PCR-based surveys suggested that atypical nosZ are abundant in terrestrial environments. Bioinformatic analyses revealed that atypical nos clusters possess distinctive regulatory and functional components (e.g., Sec vs. Tat secretion pathway in typical nos), and that previous nosZ-targeted PCR primers do not capture the atypical nosZ diversity. Collectively, our results suggest that nondenitrifying populations with a broad range of metabolisms and habitats are potentially significant contributors to N(2)O consumption. Apparently, a large, previously unrecognized group of environmental nosZ has not been accounted for, and characterizing their contributions to N(2)O consumption will advance understanding of the ecological controls on N(2)O emissions and lead to refined greenhouse gas flux models.

  15. Molecular Characterization of Two Fatty Acyl-CoA Reductase Genes From Phenacoccus solenopsis (Hemiptera: Pseudococcidae).

    Science.gov (United States)

    Li, Xiaolong; Zheng, Tianxiang; Zheng, Xiaowen; Han, Na; Chen, Xuexin; Zhang, Dayu

    2016-01-01

    Fatty acyl-CoA reductases (FARs) are key enzymes involved in fatty alcohol synthesis. Here, we cloned and characterized full-length cDNAs of two FAR genes from the cotton mealybug, Phenacoccus solenopsis. The results showed PsFAR I and PsFAR II cDNAs were 1,584 bp and 1,515 bp in length respectively. Both PsFAR I and PsFAR II were predicted to be located in the endoplasmic reticulum by Euk-mPLoc 2.0 approach. Both of them had a Rossmann folding region and a FAR_C region. Two conservative motifs were discovered in Rossmann folding region by sequence alignment including a NADPH combining motif, TGXXGG, and an active site motif, YXXXK. A phylogenetic tree made using MEGA 6.06 indicated that PsFAR I and PsFAR II were placed in two different branches. Gene expression analysis performed at different developmental stages showed that the expression of PsFar I is significantly higher than that of PsFar II in first and second instar nymphs and in male adults. Spirotetramat treatment at 125 mg/liter significantly increased the expression of PsFar I in third instar nymphs, but there was no effect in the expression of PsFar II Our results indicated these two FAR genes showed different expression patterns during insect development and after pesticide treatment, suggesting they play different roles in insect development and detoxification against pesticides. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients

    Science.gov (United States)

    Etienne-Grimaldi, Marie-Christine; Milano, Gérard; Maindrault-Gœbel, Frédérique; Chibaudel, Benoist; Formento, Jean-Louis; Francoual, Mireille; Lledo, Gérard; André, Thierry; Mabro, May; Mineur, Laurent; Flesch, Michel; Carola, Elisabeth; de Gramont, Aimery

    2010-01-01

    AIMS To test prospectively the predictive value of germinal gene polymorphisms related to fluorouracil (FU) and oxaliplatin (Oxa) pharmacodynamics on toxicity and responsiveness of colorectal cancer (CRC) patients receiving FOLFOX therapy. METHODS Advanced CRC patients (n= 117) receiving FOLFOX 7 therapy were enrolled. Gene polymorphisms relevant for FU [thymidylate synthase (TYMS, 28 bp repeats including the G→C mutation + 6 bp deletion in 3'UTR), methylenetetrahydrofolate reductase (MTHFR, 677C→T, 1298A→C), dihydropyrimidine deshydrogenase (IVS14+1G→A) and Oxa: glutathione S-transferase (GST) π (105Ile→Val, 114Ala→Val), excision repair cross-complementing group 1 (ERCC1) (118AAT→AAC), ERCC2 (XPD, 751Lys→Gln) and XRCC1 (399Arg→Gln)] were determined (blood mononuclear cells). RESULTS None of the genotypes was predictive of toxicity. Response rate (54.7% complete response + partial response) was related to FU pharmacogenetics, with both 677C→T (P= 0.042) and 1298A→C (P= 0.004) MTHFR genotypes linked to clinical response. Importantly, the score of favourable MTHFR alleles (677T and 1298C) was positively linked to response, with response rates of 37.1, 53.3, 62.5 and 80.0% in patients bearing no, one, two or three favourable alleles, respectively (P= 0.040). Polymorphisms of genes related to Oxa pharmacodynamics showed an influence on progression-free survival, with a better outcome in patients bearing GSTπ 105 Val/Val genotype or XPD 751Lys-containing genotype (P= 0.054). CONCLUSIONS These results show that response to FOLFOX therapy in CRC patients may be driven by MTHFR germinal polymorphisms. PMID:20078613

  17. Polymorphisms in thioredoxin reductase and selenoprotein K genes and selenium status modulate risk of prostate cancer.

    Directory of Open Access Journals (Sweden)

    Catherine Méplan

    Full Text Available Increased dietary intake of Selenium (Se has been suggested to lower prostate cancer mortality, but supplementation trials have produced conflicting results. Se is incorporated into 25 selenoproteins. The aim of this work was to assess whether risk of prostate cancer is affected by genetic variants in genes coding for selenoproteins, either alone or in combination with Se status. 248 cases and 492 controls from an EPIC-Heidelberg nested case-control study were subjected to two-stage genotyping with an initial screening phase in which 384 tagging-SNPs covering 72 Se-related genes were determined in 94 cases and 94 controls using the Illumina Goldengate methodology. This analysis was followed by a second phase in which genotyping for candidate SNPs identified in the first phase was carried out in the full study using Sequenom. Risk of high-grade or advanced stage prostate cancer was modified by interactions between serum markers of Se status and genotypes for rs9880056 in SELK, rs9605030 and rs9605031 in TXNRD2, and rs7310505 in TXNRD1. No significant effects of SNPs on prostate cancer risk were observed when grade or Se status was not taken into account. In conclusion, the risk of high-grade or advanced-stage prostate cancer is significantly altered by a combination of genotype for SNPs in selenoprotein genes and Se status. The findings contribute to explaining the biological effects of selenium intake and genetic factors in prostate cancer development and highlight potential roles of thioredoxin reductases and selenoprotein K in tumour progression.

  18. The methylenetetrahydrofolate reductase gene variant C677T influences susceptibility to migraine with aura

    Directory of Open Access Journals (Sweden)

    Sundholm James

    2004-02-01

    Full Text Available Abstract Background The C677T variant in the methylenetetrahydrofolate reductase (MTHFR gene is associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Migraine, with and without aura (MA and MO, is a prevalent and complex neurovascular disorder that may also be affected by genetically influenced hyperhomocysteinaemia. To determine whether the C677T variant in the MTHFR gene is associated with migraine susceptibility we utilised unrelated and family-based case-control study designs. Methods A total of 652 Caucasian migraine cases were investigated in this study. The MTHFR C677T variant was genotyped in 270 unrelated migraine cases and 270 controls as well as 382 affected subjects from 92 multiplex pedigrees. Results In the unrelated case-control sample we observed an over-representation of the 677T allele in migraine patients compared to controls, specifically for the MA subtype (40% vs. 33% (χ2 = 5.70, P = 0.017. The Armitage test for trend indicated a significant dosage effect of the risk allele (T for MA (χ2 = 5.72, P = 0.017. This linear trend was also present in the independent family-based sample (χ2 = 4.25, Padjusted = 0.039. Overall, our results indicate that the T/T genotype confers a modest, yet significant, increase in risk for the MA subtype (odds ratio: 2.0 – 2.5. No increased risk for the MO subtype was observed (P > 0.05. Conclusions In Caucasians, the C677T variant in the MTHFR gene influences susceptibility to MA, but not MO. Investigation into the enzyme activity of MTHFR and the role of homocysteine in the pathophysiology of migraine is warranted.

  19. Association of aldose reductase gene Z+2 polymorphism with reduced susceptibility to diabetic nephropathy in Caucasian Type 1 diabetic patients

    DEFF Research Database (Denmark)

    Lajer, Mathilde; Tarnow, L; Fleckner, Jan

    2004-01-01

    AIMS: The Z-2 allele of the (AC)n polymorphism in the aldose reductase gene (ALR2) confers increased risk of microvascular diabetic complications, whereas the Z+2 allele has been proposed to be a marker of protection. However data are conflicting. Therefore, we investigated whether this polymorph......AIMS: The Z-2 allele of the (AC)n polymorphism in the aldose reductase gene (ALR2) confers increased risk of microvascular diabetic complications, whereas the Z+2 allele has been proposed to be a marker of protection. However data are conflicting. Therefore, we investigated whether...... of the ALR2 promoter polymorphism is associated with a reduced susceptibility to diabetic nephropathy in Danish Type 1 diabetic patients, suggesting a minor role for the polyol pathway in the pathogenesis of diabetic kidney disease. No association of the ALR2 polymorphism with diabetic retinopathy was found....

  20. A second common variant in the methylenetetrahydrofolate reductase (MTHFR) gene and its relationship to MTHFR enzyme activity, homocysteine, and cardiovascular disease risk

    NARCIS (Netherlands)

    Lievers, K.J.A.; Boers, G.H.J.; Verhoef, P.; Heijer, den M.; Kluijtmans, L.A.J.; Put, van der N.M.J.; Trijbels, F.J.M.; Blom, H.J.

    2001-01-01

    Molecular defects in genes encoding enzymes involved in homocysteine metabolism may account for mild hyperhomocysteinemia, an independent and graded risk factor for cardiovascular disease (CVD). We examined the relationship of two polymorphisms in the methylenetetrahydrofolate reductase (MTHFR)

  1. Polymorphism (C677T) in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene: A preliminary study on north Indian men

    OpenAIRE

    Vasisht, S.; Gulati, R; R. Narang; Srivastava, N.; Srivastava, L. M.; Manchanda, S. C.; Agarwal, D. P.

    2002-01-01

    An elevated level of plasma homocysteine, sulfur containing amino acid generated through demethylation of methionine has been widely accepted as a risk factor for cardiovascular disease (CVD). The increase can result from genetic and/or nutrient related disturbances in the remethylation or transsulfuration pathways for homocysteine metabolism. A common mutation (C677T) in the gene encoding for the enzyme 5, 10-methylenetetrahydrofolate reductase (MTHFR) or deficiency of the B vitamins namely ...

  2. Possible association between germline methylenetetrahydrofolate reductase gene polymorphisms and psoriasis risk in a Turkish population.

    Science.gov (United States)

    Kilic, S; Ozdemir, O; Silan, F; Isik, S; Yildiz, O; Karaagacli, D; Silan, C; Ogretmen, Z

    2017-01-01

    Psoriasis is a common chronic inflammatory skin disease caused by genetic and epigenetic factors. There are conflicting results in the literature about the association between psoriasis and the methylenetetrahydrofolate reductase gene (MTHFR), ranging from strong linkage to no association. To investigate the association between the germline MTHFR polymorphisms C677T and A1298C with psoriasis risk in a Turkish population. The study enrolled 84 patients with psoriasis and 212 healthy controls (HCs) without any history of psoriasis. DNA was extracted from peripheral blood samples of patients and HCs, and real-time PCR was used for genotyping. Results were compared by Pearson χ² test and multiple logistic regression models. The frequency of both the MTHFR 677TT and A1298C (homozygous) genotypes was statistically significantly different from HCs. Point mutations were detected in all patients with early-onset psoriasis (before the age of 20 years). The T allele of MTHFR 677 and the C allele of MTHFR 1298 increased psoriasis risk by 12.4- and 17.0-fold, respectively, in patients compared with HCs. A possible association was detected betweengermline MTHFR 677 C>T and 1298 A>C genotypes and psoriasis risk in a Turkish population. These results need to be confirmed in further studies with larger sample sizes. © 2016 British Association of Dermatologists.

  3. Isolation and characterization of an enoyl-acyl carrier protein reductase gene from microalga Isochrysis galbana

    Science.gov (United States)

    Zheng, Minggang; Liang, Kepeng; Wang, Bo; Sun, Xiuqin; Yue, Yanyan; Wan, Wenwen; Zheng, Li

    2013-03-01

    In most bacteria, plants and algae, fatty acid biosynthesis is catalyzed by a group of freely dissociable proteins known as the type II fatty acid synthase (FAS II) system. In the FAS II system, enoylacyl carrier protein reductase (ENR) acts as a determinant for completing the cycles of fatty acid elongation. In this study, the cDNA sequence of ENR, designated as IgENR, was isolated from the microalga Isochrysis galbana CCMM5001. RACE (rapid amplification of cDNA ends) was used to isolate the full-length cDNA of IgENR (1 503 bp), which contains an open reading frame (ORF) of 1 044 bp and encodes a protein of 347 amino acids. The genomic DNA sequence of IgENR is interrupted by four introns. The putative amino acid sequence is homologous to the ENRs of seed plants and algae, and they contain common coenzymebinding sites and active site motifs. Under different stress conditions, real-time quantitative polymerase chain reaction (RT-qPCR) showed the expression of IgENR was upregulated by high temperature (35°C), and downregulated by depleted nitrogen (0 mol/L). To clarify the mechanism of lipids accumulating lipids, other genes involved in lipids accumulation should be studied.

  4. Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene.

    Science.gov (United States)

    Amaya, Iraida; Osorio, Sonia; Martinez-Ferri, Elsa; Lima-Silva, Viviana; Doblas, Veronica G; Fernández-Muñoz, Rafael; Fernie, Alisdair R; Botella, Miguel A; Valpuesta, Victoriano

    2015-03-01

    Increasing L-ascorbic acid (AsA, vitamin C) content in fruits is a common goal in current breeding programs due to its beneficial effect on human health. Attempts to increase AsA content by genetic engineering have resulted in variable success likely due to AsA's complex regulation. Here, we report the effect of ectopically expressing in tomato the D-galacturonate reductase (FaGalUR) gene from strawberry, involved in AsA biosynthesis, either under the control of the constitutive 35S or the tomato fruit-specific polygalucturonase (PG) promoters. Although transgenic lines showed a moderate increase on AsA content, complex changes in metabolites were found in transgenic fruits. Metabolomic analyses of ripe fruits identified a decrease in citrate, glutamate, asparagine, glucose, and fructose, accompanied by an increase of sucrose, galactinol, and chlorogenic acid. Significant metabolic changes also occurred in leaves of 35S-FaGalUR lines, which showed higher non-photochemical fluorescence quenching (NPQ), indicative of a higher constitutive photo-protective capacity. Overall, overexpression of FaGalUR increased total antioxidant capacity in fruits and the results suggest a tight control of AsA content, probably linked to a complex regulation of cellular redox state and metabolic adjustment. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Primary structure of dihydrofolate reductase and mitochondrial ribosomal protein L36 genes from the basidiomycete Coprinus cinereus.

    Science.gov (United States)

    Aimi, Tadanori; Fukuhara, Shoji; Ishiguro, Maki; Kitamoto, Yutaka; Morinaga, Tsutomu

    2004-08-01

    We amplified and sequenced the dihydrofolate reductase (DHFR) gene of the basidiomycete Coprinus cinereus. Downstream of the DHFR coding region, a mitochondrial (mt) ribosomal protein L36 (RPL36) gene was discovered in the opposite orientation to DHFR gene. Putative polyadenylation signals of the two genes overlapped, both containing the 8-bp palindrome 5'-aatatatt-3'. The finding that C. cinereus DHFR gene is closely clustered with a mt protein gene strongly suggests that C. cinereus DHFR is closely related to mt function and evolution. The amino acid sequence of C. cinereus DHFR is most homologous to eukaryotic proteins such as Cryptococcus neoformans and Pneumocystis carinii DHFRs. However, the sequence of C. cinereus mt RPL36 closely resembles RPL36 of bacteria and cyanobacteria such as Synechocystis sp. and Escherichia coli. This result strongly supports the serial endosymbiotic theory of the development of ancestral eukaryotes, and suggests that C. cinereus mt RPL36 gene originated from the ancestral eubacterial genome.

  6. Detection and Diversity of Fungal Nitric Oxide Reductase Genes (p450nor) in Agricultural Soils.

    Science.gov (United States)

    Higgins, Steven A; Welsh, Allana; Orellana, Luis H; Konstantinidis, Konstantinos T; Chee-Sanford, Joanne C; Sanford, Robert A; Schadt, Christopher W; Löffler, Frank E

    2016-05-15

    Members of the Fungi convert nitrate (NO3 (-)) and nitrite (NO2 (-)) to gaseous nitrous oxide (N2O) (denitrification), but the fungal contributions to N loss from soil remain uncertain. Cultivation-based methodologies that include antibiotics to selectively assess fungal activities have limitations, and complementary molecular approaches to assign denitrification potential to fungi are desirable. Microcosms established with soils from two representative U.S. Midwest agricultural regions produced N2O from added NO3 (-) or NO2 (-) in the presence of antibiotics to inhibit bacteria. Cultivation efforts yielded 214 fungal isolates belonging to at least 15 distinct morphological groups, 151 of which produced N2O from NO2 (-) Novel PCR primers targeting the p450nor gene, which encodes the nitric oxide (NO) reductase responsible for N2O production in fungi, yielded 26 novel p450nor amplicons from DNA of 37 isolates and 23 amplicons from environmental DNA obtained from two agricultural soils. The sequences shared 54 to 98% amino acid identity with reference P450nor sequences within the phylum Ascomycota and expand the known fungal P450nor sequence diversity. p450nor was detected in all fungal isolates that produced N2O from NO2 (-), whereas nirK (encoding the NO-forming NO2 (-) reductase) was amplified in only 13 to 74% of the N2O-forming isolates using two separate nirK primer sets. Collectively, our findings demonstrate the value of p450nor-targeted PCR to complement existing approaches to assess the fungal contributions to denitrification and N2O formation. A comprehensive understanding of the microbiota controlling soil N loss and greenhouse gas (N2O) emissions is crucial for sustainable agricultural practices and addressing climate change concerns. We report the design and application of a novel PCR primer set targeting fungal p450nor, a biomarker for fungal N2O production, and demonstrate the utility of the new approach to assess fungal denitrification potential in

  7. Genetic variability in the methylenetetrahydrofolate reductase gene (MTHFR) affects clinical expression of Wilson's disease.

    Science.gov (United States)

    Gromadzka, Grażyna; Rudnicka, Magdalena; Chabik, Grzegorz; Przybyłkowski, Adam; Członkowska, Anna

    2011-10-01

    Wilson's disease (WND) is an autosomal recessive disorder of copper (Cu) transport, resulting from pathogenic mutations in the ATP7B gene. The reason for the high variability in phenotypic expressions of WND is unknown. Hepatotoxic and neurotoxic effects of homocysteine (Hcy), as well as interrelationships between Hcy and Cu toxicity, were documented. We genotyped the two 5,10-methylenetetrahydrofolate reductase (one of the key folate/Hcy pathway enzymes) gene (MTHFR) polymorphisms: C677T and A1298C in 245 WND patients. Next, we tested the modulation of WND phenotypes by genotypes of MTHFR. MTHFR C677T genotype distribution deviated from that expected from a population in Hardy-Weinberg equilibrium (C677T, χ(2) = 12.14, p = 0.0005). Patients with the MTHFR 1298C allele were younger at symptoms' onset than those without this allele (median (IQR) age, 24.9 (14.0) years vs. 28.5 (12.0) years, p = 0.006). Carriers of MTHFR "high activity" diplotype (double wild-type homozygotes 677CC/1298AA) manifested WND at older age, than non-carriers (median (IQR) age, 33.5 (9.0) years vs. 25.0 (13.0) years, p = 0.0009). Patients with the MTHFR 677T allele less frequently exhibited the neurological WND phenotype (31 (29.5%) vs. 36 (48.0%)), and more frequently presented with hepatic WND (44 (41.9%) vs. 22 (29.3%)), compared with subjects MTHFR 677T(-). We postulate that MTHFR polymorphism contributes to the phenotypic variability of WND. Copyright © 2011 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Association of Methylenetetrahydrofolate Reductase (MTHFR Gene C677T and A1298C Polymorphisms with Myocardial Infarction From North of Fars Province

    Directory of Open Access Journals (Sweden)

    Mahboobeh Nasiri

    2014-08-01

    Full Text Available Background: The association between Methylene tetrahydrofolate reductase polymorphism and Coronary Artery diseases risk has been both confirmed and refuted in a number of published studies. The aim of this study was to investigate whether genetic polymorphisms of MTHFR (C677T, A1298C contributed to the development of myocardial infarction (MI. Materials and Methods: The present case-control study consisted of 54 patients with a history of MI and 54 gender-matched normal controls. The SNPs genotypes were determined using polymerase chain reaction followed by restriction fragment length polymorphism method. Results: No significant association of the MTHFR A1298C with the risk of MI was observed. However, the allele frequencies of C677T SNP differed significantly among patients and controls (0.83 vs. 0.30. A strong positive relationship between the TT genotype and the risk of MI supported with a significant p-value < 0.001 (OR= 11.87, 95% CI: 4.7- 29.9, p < 0.001. Conclusions: The results of the present study show the importance of C677T SNP as a potential biomarker for screening susceptible cases to MI.

  9. The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism

    OpenAIRE

    Hotoleanu, Cristina; Trifa, Adrian; Popp, Radu; Fodor, Daniela

    2013-01-01

    Background: Methylenetetrahydrofolate reductase (MTHFR) polymorphisms have recently raised the interest as a possible thrombophilic factors. Aims: We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE) in a Romanian population and the associated risk of VTE. Study Design: We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- an...

  10. [Polymorphism of 5,10-methylenetetrahydropholate reductase, prothrombin, and coagulation factor V genes in young patients with ischemic stroke].

    Science.gov (United States)

    Dobrynina, L A; Kalashnikova, L A; Patrusheva, N L; Kovalenko, T F; Patrushev, L I

    2012-01-01

    The study included 142 patients (87 women, 55 men) (mean age 36.2 +/- 8.3 yr) after ischemic stroke caused by dissection of cerebral arteries (D) (n = 37), anti-phospholipid syndrome (APS) (n = 55) or cardiogenic embolism (CE) (n = 11). Stroke of unknown origin (cryptogenic) was diagnosed in 39 patients. Mutations of 5,10-methylenetetrahydropholate reductase (MTGPR), prothrombin, and coagulation factor V genes were documented by PCR in 38, 0, 3% of D cases, 55.9, 9, 13% of APS cases, 73, 9, 0 CE cases, 57, 5, 0% of cases with cryptogenic stroke compared with 43, 0, 0% in controls. Mutations in MTGPR gene in CE cases, prothrombin gene in APS and CE cases, coagulation factor V gene in APS cases occurred more frequently than in control (p p p V genes may enhance the thrombogenic potential in APS and CE patients. The role of MTGPR gene mutation in pathogenesis of cardiogenic stroke needs clarification.

  11. Polymorphisms in the methylenetetrahydrofolate reductase gene are determinant for vascular complications after liver transplantation.

    Science.gov (United States)

    Akoglu, B; Kindl, P; Weber, N; Trojan, J; Caspary, W F; Faust, D

    2008-03-01

    The aim of this study was to evaluate the role of the C677T-MTHFR (methylenetetrahydrofolate reductase)-polymorphism (CC, CT and TT) for vascular complications in liver transplant recipients. Retrospective study. Hepatology-Transplantation-Unit, Johann Wolfgang Goethe-University, Frankfurt am Main. 48 liver transplant recipients were included, no dropouts. MTHFR polymorphism was detected by PCR amplification and digestion with Hinfl restriction enzyme. Vascular complications after liver transplantation were detected from the patients' records. The total serum homocysteine (HCY) was analyzed with high-pressure liquid chromatography. In the wild-type group (CC), the HCY levels were slightly high (14.0+/-1 micro M). Among the patients with the CT polymorphism, the HCY values were elevated (22.5+/-3 micro M). In the homozygous TT group, there was a significant increase (31.2+/-6 micro M, P<0.01) of the HCY values. The percentage of vascular complications was higher in the heterozygous CT (47%) and homozygous TT (62.5%) group compared with wild-type CC (21%). Patients with a homozygous TT genotype of the MTHFR polymorphism with a vascular complication had a highly significant elevated HCY level compared to the other genotype groups, both with and without any vascular complications (P<0.001). Recipients with an elevated HCY and the TT polymorphism have a higher probability of developing a vascular complication after transplantation (odds ratio: 4.3 and 11.0; 95% confidence interval: 1.15, 12.25 and 1.41, 85.24). The C677T polymorphism in the MTHFR gene and subsequent elevation of the total serum HCY is significantly associated with an increased incidence of vascular complications in liver transplant recipients.

  12. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation

    Science.gov (United States)

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the tetrahydrofolate (THF)-mediated one-carbon (C1) metabolic network. This enzyme catalyzes reduction of 5,10-methylene-THF to 5-methyl-THF. The latter donates its methyl group to homocysteine forming Met, which is then used for the syn...

  13. Molecular study of the 5 {alpha}-reductase type 2 gene in three European families with 5 {alpha}-reductase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Boudon, C.; Lumbroso, S.; Lobaccaro, J.M. [Institut National de la Sante et de la Recherche Medicale, Montpellier (France)]|[Child Health Center, Warsaw (Poland)]|[Hopital A. de Villeneuve, Montpellier (France)] [and others

    1995-07-01

    The molecular basis of 5{alpha}-reductase (5{alpha}R) deficiency was investigated in four patients from three European families. In the French family, the first patient was raised as a female, and gonadectomy was performed before puberty. The second sibling, also raised as female, differed in that gonadal removal was performed after the onset of pubertal masculinization. The other two patients, both from Polish families, developed masculinization of external genitalia during puberty. All patients developed a female sexual identity. In all cases, no known consanguinity or family history of 5{alpha}R deficiency was reported. The genomic DNAs of the patients were sequenced after polymerase chain reaction amplification of the five exons of the 5{alpha}R type 2 gene. We found two homozygous mutations responsible for gutamine to arginine and histidine to arginine substitution in families 1 and 3, respectively. In family 2, we found a heterozygous mutation responsible for an asparagine to serine substitution at position 193. The glutamine/arginine 126 mutation in the French family was previously reported in a Creole ethnic group, and the Polish histidine/arginine 231 mutation was previously reported in a patient from Chicago, Moreover, all of the mutations created new restriction sites, which were used to determine the kindred carrier status in the three families. Because 5{alpha}R deficiency is known to be heterogenous disease in terms of clinical and biochemical expression, our data suggest that molecular biology analysis of the type 2 gene could be an essential step in diagnosing 5{alpha}R deficiency. 22 refs., 3 figs., 1 tab.

  14. Characterization of a cinnamoyl-CoA reductase gene in Ginkgo ...

    African Journals Online (AJOL)

    Cinnamoyl-CoA reductase (CCR, EC 1.2.1.44) catalyzes key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. ... The expression analysis by quantitative real-time polymerase chain reaction (QRT-PCR showed that GbCCR was seen in a tissue specific manner in Ginkgo ...

  15. Enhancing stress tolerance by overexpression of a methionine sulfoxide reductase A (MsrA) gene in Pleurotus ostreatus.

    Science.gov (United States)

    Yin, Chaomin; Zheng, Liesheng; Zhu, Jihong; Chen, Liguo; Ma, Aimin

    2015-04-01

    Proteins are subjected to modification by reactive oxygen species (ROS), and oxidation of specific amino acid residues can impair their biological functions. Methionine as a sulfur-containing amino acid is easily oxidized to methionine sulfoxide (MetSO). The modified methionine can be repaired by methionine sulfoxide reductase (Msr), an enzyme that reverses oxidation of methionine in proteins. In this study, a methionine sulfoxide reductase A (PoMsrA) gene from Pleurotus ostreatus was cloned and characterized. Furthermore, the function of PoMsrA gene was analyzed by overexpression in P. ostreatus via Agrobacterium-mediated transformation. Stable integration of the target gene into the genome of P. ostreatus was confirmed by PCR, fluorescence observation, and Southern blot hybridization. qRT-PCR analysis showed that PoMsrA was highly expressed in the stage of mature and young fruiting bodies as well as the osmotic stress condition of 0.3 M NaCl. Additionally, the transgenic strains with PoMsrA overexpression exhibited an enhanced tolerance to high temperature, high osmotic stress, and oxidative stress. This suggests that PoMsrA is an active player in the protection of the cellular proteins from oxidative stress damage.

  16. [Gene polymorphisms in the dihydrofolate reductase ( dhfr ) and dihydropteroate synthase ( dhps ) genes and structural modelling of the dhps gene in Colombian isolates of Toxoplasma gondii].

    Science.gov (United States)

    Cortés, Liliana Jazmín; Duque, Sofía; López, Miryam Consuelo; Moncada, Diego; Molina, Diego; Gómez-Marín, Jorge Enrique; Gunturiz, María Luz

    2014-01-01

    There are no reports describing polymorphisms in target genes of anti- Toxoplasma drugs in South American isolates. This study sought to perform cloning and sequencing of the dihydrofolate reductase ( dhfr ) and dihydropteroate-synthase ( dhps ) genes of the reference Rh strain and two Colombian isolates of Toxoplasma gondii . Two isolates were obtained from the cerebrospinal fluid of HIV-infected patients with cerebral toxoplasmosis. A DNA extraction technique and PCR assay for the dhfr and dhps genes were standardized, and the products of amplification were cloned into Escherichia coli and sequenced. One polymorphism (A « G) was found at position 235 of exon 2 in the dhps gene. In addition, two polymorphisms (G « C) at positions 259 and 260 and one polymorphism (T « G) at position 371 within exon 4 of the dhps gene were detected. In this last exon, a bioinformatic analysis revealed a non-synonymous polymorphism in the coding region that could lead to the substitution of Glu (CAA or CAG) for His (encoded by codons AAU or AAC). A structural model of the T. gondii DHPS protein was calculated, and the results revealed modifications in secondary structure due to mutations. The methods described in this study can be used as a tool to search for polymorphisms in samples from patients with different clinical manifestations of toxoplasmosis and to examine their relationship with the therapeutic response.

  17. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy.

    NARCIS (Netherlands)

    Jongbloet, P.H.; Verbeek, A.L.M.; Heijer, M. den; Roeleveld, N.

    2008-01-01

    ABSTRACT: Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are associated with polymorphisms in folate-related genes, such as the 677C --> T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established

  18. Association of Methylene Tetrahydrofolate Reductase Polymorphism with BMD and Homocysteine in Premenopausal North Indian Women

    OpenAIRE

    Pandey, Sanjeev Kumar; Singh, Ankur; Polipalli, Sunil Kumar; Gupta, Sangeeta; Kapoor, Seema

    2013-01-01

    Background and Aim: Osteoporosis (OP) is a common nutrigenomic disease associated with various genetic components. Observational studies have indicated that mildly elevated homocysteine was a strong risk factor for osteoporotic fractures. Yet there is no clear biologic mechanism for an effect of homocysteine on bone.The aim of this study was to investigate the association of MTHFR C677T and A1298C polymorphisms, and to verify the association of these polymorphisms with bone mineral density an...

  19. The implication of dihydrofolate reductase and dihydropteroate synthetase gene mutations in modification of Plasmodium falciparum characteristics

    DEFF Research Database (Denmark)

    A-Elbasit, Ishraga E; Alifrangis, Michael; Khalil, Insaf F

    2007-01-01

    BACKGROUND: The Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthetase (DHPS) are enzymes of central importance in parasite metabolism. The dhfr and dhps gene mutations are known to be associated with sulphadoxine/pyrimethamine (SP) resistance. OBJECTIVE: To investigate...... the effects of dhfr/dhps mutations on parasite characteristics other than SP resistance. METHOD: Parasite infections obtained from 153 Sudanese patients with uncomplicated falciparum malaria treated with SP or SP + chloroquine, were successfully genotyped at nine codons in the dhfr/dhps genes by PCR......-ELISA. RESULTS & CONCLUSION: Mutations were detected in dhfr at N51I, S108N and C59R, and in at dhps at A/S436F, A437G, K540E and A581G, the maximum number of mutations per infection were five. Based on number of mutant codons per infection (multiplicity of mutation, MOM), the infections were organized into six...

  20. Genotype distribution of methylenetetrahydrofolate reductase A1298C and C677T gene in Indonesian infertile men

    Directory of Open Access Journals (Sweden)

    Dwi A. Suryandari

    2012-02-01

    Full Text Available Background: Methylenetetrahydrofolate reductase (MTHFR is an important enzyme of folate and methionin metabolism, making it crucial for DNA synthesis and methylation. Variants of MTHFR C677T and A1298C gene result in reduced plasma folate levels and increase the susceptibility to spermatogenic arrest. This research aims to analyses MTHFR C677T and A1298C gene polymorphism in Indonesian infertile men with azoospermia and oligozoospermia.Methods: This cross sectional study takes 3 mL of blood from 150 infertile men with oligozoospermia and azoospermia. MTHFR gene is analyzed using polymerase chain reaction technique (PCR with specific primers. PCR-RFLP analysis of the MTHFR gene using restriction enzymes MboII and HinfI determines allotypes, both of SNP A1298C and C677T in oligozoospermia and azoospermia in Indonesian population.Results: The results show that the distribution of allotypes of MTHFR gene SNP A1298C and A677T is not significantly different (p>0.05 between patient groups with oligozoospermia and azoospermia.Conclusion: MTHFR gene polymorphisms, both of SNP A1298C and C677T are not associated with male infertility in Indonesian men including patients with severe oligozoospermia and azoospermia. (Med J Indones 2012;21:23-7Keywords: DNA methylation, MTHFR, spermatogenic arrest

  1. The maize brown midrib2 (bm2) gene encodes a methylenetetrahydrofolate reductase that contributes to lignin accumulation

    Science.gov (United States)

    Tang, Ho Man; Liu, Sanzhen; Hill-Skinner, Sarah; Wu, Wei; Reed, Danielle; Yeh, Cheng-Ting; Nettleton, Dan; Schnable, Patrick S

    2014-01-01

    The midribs of maize brown midrib (bm) mutants exhibit a reddish-brown color associated with reductions in lignin concentration and alterations in lignin composition. Here, we report the mapping, cloning, and functional and biochemical analyses of the bm2 gene. The bm2 gene was mapped to a small region of chromosome 1 that contains a putative methylenetetrahydrofolate reductase (MTHFR) gene, which is down-regulated in bm2 mutant plants. Analyses of multiple Mu-induced bm2-Mu mutant alleles confirmed that this constitutively expressed gene is bm2. Yeast complementation experiments and a previously published biochemical characterization show that the bm2 gene encodes a functional MTHFR. Quantitative RT-PCR analyses demonstrated that the bm2 mutants accumulate substantially reduced levels of bm2 transcript. Alteration of MTHFR function is expected to influence accumulation of the methyl donor S-adenosyl-l-methionine (SAM). Because SAM is consumed by two methyltransferases in the lignin pathway (Ye et al., 1994), the finding that bm2 encodes a functional MTHFR is consistent with its lignin phenotype. Consistent with this functional assignment of bm2, the expression patterns of genes in a variety of SAM-dependent or -related pathways, including lignin biosynthesis, are altered in the bm2 mutant. Biochemical assays confirmed that bm2 mutants accumulate reduced levels of lignin with altered composition compared to wild-type. Hence, this study demonstrates a role for MTHFR in lignin biosynthesis. PMID:24286468

  2. Multi-fractal property of perchlorate reductase gene sequences and DNA photonics application to UV fluorescence detection on Mars-like surfaces

    Science.gov (United States)

    Tremberger, George, Jr.; Cheung, Eric; Gadura, N.; Holden, Todd; Subramaniam, Raji; Sullivan, Regina; Schneider, Pat; Flamholz, Alex; Lieberman, David H.; Cheung, Tak D.

    2009-08-01

    The discovery of perchlorate on Mars raises the possibility of the existence of perchlorate reduction microbes on that planet. The perchlorate reductase gene sequence fractal dimensions of two Dechloromonas species were compared with five other sequences in the microbial dimethyl sulfoxide (DMSO) reductase family. A nucleotide sequence can be expressed as a numerical sequence where each nucleotide is assigned its proton number. The resulting numerical sequence can be investigated for its fractal dimension in terms of evolution and chemical properties for comparative studies. Analysis of the fractal dimensions for the DMSO reductase family supports phylogenetic analyses that show that the perchlorate reductase gene sequences are members of the same family. A sub-family with roughly the same nucleotide length emerges having the property that the gene fractal dimension is negatively correlated with the Shannon di-nucleotide entropy (R2 ~ 0.95, N =5). The gene sequence fractal dimension is found to be positively correlated with the neighbor joining distances reported in a published protein phylogeny tree (R2~ 0.92, N = 5). The multi-fractal property associated with these genes shows that perchlorate reductase has lower dimensionality as compared to the relatively higher dimensionality DNA-break repair genes Rec-A and Rad-A observed in the Dechloromonas aromatica and Deinococcus radiodurans genomes. The studied perchlorate gene sequences show a higher Shannon di-nucleotide entropy (~3.97 bits) relative to Dechloromonas aromatica DNA repair sequences (~3.87 bits Rec-A, ~3.92 bits Rad-A), suggesting that there are fewer constraints on nucleotide variety in the perchorlate sequences . These observations thus allow for the existence of perchlorate reducing microbes on Mars now or in the past. Timeresolved UV fluorescence study near the emission bands of nucleotide sequences could be used for bio-detection on Mars-like surfaces and the results may further constrain the

  3. 5-Methyl-tetrahydrofolate in prevention of recurrent preeclampsia.

    Science.gov (United States)

    Saccone, Gabriele; Sarno, Laura; Roman, Amanda; Donadono, Vera; Maruotti, Giuseppe Maria; Martinelli, Pasquale

    2016-03-01

    To evaluate the efficacy of 5-methyl-tetrahydrofolate (5-MTHF) supplementation in prevention of recurrent preeclampsia. Retrospective cohort of women who received daily oral 5-MTHF 15 mg supplementation as prophylactic treatment since first trimester for recurrent preeclampsia were compared with women who did not. All asymptomatic singleton gestations with prior preeclampsia (in the previous pregnancy) were included. Women with chronic hypertension were excluded. The primary outcome was the incidence of preeclampsia. Three hundred and three singleton gestation met the inclusion criteria: 157 received 5-MTHF, while 146 did not (control group). Women who received 5-MTHF had a significantly lower incidence of recurrent overall preeclampsia (21.7% versus 39.7%; odds ratio (OR) 0.57, 95% confidence interval (CI) 0.25, 0.69), severe preeclampsia (3.2% versus 8.9%; OR 0.44, 95% CI 0.12-0.97) and early-onset preeclampsia (1.9% versus 7.5%; OR 0.34, 95% CI 0.07-0.87) compared to control. The intervention group delivered about 10 d after the control and had higher birth weight. This retrospective study showed that women with prior preeclampsia who received daily oral 5-MTHF 15 mg supplementation had a significantly lower incidence of overall preeclampsia, severe preeclampsia and early-onset preeclampsia. Randomized controlled trials are needed to confirm our findings.

  4. Dihydroflavonol 4-Reductase Genes from Freesia hybrida Play Important and Partially Overlapping Roles in the Biosynthesis of Flavonoids.

    Science.gov (United States)

    Li, Yueqing; Liu, Xingxue; Cai, Xinquan; Shan, Xiaotong; Gao, Ruifang; Yang, Song; Han, Taotao; Wang, Shucai; Wang, Li; Gao, Xiang

    2017-01-01

    Dihydroflavonol-4-reductase (DFR) is a key enzyme in the reduction of dihydroflavonols to leucoanthocyanidins in both anthocyanin biosynthesis and proanthocyanidin accumulation. In many plant species, it is encoded by a gene family, however, how the different copies evolve either to function in different tissues or at different times or to specialize in the use of different but related substrates needs to be further investigated, especially in monocot plants. In this study, a total of eight putative DFR-like genes were firstly cloned from Freesia hybrida. Phylogenetic analysis showed that they were classified into different branches, and FhDFR1, FhDFR2, and FhDFR3 were clustered into DFR subgroup, whereas others fell into the group with cinnamoyl-CoA reductase (CCR) proteins. Then, the functions of the three FhDFR genes were further characterized. Different spatio-temporal transcription patterns and levels were observed, indicating that the duplicated FhDFR genes might function divergently. After introducing them into Arabidopsis dfr (tt3-1) mutant plants, partial complementation of the loss of cyanidin derivative synthesis was observed, implying that FhDFRs could convert dihydroquercetin to leucocyanidin in planta. Biochemical assays also showed that FhDFR1, FhDFR2, and FhDFR3 could utilize dihydromyricetin to generate leucodelphinidin, while FhDFR2 could also catalyze the formation of leucocyanidin from dihydrocyanidin. On the contrary, neither transgenic nor biochemical analysis demonstrated that FhDFR proteins could reduce dihydrokaempferol to leucopelargonidin. These results were consistent with the freesia flower anthocyanin profiles, among which delphinidin derivatives were predominant, with minor quantities of cyanidin derivatives and undetectable pelargonidin derivatives. Thus, it can be deduced that substrate specificities of DFRs were the determinant for the categories of anthocyanins aglycons accumulated in F. hybrida. Furthermore, we also found that

  5. The expression of cytochrome P-450 and cytochrome P-450 reductase genes in the simultaneous transformation of corticosteroids and phenanthrene by Cunninghamella elegans.

    Science.gov (United States)

    Lisowska, Katarzyna; Szemraj, Janusz; Rózalska, Sylwia; Długoński, Jerzy

    2006-08-01

    The expression of cytochrome P-450 and cytochrome P-450 reductase (CPR) genes in the conterminous biotransformation of corticosteroids and PAHs was studied in Cunninghamella elegans 1785/21Gp. We had previously used this strain as a microbial eucaryotic model for studying the relationship between mammalian steroid hydroxylation and the metabolization of PAHs. We reported that cytochrome P-450 reductase is involved in the biotransformaton of cortexolone and phenanthrene. RT-PCR and Northern blotting analyses indicated that the cytochrome P-450 and CPR genes appear to be inducible by both steroids and PAHs. The expression of the cytochrome P-450 gene was increased ninefold and the expression of the CPR gene increased 6.4-fold in cultures with cortexolone and/or phenanthrene in comparison with controls. We conclude that the increase in cytochrome P-450 gene expression was accompanied by an increase in cytochrome P-450 enzymatic activity levels.

  6. Lupus anticoagulant, factor V Leiden, and methylenetetrahydrofolate reductase gene mutation in a lupus patient with cerebral venous thrombosis.

    Science.gov (United States)

    Uthman, Imad; Khalil, Ismail; Sawaya, Raja; Taher, Ali

    2004-08-01

    We describe the case of a young Lebanese woman with systemic lupus erythematosus (SLE) and a positive lupus anticoagulant (LAC) who developed right internal jugular vein and sigmoid sinus thrombosis. Coagulation studies showed that in addition to the LAC the patient was heterozygous for the factor V (FV) Leiden mutation, and C677T mutation of the methylenetetrahydrofolate reductase gene. The high prevalence of FV Leiden in the eastern Mediterranean region suggests that we should probably screen our SLE patients in this area, especially those with anticardiolipin antibodies and/or LAC who have no history of thrombosis, for this and other thrombophilia markers. The detection of such abnormalities may have major practical consequences for the long-term management of these patients to prevent further thrombotic episodes.

  7. Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili; Ishibe-Murakami, Satoko; Patel, Dinshaw J.; Serganov, Alexander (MSKCC)

    2011-09-15

    Tetrahydrofolate (THF), a biologically active form of the vitamin folate (B{sub 9}), is an essential cofactor in one-carbon transfer reactions. In bacteria, expression of folate-related genes is controlled by feedback modulation in response to specific binding of THF and related compounds to a riboswitch. Here, we present the X-ray structures of the THF-sensing domain from the Eubacterium siraeum riboswitch in the ligand-bound and unbound states. The structure reveals an 'inverted' three-way junctional architecture, most unusual for riboswitches, with the junction located far from the regulatory helix P1 and not directly participating in helix P1 formation. Instead, the three-way junction, stabilized by binding to the ligand, aligns the riboswitch stems for long-range tertiary pseudoknot interactions that contribute to the organization of helix P1 and therefore stipulate the regulatory response of the riboswitch. The pterin moiety of the ligand docks in a semiopen pocket adjacent to the junction, where it forms specific hydrogen bonds with two moderately conserved pyrimidines. The aminobenzoate moiety stacks on a guanine base, whereas the glutamate moiety does not appear to make strong interactions with the RNA. In contrast to other riboswitches, these findings demonstrate that the THF riboswitch uses a limited number of available determinants for ligand recognition. Given that modern antibiotics target folate metabolism, the THF riboswitch structure provides insights on mechanistic aspects of riboswitch function and may help in manipulating THF levels in pathogenic bacteria

  8. Functional characterisation of a tropine-forming reductase gene from Brugmansia arborea, a woody plant species producing tropane alkaloids.

    Science.gov (United States)

    Qiang, Wei; Xia, Ke; Zhang, Qiaozhuo; Zeng, Junlan; Huang, Yuanshe; Yang, Chunxian; Chen, Min; Liu, Xiaoqiang; Lan, Xiaozhong; Liao, Zhihua

    2016-07-01

    Brugmansia arborea is a woody plant species that produces tropane alkaloids (TAs). The gene encoding tropine-forming reductase or tropinone reductase I (BaTRI) in this plant species was functionally characterised. The full-length cDNA of BaTRI encoded a 272-amino-acid polypeptide that was highly similar to tropinone reductase I from TAs-producing herbal plant species. The purified 29kDa recombinant BaTRI exhibited maximum reduction activity at pH 6.8-8.0 when tropinone was used as substrate; it also exhibited maximum oxidation activity at pH 9.6 when tropine was used as substrate. The Km, Vmax and Kcat values of BaTRI for tropinone were 2.65mM, 88.3nkatmg(-1) and 2.93S(-1), respectively, at pH 6.4; the Km, Vmax and Kcat values of TRI from Datura stramonium (DsTRI) for tropinone were respectively 4.18mM, 81.20nkatmg(-1) and 2.40S(-1) at pH 6.4. At pH 6.4, 6.8 and 7.0, BaTRI had a significantly higher activity than DsTRI. Analogues of tropinone, 4-methylcyclohexanone and 3-quinuclidinone hydrochloride, were also used to investigate the enzymatic kinetics of BaTRI. The Km, Vmax and Kcat values of BaTRI for tropine were 0.56mM, 171.62nkat.mg(-1) and 5.69S(-1), respectively, at pH 9.6; the Km, Vmax and Kcat values of DsTRI for tropine were 0.34mM, 111.90nkatmg(-1) and 3.30S(-1), respectively, at pH 9.6. The tissue profiles of BaTRI differed from those in TAs-producing herbal plant species. BaTRI was expressed in all examined organs but was most abundant in secondary roots. Finally, tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were detected in various organs of B. arborea by HPLC. Interestingly, scopolamine constituted most of the tropane alkaloids content in B. arborea, which suggests that B. arborea is a scopolamine-rich plant species. The scopolamine content was much higher in the leaves and stems than in other organs. The gene expression and TAs accumulation suggest that the biosynthesis of hyoscyamine, especially scopolamine, occurred not

  9. Associations of antifolate resistance in vitro and point mutations in dihydrofolate reductase and dihydropteroate synthetase genes of Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Biswas S

    2004-01-01

    Full Text Available Background: Antifolate antimalarials like sulfadoxine-pyrimethamine are used as second-line treatment for Plasmodium falciparum malaria patients who fail to respond to chloroquine. The efficacy of the sulfa-pyrimethamine combination in the treatment is also compromised by the development of resistance in the parasite. Resistance to these drugs has been shown to encode with point mutations in dihydrofolate reductase and dihydropteroate synthetase genes. Settings: An experimental study. Maerial and methods: Forty clinical isolates collected from different geographical locations in India were used to assess the relationships between resistance to sulfadoxine-pyrimethamine (SP and mutations in P. falciparum dihydrofolate reductase (DHFR and dihydropteroate synthetase (DHPS. In vitro drug susceptibility and mutation-specific polymerase chain reaction (PCR assays were also done. Results: It was observed that a number of isolates possessed mutant genotypes and showed low sensitivity to SP in vitro. Of the 40 clinical isolates studied, 87.5% had DHFR and 15% had DHPS gene mutations. As observed from PCR results, 55( (22/40 presented double mutation of DHFR Arg-59 and Asn-108 and 32.5 % (13/40 had single mutant type allele of Asn-108. Of the 40 isolates, 10 % (4/40 presented doubly mutated forms of DHPS Phe-436 and Thr-613 and single mutant type allele Gly-581 was detected in 5 % (2/40 isolates. Parasites carrying double or single mutant forms of DHFR/DHPS showed elevated minimum inhibitory concentration (MIC values of both pyrimethamine (760-6754 nM; r=0.69 and sulfadoxine (108 - 540 mM; r=0.87 when compared to sensitive and resistant strains. Conclusion: Though there was a correlation between molecular techniques and in vitro drug sensitivity profiles, the relevance of these findings to the clinical efficacy of SP combination drugs needs to be established by controlled clinical trials.

  10. Cloning and heterologous expression of Plasmodium ovale dihydrofolate reductase-thymidylate synthase gene.

    Science.gov (United States)

    Tirakarn, Srisuda; Riangrungroj, Pinpunya; Kongsaeree, Palangpon; Imwong, Mallika; Yuthavong, Yongyuth; Leartsakulpanich, Ubolsree

    2012-06-01

    Plasmodial bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a validated antimalarial drug target. In this study, expression of the putative dhfr-ts of Plasmodium ovale rescued the DHFR chemical knockout and a TS null bacterial strain, demonstrating its DHFR and TS catalytic functions. PoDHFR-TS was expressed in Escherichia coli BL21 (DE3) and affinity purified by Methotrexate Sepharose column. Biochemical and enzyme kinetics characterizations indicated that PoDHFR-TS is similar to other plasmodial enzymes, albeit with lower catalytic activity but better tolerance of acidic pH. Importantly, the PoDHFR from Thai isolate EU266602 remains sensitive to the antimalarials pyrimethamine and cycloguanil, in contrast to P. falciparum and P. vivax isolates where resistance to these drugs is widespread. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Role of methylenetetrahydrofolate reductase gene (MTHFR) 677C>T polymorphism in pediatric cerebrovascular disorders.

    Science.gov (United States)

    Alsayouf, Hamza; Zamel, Khaled M; Heyer, Geoffrey L; Khuhro, A Latif; Kahwash, Samir B; de los Reyes, Emily C

    2011-03-01

    Homozygosity for the methylenetetrahydrofolate reductase (MTHFR) 677C>T mutation (MTHFR TT) has been linked to an increased risk for stroke, coronary artery disease, and migraine headaches. The authors analyzed the potential link between MTHFR 677C>T homozygosity and childhood stroke. A true association might facilitate screening, recurrence risk stratification, and treatment in patients with cerebrovascular disease. They performed a retrospective chart review of children tested for the MTHFR 677C>/T mutation; 533 patients underwent MTHFR testing, and 8% were homozygous for the MTHFR 677C>T mutation. There was no difference in the cohort compared with the prevalence in the general population. This suggests that the MTHFR 677 C>T polymorphism played a minimal role or no role in stroke risk. However, the data suggest that the MTHFR TT genotype may influence migraine susceptibility in children because there was a higher proportion of migraine patients (28.6%) with the MTHFR TT homozygous genotype.

  12. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes.

    Science.gov (United States)

    Meyer, Birte; Kuever, Jan

    2007-10-01

    Dissimilatory adenosine-5'-phosphosulfate (APS) reductase (AprBA) is a key enzyme of the dissimilatory sulfate-reduction pathway. Homologues have been found in photo- and chemotrophic sulfur-oxidizing prokaryotes (SOP), in which they are postulated to operate in the reverse direction, oxidizing sulfite to APS. Newly developed PCR assays allowed the amplification of 92-93 % (2.1-2.3 kb) of the APS reductase locus aprBA. PCR-based screening of 116 taxonomically divergent SOP reference strains revealed a distribution of aprBA restricted to photo- and chemotrophs with strict anaerobic or at least facultative anaerobic lifestyles, including Chlorobiaceae, Chromatiaceae, Thiobacillus, Thiothrix and invertebrate symbionts. In the AprBA-based tree, the SOP diverge into two distantly related phylogenetic lineages, Apr lineages I and II, with the proteins of lineage II (Chlorobiaceae and others) in closer affiliation to the enzymes of the sulfate-reducing prokaryotes (SRP). This clustering is discordant with the dissimilatory sulfite reductase (DsrAB) phylogeny and indicates putative lateral aprBA gene transfer from SRP to the respective SOB lineages. In support of lateral gene transfer (LGT), several beta- and gammaproteobacterial species harbour both aprBA homologues, the DsrAB-congruent 'authentic' and the SRP-related, LGT-derived gene loci, while some relatives possess exclusively the SRP-related apr genes as a possible result of resident gene displacement by the xenologue. The two-gene state might be an intermediate in the replacement of the resident essential gene. Collected genome data demonstrate the correlation between the AprBA tree topology and the composition/arrangement of the apr gene loci (occurrence of qmoABC or aprM genes) from SRP and SOP of lineages I and II. The putative functional role of the SRP-related APS reductases in photo- and chemotrophic SOP is discussed.

  13. The Importance of Homozygous Polymorphisms of Methylenetetrahydrofolate Reductase Gene in Romanian Patients with Idiopathic Venous Thromboembolism

    Directory of Open Access Journals (Sweden)

    Cristina Hotoleanu

    2013-06-01

    Full Text Available Background: Methylenetetrahydrofolate reductase (MTHFR polymorphisms have recently raised the interest as a possible thrombophilic factors. Aims: We aimed to assess the frequency of the methylenetetrahydrofolate reductase (MTHFR C677T and A1298C polymorphisms in idiopathic venous thromboembolism (VTE in a Romanian population and the associated risk of VTE. Study Design: We performed a case-control transversal study including 90 patients diagnosed with VTE and 75 sex- and age-matched controls. Methods: MTHFR C677T and A1298C polymorphisms were detected using PCR-RFLP method. Results: The homozygous MTHFR 677TT genotype, present in 18.8% of patients with VTE versus 6.6% of controls, was significantly associated with VTE (p= 0.021, OR= 3.26, 95%CI (1.141-9.313. The heterozygous MTHFR A1298C genotype, presenting the highest prevalence in the VTE group (34.4% as well as in controls (37.3%, was not associated with VTE (p=0.7. No associations were found for heterozygous MTHFR C677T (with a frequency of 32.2% in VTE and 37.3% in controls, p=0.492, respective homozygous MTHFR A1298C genotype (with a frequency of 1.1% in VTE and 2.6% in controls, p=0.456. Conclusion: Among MTHFR polymorphisms, only homozygosity for MTHFR 677TT may be considered a risk factor for VTE; the MTHFR A1298C polymorphism is not significantly associated with an increased risk of VTE.

  14. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L. increases seed protein content and weight without augmenting nitrogen supplying.

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Zhao

    Full Text Available Heavy nitrogen (N application to gain higher yield of wheat (Triticum aestivum L. resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed, respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  15. [Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum from three endemic malaria regions in Colombia].

    Science.gov (United States)

    Galindo, John Alexander; Cristiano, Fabio Aníbal; Knudson, Angélica; Nicholls, Rubén Santiago; Guerra, Angela Patricia

    2010-01-01

    Plasmodium falciparum has the ability to counter the antiparasitic activity of sulphadoxine-pyrimethamine by progressively accumulating mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes. These mutations gradually increase the resistance of the parasite to these drugs and lead to therapeutic failure. To determine the frequency of mutations associated with resistance to sulphadoxine and pyrimethamine in the dhfr and dhps genes of P. falciparum in samples from patients in three endemic zones of Colombia -La Carpa, Guaviare; Casuarito, Vichada; and Tierralta and Puerto Libertador, Córdoba. Forty samples were selected from patients with uncomplicated P. falciparum malaria. The frequency profiles of the 108, 59 and 164 alleles of dhfr were obtained by application of an allele-specific polymerase chain reaction, whereas the other alleles (alleles 51 of the dhfr gene and 436, 437 and 540 of dhps) were obtained by polymerase chain reaction and restriction fragment length polymorphism. The 108N and 51I mutations in the dhfr gene were found in all of the 40 samples. No mutant alleles were found in the 59 and 164 codons of the dhfr gene, or in the 436 codon of the dhps gene. The 437G mutation was observed in 36 samples and the wild-type allele was present in 3 from Tierralta and one from La Carpa. The 540E mutation was only detected in two samples from Casuarito. The 108N, 51I and 437G mutations prevail in the populations of P. falciparum, indicating a cumulative effect of mutations and the need to continue surveillance for other changes which can lead to the total loss of the efficacy of sulphadoxine-pyrimethamine.

  16. Relationship between methylenetetrahydrofolate reductase (MTHFR) A1298C gene polymorphism and type 2 diabetic nephropathy risk: a meta-analysis.

    Science.gov (United States)

    Zhang, Jie; Xiao, Yan; Zhang, Xian-Wen; Gao, Zhi-Qing; Han, Jing-Hui

    2014-07-01

    Relationship between methylenetetrahydrofolate reductase (MTHFR) A1298C gene polymorphism and type 2 diabetic nephropathy (T2DN) risk is still unclear. This study was performed to evaluate if there is an association between the MTHFR A1298C gene polymorphism and T2DN risk using meta-analysis. The relevant reports were searched and identified from PubMed, Cochrane Library on 1 October 2013, and eligible studies were included and synthesized. Eight reports were recruited into this meta-analysis for the association of the MTHFR A1298C gene polymorphism with T2DN risk. The MTHFR A1298C C allele or CC genotype was shown to be not associated with T2DN risk (C allele: OR = 0.76, 95% CI: 0.43-1.34, p = 0.34; CC genotype: OR = 1.18, 95% CI: 0.63-2.22, p = 0.60). Interestingly, AA genotype was associated with the T2DN risk (OR = 0.68, 95% CI: 0.49-0.96, p = 0.03). In the sensitivity analysis according to the Hardy-Weinberg equilibrium (HWE), the results were consistent with those in non-sensitivity analysis. However, in the sensitivity analysis according to the control source from hospital, sample size of case (≥ 100), sample size of case (MTHFR A1298C gene polymorphism was not associated with T2DN risk. In conclusion, the MTHFR A1298C gene polymorphism was not associated with T2DN risk. However, additional studies are required to firmly establish a correlation between the MTHFR A1298C gene polymorphism and T2DN risk.

  17. Mutations in the Δ7-sterol reductase gene in patients with the Smith–Lemli–Opitz syndrome

    Science.gov (United States)

    Fitzky, Barbara U.; Witsch-Baumgartner, Martina; Erdel, Martin; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut; Utermann, Gerd; Moebius, Fabian F.

    1998-01-01

    The Smith–Lemli–Opitz syndrome (SLOS) is an inborn disorder of sterol metabolism with characteristic congenital malformations and dysmorphias. All patients suffer from mental retardation. Here we identify the SLOS gene as a Δ7-sterol reductase (DHCR7, EC 1.3.1.21) required for the de novo biosynthesis of cholesterol. The human and murine genes were characterized and assigned to syntenic regions on chromosomes 11q13 and 7F5 by fluorescense in situ hybridization. Among the mutations found in patients with the SLOS, are missense (P51S, T93M, L99P, L157P, A247V, V326L, R352W, C380S, R404C, and G410S), nonsense (W151X), and splice site (IVS8–1G>C) mutations as well as an out of frame deletion (720–735 del). The missense mutations L99P, V326L, R352W, R404C, and G410S reduced heterologous protein expression by >90%. Our results strongly suggest that defects in the DHCR7 gene cause the SLOS. PMID:9653161

  18. 19-base pair deletion polymorphism of the dihydrofolate reductase (DHFR gene: maternal risk of Down syndrome and folate metabolism

    Directory of Open Access Journals (Sweden)

    Cristiani Cortez Mendes

    Full Text Available CONTEXT AND OBJECTIVE: Polymorphisms in genes involved in folate metabolism may modulate the maternal risk of Down syndrome (DS. This study evaluated the influence of a 19-base pair (bp deletion polymorphism in intron-1 of the dihydrofolate reductase (DHFR gene on the maternal risk of DS, and investigated the association between this polymorphism and variations in the concentrations of serum folate and plasma homocysteine (Hcy and plasma methylmalonic acid (MMA. DESIGN AND SETTING: Analytical cross-sectional study carried out at Faculdade de Medicina de São José do Rio Preto (Famerp. METHODS: 105 mothers of individuals with free trisomy of chromosome 21, and 184 control mothers were evaluated. Molecular analysis on the polymorphism was performed using the polymerase chain reaction (PCR through differences in the sizes of fragments. Folate was quantified by means of chemiluminescence, and Hcy and MMA by means of liquid chromatography and sequential mass spectrometry. RESULTS: There was no difference between the groups in relation to allele and genotype frequencies (P = 0.44; P = 0.69, respectively. The folate, Hcy and MMA concentrations did not differ significantly between the groups, in relation to genotypes (P > 0.05. CONCLUSIONS: The 19-bp deletion polymorphism of DHFR gene was not a maternal risk factor for DS and was not related to variations in the concentrations of serum folate and plasma Hcy and MMA in the study population.

  19. Methylenetetrahydrofolate reductase gene A1298C polymorphism in pediatric stroke--case-control and family-based study.

    Science.gov (United States)

    Balcerzyk, Anna; Niemiec, Paweł; Kopyta, Ilona; Emich-Widera, Ewa; Pilarska, Ewa; Pienczk-Ręcławowicz, Karolina; Kaciński, Marek; Wendorff, Janusz; Żak, Iwona

    2015-01-01

    Moderate hyperhomocysteinemia is one of the risk factors of pediatric stroke. Methylenetetrahydrofolate reductase (MTHFR) is an important enzyme, which regulates homocysteine metabolism, and some polymorphisms of gene encoding this enzyme are associated with a decreased activity of the enzyme. The aim of the study was to assess an association between the A1298C polymorphism and pediatric stroke. We also evaluated a possible synergistic effect of A1298C and C677T polymorphisms of this gene. The study group consisted of 88 children after ischemic stroke, 142 of their parents and 111 controls. The A1298C polymorphism was genotyped using the restriction fragment length polymorphism method. We used 2 study designs: a case-control model and a family-based association test. The Statistica 7.1 and EpiInfo 6 softwares were used in all analyses. We did not observe any statistically significant differences either in the transmission of the A allele in the family-based test or in the frequency of the A allele in the patients group compared with the controls. We also did not notice any significant additive or synergistic effects between the A1298C and C677T polymorphisms. An analysis of the results obtained in this study and a critical review of previously published studies indicate that the A1298C polymorphism of the MTHFR gene is not related to ischemic stroke in children. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  20. The effects of nitrous oxide on vitamin B12 and homocysteine levels in methyltetrahydrofolate reductase gene mutation.

    Science.gov (United States)

    Hakimoglu, S; Hanci, V; Hakimoglu, Y; Cicek, S; Yurtlu, S; Okyay, R D; Ayoglu, H; Can, M; Mungan, G; Dursun, A; Turan, I

    2013-01-01

    We aimed to investigate the effects of nitrous oxide on plasma total homocysteine and vitamin B12 levels in patients with or without methyltetrahydrofolate reductase (MTHRF) gene mutation. After obtaining the ethics committee approval and written informed consents of patients, 93 patients between 18-70 years of age scheduled for surgery anticipated to last 1-4 hours were enrolled in the study. Patients with contraindications for nitrous oxide use were excluded. Preoperatively, blood samples were obtained from all patients for the determination of MTHFR gene mutation. Anesthesia induction was achieved with 3 mg.kg-1 of propofol and 1 µg.kg-1 of fentanyl. Anesthesia maintenance was performed with sevoflurane and with a carrier gas composed of 40 % O2 and 60 % N2O. Venous blood samples were obtained after venous canulation, and 24 hours after extubation for the analysis of plasma total homocysteine, vitamin B12 levels. Eighty-one patients were included in the study. Postoperative vitamin B12 levels were found to be significantly lower when compared with their preoperative levels (p0.05). Postoperative plasma total homocysteine levels were found to be significantly different between patients with operation times under and over 3 hours (p=0.028). We conclude that MTHRF gene polymorphism had no significant effects on postoperative plasma total homocysteine levels. However, we found that homocysteine levels might rise in patients who received general anesthesia with nitrous oxide for longer than 3 hours (Tab. 7, Ref. 26).

  1. Methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphism and diabetic nephropathy susceptibility in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Zhou, Tian-Biao; Drummen, Gregor P C; Jiang, Zong-Pei; Li, Hong-Yan

    2015-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is a crucial enzyme that regulates nucleotide synthesis and DNA methylation. The MTHFR C677T gene polymorphism (rs1801133), a C → T transition at nucleotide 677 in exon 4, is a common gene variant of MTHFR and has been implicated in diabetic nephropathy, albeit with inconsistent results. Here, we performed a meta-analysis to assess the common effect size of this polymorphism on DN susceptibility. Case-control studies on the association of the MTHFR C677T gene polymorphism with DN risk were retrieved from databases up to August 1, 2013, and eligible studies were recruited into the meta-analysis and further analyzed. Of 132 studies, 33 were identified as suitable for this analysis. The results showed that T allele and TT genotype were distinctly associated with DN susceptibility in the overall population and Asians, and might be a risk factor in Caucasians and Africans (T allele: Overall population: p MTHFR C677T T allele or TT genotype might be a significant genetic molecular marker to determine the risk of DN in patients with type 2 diabetes and help to develop suitable disease prevention and management strategies.

  2. Folic acid supplementation and methylenetetrahydrofolate reductase (MTHFR) gene variations in relation to in vitro fertilization pregnancy outcome.

    Science.gov (United States)

    Murto, Tiina; Kallak, Theodora K; Hoas, Annica; Altmäe, Signe; Salumets, Andres; Nilsson, Torbjörn K; Skoog Svanberg, Agneta; Wånggren, Kjell; Yngve, Agneta; Stavreus-Evers, Anneli

    2015-01-01

    To study folic acid intake, folate status and pregnancy outcome after infertility treatment in women with different infertility diagnoses in relation to methylenetetrahydrofolate reductase (MTHFR) 677C>T, 1298A>C and 1793G>A polymorphisms. Also the use of folic acid supplements, folate status and the frequency of different gene variations were studied in women undergoing infertility treatment and fertile women. Observational study. University hospital. Women undergoing infertility treatment and healthy, fertile, non-pregnant women. A questionnaire was used to assess general background data and use of dietary supplements. Blood samples were taken to determine plasma folate and homocysteine levels, and for genomic DNA extraction. A comparison of four studies was performed to assess pregnancy outcome in relation to MTHFR 677 TT vs. CC, and 1298 CC vs. AA polymorphisms. Folic acid supplement intake, and plasma folate, homocysteine and genomic assays. Women in the infertility group used significantly more folic acid supplements and had better folate status than fertile women, but pregnancy outcome after fertility treatment was not dependent on folic acid intake, folate status or MTHFR gene variations. High folic acid intakes and MTHFR gene variations seem not to be associated with helping women to achieve pregnancy during or after fertility treatment. © 2014 Nordic Federation of Societies of Obstetrics and Gynecology.

  3. Molecular cloning, characterization and expression analysis of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Centella asiatica L.

    Science.gov (United States)

    Kalita, Ratna; Patar, Lochana; Shasany, Ajit Kumar; Modi, Mahendra K; Sen, Priyabrata

    2015-09-01

    3-Hydroxy-3-methylglutaryl-CoA reductases (HMGR) plays an important role in catalyzing the first committed step of isoprenoid biosynthesis in the mevelonic (MVA) pathway (catalyzes the conversion of HMG-CoA to MVA) in plants. The present manuscript reports the full length cDNA cloning of HMGR (CaHMGR, GenBank accession number: KJ939450.2) and its characterization from Centella asiatica. Sequence analysis indicated that the cDNA was of 1965 bp, which had an open reading frame of 1617 bp and encoded a protein containing 539 amino-acids with a mol wt of 57.9 kDa. A BLASTp search against non-redundant (nr) protein sequence showed that C. asiatica HMGR (CaHMGR) has 65-81% identity with HMGRs from different plant species and multi-alignment comparison analysis showed the presence of two motif each corresponding to HMG-CoA-binding and NADP(H)-binding. The Conserved Domain Database analysis predicted that CaHMGR belongs to Class I hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase. Three-dimensional modeling confirmed the novelty of CaHMGR with a spatial structure similar to Homo sapiens (PDB id: 1IDQ8_A). Tissue Expression analysis indicates that CaHMGR is ubiquitous albeit differentially expressed among different tissues analysed, Strong expression was recorded in the nodes and leaves and low in the roots. The present investigation confirmed that nodes are vital to terpenoid synthesis in C. asiatica. Thus, the cloning of full length CDS, characterization and structure-function analysis of HMGR gene in Centella facilitate to understand the HMGR's functions and regulatory mechanisms involved in mevalonate pathway in C. asiatica at genetic level.

  4. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha: biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns.

    Directory of Open Access Journals (Sweden)

    Amit Kumar Kushwaha

    Full Text Available Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ~60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation. Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[(14C]-sucrose to orphan shoot (twigs and [(14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid and on mechanical injury. The enzyme's catalytic and structural properties as well as gene

  5. Tropine Forming Tropinone Reductase Gene from Withania somnifera (Ashwagandha): Biochemical Characteristics of the Recombinant Enzyme and Novel Physiological Overtones of Tissue-Wide Gene Expression Patterns

    Science.gov (United States)

    Kushwaha, Amit Kumar; Sangwan, Neelam Singh; Trivedi, Prabodh Kumar; Negi, Arvind Singh; Misra, Laxminarain; Sangwan, Rajender Singh

    2013-01-01

    Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ∼60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[14C]-sucrose to orphan shoot (twigs) and [14C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression

  6. Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns.

    Science.gov (United States)

    Kushwaha, Amit Kumar; Sangwan, Neelam Singh; Trivedi, Prabodh Kumar; Negi, Arvind Singh; Misra, Laxminarain; Sangwan, Rajender Singh

    2013-01-01

    Withania somnifera is one of the most reputed medicinal plants of Indian systems of medicine synthesizing diverse types of secondary metabolites such as withanolides, alkaloids, withanamides etc. Present study comprises cloning and E. coli over-expression of a tropinone reductase gene (WsTR-I) from W. somnifera, and elucidation of biochemical characteristics and physiological role of tropinone reductase enzyme in tropane alkaloid biosynthesis in aerial tissues of the plant. The recombinant enzyme was demonstrated to catalyze NADPH-dependent tropinone to tropine conversion step in tropane metabolism, through TLC, GC and GC-MS-MS analyses of the reaction product. The functionally active homodimeric ~60 kDa enzyme catalyzed the reaction in reversible manner at optimum pH 6.7. Catalytic kinetics of the enzyme favoured its forward reaction (tropine formation). Comparative 3-D models of landscape of the enzyme active site contours and tropinone binding site were also developed. Tissue-wide and ontogenic stage-wise assessment of WsTR-I transcript levels revealed constitutive expression of the gene with relatively lower abundance in berries and young leaves. The tissue profiles of WsTR-I expression matched those of tropine levels. The data suggest that, in W. somnifera, aerial tissues as well possess tropane alkaloid biosynthetic competence. In vivo feeding of U-[(14)C]-sucrose to orphan shoot (twigs) and [(14)C]-chasing revealed substantial radiolabel incorporation in tropinone and tropine, confirming the de novo synthesizing ability of the aerial tissues. This inherent independent ability heralds a conceptual novelty in the backdrop of classical view that these tissues acquire the alkaloids through transportation from roots rather than synthesis. The TR-I gene expression was found to be up-regulated on exposure to signal molecules (methyl jasmonate and salicylic acid) and on mechanical injury. The enzyme's catalytic and structural properties as well as gene expression

  7. Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa.

    Science.gov (United States)

    Ahmed, Nasar Uddin; Park, Jong-In; Jung, Hee-Jeong; Yang, Tae-Jin; Hur, Yoonkang; Nou, Ill-Sup

    2014-10-15

    Flavonoids including anthocyanins provide flower and leaf colors, as well as other derivatives that play diverse roles in plant development and interactions with the environment. Dihydroflavonol 4-reductase (DFR) is part of an important step in the flavonoid biosynthetic pathway of anthocyanins. This study characterized 12 DFR genes of Brassica rapa and investigated their association with anthocyanin coloration, as well as cold and freezing stress in several genotypes of B. rapa. Comparison of sequences of these genes with DFR gene sequences from other species revealed a high degree of homology. Constitutive expression of the genes in several pigmented and non-pigmented lines of B. rapa demonstrated correlation with anthocyanin accumulation for BrDFR8 and 9. Conversely, BrDFR2, 4, 8 and 9 only showed very high responses to cold stress in pigmented B. rapa samples. BrDFR1, 3, 5, 6 and 10 responded to cold and freezing stress treatments, regardless of pigmentation. BrDFRs were also shown to be regulated by two transcription factors, BrMYB2-2 and BrTT8, contrasting with anthocyanin accumulation and cold and freezing stress. Thus, the above results suggest that these genes are associated with anthocyanin biosynthesis and cold and freezing stress tolerance and might be useful resources for development of cold and/or freezing stress resistant Brassica crops with desirable colors as well. These findings may also facilitate exploration of the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stresses. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Association of Methylenetetrahydrafolate Reductase Gene Polymorphism (MTHFR) in Patients with Gallbladder Cancer.

    Science.gov (United States)

    Dixit, Ruhi; Singh, Gyanendra; Pandey, Manoj; Basu, Somprakas; Bhartiya, Satyanam Kumar; Singh, K K; Shukla, Vijay Kumar

    2016-03-01

    5,10-Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in folate metabolism and plays a major role in DNA methylation. There are two popular MTHFR polymorphisms known as C677T and A1298C which are found to be involved in folate metabolism and lowering the enzyme activity, thus may be linked with cancer development. This study aims to look at the association of these polymorphisms in gallbladder cancer. Thirty patients each with gallbladder cancer, cholelithiasis, and normal gallbladder were genotyped for the above-given polymorphisms by PCR-restriction fragment length polymorphism (RFLP) method. C677T MTHFR polymorphism was not associated (χ(2) = 2.44, p = 0.85) with an increased likelihood of having gallbladder cancer. A1298C was significantly associated (χ(2) = 28.87, p A1298C was significantly correlated with grade (r = 0.337, p A1298C polymorphism may be associated with risk of developing gallbladder cancer, and there is no association between C677T polymorphism and gallbladder cancer.

  9. Autosomal recessive HEM/Greenberg skeletal dysplasia is caused by 3 beta-hydroxysterol delta 14-reductase deficiency due to mutations in the lamin B receptor gene.

    Science.gov (United States)

    Waterham, Hans R; Koster, Janet; Mooyer, Petra; Noort Gv, Gerard van; Kelley, Richard I; Wilcox, William R; Wanders, Ronald J A; Hennekam, Raoul C M; Oosterwijk, Jan C

    2003-04-01

    Hydrops-ectopic calcification-"moth-eaten" (HEM) or Greenberg skeletal dysplasia is an autosomal recessive chondrodystrophy with a lethal course, characterized by fetal hydrops, short limbs, and abnormal chondro-osseous calcification. We found elevated levels of cholesta-8,14-dien-3beta-ol in cultured skin fibroblasts of an 18-wk-old fetus with HEM, compatible with a deficiency of the cholesterol biosynthetic enzyme 3beta-hydroxysterol delta(14)-reductase. Sequence analysis of two candidate genes encoding putative human sterol delta(14)-reductases (TM7SF2 and LBR) identified a homozygous 1599-1605TCTTCTA-->CTAGAAG substitution in exon 13 of the LBR gene encoding the lamin B receptor, which results in a truncated protein. Functional complementation of the HEM cells by transfection with control LBR cDNA confirmed that LBR encoded the defective sterol delta(14)-reductase. Mutations in LBR recently have been reported also to cause Pelger-Huët anomaly, an autosomal dominant trait characterized by hypolobulated nuclei and abnormal chromatin structure in granulocytes. The fact that the healthy mother of the fetus showed hypolobulated nuclei in 60% of her granulocytes confirms that classic Pelger-Huët anomaly represents the heterozygous state of 3beta-hydroxysterol delta(14)-reductase deficiency.

  10. Methylenetetrahydrofolate reductase genotype association with the risk of follicular lymphoma.

    Science.gov (United States)

    Ismail, Said I; Ababneh, Nida A; Khader, Yousef; Abu-Khader, Ahmad A; Awidi, Abdullah

    2009-12-01

    The metabolism of folate is essential in DNA synthesis, and polymorphisms of genes involved in such metabolism have been implicated in many types of cancer. Among these, the methylene tetrahydrofolate reductase gene (MTHFR) encodes an enzyme that converts folate to a methyl donor used for DNA methylation. We studied the association between the different genotypes of the two most common MTHFR polymorphisms, C677T and A1298C, and the risk of follicular lymphoma (FL). For this purpose, 55 previously diagnosed FL patients and 170 normal control subjects were examined using polymerase chain reaction followed by restriction fragment length polymorphism. The frequency of the A1298C CC homozygous mutant genotype was significantly higher in patients with FL than in control subjects (OR = 3.51, 95% CI = 1.39-8.86, P = 0.008). No such association was found for the heterozygous A1298C AC genotype (OR = 1.08, 95% CI = 0.55-2.12, P = 0.83). On the other hand, no significant association was found for either the C677T CT heterozygous genotype (OR = 0.79, 95% CI = 0.42-1.51, P = 0.49) or the C677T TT homozygous mutant genotype (OR = 0.55, 95% CI = 0.12-2.65, P = 0.46). The present findings add to the very few reports suggesting a link between the A1298C CC homozygous MTHFR genotype and a higher risk of developing FL, and the first such in a Jordanian population.

  11. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations.

    Science.gov (United States)

    Friedman, G; Goldschmidt, N; Friedlander, Y; Ben-Yehuda, A; Selhub, J; Babaey, S; Mendel, M; Kidron, M; Bar-On, H

    1999-09-01

    Methylenetetrahydrofolate reductase (MTHFR) is one of the main regulatory enzymes of homocysteine metabolism. Previous studies revealed that a common mutation in MTHFR gene C677T is related to hyperhomocysteinemia and occlusive vascular pathology. In the current study, we determined the prevalence of a newly described mutation in the human MTHFR gene A1298C, and the already known C677T mutation, and related them to plasma total homocysteine and folate concentrations. We studied 377 Jewish subjects, including 190 men and 186 women aged 56.8 +/- 13 y (range 32-95 y). The frequency of the homozygotes for the A1298C and the C677T MTHFR mutations was common in the Jewish Israeli population (0.34 and 0.37, respectively). Subjects homozygous (TT) for the C677T mutation had significantly greater plasma total homocysteine concentrations (P A1298C mutation did not have elevated plasma total homocysteine concentrations. Our study indicated that subjects with the 677CC/1298CC genotype had significantly lower concentrations (P A1298C and the C677T) was associated with established cardiovascular risk factors such as hypertension, elevated total cholesterol or body mass index.

  12. A Meta-Analysis of Association between Methylenetetrahydrofolate Reductase Gene (MTHFR) 677C/T Polymorphism and Diabetic Retinopathy.

    Science.gov (United States)

    Luo, Shasha; Wang, Furu; Shi, Chao; Wu, Zhifeng

    2016-08-10

    To shed light on the conflicting findings of the association between the methylenetetrahydrofolate reductase gene (MTHFR) 677C/T polymorphism and the risk of diabetic retinopathy (DR), a meta-analysis was conducted. A predefined search was performed on 1747 DR cases and 3146 controls from 18 published studies by searching electronic databases and reference lists of relevant articles. A random-effects or fixed-effects model was used to estimate the sizes of overall and stratification effects of the MTHFR 677C/T polymorphism on the risk of DR, as appropriate. Risks were evaluated by odds ratios (OR) with 95% confidence intervals (95% CI). We found a significant association between the MTHFR 677C/T polymorphism and the risk of DR for each genetic model (recessive model: OR = 1.67; 95% CI: 1.19-2.40 and dominant model: OR = 1.71; 95% CI: 1.28-2.28; respectively). In stratified analysis; we further found that the Asian group with both types of diabetes mellitus (DM) showed a significant association with genetic models (recessive model: OR = 2.16; 95% CI: 1.75-2.60 and dominant model: OR = 1.98; 95% CI: 1.42-2.76; respectively). Our study suggested that the MTHFR 677C/T polymorphism may contribute to DR development, especially in Asian populations. Prospective and additional genome-wide association studies (GWAS) are needed to clarify the real role of the MTHFR gene in determining susceptibility to DR.

  13. Risk factors and methylenetetrahydrofolate reductase gene polymorphisms in a young South African Indian-based population with acute myocardial infarction.

    Science.gov (United States)

    Ranjith, N; Pegoraro, R J; Rom, L

    2003-01-01

    Although coronary heart disease (CHD) is extremely common in South African Indians, there is little published data on the possible causes leading to myocardial infarction (MI) in young Indians. The aim of this study was to identify common environmental risk factors and to examine the relationship between two polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, the 677 C right arrow-hooked T and 1298 A right arrow-hooked C in young South African Indians with MI. Demographic and risk factor data were obtained from245 patients MTFHR gene (677 C right arrow-hooked T) or the second variant 1298 A right arrow-hooked C between controls and patients with MI or their siblings. The two polymorphisms did not appear to work in synergy, neither was there any relationship to common risk factors for CHD. In conclusion, smoking, dyslipidaemia and obesity were the most common phenotypic risk factors for MI. Neither the 667 C right arrow-hooked T nor the 1298 A right arrow-hooked C MTFHR variants appeared to be risk factors for premature CHD in this group.

  14. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling.

    Science.gov (United States)

    Treusch, Alexander H; Leininger, Sven; Kletzin, Arnulf; Schuster, Stephan C; Klenk, Hans-Peter; Schleper, Christa

    2005-12-01

    Mesophilic crenarchaeota are frequently found in terrestrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43 kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b of crenarchaeota repeatedly found in soils. The insert encoded a homologue of a copper-containing nitrite reductase with an unusual C-terminus that encoded a potential amicyanin-like electron transfer domain as well as two proteins related to subunits of ammonia monooxygenases or particulate methane monooxygenases (AmoAB/PmoAB) respectively. Expression of nirK and the amoA-like gene was shown by reverse transcription polymerase chain reaction (PCR) analyses in soil samples, the latter being found at higher levels when the soil was incubated with ammonia (measured by quantitative PCR). Further variants of both genes were amplified from soil samples and were found in the environmental database from the Sargasso Sea plankton. Taken together, our findings suggest that mesophilic terrestrial and marine crenarchaeota might be capable of ammonia oxidation under aerobic and potentially also under anaerobic conditions.

  15. Isolation and Cloning of mercuric reductase gene (merA from mercury-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Parisa Khoshniyat

    2018-03-01

    Full Text Available Introduction: Some of the bacteria having merA gene coding mineral mercury reducing enzyme, has genetic potential of Hg removing via reduction of mineral mercury and transformation of that to gas form and finally bioremediation of polluted area. The aim of this study is the isolation of merA gene from resistance bacteria and cloning of that into suitable expression vector and then the environmental bioremediation by the transformation of bacteria with this vector. Materials and methods: A number of bacteria were collected in contaminated areas with mercury in order to isolate merA genes. Polymerase chain reaction had done on the four bacterial genomes including Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens and Escherichia coli using the specific primers in order to detect merA gene. For cloning, the primers containing restriction enzyme sites are used, merA gene was isolated and amplified. The amplified fragments were cloned in the expression vector pET21a+ and via heat shock method were transformed into E. coli TOP10 competent cell. For clustering of genes, Mega software version 4 was used and bioanformatic studies were achieved for predicted enzyme. Results: merA gene with 1686 bp in length was isolated from K pneumoniae and E. coli. Recombinant vectors in transgenic bacteria were confirmed by various methods and finally were confirmed by sequencing. The result of clustering these genes with existence genes in NCBI showed high similarity. Discussion and conclusion: The existence of merA gene in bacteria that adapted to Hg pollution area is because of resistance, so with cloning this gene into suitable expression vector and transformation of susceptible bacteria with this vector ability of resistance to Hg in bacteria for bioremediation could be given.

  16. A novel mutation in the biliverdin reductase-A gene combined with liver cirrhosis results in hyperbiliverdinaemia (green jaundice).

    Science.gov (United States)

    Gåfvels, Mats; Holmström, Petra; Somell, Anna; Sjövall, Fredrik; Svensson, Jan-Olof; Ståhle, Lars; Broomé, Ulrika; Stål, Per

    2009-08-01

    Hyperbiliverdinaemia is a poorly defined clinical sign that has been infrequently reported in cases of liver cirrhosis or liver carcinoma, usually indicating a poor long-term prognosis. To clarify the pathogenesis of hyperbiliverdinaemia in an extended case report. A 64-year-old man with alcoholic cirrhosis was admitted to hospital with severe bleeding from oesophageal varices. Ultrasonography showed ascites, but no dilatation of the biliary tree. The skin, sclerae, plasma, urine and ascites of the patient showed a greenish appearance. Bilirubin levels were normal, and there were no signs of haemolysis. Biliverdin was analysed in plasma and urine with liquid chromatography coupled to mass spectrometry. The seven exonic regions of the biliverdin reductase-A (BVR-A) gene was amplified by polymerase chain reaction and sequenced. Biliverdin was present in plasma and urine. In nucleotide 52 of exon I of the DNA isolated from the hyperbiliverdinaemic patient, we discovered a novel heterozygous C-->T nonsense mutation converting an arginine (CGA) in position 18 into a stop codon (TGA) (R18Stop) predicted to truncate the protein N-terminally to the active site Tyr97. Two children of the proband were heterozygous for the identical mutation in the BVR-A gene, but had no clinical signs of liver disease and had normal levels of biliverdin. The BVR-A gene mutation was not found in 200 healthy volunteers or nine patients with end-stage liver cirrhosis. Hyperbiliverdinaemia (green jaundice) with green plasma and urine may be caused by a genetic defect in the BVR-A gene in conjunction with decompensated liver cirrhosis.

  17. The 1-hydroxy-2-methyl-butenyl 4-diphosphate reductase gene from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    ), Camptotheca acuminata. (Wang et al., 2008).Unfortunately, there are no reports on cloning and characterization of the gene encoding HDR from Taxus species. In the present study, we cloned, characterized and functionally ...

  18. Methylation loss at H19 imprinted gene correlates withmethylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples from infertile males

    OpenAIRE

    Rotondo, John C; Selvatici, Rita; Di Domenico, Maura; Marci, Roberto; Vesce, Fortunato; Tognon, Mauro; Martini, Fernanda

    2013-01-01

    Aberrant methylation at the H19 paternal imprinted gene has been identified in different cohorts of infertile males. The causes of H19 methylation errors are poorly understood. In this study, we investigated the methylation status of the H19 gene in semen DNA samples from infertile males affected by MTHFR gene promoter hypermethylation. DNA from normal and abnormal semen samples harbouring MTHFR gene promoter hypermethylated, hmMTHFR-nor and hmMTHFR-abn, and without MTHFR methylation, MTHFR-n...

  19. [The associations of methylenetetrahydrofolate reductase gene C677T and A1298C polymorphisms and ulcerative colitis].

    Science.gov (United States)

    Xu, Chang-long; Lin, Xiu-qing; Lan, De-yun; Wang, Jian-zhang; Zheng, Bo; Xue, Zhan-xiong

    2011-05-01

    To investigate the association between the genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) and ulcerative colitis (UC) of Han ethnic population in Zhejiang, China. Two hundred and seventy-four consecutive patients with UC and 726 healthy controls (HC) were studied. The genetic polymorphisms of MTHFR (C677T and A1298C) were genotyped using PCR-RELP methods. The frequencies of variant allele and genotype in MTHFR A1298C gene were higher in UC patients than in the HC (35.77% vs 29.96%, P = 0.013; 52.19% vs 44.90%, P = 0.039; respectively). However, there were no significant discrepancies of the allele and genotype frequencies in the MTHFR C677T gene between the UC patients and the HC (P > 0.05). In addition, the MTHFR 677TT homozygote, T allele and 677CT/1298AC compound genotype were more prevalent in patients with extensive colitis than in those with distal colitis (37.66% vs 14.72%, P = 0.0002; 49.35% vs 32.99%, P = 0.0004; 29.87% vs 15.23%, P = 0.006; respectively). Furthermore, the variant allele in the MTHFR A1298C gene (C) in severe UC patients was significantly lower than in mild and moderate UC patients (18.97% vs 33.88%, P = 0.022). The genetic polymorphisms of MTHFR C677T and A1298C are obviously associated with Han ethnic population with UC in Zhejiang province.

  20. Role of 677C→T polymorphism a single substitution in methylenetetrahydrofolate reductase (MTHFR) gene in North Indian infertile men.

    Science.gov (United States)

    Naqvi, Hena; Hussain, Syed Rizwan; Ahmad, Mohammad Kaleem; Mahdi, Farzana; Jaiswar, Shyam Pyari; Shankhwar, Satya Narayain; Mahdi, Abbas Ali

    2014-02-01

    Failure or severe difficulty in conceiving a child is surprisingly common, worldwide problem. Half of these cases are due to male factors with defects in sperm (1 in 15 men) being the single most common cause. Also about 60-75 % of male infertility cases are idiopathic, since the molecular mechanisms underlying the defects remain unknown. DNA methylation is crucial for spermatogenesis and high methylenetetrahydrofolate reductase (MTHFR) activity in adult testis than other organs in mouse, signifies its critical role in spermatogenesis. According to recent findings there is a correlation of epigenetic regulation of several imprinted genes with disturbed spermatogenesis and fertility. Consequently any change in the MTHFR gene sequence can modify the spermatogenesis including transmission of infertility to the carriers. The aim of the study is to analyze the distribution of the single nucleotide polymorphism C677T in the MTHFR gene in 637 North Indian infertile patients and 364 fertile North Indian men as controls by using PCR-RFLP technique and Chi Square test for statistical analysis. The average MTHFR 677CC, 677CT, 677TT genotype frequencies of total infertile men were 70.17, 24.17, 5.65 % in infertile men and 75.27, 21.7, 2.74 % in controls, respectively. The average frequency of the MTHFR 677T allele was 17.73 % in infertile men as compared to 13.59 % in controls. The statistical difference was significant. Disease risk was found 2.27-folds increased in patients who were carrying T allele. We found an association of C677T polymorphism with male infertility and that it may be a genetic risk factor for male infertility in North Indian population.

  1. Serum Homocysteine, Vitamin B12, Folic Acid Levels and Methylenetetrahydrofolate Reductase (MTHFR Gene Polymorphism in Vitiligo

    Directory of Open Access Journals (Sweden)

    Ali Yasar

    2012-01-01

    Full Text Available The aim of this study was to determine serum vitamin B12, folic acid and homocysteine (Hcy levels as well as MTHFR (C677, A1298C gene polymorphisms in patients with vitiligo, and to compare the results with healthy controls. Forty patients with vitiligo and 40 age and sex matched healthy subjects were studied. Serum vitamin B12 and folate levels were determined by enzyme-linked immunosorbent assay. Plasma Hcy levels and MTHFR polymorphisms were determined by chemiluminescence and real time PCR methods, respectively. Mean serum vitamin B12 and Hcy levels were not significantly different while folic acid levels were significantly lower in the control group. There was no significant relationship between disease activity and vitamin B12, folic acid and homocystein levels. No significant difference in C677T gene polymorphism was detected. Heterozygote A1298C gene polymorphism in the patient group was statistically higher than the control group. There was no significant relationship between MTHFR gene polymorphisms and vitamin B12, folic acid and homocysteine levels. In conclusion, vitamin B12, folate and Hcy levels are not altered in vitiligo and MTHFR gene mutations (C677T and A1298C do not seem to create susceptibility for vitiligo.

  2. Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae

    Science.gov (United States)

    Min Hyung Kang; Haiying Ni; Thomas W. Jeffries

    2003-01-01

    Candida boidinii produces significant amounts of xylitol from xylose, and assays of crude homogenates for aldose (xylose) reductase (XYL1p) have been reported to show relatively high activity with NADH as a cofactor even though XYL1p purified from this yeast does not have such activity. A gene coding for XYL1p from C. boidinii (CbXYL1) was isolated by amplifying the...

  3. Effect of 6 Weeks of Resistance Training and Boldenone Supplementation on 5-alpha Reductase and Aromatase Gene Expression in Testes Tissue of Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    M. Sadeghi

    2017-09-01

    Full Text Available Aims: Using anabolic androgenic steroids by athletes has significant side effects on sex hormones and the reproductive system. The aim of this study was to investigate the effect of 6 weeks of resistance exercise and Boldenone supplements on the expression of 5-alpha reductase and aromatase genes of the testis tissue in Wistar rats. Material & Methods: In this experimental study, thirty 12-week old male Wistar rats with the average weight of 195.00±7.94 grams were divided randomly into 5 groups; control, sham, Boldenone supplements (2mg per each kilogram of body weight, resistance exercise and Boldenone exercise. Resistance exercise program was 5 sessions of climbing the ladder each week (3 sets of 5 repeats for 6 weeks that was started by 50% of one maximum repetition and reached 100% at the end. The level of 5-alpha reductase and aromatase genes expression were measured after the anesthesia and the removal of the testes tissue in the samples. Data was analyzed by paired T, ANOVA and Tukey post hoc tests by using SPSS 22 software. Findings: The average weight of all groups’ mice were significantly increased in week 6 comparing to the first week (p=0.0001. There was significant increasing in 5-alpha-reductase expression in Boldenone and Boldenone exercise than the control group and also in the Boldenone exercise than resistance exercise group after the intervention. There was significant increasing in aromatase gene expression in resistance exercise and Boldenone exercise groups than the control group (p<0.05. Conclusion: Boldenone supplement along with 6 weeks of resistance exercise increases the levels of 5-alpha reductase and aromatase genes expression in testis tissue of Wistar rats.

  4. Thymidylate synthase and methylenetetrahy-drofolate reductase gene polymorphisms and gastric cancer susceptibility in a population of Northern Brazil.

    Science.gov (United States)

    Araújo, M D; Borges, B N; Rodrigues-Antunes, S; Burbano, R M R; Harada, M L

    2015-08-21

    The folate metabolic pathway, which is involved in DNA synthesis and methylation, is associated with individual susceptibility to several diseases, including gastric tumors. In this study, we investigated four polymorphisms [thymidylate synthase enhancer region, single nucleotide polymorphism thymidylate synthase 5' (TS5'), TS3' untranslated region, and methylenetetrahydrofolate reductase (MTHFR) 677C> T] in 2 genes related to the folate pathway, TS and MTHFR, and their possible association with the risk gastric cancer development in a population from Pará state, Brazil. For the TS enhancer region, TS3' untranslated region, and single nucleotide polymorphism TS5' polymorphisms, no significant results were obtained. For the MTHFR 677C>T polymorphism, TT genotype carriers had a higher risk of developing tumors in the antrum (P = 0.19 vs CC and P = 0.02 vs CT) and intestine (odds ratio = 4.18, 95% confidence interval = 0.66-26.41; P = 0.252 vs CC and odds ratio = 2.25, 95% confidence interval = 0.32-15.75; P = 0.725 vs CT). Those carrying at least 1 T allele had an increased risk of lymph node metastasis (odds ratio = 3.00, 95% confidence interval = 0.88-10.12; P = 0.133). Our results suggest that polymorphisms in MTHFR affect the susceptibility to gastric tumors in the Brazilian population and may be a factor causing poor prognosis in such patients.

  5. Functional Inference of Methylenetetrahydrofolate Reductase Gene Polymorphisms on Enzyme Stability as a Potential Risk Factor for Down Syndrome in Croatia

    Directory of Open Access Journals (Sweden)

    Jadranka Vraneković

    2010-01-01

    Full Text Available Understanding the biochemical structure and function of the methylenetetrahydrofolate reductase gene (MTHFR provides new evidence in elucidating the risk of having a child with Down syndrome (DS in association with two common MTHFR polymorphisms, C677T and A1298C. The aim of this study was to evaluate the risk for DS according to the presence of MTHFR C677T and A1298C polymorphisms as well as the stability of the enzyme configuration. This study included mothers from Croatia with a liveborn DS child (n = 102 or DS pregnancy (n = 9 and mothers with a healthy child (n = 141. MTHFR C677T and A1298C polymorphisms were assessed by PCR-RFLP. Allele/genotype frequencies differences were determined using χ2 test. Odds ratio and the 95% confidence intervals were calculated to evaluate the effects of different alleles/genotypes. No statistically significant differences were found between the frequencies of allele/genotype or genotype combinations of the MTHFR C677T and A1298C polymorphisms in the case and the control groups. Additionally, the observed frequencies of the stable (677CC/1298AA, 677CC/1298AC, 677CC/1298CC and unstable (677CT/1298AA, 677CT/1298AC, 677TT/1298AA enzyme configurations were not significantly different. We found no evidence to support the possibility that MTHFR polymorphisms and the stability of the enzyme configurations were associated with risk of having a child with DS in Croatian population.

  6. Methylenetetrahydrofolate reductase gene polymorphisms and acute lymphoblastic leukemia risk: a meta-analysis based on 28 case-control studies.

    Science.gov (United States)

    Tong, Na; Sheng, Xiaojing; Wang, Meilin; Fang, Yongjun; Shi, Danni; Zhang, Zhizhong; Zhang, Zhengdong

    2011-10-01

    Methylenetetrahydrofolate reductase (MTHFR) is involved in DNA methylation and nucleotide synthesis. Accumulated evidence has demonstrated that C677T and A1298C polymorphisms of the MTHFR gene are associated with acute lymphoblastic leukemia (ALL) risk, but the results have been inconclusive. To determine a more precise estimation, we performed a meta-analysis of 28 studies with 4240 cases and 9289 controls. We found that the 677TT genotype showed a reduced risk of ALL compared with the 677CC genotype in the overall population (odds ratio [OR] 0.76, 95% confidence interval [CI] 0.61-0.92). The reduced risk was pronounced only among the Caucasian population (OR 0.68, 95% CI 0.51-0.90), not the Asian (OR 0.89, 95% CI 0.75-1.05). For the MTHFR A1298C polymorphism, no significant association with ALL susceptibility was observed in the pooled analyses. However, significantly increased ALL risk was found in childhood in the comparison of 1298CA versus AA genotype. This study provides evidence that MTHFR polymorphisms may play an important role in the development of ALL.

  7. Importance of pharmacogenetic markers in the methylenetetrahydrofolate reductase gene during methotrexate treatment in pediatric patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Lazić Jelena

    2017-01-01

    Full Text Available Despite remarkable progress in survival of children with acute lymphoblastic leukemia (ALL which has reached about 85%, early toxicity and relapse rate remain issues that need to to be resolved. Genetic variants are important factors influencing the metabolism of cytotoxic drugs in ALL treatment. Variants in genes coding for methotrexate (MTX-metabolizing enzymes are under constant scientific interest due to their potential impact on drug toxicity and relapse rate. We investigated methylenetetrahydrofolate reductase (MTHFR c.677C>T and MTHFR c.1298A>C variants as pharmacogenetic markers of MTX toxicity and predictors of relapse. The study enrolled 161 children with ALL, treated according to the current International Berlin-Frankfurt-Munster group (BFM for diagnostics and treatment of leukemia and lymphoma protocols. Genotyping was performed using PCRRFLP and allele-specific PCR assays. Our results revealed similar distributions of MTHFR c.677C>T and MTHFR c.1298A>C genotypes among 104 healthy individuals as compared to pediatric ALL patients. A lower incidence of early MTX toxicity was noted in the MTHFR c.677TT genotype (p=0.017, while MTHFR c.1298A>C genotypes were not associated with MTX toxicity. Carriers of any MTHFR c.677C>T and MTHFR c.1298A>C genotypes did not experience decreased overall survival (OAS or higher relapse rates. Genetic variants in the MTHFR gene are not involved in leukemogenesis in pediatric ALL. The presence of the MTHFR c.677TT genotype was recognized as a predictive factor for decreased MTX toxicity during the intensification phase of therapy. Neither MTHFR c.677C>T nor MTHFR c.1298A>C genotypes correlated with an increased number of toxic deaths or relapse rate. Our study emphasizes the importance of implementing pharmacogenetic markers in order to optimize pediatric ALL therapy. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III 41004

  8. Association of methylenetetrahydrofolate reductase gene polymorphisms and sex-specific survival in patients with metastatic colon cancer.

    Science.gov (United States)

    Zhang, Wu; Press, Oliver A; Haiman, Christopher A; Yang, Dong Yun; Gordon, Michael A; Fazzone, William; El-Khoueiry, Anthony; Iqbal, Syma; Sherrod, Andy E; Lurje, Georg; Lenz, Heinz-Josef

    2007-08-20

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme regulating intracellular folate levels, which affects DNA synthesis and methylation. Two MTHFR gene polymorphisms, C677T and A1298C, are linked to altered enzyme activity. Several studies have shown these two polymorphisms to be associated with response to fluorouracil (FU) -based treatment in advanced colon cancer patients, but data are inconsistent and contradictory. Meanwhile, epidemiologic studies demonstrated that these MTHFR polymorphisms were associated with cancer risk in a sex-specific manner. We tested the hypothesis of whether these two polymorphisms are associated with sex-specific clinical outcome in metastatic colon cancer patients treated with FU-based chemotherapy. This study included 318 patients (177 men and 141 women) with metastatic colon cancer treated between 1992 and 2003 at the University of Southern California/Norris Comprehensive Cancer Center or Los Angeles County/University of Southern California Medical Center. Peripheral blood samples were collected from each patient, and genomic DNA was extracted from WBCs. Two MTHFR gene polymorphisms (C677T and A1298C) were tested by fluorogenic 5'-nuclease assay. The A1298C polymorphism showed statistically significant differences in overall survival (OS) in female, but not male, patients with metastatic colon cancer (log-rank test, P = .038). Among females, OS was greater for patients with the A/A genotype (n = 67; median OS, 18.4 months) compared with patients with the A/C genotype (n = 50; median OS, 13.9 months) or C/C genotype (n = 10; median OS, 15.6 months). Although preliminary, these data support the role of the A1298C polymorphism in MTHFR as prognostic marker in female patients with metastatic colon cancer. Further studies are needed to confirm these findings.

  9. Determination of Methylenetetrahydrofolate Reductase (MTHFR) gene polymorphism in Turkish patients with nonsyndromic cleft lip and palate.

    Science.gov (United States)

    Aşlar, Deniz; Özdiler, Erhan; Altuğ, Ayşe Tuba; Taştan, Hakkı

    2013-07-01

    To investigate the association between MTHFR C677T polymorphism and Turkish patients with nonsyndromic cleft lip and/or palate (nsCL/P) and to determine the prevalence of the Turkish population. Molecular analysis of gene polymorphisms were carried out using polymerase chain reactions and restriction enzyme digestions. In our study, 80 patients with nsCL/P and 125 unrelated individuals from Turkey were studied. We found that MTHFR C677T polymorphism is a significant risk factor for nsCL/P in Turkey (p=0.0004). These results support the impact of MTHFR C677T polymorphism and importance of folic acid intake in the etiology of nsCL/P. MTHFR gene which is localized in the relevant region of chromosome 1p36.3 not been studied Turkish patients with nsCL/P and the prevalence of our country not to be determined. We revealed statistically association between the MTHFR C677T gene polymorphism and nonsyndromic cleft lip and/or palate in the Turkish population. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Cloning and expression analysis of interferon-gamma-inducible-lysosomal thiol reductase gene in large yellow croaker (Pseudosciaena crocea).

    Science.gov (United States)

    Zheng, Wenbiao; Chen, Xinhua

    2006-05-01

    In mammals, interferon-gamma-inducible-lysosomal thiol reductase (GILT) has been demonstrated to play a key role in the processing and presentation of MHC class II-restricted antigen (Ag) by catalyzing disulfide bond reduction, thus unfolding native protein Ag and facilitating subsequent cleavage by proteases. Here, we reported the cloning of a GILT gene homologue from the spleen of large yellow croaker, a marine fish (LycGILT). The full-length cDNA of LycGILT gene is 1033 nucleotides (nt) encoding a protein of 256 amino acids (aa), with a putative molecular weight of 28.9 kDa. The deduced protein is highly homologous to that of mammalian and zebrafish GILTs and shares 54.1% sequence identity to that of zebrafish and 43.2-39.2% sequence identity to that of various mammals. The deduced LycGILT possesses the typical structural feature of mammalian GILT, including an active-site CXXC motif, a GILT signature sequence CQHGX2ECX2NX4C, and other six cysteines responsible for the formation of disulfide bonds in the C-terminus. Genomic analysis revealed that LycGILT gene, spanning a 3159nt fragment, contained seven exons interrupted by six introns and exhibited a similar exon-intron organization to human and mouse GILT genes except for a slightly more compact intron arrangement. The LycGILT expression is obviously up-regulated in spleen and kidney after immunization with inactivated trivalent bacterial vaccine consisting of Vibrio alginolyticus, V. paraphaemolyticus, and Aeromonas hydrophila although it also is constitutively expressed in liver, gills, brain, and heart, suggesting that LycGILT may be involved in the immune response to bacterial challenge in large yellow croaker. A search of NCBI sequence data with LycGILT cDNA identified a pufferfish (fugu rubrides) GILT homologue cDNA and its genomic DNA sequence, where two putative interferon-gamma activation sites (GAS) were found within the promoter region. This provided evidence that a fish GILT homologue like

  11. The Sorghum Gene for Leaf Color Changes upon Wounding (P Encodes a Flavanone 4-Reductase in the 3-Deoxyanthocyanidin Biosynthesis Pathway

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kawahigashi

    2016-05-01

    Full Text Available Upon wounding or pathogen invasion, leaves of sorghum [Sorghum bicolor (L. Moench] plants with the P gene turn purple, whereas leaves with the recessive allele turn brown or tan. This purple phenotype is determined by the production of two 3-deoxyanthocyanidins, apigeninidin and luteolinidin, which are not produced by the tan-phenotype plants. Using map-based cloning in progeny from a cross between purple Nakei-MS3B (PP and tan Greenleaf (pp cultivars, we isolated this gene, which was located in a 27-kb genomic region around the 58.1 Mb position on chromosome 6. Four candidate genes identified in this region were similar to the maize leucoanthocyanidin reductase gene. None of them was expressed before wounding, and only the Sb06g029550 gene was induced in both cultivars after wounding. The Sb06g029550 protein was detected in Nakei-MS3B, but only slightly in Greenleaf, in which it may be unstable because of a Cys252Tyr substitution. A recombinant Sb06g029550 protein had a specific flavanone 4-reductase activity, and converted flavanones (naringenin or eriodictyol to flavan-4-ols (apiforol or luteoforol in vitro. Our data indicate that the Sb06g029550 gene is involved in the 3-deoxyanthocyanidin synthesis pathway.

  12. Geminin functions downstream of p53 in K-ras-induced gene amplification of dihydrofolate reductase.

    Science.gov (United States)

    Shen, Ling; Nishioka, Takashi; Guo, Jinjin; Chen, Changyan

    2012-12-01

    DNA strand breakage and perturbation of cell-cycle progression contribute to gene amplification events that can drive cancer. In cells lacking p53, DNA damage does not trigger an effective cell-cycle arrest and in this setting promotes gene amplification. This is also increased in cells harboring oncogenic Ras, in which cell-cycle arrest is perturbed and ROS levels that cause DNA single strand breaks are elevated. This study focused on the effects of v-K-ras and p53 on Methotrexate (MTX)-mediated DHFR amplification. Rat lung epithelial cells expressing v-K-ras or murine lung cancer LKR cells harboring active K-ras continued cell-cycle progression when treated with MTX. However, upon loss of p53, amplification of DHFR and formation of MTX-resistant colonies occurred. Expression levels of cyclin A, Geminin, and Cdt1 were increased in v-K-ras transfectants. Geminin was sufficient to prevent the occurrence of multiple replications via interaction with Cdt1 after MTX treatment, and DHFR amplification proceeded in v-K-ras transfectants that possess a functional p53 in the absence of geminin. Taken together, our findings indicate that p53 not only regulates cell-cycle progression, but also functions through geminin to prevent DHFR amplification and protect genomic integrity.

  13. Fatty acyl-CoA reductase

    Energy Technology Data Exchange (ETDEWEB)

    Reiser, Steven E.; Somerville, Chris R.

    1998-12-01

    The present invention relates to bacterial enzymes, in particular to an acyl-CoA reductase and a gene encoding an acyl-CoA reductase, the amino acid and nucleic acid sequences corresponding to the reductase polypeptide and gene, respectively, and to methods of obtaining such enzymes, amino acid sequences and nucleic acid sequences. The invention also relates to the use of such sequences to provide transgenic host cells capable of producing fatty alcohols and fatty aldehydes.

  14. Molybdopterin guanine dinucleotide cofactor in Synechococcus sp. nitrate reductase: identification of mobA and isolation of a putative moeB gene.

    Science.gov (United States)

    Rubio, L M; Flores, E; Herrero, A

    1999-12-03

    The narC locus required for assimilatory nitrate reduction in the cyanobacterium Synechococcus sp. strain PCC 7942 was found to carry a mobA gene for molybdopterin guanine dinucleotide biosynthesis. Insertional inactivation of this gene blocked production of nitrate reductase in Synechococcus cells. We have previously described Synechococcus genes encoding homologues to molybdopterin biosynthesis proteins including MoaA, MoaC/MoaB, MoaD, MoaE, and MoeA, but not to MoeB. A cyanobacterial gene putatively encoding a protein composed of an amino-terminal domain of 260 amino acids homologous to Escherichia coli MoeB and of a carboxy-terminal extension of 130 amino acids was identified. Synechococcus mutants bearing only inactive versions of this putative moeB gene could not be isolated suggesting that it has function(s) additional to molybdopterin biosynthesis.

  15. The C677T Variant in the Methylenetetrahydrofolate Reductase Gene and Idiopathic Spontaneous Abortion in a Romanian Population Group

    Directory of Open Access Journals (Sweden)

    Radu A. POPP

    2012-02-01

    Full Text Available Spontaneous abortions (SA are a major public health problem and a frequent pregnancy associated disorder. Hereditary thrombophilia and hyperhomocysteinemia are considered to be important factors altering the placental circulation, the in utero development and the evolution of pregnancy. The MTHFR gene (methylenetetrahydrofolate reductase exhibits an intensely studied polymorphism, C677T, that was repeatedly associated with hyperhomocysteinemia, increased thrombotic risk and was studied in relation with SA susceptibility. This study was aim to assessing the correlation of this polymorphism with idiopathic sporadic or recurrent SA in a Romanian population. In the case-control study, 131 patients with a history of SA and 135 women with no SA and at least one uneventful term delivery were included. The PCR-RFLP technique (Polymerase Chain Reaction-Restriction Fragment Length Polymorphism was used to genotype the cases and controls and the results were analysed using the ?2 test. The present analysis indicates that the MTHFR 677TT homozygous genotype is positively associated with recurrent idiopathic SA (OR 2.493, 95%CI 0.974, 6.379, p-value 0.06. This association was no longer observed in sporadic SA patients (OR 1.214, 95%CI 0.488, 3.017, p-value 0.814. In conclusion, the present study is consistent with previous reports which state that the presence of MTHFR 677T variant in homozygous status could represent a genetic susceptibility factor for recurrent idiopathic SA. Moreover, this is the first attempt to investigate this correlation in a Romanian group and to offer epidemiological support in estimating the frequencies of some common genetic variants in the Romanian population.

  16. Methylenetetrahydrofolate reductase gene A1298C polymorphism and susceptibility to recurrent pregnancy loss: a meta-analysis.

    Science.gov (United States)

    Rai, V

    2014-06-27

    Environmental and genetic factors are thought to be involved in the pathogenesis of recurrent pregnancy loss (RPL)/spontaneous abortions (SA), which include endocrine, anatomical abnormalities within the genital organs, autoimmune diseases and some gene variants. Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme of the folate/methionine metabolic pathway and it is well established fact that folate deficiency causes pregnancy complications like recurrent pregnancy loss, preeclempsia and birth defects affected pregnancies. MTHFR A1298C polymorphism reduces the enzymatic activity and mimics as folate deficiency. To date, many studies have investigated the association between MTHFR A1298C polymorphism and RPL risk; however, the result is still controversial and inconclusive. The aim of the present study was to address the association of MTHFR A1298C polymorphism with RPL risk by meta—analysis. By searching electronic databases, total seventeen studies were identified for present meta—analysis. Crude odds ratios (OR) with 95 % confidence intervals (CIs) was used to assess the strength of association between A1298C polymorphism and RPL. The results indicate that the A1298C polymorphism is not associated with RPL (ORCvs A = 1.13 ,95 % CI= 0.87—1.46, P = 0.36 ; ORACvs AA = 1.22 ,95 % CI= 0.94— 1.6, P = 0.13; ORCCvsAA =1.35, 95 % CI= 76—2.36, P = 0.30; ORCC+AC vs AA = 1.15, 95 % CI= 88 —1.49, P = 0.29; ORCCvs AC+AA = 1.29, 95 % CI= 76 —2.12, P = 0.34). Further prospective studies were needed to confirm the precise relationship between the MTHFR A1298C polymorphism and RPL.

  17. Association of the methylenetetrahydrofolate reductase gene A1298C polymorphism with stroke risk based on a meta-analysis.

    Science.gov (United States)

    Lv, Q; Lu, J; Wu, W; Sun, H; Zhang, J

    2013-12-19

    Several independent studies have reported the role of the methylenetetrahydrofolate reductase gene (MTHFR) A1298C polymorphism in strokes, but the results are inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed in the present study. In this meta-analysis, a total of 13 studies, including 1974 cases and 2660 controls, were selected to evaluate the possible association. Crude odds ratios (ORs) with 95% confidence intervals (CI) were used to assess the strength of the association in additive, dominant, and recessive models. The overall analysis showed that MTHFR A1298C was associated with a significant increase in the risk of stroke in the heterozygote comparison (AC vs AA: OR = 1.17; 95%CI = 1.03-1.34) and in the dominant model (AC/CC vs AA: OR = 1.22; 95%CI = 1.01-1.49). Stratified analysis showed a significantly strong association between the MTHFR A1298C polymorphism and stroke risk in Asian populations (OR = 1.32 for AC vs AA; OR = 1.94 for CC vs AA; OR = 1.37 for AC/CC vs AA; OR = 1.33 for C vs A allele), but not in Caucasian populations. Additionally, the MTHFR 1298C allele was found to be a risk factor for developing ischemic strokes. However, no statistically significant increased risk of hemorrhagic stroke was found in any of the genetic models. In conclusion, this meta-analysis supported that the MTHFR A1298C polymorphism could be capable of increasing stroke susceptibility in Asian, but not in Caucasian, populations.

  18. Polymorphisms in methylenetetrahydrofolate reductase gene and risk of non-Hodgkin lymphoma in a multi-ethnic population.

    Science.gov (United States)

    Suthandiram, Sujatha; Gan, Gin Gin; Zain, Shamsul Mohd; Haerian, Batoul Sadat; Bee, Ping Chong; Lian, Lay Hoong; Chang, Kian Meng; Ong, Tee Chuan; Mohamed, Zahurin

    2014-05-01

    An imbalance in folate metabolism can adversely affect DNA synthesis and methylation systems which can lead to susceptibility to non-Hodgkin lymphoma (NHL). Whether single nucleotide polymorphisms (SNPs) and their haplotypes in the methylenetetrahydrofolate reductase (MTHFR) are associated with NHL, remain inconclusive. We investigated the association between MTHFR C677T and A1298C SNPs and NHL risk in a population which is made up of Malay, Chinese and Indian ethnic subgroups. A total of 372 NHL patients and 722 controls were genotyped using the Sequenom MassARRAY platform. Our results of the pooled subjects failed to demonstrate significant association between the MTHFR C677T and A1298C SNPs with NHL and its subtypes. The results were in agreement with the previous meta-analyses. In the Indian ethnic subgroup however, single locus analysis of MTHFR A1298C appears to confer risk to NHL (Odds ratio (OR) 1.91, 95% confidence interval (95% CI) 1.22-3.00, P=0.006). The risk is almost doubled in homozygous carrier of MTHFR 1298CC (OR 4.03, 95% CI 1.56-10.43, P=0.004). Haplotype analysis revealed higher frequency of CC in the Indian NHL patients compared with controls (OR 1.86, 95% CI 1.18-2.93, P=0.007). There is lack of evidence to suggest an association between MTHFR C677T and A1298C with the risk of NHL in the Malays and Chinese. In the Indians however, the MTHFR A1298C confers risk to NHL. This study suggests ethnicity modifies the relationship between polymorphisms in the folate-metabolizing gene and NHL.

  19. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation.

    Science.gov (United States)

    Varzari, Alexander; Deyneko, Igor V; Tudor, Elena; Turcan, Svetlana

    2016-02-01

    Glutathione S-transferases (GSTM1, GSTT1, and GSTP1) and methylenetetrahydrofolate reductase (MTHFR) are important enzymes for protection against oxidative stress. In addition, MTHFR has an essential role in DNA synthesis, repair, and methylation. Their polymorphisms have been implicated in the pathogenesis of ulcerative colitis (UC). The aim of the present study was to investigate the role of selected polymorphisms in these genes in the development of UC in the Moldavian population. In a case-control study including 128 UC patients and 136 healthy individuals, GSTM1 and GSTT1 genotypes (polymorphic deletions) were determined using multiplex polymerase chain reaction (PCR). The GSTP1 rs1695 (Ile105Val), MTHFR rs1801133 (C677T), and MTHFR rs1801131 (A1298C) polymorphisms were studied with restriction fragment length polymorphism (RFLP) analysis. Genotype-phenotype correlations were examined using logistic regression analysis. None of the genotypes, either alone or in combination, showed a strong association with UC. The case-only sub-phenotypic association analysis showed an association of the MTHFR rs1801133 polymorphism with the extent of UC under co-dominant (p corrected = 0.040) and recessive (p corrected = 0.020; OR = 0.15; CI = 0.04-0.63) genetic models. Also, an association between the MTHFR rs1801131 polymorphism and the severity of UC was reported for the over-dominant model (p corrected = 0.023; coefficient = 0.32; 95% CI = 0.10-0.54). The GST and MTHFR genotypes do not seem to be a relevant risk factor for UC in our sample. There was, however, evidence that variants in MTHFR may influence the clinical features in UC patients. Additional larger studies investigating the relationship between GST and MTHFR polymorphisms and UC are required.

  20. Molecular Cloning and Characterization of Three Genes Encoding Dihydroflavonol-4-Reductase from Ginkgo biloba in Anthocyanin Biosynthetic Pathway

    Science.gov (United States)

    Hua, Cheng; Linling, Li; Shuiyuan, Cheng; Fuliang, Cao; Feng, Xu; Honghui, Yuan; Conghua, Wu

    2013-01-01

    Dihydroflavonol-4-reductase (DFR, EC1.1.1.219) catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins), and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs) were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species. PMID:23991027

  1. Molecular cloning and characterization of three genes encoding dihydroflavonol-4-reductase from Ginkgo biloba in anthocyanin biosynthetic pathway.

    Directory of Open Access Journals (Sweden)

    Cheng Hua

    Full Text Available Dihydroflavonol-4-reductase (DFR, EC1.1.1.219 catalyzes a key step late in the biosynthesis of anthocyanins, condensed tannins (proanthocyanidins, and other flavonoids important to plant survival and human nutrition. Three DFR cDNA clones (designated GbDFRs were isolated from the gymnosperm Ginkgo biloba. The deduced GbDFR proteins showed high identities to other plant DFRs, which form three distinct DFR families. Southern blot analysis showed that the three GbDFRs each belong to a different DFR family. Phylogenetic tree analysis revealed that the GbDFRs share the same ancestor as other DFRs. The expression of the three recombinant GbDFRs in Escherichia coli showed that their actual protein sizes were in agreement with predictions from the cDNA sequences. The recombinant proteins were purified and their activity was analyzed; both GbDFR1 and GbDFR3 could catalyze dihydroquercetin conversion to leucocyanidin, while GbDFR2 catalyzed dihydrokaempferol conversion to leucopelargonidin. qRT-PCR showed that the GbDFRs were expressed in a tissue-specific manner, and transcript accumulation for the three genes was highest in young leaves and stamens. These transcription patterns were in good agreement with the pattern of anthocyanin accumulation in G.biloba. The expression profiles suggested that GbDFR1 and GbDFR2 are mainly involved in responses to plant hormones, environmental stress and damage. During the annual growth cycle, the GbDFRs were significantly correlated with anthocyanin accumulation in leaves. A fitted linear curve showed the best model for relating GbDFR2 and GbDFR3 with anthocyanin accumulation in leaves. GbDFR1 appears to be involved in environmental stress response, while GbDFR3 likely has primary functions in the synthesis of anthocyanins. These data revealed unexpected properties and differences in three DFR proteins from a single species.

  2. Maternal mutation 677C > T in the methylenetetrahydrofolate reductase gene associated with severe brain injury in offspring.

    Science.gov (United States)

    Dodelson de Kremer, R; Grosso, C

    2005-01-01

    A frequent polymorphism in the gene coding for 5,10-methylenetetrahydrofolate reductase is the substitution 677C > T which produces a thermolabile and inefficient enzyme. Homozygosity for the 677C > T allele is the most important determinant of hyperhomocys-teinemia, when folic acid intake is reduced. Most studies on the relationship between the 677C > T variant in the mother and defects in the offspring have focused on neural-tube defects. This study is a retrospective case-control investigation of hypoxic-ischemic encephalopathy of the newborn (HIEN) with reference to the 677C > T polymorphism as a genetic risk for this condition. The prevalence of the 677C > T allele was studied in 11 children with HIEN, their respective mothers, and 85 healthy individuals. Plasma homocysteine levels after fasting and methionine loading were determined in both mothers and controls. Ten of 11 patients were evaluated using magnetic resonance (MR) imaging, and all showed multicystic encephalomalacia and severe brain vasculopathy. Seven mothers were homozygous and four heterozygous for the 677C > T allele. Five of the children were homozygous and six heterozygous for this polymorphism. The variant allele frequency was higher in the group of mothers with affected children than in the controls and was associated with an increase in plasma homocysteine after methionine loading, in the group of mothers than in controls. The 677C > T mutation in mothers, either in a homozygous or heterozygous state, together with poor nutritional status (probable folate deficiency) may represent a risk factor for irreversible HIEN in the offspring.

  3. Association analysis of the catechol-O-methyltransferase /methylenetetrahydrofolate reductase genes and cognition in late-onset depression.

    Science.gov (United States)

    Wang, Xiaoquan; Wang, Zusen; Wu, Yanfeng; Yuan, Yonggui; Hou, Zhenghua; Hou, Gang

    2014-05-01

    Increasing evidence suggests that the catechol-O-methyltransferase (COMT) gene might be associated with cognition in patients with mental disorders and healthy people. The metabolic pathways of COMT and methylenetetrahydrofolate reductase (MTHFR) are closely interconnected. In this study, we aimed to examine whether the COMT-MTHFR genotype interacted with cognitive function in late-onset depression (LOD) patients and COMT Val/Val homozygous individuals who also carried the MTHFR T allele and had poor neuropsychological test performance. Ninety-seven unrelated LOD patients who met DSM-IV criteria for major depressive disorder were recruited for the study and 103 normal controls were recruited from the local community. All of these patients and 44 normal controls completed a series of neuropsychological tests. Patients and normal controls were genotyped for COMT (rs4680) and MTHFR (rs1801133) variants using polymerase chain reaction-restriction fragment length polymorphism. There were no significant differences in the frequencies of the single alleles and genotypes of two polymorphisms between LOD patients and normal controls. No main effects of COMT or MTHFR genotype on any neuropsychological test performance were observed. There was a significant interactive effect of COMT Val158Met and MTHFR C677T polymorphisms on the Symbol Digit Modalities Test independent of diagnosis (P < 0.05). After controlling for covariates, the subjects with COMT Met/ Met and MTHFR C/C genotype had better Symbol Digit Modalities Test performance. The results suggest no major effect of COMT or MTHFR on cognitive function alone. However, an interaction of COMT Val158Met and MTHFR C677T polymorphisms may be associated with cognitive function. Further studies in a large sample are needed to replicate the genetic role in the LOD patients. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.

  4. Polymorphisms and haplotypes in methylenetetrahydrofolate reductase gene and head and neck squamous cell carcinoma risk.

    Science.gov (United States)

    Galbiatti, Ana Lívia Silva; Ruiz, Mariangela Torreglosa; Rodrigues, Juliana Olsen; Raposo, Luiz Sérgio; Maníglia, José Victor; Pavarino, Érika Cristina; Goloni-Bertollo, Eny Maria

    2012-01-01

    Functional polymorphisms in genes encoding enzymes involved in folate metabolism might modulate head and neck carcinoma risk because folate participates in DNA methylation and synthesis. We therefore conducted a case-control study of 853 individuals (322 head and neck cancer cases and 531 non-cancer controls) to investigate associations among MTHFR C677T and MTHFR A1298C polymorphisms and head and neck squamous cell carcinoma risk. Interactions between these two polymorphisms and risk factors and clinical histopathological parameters were also evaluated. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used to genotype the polymorphisms and Chi-square test and multiple logistic regression were used for statistical analyses. The variables age≥49 years, male gender, tobacco habits and alcohol consumption, MTHFR 1298 AC or CC genotypes, combined genotypes with two or more polymorphic alleles and 677T and 1298C polymorphic alleles were associated with increased risk for this disease (PA1298C polymorphism was more frequent in patients with oral cavity as primary site (PA1298C polymorphism has higher risk for this disease.

  5. Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria

    NARCIS (Netherlands)

    Jansen, M; Hansen, T.A.

    Tetrahydrofolate was shown to function as a methyl acceptor in the anaerobic demethylation of dimethylsulfoniopropionate to methylthiopropionate in cell extracts of the sulfate-reducing bacterium strain WN. Dimethylsulfoniopropionate-dependent activities were 0.56 mu mol methyltetrahydrofolate

  6. Inhibitors of Human Dihydrofolate Reductase: A Computational Design and Docking Studies Using Glide

    Directory of Open Access Journals (Sweden)

    Lingala Yamini

    2008-01-01

    Full Text Available Dihydrofolate reductase (DHFR plays a vital role in the DNA synthesis by reducing dihydrofolic acid to tetrahydrofolic acid which is an essential component. Synthetic ligands like methotrexate (MTX, aminopterin (AMP and their analogues act as potential anti metabolites by mimicking the coenzyme dihydrofolic acid (DHFA they inhibit the activity of DHFR antagonistically. Several ligands which are similar to MTX analogues and 6, 8 substituted 2 – naphthyls (NAP which can mimic the pteridyl group of DHFA have been computationally designed. These ligands were proposed to hinder the formation N5, N10 methylene tetrahydrofolic acid (THFA coenzyme, which is essential for the DNA synthesis. The docking studies were done using grid, generated with the 0.9 Vander Waals scaling for non polar bonds in the active site of the receptor. These newly designed ligands such as 14 -21 ,23 and 28 have shown good docking scores and predicted activities when compared to already existing ligands MTX and its analogues.

  7. Detecting nitrous oxide reductase (NosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle.

    Science.gov (United States)

    Orellana, L H; Rodriguez-R, L M; Higgins, S; Chee-Sanford, J C; Sanford, R A; Ritalahti, K M; Löffler, F E; Konstantinidis, K T

    2014-06-03

    2). Until recently, consumption of N2O was attributed to bacteria encoding "typical" nitrous oxide reductase (NosZ). However, recent phylogenetic and physiological studies have shown that previously uncharacterized, functional, "atypical" NosZ proteins are encoded in genomes of diverse bacterial groups. The present study revealed that atypical nosZ genes outnumbered their typical counterparts, highlighting their potential role in N2O consumption in soils and possibly other environments. These findings advance our understanding of the diversity of microbes and functional genes involved in the nitrogen cycle and provide the means (e.g., gene sequences) to study N2O fluxes to the atmosphere and associated climate change. Copyright © 2014 Orellana et al.

  8. Characterization of the aldo-keto reductase 1C gene cluster on pig chromosome 10: possible associations with reproductive traits

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-09-01

    Full Text Available Abstract Background The rate of pubertal development and weaning to estrus interval are correlated and affect reproductive efficiency of swine. Quantitative trait loci (QTL for age of puberty, nipple number and ovulation rate have been identified in Meishan crosses on pig chromosome 10q (SSC10 near the telomere, which is homologous to human chromosome 10p15 and contains an aldo-keto reductase (AKR gene cluster with at least six family members. AKRs are tissue-specific hydroxysteroid dehydrogenases that interconvert weak steroid hormones to their more potent counterparts and regulate processes involved in development, homeostasis and reproduction. Because of their location in the swine genome and their implication in reproductive physiology, this gene cluster was characterized and evaluated for effects on reproductive traits in swine. Results Screening the porcine CHORI-242 BAC library with a full-length AKR1C4 cDNA identified 7 positive clones and sample sequencing of 5 BAC clones revealed 5 distinct AKR1C genes (AKR1CL2 and AKR1C1 through 4, which mapped to 126–128 cM on SSC10. Using the IMpRH7000rad and IMNpRH212000rad radiation hybrid panels, these 5 genes mapped between microsatellite markers SWR67 and SW2067. Comparison of sequence data with the porcine BAC fingerprint map show that the cluster of genes resides in a 300 kb region. Twelve SNPs were genotyped in gilts observed for age at first estrus and ovulation rate from the F8 and F10 generations of one-quarter Meishan descendants of the USMARC resource population. Age at puberty, nipple number and ovulation rate data were analyzed for association with genotypes by MTDFREML using an animal model. One SNP, a phenylalanine to isoleucine substitution in AKR1C2, was associated with age of puberty (p = 0.07 and possibly ovulation rate (p = 0.102. Two SNP in AKR1C4 were significantly associated with nipple number (p ≤ 0.03 and another possibly associated with age at puberty (p = 0

  9. Molecular and biological characterization of interferon-γ-inducible-lysosomal thiol reductase gene in zebrafish (Danio rerio).

    Science.gov (United States)

    Cui, Xian-wei; Ji, Chen-bo; Cao, Xin-guo; Fu, Zi-yi; Zhang, Shuang-quan; Guo, Xi-rong

    2012-11-01

    In mammals, interferon-γ-inducible-lysosomal thiol reductase (GILT) has been demonstrated to play a key role in the processing and presentation of MHC class II-restricted antigen (Ag) by catalyzing disulfide bond reduction, thus unfolding native protein Ag and facilitating subsequent cleavage by proteases. Here, we reported the cloning of a GILT gene homologue from zebrafish (zGILT), a tropical freshwater fish. The full-length cDNA of zGILT gene is 768 nucleotides (nt) encoding a protein of 255 amino acids (aa), with a putative molecular weight of 28.33 kDa. The deduced protein is highly homologous to that of fish and mammalian GILTs and shares 57.1% sequence identity to that of Atlantic salmon and 55.7-21.6% sequence identity to that of various mammals. The deduced protein possesses all the main features characteristic of known GILT proteins including the signature sequence CQHGX2ECX2NX4C spanning residues 117-132, CXXC motif at residues 72-75, one potential sites for N-linked glycosylation at residual positions 54. The zGILT expression is obviously up-regulated in spleen and kidney after immunization with LPS although it also is constitutively expressed in heart, liver, muscle and intestine, suggesting that zGILT may be involved in the immune response to bacterial challenge. The soluble recombinant protein was successfully purified using Ni-nitrilotriacetic acid resin. Recombinant His-zsGILT appeared on SDS-PAGE in the ranges of their estimated size of 18.94-kDa. After purification, further study revealed that zsGILT was capable of catalyzing the reduction of the interchain disulfide bonds intact IgG. These results will allow for further investigation to unravel the role of this key enzyme in class II MHC-restricted antigen processing and to use zebrafish as an in vivo model for related studies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Species-specific expansion and molecular evolution of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR gene family in plants.

    Directory of Open Access Journals (Sweden)

    Wei Li

    Full Text Available The terpene compounds represent the largest and most diverse class of plant secondary metabolites which are important in plant growth and development. The 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR; EC 1.1.1.34 is one of the key enzymes contributed to terpene biosynthesis. To better understand the basic characteristics and evolutionary history of the HMGR gene family in plants, a genome-wide analysis of HMGR genes from 20 representative species was carried out. A total of 56 HMGR genes in the 14 land plant genomes were identified, but no genes were found in all 6 algal genomes. The gene structure and protein architecture of all plant HMGR genes were highly conserved. The phylogenetic analysis revealed that the plant HMGRs were derived from one ancestor gene and finally developed into four distinct groups, two in the monocot plants and two in dicot plants. Species-specific gene duplications, caused mainly by segmental duplication, led to the limited expansion of HMGR genes in Zea mays, Gossypium raimondii, Populus trichocarpa and Glycine max after the species diverged. The analysis of Ka/Ks ratios and expression profiles indicated that functional divergence after the gene duplications was restricted. The results suggested that the function and evolution of HMGR gene family were dramatically conserved throughout the plant kingdom.

  11. Characterization, real-time quantification and in silico modeling of arsenate reductase (arsC) genes in arsenic-resistant Herbaspirillum sp. GW103.

    Science.gov (United States)

    Govarthanan, Muthusamy; Lee, Sang-Myeong; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2015-04-01

    This study investigated the mechanism of arsenic resistance in the diazotrophic bacterium Herbaspirillum sp. GW103 isolated from rhizosphere soil of Phragmites austrails. The isolate Herbaspirillum sp. GW103 exhibited maximum tolerance to arsenic (550 mg/L). Four different arsenate reductase (arsC) genes (arsC1, arsC2, arsC3 and arsC4) were located in the genome of the isolate Herbaspirillum sp. GW103. The expression pattern of the arsC1 differed from other genes. All four types of arsC genes had different protein secondary structures and stereochemical properties. Molecular modeling and structural analysis of arsC genes revealed close structural homology with arsC family proteins from Escherichia coli (PDB ID: 1I9D) and Pseudomonas aeruginosa (PDB ID: 1RW1). Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Methylenetetrahydrofolate reductase genotype in diffuse large B-cell lymphomas with and without hypermethylation of the DNA repair gene O6-methylguanine DNA methyltransferase.

    Science.gov (United States)

    Toffoli, G; Rossi, D; Gaidano, G; Cecchin, E; Boiocchi, M; Carbone, A

    2003-01-01

    C677T and A1298C methylenetetrahydrofolate reductase (MTHFR) polymorphisms have been suggested to affect susceptibility to malignant lymphoma, possibly by altering DNA methylation. The DNA repair gene O6-methylguanine DNA methyltransferase (MGMT) is transcriptionally silenced by promoter hypermethylation in diffuse large B-cell lymphomas (DLBCL). We analyzed the MTHFR677 and MTHFR1298 genotypes in 111 DLBCL patients and 465 controls. No significant difference in the frequency of MTHFR polymorphisms between patients and controls and no significant association between MTHFR677 or MTHFR1298 genotypes and methylation of MGMT promoter were observed. These results indicate that MTHFR variants are not related to DLBCL development and MGMT hypermethylation.

  13. Autosomal Recessive HEM/Greenberg Skeletal Dysplasia Is Caused by 3β-Hydroxysterol Δ14-Reductase Deficiency Due to Mutations in the Lamin B Receptor Gene

    OpenAIRE

    Waterham, Hans R.; Koster, Janet; Mooyer, Petra; Noort, Gerard van; Kelley, Richard I.; Wilcox, William R.; Ronald Wanders, J.A.; Raoul Hennekam, C.M.; Jan Oosterwijk, C.

    2003-01-01

    Hydrops-ectopic calcification-“moth-eaten” (HEM) or Greenberg skeletal dysplasia is an autosomal recessive chondrodystrophy with a lethal course, characterized by fetal hydrops, short limbs, and abnormal chondro-osseous calcification. We found elevated levels of cholesta-8,14-dien-3β-ol in cultured skin fibroblasts of an 18-wk-old fetus with HEM, compatible with a deficiency of the cholesterol biosynthetic enzyme 3β-hydroxysterol Δ14-reductase. Sequence analysis of two candidate genes encodin...

  14. Imaging of dihydrofolate reductase fusion gene expression in xenografts of human liver metastases of colorectal cancer in living rats

    Energy Technology Data Exchange (ETDEWEB)

    Mayer-Kuckuk, Philipp; Bertino, Joseph R.; Banerjee, Debabrata [Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); The Cancer Institute of New Jersey, Robert Wood Johnson Medical School/UMDNJ, 195 Little Albany Street, NJ 08903, New Brunswick (United States); Doubrovin, Mikhail; Blasberg, Ronald; Tjuvajev, Juri Gelovani [Department of Neurooncology, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Gusani, Niraj J.; Fong, Yuman [Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Gade, Terence; Koutcher, Jason A. [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Balatoni, Julius; Finn, Ronald [Radiochemistry/Cyclotron Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY (United States); Akhurst, Tim; Larson, Steven [Nuclear Medicine Service, Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2003-09-01

    Radionuclide imaging has been demonstrated to be feasible to monitor transgene expression in vivo. We hypothesized that a potential application of this technique is to non-invasively detect in deep tissue, such as cancer cells metastatic to the liver, a specific molecular response following systemic drug treatment. Utilizing human colon adenocarcinoma cells derived from a patient's liver lesion we first developed a nude rat xenograft model for colorectal cancer metastatic to the liver. Expression of a dihydrofolate reductase-herpes simplex virus 1 thymidine kinase fusion (DHFR-HSV1 TK) transgene in the hepatic tumors was monitored in individual animals using the tracer [{sup 124}I]2'-fluoro-2'-deoxy-5-iodouracil-{beta}-d-arabinofuranoside (FIAU) and a small animal micro positron emission tomograph (microPET), while groups of rats were imaged using the tracer [{sup 131}I]FIAU and a clinical gamma camera. Growth of the human metastatic colorectal cancer cells in the rat liver was detected using magnetic resonance imaging and confirmed by surgical inspection. Single as well as multiple lesions of different sizes and sites were observed in the liver of the animals. Next, using a subset of rats bearing hepatic tumors, which were retrovirally bulk transduced to express the DHFR-HSV1 TK transgene, we imaged the fusion protein expression in the hepatic tumor of living rats using the tracer [{sup 124}I]FIAU and a microPET. The observed deep tissue signals were highly specific for the tumors expressing the DHFR-HSV1 TK fusion protein compared with parental untransduced tumors and other tissues as determined by gamma counting of tissue samples. A subsequent study used the tracer [{sup 131}I]FIAU and a gamma camera to monitor two groups of transduced hepatic tumor-bearing rats. Prior to imaging, one group was treated with trimetrexate to exploit DHFR-mediated upregulation of the fusion gene product. Imaging in the living animal as well as subsequent gamma

  15. Heterologous expression of glutamyl-tRNA reductase gene in Rhodobacter sphaeroides O.U.001 to enhance 5-aminolevulinic acid production

    Science.gov (United States)

    Kars, Gökhan; Alparslan, Ümmühan

    2014-01-01

    The pathways for synthesis of 5-aminolevulinic acid (5-ALA) use either succinyl-CoA and glycine (C-4 pathway), or glutamate (C-5 pathway). Although Rhodobacter sphaeroides synthesizes 5-ALA through the C-4 pathway, it also has the genes coding for the enzymes of the C-5 pathway, except for glutamyl-tRNA reductase. The glutamyl-tRNA reductase gene was cloned from Rhodospirillum rubrum and expressed in R. sphaeroides; thus, the C-5 pathway was enabled to function upon assembling all the required genes. Consequently, a new and unique bacterial strain producing more 5-ALA was developed. Biohydrogen was also produced in the same bioprocess within a biorefinery approach using sugar beet molasses as substrate. The amount of 5-ALA produced by the modified strain was 25.9 mg/g dry cell weight (DCW), whereas the wild-type strain produced 12.4 mg/g DCW. In addition, the amount of H2 generated by the modified and wild-type cells, respectively, was 0.92 L/L culture and 1.05 L/L culture. PMID:26740781

  16. Sex Differences in Ethanol’s Anxiolytic Effect and Chronic Ethanol Withdrawal Severity in Mice With a Null Mutation of the 5α-Reductase Type 1 Gene

    Science.gov (United States)

    Tanchuck-Nipper, Michelle A.; Ford, Matthew M.; Hertzberg, Anna; Beadles-Bohling, Amy; Cozzoli, Debra K.; Finn, Deborah A.

    2015-01-01

    Manipulation of endogenous levels of the GABAergic neurosteroid allopregnanolone alters sensitivity to some effects of ethanol. Chronic ethanol withdrawal decreases activity and expression of 5α-reductase-1, an important enzyme in allopregnanolone biosynthesis encoded by the 5α-reductase-1 gene (Srd5a1). The present studies examined the impact of Srd5a1 deletion in male and female mice on several acute effects of ethanol and on chronic ethanol withdrawal severity. Genotype and sex did not differentially alter ethanol-induced hypothermia, ataxia, hypnosis, or metabolism, but ethanol withdrawal was significantly lower in female versus male mice. On the elevated plus maze, deletion of the Srd5a1 gene significantly decreased ethanol’s effect on total entries versus wildtype (WT) mice and significantly decreased ethanol’s anxiolytic effect in female knockout (KO) versus WT mice. The limited sex differences in the ability of Srd5a1 genotype to modulate select ethanol effects may reflect an interaction between developmental compensations to deletion of the Srd5a1 gene with sex hormones and levels of endogenous neurosteroids. PMID:25355320

  17. Characterization and gene cloning of l-xylulose reductase involved in l-arabinose catabolism from the pentose-fermenting fungus Rhizomucor pusillus.

    Science.gov (United States)

    Yamasaki-Yashiki, Shino; Komeda, Hidenobu; Hoshino, Kazuhiro; Asano, Yasuhisa

    2017-08-01

    l-Xylulose reductase (LXR) catalyzes the reduction of l-xylulose to xylitol in the fungal l-arabinose catabolic pathway. LXR (RpLXR) was purified from the pentose-fermenting zygomycetous fungus Rhizomucor pusillus NBRC 4578. The native RpLXR is a homotetramer composed of 29 kDa subunits and preferred NADPH as a coenzyme. The Km values were 8.71 mM for l-xylulose and 3.89 mM for dihydroxyacetone. The lxr3 (Rplxr3) gene encoding RpLXR consists of 792 bp and encodes a putative 263 amino acid protein (Mr = 28,341). The amino acid sequence of RpLXR showed high similarity to 3-oxoacyl-(acyl-carrier-protein) reductase. The Rplxr3 gene was expressed in Escherichia coli and the recombinant RpLXR exhibited properties similar to those of native RpLXR. Transcription of the Rplxr3 gene in R. pusillus NBRC 4578 was induced in the presence of l-arabinose and inhibited in the presence of d-glucose, d-xylose, and d-mannitol, indicating that RpLXR is involved in the l-arabinose catabolic pathway.

  18. Tobacco rattle virus (TRV) based silencing of cotton enoyl-CoA reductase (ECR) gene and the role of very long chain fatty acids in normal leaf development and resistance to wilt disease

    Science.gov (United States)

    A Tobacco rattle virus (TRV) based virus-induced gene silencing (VIGS) assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of Enoyl-CoA reductase (GhECR) in pathogen defense. Amino acid sequence al...

  19. Methylenetetrahydrofolate reductase gene polymorphisms are associated with ischemic and hemorrhagic stroke: Dual effect of MTHFR polymorphisms C677T and A1298C.

    Science.gov (United States)

    Sazci, Ali; Ergul, Emel; Tuncer, Nese; Akpinar, Gurler; Kara, Ihsan

    2006-12-11

    Hyperhomocysteinemia is an independent risk factor for ischemic stroke. The enzyme methylenetetrahydrofolate reductase (MTHFR) plays a critical role in modulating the levels of plasma homocysteine. Two polymorphisms in the MTHFR gene, C677T, A1298C result in reduced enzyme activity. The mechanisms of ischemic and hemorrhagic stroke are not well understood. Although controversial, previous studies have shown evidence of causality of both stroke subtypes in patients with methylenetetrahydrofolate reductase gene polymorphisms. Therefore, we examined whether the C677T and A1298C polymorphisms of MTHFR gene are genetic risk factors for both ischemic and hemorrhagic stroke in a Turkish Caucasian population. In a case-control study, 120 total unrelated stroke patients (92 ischemic stroke, 28 hemorrhagic stroke), and 259 healthy controls were genotyped for C677T and A1298C polymorphisms of the MTHFR gene using a PCR-RFLP based-method. The MTHFR 1298C allele (chi(2)=8.589; P=0.014), C1298C genotype (OR=2.544; P=0.004), and C677C/C1298C compound genotype (OR=3.020; P=0.001) were associated with overall stroke. The MTHFR 1298C allele (chi(2)=11.166; P=0.004), C1298C genotype (OR=2.950; P=0.001), and C677C/C1298C compound genotype (OR=3.463, P=0.0001) were strongly associated with ischemic stroke. Interestingly however, the MTHFR 677T allele (chi(2)=6.033; P=0.049), T677T genotype (OR=3.120; P=0.014), and T677T/A1298A compound genotype (OR=4.211; P=0.002) were associated with hemorrhagic stroke. In conclusion, the C677T and A1298C polymorphisms of the MTHFR gene are genetic risk factors for hamorrhagic and ischemic stroke respectively, independent of other atherothrombotic risk factors.

  20. Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, intakes of folate and related B vitamins and colorectal cancer: a case-control study in a population with relatively low folate intake.

    Science.gov (United States)

    Sharp, Linda; Little, Julian; Brockton, Nigel T; Cotton, Seonaidh C; Masson, Lindsey F; Haites, Neva E; Cassidy, Jim

    2008-02-01

    Folate is key in one-carbon metabolism, disruption of which can interfere with DNA synthesis, repair, and methylation. Efficient one-carbon metabolism requires other B vitamins and the optimal activity of enzymes including 5,10-methylenetetrahydrofolate reductase (MTHFR). We report a population-based case-control study of folate intake, related dietary factors and MTHFR polymorphisms (C677T, A1298C) and colorectal cancer in a population with relatively high colorectal cancer incidence and relatively low folate intake. A total of 264 cases with histologically confirmed incident colorectal cancer and 408 controls participated. There was no clear trend in risk with reported intakes of total, or dietary, folate, riboflavin, vitamin B12 or vitamin B6, nor were there interactions between folate intake and the other B vitamins or alcohol. For C677T, risk decreased with increasing variant alleles (multivariate OR for CT v. CC = 0.77 (95 % CI 0.52, 1.16); OR for TT v. CC = 0.62 (95 % CI 0.31, 1.24)), which, although not statistically significant, was consistent with previous studies. For A1298C, compared with AA subjects, CC subjects had modest, non-significant, reduced risk (multivariate OR = 0.81 (95 % CI 0.45, 1.49)). There were significant interactions between total folate and C677T (P = 0.029) and A1298C (P = 0.025), and total vitamin B6 and both polymorphisms (C677T, P = 0.016; A1298C, P = 0.033), although the patterns observed differed from previous studies. Seen against the setting of low folate intake, the results suggest that the role of folate metabolism in colorectal cancer aetiology may be more complex than previously thought. Investigation of particular folate vitamers (for example, tetrahydrofolate, 5,10-methylenetetrahydrofolate) may help clarify carcinogenesis pathways.

  1. Evaluating the role of maternal folic acid supplementation in modifying the effects of methylenetetrahydrofolate reductase (C677T and A1298C gene polymorphisms in oral cleft children

    Directory of Open Access Journals (Sweden)

    Asghar Ebadifar

    2016-01-01

    Full Text Available Background: We studied the role of maternal folic acid supplementation in modifying the effects of methylenetetrahydrofolate reductase (MTHFR C677T and A1298C gene polymorphisms in Iranian children with oral clefts. Materials and Methods: Forty-seven newborn infants with orofacial cleft and their mothers were selected randomly. Mothers were matched regarding dietary folate intake. The genotyping on venous blood was carried out. Consistency between maternal and child genotypes was analyzed. Results: Genotype consistency was not statistically significant in both C677T and A1298C gene variants (P > 0.05. Conclusion: Maternal folic acid consumption may not have any significant effect on modifying C677T and A1298C polymorphisms in children.

  2. Association of the transcobalamin II gene 776C → G polymorphism with Alzheimer's type dementia: dependence on the 5, 10-methylenetetrahydrofolate reductase 1298A → C polymorphism genotype.

    Science.gov (United States)

    Cascalheira, José F; Gonçalves, Mónica; Barroso, Madalena; Castro, Rita; Palmeira, Manuela; Serpa, André; Dias-Cabral, Ana C; Domingues, Fernanda C; Almeida, Sofia

    2015-07-01

    Decreased serum concentrations of vitamin B12 are associated with Alzheimer's type dementia. The transcobalamin II gene (TCN2) 776C → G polymorphism affects transcobalamin II function as a carrier of vitamin B12 and might modify its availability. The association of the TCN2 776C → G polymorphism with Alzheimer's type dementia is unclear and was investigated in the present study. Case-control study including 27 individuals diagnosed with Alzheimer's type dementia and 28 healthy controls. Serum concentrations of vitamin B12, homocysteine and other analytes were determined and the presence of TCN2 776C → G and 5, 10-methylenetetrahydrofolate reductase 1298A → C polymorphisms genotypes was ascertained by polymerase chain reaction-restriction fragment length polymorphism. Serum concentrations of vitamin B12 were lower while those of homocysteine were higher in patients than in controls (P Alzheimer's type dementia (OR = 0.17 versus CC genotype, P Alzheimer's type dementia together with higher concentrations of homocysteine, cholesterol and uric acid and lower concentrations of oestradiol. Association of TCN2 776C → G polymorphism with Alzheimer's type dementia was observed for individuals carrying the 5,10-methylenetetrahydrofolate reductase 1298AA genotype but not the AC or CC genotypes, indicating interaction between the two polymorphisms. The TCN2 776C → G polymorphism is negatively associated with Alzheimer's type dementia, suggesting a protective role against the disease in subjects with the 5, 10-methylenetetrahydrofolate reductase 1298AA genotype. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. Genome-Wide Identification and Comparative Analysis of the 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase (HMGR Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2018-01-01

    Full Text Available Terpenes are the largest and most diverse class of secondary metabolites in plants and play a very important role in plant adaptation to environment. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGR is a rate-limiting enzyme in the process of terpene biosynthesis in the cytosol. Previous study found the HMGR genes underwent gene expansion in Gossypium raimondii, but the characteristics and evolution of the HMGR gene family in Gossypium genus are unclear. In this study, genome-wide identification and comparative study of HMGR gene family were carried out in three Gossypium species with genome sequences, i.e., G. raimondii, Gossypium arboreum, and Gossypium hirsutum. In total, nine, nine and 18 HMGR genes were identified in G. raimondii, G. arboreum, and G. hirsutum, respectively. The results indicated that the HMGR genes underwent gene expansion and a unique gene cluster containing four HMGR genes was found in all the three Gossypium species. The phylogenetic analysis suggested that the expansion of HMGR genes had occurred in their common ancestor. There was a pseudogene that had a 10-bp deletion resulting in a frameshift mutation and could not be translated into functional proteins in G. arboreum and the A-subgenome of G. hirsutum. The expression profiles of the two pseudogenes showed that they had tissue-specific expression. Additionally, the expression pattern of the pseudogene in the A-subgenome of G. hirsutum was similar to its paralogous gene in the D-subgenome of G. hirsutum. Our results provide useful information for understanding cytosolic terpene biosynthesis in Gossypium species.

  4. Tobacco Rattle Virus-Based Silencing of Enoyl-CoA Reductase Gene and Its Role in Resistance Against Cotton Wilt Disease.

    Science.gov (United States)

    Mustafa, Roma; Hamza, Muhammad; Kamal, Hira; Mansoor, Shahid; Scheffler, Jodi; Amin, Imran

    2017-07-01

    A Tobacco rattle virus (TRV)-based virus-induced gene silencing assay was employed as a reverse genetic approach to study gene function in cotton (Gossypium hirsutum). This approach was used to investigate the function of the Enoyl-CoA reductase (GhECR) gene in pathogen defense. Amino acid sequence alignment of Arabidopsis ECR with homologous sequence from G. hirsutum, G. arboreum, G. herbaceum and G. barbadense showed that ECRs are highly conserved among these species. TRV-based silencing of GhECR gene in G. hirsutum induced a cell death/necrotic lesion-like phenotype. Reverse transcription polymerase chain reaction (RT-PCR) and real-time quantitative PCR showed reduced GhECR mRNA levels in TRV inoculated plants. Three isolates of Verticillium dahliae (V. dahliae) and Fusarium oxysporum f. sp. vasinfectum (FOV) were used to infect GhECR-silenced plants. Out of 6 races of 2 pathogens, down regulation of GhECR gene resulted in reduced resistance. This is the first report showing that cotton GhECR gene is involved in resistance to different strains of V. dahliae and FOV.

  5. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling

    DEFF Research Database (Denmark)

    Treusch, Alexander H; Leininger, Sven; Kletzin, Arnulf

    2005-01-01

    Mesophilic crenarchaeota are frequently found in terrestrial and marine habitats worldwide, but despite their considerable abundance the physiology of these as yet uncultivated archaea has remained unknown. From a 1.2 Gb large-insert environmental fosmid library of a calcareous grassland soil, a 43...... kb genomic fragment was isolated with a ribosomal RNA that shows its affiliation to group 1.1b of crenarchaeota repeatedly found in soils. The insert encoded a homologue of a copper-containing nitrite reductase with an unusual C-terminus that encoded a potential amicyanin-like electron transfer...

  6. Genetic polymorphism of methylenetetrahydrofolate reductase as a potential risk factor for congenital heart disease: A meta-analysis in Chinese pediatric population.

    Science.gov (United States)

    Yuan, Ye; Yu, Xia; Niu, Fenglan; Lu, Na

    2017-06-01

    A meta-analysis of polymorphism C677T (rs1801133) of the methylene tetrahydrofolate reductase (MTHFR) gene as a potential risk factor for congenital heart disease (CHD) in Chinese paediatric population was studied in view of the previously reported controversial results. We searched literature including PubMed, Embase, Cochrane Library, CNKI, Wanfang, and VIP databases that resulted in the identification of a total of 21 separate studies with 6414 subjects that met the inclusion criteria in the Chinese population. The quality assessment of the included studies was preformed and relevant information was collected. We chose the fixed-effect model or random-effect model to calculate the pooled odds ratio (ORs) and its corresponding 95% confidence interval (95% CI) where appropriate. Begg test was used to measure publication bias and sensitivity analyses were done to ensure authenticity of the outcome. We observed a significant association between MTHFR C677T polymorphism and CHD development in all the genetic models evaluated. The pooled ORs and 95% CIs in all genetic models indicated that children's MTHFR C677T polymorphism was significantly associated with CHD. Our study results indicate that MTHFR gene 677T polymorphism is a genetic risk factor in the development of CHD in Chinese paediatric population.

  7. A Root-Preferential DFR-Like Gene Encoding Dihydrokaempferol Reductase Involved in Anthocyanin Biosynthesis of Purple-Fleshed Sweet Potato

    Science.gov (United States)

    Liu, Xiaoqiang; Xiang, Min; Fan, Yufang; Yang, Chunxian; Zeng, Lingjiang; Zhang, Qitang; Chen, Min; Liao, Zhihua

    2017-01-01

    Purple-fleshed sweet potato is good for health due to rich anthocyanins in tubers. Although the anthocyanin biosynthetic pathway is well understood in up-ground organs of plants, the knowledge on anthocyanin biosynthesis in underground tubers is limited. In the present study, we isolated and functionally characterized a root-preferential gene encoding dihydrokaempferol reductase (IbDHKR) from purple-fleshed sweet potato. IbDHKR showed highly similarity with the reported dihydroflavonol reductases in other plant species at the sequence levels and the NADPH-binding motif and the substrate-binding domain were also found in IbDHKR. The tissue profile showed that IbDHKR was expressed in all the tested organs, but with much higher level in tuber roots. The expression level of IbDHKR was consistent with the anthocyanin content in sweet potato organs, suggesting that tuber roots were the main organs to synthesize anthocyanins. The recombinant 44 kD IbDHKR was purified and fed by three different dihydroflavonol substrates including dihydrokaempferol (DHK), dihydroquerctin, and dihydromyrecetin. The substrate feeding assay indicated that only DHK could be accepted as substrate by IbDHKR, which was reduced to leucopelargonidin confirmed by LC-MS. Finally, IbDHKR was overexpressed in transgenic tobacco. The IbDHKR-overexpression tobacco corolla was more highly pigmented and contained higher level of anthocyanins than the wild-type tobacco corolla. In summary, IbDHKR was a root-preferential gene involved in anthocyanin biosynthesis and its encoding protein, specifically catalyzing DHK reduction to yield leucopelargonidin, was a candidate gene for engineering anthocyanin biosynthetic pathway. PMID:28293252

  8. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  9. Genetic polymorphisms of methylenetetrahydrofolate reductase and promoter methylation of MGMT and FHIT genes in diffuse large B cell lymphoma risk in Middle East.

    Science.gov (United States)

    Siraj, Abdul K; Ibrahim, Muna; Al-Rasheed, Maha; Bu, Rong; Bavi, Prashant; Jehan, Zeenath; Abubaker, Jehad; Murad, Walid; Al-Dayel, Fouad; Ezzat, Adnan; El-Solh, Hassan; Uddin, Shahab; Al-Kuraya, Khawla

    2007-12-01

    Diffuse large B cell lymphoma (DLBCL) is one of the most common non-Hodgkin's lymphoma types. Methylenetetrahydrofolate reductase (MTHFR) balances the pool of folate coenzymes in one carbon metabolism of deoxyribonucleic acid (DNA) synthesis and methylation; both are implicated in carcinogenesis of many types of cancer including lymphoma. Two common variants in the MTHFR gene (C677T and A1298C) have been associated with reduced enzyme activity, thereby making MTHFR polymorphisms a potential candidate as a cancer-predisposing factor. The O6 methylguanine DNA methyltransferase (MGMT) and fragile histidine triad (FHIT) genes are transcriptionally silenced by promoter hypermethylation in DLBCL. These genetic differences are highly race specific and have never been screened in the Saudi DLBCL patients. We conducted a hospital-based case-control study including 160 DLBCL cases and 511 Saudi control samples analyzing the MTHFR C677T and A1298C functional polymorphisms by the restriction fragment length polymorphism method and their association with MGMT and FHIT genes promoter hypermethylation. Our data demonstrated that Saudi individuals carrying MTHFR genotype 1298CC (p methylation of MGMT and FHIT genes were observed. Our findings suggested that polymorphisms of MTHFR enzyme genes might be associated with the individual susceptibility to develop DLBCL. Additionally, the results indicated that MTHFR variants were not related to MGMT or FHIT hypermethylation in DLBCL.

  10. Transgenic Cotton Plants Expressing Double-stranded RNAs Target HMG-CoA Reductase (HMGR) Gene Inhibits the Growth, Development and Survival of Cotton Bollworms.

    Science.gov (United States)

    Tian, Geng; Cheng, Linlin; Qi, Xuewei; Ge, Zonghe; Niu, Changying; Zhang, Xianlong; Jin, Shuangxia

    2015-01-01

    RNA interference (RNAi) has been developed as a powerful technique in the research of functional genomics as well as plant pest control. In this report, double-stranded RNAs (dsRNA) targeting 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene, which catalyze a rate-limiting enzymatic reaction in the mevalonate pathway of juvenile hormone (JH) synthesis in cotton bollworm, was expressed in cotton plants via Agrobacterium tumefaciens-mediated transformation. PCR and Sothern analysis revealed the integration of HMGR gene into cotton genome. RT-PCR and qRT-PCR confirmed the high transcription level of dsHMGR in transgenic cotton lines. The HMGR expression both in transcription and translation level was significantly downregulated in cotton bollworms (helicoverpa armigera) larvae after feeding on the leaves of HMGR transgenic plants. The transcription level of HMGR gene in larvae reared on transgenic cotton leaves was as much as 80.68% lower than that of wild type. In addition, the relative expression level of vitellogenin (Vg, crucial source of nourishment for offspring embryo development) gene was also reduced by 76.86% when the insect larvae were fed with transgenic leaves. The result of insect bioassays showed that the transgenic plant harboring dsHMGR not only inhibited net weight gain but also delayed the growth of cotton bollworm larvae. Taken together, transgenic cotton plant expressing dsRNAs successfully downregulated HMGR gene and impaired the development and survival of target insect, which provided more option for plant pest control.

  11. Association of Transforming Growth Factor Alpha and Methylenetetrahydrofolate reductase gene variants with nonsyndromic cleft lip and palate in the Indian population

    Directory of Open Access Journals (Sweden)

    Asavari L Desai

    2014-01-01

    Full Text Available Objectives: The aim was to evaluate the relationship of the K-primer variant of the transforming growth factor-alpha (TGF-α gene and C677T variant of the methylenetetrahydrofolate reductase (MTHFR gene with nonsyndromic cleft lip and palate (CL/P in the Indian population. Setting and Sample Population: The study group consisted of DNA samples of 25 subjects with nonsyndromic CL with or without cleft palate and 25 unrelated controls, already existing in the Department of Orthodontics, D.A.P.M.R.V. Dental College, Bengaluru, Karnataka, India. Materials and Methods: The DNA samples were divided into two categories: Group A which included the 25 subjects with nonsyndromic CL/P; and Group B, which consisted of the 25 unrelated controls. The polymerase chain reaction (PCR test was done for amplification of the region of interest from the DNA samples. Restriction digestion was then performed on the amplified product using the restriction enzyme HinfI, separately for each of the variants. The digested PCR products were separated into channels on a 1.5% agarose gel containing ethidium bromide in an electrophoretic chamber. A U.V. transilluminator was used to see the specific bands of base pairs of the digested PCR products. Results: In Group A, the TGF-α gene variant was present in 16 subjects (P = 0.001 and MTHFR gene variant was present in 8 subjects (P = 0.185. A combination of both gene variants were present in seven subjects, which was an interesting finding. In Group B, four subjects tested positive for the TGF-α and MTHFR gene variants. Conclusions: The TGF-α gene variant and a combination of TGF-α + MTHFR gene variants significantly contribute to the development of nonsyndromic CL/P and can be considered as genetic markers for Indian population. The MTHFR gene variant, though a minor risk factor, cannot be considered as a genetic marker.

  12. Single-nucleotide polymorphism in the 5-alpha-reductase gene (SRD5A2) is associated with increased prevalence of metabolic syndrome in chemotherapy-treated testicular cancer survivors

    NARCIS (Netherlands)

    Boer, Hink; Westerink, Nico-Derk L.; Altena, Renske; Nuver, Janine; Dijck-Brouwer, D. A. Janneke; van Faassen, Martijn; Klont, Frank; Kema, Ido P.; Lefrandt, Joop D.; Zwart, Nynke; Boezen, H. Marike; Smit, Andries J.; Meijer, Coby; Gietema, Jourik A.

    Purpose: Chemotherapy-treated testicular cancer survivors are at risk for development of the metabolic syndrome, especially in case of decreased androgen levels. Polymorphisms in the gene encoding steroid 5-alpha-reductase type II (SRD5A2) are involved in altered androgen metabolism. We investigated

  13. Role of the host-selective ACT-toxin synthesis gene ACTTS2 encoding an enoyl-reductase in pathogenicity of the tangerine pathotype of Alternaria alternata.

    Science.gov (United States)

    Ajiro, Naoya; Miyamoto, Yoko; Masunaka, Akira; Tsuge, Takashi; Yamamoto, Mikihiro; Ohtani, Kouhei; Fukumoto, Takeshi; Gomi, Kenji; Peever, Tobin L; Izumi, Yuriko; Tada, Yasuomi; Akimitsu, Kazuya

    2010-02-01

    ABSTRACT The tangerine pathotype of Alternaria alternata produces host-selective ACT-toxin and causes Alternaria brown spot disease of tangerines and tangerine hybrids. Sequence analysis of a genomic BAC clone identified a previously uncharacterized portion of the ACT-toxin biosynthesis gene cluster (ACTT). A 1,034-bp gene encoding a putative enoyl-reductase was identified by using rapid amplification of cDNA ends and polymerase chain reaction and designated ACTTS2. Genomic Southern blots demonstrated that ACTTS2 is present only in ACT-toxin producers and is carried on a 1.9 Mb conditionally dispensable chromosome by the tangerine pathotype. Targeted gene disruption of ACTTS2 led to a reduction in ACT-toxin production and pathogenicity, and transcriptional knockdown of ACTTS2 using RNA silencing resulted in complete loss of ACT-toxin production and pathogenicity. These results indicate that ACTTS2 is an essential gene for ACT-toxin biosynthesis in the tangerine pathotype of A. alternata and is required for pathogenicity of this fungus.

  14. Frequency of the C677T variant of the methylenetetrahydrofolate reductase (MTHFR) gene in patients with migraine with or without aura - a preliminary report.

    Science.gov (United States)

    Szczygioł, Dorota; Motta, Ewa; Gołba, Anna; Stęposz, Arkadiusz; Witecka, Joanna; Dębski, Marek; Błaszkiewicz, Daria; Sieroń, Aleksander

    2012-01-01

    The aim of our study was to evaluate the frequency of the C677T variant in the methylenetetrahydrofolate reductase (MTHFR) gene in patients with migraine with or without aura and to find an association between this variant and vascular lesions in magnetic resonance imaging of the head, presence of patent foramen ovale (PFO) and increased level of homocysteine. Ninety-one patients with migraine, aged 19-57, were investigated in this study. The MTHFR C677T variant was genotyped in this group and levels of homocysteine, folic acid and vitamin B12 were measured. Transcranial Doppler sonography with test for PFO detection by injection of air contrast during the Valsalva manoeuvre was performed in each patient. Frequency of the C677T variant in the MTHFR gene was similar in patients and controls. Hyperhomocysteinaemia was significantly more frequent in migraine patients with the C677T variant. The prevalence of PFO was significantly higher in migraine patients with aura and the homozygous variant of the MTHFR gene. Frequency of the C677T variant in the MTHFR gene was similar in patients and controls. Significantly more frequent prevalence of PFO in migraine patients with aura (with homozygous recessive genotype of MTHFR probably suggests their common genetic basis. Hyperhomocysteinaemia was significantly more frequent in migraine patients with the C677T variant, which could be an additional risk factor of this disease.

  15. Characterization of the cinnamoyl-CoA reductase (CCR) gene family in Populus tomentosa reveals the enzymatic active sites and evolution of CCR.

    Science.gov (United States)

    Chao, Nan; Li, Ning; Qi, Qi; Li, Shuang; Lv, Tong; Jiang, Xiang-Ning; Gai, Ying

    2017-01-01

    Two distinct cinnamoyl-coenzyme A reductases (CCRs) from Populus tomentosa were cloned and studied and active sites in CCRs were further identified based on sequence divergence, molecular simulation, and site-directed mutants. Cinnamoyl-coenzyme A (CoA) reductase (CCR) is the first committed gene in the lignin-specific pathway and plays a role in the lignin biosynthesis pathway. In this study, we cloned 11 genes encoding CCR or CCR-like proteins in Populus tomentosa. An enzymatic assay of the purified recombinant P. tomentosa (Pto) CCR and PtoCCR-like proteins indicated that only PtoCCR1 and PtoCCR7 had detectable activities toward hydroxycinnamoyl-CoA esters. PtoCCR1 exhibited specificity for feruloyl-CoA, with no detectable activity for any other hydroxycinnamoyl-CoA esters. However, PtoCCR7 catalyzed p-coumaroyl-CoA, caffeoyl-CoA, feruloyl-CoA, and sinapoyl-CoA with a preference for feruloyl-CoA. Site-directed mutations of selected amino acids divergent between PtoCCR1 and 7, combined with modeling and docking, showed that A132 in CCR7 combined with the catalytic triad might comprise the catalytic center. In CCR7, L192, F155, and H208 were identified as the substrate-binding sites, and site-directed mutations of these amino acids showed obvious changes in catalytic efficiency with respect to both feruloyl-CoA and sinapoyl-CoA. Mutant F155Y exhibited greater catalytic efficiency for sinapoyl-CoA compared with that of wild-type PtoCCR7. Finally, recent genome duplication events provided the foundation for CCR divergence. This study further identified the active sites in CCRs and the evolutionary process of CCRs in terrestrial plants.

  16. Characterization of a salt-induced DhAHP, a gene coding for alkyl hydroperoxide reductase, from the extremely halophilic yeast Debaryomyces hansenii

    Directory of Open Access Journals (Sweden)

    Ku Maurice SB

    2009-08-01

    Full Text Available Abstract Background Debaryomyces hansenii is one of the most salt tolerant species of yeast and has become a model organism for the study of tolerance mechanisms against salinity. The goal of this study was to identify key upregulated genes that are involved in its adaptation to high salinity. Results By using forward subtractive hybridization we have cloned and sequenced DhAHP from D. hansenii that is significantly upregulated during salinity stress. DhAHP is orthologous to the alkly hydroperoxide reductase of the peroxiredoxin gene family, which catalyzes the reduction of peroxides at the expense of thiol compounds. The full-lengthed cDNA of DhAHP has 674 bp of nucleotide and contains a 516 bp open reading frame (ORF encoding a deduced protein of 172 amino acid residues (18.3 kDa. D. hansenii Ahp is a cytosolic protein that belongs to the Ahp of the 1-Cys type peroxiredoxins. Phylogentically, the DhAhp and Candida albicans Ahp11 (Swiss-Prot: Q5AF44 share a common ancestry but show divergent evolution. Silence of its expression in D. hansenii by RNAi resulted in decreased tolerance to salt whereas overexpression of DhAHP in D. hansenii and the salt-sensitive yeasts Saccharomyces cereviasiae and Pichia methanolica conferred a higher tolerance with a reduced level of reactive oxygen species. Conclusion In conclusion, for the first time our study has identified alkly hydroperoxide reductase as a key protein involved in the salt tolerance of the extremely halophilic D. hansenii. Apparently, this enzyme plays a multi-functional role in the yeast's adaptation to salinity; it serves as a peroxidase in scavenging reactive oxygen species, as a molecular chaperone in protecting essential proteins from denaturation, and as a redox sensor in regulating H2O2-mediated cell defense signaling.

  17. Methylenetetrahydrofolate Reductase A1298C Polymorphism and ...

    African Journals Online (AJOL)

    Epigenetic alterations in cancer-related genes are recognized to play an important role in BC carcinogenesis. Epidemiological studies have consistently supported that ... Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for DNA synthesis ...... disease: A common mutation in methylenetetrahydrofolate.

  18. Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study.

    Science.gov (United States)

    Wu, Jie; Li, Xue; Wan, Wencheng; Yang, Qiaohong; Ma, Weifeng; Chen, Dan; Hu, Jiangmiao; Chen, C-Y Oliver; Wei, Xiaoyong

    2017-02-23

    Dendrobium. chrysotoxum Lindl is a commonly used species of medicinal Dendrobium which belongs to the family of Orchidaceae, locally known as "Shihu" or "Huangcao". D. chrysotoxum Lindl is widely known for medicinal values in traditional Chinese medicine as it possesses anti-inflammatory, anti-hyperglycemic induction, antitumor and antioxidant properties. To characterize the interaction between gigantol extracted from D. chrysotoxum Lindl and the AR gene, and determine gigantol's efficacy against cataractogenesis. Human lens epithelial cells (HLECs) were induced by glucose as the model group. Reverse transcription polymerase chain reaction (RT-PCR) was used to assess AR gene expression. Then, the mode of interaction of gigantol with the AR gene was evaluated by UV-visible spectroscopy, atomic force microscope (AFM) and surface-enhanced Raman spectroscopy (SERS). The binding constant was determined by UV-visible. Gigantol depressed AR gene expression in HLECs. UV-visible spectra preliminarily indicated that interaction between the AR gene and gigantol may follow the groove mode, with a binding constant of 1.85×10(3)L/mol. Atomic force microscope (AFM) data indicated that gigantol possibly bound to insert AR gene base pairs of the double helix. Surface-enhanced Raman spectroscopy (SERS) studies further supported these observations. Gigantol extracted from D. chrysotoxum Lindl not only has inhibitory effects on aldose reductase, but also inhibits AR gene expression. These findings provide a more comprehensive theoretical basis for the use of Dendrobium for the treatment of diabetic cataract. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Significant association of methylenetetrahydrofolate reductase single nucleotide polymorphisms with prostate cancer susceptibility in taiwan.

    Science.gov (United States)

    Wu, Hsi-Chin; Chang, Chao-Hsiang; Tsai, Ru-Yin; Lin, Chih-Hsueh; Wang, Rou-Fen; Tsai, Chia-Wen; Chen, Kuen-Bao; Yao, Chun-Hsu; Chiu, Chang-Fang; Bau, Da-Tian; Lin, Cheng-Chieh

    2010-09-01

    Prostate cancer is the most common cause of cancer death in men and is a major health problem worldwide. Methylene tetrahydrofolate reductase (MTHFR) plays an important role in folate metabolism and is also an important source of DNA methylation and DNA synthesis (nucleotide synthesis). To assess the association and interaction of genotypic polymorphisms in MTHFR and lifestyle factors with prostate cancer in Taiwan, we investigated two well-known polymorphic variants of MTHFR, C677T (rs1801133) and A1298C (rs1801131), analyzed the association of specific genotypes with prostate cancer susceptibility, and discussed their joint effects with individual habits on prostate cancer risk. In total, 218 patients with prostate cancer and 436 healthy controls recruited from the China Medical Hospital in central Taiwan were genotyped for these polymorphisms with prostate cancer susceptibility. We found the MTHFR C677T but not the A1298C genotype was differently distributed between the prostate cancer and control groups. The T allele of MTHFR C677T conferred a significantly (p=0.0011) decreased risk of prostate cancer. As for the A1298C polymorphism, there was no difference in distribution between the prostate cancer and control groups. Gene interactions with smoking were significant for MTHFR C677T polymorphism. The MTHFR C677T CT and TT genotypes in association with smoking conferred a decreased risk of 0.501 (95% confidence interval=0.344-0.731) for prostate cancer. Our results provide the first evidence that the C allele of MTHFR C677T may be associated with the development of prostate cancer and may be a novel useful marker for primary prevention and anticancer intervention.

  20. Polymorphism of Plasmodium Falciparum Dihydrofolate Reductase and Dihydropteroate Synthase Genes among Pregnant Women with Falciparum Malaria in Banjar District, South Kalimantan Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukmawati Basuki

    2012-12-01

    Full Text Available Pregnant women are highly vulnerable to malaria infection in its endemic areas, particularly infection by Plasmodium falciparum that can cause premature, low birth weight, severe anemia in pregnant women, and death. Sulfadoxine-pyrimethamine (SP for Intermittent Preventive Treatment for pregnant (IPTp is used for malaria control in pregnancy recommended by the World Health Organization that has already been implemented in Africa. The P. falciparum resistance to SP has been reported in several malarial endemic areas, and mutations in the genes of Plasmodium falciparum Dihydrofolate Reductase (Pfdhfr and Dihydropteroate Synthase (Pfdhps are shown to be associated with parasite resistance to SP treatment. Genetic analysis of Pfdhfr and Pfdhps genes in pregnant women infected with P. falciparum has not yet been examined in Indonesia. The cross-sectional study was conducted at two subdistricts, Sungai Pinang and Peramasan, in Banjar district of South Kalimantan Province, where 127 pregnant women were recruited from 2008 to April 2010. Two important mutations in Pfdhfr gene (amino acid positions at N51 and S108 and three in Pfdhps gene (A437, K540 and A581 were analyzed by nested PCR-RFLP method. All of the seven pregnant women samples infected with P. falciparum presented PfDHFR 108N and PfDHPS 437G mutations. One of the samples had the additional mutation at PfDHPS 540, in which Lys is substituted by Glu. These results suggested that P. falciparum might present only some resistance to SP at Sungai Pinang and Peramasan subdistricts, Banjar District, South Kalimantan province, Indonesia. Although there were limited number of samples, this study showed only few mutations of Pfdhfr and Pfdhps genes in P. falciparum at Banjar district, South Kalimantan Province, that suggests SP might be effective for IPTp in this area. Thus, further analysis of the other mutation sites in Pfdhfr and Pfdhps genes and in vivo efficacy study of SP with more sufficient

  1. Pseudomonas aeruginosa IscR-Regulated Ferredoxin NADP(+ Reductase Gene (fprB Functions in Iron-Sulfur Cluster Biogenesis and Multiple Stress Response.

    Directory of Open Access Journals (Sweden)

    Adisak Romsang

    Full Text Available P. aeruginosa (PAO1 has two putative genes encoding ferredoxin NADP(+ reductases, denoted fprA and fprB. Here, the regulation of fprB expression and the protein's physiological roles in [4Fe-4S] cluster biogenesis and stress protection are characterized. The fprB mutant has defects in [4Fe-4S] cluster biogenesis, as shown by reduced activities of [4Fe-4S] cluster-containing enzymes. Inactivation of the gene resulted in increased sensitivity to oxidative, thiol, osmotic and metal stresses compared with the PAO1 wild type. The increased sensitivity could be partially or completely suppressed by high expression of genes from the isc operon, which are involved in [Fe-S] cluster biogenesis, indicating that stress sensitivity in the fprB mutant is partially caused by a reduction in levels of [4Fe-4S] clusters. The pattern and regulation of fprB expression are in agreement with the gene physiological roles; fprB expression was highly induced by redox cycling drugs and diamide and was moderately induced by peroxides, an iron chelator and salt stress. The stress-induced expression of fprB was abolished by a deletion of the iscR gene. An IscR DNA-binding site close to fprB promoter elements was identified and confirmed by specific binding of purified IscR. Analysis of the regulation of fprB expression supports the role of IscR in directly regulating fprB transcription as a transcription activator. The combination of IscR-regulated expression of fprB and the fprB roles in response to multiple stressors emphasizes the importance of [Fe-S] cluster homeostasis in both gene regulation and stress protection.

  2. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in the placenta of pregnancies complicated with preeclampsia.

    Science.gov (United States)

    Chedraui, Peter; Andrade, Mariela E; Salazar-Pousada, Danny; Escobar, Gustavo S; Hidalgo, Luis; Ramirez, Cecibel; Spaanderman, Marc E A; Kramer, Boris W; Gavilanes, Antonio W D

    2015-07-01

    Preeclampsia has been related to single-nucleotide polymorphisms (SNPs) of the methylenetetrahydrofolate reductase (MTHFR) gene; however, data regarding the placenta are still lacking. To determine the frequency of C677T and A1298C SNPs of the MTHFR gene in the placenta of preeclamptic pregnancies and healthy controls. Genotyping of C677T and A1298C polymorphisms of the MTHFR gene using RFLP-PCR was performed to the placenta of 100 gestations (n = 50 complicated with preeclampsia and n = 50 normal controls matched for parity and maternal age). Gestational age at birth and neonatal and placental weight were significantly lower in women with preeclampsia as compared to controls. The TT genotype of the C677T polymorphism was threefold more prevalent in preeclamptic placentas as compared to the placenta of controls (24.0% versus 8.0%, p = 0.001). Upon pooled analysis (n = 100), placental and neonatal weights were significantly lower in placentas displaying this genotype (TT, C677T) as compared with the CC genotype. This study found that the frequency of the TT mutant genotype of the C677T polymorphism was higher in the placenta of pregnancies complicated with preeclampsia. There is a need for further research in this matter.

  3. The statin class of HMG-CoA reductase inhibitors demonstrate differential activation of the nuclear receptors PXR, CAR and FXR, as well as their downstream target genes.

    Science.gov (United States)

    Howe, Katharine; Sanat, Faizah; Thumser, Alfred E; Coleman, Tanya; Plant, Nick

    2011-07-01

    The therapeutic class of HMG-CoA reductase inhibitors, the statins are central agents in the treatment of hypercholesterolaemia and the associated conditions of cardiovascular disease, obesity and metabolic syndrome. Although statin therapy is generally considered safe, a number of known adverse effects do occur, most commonly treatment-associated muscular pain. In vitro evidence also supports the potential for drug-drug interactions involving this class of agents, and to examine this a ligand-binding assay was used to determine the ability of six clinically used statins for their ability to directly activate the nuclear receptors pregnane X-receptor (PXR), farnesoid X-receptor (FXR) and constitutive androstane receptor (CAR), demonstrating a relative activation of PXR>FXR>CAR. Using reporter gene constructs, we demonstrated that this order of activation is mirrored at the transcriptional activation level, with PXR-mediated gene activation being pre-eminent. Finally, we described a novel regulatory loop, whereby activation of FXR by statins increases PXR reporter gene expression, potentially enhancing PXR-mediated responses. Delineating the molecular interactions of statins with nuclear receptors is an important step in understanding the full biological consequences of statin exposure. This demonstration of their ability to directly activate nuclear receptors, leading to nuclear receptor cross-talk, has important potential implications for their use within a polypharmacy paradigm.

  4. Association of Methylentetraydrofolate Reductase (MTHFR) 677 C > T gene polymorphism and homocysteine levels in psoriasis vulgaris patients from Malaysia: a case-control study

    Science.gov (United States)

    2012-01-01

    Background The methylenetetrahydrofolate reductase (MTHFR) enzyme catalyzes the reduction of 5, 10-methylenetetrahydrofolate to 5-methyltetrahydrofolate and methyl donors. The methyl donors are required for the conversion of homocysteine to methionine. Mutation of MTHFR 677 C > T disrupts its thermostability therefore leads to defective enzyme activities and dysregulation of homocysteine levels. Methods This case-control study (n = 367) was conducted to investigate the correlation of the MTHFR gene polymorphism [NM_005957] and psoriasis vulgaris amongst the Malaysian population. Overnight fasting blood samples were collected from a subgroup of consented psoriasis vulgaris patients and matched controls (n = 84) for the quantification of homocysteine, vitamin B12 and folic acid levels. Results There was no significant increase of the MTHFR 677 C > T mutation in patients with psoriasis vulgaris compared with controls (χ2 = 0.733, p = 0.392). No significant association between homocysteine levels and MTHFR gene polymorphism in cases and controls were observed (F = 0.91, df = 3, 80, p = 0.44). However, homocysteine levels in cases were negatively correlated with vitamin B12 (r = -0.173) and folic acid (r = -0.345) levels. Vitamin B12 and folic acid levels in cases were also negatively correlated (r = -0.164). Conclusions Our results indicate that there was no significant association between the MTHFR gene polymorphism and psoriasis vulgaris in the Malaysian population. There was no significant increase of the plasma homocysteine level in the psoriasis patients compared to the controls. PMID:22217364

  5. Association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and ischemic stroke in the Chinese population: a meta-analysis.

    Science.gov (United States)

    Zhu, Xiao-Yan; Hou, Rong-Yao; Pan, Xu-Dong; Wang, Yu-Chun; Zhang, Zheng-Shou; Guo, Rui-You

    2015-01-01

    The association between the methylenetetrahydrofolate reductase (MTHFR) gene C677T polymorphism and ischemic stroke (IS) has been extensively studied; however, the results from genetic association studies have been inconsistent even in the Chinese population. As far as we know, there was no previous meta-analysis concerning this association in the Chinese population. Therefore, the aim of our meta-analysis was to further evaluate the association in the Chinese population. We collected all of the relevant studies from Pubmed, OVID, Embase, Chinese Wan Fang database, CNKI, Chongqing VIP database and CBM up to August 2014. The available data was analyzed by Stata (version 12.0). We used odds ratios (ORs) and corresponding 95% confidence intervals (CIs) to present the strength of the association. Heterogeneity was evaluated by the Q-test and I(2) statistic. Different genetic models, subgroup analysis, publication bias and sensitivity analysis were used to improve the comprehensive understanding. The results showed a significant association between the MTHFR gene C677T polymorphism and IS in six genetic models (additive model: OR = 1.34, 95%CI: 1.17 ∼ 1.54, p MTHFR gene C677T polymorphism and IS, the T allele might be a risk factor for IS in the Chinese population.

  6. Molecular genetic analysis in mild hyperhomocysteinemia: A common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Kluijtmans, L.A.J.; Heuvel, L.P.W.J. van den; Stevens, E.M.B. [Univ. Hospital Nijmegen (Netherlands)] [and others

    1996-01-01

    Mild hyperhomocysteinemia is an established risk factor for cardiovascular disease. Genetic aberrations in the cystathionine P-synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) genes may account for reduced enzyme activities and elevated plasma homocysteine levels. In 15 unrelated Dutch patients with homozygous CBS deficiency, we observed the 833T{yields}C (1278T) mutation in 50% of the alleles. Very recently, we identified a common mutation (677C{yields}T; A{yields}V) in the MTHFR gene, which, in homozygous state, is responsible for the thermolabile phenotype and which is associated with decreased specific MTHFR activity and elevated homocysteine levels. We screened 60 cardiovascular patients and 111 controls for these two mutations, to determine whether these mutations are risk factors for premature cardiovascular disease. Heterozygosity for the 833T{yields}C mutation in the CBS gene was observed in one individual of the control group but was absent in patients with premature cardiovascular disease. Homozygosity for the 677C-{yields}T mutation in the MTHFR gene was found in 9 (15%) of 60 cardiovascular patients and in only 6 ({approximately}5%) of 111 control individuals (odds ratio 3.1 [95% confidence interval 1.0-9.21]). Because of both the high prevalence of the 833T-{yields}C mutation among homozygotes for CBS deficiency and its absence in 60 cardiovascular patients, we may conclude that heterozygosity for CBS deficiency does not appear to be involved in premature cardiovascular disease. However, a frequent homozygous mutation in the MTHFR gene is associated with a threefold increase in risk for premature cardiovascular disease. 35 refs., 3 figs., 1 tab.

  7. An amino acid substitution in the Babesia bovis dihydrofolate reductase-thymidylate synthase gene is correlated to cross-resistance against pyrimethamine and WR99210.

    Science.gov (United States)

    Gaffar, Fasila R; Wilschut, Karlijn; Franssen, Frits F J; de Vries, Erik

    2004-02-01

    The genomic locus and cDNA encoding Babesia bovis dihydrofolate reductase-thymidylate synthase (DHFR-TS) were cloned and sequenced. A single dhfr-ts gene, composed of four exons, encodes a 511 aa protein that is most closely related to Plasmodium falciparum DHFR-TS. The genomic locus is characterized by the presence of four other genes of which at least three are expressed during the erythrocytic cycle. Three of the genes were highly conserved in closely related Theileria species and for two of the genes and dhfr-ts, gene synteny was observed between B. bovis and Theileria parva, B. bovis in vitro cultures displaying approximately 10-20-fold decreased sensitivity towards the antimalarial drugs WR99210 and pyrimethamine were selected repeatedly after prolonged growth in presence of drugs. Five cultures examined in detail were shown to encode a DHFR-TS carrying amino acid substitution S125F. Three-dimensional-modelling, using the P. falciparum DHFR structure as a template, suggests that substitution S125F protrudes into the binding site of NADPH. The S125F mutant could be isolated by growth under pyrimethamine or WR99210 pressure conferring cross-resistance to both drugs. Although opposing selection for pyrimethamine or WR99210 resistance was reported recently using P. falciparum or P. vivax strains carrying wildtype dhfr, the results obtained here are reminiscent of a quadruple mutant of P. falciparum dhfr displaying strong resistance to pyrimethamine and 10-fold enhanced resistance against WR99210. Wildtype B. bovis DHFR carries three mutations present in this mutant possibly explaining the low sensitivity to pyrimethamine and the ease by which moderately WR99210 resistant mutants could be isolated.

  8. Determining the association between methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and genomic DNA methylation level: A meta-analysis.

    Science.gov (United States)

    Wang, Li; Shangguan, Shaofang; Chang, Shaoyan; Yu, Xin; Wang, Zhen; Lu, Xiaolin; Wu, Lihua; Zhang, Ting

    2016-08-01

    The methylenetetrahydrofolate reductase (MTHFR) polymorphism is a risk factor for neural tube defects. C677T and A1298C MTHFR polymorphisms produce an enzyme with reduced folate-related one carbon metabolism, and this has been associated with aberrant methylation modifications in DNA and protein. A meta-analysis was conducted to assess the association between MTHFR C677T/A1298C genotypes and global genomic methylation. Eleven studies met the inclusion criteria. Of these, 10 were performed on C677T MTHFR genotypes and 6 were performed on A1298C MTHFR genotypes. Our results did not indicate any correlation between global methylation and MTHFR A1298C, C677T polymorphisms. The results of our study provide evidence to assess the global methylation modification alterations of MTHFR polymorphisms among individuals. However, our data did not found any conceivable proof supporting the hypothesis that common variant of MTHFR A1298C, C677T contributes to methylation modification. Birth Defects Research (Part A) 106:667-674, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Mutational Spectrum in the Δ7-Sterol Reductase Gene and Genotype-Phenotype Correlation in 84 Patients with Smith-Lemli-Opitz Syndrome

    Science.gov (United States)

    Witsch-Baumgartner, M.; Fitzky, B. U.; Ogorelkova, M.; Kraft, H. G.; Moebius, F. F.; Glossmann, H.; Seedorf, U.; Gillessen-Kaesbach, G.; Hoffmann, G. F.; Clayton, P.; Kelley, R. I.; Utermann, G.

    2000-01-01

    Summary Smith-Lemli-Opitz syndrome (SLOS), an autosomal recessive malformation syndrome, ranges in clinical severity from mild dysmorphism and moderate mental retardation to severe congenital malformation and intrauterine lethality. Mutations in the gene for Δ7-sterol reductase (DHCR7), which catalyzes the final step in cholesterol biosynthesis in the endoplasmic reticulum (ER), cause SLOS. We have determined, in 84 patients with clinically and biochemically characterized SLOS (detection rate 96%), the mutational spectrum in the DHCR7 gene. Forty different SLOS mutations, some frequent, were identified. On the basis of mutation type and expression studies in the HEK293-derived cell line tsA-201, we grouped mutations into four classes: nonsense and splice-site mutations resulting in putative null alleles, missense mutations in the transmembrane domains (TM), mutations in the 4th cytoplasmic loop (4L), and mutations in the C-terminal ER domain (CT). All but one of the tested missense mutations reduced protein stability. Concentrations of the cholesterol precursor 7-dehydrocholesterol and clinical severity scores correlated with mutation classes. The mildest clinical phenotypes were associated with TM and CT mutations, and the most severe types were associated with 0 and 4L mutations. Most homozygotes for null alleles had severe SLOS; one patient had a moderate phenotype. Homozygosity for 0 mutations in DHCR7 appears compatible with life, suggesting that cholesterol may be synthesized in the absence of this enzyme or that exogenous sources of cholesterol can be used. PMID:10677299

  10. Disruptions of the Arabidopsis Enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis.

    Science.gov (United States)

    Zheng, Huanquan; Rowland, Owen; Kunst, Ljerka

    2005-05-01

    In the absence of cell migration, plant architecture is largely determined by the direction and extent of cell expansion during development. In this report, we show that very-long-chain fatty acid (VLCFA) synthesis plays an essential role in cell expansion. The Arabidopsis thaliana eceriferum10 (cer10) mutants exhibit severe morphological abnormalities and reduced size of aerial organs. These mutants are disrupted in the At3g55360 gene, previously identified as a gene coding for enoyl-CoA reductase (ECR), an enzyme required for VLCFA synthesis. The absence of ECR activity results in a reduction of cuticular wax load and affects VLCFA composition of seed triacylglycerols and sphingolipids, demonstrating in planta that ECR is involved in all VLCFA elongation reactions in Arabidopsis. Epidermal and seed-specific silencing of ECR activity resulted in a reduction of cuticular wax load and the VLCFA content of seed triacylglycerols, respectively, with no effects on plant morphogenesis, suggesting that the developmental phenotypes arise from abnormal sphingolipid composition. Cellular analysis revealed aberrant endocytic membrane traffic and defective cell expansion underlying the morphological defects of cer10 mutants.

  11. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  12. Response of nitrate reductase activity and NIA genes expression in roots of Arabidopsis hxk1 mutant treated with selected carbon and nitrogen metabolites.

    Science.gov (United States)

    Reda, Małgorzata

    2015-01-01

    In plants sugar sensing and signal transduction involves pathways dependent or independent on HXK1 as a glucose sensor. Research was conducted to determine which pathway is responsible for regulation of the nitrate reduction. The effect of selected carbon and nitrogen metabolites on nitrate reductase (NR) activity in Arabidopsis thaliana wild type (WT) and hxk1 mutant roots was studied. Exogenously supplied sugar, sucrose (Suc) and organic acid, 2-oxoglutarate (2-OG) led to an increase in the total and actual activity of NR. It was due to both the increase in expression of NIA genes and NR activation state. The stimulatory effect of Suc and 2-OG on nitrate reduction was less pronounced in hxk1 mutant roots with T-DNA insertion in the AtHXK1 gene encoding hexokinase1 (HXK1) and characterized by reduced hexokinase activity and root level of G6P and F6P. On the other hand, it was shown that exogenous glucose did not mimic Suc-mediated NR activation in Arabidopsis roots. Taken together, this data suggest that the Suc signaling pathway might be independent from hexose's sensor dependent mechanism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The minimal gene set member msrA, encoding peptide methionine sulfoxide reductase, is a virulence determinant of the plant pathogen Erwinia chrysanthemi.

    Science.gov (United States)

    Hassouni, M E; Chambost, J P; Expert, D; Van Gijsegem, F; Barras, F

    1999-02-02

    Peptide methionine sulfoxide reductase (MsrA), which repairs oxidized proteins, is present in most living organisms, and the cognate structural gene belongs to the so-called minimum gene set [Mushegian, A. R. & Koonin, E. V., (1996) Proc. Natl. Acad. Sci. USA 93, 10268-10273]. In this work, we report that MsrA is required for full virulence of the plant pathogen Erwinia chrysanthemi. The following differences were observed between the wild-type and a MsrA- mutant: (i) the MsrA- mutant was more sensitive to oxidative stress; (ii) the MsrA- mutant was less motile on solid surface; (iii) the MsrA- mutant exhibited reduced virulence on chicory leaves; and (iv) no systemic invasion was observed when the MsrA- mutant was inoculated into whole Saintpaulia ionantha plants. These results suggest that plants respond to virulent pathogens by producing active oxygen species, and that enzymes repairing oxidative damage allow virulent pathogens to survive the host environment, thereby supporting the theory that active oxygen species play a key role in plant defense.

  14. Are the methylenetetrahydrofolate reductase 1298 and 677 gene polymorphisms related to optic glioma and hamartoma risk in neurofibromatosis type 1 patients?

    Science.gov (United States)

    Tanyıldız, Hikmet Gülşah; Yeşil, Şule; Bozkurt, Ceyhun; Çandır, Mehmet Onur; Akpınar-Tekgündüz, Sibel; Toprak, Şule; Yüksel, Deniz; Şahin, Gürses

    2016-01-01

    The methylenetetrahydrofolate reductase (MTHFR) gene plays a key role in carcinogenesis through its effects on DNA synthesis and methylation and also has a significant role in the etiology of many disorders, such as diabetes, migraine, and cardiovascular disease. Neurofibromatoses (NF) are autosomal dominant inherited diseases that can affect tissues such as bone and skin and predispose individuals to tumor development in various parts of the nervous system or body. Optic nerve glioma and brain tumors are common in children with NF, and leukemia and lymphoma incidence is also higher than normal. We therefore aimed to investigate the possible relationship between the MTHFR gene polymorphism and accompanying tumors such as neurofibroma, hamartoma, and optic glioma in children with NF1 found to have the MTHFR 677 and MTHFR 1298 gene polymorphism in this study. We included 55 pediatric patients diagnosed with NF1 between 2005 and 2014 in the study group. The control group included 44 healthy subjects without acute or chronic disease findings. A significant relationship was found between the MTHFR A1298C polymorphism and the incidence of optic glioma (p=0.014) (AA vs. AC: OR 11, 95% CI 1.27-95.17; AA vs. CC: OR 7.33, 95% CI 0.35-150.70). We also found a significant relationship between the MTHFR C1298C polymorphism and the incidence of hamartoma (p=0.019) (AA vs. AC: OR 2.12, 95% CI 0.662-6.809; p=0.203). Epilepsy incidence was high in subjects with MTHFR C677C. The MTHFR A1298C, C1298C, and C677C gene polymorphisms can be associated with a higher optic glioma, hamartoma, and epilepsy incidence, respectively, in patients diagnosed with neurofibromatosis type 1.

  15. Partial gene sequences for the A subunit of methyl-coenzyme M reductase (mcrI) as a phylogenetic tool for the family Methanosarcinaceae

    Science.gov (United States)

    Springer, E.; Sachs, M. S.; Woese, C. R.; Boone, D. R.

    1995-01-01

    Representatives of the family Methanosarcinaceae were analyzed phylogenetically by comparing partial sequences of their methyl-coenzyme M reductase (mcrI) genes. A 490-bp fragment from the A subunit of the gene was selected, amplified by the PCR, cloned, and sequenced for each of 25 strains belonging to the Methanosarcinaceae. The sequences obtained were aligned with the corresponding portions of five previously published sequences, and all of the sequences were compared to determine phylogenetic distances by Fitch distance matrix methods. We prepared analogous trees based on 16S rRNA sequences; these trees corresponded closely to the mcrI trees, although the mcrI sequences of pairs of organisms had 3.01 +/- 0.541 times more changes than the respective pairs of 16S rRNA sequences, suggesting that the mcrI fragment evolved about three times more rapidly than the 16S rRNA gene. The qualitative similarity of the mcrI and 16S rRNA trees suggests that transfer of genetic information between dissimilar organisms has not significantly affected these sequences, although we found inconsistencies between some mcrI distances that we measured and and previously published DNA reassociation data. It is unlikely that multiple mcrI isogenes were present in the organisms that we examined, because we found no major discrepancies in multiple determinations of mcrI sequences from the same organism. Our primers for the PCR also match analogous sites in the previously published mcrII sequences, but all of the sequences that we obtained from members of the Methanosarcinaceae were more closely related to mcrI sequences than to mcrII sequences, suggesting that members of the Methanosarcinaceae do not have distinct mcrII genes.

  16. The 677C --> T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene in epileptic patients affected by systemic lupus erythematosus.

    Science.gov (United States)

    Afeltra, Antonella; Amoroso, Antonio; Mitterhofer, Anna Paola; Vadacca, Marta; Galluzzo, Sara; Francia, Ada; Del Porto, Flavia; Gandolfo, Giuseppe Maria

    2002-06-01

    Neuropsychiatric involvement in systemic lupus erythematosus (NPSLE) is considered as one of the major manifestations of the disease. Epilepsy has been documented in about 10% of patients with systemic lupus erythematosus (SLE). It is well known that vascular damage in SLE occurs because of multiple mechanisms including hypercoagulation. It has been recently reported that in SLE patients raised levels of homocysteine are associated with arterial thrombosis. Hyperhomocysteinaemia is a condition due to both genetic and non-genetic factors. The most common genetic defect in homocysteine metabolism is a decreased activity of a common 5,10-methylenetetrahydrofolate reductase (MTHFR) variant (677C -->T, a thermolabile form). In this paper we describe the epileptic manifestations in six out of 55 SLE patients. Seizures were the SLE onset symptom for three patients, appeared during the active disease in two cases, and occurred during a period of clinical remission in one patient. In all cases we documented the association of epilepsy with the MTHFR mutation: the homozygosity form was present in one case (16.7%), and heterozygosity in five cases (83.3%). Nevertheless, levels of homocysteine in plasma were in the normal range. Moreover, we found a decrease in the level of S protein values in one case, a high titre positivity of anticardiolipin antibodies (aCL) (IgG and IgM) in three patients and low titre positivity (IgG) in one patient, and lupus anticoagulant (LAC) positivity in four cases. In conclusion, we believe that the abnormalities of coagulation present in our patients could be related to epileptogenesis or to an alteration of the seizure threshold. Copyright 2002 BEA Trading Ltd. Published by Elsevier Science Ltd. All rights reserved.

  17. Methylenetetrahydrofolate reductase gene C677T, A1298C polymorphisms and pre-eclampsia risk: a meta-analysis.

    Science.gov (United States)

    Li, Xing; Luo, Ya L; Zhang, Qiong H; Mao, Chen; Wang, Xi W; Liu, Shan; Chen, Qing

    2014-08-01

    To determine whether methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms are associated with pre-eclampsia susceptibility. Literature searches of the Pubmed, Embase, BIOSIS Previews and Web of Science were conducted to identify all eligible articles up to January 18th, 2013. The pooled odds ratios (ORs) with 95% confidence intervals (CIs) of five genetic models were calculated by fixed-effects or random-effects model. Publication bias, subgroup analysis, meta-regression and sensitivity analysis were also performed. A number of 49 studies including 51 samples consisted of 18,009 subjects (6,238 patients and 11,771 controls) were finally included. MTHFR C677T allele (TT or CT) carriers were 1.12 times more likely to develop pre-eclampsia (95% CI 1.04-1.21) compared with 677CC homozygous individuals. Similar results were obtained under other genetic models. Restricted to severe pre-eclampsia, there was an increased risk for 677TT homozygotes compared with 677CC homozygotes (OR 1.43; 95% CI 1.12-1.83). Subgroup analysis revealed a significant positive association between the C677T polymorphism (TT or CT) and pre-eclampsia in Asians (OR 1.41; 95% CI 1.11-1.79) and white population (OR 1.14; 95% CI 1.03-1.25). Meta-regression showed that study population, blinded genotyping, matching of cases and controls were not substantial sources of heterogeneity. For the MTHFR A1298C, ORs for all genetic models yielded a null association. This meta-analysis suggests that the MTHFR 677T allele might be associated with increased pre-eclampsia risk in Asian and white ethnicity and the subgroup of severe pre-eclampsia, while no association is observed between the MTHFR A1298C polymorphism and pre-eclampsia.

  18. Polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) are associated with susceptibility to adult acute myeloid leukemia in a Chinese population.

    Science.gov (United States)

    Huang, Lulu; Deng, Donghong; Peng, Zhigang; Ye, Fanghui; Xiao, Qiang; Zhang, Bing; Ye, Bingbing; Mo, Zengnan; Yang, Xiaobo; Liu, Zhenfang

    2015-06-01

    Methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme in the metabolism of folate. Since acute myeloid leukemia (AML) is characterized by rapidly proliferating tissues that have a high requirement for DNA synthesis, it is possible that the presence of MTHFR polymorphisms could be linked to the multifactorial process of AML development. We evaluated the role of MTHFR C677T and A1298C polymorphisms in a case-control study comprising 98 AML patients and 2016 healthy controls in a Southern Chinese population. We further conducted a sub-study restricted to individuals who neither smoked nor drank alcohol (70 AML patients and 160 healthy controls). MTHFR polymorphisms in the patient and control groups were evaluated by SNaP shot genotype techniques and Illumina BeadChip, respectively. Logistic regression was used to assess the adjusted odds ratios (ORs) and 95% confidence intervals (95% CIs). The MTHFR 1298AC genotype and the 677CC/1298AC haplotype were significantly associated with a decreased risk of AML compared with the AA genotype and 677CC/1298AA haplotype (OR=0.60, 95% CI: 0.38-0.95, P=0.03; OR=0.49, 95% CI: 0.27-0.90, P=0.02, respectively). In addition, the 677TT genotype was significantly associated with an increased risk of AML compared with the AA genotype only in non-smokers and non-drinkers (OR=4.78; 95% CI=1.38-16.61, P=0.01). The results might suggest that MTHFR polymorphisms are significantly associated with AML risk. In addition, the role of MTHFR genetic susceptibility could be greater among non-smokers and non-drinkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Association of the methylenetetrahydrofolate reductase gene C677T polymorphism with the risk of male infertility: a meta-analysis.

    Science.gov (United States)

    Zhu, Xudong; Liu, Zhiguo; Zhang, Maochen; Gong, Ruihong; Xu, Yajun; Wang, Baoming

    2016-01-01

    Several molecular epidemiological studies have been conducted to examine the association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and male infertility susceptibility, but the results remain inconclusive. To derive a more precise estimation of the relationship, a meta-analysis was performed. In this meta-analysis, a total of 26 case-control studies including 5659 infertility cases and 5528 controls were selected to evaluate the possible association. The pooled odds ratios (ORs) with 95% confidence intervals (95% CIs) were used to assess the strength of association of C677T polymorphism with male infertility in the additive model, dominant model, recessive model and allele-frequency genetic model. In the overall analysis, the frequency of the 677T allele was significantly associated with male infertility susceptibility (OR = 2.32, 95%CI = 2.04-2.65 for TT vs. CC genotype; OR = 1.09, 95%CI = 1.00-1.19 for CT vs. CC genotype; OR = 1.19, 95%CI = 1.10-1.29 for CT/TT vs. CC genotype; OR = 1.54, 95%CI = 1.36-1.74 for TT vs. CC/TT genotype; OR = 1.22, 95%CI = 1.15-1.30 for T vs. C allele). A subgroup analysis of the subjects showed that significantly strong association between MTHFR C677T polymorphism and male infertility was present only in Asians, but not in Caucasians. Additionally, MTHFR C677T was associated with a significant increase in the risk of azoospermia in all genetic models. Meanwhile, no significantly increased risks of oligoasthenotertozoospermia (OAT) were found in most of the genetic models. In conclusion, this meta-analysis is in favor that the MTHFR C677T polymorphism is capable of causing male infertility susceptibility, especially in Asians and the subgroup of azoospermia.

  20. Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus carbonarius.

    Science.gov (United States)

    Weyda, István; Lübeck, Mette; Ahring, Birgitte K; Lübeck, Peter S

    2014-04-01

    Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.

  1. Pulmonary Embolism in a Sarcoidosis Patient Double Heterozygous for Methylenetetrahydrofolate Reductase Gene Polymorphisms and Factor V Leiden and Homozygous for the D-Allele of Angiotensin Converting Enzyme Gene

    Directory of Open Access Journals (Sweden)

    Nadim El-Majzoub

    2015-01-01

    Full Text Available Sarcoidosis is a multisystem granulomatous disease of unknown etiology and pathogenesis. It presents in patients younger than 40 years of age. The lungs are the most commonly affected organ. Till the present day, there is no single specific test that will accurately diagnose sarcoidosis; as a result, the diagnosis of sarcoidosis relies on a combination of clinical, radiologic, and histologic findings. Patients with sarcoidosis have been found to have an increased risk of pulmonary embolism compared to the normal population. MTHFR and factor V Leiden mutations have been reported to increase the risk of thrombosis in patients. We hereby present a case of a middle aged man with sarcoidosis who developed a right main pulmonary embolism and was found to be double heterozygous for methylenetetrahydrofolate reductase gene polymorphisms and factor V Leiden and homozygous for the D-allele of the angiotensin converting enzyme gene.

  2. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid.

    Science.gov (United States)

    Choi, D; Ward, B L; Bostock, R M

    1992-10-01

    Induction of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is essential for the biosynthesis of sesquiterpenoid phytoalexins and steroid derivatives in Solanaceous plants following stresses imposed by wounding and pathogen infection. To better understand this complex step in stress-responsive isoprenoid synthesis, we isolated three classes of cDNAS encoding HMGR (hmg1, hmg2, and hmg3) from a potato tuber library using a probe derived from an Arabidopsis HMGR cDNA. The potato cDNAs had extensive homology in portions of the protein coding regions but had low homology in the 3' untranslated regions. RNA gel blot analyses using gene-specific probes showed that hmg1 was strongly induced in tuber tissue by wounding, but the wound induction was strongly suppressed by treatment of the tissue with the fungal elicitor arachidonic acid or by inoculation with an incompatible or compatible race of the fungal pathogen Phytophtora infestans. The hmg2 and hmg3 mRNAs also accumulated in response to wounding, but in contrast to hmg1, these mRNAs were strongly enhanced by arachidonic acid or inoculation. Inoculation with a compatible race of P. infestans resulted in similar patterns in HMGR gene expression of hmg2 and hmg3 except that the magnitude and rate of the changes in mRNA levels were reduced relative to the incompatible interaction. The differential regulation of members of the HMGR gene family may explain in part the previously reported changes in HMGR enzyme activities following wounding and elicitor treatment. The suppression of hmg1 and the enhancement of hmg2 and hmg3 transcript levels following elicitor treatment or inoculation with the incompatible race parallel the suppression in steroid and stimulation of sesquiterpenoid accumulations observed in earlier investigations. The results are discussed in relation to the hypothesis that there are discrete organizational channels for sterol and sesquiterpene biosynthesis in potato and other Solanaceous species.

  3. A putative 12-oxophytodienoate reductase gene CsOPR3 from Camellia sinensis, is involved in wound and herbivore infestation responses.

    Science.gov (United States)

    Xin, Zhaojun; Zhang, Jin; Ge, Lingang; Lei, Shu; Han, Juanjuan; Zhang, Xin; Li, Xiwang; Sun, Xiaoling

    2017-06-05

    12-Oxophytodienoate reductase (OPR) is a key enzyme in the biosynthesis of jasmonic acid (JA), which plays an important role in plant defense responses. Although multiple isoforms of OPRs have been identified in various annual herbaceous plants, genes encoding these enzymes in perennial woody plants have yet to be fully investigated. In the tea plant, Camellia sinensis (L.), no OPR genes have been isolated, and their possible roles in tea plant development and defense mechanism remain unknown. In this study, a putative OPR gene, designated as CsOPR3, was isolated from tea plants for the first time through the rapid amplification of cDNA ends. The open reading frame of CsOPR3 is 1197bp in length, and encodes a protein of 398 amino acids. Real-time qPCR analysis revealed that CsOPR3 was expressed in different organs. In particular, CsOPR3 was highly expressed in flowers, leaves and stems but was weakly expressed in roots and seeds. CsOPR3 expression could be rapidly induced by mechanical wounding, and increased JA levels were correlated with the wound-induced CsOPR3 expression. The infestation of the tea geometrid (TG) Ectropis obliqua Prout, regurgitant derived from TG and exogenous JA application could enhance the CsOPR3 expression. Our study is the first to report that CsOPR3 plays an important role in JA biosynthesis and tea plant defense against herbivorous insects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Rice gene SDL/RNRS1, encoding the small subunit of ribonucleotide reductase, is required for chlorophyll synthesis and plant growth development.

    Science.gov (United States)

    Qin, Ran; Zeng, Dongdong; Liang, Rong; Yang, Chengcong; Akhter, Delara; Alamin, Md; Jin, Xiaoli; Shi, Chunhai

    2017-09-05

    A new mutant named sdl (stripe and drooping leaf) was characterized from indica cultivar Zhenong 34 by ethylmethane sulfonate (EMS) mutagenesis. The mutant sdl exhibited development defects including stripe and drooping leaf, dwarfism and deformed floral organs. The gene SDL was found allelic to RNRS1 by map-based cloning, which was homologous to Arabidopsis TSO2 encoding the small subunit of ribonucleotide reductase. The gDNA sequencing results of sdl in mutant showed that there was a repetitive sequence insertion of 138-bp at the 475(th) bp in the exon. The redundant sequence was conserved in SDL homologous proteins, which contained the active site (tyrosine), as well as two amino acids glutamate and histidine involved in the binding of iron. There were fewer chloroplasts and grana lamellas in sdl leaf compared with those of wild-type. Additionally, the stripe leaves of sdl seedlings were highly sensitive to temperature, since the chlorophyll content was increased with the temperature rising. The drooping leaf of sdl might be resulted from the disappearance of vascular bundles and mesophyll cells in both leaf midrib and lateral veins. Fittingly to the phenotypes of mutant sdl, the expression levels of genes associated with photosynthesis and chlorophyll synthesis were found to be down- or up-regulated at different temperatures in mutant sdl. Also, the transcriptional levels of genes related to plant height and floral organ formation showed obvious differences between wild-type and sdl. The "SDL/RNRS1" was, hence, required for the chlorophyll biosynthesis and also played pleiotropic roles in the regulation of plant development. Copyright © 2017. Published by Elsevier B.V.

  5. Genetic polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR) and risk of vitiligo in Han Chinese populations: a genotype-phenotype correlation study.

    Science.gov (United States)

    Chen, J-X; Shi, Q; Wang, X-W; Guo, S; Dai, W; Li, K; Song, P; Wei, C; Wang, G; Li, C-Y; Gao, T-W

    2014-05-01

    Recent evidence has revealed an elevation of total homocysteine (tHcy) in patients with vitiligo. Methylenetetrahydrofolate reductase (MTHFR) is one of the main enzymes regulating homocysteine (Hcy) metabolism. Thus, polymorphisms of MTHFR could potentially contribute to the development of vitiligo by affecting MTHFR activity and tHcy levels. To evaluate the potential association between MTHFR polymorphisms and vitiligo susceptibility. In total, 1000 patients with vitiligo and 1000 age- and sex-matched controls were enrolled in this hospital-based case-control study. Two single-nucleotide polymorphisms of the MTHFR gene (rs1801133 C>T and rs1801131 A>C) were selected and genotyped using polymerase chain reaction (PCR)-restriction fragment length polymorphism and allele-specific PCR, respectively. The MTHFR activity concentration and tHcy level in serum were measured by enzyme-linked immunosorbent assay. We found that allele T of rs1801133 in the MTHFR gene was associated with a significantly reduced risk of vitiligo (adjusted odds ratio 0·58, 95% confidence interval 0·43-0·76, P MTHFR and higher level of tHcy than the controls. Correlation between these markers and the risk of vitiligo was also observed. Furthermore, the individuals with a no-risk genotype (CT + TT) of rs1801133 and higher activity concentration of MTHFR or lower level of tHcy had a significantly decreased risk of vitiligo. Our data suggest that MTHFR gene polymorphisms may play a vital role in genetic susceptibility to vitiligo. © 2014 British Association of Dermatologists.

  6. Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis.

    Science.gov (United States)

    Méndez, Andrea A E; Pena, Liliana B; Benavides, María P; Gallego, Susana M

    2016-12-01

    In the present study we evaluated the pre-treatment (priming) of Arabidopsis thaliana plants with sodium nitroprusside (SNP), a NO-donor, as an interesting approach for improving plant tolerance to cadmium stress. We focused on the cell redox balance and on the methionine sulfoxide reductases (MSR) family as a key component of such response. MSR catalyse the reversible oxidation of MetSO residues back to Met. Five MSRA genes and nine MSRB genes have been identified in A. thaliana, coding for proteins with different subcellular locations. After treating 20 days-old A. thaliana (Col 0) plants with 100 μM CdCl2, increased protein carbonylation in leaf tissue, lower chlorophyll content and higher levels of reactive oxygen species (ROS) in chloroplasts were detected, together with increased accumulation of all MSR transcripts evaluated. Further analysis showed reduction in guaiacol peroxidase activity (GPX) and increased catalase (CAT) activity, with no effect on ascorbate peroxidase (APX) activity. Pre-exposition of plants to 100 μM SNP before cadmium treatment restored redox balance; this seems to be linked to a better performance of antioxidant defenses. Our results indicate that NO priming may be acting as a modulator of plant antioxidant system by interfering in oxidative responses and by preventing up-regulation of MSR genes caused by metal exposure. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  7. Increasing prevalence of wildtypes in the dihydrofolate reductase gene of Plasmodium falciparum in an area with high levels of sulfadoxine/pyrimethamine resistance after introduction of treated bed nets

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Lemnge, Martha M; Rønn, Anita M

    2003-01-01

    In Magoda and Mpapayu villages in Tanzania, we have previously found comparable high prevalence of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) in vivo and of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes of P. falciparum respon...... than in Mpapayu in 2000. The impact of ITNs on the transmission intensity seems not only to affect the overall malaria morbidity, but may even facilitate restoration of susceptibility to antimalarial drugs....

  8. Elevated total plasma homocysteine and 667C{r_arrow}T mutation of the 5,10-methylenetetrahydrofolate reductase gene in thrombotic vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    De Franchis, R.; Sebastio, G.; Andria, G. [Universita Federico II, Naples (Italy)] [and others

    1996-07-01

    Moderate elevation of total plasma homocysteine (tHcy) has been reported as an independent risk factor for thrombotic vascular disease, a well-known multifactorial disorder. Possible genetic causes of elevated tHcy include defects of the sulfur-containing amino acids metabolism due to deficiencies of cystathionine {Beta}-synthase, of 5,10-methylenetetrahydrofolate reductase (MTHFR), and of the enzymes of cobalamin metabolism. An impaired activity of MTHFR due to a thermolabile form of the enzyme has been observed in {le}28% of hyperhomocysteinemic patients with premature vascular disease. More recently, the molecular basis of such enzymatic thermolability has been related to a common mutation of the MTHFR gene, causing a C-to-T substitution at nt 677 (677C{r_arrow}T). This mutation was found in 38% of unselected chromosomes from 57 French Canadian individuals. The homozygous state for the mutation was present in 12% of these subjects and correlated with significantly elevated tHcy. Preliminary evidence indicates that the frequency of homozygotes for the 677C{r_arrow}T mutation may vary significantly in populations from different geographic areas. 5 refs., 2 tabs.

  9. Ethnic variation of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate-reductase (MTHFR) gene in southwestern Mexico.

    Science.gov (United States)

    Antonio-Véjar, V; Del Moral-Hernández, O; Alarcón-Romero, L C; Flores-Alfaro, E; Leyva-Vázquez, M A; Hernández-Sotelo, D; Illades-Aguiar, B

    2014-09-29

    In this study, we examined the distribution of genotype and allele frequencies of the C677T and A1298C polymorphisms in the methylenetetrahydrofolate-reductase gene (MTHFR) in two ethnic groups in the State of Guerrero, Mexico, which were compared with those of the Mestizo population of the region. A comparative study was conducted on 455 women from two ethnic groups and a group of Mestizo women of the State of Guerrero, Mexico: 135 Nahuas, 124 Mixtecas, and 196 Mestizas. Genotyping of both polymorphisms were performed by using polymerase chain reaction-restriction fragment length polymorphism methods. We found that the 677TT genotype was more frequent in Nahua and Mixteca women compared to Mestiza women (P = 0.008), and the most prevalent genotype in both ethnic groups was the 1298AA genotype (P A1298C polymorphisms between the two ethnic groups and the Mestizo population of the State of Guerrero. In addition, we found strong differences with other ethnic groups in Mexico. These results could be useful for future studies investigating diseases related to folate metabolism, and could help the government to design specific nutrition programs for different ethnic groups.

  10. The C677T polymorphism of the methylenetetrahydrofolate reductase gene in Mexican mestizo neural-tube defect parents, control mestizo and native populations.

    Science.gov (United States)

    Dávalos, I P; Olivares, N; Castillo, M T; Cantú, J M; Ibarra, B; Sandoval, L; Morán, M C; Gallegos, M P; Chakraborty, R; Rivas, F

    2000-01-01

    The C677T mutation of the methylenetetrahydrofolate reductase (MTHFR) gene, associated with the thermolabile form of the enzyme, has reportedly been found to be increased in neural-tube defects (NTD), though this association is still unclear. A group of 107 mestizo parents of NTD children and five control populations: 101 mestizo (M), 50 Huichol (H), 38 Tarahumara (T), 21 Purepecha (P) and 20 Caucasian (C) individuals were typed for the MTHFR C677T variant by the PCR/RFLP (HinfI) method. Genotype frequencies were in agreement with the Hardy-Weinberg expectations in all six populations. Allele frequency (%) of the C677T variant was 45 in NTD, 44 in M, 56 in H, 36 in T, 57 in P, 35 in C. Pairwise inter-population comparisons of allele frequency disclosed a very similar distribution between NTD and M groups (exact test, P=0.92). Among controls, differences between M and individual native groups were NS (0.06Huichol and Purepecha natives, as compared with other groups world wide.

  11. Molecular cloning and characterization of Polygalacturonase-Inhibiting Protein and Cinnamoyl-Coa Reductase genes and their association with fruit storage conditions in blueberry (Vaccinium corymbosum)

    KAUST Repository

    Khraiwesh, Basel

    2013-05-13

    Blueberry is a widely grown and easily perishable fruit crop. An efficient post-harvest handling is critical, and for that purpose gene technology methods have been part of ongoing programmes to improve crops with high food values such as blueberry. Here we report the isolation, cloning, characterization and differential expression levels of two cDNAs encoding Polygalacturonase-Inhibitor Protein (PGIP) and Cinnamoyl-Coa Reductase (CCR) from blueberry fruits in relation to various storage conditions. The open reading frame of PGIP and CCR encodes a polypeptide of 329 and 347 amino acids, respectively. To assess changes in the expression of blueberry PGIP and CCR after harvest, a storage trial was initiated. The northern blots hybridization showed a clear differential expression level of PGIP and CCR between freshly harvested and stored fruits as well as between fruits stored under various storage conditions. Although the prospects of exploiting such a strategy for crop improvement are limited, the results provide further insight into the control of the quality over the storage period at the molecular level.

  12. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L..

    Directory of Open Access Journals (Sweden)

    Zongyong Tong

    Full Text Available Alfalfa (Medicago sativa L. is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs, such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  13. Reduced lignin content and altered lignin composition in the warm season forage grass Paspalum dilatatum by down-regulation of a Cinnamoyl CoA reductase gene.

    Science.gov (United States)

    Giordano, Andrea; Liu, Zhiqian; Panter, Stephen N; Dimech, Adam M; Shang, Yongjin; Wijesinghe, Hewage; Fulgueras, Karen; Ran, Yidong; Mouradov, Aidyn; Rochfort, Simone; Patron, Nicola J; Spangenberg, German C

    2014-06-01

    C4 grasses are favoured as forage crops in warm, humid climates. The use of C4 grasses in pastures is expected to increase because the tropical belt is widening due to global climate change. While the forage quality of Paspalum dilatatum (dallisgrass) is higher than that of other C4 forage grass species, digestibility of warm-season grasses is, in general, poor compared with most temperate grasses. The presence of thick-walled parenchyma bundle-sheath cells around the vascular bundles found in the C4 forage grasses are associated with the deposition of lignin polymers in cell walls. High lignin content correlates negatively with digestibility, which is further reduced by a high ratio of syringyl (S) to guaiacyl (G) lignin subunits. Cinnamoyl-CoA reductase (CCR) catalyses the conversion of cinnamoyl CoA to cinnemaldehyde in the monolignol biosynthetic pathway and is considered to be the first step in the lignin-specific branch of the phenylpropanoid pathway. We have isolated three putative CCR1 cDNAs from P. dilatatum and demonstrated that their spatio-temporal expression pattern correlates with the developmental profile of lignin deposition. Further, transgenic P. dilatatum plants were produced in which a sense-suppression gene cassette, delivered free of vector backbone and integrated separately to the selectable marker, reduced CCR1 transcript levels. This resulted in the reduction of lignin, largely attributable to a decrease in G lignin.

  14. Mutation of alkyl hydroperoxide reductase gene ahpC of Xanthomonas oryzae pv. oryzae affects hydrogen peroxide accumulation during the rice-pathogen interaction.

    Science.gov (United States)

    Li, Xin; Qiao, Jiaju; Yang, Lipeng; Li, Xinling; Qiao, Suyu; Pang, Xinyue; Tian, Fang; Chen, Huamin; He, Chenyang

    2014-10-01

    Hydrogen peroxide (H2O2) is usually generated by normal aerobic respiration of pathogens and by the host defense response during plant-pathogen interactions. In this study, histochemical localization of H2O2 accumulation in rice inoculated with the wild-type strain (PXO99(A)) and the gene deletion mutant (ΔahpC) of alkyl hydroperoxide reductase subunit C (AhpC) of Xanthomonas oryzae pv. oryzae (Xoo), the bacterial blight pathogen of rice, was analyzed. The ΔahpC mutant displayed a significant decrease in endogenous H2O2 accumulation which was induced by the compensatory increase in H2O2 scavenging activity. The change in the bacterial endogenous H2O2 level affected the total amount of H2O2 accumulation during the interaction with rice plants. These results suggested that Xoo contributes to H2O2 accumulation in rice in a compatible interaction, and pathogen-driving H2O2 is in association with cell collapse of rice. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Tong, Zongyong; Xie, Can; Ma, Lei; Liu, Liping; Jin, Yongsheng; Dong, Jiangli; Wang, Tao

    2014-01-01

    Alfalfa (Medicago sativa L.) is one of the most important forage crops used to feed livestock, such as cattle and sheep, and the sulfur amino acid (SAA) content of alfalfa is used as an index of its nutritional value. Aspartate kinase (AK) catalyzes the phosphorylation of aspartate to Asp-phosphate, the first step in the aspartate family biosynthesis pathway, and adenylylsulfate reductase (APR) catalyzes the conversion of activated sulfate to sulfite, providing reduced sulfur for the synthesis of cysteine, methionine, and other essential metabolites and secondary compounds. To reduce the feedback inhibition of other metabolites, we cloned bacterial AK and APR genes, modified AK, and introduced them into alfalfa. Compared to the wild-type alfalfa, the content of cysteine increased by 30% and that of methionine increased substantially by 60%. In addition, a substantial increase in the abundance of essential amino acids (EAAs), such as aspartate and lysine, was found. The results also indicated a close connection between amino acid metabolism and the tricarboxylic acid (TCA) cycle. The total amino acid content and the forage biomass tested showed no significant changes in the transgenic plants. This approach provides a new method for increasing SAAs and allows for the development of new genetically modified crops with enhanced nutritional value.

  16. An inverted repeat motif stabilizes binding of E2F and enhances transcription of the dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Wade, M; Blake, M C; Jambou, R C

    1995-01-01

    and viral genes. This element, 5'-TTTCGCGCCAAA-3', is comprised of two overlapping, oppositely oriented sites which match the consensus E2F site (5'-TTT(C/G)(C/G)CGC-3'). Recent work has shown that E2F binding activity is composed of at least six related cellular polypeptides which are capable of forming...

  17. THE ANALYSIS OF METHYLENETETRAHYDROFOLATE REDUCTASE GENE POLYMORPHISM IN THE PATIENTS WITH ARTERIAL HYPERTENSION IN THE REPUBLIC OF MORDOVIA

    Directory of Open Access Journals (Sweden)

    Lyudmila Goncharova

    2016-03-01

    Full Text Available Hypertension (HTN or HT is the main risk factor for cerebrovascular accidents and myocardial infarction, since it leads to imbalances during the vascular and thrombocytic part of hemostasis. In most cases, HTN is genetic in nature. Mutation of methylenetetrahydrofolate (MTHFR gene in positions C677T and A1298C is supposedly one of the major factors in evolvement of this medical condition. High percentage of patients with complicated hypertension persists in Republic of Mordovia, so the article provides data analysis of polymorphism of MTHFR gene in patients with primary hypertension of Mordvinian and Russian ethnicity residing in the Republic. Materials and Methods The study involved 113 patients (50,4 % – Mordvinian and 49,6 % – Russian nationalities with hypertension (stages II-III in classification of Society of cardiology of Russian Federation, year 2008, BP <140/90 mm Hg. Along with the traditional clinical and instrumental studies, the authors conducted identification of alleles of polymorphic markers by polymerase chain reaction method. Statistical analysis was performed with implementation of software packages “Statistica for Windows 6.0” (StatSoft, “SPSS” (version 14.0, “MS Excel XP” (Microsoft. The authors used χ2 in the process of con¬sideration of the frequencies of genotypes and alleles in individual groups of patients. Results Analysis of the distribution of genotypes of the MTHFR gene at position 677 and positions A1298C revealed the predominance of intermediate genotypes CT and AC in male and female patients with hypertension, with no correlation to nationality. Adverse CT genotype of MTHFR gene at position 677 is found in 20 % of patients with hypertension among Mordvinian males and 2,5 % – among hypertensive Russian females. Pathological CC genotype of MTHFR gene in the A1298C position was identified either in Mordvinian (from 2,3 % to 27 % and Russian (from 19,3 % to 33,7 % patients. Discussion and

  18. Role of methylenetetrahydrofolate reductase gene polymorphisms (C677T, A1298C, and G1793A) in the development of early onset vasculogenic erectile dysfunction.

    Science.gov (United States)

    Safarinejad, Mohammad Reza; Safarinejad, Shiva; Shafiei, Nayyer

    2010-08-01

    The methylenetetrahydrofolate reductase (MTHFR) gene plays a key role in the metabolism of folate and homocysteine (Hcy) and its mutations have been associated with high serum Hcy level. Elevated serum Hcy has been linked to impaired endothelial function and occlusive vascular disease. We studied the association among the different genotypes of all three MTHFR polymorphisms (C677T, A1298C, and G1793A) and the risk of early-onset vasculogenic erectile dysfunction (VED). We performed a case-control study of 114 men with early-onset VED and 228 age-matched controls. Genotyping of MTHFR gene polymorphisms was performed using polymerase chain reaction restriction fragment length polymorphism (PCR-RLFP) technique. We also measured plasma lipids, Hcy, folate, and vitamin B12 levels. Patients with early-onset VED had higher serum Hcy levels (12.29 ± 2.32 vs. 9.82 ± 2.35 μmol/L, p = 0.001) and higher prevalence of 677TT homozygocity compared to controls (15.8% vs. 11.4%, p = 0.01). Serum Hcy concentration was significantly higher in individuals with 677TT, 1298CC, and 1793GG genotypes. Subgroup analysis according to severity of ED (mild, moderate, and severe) showed that patients with severe VED had higher serum Hcy levels compared to patients with mild VED (13.48 ± 2.51 vs. 11.21 ± 2.32 μmol/L, p = 0.001). Odds ratio seems to demonstrate that individuals with the MTHFR 677TT genotype and the 677TT + 1298AC combined genotype had a 3.16- and 3.89-fold increased risk for developing VED, suggesting a possible association of MTHFR polymorphisms with the risk of early-onset VED. Copyright © 2010 IMSS. Published by Elsevier Inc. All rights reserved.

  19. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms resulting in suboptimal oocyte maturation: a discussion of folate status, neural tube defects, schizophrenia, and vasculopathy.

    Science.gov (United States)

    Jongbloet, Piet Hein; Verbeek, André Lm; den Heijer, Martin; Roeleveld, Nel

    2008-07-10

    Several conditions apparent at birth, e.g., neural tube defects (NTDs) and cardiac anomalies, are associated with polymorphisms in folate-related genes, such as the 677C --> T polymorphism of the methylenetetrahydrofolate reductase (MTHFR) gene. Similar associations have been established for several constitutional chronic diseases in adulthood, such as schizophrenia, cardiovascular diseases, dementia, and even neoplasias in different organ systems. This spectrum of developmental anomalies and constitutional diseases may be linked to high-risk conceptions related to preovulatory overripeness ovopathy (PrOO). Some developmental anomalies, such as NTDs, are to a large extent prevented by supplementation of folic acid before conception, but supplementation does not seem to prevent cardiovascular disease or cognitive decline. These diverging results can be elucidated by introduction of the PrOO concept, as MTHFR polymorphisms and inherent low folate levels induce both non-optimal maturation of the oocyte and unsuccessful DNA methylation and demethylation, i.e. epigenetic mutations. The PrOO concept is testable and predicts in a random population the following: (1) female carriers of specific genetic MTHFR variants exhibit more ovulatory disturbances and inherent subfecundity traits, (2) descendents from a carrier mother, when compared with those from a wild-type mother, are more frequently conceived in PrOO high-risk conditions and, thus, (3) disadvantaged in life expectancy. If so, some MTHFR polymorphisms represent a novel, genetically determined, PrOO high-risk conception category comparable to those which are environmentally and behaviorly influenced. These high-risk conditions may cause developmental anomalies and defective epigenetic reprogramming in progeny. The interaction between genetic and environmental factors is a plausible mechanism of multifactorial inheritance.

  20. Common Polymorphism A1298C in Methylenetetrahydrofolate Reductase Gene Is not a Risk Factor for Coronary Artery Disease in Selected Iranian Patients

    Directory of Open Access Journals (Sweden)

    Mojgan Mirakhori

    2007-08-01

    Full Text Available Background: Coronary artery disease (CAD is emerging as a major public health concern in most developing countries. During the past 10 years, the vast majority of over 100 case-control retrospective studies have shown that elevated plasma homocysteine level is a strong independent risk factor for coronary artery disease. Methylenetetrahydrofolate reductase (MTHFR is a key enzyme in folate and homocysteine metabolism. A second polymorphism, A1298C, in MTHFR gene, is reported to be associated with decreased enzyme activity and may give rise to elevated blood homocysteine level and increased risk of coronary artery disease. Methods: In the present study we used PCR-RFLP analysis to investigate the association between A1298C polymorphism and blood homocysteine level and the risk of CAD in 100 patients compared to 100 normal controls. Results: The frequency of mutated allele and genotype distribution showed no significant difference between patient and control groups. Although the elevated level in blood homocysteine were observed in Iranian CAD cases compared to the normal control, the A1298C polymorphism was not associated with increased CAD risk in studied population as supported by a P value>0.05 and chi-square equal to 0.697.Conclusion: An increased plasma homocysteine concentration confers an independent risk factor for CAD. Although A1298C polymorphism in MTHFR gene has effects on enzyme activity but our findings do not support a major role for this polymorphism in homocysteine metabolism and it can not be considered a major risk factor for coronary artery disease in a selected Iranian population.

  1. RNAi knock-downs support roles for the mucin-like (AeIMUC1) gene and short-chain dehydrogenase/reductase (SDR) gene in Aedes aegypti susceptibility to Plasmodium gallinaceum.

    Science.gov (United States)

    Berois, M; Romero-Severson, J; Severson, D W

    2012-03-01

    The mosquito midgut represents the first barrier encountered by the Plasmodium parasite (Haemosporida: Plasmodiidae) when it is ingested in blood from an infected vertebrate. Previous studies identified the Aedes aegypti (L.) (Diptera: Culicidae) mucin-like (AeIMUC1) and short-chain dehydrogenase/reductase (SDR) genes as midgut-expressed candidate genes influencing susceptibility to infection by Plasmodium gallinaceum (Brumpt). We used RNA inference (RNAi) by double-stranded RNA (dsRNA) injections to examine ookinete survival to the oocyst stage following individual gene knock-downs. Double-stranded RNA gene knock-downs were performed 3 days prior to P. gallinaceum infection and oocyst development was evaluated at 7 days post-infection. Mean numbers of parasites developing to the oocyst stage were significantly reduced by 52.3% in dsAeIMUC1-injected females and by 36.5% in dsSDR-injected females compared with females injected with a dsβ-gal control. The prevalence of infection was significantly reduced in dsAeIMUC1- and dsSDR-injected females compared with females injected with dsβ-gal; these reductions resulted in a two- and three-fold increase in the number of uninfected individuals, respectively. Overall, these results suggest that both AeIMUC1 and SDR play a role in Ae. aegypti vector competence to P. gallinaceum. © 2011 The Authors. Medical and Veterinary Entomology © 2011 The Royal Entomological Society.

  2. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim

    Energy Technology Data Exchange (ETDEWEB)

    Heaslet, Holly; Harris, Melissa; Fahnoe, Kelly; Sarver, Ronald; Putz, Henry; Chang, Jeanne; Subramanyam, Chakrapani; Barreiro, Gabriela; Miller, J. Richard; Pfizer

    2010-09-02

    Dihydrofolate reductase (DHFR) is the enzyme responsible for the NADPH-dependent reduction of 5,6-dihydrofolate to 5,6,7,8-tetrahydrofolate, an essential cofactor in the synthesis of purines, thymidylate, methionine, and other key metabolites. Because of its importance in multiple cellular functions, DHFR has been the subject of much research targeting the enzyme with anticancer, antibacterial, and antimicrobial agents. Clinically used compounds targeting DHFR include methotrexate for the treatment of cancer and diaminopyrimidines (DAPs) such as trimethoprim (TMP) for the treatment of bacterial infections. DAP inhibitors of DHFR have been used clinically for >30 years and resistance to these agents has become widespread. Methicillin-resistant Staphylococcus aureus (MRSA), the causative agent of many serious nosocomial and community acquired infections, and other gram-positive organisms can show resistance to DAPs through mutation of the chromosomal gene or acquisition of an alternative DHFR termed 'S1 DHFR.' To develop new therapies for health threats such as MRSA, it is important to understand the molecular basis of DAP resistance. Here, we report the crystal structure of the wild-type chromosomal DHFR from S. aureus in complex with NADPH and TMP. We have also solved the structure of the exogenous, TMP resistant S1 DHFR, apo and in complex with TMP. The structural and thermodynamic data point to important molecular differences between the two enzymes that lead to dramatically reduced affinity of DAPs to S1 DHFR. These differences in enzyme binding affinity translate into reduced antibacterial activity against strains of S. aureus that express S1 DHFR.

  3. Genetic Variation of Methylenetetrahydrofolate Reductase (MTHFR) and Thymidylate Synthase (TS) Genes Is Associated with Idiopathic Recurrent Implantation Failure.

    Science.gov (United States)

    Choi, Youngsok; Kim, Jung Oh; Shim, Sung Han; Lee, Yubin; Kim, Ji Hyang; Jeon, Young Joo; Ko, Jung Jae; Lee, Woo Sik; Kim, Nam Keun

    2016-01-01

    The one-carbon metabolism pathway disorder was important role in successful pregnancy. The MTHFR and TS protein were crucial factor in one-carbon metabolism. To investigate the association between recurrent implantation failure (RIF) and enzymes in the one-carbon metabolism pathway. A total of 120 women diagnosed with RIF and 125 control subjects were genotyped for MTHFR 677C>T, 1298A>C, TSER 2R/3R and TS 1494del/ins by a polymerase chain reaction-restriction fragment length polymorphism assay. According to the gene-gene combination analysis, the MTHFR 677/MTHFR 1298 (TT/AA) and MTHFR 677/TS 1494 (TT/6bp6bp) genetic combinations were associated with relatively higher risks [adjusted odds ratio (AOR), 2.764; 95% CI, 1.065-7.174; P = 0.037 and AOR, 3.186; 95% CI, 1.241-8.178; P = 0.016] in RIF patients compared to the CC/AA (MTHFR 677/MTHFR 1298) and TT/6bp6bp (MTHFR 677/TS 1494) combinations, respectively. The results suggested that the combined MTHFR 677/MTHFR 1298 genotype might be associated with increased risk of RIF. To the best of our knowledge, this study is the first to elucidate the potential association of MTHFR, TS and TSER polymorphisms with RIF risk in Korean patients.

  4. Polymorphisms of the methylenetetrahydrofolate reductase gene (C677T and A1298C) in nulliparous women complicated with preeclampsia.

    Science.gov (United States)

    Chedraui, Peter; Salazar-Pousada, Danny; Villao, Alejandro; Escobar, Gustavo S; Ramirez, Cecibel; Hidalgo, Luis; Pérez-López, Faustino R; Genazzani, Andrea; Simoncini, Tommaso

    2014-05-01

    To determine the prevalence of C677T and A1298C Single-nucleotide polymorphisms (SNPs) of the MTHFR gene in nulliparous women complicated with preeclampsia (PE). One hundred fifty gestations complicated with PE and their corresponding controls without the disease were recruited for the genotyping of C677T and A1298C polymorphisms of the MTHFR gene using restriction fragment length polymorphism polymerase chain reaction. Secondarily, homocysteine (HCy) plasma levels were measured in preeclamptic women displaying the CC genotype of the A1298C polymorphism (homozygous) and compared to HCy levels determined among controls with the normal AA genotype for the A1298C variant. Only the mutant CC genotype of the A1298C polymorphism was associated to higher risk of presenting PE, as frequency of this genotype was significantly higher among cases than controls (15.3% versus 0.7%, p A1298C polymorphism as compared to none among preeclamptics with a lower neck circumference (p = 0.0001). Women with the mutant CC A1298C SNP displayed higher plasma HCy levels as compared to controls with normal AA A1298C genotype (8.4 ± 2.6 versus 7.5 ± 2.7 mmoL/L p = 0.04). Prevalence of the CC mutant genotype of the A1298C polymorphism was higher among PE women. This mutation among PE women was related to increased neck circumference and higher HCy levels. Future research should aim at linking these gestational findings with obesity and cardiovascular risk.

  5. Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms in oral squamous cell carcinoma in south-east Iran.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Saravani, Shirin; Garme, Yasamn; Khosravi, Arezoo; Bazi, Ali; Motazedian, Jamaledin

    2016-02-01

    Methylenetetrahydrofolate reductase (MTHFR) gene encodes an essential enzyme involving in folate metabolism. Due to the role of folate in DNA integrity, polymorphisms of MTHFR are interesting targets for cancer risk studies. Our goal was to evaluate the prevalence of MTHFR C677T and A1298T single nucleotide polymorphisms in oral squamous cell carcinoma (OSCC). The study was conducted on 57 OSCC patients diagnosed within 2004-2013 along with 62 non-OSCC subjects. DNA was extracted by standard kit protocol. Subsequently, tetra-ARMS (amplification refractory mutation system)-PCR was applied to identify the selected polymorphisms. Data showed that CT and TT genotypes of C677T polymorphisms significantly increased the risk of OSCC [odds ratio (OR) = 2.2, 95% CI: 1-5, P = 0.04]. Although allelic distribution was not significantly different between patients and controls, T allele of C677T polymorphism was closely associated with the risk of OSCC (OR = 2.5; 95% CI: 0.9-6.9; P = 0.07). Results indicated that C677T/A1298C: CC/AC and C677T/A1298C: CC/AA haplotypes were the most common combinations in OSCC patient and control groups, respectively. (OR = 1.5, 95% CI: 0.6-3.8, P > 0.05). Our results highlight the possible impact of C677T polymorphism in increasing the risk of OSCC development. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: effect on methotrexate-related toxicity in adult acute lymphoblastic leukaemia.

    Science.gov (United States)

    Eissa, Deena Samir; Ahmed, Tamer Mohamed

    2013-03-01

    Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme involved in folate metabolism. Two polymorphisms, C677T and A1298C, were described leading to reduced enzyme activity. Methotrexate (MTX) is an antifolate agent of consolidation and maintenance therapy of acute lymphoblastic leukaemia (ALL). Despite its clinical success, MTX can be associated with serious toxicities resulting in treatment interruption or discontinuation, impacting disease outcome. There is evidence that MTX toxicity can be affected by polymorphisms in genes encoding for drug-metabolizing enzymes such as MTHFR. Therefore, we aimed to investigate the influence of MTHFR C677T and A1298C polymorphisms on the frequency of MTX-related toxicity, disease outcome and patients' survival. MTHFR polymorphisms were assessed in 50 adult patients with de novo ALL using real-time PCR. Patients were followed-up for the development of haematologic and/or nonhaematologic toxicity and assessment of clinical outcome. Frequency of C677T polymorphisms was 42% for TT, 24% for CT and 34% for CC; A1298C polymorphisms were 28, 6 and 66% for CC, AC and AA, respectively. MTX therapy was significantly associated with neutropaenia, hepatic and gastrointestinal toxicities, unfavourable response at day 14 of induction therapy, increased relapse and mortality rates and shorter survival in patients with 677 TT genotype than in those with CC and CT, whereas 1298 CC genotype patients had lower frequency of neutropaenia, hepatic toxicity and relapse than in those with AA and AC. Our study suggests MTHFR polymorphism as an attractive predictor of MTX-related toxicity in adult ALL, considering it a potential prognostic factor influencing disease outcome.

  7. A homozygous nonsense mutation (c.214C->A) in the biliverdin reductase alpha gene (BLVRA) results in accumulation of biliverdin during episodes of cholestasis.

    Science.gov (United States)

    Nytofte, Nikolaj S; Serrano, Maria A; Monte, Maria J; Gonzalez-Sanchez, Ester; Tumer, Zeynep; Ladefoged, Karin; Briz, Oscar; Marin, Jose J G

    2011-04-01

    Green jaundice is a rare finding usually associated with end-stage liver disease. OBJECTIVE The authors investigated two unrelated Inuit women from different geographical areas in Greenland who had episodes of green jaundice associated with biliary obstruction. The crises were accompanied by increased biochemical markers of cholestasis, together with absent or moderate hyperbilirubinaemia. In contrast, high-performance liquid chromatography tandem mass spectrometry showed hypercholanaemia and high concentrations of biliverdin IXα in serum, urine, bile and milk. Hyperbiliverdinaemia disappeared after surgical correction of the cholestasis. Analysis of the coding sequence of the biliverdin reductase alpha (BVRα) gene (BLVRA) detected three single-nucleotide polymorphisms: c.90G→A, c.214C→A and c.743A→C, which result in p.Ala3Thr, p.Ser44X and p.Gly220Gly, respectively. With the use of TaqMan probes, homozygosity for c.214C→A was found in both patients. Both parents of one of these patients were heterozygous for the inactivating mutation. Her brother was homozygous for normal alleles. Although her sister was also homozygous for the c.214C→A mutation, she had never had hyperbiliverdinaemia or cholestasis. With the use of human liver RNA, the BVRα coding sequence was cloned, and the variant containing c.214C→A was generated by site-directed mutagenesis. Both proteins were expressed in human hepatoma liver cells and Xenopus laevis oocytes. Immunoblotting, immunofluorescence and functional assays of BVRα activity revealed that the mutated sequence generates a truncated protein with no catalytic activity. This is the first report of a homozygous BLVRA inactivating mutation indicating that the complete absence of BVRα activity is a non-lethal condition, the most evident phenotypic characteristic of which is the appearance of green jaundice accompanying cholestasis episodes.

  8. Molecular structure and functional characterization of the gamma-interferon-inducible lysosomal thiol reductase (GILT) gene in largemouth bass (Microptenus salmoides).

    Science.gov (United States)

    Yang, Qian; Zhang, Jiaxin; Hu, Lingling; Lu, Jia; Sang, Ming; Zhang, Shuangquan

    2015-12-01

    The enzyme gamma-interferon-inducible lysosomal thiol reductase (GILT) plays a role in facilitating the processing and presentation of major histocompatibility complex (MHC) class II-restricted antigens and is also involved in MHC I-restricted antigens in adaptive immunity catalyzing disulfide bond reduction in mammals. In this study, we cloned a GILT gene homolog from largemouth bass (designated 'lbGILT'), a freshwater fish belonging to Perciformes and known for its nutritive value. We obtained the full-length cDNA of lbGILT by reverse transcription PCR and rapid amplification of cDNA ends. This cDNA is comprised of a 5'-untranslated region (UTR) of 87 bp, a 3'-UTR of 189 bp, and an open reading frame of 771 bp. It encodes a protein of 256 amino acids with a deduced molecular weight of 28.548 kDa and a predicted isoelectric point of 5.62. The deduced protein possesses the typical structural features of known GILTs, including an active site motif, two potential N-linked glycosylation sites, a GILT signature sequence, and six conserved cysteines. Tissue-specific expression of lbGILT was shown by real-time quantitative PCR. The expression of lbGILT mRNA was obviously up regulated in spleen and kidney after induction with lipopolysaccharide. Recombinant lbGILT was produced as an inclusion body with a His6 tag in ArcticExpress (DE3), and the protein was then washed, solubilized, and refolded. The refolded lbGILT showed reduction activity against an IgG substrate. These results suggest that lbGILT plays a role in innate immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene Ala222Val and susceptibility to ovary cancer: a systematic review and meta-analysis.

    Science.gov (United States)

    Pan, Xinwei; Lu, Yan; Long, Ying; Yao, Desheng

    2014-03-01

    Many studies have reported the role of methylenetetrahydrofolate reductase (MTHFR) gene Ala222Val polymorphism with ovary cancer risk, but the results remained controversial. To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between MTHFR Ala222Val polymorphism and ovary cancer risk. A total of 8 studies including 3,723 cases and 4,001 controls were also involved in this meta-analysis. When all the eligible studies were pooled into this meta-analysis, no significant association between ovary cancer risk and MTHFR Ala222Val polymorphism was found in all genetic models [codominant model: OR = 0.980, 95% CI = 0.756-1.270, P h = 0.088, P = 0.877; dominant model: OR = 1.022, 95% CI = 0.864-1.208, P h = 0.033, P = 0.803; recessive model: OR = 1.050, 95% CI = 0.803-1.373, P h = 0.032, P = 0.723; allele comparison model: OR = 1.028, 95% CI = 0.898-1.178, P h = 0.012, P = 0.685]. In the stratified analysis by ethnicity, no evidence of any associations of this polymorphism with ovary cancer was found in the Caucasian populations. Our meta-analysis supports that the MTHFR Ala222Val polymorphism is not contributed to the risk of ovary cancer from currently available evidence.

  10. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Alyson M Auliff

    Full Text Available Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N and quadruple mutant (57L/58R/61M/117T pvdhfr-ts alleles into the P. falciparum genome. The majority (81% of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.

  11. Functional analysis of Plasmodium vivax dihydrofolate reductase-thymidylate synthase genes through stable transformation of Plasmodium falciparum.

    Science.gov (United States)

    Auliff, Alyson M; Balu, Bharath; Chen, Nanhua; O'Neil, Michael T; Cheng, Qin; Adams, John H

    2012-01-01

    Mechanisms of drug resistance in Plasmodium vivax have been difficult to study partially because of the difficulties in culturing the parasite in vitro. This hampers monitoring drug resistance and research to develop or evaluate new drugs. There is an urgent need for a novel method to study mechanisms of P. vivax drug resistance. In this paper we report the development and application of the first Plasmodium falciparum expression system to stably express P. vivax dhfr-ts alleles. We used the piggyBac transposition system for the rapid integration of wild-type, single mutant (117N) and quadruple mutant (57L/58R/61M/117T) pvdhfr-ts alleles into the P. falciparum genome. The majority (81%) of the integrations occurred in non-coding regions of the genome; however, the levels of pvdhfr transcription driven by the P. falciparum dhfr promoter were not different between integrants of non-coding and coding regions. The integrated quadruple pvdhfr mutant allele was much less susceptible to antifolates than the wild-type and single mutant pvdhfr alleles. The resistance phenotype was stable without drug pressure. All the integrated clones were susceptible to the novel antifolate JPC-2067. Therefore, the piggyBac expression system provides a novel and important tool to investigate drug resistance mechanisms and gene functions in P. vivax.

  12. Steroid 5-alpha-reductase type 2 (SRD5A2) gene V89L polymorphism and hypospadias risk: A meta-analysis.

    Science.gov (United States)

    Zhang, K; Li, Y; Mao, Y; Ma, M

    2017-06-28

    Hypospadias is a common congenital malformation in males, in which the urethral orifice is found on the ventral side of the penis as a result of incomplete fusion of urethral folds. The etiology of hypospadias is poorly understood, and may be multifactorial, including genetic, endocrine and environmental factors. The steroid 5-alpha-reductase type 2 (SRD5A2) gene, which is mainly expressed in the ventral side of the urethra in the process of male genital development, plays an important role in urethral shaping. To investigate, with database searches of related published papers, whether SRD5A2 gene V89L polymorphism has an association with hypospadias risk. The following databases were searched for relevant papers, and all published case-control studies of hypospadias were used to perform a meta-analysis: PubMed, Embase, Springer Link, Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang, and Weipu. A quality assessment was performed using the Newcastle-Ottawa scale of a case-control study. To assess the strength of the association under various genetic models, odds ratio (OR) and its 95% confidence interval (CI) were calculated using fixed-effect or random-effects model according to the heterogeneity. Overall and stratified subgroup analyses, including ethnicity, source of controls, sample for DNA extraction, and hypospadias classification, were performed. All data were analyzed using Review Manager 5.3. This analysis included six eligible case-control studies with 1130 cases and 1279 controls. Overall, there was a statistically significant association between hypospadias risk and V89L polymorphism for allele contrast (C vs G: OR 1.91, 95% CI 1.13-3.23), P = 0.02), codominant model (CC vs GG: OR 2.97, 95% CI 1.25-7.04, P = 0.01; GC vs GG: OR 2.36, 95% CI 1.35-4.13, P = 0.003), dominant model (GC + CC vs GG: OR 2.46, 95% CI 1.28-4.72, P = 0.007), and recessive model (CC vs GC + GG: OR 1.91, 95% CI 1.00-3.66, P = 0.05). Moreover

  13. Common Mutations of the Methylenetetrahydrofolate Reductase (MTHFR Gene in Non-Syndromic Cleft Lips and Palates Children in North-West of Iran

    Directory of Open Access Journals (Sweden)

    Shahin Abdollahi-Fakhim

    2015-01-01

    Full Text Available Introduction: Cleft lips and cleft palates are common congenital abnormalities in children. Various chromosomal loci have been suggested to be responsible the development of these abnormalities. The present study was carried out to investigate the association between the suspected genes (methylenetetrahydrofolate reductase [MTHFR] A1298C and C677T that might contribute into the etiology of these disorders through application of molecular methods.   Materials and Methods: This cross-sectional and explanatory study was carried out on a study population of 65 affected children, 130 respective parents and 50 healthy individuals between 2009 and 2012 at Tabriz University of Medical Sciences, IR Iran. After DNA extraction, amplification refractory mutation system–polymerase chain reaction (ARMS-PCR and restriction fragment length polymorphism (RFLP-PCR were used respectively to investigate the C677T and A1298C mutations for the MTHFR gene.   Results: There was a significant difference in the rates of the C677T mutation when affected patients and their fathers were compared with the control group (odds ratio [OR]=0.44 (OR=0.64. However, there was no significant difference observed in the rate of this mutation between the patients’ mothers and the control group (OR=1.35. In addition, the abnormality rate was higher in patients with the A1298C mutation and their parents, when compared with the control group. This abnormality rate was higher for the affected children and their fathers in comparison with their mothers (Fathers, OR=0.26; Mothers, OR=0.65; Children, OR=0.55. No significant difference was seen in the rate of the polymorphism C677T in its CC, when the affected children and their parents were compared with the control group. However, there was a significant difference in the A1298C mutation.   Conclusion:  An association was seen between the A1298C mutation and cleft lip and cleft palate abnormalities in Iran. However, there seems to be

  14. The effect of aluminium-stress and exogenous spermidine on chlorophyll degradation, glutathione reductase activity and the photosystem II D1 protein gene (psbA) transcript level in lichen Xanthoria parietina.

    Science.gov (United States)

    Sen, Gulseren; Eryilmaz, Isil Ezgi; Ozakca, Dilek

    2014-02-01

    In this study, the effects of short-term aluminium toxicity and the application of spermidine on the lichen Xanthoria parietina were investigated at the physiological and transcriptional levels. Our results suggest that aluminium stress leads to physiological processes in a dose-dependent manner through differences in lipid peroxidation rate, chlorophyll content and glutathione reductase (EC 1.6.4.2) activity in aluminium and spermidine treated samples. The expression of the photosystem II D1 protein (psbA) gene was quantified using semi-quantitative RT-PCR. Increased glutathione reductase activity and psbA mRNA transcript levels were observed in the X. parietina thalli that were treated with spermidine before aluminium-stress. The results showed that the application of spermidine could mitigate aluminium-induced lipid peroxidation and chlorophyll degradation on lichen X. parietina thalli through an increase in psbA transcript levels and activity of glutathione reductase (GR) enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. CLINICAL SIGNIFICANCE OF ANTIPHOSPHOLIPID ANTIBODIES AND GENE MUTATIONS IN HEMOSTASIS OF CHILDREN WITH SYSTEMIC LUPUS ERYTHEMATOSUS AND JUVENILE DERMATOMYOSITIS

    Directory of Open Access Journals (Sweden)

    O.A. Solntseva

    2006-01-01

    Full Text Available Thrombophilia in children with diffuse connective tissue disorders as systemic lupus erythematosus (SLE and juvenile dermatomyositis (JDM could arise from various causes including peripherial blood circulation of antiphospholipid antibodies (APH and genetic mutations in the system of hemostasis. Thrombosis is a serious and prognostically unfavorable complication that has negative impact on the underlying disease course. The study included 96 children, 65 of them had diagnosed SLE and the other 31 had JDM. The Elisa method was used to detect antiphospholipid antibodies, coagulation method was used to detect lupus anticoagulant (LAC and antibodies to cardiolipins (anticl, ?2:glycoprotein 1 (anti ? 2 gp 1 and prothrombin (APT. The PCR method (DNA diagnostics was used to detect DNA mutations as factor resistance to of activated protein c (Leiden 5,10 methylen tetrahydrofolate reductase (MTHFR gene polymorphism. The incidence of APL antibodies was registered in 61.5% patients with SLE and in 32.2% of patients with JDM. Ac ligg, anti ?2 gp 1 Igg were clinically significant in thrombotic events in patients with SLE and JDM, and so was LAC in patients with SLE. The prevalence of the hemostasis system mutations is concordant with reported data. Conclusion thrombophilia is frequently associated with APH antibodies or combination of APH antibodies with genetic abnormalities. Sole genetic mutations are salient in patients with JDM.Key words: thrombophilia, systemic lupus erythematosus, juvenile dermatomyositis, antiphospholipid antibodies, lupus anticoagulant, leiden, prothrombin, methylentet rahydrofolate reductase.

  16. Expression of the tetrahydrofolate-dependent nitric oxide synthase from the green alga Ostreococcus tauri increases tolerance to abiotic stresses and influences stomatal development in Arabidopsis.

    Science.gov (United States)

    Foresi, Noelia; Mayta, Martín L; Lodeyro, Anabella F; Scuffi, Denise; Correa-Aragunde, Natalia; García-Mata, Carlos; Casalongué, Claudia; Carrillo, Néstor; Lamattina, Lorenzo

    2015-06-01

    Nitric oxide (NO) is a signaling molecule with diverse biological functions in plants. NO plays a crucial role in growth and development, from germination to senescence, and is also involved in plant responses to biotic and abiotic stresses. In animals, NO is synthesized by well-described nitric oxide synthase (NOS) enzymes. NOS activity has also been detected in higher plants, but no gene encoding an NOS protein, or the enzymes required for synthesis of tetrahydrobiopterin, an essential cofactor of mammalian NOS activity, have been identified so far. Recently, an NOS gene from the unicellular marine alga Ostreococcus tauri (OtNOS) has been discovered and characterized. Arabidopsis thaliana plants were transformed with OtNOS under the control of the inducible short promoter fragment (SPF) of the sunflower (Helianthus annuus) Hahb-4 gene, which responds to abiotic stresses and abscisic acid. Transgenic plants expressing OtNOS accumulated higher NO concentrations compared with siblings transformed with the empty vector, and displayed enhanced salt, drought and oxidative stress tolerance. Moreover, transgenic OtNOS lines exhibited increased stomatal development compared with plants transformed with the empty vector. Both in vitro and in vivo experiments indicate that OtNOS, unlike mammalian NOS, efficiently uses tetrahydrofolate as a cofactor in Arabidopsis plants. The modulation of NO production to alleviate abiotic stress disturbances in higher plants highlights the potential of genetic manipulation to influence NO metabolism as a tool to improve plant fitness under adverse growth conditions. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  17. Nitrous oxide reductase genes (nosZ) of denitrifying populations in soil and the earthworm gut are phylogenetically similar

    DEFF Research Database (Denmark)

    Horn, Marcus A.; Drake, Harold L.; Schramm, Andreas

    2006-01-01

    -derived sequences, or were related to N2O reductases of the genera Bradyrhizobium, Brucella, Dechloromonas, Flavobacterium, Pseudomonas, Ralstonia, and Sinorhizobium. Although the numbers of estimators for genotype richness of sequence data from the gut were higher than those of soil, only one gut-derived nos...

  18. The A1298C Methylenetetrahydrofolate Reductase Gene Variant as a Susceptibility Gene for Non-Syndromic Conotruncal Heart Defects in an Indian Population.

    Science.gov (United States)

    Koshy, Teena; Venkatesan, Vettriselvi; Perumal, Venkatachalam; Hegde, Sridevi; Paul, Solomon Franklin Durairaj

    2015-10-01

    Conotruncal heart defects (CTHDS) are a subgroup of congenital heart malformations that are considered to be a folate-sensitive birth defect. It has been hypothesized that polymorphisms in genes that code for key enzymes in the folate pathway may alter enzyme activity, leading to disruptions in folate metabolism and thus may influence the risk of such heart defects. This study was designed to investigate the association of six selected folate-metabolizing gene polymorphisms with the risk of non-syndromic CTHDs in an Indian population. This was a case-control study involving 96 cases of CTHDs and 100 control samples, ranging in age from birth to 18 years. Genotyping using Sanger sequencing was performed for six single nucleotide polymorphisms of genes involved in folate metabolism. Logistic regression analyses revealed that for the 5,10-methylenetetrahydrofolate (MTHFR) A1298C polymorphism, the CC variant homozygote genotype was associated with a significantly increased risk of CTHDs. The results of this study support an association between the inherited MTHFR A1298C genotype and the risk of CTHDs in an Indian population.

  19. Development of a transformation system for Penicillium brevicompactum based on the Fusarium oxysporum nitrate reductase gene Desenvolvimento de um sistema de transformação para Penicillium brevicompactum baseado no gene da nitrato redutase de Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Maurílio Antônio Varavallo

    2005-06-01

    Full Text Available Penicillium brevicompactum is a filamentous fungus that presents a potential for industrial use due its efficient pectinase production. A heterologous transformation system was developed for P. brevicompactum based on the complementation of a nitrate reductase mutant. Nitrate reductase mutants were obtained by resistance to chlorate in a rate of 23.24% when compared to other mutations that lead to the chlorate resistance. One mutant named 4457-18X was chosen for the transformation experiments with the pNH24 vector containing de Fusarium oxysporum nitrate reductase gene. A frequency of approximately 3 transformants/µg DNA was obtained using the circular vector pNH24. This frequency was multiplied about 10 fold using the linearized vector with the Xba I restriction enzyme. Southern analysis of the transformants showed a tendency of the linearized vector to diminish the number of integrations compared to the use of the circular vector. The integration was random and stable in the analyzed transformants. The establishment of a transformation system for P. brevicompactum is fundamental for genetic manipulation of this microorganism.Penicillium brevicompactum é um fungo filamentoso que apresenta um potencial para a aplicação industrial devido a sua eficiente produção de enzimas do complexo pectinolítico. Neste trabalho foi desenvolvido um sistema de transformação heterólogo para P. brevicompactum baseado na complementação de um mutante nitrato redutase. Mutantes nitrato redutase foram obtidos pela resistência ao clorato de sódio em uma taxa de 23,24%. O mutante denominado 4457-18X foi escolhido para os experimentos de transformação com o vetor pNH24, que contém o gene da nitrato redutase de Fusarium oxysporum. Uma freqüência de cerca de 3 transformantes/mg de DNA foi obtida utilizando-se o vetor pNH24 na forma circular e um aumento de cerca de 10 vezes nessa freqüência foi alcançado com a utilização desse vetor linearizado com

  20. Quinone Reductase 2 Is a Catechol Quinone Reductase

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao (NYMEDCO)

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  1. Cloning and expression analysis of dihydroxyflavonol 4-reductase ...

    African Journals Online (AJOL)

    Dihydroflavonol 4-reductase (DFR) gene is a key gene of anthocyanins biosynthesis pathway, which represent an importance pathway for orchid flower. In this study, cloning and expression analysis of DFR gene in Ascocenda spp. were carried out. Nucleotide analysis revealed that the Ascocenda DFR gene was 1,056 bp ...

  2. Polymorphism in the Methylenetetrahydrofolate Reductase and Thymidylate Synthase Gene Predicts for Response to Fluorouracil-based Chemotherapy in Advanced Gastric Cancer Patients

    Directory of Open Access Journals (Sweden)

    Jianwei Lu

    2013-03-01

    Full Text Available Objective: Fluorouracil (5-FU is widely used in the treatment of gastric cancer. Methylenetetrahydrofolate reductase (MTHFR and thymidylate synthetase (TS are important targets of many antimetabolites, including 5-FU. The relationship between polymorphism in the MTHFR (C677T, A1298C and TS (5`-TUR, 3`-UTR genotypes and sensitivity of gastric cancer to 5-FU-based chemotherapy is investigated in the present study. Methods: 173 patients with advanced gastric cancer were analyzed. All patients were treated with 5-FU-based chemotherapy (FOLFOX, FP and DCF regimen. DNA from peripheral blood leukocytes was obtained before the treatment. All genotypes were detected by PCR-RFLP. 12 germline polymorphisms within 2 genes were analyzed. The genotypes of MTHFR C677T, A1298C and TS 3`-TUR were analyzed in 173 patients while TS 5`-TUR in 135 patients. Results: The overall response rate (RR was 35.8%. The RR of the DCF regimen group was significantly higher than that of the FP and FOLFOX regimen groups (55.8% vs. 27.1%, 31.1%; P=0.006. The RR of the MTHFR C677T T/T genotype was significantly higher than that of the C/ C and C/T genotypes (73.3% vs. 28.0%; P=0.000. In MTHFR A1298C, a higher RR was observed in A/A genotype compared with the C/C and A/C genotypes (41.8% vs. 21.6%, P=0.011. The RR of -6/-6 bp and -6/+6 bp genotypes in TS 3`UTR was significantly higher than that of +6/+6 bp genotype (40.3% vs. 17.6%, P=0.014. There was no difference in RR according to TS 5`UTR polymorphism (2R/2R and 2R/3R: 41.7% vs. 3R/3R: 36.8%, P=0.487. The RR of MTHFR C677T T/T genotypes in FOLFOX or FP regimens was significantly higher than that of C/C and C/T genotypes (P=0.008, P=0.000 while no difference in DCF regimen. The RR of DCF regimen wassignificantly higher than that of FOLFOX and FP regimens in C/T and C/C genotypes (P=0.000. The MTHFR C677T T/T genotypes had a significantly higher incidence of grade 3/4 emesis (66.7% and stomatitis (30.0% than patients with C/T or

  3. Expression of 3-hydroxy-3-methylglutaryl-CoA reductase, p-hydroxybenzoate-m-geranyltransferase and genes of phenylpropanoid pathway exhibits positive correlation with shikonins content in arnebia [Arnebia euchroma (Royle Johnston

    Directory of Open Access Journals (Sweden)

    Sharma Madhu

    2010-11-01

    Full Text Available Abstract Background Geranyl pyrophosphate (GPP and p-hydroxybenzoate (PHB are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA and/or 2-C-methyl-D-erythritol 4-phosphate (MEP pathway(s, depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB. Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. Results A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes, PP pathway (three genes, and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. Conclusion A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR and AePGT suggested critical role played by these genes in shikonins

  4. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    Science.gov (United States)

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    Pinus densiflora Siebold et Zucc. is the major green canopy species in the mountainous area of Korea. To assess the response of resin acid biosynthetic genes to mechanical and chemical stimuli, we cloned cDNAs of genes encoding enzymes involved in the 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway (1-deoxy-d-xylulose 5-phosphate synthase (PdDXS), 1-deoxy-d-xylulose 5-phosphate reductoisomerase (PdDXR) and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (PdHDR)) by the rapid amplification of cDNA ends (RACE) technique. In addition, we cloned the gene encoding abietadiene synthase (PdABS) as a marker for the site of pine resin biosynthesis. PdHDR and PdDXS occurred as two gene families. In the phylogenetic trees, PdDXSs, PdDXR and PdHDRs each formed a separate clade from their respective angiosperm homologs. PdDXS2, PdHDR2 and PdDXR were most actively transcribed in stem wood, whereas PdABS was specifically transcribed. The abundance of PdDXS2 transcripts in wood in the resting state was generally 50-fold higher than the abundance of PdDXS1 transcripts, and PdHDR2 transcripts were more abundant by an order of magnitude in wood than in other tissues, with the ratio of PdHDR2 to PdHDR1 transcripts in wood being about 1. Application of 1 mM methyl jasmonate (MeJA) selectively enhanced the transcript levels of PdDXS2 and PdHDR2 in wood. The ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 reached 900 and 20, respectively, on the second day after MeJA treatment, whereas the transcript level of PdABS increased twofold by 3 days after MeJA treatment. Wounding of the stem differentially enhanced the transcript ratios of PdDXS2 to PdDXS1 and PdHDR2 to PdHDR1 to 300 and 70, respectively. The increase in the transcript levels of the MEP pathway genes in response to wounding was accompanied by two orders of magnitude increase in PdABS transcripts. These observations indicated that resin acid biosynthesis activity, represented by PdABS transcription, was correlated

  5. Ageratum conyzoides L. inhibits 5-alpha-reductase gene expression in human prostate cells and reduces symptoms of benign prostatic hypertrophy in otherwise healthy men in a double blind randomized placebo controlled clinical study.

    Science.gov (United States)

    Detering, Matthew; Steels, Elizabeth; Koyyalamudi, Sundar Rao; Allifranchini, Elena; Bocchietto, Elena; Vitetta, Luis

    2017-10-19

    A double-blind, randomized, placebo-controlled clinical trial assessed the efficacy and safety of Ageratum conyzoides in treating benign prostatic hypertrophy (BPH). In this study, 109 men with medically diagnosed BPH, aged 41-76 years, were administered the investigational product, A. conyzoides extract at a dose of 250 mg/d or placebo, q.d. for 12 weeks. The primary outcome measures were the International Prostate Symptom Score (IPSS), daily urinary frequency and safety evaluations. The secondary outcome measures were testosterone, dihydrotestosterone, oestradiol, sex hormone binding globulin (SHBG), Dehydroepiandrosterone sulfate (DHEA-S) and cortisol levels, and prostate specific antigen (PSA), lipids, blood glucose, the Aging Male's Symptom (AMS) Score and sexual function assessed by Derogatis Interview for Sexual Functioning-Self Report (DISF-SR). The effect of A. conyzoides L extract on gene expression of 5-alpha-reductase in human prostate cells was also investigated to elucidate a potential mechanism of action. The clinical study, showed a significant reduction in total IPSS score (p prostate epithelial cells. The overall results indicate that A. conyzoides may be an effective treatment for reducing symptoms of BPH in healthy men, in part, through inhibition of 5-alpha-reductase enzyme activity. © 2017 BioFactors, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  6. Mutation for nonsyndromic mental retardation in the trans-2-enoyl-CoA reductase TER gene involved in fatty acid elongation impairs the enzyme activity and stability, leading to change in sphingolipid profile.

    Science.gov (United States)

    Abe, Kensuke; Ohno, Yusuke; Sassa, Takayuki; Taguchi, Ryo; Çalışkan, Minal; Ober, Carole; Kihara, Akio

    2013-12-20

    Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TER(P182L/P182L) B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TER(P182L/P182L) B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.

  7. Stereoselective synthesis of (R)-phenylephrine using recombinant Escherichia coli cells expressing a novel short-chain dehydrogenase/reductase gene from Serratia marcescens BCRC 10948.

    Science.gov (United States)

    Peng, Guan-Jhih; Kuan, Yi-Chia; Chou, Hsiao-Yi; Fu, Tze-Kai; Lin, Jia-Shin; Hsu, Wen-Hwei; Yang, Ming-Te

    2014-01-20

    (R)-Phenylephrine [(R)-PE] is an α1-adrenergic receptor agonist and is widely used as a nasal decongestant to treat the common cold without the side effects of other ephedrine adrenergic drugs. We identified a short-chain dehydrogenase/reductase (SM_SDR) from Serratia marcescens BCRC 10948 that was able to convert 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) into (R)-PE. The SM_SDR used NADPH and NADH as cofactors with specific activities of 17.35±0.71 and 5.57±0.07mU/mg protein, respectively, at 30°C and pH 7.0, thereby indicating that this enzyme could be categorized as an NADPH-preferring short-chain dehydrogenase/reductase. Escherichia coli strain BL21 (DE3) expressing SM_SDR could convert HPMAE into (R)-PE with more than 99% enantiomeric excess. The productivity and conversion yield were 0.57mmolPE/lh and 51.06%, respectively, using 10mM HPMAE. Fructose was the most effective carbon source for the conversion of HPMAE to (R)-PE. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Prediction of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity

    DEFF Research Database (Denmark)

    Alifrangis, Michael; Enosse, Sonja; Khalil, Insaf F

    2003-01-01

    in vivo. The prevalence of mutations in dhfr and dhps in relation to S/P efficacy was studied in four sites of differing endemicity in Sudan, Mozambique, and Tanzania. The sites were organized in order of increasing resistance and a significant increase in the prevalence of triple mutations in codons c51...... recently. However, changes in susceptibility within the same area with moderate levels of resistance may be possible by longitudinal surveillance of a subset of dhfr/dhps mutations that has been associated with S/P resistance in vivo in a defined location.......Plasmodium falciparum resistance to sulfadoxine/pyrimethamine (S/P) is due to mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhfr) genes. Large-scale screening of the prevalence of these mutations could facilitate the surveillance of the level of S/P resistance...

  9. Associations between two common variants C677T and A1298C in the methylenetetrahydrofolate reductase gene and measures of folate metabolism and DNA stability (strand breaks, misincorporated uracil, and DNA methylation status) in human lymphocytes in vivo.

    Science.gov (United States)

    Narayanan, Sabrina; McConnell, Josie; Little, Julian; Sharp, Linda; Piyathilake, Chandrika J; Powers, Hilary; Basten, Graham; Duthie, Susan J

    2004-09-01

    Homozygosity for variants of the methylenetetrahydrofolate reductase (MTHFR) gene is associated with decreased risk for colorectal cancer. We have investigated the relationships between two variants of the MTHFR gene (C677T and A1298C) and blood folate, homocysteine, and genomic stability (strand breakage, misincorporated uracil, and global cytosine methylation in lymphocytes) in a study of 199 subjects. The frequencies of homozygosity for the C677T and A1298C variants of the MTHFR gene were 12.6% and 14.6%, respectively. Plasma homocysteine, folate, vitamin B12, 5-methyltetrahydrofolate, and RBC folate were determined in the C677T genotypes. Plasma folate was significantly lower (P A1298C variant did not influence plasma homocysteine, folate, 5-methyltetrahydrofolate, vitamin B12, or RBC folate. Lymphocyte DNA stability biomarkers (strand breaks, misincorporated uracil, and global DNA methylation) were similar for all MTHFR C677T or A1298C variants. Data from this study do not support the hypothesis that polymorphisms in the MTHFR gene increase DNA stability by sequestering 5,10-methylenetetrahydrofolate for thymidine synthesis and reducing uracil misincorporation into DNA.

  10. Combinations of Polymorphisms in Genes Involved in the 5-Fluorouracil Metabolism Pathway Are Associated with Gastrointestinal Toxicity in Chemotherapy-Treated Colorectal Cancer Patients

    DEFF Research Database (Denmark)

    Afzal, Shoaib; Gusella, Milena; Vainer, Ben

    2011-01-01

    with low activity of methylene tetrahydrofolate reductase (MTHFR) were associated with decreased risk of toxicity [OR(Exploration) 0.39 (95% CI: 0.21-0.71, P = 0.003), OR(Validation) 0.63 (95% CI: 0.41-0.95, P = 0.03)]. A specific combination of the MTHFR 1298A>C and thymidylate synthase (TYMS) 3'-UTR...

  11. Fundamental role of Methylenetetrahydrofolate Reductase 677 C->T genotype and Flavin compounds in biochemical phenotypes for schizophrenia and schizoaffective psychosis.

    Directory of Open Access Journals (Sweden)

    Stephanie Fryar-Williams

    2016-11-01

    Full Text Available The Mental Health Biomarker Project (2010-2016 explored variables for psychosis in schizophrenia and schizoaffective disorder. Blood samples from 67, highly-characterized symptomatic cases and 67 gender and age matched control participants were analysed for methyl tetrahydrofolate reductase (MTHFR 677C->T gene variants and for vitamin B6, B12 and D, folate, unbound copper, zinc cofactors for enzymes in the methylation cycle and related catecholamine pathways. Urine samples were analysed for indole-catecholamines, their metabolites and oxidative-stress marker, hydroxylpyrolline-2-one (HPL. Rating scales were Brief Psychiatric Rating Scale, Positive and Negative Syndrome Scale, Global Assessment of Function scale, Clinical Global Impression score and Social and Occupational Functioning Scale. Analysis used Spearman’s correlates, Receiver Operating Characteristics and structural equation modelling (SEM. The correlative pattern of variables in the overall participant sample strongly implicated Monoamine Oxidase (MAO enzyme inactivity so the significant role of MAO’s cofactor flavin adenine nucleotide (FAD and its precursor flavin adenine mononucleotide (FMN within the biochemical pathways was investigated and confirmed as 70% on SEM of the total sample. Splitting the data sets for MTHFR 677C->T polymorphism variants coding for the MTHFR enzyme, discovered that biochemistry variables relating to the wild-type enzyme differed markedly in pattern from those coded by the homozygous variant and that the hereozygous-variant pattern resembled the wild type-coded pattern. The MTHFR 677C->T -wild and -heterozygous gene variants have a pattern of depleted vitamin cofactors characteristic of flavin insufficiency with under-methylation and severe oxidative stress. The second homozygous MTHFR 677TT pattern related to elevated copper:zinc ratio and a vitamin pattern related to flavin sufficiency and risk of over-methylation. The two gene variants and their

  12. Rho-dependent termination of ssrS (6S RNA) transcription in Escherichia coli: implication for 3' processing of 6S RNA and expression of downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase).

    Science.gov (United States)

    Chae, Huiseok; Han, Kook; Kim, Kwang-sun; Park, Hongmarn; Lee, Jungmin; Lee, Younghoon

    2011-01-07

    It is well known that 6S RNA, a global regulatory noncoding RNA that modulates gene expression in response to the cellular stresses in Escherichia coli, is generated by processing from primary ssrS (6S RNA) transcripts derived from two different promoters. The 5' processing of 6S RNA from primary transcripts has been well studied; however, it remains unclear how the 3'-end of this RNA is generated although previous studies have suggested that exoribonucleolytic trimming is necessary for 3' processing. Here, we describe several Rho-dependent termination sites located ∼90 bases downstream of the mature 3'-end of 6S RNA. Our data suggest that the 3'-end of 6S RNA is generated via exoribonucleolytic trimming, rather than endoribonucleolytic cleavage, following the transcription termination events. The termination sites identified in this study are within the open reading frame of the downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase) gene, a part of the highly conserved bacterial operon ssrS-ygfA, which is up-regulated during the biofilm formation. Our findings reveal that ygfA expression, which also aids the formation of multidrug-tolerant persister cells, could be regulated by Rho-dependent termination activity in the cell.

  13. Polimorfismo do gene metilenotetra-hidrofolato redutase (MTHFR e o risco de carcinoma espinocelular de cabeça e pescoço Polymorphism of methylenetetrahydrofolate reductase (MTHFR gene and risk of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Juliana Olsen Rodrigues

    2010-12-01

    Full Text Available O polimorfismo C677T do gene metilenotetra-hidrofolato redutase (MTHFR pode ser um fator de risco para o carcinoma espinocelular de cabeça e pescoço devido a alterações nos níveis de folato que podem induzir alterações na metilação intracelular, promovendo a carcinogênese. OBJETIVO: Avaliar o polimorfismo MTHFR C677T em pacientes com carcinoma espinocelular de cabeça e pescoço e em indivíduos sem história de neoplasia e verificar a associação desta doença com as características clínico-patológicas. CASUÍSTICA E MÉTODOS: Estudo retrospectivo no qual foram avaliados gênero, idade, tabagismo, etilismo e parâmetros clínico-histopatológicos em 200 indivíduos (100 com a doença e 100 sem história de neoplasia. A análise molecular foi realizada pela técnica de PCR- RFLP e os testes qui-quadrado de Pearson e Regressão Logística Múltipla foram utilizados para análise estatística. RESULTADOS: Não houve associação entre o polimorfismo MTHFR C677T e a doença (p=0,50. Diferenças significantes entre o grupo de pacientes e o grupo controle foram observadas para idade superior a 50 anos, hábito tabagista e gênero masculino (pMethylenetetrahydrofolate reductase gene (MTHFR C677T polymorphism may be a risk factor for head and neck squamous cell carcinoma due to changes in folate levels that can induce disorders in the methylation pathway, which results in carcinogenesis. AIM: To evaluate MTHFR C677T polymorphism in patients with head and neck squamous cell carcinoma and in individuals with no history of cancer, and to assess the association of this disease with clinical histopathological parameters. SERIES AND METHODS: A retrospective study that assessed gender, age, tobacco, alcohol consumption and clinical histopathological parameters in 200 patients (100 with disease and 100 with no history of cancer. PCR-RFLP molecular analysis was carried out and the chi-square test and multiple logistic regression were applied for

  14. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes.

    Science.gov (United States)

    Kavanagh, K L; Jörnvall, H; Persson, B; Oppermann, U

    2008-12-01

    Short-chain dehydrogenases/reductases (SDRs) constitute a large family of NAD(P)(H)-dependent oxidoreductases, sharing sequence motifs and displaying similar mechanisms. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, cofactor, hormone and xenobiotic metabolism as well as in redox sensor mechanisms. Sequence identities are low, and the most conserved feature is an alpha/beta folding pattern with a central beta sheet flanked by 2 - 3 alpha-helices from each side, thus a classical Rossmannfold motif for nucleotide binding. The conservation of this element and an active site, often with an Asn-Ser-Tyr-Lys tetrad, provides a platform for enzymatic activities encompassing several EC classes, including oxidoreductases, epimerases and lyases. The common mechanism is an underlying hydride and proton transfer involving the nicotinamide and typically an active site tyrosine residue, whereas substrate specificity is determined by a variable C-terminal segment. Relationships exist with bacterial haloalcohol dehalogenases, which lack cofactor binding but have the active site architecture, emphasizing the versatility of the basic fold in also generating hydride transfer-independent lyases. The conserved fold and nucleotide binding emphasize the role of SDRs as scaffolds for an NAD(P)(H) redox sensor system, of importance to control metabolic routes, transcription and signalling.

  15. Methylenetetrahydrofolate reductase gene germ-line C677T and A1298C SNPs are associated with colorectal cancer risk in the Turkish population.

    Science.gov (United States)

    Ozen, Filiz; Sen, Metin; Ozdemir, Ozturk

    2014-01-01

    Colorectal cancer (CRC) is the third most common cause of death due to cancer in the worldwide and the incidence is also increasing in Turkey. Our present aim was to investigate any association between germ-line methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and CRC risk in Turkey. A total of 86 CRC cases and 212 control individuals of the same ethnicity were included in the current study. Peripheral blood-DNA samples were used for genotyping by StripAssay technique, based on the reverse- hybridization principle and real-time PCR methods. Results were compared in Pearson Chi-square and multiple logistic regression models. The MTHFR 677TT (homozygous) genotype was found in 20.9% and the T allele frequency 4.2-fold increased in CRC when compared with the control group.The second SNP MTHFR 1298CC (homozygous) genotype was found in 14.0% and the C allele frequency 1.4-fold elevated in the CRC group. The current data suggest strong associations between both SNPs of germ-line MTHFR 677 C>T and 1298 A>C genotypes and CRC susceptibility in the Turkish population. Now the results need to be confirmed with a larger sample size.

  16. Divergent effects of the 677C>T mutation of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene on ovarian responsiveness and anti-Müllerian hormone concentrations.

    Science.gov (United States)

    Pavlik, Roman; Hecht, Stephanie; Ochsenkühn, Robert; Noss, Ulrich; Lohse, Peter; Thaler, Christian J

    2011-06-01

    To investigate the influence of the 5,10-methylenetetrahydrofolate reductase (MTHFR) 677C>T mutation on serum anti-Müllerian hormone (AMH) concentrations and on the numbers of oocytes retrieved (NOR) following controlled ovarian hyperstimulation (COH). Prospective cohort study. University-based infertility clinic. Two hundred and seventy women undergoing COH for IVF with or without intracytoplasmic sperm injection. None. AMH levels were determined from blood samples collected after 10 days of GnRH superagonist treatment and before COH. The MTHFR 677C>T genotype was characterized by a TaqMan 5' nuclease assay. AMH serum concentrations correlated significantly with the NOR in all individuals studied. Average (±SD) AMH levels of TT carriers (2.85±2.23 ng/mL) were significantly higher than those of homozygous CC (1.91±1.59 ng/mL) or heterozygous CT individuals (2.23±1.74 ng/mL). When evaluated by multiple regression analysis, AMH had a significant positive effect on NOR, whereas age and MTHFR 677TT genotype had significant negative effects. The MTHFR 677TT genotype is associated with higher serum AMH concentrations and has a negative effect on NOR. This apparent paradox might be resolved in light of recent findings describing a negative feedback function of AMH in the coordination of follicle development. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. A new and improved method based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for the determination of A1298C mutation in the methylenetetrahydrofolate reductase (MTHFR) gene.

    Science.gov (United States)

    Machnik, Grzegorz; Zapala, Malgorzata; Pelc, Ewa; Gasecka-Czapla, Monika; Kaczmarczyk, Grzegorz; Okopien, Boguslaw

    2013-01-01

    Intracellular folate homeostasis and metabolism is regulated by numerous genes. Among them, 5,10-methylenetetrahydrofolate reductase (MTHFR) is of special interest because of its involvement in regulation of the homocysteine level in the body as a result of folate metabolism. Moreover, some studies demonstrated that the homocysteine plasma level in individuals may be influenced by polymorphisms present in the MTHFR gene. Two common, clinically relevant mutations have been described: MTHFR C677T and MTHFR A1298C. Although several laboratory techniques allow genotyping of both polymorphisms, PCR-RFLP analysis is simple to perform, relatively cheap, and thus one of the most utilized. In the case of A1298C, the PCR-RFLP technique that utilizes MboII endonuclease class II requires an acrylamide gel electrophoresis, since agarose gel electrophoresis is unable to resolve short deoxyribonucleic acid (DNA) fragments after restriction digestion. Agarose gel electrophoresis is commonly preferred over that of acrylamide. To resolve this inconvenience, a novel PCR-RFLP, AjuI-based method to genotype A1298C alleles has been developed that can be performed on standard agarose gel.

  18. The analysis of the relationship between A1298C and C677T polymorphisms of the MTHFR gene with prostate cancer in Eskisehir population.

    Science.gov (United States)

    Muslumanoglu, Muhammed H; Tepeli, Emre; Demir, Selma; Uludag, Ahmet; Uzun, Derya; Atli, Engin; Canturk, Kemal M; Ozdemir, Muhsin; Turgut, Mehmet

    2009-10-01

    Prostate cancer is the most common cause of cancer deaths in men and is a major health problem worldwide. Methylene tetrahydrofolate reductase (MTHFR) plays an important role for folate metabolism and is also an important source for DNA methylation and DNA synthesis (nucleotide synthesis). The objective of this study was to investigate the relationship between the A1298C and C677T polymorphisms of the MTHFR gene and prostate cancer in the Turkish population. In our study, 93 prostate cancer patients between the ages of 50-89 and a control group of 166 benign prostate hyperplasia patients were evaluated. C677T and A1298C polymorphism ratios were compared among these two groups, and an analysis was made to see if there is a statistically meaningful difference. In this study, it has been observed that C677T polymorphism of the MTHFR gene produces no statistically significant difference for T allele frequency and the genotype frequency in prostate cancer patients and male controls with benign prostate hyperplasia not having prostate cancer, whereas it has been observed that A1298C polymorphism produces a statistically significant difference for C allele frequency in prostate cancer patients and controls and that it also produces a statistically marginal significance for genotype frequencies.

  19. Overcoming a hemihedral twinning problem in tetrahydrofolate-dependent O -demethylase crystals by the microseeding method

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ayaka; Sato, Yukari; Kamimura, Naofumi; Venugopalan, Nagarajan; Masai, Eiji; Senda, Toshiya

    2016-11-30

    A tetrahydrofolate-dependentO-demethylase, LigM, from Sphingobiumsp. SYK-6 was crystallized by the hanging-drop vapour-diffusion method. However, the obtained P3121 orP3221 crystals, which diffracted to 2.5–3.3 Å resolution, were hemihedrally twinned. To overcome the twinning problem, microseeding using P3121/P32 21 crystals as microseeds was performed with optimization of the reservoir conditions. As a result, another crystal form was obtained. The newly obtained crystal diffracted to 2.5–3.0 Å resolution and belonged to space group P21212, with unit-cell parametersa= 102.0,b= 117.3,c = 128.1 Å. The P21212 crystals diffracted to better than 2.0 Å resolution after optimizing the cryoconditions. Phasing using the single anomalous diffraction method was successful at 3.0 Å resolution with a Pt-derivative crystal. This experience suggested that microseeding is an effective method to overcome the twinning problem, even when twinned crystals are utilized as microseeds.

  20. Meta-analysis of Methylenetetrahydrofolate reductase maternal gene in Down syndrome: increased susceptibility in women carriers of the MTHFR 677T allele.

    Science.gov (United States)

    Victorino, D B; Godoy, M F; Goloni-Bertollo, E M; Pavarino, E C

    2014-08-01

    Because a number of data studies include some controversial results about Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and Down syndrome (DS), we performed a meta-analysis to determine a more precise estimation of this association. Studies were searched on PubMed, EMBASE and Lilacs-Scielo, up to April 2013, and they were eligible if they included case mothers (DSM) that have gave birth to children with DS, and controls mothers (CM) that have gave birth to healthy children without chromosomal abnormality, syndrome or malformation. The combined odds ratio with 95% confidence intervals was calculated by fixed or random effects models to assess the strength of associations. Potential sources of heterogeneity between studies were evaluated using Q test and the I(2). Publication bias was estimated using Begg's test and Egger's linear regression test. Sensitivity analyses were performed by using allelic, dominant, recessive and codominant genetic models, Hardy-Weinberg equilibrium (HWE) and ethnicity. Twenty-two studies with 2,223 DSM and 2,807 CM were included for MTHFR C677T and 15 studies with 1,601 DSM and 1,849 CM were included for MTHFR A1298C. Overall analysis suggests an association of the MTHFR C677T polymorphism with maternal risk for DS. Moreover, no association between the MTHFR A1298C polymorphism and maternal risk for DS was found. There is also evidence of higher heterogeneity, with I(2) test values ranging from 8 to 89%. No evidence of publication bias was found. Taken together, our meta-analysis implied that the T allele carriers might carry an increased maternal risk for DS.

  1. Potential Application of the Oryza sativa Monodehydroascorbate Reductase Gene (OsMDHAR to Improve the Stress Tolerance and Fermentative Capacity of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Il-Sup Kim

    Full Text Available Monodehydroascorbate reductase (MDHAR; EC 1.6.5.4 is an important enzyme for ascorbate recycling. To examine whether heterologous expression of MDHAR from Oryza sativa (OsMDHAR can prevent the deleterious effects of unfavorable growth conditions, we constructed a transgenic yeast strain harboring a recombinant plasmid carrying OsMDHAR (p426GPD::OsMDHAR. OsMDHAR-expressing yeast cells displayed enhanced tolerance to hydrogen peroxide by maintaining redox homoeostasis, proteostasis, and the ascorbate (AsA-like pool following the accumulation of antioxidant enzymes and molecules, metabolic enzymes, and molecular chaperones and their cofactors, compared to wild-type (WT cells carrying vector alone. The addition of exogenous AsA or its analogue isoascorbic acid increased the viability of WT and ara2Δ cells under oxidative stress. Furthermore, the survival of OsMDHAR-expressing cells was greater than that of WT cells when cells at mid-log growth phase were exposed to high concentrations of ethanol. High OsMDHAR expression also improved the fermentative capacity of the yeast during glucose-based batch fermentation at a standard cultivation temperature (30°C. The alcohol yield of OsMDHAR-expressing transgenic yeast during fermentation was approximately 25% (0.18 g·g-1 higher than that of WT yeast. Accordingly, OsMDHAR-expressing transgenic yeast showed prolonged survival during the environmental stresses produced during fermentation. These results suggest that heterologous OsMDHAR expression increases tolerance to reactive oxygen species-induced oxidative stress by improving cellular redox homeostasis and improves survival during fermentation, which enhances fermentative capacity.

  2. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae).

    Science.gov (United States)

    Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong

    2013-01-01

    NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems. © 2013.

  3. Genetic susceptibility of methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C, and G1793A polymorphisms with risk for bladder transitional cell carcinoma in men.

    Science.gov (United States)

    Safarinejad, Mohammad Reza; Shafiei, Nayyer; Safarinejad, Shiva

    2011-12-01

    We performed a case-control study of 158 bladder transitional cell carcinoma (TCC) cases and 316 controls to investigate the association between methylenetetrahydrofolate reductase (MTHFR) C677T, A1298G, and G1793A polymorphisms and bladder cancer susceptibility by polymerase chain reaction restriction fragment length polymorphism (PCR-RLFP) technique. The controls were frequency-matched to the cases by age (± 5 years), ethnicity, and smoking status. We also measured serum levels of total homocysteine (tHcy), folate, and vitamin B12. It was found that the 1298AC (odds ratio, OR = 3.74; 95% confidence interval, CI = 2.34-5.47; P = 0.001) and 1298CC (OR = 3.46, 95% CI = 2.37-5.52; P = 0.001) genotypes of MTHFR A1298C were significantly associated with increased risk of bladder TCC. The MTHFR C677T and G1793A polymorphisms were not associated with bladder TCC. After stratification for grade and stage, we observed that the 677TT (OR = 4.47, 95% CI = 2.74-6.72; P = 0.001) and MTHFR 1298CC (OR = 4.78, 95% CI = 2.82-6.89; P = 0.001) genotypes of MTHFR were associated with increased risk of muscle-invasive bladder TCC. We also found that the MTHFR 677CT+1298AA genotypes were associated with an approximately 70% reduction in risk of bladder cancer (OR = 0.31; 95% CI = 0.15-0.68) compared to the combined referent genotype. There were 8 haplotypes and 16 haplotype genotypes based on these three variants. When we used the haplotypes and assumed that the 677T, 1298C, and 1793G alleles were risk alleles, the adjusted odds ratios increased as the number of risk alleles increased: 1.00 for 0-1 variant, 1.88 (1.4-2.7) for any two risk alleles and 2.07 (1.6-2.8) for any three risk alleles. Serum tHcy levels were significantly higher in carriers of the 677T, 1298C, and 1793G alleles compared to noncarriers (all P < 0.01). There was no significant correlation between serum levels of tHcy and folate and bladder cancer risk. Further studies in larger samples size and different

  4. Association between methylenetetrahydrofolate reductase (MTHFR C677T gene polymorphism and risk of ischemic stroke in North Indian population: A hospital based case–control study

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2016-10-01

    Conclusion: Findings of the present study suggest that MTHFR C677T gene polymorphism might be a risk factor of IS mainly for SVD subtypes of IS in North Indian population. Further large prospective studies are required to confirm these findings.

  5. Influence of Folate-Related Gene Polymorphisms on High-Dose Methotrexate-Related Toxicity and Prognosis in Turkish Children with Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Burcu Yazıcıoğlu

    2017-06-01

    Full Text Available Objective: High-dose methotrexate (HD-MTX is widely used in the consolidation phase of childhood acute lymphoblastic leukemia (ALL, but the roles that polymorphisms in folate-related genes (FRGs play in HD-MTX toxicity and prognosis in children with ALL are not understood. The aims of this study were to investigate the frequencies of polymorphisms in the genes for thymidylate synthase (TS, methionine synthase reductase (MTRR, and methylene tetrahydrofolate reductase (MTHFR in Turkish children with ALL and to assess associations between these polymorphisms and HD-MTXrelated toxicity and leukemia prognosis in this patient group. Materials and Methods: FRG polymorphisms were assessed by realtime polymerase chain reaction. Survival status, MTX levels, and toxicity data were retrieved from 106 patients’ charts. Results: The allele frequencies for the FRG polymorphisms were as follows: TS 2R 41.0%, 3R 57.0%, and 4R 2.0%; MTRR 66A 42.4% and 66G 57.6%; MTHFR 677C 59.3% and 677T 40.7%; and MTHFR 1298A 58.1% and 1298C 41.9%. At the 48th hour of HD-MTX infusion, serum MTX was significantly higher in patients who had TS 2R/3R/4R variants as compared to those with wild-type TS (p<0.05. No significant differences were detected with respect to event-free survival or toxicity between wild-type and other FRG variants. Conclusion: The frequencies of FRG polymorphisms in Turkish children with ALL are similar to those reported in other Caucasian populations. This is the first published finding of the TS 3R/4R variant in the Turkish population. The results indicate that HD-MTX can be tolerated by leukemic children with some polymorphic variants of FRG; thus, it may prevent future risk of leukemic relapse.

  6. The effect of parental 5,10-methylenetetrahydrofolate reductase 677C/T and 1298A/C gene polymorphisms on response to single-dose methotrexate in tubal ectopic pregnancy.

    Science.gov (United States)

    Kutuk, Mehmet Serdar; Subasioglu, Asli; Uludag, Semih; Tascioglu, Nazife; Ozgun, Mahmut Tuncay; Dundar, Munis

    2017-05-01

    The aim of this study was to assess the effect of parental 5,10-methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms (677C/T and 1298A/C) on response to single-dose methotrexate (MTX) treatment in tubal ectopic pregnancy (TEP). In this prospective cohort study, cases with unruptured TEPs were grouped into two according to their response to single-dose MTX treatment (Group 1: responsive, n:88; Group 2: unresponsive, n:21). The groups were compared with regard to baseline demographic and clinical parameters. As a main outcome measure, the independent effects of parental MTHFR gene polymorphisms on response to single dose MTX treatment were evaluated. One hundred and nine unruptured TEP were included in the final analysis. The mean maternal age was 29.30 ± 5.21 years, gravity 2 (min-max: 1-5), parity 1 (min-max: 0-4). The median serum beta-human chorionic gonadotropin (β-hCG) was 1403.35 MI/I (Q1-Q3: 517-2564). The overall response rate was 81% (88/109). The groups were similar with respect to basic baseline demographic data and serum β-hCG level. Binary logistic regression analysis showed that the presence of parental MTHFR677C/T and 1298A/C polymorphism were not independent factor predicting treatment success (p > 0.05). The only independent factor for resistance to single dose MTX was the previous TEP (OR: 4.47 (1.18-16.9)). Parental MTHFR 677C/T and 1298A/C mutations do not predict the outcome of single dose intramuscular MTX treatment in unruptured TEP.

  7. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    Science.gov (United States)

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  8. Molecular Cloning and Expression of Bacterial Mercuric Reductase ...

    African Journals Online (AJOL)

    In order to characterize the bacterial mercuric reductase (merA) gene, mercury resistant (Hgr) Escherichia coli strains have been isolated from various mercury contaminated sites of India. Their minimum inhibitory concentration (MIC) for Hg and zone of inhibition for different antibiotics were measured, and finally mer operon ...

  9. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    The genome has open reading frames coding for the complete genes required for folate biosynthesis. Our previous study shows that rats fed with L. pentosus KCA1 led to enhancement of haematological parameters. Bioinformatic tool such as ClustalW algorithm was used to analyze dihydrofolate reductase (folA/dfrA) ...

  10. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    OpenAIRE

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious s...

  11. Plasmid-encoded diacetyl (acetoin) reductase in Leuconostoc pseudomesenteroides

    DEFF Research Database (Denmark)

    Rattray, Fergal P; Myling-Petersen, Dorte; Larsen, Dianna

    2003-01-01

    ) reductases reported previously. Downstream of the butA gene of L. pseudomesenteroides, but coding in the opposite orientation, a putative DNA recombinase was identified. A two-step PCR approach was used to construct FPR02, a butA mutant of the wild-type strain, CHCC2114. FPR02 had significantly reduced......A plasmid-borne diacetyl (acetoin) reductase (butA) from Leuconostoc pseudomesenteroides CHCC2114 was sequenced and cloned. Nucleotide sequence analysis revealed an open reading frame encoding a protein of 257 amino acids which had high identity at the amino acid level to diacetyl (acetoin...

  12. Plasmodium falciparum dihydrofolate reductase alleles and pyrimethamine use in pregnant Ghanaian women

    NARCIS (Netherlands)

    Mockenhaupt, F. P.; Eggelte, T. A.; Böhme, T.; Thompson, W. N.; Bienzle, U.

    2001-01-01

    Drug resistance in Plasmodium falciparum affects prevention of malaria in pregnancy. In a cross-sectional study of 530 pregnant Ghanaian women, P. falciparum dihydrofolate reductase (DHFR) gene mutations linked with pyrimethamine resistance were assessed and associations with pyrimethamine intake

  13. Island-wide diversity in single nucleotide polymorphisms of the Plasmodium vivax dihydrofolate reductase and dihydropteroate synthetase genes in Sri Lanka

    DEFF Research Database (Denmark)

    Schousboe, Mette L; Rajakaruna, Rupika S; Salanti, Ali

    2007-01-01

    into the level of drug pressure caused by SP use and presumably other antifolate drugs. In Sri Lanka, chloroquine (CQ) with primaquine (PQ) and SP with PQ is used as first and second line treatment, respectively, against uncomplicated Plasmodium falciparum and/or P. vivax infections. CQ/PQ is still efficacious...... against P. vivax infections, thus SP is rarely used and it is assumed that the prevalence of SNPs related to P. vivax SP resistance is low. However, this has not been assessed in Sri Lanka as in most other parts of Asia. This study describes the prevalence and distribution of SNPs related to P. vivax SP...... resistance across Sri Lanka. SUBJECTS AND METHODS: P. vivax-positive samples were collected from subjects presenting at government health facilities across nine of the major malaria endemic districts on the island. The samples were analysed for SNPs/haplotypes at codon 57, 58, 61 and 117 of the Pvdhfr gene...

  14. Presence of the methylenetetrahydrofolate reductase gene polymorphism MTHFR C677T in molar tissue but not maternal blood predicts failure of methotrexate treatment for low-risk gestational trophoblastic neoplasia.

    Science.gov (United States)

    Qu, Jia; Usui, Hirokazu; Kaku, Hiroshi; Shozu, Makio

    2017-01-05

    Gestational trophoblastic neoplasia (GTN) is a rare tumor, and its genomic constitution is different from the maternal genome because of its gestational origin. Methotrexate (MTX) is a standard chemotherapeutic agent for low-risk GTN. An association between polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene and MTX treatment outcome has been reported in various diseases. Thus, we examined the association between clinical outcome and MTHFR polymorphisms in both tumor and blood DNA of low-risk GTN patients. MTHFR C677T (rs1801133) and A1298C (rs1801131) were genotyped using high-resolution melting assays in 62 Japanese low-risk GTN patients and in 52 antecedent molar tissues. We compared the genotypes of MTHFR polymorphisms with the clinical outcome of 5-day MTX treatment. Twenty-five patients entered remission and 37 patients developed drug resistance or adverse effects that necessitated a drug change. The MTHFR 677T allele in molar tissue was significantly related to the need for drug change (P=0.006; odds ratio [OR], 3.13; 95% confidence interval [CI], 1.31-7.49), in contrast to MTHFR 1298C (P=0.18; OR, 0.63; 95% CI, 0.32-1.25). The MTHFR 677T and 1298C alleles obtained from patients' blood DNA were not related to MTX treatment outcome (P=0.49; OR 1.31; 95% CI, 0.61-2.91 and P=0.10; OR 0.52; 95% CI, 0.22-1.15, respectively). These data demonstrate for the first time that the genotype of MTHFR 677TT in molar tissue is associated with ineffective MTX treatment in Japanese low-risk GTN patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Relationship between glutathione S-transferase P1 (GSTP1), X-ray repair cross complementing group 1 (XRCC1) and 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) gene polymorphisms and response to chemotherapy in advanced gastric cancer.

    Science.gov (United States)

    Ji, Mei; Xu, Bin; Jiang, Jing-Ting; Wu, Jun; Li, Xiao-Dong; Zhao, Wei-Qing; Zhang, Hong-Yu; Zhou, Wen-Jie; Wu, Chang-Ping

    2013-01-01

    Our study aimed to investigate the relationship between glutathione S-transferase P1 (GSTP1), 5,10-methylenetetrahydrofolate reductase (5,10-MTHFR) and X-ray repair cross complementing group 1 (XRCC1) gene polymorphisms and the response to chemotherapy in advanced gastric cancer. 59 cases of advanced gastric cancer were enrolled. All patients were treated with the DCF regimen comprising docetaxel, cisplatin, and 5-fluorouracil. All patients' genotypes regarding GSTP1, XRCC1, and 5,10-MTHFR were analyzed by polymerase chain reaction/ligase detection reaction (PCR-LDR). There were 15 (25.42%) cases of G/G genotype, 21 (35.59%) of G/A genotype, and 23 (38.98%) of A/A genotype for GSTP1, 16 (27.12%) cases of A/A genotype, 18 (30.51%) of G/A genotype, and 25 (42.37%) of G/G genotype for XRCC1, and 21 (35.59%) cases of C/C genotype, 22 (37.29%) of C/T genotype, and 16 (27.12%) of T/T genotype for 5,10-MTHFR. After 2 cycles of chemotherapy, there were 4 cases of complete remission, 14 of partial remission, 19 of stable disease, and 22 of advanced disease, with a total effective rate of 30.51%. Better survival was shown for GSTP1 G/G genotype, XRCC1 A/A genotype, and 5,10-MTHFR T/T genotype (p MTHFR T/T have clinical value for predicting the response to the DCF regimen for advanced gastric cancer. © 2013 S. Karger GmbH, Freiburg.

  16. C677T and A1298C Mutations in the Methylenetetrahydrofolate Reductase Gene in Patients with Recurrent Abortion from the Iranian Azeri Turkish

    Directory of Open Access Journals (Sweden)

    Morteza Bagheri

    2010-01-01

    Full Text Available Background: To assess whether the C677T and A1298C mutations in the methylenetetrahydrofolatereductase (MTHER gene are associated with recurrent abortion (RA, we determined the frequenciesof the T677 and C1298 mutations in patients and controls.Materials and Methods: Mutations were determined by a RFLP-PCR method in 53 patients and61 matched controls.Results: The frequencies of T alleles were 0.26 in patients and 0.29 in controls. The frequencies ofC/C, T/C and T/T genotypes were 34 (55.7%, 22 (36.1% and 5 (8.2% in patients, and 27 (50.9%,21 (39.6% and 5 (9.43% in controls. The C allele frequencies were 0.38 in patients and controls.C/C, A/C and A/A genotype distributions were 9 (14.8%, 28 (45.9% and 24 (39.3% in patients,and 8 (15.1%, 24 (45.3% and 21 (39.6% in controls.Conclusion: There were no significant differences between patients and controls concerning theT677 and C1298 mutations.

  17. The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Green, Laura K.; Storey, Mathew A. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Williams, Elsie M. [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Patterson, Adam V.; Smaill, Jeff B. [Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand); Auckland Cancer Society Research Centre, University of Auckland, Grafton, Auckland 1142 (New Zealand); Copp, Janine N.; Ackerley, David F., E-mail: david.ackerley@vuw.ac.nz [School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington 6140 (New Zealand); Victoria University Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1142 (New Zealand)

    2013-08-08

    Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.

  18. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  19. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  20. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12) and Omega-3 Fatty Acids

    Science.gov (United States)

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes. PMID:25003120

  1. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    Science.gov (United States)

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  2. Folate intake, alcohol consumption, and the methylenetetrahydrofolate reductase (MTHFR C677T gene polymorphism: influence on prostate cancer risk and interactions

    Directory of Open Access Journals (Sweden)

    Lindsay C Kobayashi

    2012-08-01

    Full Text Available Purpose: Folate is essential to DNA methylation and synthesis and may have a complex dualistic role in prostate cancer. Alcohol use may increase risk and epigenetic factors may interact with lifestyle exposures. We aimed to characterize the independent and joint effects of folate intake, alcohol consumption, and the MTHFR C677T gene polymorphism on prostate cancer risk, while accounting for intakes of vitamins B2, B6, B12, methionine, total energy, and confounders.Methods: A case-control study was conducted at Kingston General Hospital of 80 incident primary prostate cancer cases and 334 urology clinic controls, all with normal age-specific PSA levels (to exclude latent prostate cancers. Participants completed a questionnaire on folate and alcohol intakes and potential confounders prior to knowledge of diagnosis, eliminating recall bias, and blood was drawn for MTHFR genotyping. Joint effects of exposures were assessed using unconditional logistic regression and significance of multiplicative and additive interactions using general linear models.Results: Folate, vitamins B2, B6, B12, methionine, and the CT and TT genotypes were not associated with prostate cancer risk. The highest tertile of lifetime alcohol consumption was associated with increased risk (OR=2.08; 95% CI: 1.12-3.86. Consumption of >5 alcoholic drinks/week was associated with increased prostate cancer risk among men with low folate intake (OR=2.38; 95% CI: 1.01-5.57 and higher risk among those with the CC MTHFR genotype (OR=4.43; 95% CI: 1.15-17.05. Increased risk was also apparent for weekly alcohol consumption when accounting for the multiplicative interaction between folate intake and MTHFR C677T genotype (OR=3.22; 95% CI: 1.36-7.59.Conclusion: Alcohol consumption is associated with increased prostate cancer risk, and this association is stronger among men with low folate intake, with the CC MTHFR genotype, and when accounting for the joint effect of folate intake and MTHFR C

  3. MTHFR variants reduce the risk of G:C->A:T transition mutations within the p53 tumor suppressor gene in colon tumors.

    Science.gov (United States)

    Ulrich, C M; Curtin, K; Samowitz, W; Bigler, J; Potter, J D; Caan, B; Slattery, M L

    2005-10-01

    5,10-Methylene-tetrahydrofolate reductase (MTHFR) is a key enzyme in folate-mediated 1-carbon metabolism. Reduced MTHFR activity has been associated with genomic DNA hypomethylation. Methylated cytosines at CpG sites are easily mutated and have been implicated in G:C-->A:T transitions in the p53 tumor suppressor gene. We investigated 2 polymorphisms in the MTHFR gene (C677T and A1298C) and their associations with colon tumor characteristics, including acquired mutations in Ki-ras and p53 genes and microsatellite instability (MSI). The study population comprised 1248 colon cancer cases and 1972 controls, who participated in a population-based case-control study and had been analyzed previously for MSI, acquired mutations in Ki-ras, p53, and germline MTHFR polymorphisms. Multivariable-adjusted odds ratios are presented. Overall, MTHFR genotypes were not associated with MSI status or the presence of any p53 or Ki-ras mutation. Individuals with homozygous variant MTHFR genotypes had a significantly reduced risk of G:C-->A:T transition mutations within the p53 gene, yet, as hypothesized, only at CpG-associated sites [677TT vs. 677CC (referent group) OR = 0.4 (95% CI: 0.1-0.8) for CpG-associated sites; OR = 1.5 (0.7-3.6) for non-CpG associated sites]. Genotypes conferring reduced MTHFR activity were associated with a decreased risk of acquired G:C-->A:T mutations within the p53 gene occurring at CpG sites. Consistent with evidence on the phenotypic effect of the MTHFR C677T variant, we hypothesize that this relation may be explained by modestly reduced genomic DNA methylation, resulting in a lower probability of spontaneous deamination of methylated cytosine to thymidine. These results suggest a novel mechanism by which MTHFR polymorphisms can affect the risk of colon cancer.

  4. Evaluation of C677T polymorphism of the methylenetetra hydrofolate reductase gene and its association with levels of serum homocysteine, folate, and vitamin B12 as maternal risk factors for Down syndrome.

    Science.gov (United States)

    Mohanty, Pankaj K; Kapoor, Seema; Dubey, Anand P; Pandey, Sanjeev; Shah, Renuka; Nayak, Hemant K; Polipalli, Sunil K

    2012-09-01

    Evaluation of C677T polymorphisms of the methylenetetra hydrofolate reductase (MTHFR) gene and its association with level of serum homocysteine, folate, and vitamin B12 as possible maternal risk factors for Down syndrome. This was a case-control study. Fifty-two mothers (mean age 27.6 years) with babies having free trisomy 21 of North Indian ethnicity and 52 control nonlactating mothers (mean age 24.9 years) of same ethnicity attending services of genetic lab for bloodletting for other causes were enrolled after informed written consent. Fasting blood was collected and was used for determination of plasma homocysteine, vitamin B12, and folate (serum and RBC), and for PCR amplification of the MTHFR gene. The prevalence of MTHFR C677T polymorphism in north Indian mothers of babies with trisomy 21 Down syndrome was 15.38% compared to 5.88 % in controls. The difference between two groups was not statistically significant (P = 0.124). Low serum folate was demonstrated in 34.62% of cases vs. 11.54% in controls, which was significant (P = 0.005). Low RBC folate was found in 30.7% of cases versus 11.53% in controls, which was not significant (P = 0.059), when analyzed independently. But on multiple regression analysis the difference was statistically significant. Low serum vitamin B12 was found in 42.31% of cases versus 34.62% in controls, which was not significant (P = 0.118). The mean serum homocysteine in cases was 10.35 ± 0.68 while controls were 9.02 ± 0.535. Serum levels of folate were low in cases. The RBC folate levels were comparable in both groups. However the combined serum folate and RBC folate were low in cases compared to control groups. Homocysteine levels in our study were higher in Down syndrome mothers compared to controls; however high-serum level of Homocysteine had no association with MTHFR polymorphism. No association of serum vitamin B12 with MTHFR polymorphism in occurrence of Down syndrome births was found. Peri- or preconceptional folate

  5. Pseudoazurin-nitrite reductase interactions.

    Science.gov (United States)

    Impagliazzo, Antonietta; Krippahl, Ludwig; Ubbink, Marcellus

    2005-09-01

    The nitrite reductase-binding site on pseudoazurin has been determined by using NMR chemical-shift perturbations. It comprises residues in the hydrophobic patch surrounding the exposed copper ligand His81 as well as several positively charged residues. The binding site is similar for both redox states of pseudoazurin, despite differences in the binding mode. The results suggest that pseudoazurin binds in a well-defined orientation. Docking simulations provide a putative structure of the complex with a binding site on nitrite reductase that has several hydrophobic and polar residues as well as a ridge of negatively charged side chains and a copper-to-copper distance of 14 A.

  6. Direct enzyme assay evidence confirms aldehyde reductase function of Ydr541cp and Ygl039wp from Saccharomyces cerevisiae

    Science.gov (United States)

    Aldehyde reductase gene ARI1 is a recently characterized member of intermediate subfamily under SDR (short-chain dehydrogenase/reductase) superfamily that revealed mechanisms of in situ detoxification of furfural and HMF for tolerance of Saccharomyces cerevisiae. Uncharacterized open reading frames ...

  7. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling.

    Science.gov (United States)

    Ernst, Mona; Munkert, Jennifer; Campa, Manuela; Malnoy, Mickael; Martens, Stefan; Müller-Uri, Frieder

    2015-11-25

    A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.

  8. Relationship between three polymorphisms of methylenetetrahydrofolate reductase (MTHFR C677T, A1298C, and G1793A) gene and risk of prostate cancer: a case-control study.

    Science.gov (United States)

    Safarinejad, Mohammad Reza; Shafiei, Nayyer; Safarinejad, Shiva

    2010-11-01

    We hypothesized that genetic polymorphisms in methylenetetrahydrofolate reductase (MTHFR) gene are associated with prostate cancer risk. We genotyped three MTHFR polymorphisms (C677T, A1298C, and G1793A) and measured serum total homocysteine (tHcy), folate, and vitamin B12 levels in a case-control study of 174 cases and 348 normal healthy controls. The cancer-free controls were frequency matched to the cases by age (±2 years), educational level, occupational status, ethnicity, and smoking status. We found that the MTHFR 677TT and 1298CC genotypes were associated with an about 40% reduction in risk of prostate cancer (adjusted OR = 0.59, 95% CI = 0.41-0.94, and adjusted OR = 0.58, 95% CI = 0.32-0.91, respectively) compared to the 677CC, and 1298AA genotypes. The combined variant genotypes of 1298AC + 677CC were associated with a 30% reduction in risk of prostate cancer (OR = 0.70; 95% CI = 0.53-0.79). In contrast, the variant genotypes of 1793GA + 677CT were associated with slightly increased risk for prostate cancer (OR = 1.64; 95% CI = 0.86-2.15). Regarding prostate cancer aggressiveness, the 677TT genotype was associated with more than 50% decreased risk of high-grade prostate cancer (Gleason score >7) compared with the 677CC and 677CT genotypes (OR = 0.35, 95% CI = 0.24-0.64; P = 0.001). There was no significant difference in plasma levels of tHcy, folate, and vitamin B12 between the two groups with any genotypes. These data suggest that all three MTHFR polymorphisms may play a pivotal role in the developing prostate cancer. Larger studies in different ethnic populations and incorporating dietary folate intake are needed to replicate our findings.

  9. methylglutaryl coenzyme A reductase gene from Jatr

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-04

    Aug 4, 2009 ... house at 27±1°C with 16 h light and 8 h dark photoperiod. Leaves were collected .... swiss-Model). The phylogenetic analysis of JcHMGR and HMGR from other species was aligned with CLUSTAL W (1.82) using de- fault parameters. ..... NADP(H)-binding motifs (GTVGGGT) whose architecture resembled a ...

  10. Methylenetetrahydrofolate reductase (MTHFR) C677T gene ...

    Indian Academy of Sciences (India)

    Keywords. homocysteine; MTHFR; Mendelian population; gene–environment interaction. Author Affiliations. Huidrom Suraj Singh1 2 Salam Kabita Devi1 3 Kallur Nava Saraswathy1. Molecular Anthropology Laboratory, Department of Anthropology, University of Delhi, New Delhi 110 007, India; Department of Anthropology ...

  11. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    Science.gov (United States)

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  12. Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii.

    Science.gov (United States)

    Bertsch, Johannes; Öppinger, Christian; Hess, Verena; Langer, Julian D; Müller, Volker

    2015-05-01

    The methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na(+) translocation by the Rnf complex. The enzyme was purified from Acetobacterium woodii and shown to have an unprecedented subunit composition containing the three subunits RnfC2, MetF, and MetV. The stable complex contained 2 flavin mononucleotides (FMN), 23.5 ± 1.2 Fe and 24.5 ± 1.5 S, which fits well to the predicted six [4Fe4S] clusters in MetV and RnfC2. The enzyme catalyzed NADH:methylviologen and NADH:ferricyanide oxidoreductase activity but also methylene-tetrahydrofolate (THF) reduction with NADH as the reductant. The NADH:methylene-THF reductase activity was high (248 U/mg) and not stimulated by ferredoxin. Furthermore, reduction of ferredoxin, alone or in the presence of methylene-THF and NADH, was never observed. MetF or MetVF was not able to catalyze the methylene-THF-dependent oxidation of NADH, but MetVF could reduce methylene-THF using methyl viologen as the electron donor. The purified MTHFR complex did not catalyze the reverse reaction, the endergonic oxidation of methyl-THF with NAD(+) as the acceptor, and this reaction could not be driven by reduced ferredoxin. However, addition of protein fractions made the oxidation of methyl-THF to methylene-THF coupled to NAD(+) reduction possible. Our data demonstrate that the MTHFR of A. woodii catalyzes methylene-THF reduction according to the following reaction: NADH + methylene-THF → methyl-THF + NAD(+). The differences in the subunit compositions of MTHFRs of bacteria are discussed in the light of their different functions. Energy conservation in the acetogenic bacterium Acetobacterium woodii involves ferredoxin reduction followed by a chemiosmotic mechanism involving Na(+)-translocating ferredoxin

  13. Evidence that biliverdin-IX beta reductase and flavin reductase are identical.

    Science.gov (United States)

    Shalloe, F; Elliott, G; Ennis, O; Mantle, T J

    1996-01-01

    A search of the database shows that human biliverdin-IX beta reductase and flavin reductase are identical. We have isolated flavin reductase from bovine erythrocytes and show that the activity co-elutes with biliverdin-IX beta reductase. Preparations of the enzyme that are electrophoretically homogeneous exhibit both flavin reductase and biliverdin-IX beta reductase activities; however, they are not capable of catalysing the reduction of biliverdin-IX alpha. Although there is little obvious sequence identity between biliverdin-IX alpha reductase (BVR-A) and biliverdin-IX beta reductase (BVR-B), they do show weak immunological cross-reactivity. Both enzymes bind to 2',5'-ADP-Sepharose. PMID:8687377

  14. [Aldehyde reductase activity and blood aldo-keto reductase spectrum in adolescents with neuroendocrine obesity].

    Science.gov (United States)

    Kuleshova, D K; Davydov, V V; Shvets, V N

    2012-01-01

    Investigation of aldehyde-reductase activity and blood aldo-keto reductase spectrum has been performed in 13-15 and 16-18-years old adolescents with obesity to clear up the mechanisms of neuroendocrine obesity at the age of puberty. It has been established that basal aldehyde reductase activity and blood aldo-keto reductase spectrum of healthy adolescents in early puberty do not differ from those of healthy adolescents in late puberty. A decreased aldehyde reductase activity and some alterations in blood aldo-keto reductase spectrum have been observed in late puberty in adolescents with neuroendocrine obesity. In adolescents with obesity there have been registered some changes in blood aldo-keto reductase spectrum which are not accompanied by any alterations in its aldehyde reductase activity. The results obtained suggest that certain prerequisites are formed in late puberty to complicate the course of neuroendocrine obesity.

  15. Bioinformatic analysis of dihydrofolate reductase predicted in the ...

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Physiologic studies of Lactobacillus species show that some species cannot synthesize folate de novo, which is required for growth. Folate plays a critical role in regulating the amount of tetrahydrofolate in the cell that is utilized for. DNA replication, and proliferation of the erythropoietic system. We recently ...

  16. Methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C and G1793A polymorphisms: association with risk for clear cell renal cell carcinoma and tumour behaviour in men.

    Science.gov (United States)

    Safarinejad, M R; Shafiei, N; Safarinejad, S

    2012-05-01

    Methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in regulating folate metabolism, which affects DNA synthesis and methylation. This study investigated whether MTHFR C677T, A1298C and G1793A polymorphisms modified clear cell renal cell carcinoma (CCRCC) risk independently as well as in combination with serum total homocysteine (Hcy) and folate levels. A case-control study of 152 cases (men) and 304 age-matched healthy controls was conducted in one geographical area of Iran. Genotyping of MTHFR gene polymorphisms was carried out using a polymerase chain reaction restriction fragment length polymorphism technique. Serum levels of total Hcy, folate and vitamin B12 were also determined. The MTHFR 677T and 1298C allele frequencies were 42.8 and 47.4% in cases, compared with 33.7 and 33.1% in controls. After controlling for confounding factors, a significant increase in CCRCC risk was found among carriers of the 677CT genotype compared with those with the 677CC genotype (odds ratio 2.21, 95% confidence interval 1.31-3.76), with a significant trend (P=0.014). Statistically significant odds ratios were also found in patients homozygous for MTHFR C677T, who have a 1.58-fold higher risk of developing CCRCC (95% confidence interval=1.21-2.44; P=0.024). Compared with the MTHFR 677CC genotype, the odds ratio (95% confidence interval) for the MTHFR 677TT genotype was 6.18 (95% confidence interval=4.75-8.34) for stage IV cancer and 4.68 (95% confidence interval=2.72-6.54) for grade 3 CCRCC (both P=0.0001). After adjustment for selected variants, the MTHFR 1298AC genotype showed a significantly increased risk of CCRCC compared with the wild-type (odds ratio=3.71, 95% confidence interval=2.22-5.33; P=0.001), and the 1298C allele carrier showed a positive association with the risk of CCRCC compared with the wild-type (odds ratio=3.9, 95% confidence interval=2.55-6.02; P=0.001). Furthermore, subjects carrying at least one copy of the variant allele showed a 4.4 times

  17. Methylenetetrahydrofolate Reductase C677T: Hypoplastic Left Heart and Thrombosis.

    Science.gov (United States)

    Spronk, Kimberly J; Olivero, Anthony D; Haw, Marcus P; Vettukattil, Joseph J

    2015-10-01

    The incidence of congenital heart defects is higher in infants with mutation of methylenetetrahydrofolate reductase (MTHFR) gene. The MTHFR C677T gene decreases the bioavailability of folate and increases plasma homocysteine, a risk factor for thrombosis. There have been no reported cases in the literature on the clinical implications of this procoagulable state in the setting of cyanotic heart disease, which itself has prothrombotic predisposition. Two patients with hypoplastic left heart syndrome developed postoperative thrombotic complications, both were homozygous for MTHFR C677T. We present these cases and highlight the implications of MTHFR mutation in the management of complex congenital heart disease. © The Author(s) 2015.

  18. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors.

    Science.gov (United States)

    Capasso, Clemente; Supuran, Claudiu T

    2014-06-01

    Recent advances in microbial genomics, synthetic organic chemistry and X-ray crystallography provided opportunities to identify novel antibacterial targets for the development of new classes of antibiotics and to design more potent antimicrobial compounds derived from existing antibiotics in clinical use for decades. The antimetabolites, sulfa drugs and trimethoprim (TMP)-like agents, are inhibitors of three families of enzymes. One family belongs to the carbonic anhydrases, which catalyze a simple but physiologically relevant reaction in all life kingdoms, carbon dioxide hydration to bicarbonate and protons. The other two enzyme families are involved in the synthesis of tetrahydrofolate (THF), i.e. dihydropteroate synthase (DHPS) and dihydrofolate reductase. The antibacterial agents belonging to the THF and DHPS inhibitors were developed decades ago and present significant bacterial resistance problems. However, the molecular mechanisms of drug resistance both to sulfa drugs and TMP-like inhibitors were understood in detail only recently, when several X-ray crystal structures of such enzymes in complex with their inhibitors were reported. Here, we revue the state of the art in the field of antibacterials based on inhibitors of these three enzyme families.

  19. Escherichia coli dihydrofolate reductase catalyzed proton and hydride transfers: temporal order and the roles of Asp27 and Tyr100.

    Science.gov (United States)

    Liu, C Tony; Francis, Kevin; Layfield, Joshua P; Huang, Xinyi; Hammes-Schiffer, Sharon; Kohen, Amnon; Benkovic, Stephen J

    2014-12-23

    The reaction catalyzed by Escherichia coli dihydrofolate reductase (ecDHFR) has become a model for understanding enzyme catalysis, and yet several details of its mechanism are still unresolved. Specifically, the mechanism of the chemical step, the hydride transfer reaction, is not fully resolved. We found, unexpectedly, the presence of two reactive ternary complexes [enzyme:NADPH:7,8-dihydrofolate (E:NADPH:DHF)] separated by one ionization event. Furthermore, multiple kinetic isotope effect (KIE) studies revealed a stepwise mechanism in which protonation of the DHF precedes the hydride transfer from the nicotinamide cofactor (NADPH) for both reactive ternary complexes of the WT enzyme. This mechanism was supported by the pH- and temperature-independent intrinsic KIEs for the C-H→C hydride transfer between NADPH and the preprotonated DHF. Moreover, we showed that active site residues D27 and Y100 play a synergistic role in facilitating both the proton transfer and subsequent hydride transfer steps. Although D27 appears to have a greater effect on the overall rate of conversion of DHF to tetrahydrofolate, Y100 plays an important electrostatic role in modulating the pKa of the N5 of DHF to enable the preprotonation of DHF by an active site water molecule.

  20. Oxygen and xenobiotic reductase activities of cytochrome P450.

    NARCIS (Netherlands)

    Goeptar, A.R.; Scheerens, H.; Vermeulen, N.P.E.

    1995-01-01

    The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O

  1. Hydroxyurea-Mediated Cytotoxicity Without Inhibition of Ribonucleotide Reductase

    Directory of Open Access Journals (Sweden)

    Li Phing Liew

    2016-11-01

    Full Text Available In many organisms, hydroxyurea (HU inhibits class I ribonucleotide reductase, leading to lowered cellular pools of deoxyribonucleoside triphosphates. The reduced levels for DNA precursors is believed to cause replication fork stalling. Upon treatment of the hyperthermophilic archaeon Sulfolobus solfataricus with HU, we observe dose-dependent cell cycle arrest, accumulation of DNA double-strand breaks, stalled replication forks, and elevated levels of recombination structures. However, Sulfolobus has a HU-insensitive class II ribonucleotide reductase, and we reveal that HU treatment does not significantly impact cellular DNA precursor pools. Profiling of protein and transcript levels reveals modulation of a specific subset of replication initiation and cell division genes. Notably, the selective loss of the regulatory subunit of the primase correlates with cessation of replication initiation and stalling of replication forks. Furthermore, we find evidence for a detoxification response induced by HU treatment.

  2. Methylenetetrahydrofolate Reductase Activity and Folate Metabolism

    Directory of Open Access Journals (Sweden)

    Nursen Keser

    2014-04-01

    Full Text Available Folate is a vital B vitamin which is easily water-soluble. It is a natural source which is found in the herbal and animal foods. Folate has important duties in the human metabolism, one of them is the adjustment of the level of plasma homocysteine. Reduction in MTHFR (methylenetetrahydrofolate reductase,which is in charge of the metabolism of homocysteine activity affects the level of homocysteine. Therefore MTHFR is an important enzyme in folate metabolism. Some of the mutations occurring in the MTHFR gene is a risk factor for various diseases and may be caused the hyperhomocysteinemia or the homocystinuria, and they also may lead to metabolic problems. MTHFR is effective in the important pathways such as DNA synthesis, methylation reactions and synthesis of RNA. C677T and A1298C are the most commonly occurring polymorphisms in the gene of MTHFR. The frequency of these polymorphisms show differences in the populations. MTHFR, folate distribution, metabolism of homocysteine and S-adenosylmethionine, by the MTHFR methylation the genetic defects have the potential of affecting the risk of disease in the negative or positive way.

  3. (FVL G1691A and MTHFR C677T) in patients with myocardial ...

    African Journals Online (AJOL)

    Background: Inherited thrombophilia may be caused by mutations, polymorphisms in a variety of genes mainly involved in haemostatic pathways. Aim of the study, was to find the prevalence of thrombophilic gene factor V Leiden (FVL) and methylene tetrahydrofolate reductase (MTHFR) gene polymorphism in patients with ...

  4. Homocysteine and coronary heart disease

    DEFF Research Database (Denmark)

    Clarke, Robert; Bennett, Derrick A; Parish, Sarah

    2012-01-01

    Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR) appreci......Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR...

  5. Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025).

    Science.gov (United States)

    Hartsock, Angela; Shapleigh, James P

    2011-12-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth.

  6. Androgen regulation of 5α-reductase isoenzymes in prostate cancer: implications for prostate cancer prevention.

    Directory of Open Access Journals (Sweden)

    Jin Li

    Full Text Available The enzyme 5α-reductase, which converts testosterone to dihydrotestosterone (DHT, performs key functions in the androgen receptor (AR signaling pathway. The three isoenzymes of 5α-reductase identified to date are encoded by different genes: SRD5A1, SRD5A2, and SRD5A3. In this study, we investigated mechanisms underlying androgen regulation of 5α-reductase isoenzyme expression in human prostate cells. We found that androgen regulates the mRNA level of 5α-reductase isoenzymes in a cell type-specific manner, that such regulation occurs at the transcriptional level, and that AR is necessary for this regulation. In addition, our results suggest that AR is recruited to a negative androgen response element (nARE on the promoter of SRD5A3 in vivo and directly binds to the nARE in vitro. The different expression levels of 5α-reductase isoenzymes may confer response or resistance to 5α-reductase inhibitors and thus may have importance in prostate cancer prevention.

  7. The N-terminal region of mature mitochondrial aspartate aminotransferase can direct cytosolic dihydrofolate reductase into mitochondria in vitro.

    Science.gov (United States)

    Giannattasio, S; Azzariti, A; Marra, E; Quagliariello, E

    1994-06-30

    Two fused genes were constructed which encode for two chimeric proteins in which either 10 or 191 N-terminal amino acids of mature mitochondrial aspartate aminotransferase had been attached to the entire polypeptide chain of cytosolic dihydrofolate reductase. The precursor and mature form of mitochondrial aspartate aminotransferase, dihydrofolate reductase and both chimeric proteins were synthesized in vitro and their import into isolated mitochondria was studied. Both chimeric proteins were taken up by isolated organelles, where they became protease resistant, thus indicating the ability of the N-terminal portion of the mature moiety of the precursor of mitochondrial aspartate aminotransferase to direct cytosolic dihydrofolate reductase into mitochondria.

  8. Hepatocyte Hyperproliferation upon Liver-Specific Co-disruption of Thioredoxin-1, Thioredoxin Reductase-1, and Glutathione Reductase

    Directory of Open Access Journals (Sweden)

    Justin R. Prigge

    2017-06-01

    Full Text Available Energetic nutrients are oxidized to sustain high intracellular NADPH/NADP+ ratios. NADPH-dependent reduction of thioredoxin-1 (Trx1 disulfide and glutathione disulfide by thioredoxin reductase-1 (TrxR1 and glutathione reductase (Gsr, respectively, fuels antioxidant systems and deoxyribonucleotide synthesis. Mouse livers lacking both TrxR1 and Gsr sustain these essential activities using an NADPH-independent methionine-consuming pathway; however, it remains unclear how this reducing power is distributed. Here, we show that liver-specific co-disruption of the genes encoding Trx1, TrxR1, and Gsr (triple-null causes dramatic hepatocyte hyperproliferation. Thus, even in the absence of Trx1, methionine-fueled glutathione production supports hepatocyte S phase deoxyribonucleotide production. Also, Trx1 in the absence of TrxR1 provides a survival advantage to cells under hyperglycemic stress, suggesting that glutathione, likely via glutaredoxins, can reduce Trx1 disulfide in vivo. In triple-null livers like in many cancers, deoxyribonucleotide synthesis places a critical yet relatively low-volume demand on these reductase systems, thereby favoring high hepatocyte turnover over sustained hepatocyte integrity.

  9. Prevalence of MTHFR C677T Polymorphism in North Indian Mothers Having Babies with Trisomy 21 Down Syndrome

    Science.gov (United States)

    Kohli, Utkarsh; Arora, Sadhna; Kabra, Madhulika; Ramakrishnan, Lakshmy; Gulati, Sheffali; Pandey, Ravindra

    2008-01-01

    Recent studies have evaluated possible links between polymorphisms in maternal folate metabolism genes and Down syndrome. Some of these studies show a significantly increased prevalence of the C677T polymorphism of the 5,10-methylene tetrahydrofolate reductase (NADPH) gene (MTHFR) among mothers who have had babies with Down syndrome. This study…

  10. Genetics Home Reference: 5-alpha reductase deficiency

    Science.gov (United States)

    ... G. New mutations, hotspots, and founder effects in Brazilian patients with steroid 5alpha-reductase deficiency type 2. ... should consult with a qualified healthcare professional . About Selection Criteria for Links Data Files & API Site Map ...

  11. 5,10-Methylene-5,6,7,8-tetrahydrofolate conformational transitions upon binding to thymidylate synthase: molecular mechanics and continuum solvent studies

    Science.gov (United States)

    Jarmuła, Adam; Cieplak, Piotr; Montfort, William R.

    2005-02-01

    We applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) approach to evaluate relative stability of the extended (flat) and C-shaped (bent) solution conformational forms of the 5,10-methylene-5,6,7,8-tetrahydrofolate (mTHF) molecule in aqueous solution. Calculations indicated that both forms have similar free energies in aqueous solution but detailed energy components are different. The bent solution form has lower intramolecular electrostatic and van der Waals interaction energies. The flat form has more favorable solvation free energy and lower contribution from the bond, angle and torsion angle molecular mechanical internal energies. We exploit these results and combine them with known crystallographic data to provide a model for the progressive binding of the mTHF molecule, a natural cofactor of thymidylate synthase (TS), to the complex forming in the TS-catalyzed reaction. We propose that at the time of initial weak binding in the open enzyme the cofactor molecule remains in a close balance between the flat and bent solution conformations, with neither form clearly favored. Later, thymidylate synthase undergoes conformational change leading to the closure of the active site and the mTHF molecule is withdrawn from the solvent. That effect shifts the thermodynamic equilibrium of the mTHF molecule toward the bent solution form. At the same time, burying the cofactor molecule in the closed active site produces numerous contacts between mTHF and protein that render change in the shape of the mTHF molecule. As a result, the bent solution conformer is converted to more strained L-shaped bent enzyme conformer of the mTHF molecule. The strain in the bent enzyme conformation allows for the tight binding of the cofactor molecule to the productive ternary complex that forms in the closed active site, and facilitates the protonation of the imidazolidine N10 atom, which promotes further reaction.

  12. Impact of folate supplementation on the efficacy of sulfadoxine/pyrimethamine in preventing malaria in pregnancy: the potential of 5-methyl-tetrahydrofolate.

    Science.gov (United States)

    Nzila, Alexis; Okombo, John; Molloy, Anne M

    2014-02-01

    Malaria remains the leading cause of mortality and morbidity in children under the age of 5 years and pregnant women. To counterbalance the malaria burden in pregnancy, an intermittent preventive treatment strategy has been developed. This is based on the use of the antifolate sulfadoxine/pyrimethamine, taken at specified intervals during pregnancy, and reports show that this approach reduces the malaria burden in pregnancy. Pregnancy is also associated with the risk of neural tube defects (NTDs), especially in women with low folate status, and folic acid supplementation is recommended in pregnancy to lower the risk of NTDs. Thus, in malaria-endemic areas, pregnant women have to take both antifolate medication to prevent malaria and folic acid to lower the risk of NTDs. However, the concomitant use of folate and antifolate is associated with a decrease in antifolate efficacy, exposing pregnant women to malaria. Thus, there is genuine concern that this strategy may not be appropriate. We have reviewed work carried out on malaria folate metabolism and antifolate efficacy in the context of folate supplementation. This review shows that: (i) the folate supplementation effect on antifolate efficacy is dose-dependent, and folic acid doses required to protect pregnant women from NTDs will not decrease antifolate activity; and (ii) 5-methyl-tetrahydrofolate, the predominant form of folate in the blood circulation, could be administered (even at high dose) concomitantly with antifolate without affecting antifolate efficacy. Thus, strategies exist to protect pregnant women from malaria while maintaining adequate folate levels in the body to reduce the occurrence of NTDs.

  13. Aberrant DNA methylation of the P16, MGMT, and hMLH1 genes in combination with the methylenetetrahydrofolate reductase C677T genetic polymorphism and folate intake in gastric cancer.

    Science.gov (United States)

    Lin, J; Zeng, R M; Li, R N; Cao, W H

    2014-03-24

    Epidemiological studies have indicated that folate metabolism is correlated with increased risk of gastric cancer. Since methylenetetrahydrofolate reductase (MTHFR) is an important enzyme involved in folate metabolism, in this study, we examined whether polymorphisms and haplotypes of MTHFR are correlated with the risk of gastric cancer. The polymorphisms MTHFR C677T and MTHFR A1298C were genotyped by polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) analysis in 285 patients and 570 healthy controls. Association analyses based on binary logistic regression were conducted to determine the odds ratio (OR) and its 95% confidence interval (95%CI) for each genotype. The MTHFR 677TT genotype was significantly related with a reduced risk of gastric cancer (OR = 0.60, 95%CI = 0.39-0.92) compared to the CC genotype. Similarly, the MTHFR 1298CC genotype was significantly associated with a decreased risk of cancer (OR = 0.52, 95%CI = 0.32- 0.81). Haplotype analysis showed that the TC haplotype was associated with a reduced risk of gastric cancer compared to the most common haplotype, CA (OR = 0.28, 95%CI = 0.12-0.60). Our results suggest that the MTHFR C677T and MTHFR A1298C polymorphisms are related to gastric cancer susceptibility in the Chinese population.

  14. Does the interaction between maternal folate intake and the methylenetetrahydrofolate reductase polymorphisms affect the risk of cleft lip with or without cleft palate?

    NARCIS (Netherlands)

    Vermeij-Keers, C.; Kluijtmans, L.A.J.; Ocke, M.C.; Zielhuis, G.A.; Goorhuis-Brouwer, S.M.; Biezen, J.J. van der; Kuijpers-Jagtman, A.M.; Steegers-Theunissen, R.P.M.

    2003-01-01

    Periconceptional folic acid supplementation may reduce the risk of cleft lip with or without cleft palate (CL(P)). Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene reduce availability of 5-methyltetrahydrofolate, the predominant circulating form of folate. To determine the

  15. The association of gastric cancer risk with plasma folate, cobalamin, and Methylenetetrahydrofolate reductase polymorphisms in the European prospective investigation into cancer and nutrition

    NARCIS (Netherlands)

    Vollset, Stein Emil; Igland, Jannicke; Jenab, Mazda; Fredriksen, Ase; Meyer, Klaus; Eussen, Simone; Gjessing, Hakon K.; Ueland, Per Magne; Pera, Guillem; Sala, Nuria; Agudo, Antonio; Capella, Gabriel; Del Giudice, Giuseppe; Palli, Domenico; Boeing, Heiner; Weikert, Cornelia; Bueno-de-Mesquita, H. Bas; Carneiro, Fatima; Pala, Valeria; Vineis, Paolo; Tumino, Rosario; Panico, Salvatore; Berglund, Goran; Manjer, Jonas; Stenling, Roger; Hallmans, Goran; Martinez, Carmen; Dorronsoro, Miren; Barricarte, Aurelio; Navarro, Carmen; Quiros, Jose R.; Allen, Naomi; Key, Timothy J.; Bingham, Sheila; Linseisen, Jakob; Kaaks, Rudolf; Overvad, Kim; Tjonneland, Anne; Buchner, Frederike L.; Peeters, Petra H. M.; Numans, Mattijs E.; Clavel-Chapelon, Francoise; Boutron-Ruault, Marie-Christine; Trichopoulou, Antonia; Lund, Eiliv; Slimani, Nadia; Ferrari, Pietro; Riboli, Elio; Gonzalez, Carlos A.

    2007-01-01

    Previous studies have shown inconsistent associations of folate intake and polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene with gastric cancer risk. Our nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort is the first

  16. The association of gastric cancer risk with plasma folate, cobalamin, and methylenetetrahydrofolate reductase polymorphisms in the European Prospective Investigation into Cancer and Nutrition.

    NARCIS (Netherlands)

    Vollset, S.E.; Igland, J.; Jenab, M.; Fredriksen, A.; Meyer, K.; Eussen, S.; Gjessing, H.K.; Ueland, P.M.; Pera, G.; Sala, N.; Agudo, A.; Capella, G.; Giudice, G. Del; Palli, D.; Boeing, H.; Weikert, C.; Bueno-De-Mesquita, H.B.; Carneiro, F.; Pala, V.; Vineis, P.; Tumino, R.; Panico, S.; Berglund, G.; Manjer, J.; Stenling, R.; Hallmans, G.; Martinez, C.; Dorronsoro, M.; Barricarte, A.; Navarro, C.; Quiros, J.R.; Allen, N.; Key, T.J.; Bingham, S.; Linseisen, J.; Kaaks, R.; Overvad, K.; Tjonneland, A.; Buchner, F.L.; Peeters, P.H.; Numans, M.E.; Clavel-Chapelon, F.; Boutron-Ruault, M.C.; Trichopoulou, A.; Lund, E.; Slimani, N.; Ferrari, P.; Riboli, E.; Gonzalez, C.A.

    2007-01-01

    Previous studies have shown inconsistent associations of folate intake and polymorphisms of the methylenetetrahydrofolate reductase (MTHFR) gene with gastric cancer risk. Our nested case-control study within the European Prospective Investigation into Cancer and Nutrition cohort is the first

  17. Characterization of the quinine reductase activity of the ferrice reductase B protein from Paracoccus denitrificans.

    NARCIS (Netherlands)

    Sedlacek, V.; van Spanning, R.J.M.; Kucera, I.

    2009-01-01

    The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates,

  18. A soluble 3-hydroxy-3-methylglutaryl-CoA reductase in the protozoan Trypanosoma cruzi

    DEFF Research Database (Denmark)

    Pena Diaz, Javier; Montalvetti, A; Camacho, A

    1997-01-01

    We report the isolation and characterization of a genomic clone containing the open reading frame sequence for 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase from Trypanosoma cruzi, the causative agent of Chagas' disease. The protozoan gene encoded for a smaller polypeptide than the rest...... sensitive to proteolytic inactivation. Furthermore the enzyme can be efficiently overexpressed in a highly active form by using the expression vector pET-11c. Thus Trypanosoma cruzi HMG-CoA reductase is unique in the sense that it totally lacks the membrane-spanning sequences present in all eukaryotic HMG...... cellular distribution of enzymic activity was investigated after differential centrifugation of Trypanosoma cell extracts. Reductase activity was primarily associated with the cellular soluble fraction because 95% of the total cellular activity was recovered in the supernatant and was particularly...

  19. Pancreaticobiliary cancers with deficient methylenetetrahydrofolate reductase genotypes.

    Science.gov (United States)

    Matsubayashi, Hiroyuki; Skinner, Halcyon G; Iacobuzio-Donahue, Christine; Abe, Tadayoshi; Sato, Norihiro; Riall, Taylor Sohn; Yeo, Charles J; Kern, Scott E; Goggins, Michael

    2005-08-01

    Methyl group deficiency might promote carcinogenesis by inducing DNA breaks and DNA hypomethylation. We hypothesized that deficient methylenetetrahydrofolate reductase (MTHFR) genotypes could promote pancreatic cancer development. First, we performed a case-control study of germline MTHFR polymorphisms (C677T, A1298C) in 303 patients with pancreatic cancer and 305 matched control subjects. Pancreatic neoplasms frequently lose an MTHFR allele during tumorigenesis; we hypothesized that such loss could promote carcinogenesis. We therefore evaluated the cancer MTHFR genotypes of 82 patients with pancreaticobiliary cancers and correlated them to genome-wide measures of chromosomal deletion by using 386 microsatellite markers. Finally, MTHFR genotypes were correlated with global DNA methylation in 68 cancer cell lines. Germline MTHFR polymorphisms were not associated with an increased likelihood of having pancreatic cancer. Fractional allelic loss (a measure of chromosomal loss) trended higher in cancers with 677T genotypes than in cancers with other genotypes (P = .055). Among cancers with loss of an MTHFR allele, cancers with 677T MTHFR alleles had more deletions at folate-sensitive fragile sites (36.9%) and at tumor suppressor gene loci (68.5%) than 677C cancers (28.7% and 47.8%, P = .079 and .014, respectively). LINE1 methylation was lower in cancers with less functional 677T/TT genotypes (24.4%) than in those with 677CT (26.0%) and CC/C genotypes (32.5%) (P = .014). Cancers with defective MTHFR genotypes have more DNA hypomethylation and more chromosomal losses. Deficient MTHFR function due to loss of an MTHFR allele by an evolving neoplasm might, by promoting chromosomal losses, accelerate cancer development.

  20. Characterisation of a desmosterol reductase involved in phytosterol dealkylation in the silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Leonora F Ciufo

    Full Text Available Most species of invertebrate animals cannot synthesise sterols de novo and many that feed on plants dealkylate phytosterols (mostly C(29 and C(28 yielding cholesterol (C(27. The final step of this dealkylation pathway involves desmosterol reductase (DHCR24-catalysed reduction of desmosterol to cholesterol. We now report the molecular characterisation in the silkworm, Bombyx mori, of such a desmosterol reductase involved in production of cholesterol from phytosterol, rather than in de novo synthesis of cholesterol. Phylogenomic analysis of putative desmosterol reductases revealed the occurrence of various clades that allowed for the identification of a strong reductase candidate gene in Bombyx mori (BGIBMGA 005735. Following PCR-based cloning of the cDNA (1.6 kb and its heterologous expression in Saccharomyces cerevisae, the recombinant protein catalysed reduction of desmosterol to cholesterol in an NADH- and FAD-dependent reaction.Conceptual translation of the cDNA, that encodes a 58.9 kDa protein, and database searching, revealed that the enzyme belongs to an FAD-dependent oxidoreductase family. Western blotting revealed reductase protein expression exclusively in the microsomal subcellular fraction and primarily in the gut. The protein is peripherally associated with microsomal membranes. 2D-native gel and PAGE analysis revealed that the reductase is part of a large complex with molecular weight approximately 250 kDa. The protein occurs in midgut microsomes at a fairly constant level throughout development in the last two instars, but is drastically reduced during the wandering stage in preparation for metamorphosis. Putative Broad Complex transcription factor-binding sites detectable upstream of the DHCR24 gene may play a role in this down-regulation.

  1. Association of PHB 1630 C>T and MTHFR 677 C>T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers

    DEFF Research Database (Denmark)

    Jakubowska, A; Rozkrut, D; Antoniou, A

    2012-01-01

    The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or...

  2. Homocysteine and coronary heart disease: meta-analysis of MTHFR case-control studies, avoiding publication bias

    NARCIS (Netherlands)

    Clarke, Robert; Bennett, Derrick A.; Parish, Sarah; Verhoef, Petra; Dötsch-Klerk, Mariska; Lathrop, Mark; Xu, Peng; Nordestgaard, Børge G.; Holm, Hilma; Hopewell, Jemma C.; Saleheen, Danish; Tanaka, Toshihiro; Anand, Sonia S.; Chambers, John C.; Kleber, Marcus E.; Ouwehand, Willem H.; Yamada, Yoshiji; Elbers, Clara; Peters, Bas; Stewart, Alexandre F. R.; Reilly, Muredach M.; Thorand, Barbara; Yusuf, Salim; Engert, James C.; Assimes, Themistocles L.; Kooner, Jaspal; Danesh, John; Watkins, Hugh; Samani, Nilesh J.; Collins, Rory; Peto, Richard; Holm, H.; Thorsteinsdottir, U.; Gretarsdottir, S.; Gulcher, J. R.; Thorgeirsson, G.; Andersen, K.; Stefansson, K.; Parish, S.; Bennett, D. A.; Clarke, R.; Peto, R.; Sleight, P.; Collins, R.; Hopewell, J. C.; Watkins, H.; Saleheen, D.; Danesh, J.; Rasheed, A.; Zaidi, M.; Frossard, P.; Shah, N.; Samuel, M.; Tanaka, T.; Ozaki, K.; Sato, H.; Sakata, Y.; Komuro, I.; Anand, S. S.; Yusuf, S.; Engert, J. C.; Chambers, J.; Kooner, J.; Armitage, J.; Samani, N. J.; Braund, P. S.; Nelson, C. P.; Hall, A. S.; Balmforth, A.; Ball, S. G.; Kleber, M. E.; Hoffmann, M. M.; März, W. A.; Bugert, P.; Winkelmann, B.; Böhm, B. O.; Ouwehand, W. H.; Sivapalaratnam, S.; Kastelein, J. J.; Trip, M. D.; Bezzina, C. R.; Ouwehand, W.; Yamada, Y.; Elbers, C. C.; Onland-Moret, N. C.; Bauer, F.; van der Schouw, Y. T.; Verschuren, W. M.; de Boer, J. M.; Wijmenga, C.; Hofker, M. H.; de Bakker, P. I. W.; Peters, B. J. M.; Maitland-van der Zee, A. H.; de Boer, A. [=Anthonius; Klungel, O. H.; Grobbee, D. E.; Stewart, A. F. R.; Roberts, R.; McPherson, R.; Chen, L.; Wells, G. A.; Reilly, M. M.; Li, M.; Qu, I.; Rader, D. J.; Thorand, B.; Illig, T.; Peters, A.; Koenig, W.; Assimes, T. L.; Fortmann, S.; Iribarren, C.; Abbate, R.; Marcucci, R.; Anderson, J. L.; Zebrack, J. S.; Ardissino, D.; Merlini, F. M.; Bonomi, A. B.; Ashfield-Watt, P. A. L.; Clark, Z. E.; van Bockxmeer, F. M.; Brownrigg, L.; Kooner, J. S.; Ferrer-Antunes, C.; Palmeiro, A.; Fernandez-Arcas, N.; Reyes-Engel, A.; Folsom, A. R.; Fowkes, F. G. R.; Lee, A. J.; Gaziano, J. M.; Gemmati, D.; Scapoli, G. L.; Genest, J.; Rozen, R.; Girelli, D.; Corrocher, R.; Rossi, G. B.; Meleady, R.; Graham, I. M.; Gulec, S.; Hopkins, P. N.; Inbal, A.; Selighson, U.; Jukema, J. W.; Litynsky, P.; Kluijtmans, L. A. J.; Kozich, V.; Janosikova, B.; Ma, J.; Stampfer, M. J.; Malinow, M. R.; Meisel, C.; Stangl, K.; Morita, H.; Nagai, R.; Nakai, K.; Nordestgaard, B. G.; Zacho, J.; Rimm, E. B.; Schwartz, S. M.; Siscovick, D. S.; Silberberg, J. S.; Szczeklik, A.; Domagala, B. T.; Tanis, B. C.; Rosendaal, F. M.; Thogersen, A. M.; Nilsson, T. K.; Todesco, L.; Tokgozoglu, S. L.; Tsai, M. Y.; Hanson, N. Q.; Verhoeff, B. J.; Yamakawa-Kobayashi, K.; Hamaguchi, H.

    2012-01-01

    Moderately elevated blood levels of homocysteine are weakly correlated with coronary heart disease (CHD) risk, but causality remains uncertain. When folate levels are low, the TT genotype of the common C677T polymorphism (rs1801133) of the methylene tetrahydrofolate reductase gene (MTHFR)

  3. Association of PHB 1630 C > T and MTHFR 677 C > T polymorphisms with breast and ovarian cancer risk in BRCA1/2 mutation carriers: results from a multicenter study

    NARCIS (Netherlands)

    Jakubowska, A.; Rozkrut, D.; Antoniou, A.; Hamann, U.; Scott, R. J.; McGuffog, L.; Healy, S.; Sinilnikova, O. M.; Rennert, G.; Lejbkowicz, F.; Flugelman, A.; Andrulis, I. L.; Glendon, G.; Ozcelik, H.; Thomassen, M.; Paligo, M.; Aretini, P.; Kantala, J.; Aroer, B.; Von Wachenfeldt, A.; Liljegren, A.; Loman, N.; Herbst, K.; Kristoffersson, U.; Rosenquist, R.; Karlsson, P.; Stenmark-Askmalm, M.; Melin, B.; Nathanson, K. L.; Domchek, S. M.; Byrski, T.; Huzarski, T.; Gronwald, J.; Menkiszak, J.; Cybulski, C.; Serrano, P.; Osorio, A.; Cajal, T. R.; Tsitlaidou, M.; Benítez, J.; Gilbert, M.; Rookus, M.; Aalfs, C. M.; Kluijt, I.; Boessenkool-Pape, J. L.; Meijers-Heijboer, H. E. J.; Oosterwijk, J. C.; van Asperen, C. J.; Blok, M. J.; Nelen, M. R.; van den Ouweland, A. M. W.; Seynaeve, C.; van der Luijt, R. B.; Devilee, P.; Easton, D. F.; Peock, S.; Frost, D.; Platte, R.; Ellis, S. D.; Fineberg, E.; Evans, D. G.; Lalloo, F.; Eeles, R.; Jacobs, C.; Adlard, J.; Davidson, R.; Eccles, D.; Cole, T.; Cook, J.; Godwin, A.; Bove, B.; Stoppa-Lyonnet, D.; Caux-Moncoutier, V.; Belotti, M.; Tirapo, C.; Mazoyer, S.; Barjhoux, L.; Boutry-Kryza, N.; Pujol, P.; Coupier, I.; Peyrat, J.-P.; Vennin, P.; Muller, D.; Fricker, J.-P.; Venat-Bouvet, L.; Johannsson, O. Th; Isaacs, C.; Schmutzler, R.; Wappenschmidt, B.; Meindl, A.; Arnold, N.; Varon-Mateeva, R.; Niederacher, D.; Sutter, C.; Deissler, H.; Preisler-Adams, S.; Simard, J.; Soucy, P.; Durocher, F.; Chenevix-Trench, G.; Beesley, J.; Chen, X.; Rebbeck, T.; Couch, F.; Wang, X.; Lindor, N.; Fredericksen, Z.; Pankratz, V. S.; Peterlongo, P.; Bonanni, B.; Fortuzzi, S.; Peissel, B.; Szabo, C.; Mai, P. L.; Loud, J. T.; Lubinski, J.; Peock, Susan; Frost, Debra; Platte, Radka; Ellis, Steve D.; Fineberg, Elena; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; Ong, Kai-Ren; Hoffman, Jonathan; Donaldson, Alan; James, Margaret; Paterson, Joan; Downing, Sarah; Taylor, Amy; Murray, Alexandra; Rogers, Mark T.; McCann, Emma; Kennedy, M. John; Barton, David; Porteous, Mary; Drummond, Sarah; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Davidson, Rosemarie; Murday, Victoria; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Haque, Eshika; Tobias, Ed; Duncan, Alexis; Izatt, Louise; Jacobs, Chris; Langman, Caroline; Whaite, Anna; Dorkins, Huw; Barwell, Julian; Adlard, Julian; Chu, Carol; Miller, Julie; Ellis, Ian; Houghton, Catherine; Evans, D. Gareth; Lalloo, Fiona; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Douglas, Fiona; Claber, Oonagh; Jobson, Irene; Walker, Lisa; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anita; Robertson, Lisa; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Sinilnikova, Olga; Mazoyer, Sylvie; Barjhoux, Laure; Verny-Pierre, Carole; Giraud, Sophie; Léone, Mélanie; Stoppa-Lyonnet, Dominique; Gauthier-Villars, Marion; Buecher, Bruno; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; Tirapo, Carole; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Sobol, Hagay; Bourdon, Violaine; Noguchi, Tetsuro; Remenieras, Audrey; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Pujol, Pascal; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Barouk-Simonet, Emmanuelle; Bonnet, Françoise; Bubien, Virginie; Sevenet, Nicolas; Longy, Michel; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Peysselon, Magalie; Coron, Fanny; Faivre, Laurence; Prieur, Fabienne; Lebrun, Marine; Kientz, Caroline; Ferrer, Sandra Fert; Frénay, Marc; Vénat-Bouvet, Laurence; Delnatte, Capucine; Mortemousque, Isabelle; Lynch, Henry T.; Snyder, Carrie L.; Hogervorst, F. B. L.; Verhoef, S.; Verheus, M.; van't Veer, L. J.; van Leeuwen, F. E.; Rookus, M. A.; Collée, M.; Jager, A.; Hooning, M. J.; Tilanus-Linthorst, M. M. A.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Ligtenberg, M. J.; Hoogerbrugge, N.; Ausems, M. G.; van Os, T. A.; Gille, J. J. P.; Waisfisz, Q.; Gomez-Garcia, E. B.; van Roozendaal, C. E.; Blok, Marinus J.; Caanen, B.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Szabo, C. I.; Zikan, Michal; Pohlreich, Petr; Kleibl, Zdenek; Foretova, Lenka; Eva, Machackova; Miroslava, Lukesova; Claes, Kathleen; de Leeneer, Kim; Poppe, Bruce; de Paepe, Anne; Karlsson, Per; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Liedgren, Sigrun; Borg, Ake; Loman, Niklas; Olsson, Håkan; Soller, Maria; Jernström, Helena; Harbst, Katja; Henriksson, Karin; Lindblom, Annika; Arver, Brita; von Wachenfeldt, Anna; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Melin, Beatrice; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist, Richard; Dahl, Niklas

    2012-01-01

    BACKGROUND: The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either

  4. Respiratory arsenate reductase as a bidirectional enzyme

    Science.gov (United States)

    Richey, C.; Chovanec, P.; Hoeft, S.E.; Oremland, R.S.; Basu, P.; Stolz, J.F.

    2009-01-01

    The haloalkaliphilic bacterium Alkalilimnicola ehrlichii is capable of anaerobic chemolithoautotrophic growth by coupling the oxidation of arsenite (As(III)) to the reduction of nitrate and carbon dioxide. Analysis of its complete genome indicates that it lacks a conventional arsenite oxidase (Aox), but instead possesses two operons that each encode a putative respiratory arsenate reductase (Arr). Here we show that one homolog is expressed under chemolithoautotrophic conditions and exhibits both arsenite oxidase and arsenate reductase activity. We also demonstrate that Arr from two arsenate respiring bacteria, Alkaliphilus oremlandii and Shewanella sp. strain ANA-3, is also biochemically reversible. Thus Arr can function as a reductase or oxidase. Its physiological role in a specific organism, however, may depend on the electron potentials of the molybdenum center and [Fe–S] clusters, additional subunits, or constitution of the electron transfer chain. This versatility further underscores the ubiquity and antiquity of microbial arsenic metabolism.

  5. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography.

    Science.gov (United States)

    Wan, Qun; Bennett, Brad C; Wilson, Mark A; Kovalevsky, Andrey; Langan, Paul; Howell, Elizabeth E; Dealwis, Chris

    2014-12-23

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to a lack of consensus regarding the catalytic mechanism involved. To resolve this ambiguity, we conducted neutron and ultrahigh-resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of Escherichia coli DHFR with folate and NADP(+). The neutron data were collected to 2.0-Å resolution using a 3.6-mm(3) crystal with the quasi-Laue technique. The structure reveals that the N3 atom of folate is protonated, whereas Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer owing to protonation of the N3 atom, suggesting that tautomerization is unnecessary for catalysis. In the 1.05-Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa value of the N5 atom of DHF by Asp27, and protonation of N5 by water that gains access to the active site through fluctuation of the Met20 side chain even though the Met20 loop is closed.

  6. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.

    Science.gov (United States)

    Oyen, David; Fenwick, R Bryn; Stanfield, Robyn L; Dyson, H Jane; Wright, Peter E

    2015-07-29

    The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP(+) and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants.

  7. The Polymorphisms in Methylenetetrahydrofolate Reductase, Methionine Synthase, Methionine Synthase Reductase, and the Risk of Colorectal Cancer

    Science.gov (United States)

    Zhou, Daijun; Mei, Qiang; Luo, Han; Tang, Bo; Yu, Peiwu

    2012-01-01

    Polymorphisms in genes involved in folate metabolism may modulate the risk of colorectal cancer (CRC), but data from published studies are conflicting. The current meta-analysis was performed to address a more accurate estimation. A total of 41 (17,552 cases and 26,238 controls), 24(8,263 cases and 12,033 controls), 12(3,758 cases and 5,646 controls), and 13 (5,511 cases and 7,265 controls) studies were finally included for the association between methylenetetrahydrofolate reductase (MTHFR) C677T and A1289C, methione synthase reductase (MTRR) A66G, methionine synthase (MTR) A2756G polymorphisms and the risk of CRC, respectively. The data showed that the MTHFR 677T allele was significantly associated with reduced risk of CRC (OR = 0.93, 95%CI 0.90-0.96), while the MTRR 66G allele was significantly associated with increased risk of CRC (OR = 1.11, 95%CI 1.01-1.18). Sub-group analysis by ethnicity revealed that MTHFR C677T polymorphism was significantly associated with reduced risk of CRC in Asians (OR = 0.80, 95%CI 0.72-0.89) and Caucasians (OR = 0.84, 95%CI 0.76-0.93) in recessive genetic model, while the MTRR 66GG genotype was found to significantly increase the risk of CRC in Caucasians (GG vs. AA: OR = 1.18, 95%CI 1.03-1.36). No significant association was found between MTHFR A1298C and MTR A2756G polymorphisms and the risk of CRC. Cumulative meta-analysis showed no particular time trend existed in the summary estimate. Probability of publication bias was low across all comparisons illustrated by the funnel plots and Egger's test. Collectively, this meta-analysis suggested that MTHFR 677T allele might provide protection against CRC in worldwide populations, while MTRR 66G allele might increase the risk of CRC in Caucasians. Since potential confounders could not be ruled out completely, further studies were needed to confirm these results. PMID:22719222

  8. Characterization of the chlorate reductase from Pseudomonas chloritidismutans

    NARCIS (Netherlands)

    Wolterink, A.F.W.M.; Schiltz, E.; Hagedoorn, P.L.; Hagen, W.R.; Kengen, S.W.M.; Stams, A.J.M.

    2003-01-01

    A chlorate reductase has been purified from the chlorate-reducing strain Pseudomonas chloritidismutans. Comparison with the periplasmic (per)chlorate reductase of strain GR-1 showed that the cytoplasmic chlorate reductase of P. chloritidismutans reduced only chlorate and bromate. Differences were

  9. 21 CFR 864.7375 - Glutathione reductase assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glutathione reductase assay. 864.7375 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7375 Glutathione reductase assay. (a) Identification. A glutathione reductase assay is a device used to determine the...

  10. 5{alpha}-reductase expression by prostate cancer cell lines and benign prostatic hyperplasia in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.; Masters, J.R.W. [Univ. College of London (United Kingdom)]|[Pfizer Central Research, Kent (United Kingdom); Ballard, S.A.; Worman, N. [Pfizer Central Research, Sandwich (United Kingdom)

    1996-04-01

    5{alpha}-Reductase (5{alpha}R) activity in two human prostate cancer cell lines was compared to that in benign prostatic hyperplasia (BPH) tissue and COS cells transfected with and expressing the human genes for 5{alpha}-reductase type 1 (5{alpha}R1) and type 2 (5{alpha}R2). Comparisons were based on pH profiles and sensitivities to selective inhibitors of 5{alpha}-reductase. In the cancer lines, activity was greatest over the pH range 7-8, compared to a sharp peak of activity between pH 5-5.5 in BPH tissue and COS cells expressing 5{alpha}R2. Finasteride and SKF105,657 were potent inhibitors of 5{alpha}-reductase activity in BPH tissue and COS cells expressing 5{alpha}R2, but weak inhibitors in the cancer lines and in COS cells expressing 5{alpha}R1. In contrast, LTK1 17,026 was a more potent inhibitor of 5{alpha}-reductase activity in the prostate cancer cell lines and in COS cells expressing 5{alpha}R1. These data indicate that human prostate cancer cell lines express 5{alpha}-reductase activity similar to that in COS cells transfected with 5{alpha}R1, but different from that in BPH tissue. This may be a consequence of in vitro culture. Alternatively, it may reflect a change occurring as a result of neoplastic transformation, in which case it will be important to select appropriate inhibitors in the clinic. 29 refs., 3 figs., 2 tabs.

  11. Physiological Roles for Two Periplasmic Nitrate Reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025)▿

    Science.gov (United States)

    Hartsock, Angela; Shapleigh, James P.

    2011-01-01

    The metabolically versatile purple bacterium Rhodobacter sphaeroides 2.4.3 is a denitrifier whose genome contains two periplasmic nitrate reductase-encoding gene clusters. This work demonstrates nonredundant physiological roles for these two enzymes. One cluster is expressed aerobically and repressed under low oxygen while the second is maximally expressed under low oxygen. Insertional inactivation of the aerobically expressed nitrate reductase eliminated aerobic nitrate reduction, but cells of this strain could still respire nitrate anaerobically. In contrast, when the anaerobic nitrate reductase was absent, aerobic nitrate reduction was detectable, but anaerobic nitrate reduction was impaired. The aerobic nitrate reductase was expressed but not utilized in liquid culture but was utilized during growth on solid medium. Growth on a variety of carbon sources, with the exception of malate, the most oxidized substrate used, resulted in nitrite production on solid medium. This is consistent with a role for the aerobic nitrate reductase in redox homeostasis. These results show that one of the nitrate reductases is specific for respiration and denitrification while the other likely plays a role in redox homeostasis during aerobic growth. PMID:21949073

  12. Methylenetetrahydrofolate reductase A1298C polymorphism and ...

    African Journals Online (AJOL)

    Methylenetetrahydrofolate reductase A1298C polymorphism and breast cancer risk: A meta analysis of 33 studies. ... were searched for case‑control studies relating the association between MTHFR A1298C polymorphism and BC risk and estimated summary odds ratios (ORs) with confidence intervals (CIs) for assessment.

  13. Promiscuity and diversity in 3-ketosteroid reductases

    Science.gov (United States)

    Penning, Trevor M.; Chen, Mo; Jin, Yi

    2014-01-01

    Many steroid hormones contain a Δ4-3-ketosteroid functionality that undergoes sequential reduction by 5α- or 5β- steroid reductases to produce 5α- or 5β-dihydrosteroids; and a subsequent 3-keto-reduction to produce a series of isomeric tetrahydrosteroids. Apart from steroid 5α-reductase all the remaining enzymes involved in the two step reduction process in humans belong to the aldo-keto reductase (AKR) superfamily. The enzymes involved in 3-ketosteroid reduction are AKR1C1–AKR1C4. These enzymes are promiscuous and also catalyze 20-keto- and 17-keto-steroid reduction. Interest in these reactions exist since they regulate steroid hormone metabolism in the liver, and in steroid target tissues, they may regulate steroid hormone receptor occupancy. In addition many of the dihydrosteroids are not biologically inert. The same enzymes are also involved in the metabolism of synthetic steroids e.g., hormone replacement therapeutics, contraceptive agents and inhaled glucocorticoids, and may regulate drug efficacy at their cognate receptors. This article reviews these reactions and the structural basis for substrate diversity in AKR1C1–AKR1C4, ketosteroid reductases. This article is part of a Special Issue entitled ‘Steroid/Sterol signaling’. PMID:25500069

  14. Differential nitrate accumulation, nitrate reduction, nitrate reductase ...

    African Journals Online (AJOL)

    Differential nitrate accumulation, nitrate reduction, nitrate reductase activity, protein production and carbohydrate biosynthesis in response to potassium and sodium ... due to the positive effects of potassium on the enzyme activity, sugars transport, water and nutrient transport, protein synthesis and carbohydrate metabolism.

  15. Two Greek siblings with sepiapterin reductase deficiency.

    NARCIS (Netherlands)

    Verbeek, M.M.; Willemsen, M.A.A.P.; Wevers, R.A.; Lagerwerf, A.J.; Abeling, N.G.; Blau, N.; Thony, B.; Vargiami, E.; Zafeiriou, D.I.

    2008-01-01

    BACKGROUND: Sepiapterin reductase (SR) deficiency is a rare inherited disorder of neurotransmitter metabolism; less than 25 cases have been described in the literature so far. METHODS: We describe the clinical history and extensive cerebrospinal fluid (CSF) and urine examination of two Greek

  16. Xylose reductase from the thermophilic fungus Talaromyces ...

    Indian Academy of Sciences (India)

    Given the potential application of xylose reductase enzymes that preferentially utilize the reduced form of nicotinamide adenine dinucleotide (NADH) rather than NADPH in the fermentation of five carbon sugars by genetically engineered microorganisms, the coenzyme selectivity of TeXR was altered by site-directed ...

  17. Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase ...

    Indian Academy of Sciences (India)

    Clipboard: Lymphohematopoietic licence: Sterol C-14 reductase activity of lamin B receptor (Lbr) is essential for neutrophil differentiation. Durgadas P Kasbekar. Volume 37 ... Keywords. Greenberg/HEM dysplasia; lymphohematopoietic progenitor cells; nuclear envelope; Pelger-Huët anomaly; promyelocyte differentiation ...

  18. Individualized supplementation of folic acid according to polymorphisms of methylenetetrahydrofolate reductase (MTHFR), methionine synthase reductase (MTRR) reduced pregnant complications.

    Science.gov (United States)

    Li, Xiujuan; Jiang, Jing; Xu, Min; Xu, Mei; Yang, Yan; Lu, Wei; Yu, Xuemei; Ma, Jianlin; Pan, Jiakui

    2015-01-01

    This study aimed to detect the genotype distributions and allele frequencies of methylenetetrahydrofolate reductase (MTHFR) C677T, A1298C and methionine synthase reductase (MTRR) A66G polymorphisms of pregnant women in Jiaodong region in China, and to investigate whether folic acid supplementation affect the pregnancy complications. A total of 7,812 pregnant women from the Jiaodong region in Shandong province in China. By using Taqman-MGB, 2,928 pregnant women (case group) were tested for the genotype distributions and allele frequencies of MTHFR C677T, A1298C and MTRR A66G polymorphisms. Folic acid metabolism ability was ranked at four levels and then pregnant women in different rank group were supplemented with different doses of folic acid. Their pregnancy complications were followed up and compared with 4,884 pregnant women without folic acid supplementation (control group) in the same hospital. The allele frequencies of MTHFR C677T were 49.1 and 50.9%; those of MTHFR A1298C were 80.2 and 19.8%, and those of MTRR A66G were 74.1 and 25.9%. After supplemented with folic acid, the complication rates in different age groups were significantly reduced, especially for gestational diabetes mellitus and hypertension. Periconceptional folic acid supplementation and healthcare following gene polymorphism testing may be a powerful measure to decrease congenital malformations. © 2015 S. Karger AG, Basel.

  19. Age and Obesity Promote Methylation and Suppression of 5α-Reductase 2: Implications for Personalized Therapy of Benign Prostatic Hyperplasia.

    Science.gov (United States)

    Bechis, Seth K; Otsetov, Alexander G; Ge, Rongbin; Wang, Zongwei; Vangel, Mark G; Wu, Chin-Lee; Tabatabaei, Shahin; Olumi, Aria F

    2015-10-01

    In men with symptomatic benign prostatic hyperplasia 5α-reductase inhibitors are a main modality of treatment. More than 30% of men do not respond to the therapeutic effects of 5α-reductase inhibitors. We have found that a third of adult prostate samples do not express 5α-reductase type 2 secondary to epigenetic modifications. We evaluated whether 5α-reductase type 2 expression in benign prostatic hyperplasia specimens from symptomatic men was linked to methylation of the 5α-reductase type 2 gene promoter. We also identified associations with age, obesity, cardiac risk factors and prostate specific antigen. Prostate samples from men undergoing transurethral prostate resection were used. We determined 5α-reductase type 2 protein expression and gene promoter methylation status by common assays. Clinical variables included age, body mass index, hypertension, hyperlipidemia, diabetes, prostate specific antigen and prostate volume. Univariate and multivariate statistical analyses were performed followed by stepwise logistic regression modeling. Body mass index and age significantly correlated with methylation of the 5α-reductase type 2 gene promoter (p age and body mass index significantly predicted methylation status and protein expression (p age and body mass index correlate with increased 5α-reductase type 2 gene promoter methylation and decreased protein expression in men with symptomatic benign prostatic hyperplasia. These results highlight the interplay among age, obesity and gene regulation. Our findings suggest an individualized epigenetic signature for symptomatic benign prostatic hyperplasia, which may be important to choose appropriate personalized treatment options. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Molecular cloning and characterization of a novel Dehydrogenase/reductase (SDR family) member 1 genea from human fetal brain.

    Science.gov (United States)

    Wu, Q; Xu, M; Cheng, C; Zhou, Z; Huang, Y; Zhao, W; Zeng, L; Xu, J; Fu, X; Ying, K; Xie, Y; Mao, Y

    2001-01-01

    Short-chain dehydrogenases/reductases (SDR) constitute a large protein family of NAD(P)(H)-dependent oxidoreductase. They are defined by distinct, common sequence motifs and show a wide range of substrate specialisms. By large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a novel human SDR-type dehydrogenase/reductase gene named Dehydrogenase/reductase (SDR family) member 1 (DHRS1). The DHRS1 cDNA is 1411 base pair in length, encoding a 314-amino-acid polypeptide which has a SDR motif. Northern blot reveals two bands, of about 0.9 and 1.4 kb in size. These two forms are expressed in many tissues. The DHRS1 gene is localized on chromosome 14q21.3. It has 9 exons and spans 9.2 kb of the genomic DNA.

  1. B-vitamins, methylenetetrahydrofolate reductase (MTHFR) and hypertension.

    Science.gov (United States)

    Ward, Mary; Wilson, Carol P; Strain, J J; Horigan, Geraldine; Scott, John M; McNulty, Helene

    2011-07-01

    Hypertension is a leading risk factor for cardiovascular disease (CVD) and stroke. A common polymorphism in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR), previously identified as the main genetic determinant of elevated homocysteine concentration and also recognized as a risk factor for CVD, appears to be independently associated with hypertension. The B-vitamin riboflavin is required as a cofactor by MTHFR and recent evidence suggests it may have a role in modulating blood pressure, specifically in those with the homozygous mutant MTHFR 677 TT genotype. If studies confirm that this genetic predisposition to hypertension is correctable by low-dose riboflavin, the findings could have important implications for the management of hypertension given that the frequency of this polymorphism ranges from 3 to 32 % worldwide.

  2. Longevity is independent of common variations in genes associated with cardiovascular risk

    DEFF Research Database (Denmark)

    Bladbjerg, E M; Andersen-Ranberg, K; Maat, M de

    1999-01-01

    fibrinogen (-455G/A), plasminogen activator inhibitor type 1, PAI-1 (-675(4G/5G)), tissue plasminogen activator, t-PA (intron 8 ins311), platelet receptor glycoprotein IIb/IIIa, GPIIb/IIIa (L/P33), prothrombin (20210G/A), methylene tetrahydrofolate reductase, MTHFR (A/V114), angiotensin converting enzyme......-specific amplification followed by agarose gel electrophoresis. The frequencies of the high-risk alleles in centenarians were: for FVII R/Q353 0.91; for FVII intron 7 (37bp)n 0.67; for FVII-323 ins10 0.90; for fibrinogen 0.16; for PAI-1 0.52; for t-PA 0.59; for GPIIb/IIIa 0.16; for prothrombin 0.008; for MTHFR 0...

  3. Steroid 5alpha-reductase inhibitors.

    Science.gov (United States)

    Flores, Eugenio; Bratoeff, Eugene; Cabeza, Marisa; Ramirez, Elena; Quiroz, Alexandra; Heuze, Ivonne

    2003-05-01

    The objective of this study is to synthesize new steroidal compounds based on the progesterone skeleton with a high inhibitory activity for the enzyme 5alpha-reductase. Presently similar compounds are being used for the treatment of androgen dependent diseases such as: hirsutism, androgenic alopecia, bening prostatic hyperplasia and prostate cancer. Dihydrotestosterone 2 (Fig. (1)), a 5alpha-reduced metabolite of testosterone 1 has been implicated as a causative factor in the progression of these diseases, largely through the clinical evaluation of males who are genetically deficient of steroid 5alpha-reductase enzyme. As a result of this study, the inhibition of this enzyme has become a pharmacological strategy for the design and synthesis of new antiandrogenic drugs. The advent of finasteride 8 (Fig. (4)) a 5alpha-reductase inhibitor has grately alleviated the symptoms associated with benign prostatic hyperplasia. In our laboratory we recently synthesized several new 16beta-methyl-pregnadiene-3,20-diones derivatives 27 (Fig.(6)), 38-42 (Fig. (11)), 16beta-phenyl-pregnadiene-3,17a-dione derivatives 32-33 (Fig. (7)), 16beta-phenyl-pregnatriene-3,17a-diones, 30, 31 (Fig. (7)) and 16beta-methyl-pregnatriene-3,20-diones 43-46 (Fig. (11)). These compounds were evaluated as 5alpha-reductase inhibitors in the following biological models: Penicillium crustosum broths, the flank organs of gonadectomized male hamsters, the incorporation of radiolabeled sodium acetate into lipids, the effect of the new steroids on the reduction of the weight of the seminal vesicles and on the in vitro metabolism of [(3)H]T to [(3)H]DHT in seminal vesicles homogenates of gonadectomized male hamsters. All trienones 30, 31, and 43-46 in all biological models showed consistently a higher 5alpha-reductase inhibitory activity than the corresponding dienones 27, 32, 33 and 38-42. We believe that with these compounds the 5alpha-reductase enzyme is inactivated by an irreversible Michael type addition

  4. Molecular cloning and expression of the human Δ7-sterol reductase

    Science.gov (United States)

    Moebius, Fabian F.; Fitzky, Barbara U.; Lee, Joon No; Paik, Young-Ki; Glossmann, Hartmut

    1998-01-01

    Inhibitors of the last steps of cholesterol biosynthesis such as AY9944 and BM15766 severely impair brain development. Their molecular target is the Δ7-sterol reductase (EC 1.3.1.21), suspected to be defective in the Smith–Lemli–Opitz syndrome, a frequent inborn disorder of sterol metabolism. Molecular cloning of the cDNA revealed that the human enzyme is a membrane-bound protein with a predicted molecular mass of 55 kDa and six to nine putative transmembrane segments. The protein is structurally related to plant and yeast sterol reductases. In adults the ubiquitously transcribed mRNA is most abundant in adrenal gland, liver, testis, and brain. The Δ7-sterol reductase is the ultimate enzyme of cholesterol biosynthesis in vertebrates and is absent from yeast. Microsomes from Saccharomyces cerevisiae strains heterologously expressing the human cDNA remove the C7–8 double bond in 7-dehydrocholesterol. The conversion to cholesterol depends on NADPH and is potently inhibited by AY9944 (IC50 0.013 μM), BM15766 (IC50 1.2 μM), and triparanol (IC50 14 μM). Our work paves the way to clarify whether a defect in the Δ7-sterol reductase gene underlies the Smith–Lemli–Opitz syndrome. PMID:9465114

  5. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism.

    Science.gov (United States)

    Rižner, Tea Lanišnik; Penning, Trevor M

    2014-01-01

    Human aldo-keto reductases AKR1C1-AKR1C4 and AKR1D1 play essential roles in the metabolism of all steroid hormones, the biosynthesis of neurosteroids and bile acids, the metabolism of conjugated steroids, and synthetic therapeutic steroids. These enzymes catalyze NADPH dependent reductions at the C3, C5, C17 and C20 positions on the steroid nucleus and side-chain. AKR1C1-AKR1C4 act as 3-keto, 17-keto and 20-ketosteroid reductases to varying extents, while AKR1D1 acts as the sole Δ(4)-3-ketosteroid-5β-reductase (steroid 5β-reductase) in humans. AKR1 enzymes control the concentrations of active ligands for nuclear receptors and control their ligand occupancy and trans-activation, they also regulate the amount of neurosteroids that can modulate the activity of GABAA and NMDA receptors. As such they are involved in the pre-receptor regulation of nuclear and membrane bound receptors. Altered expression of individual AKR1C genes is related to development of prostate, breast, and endometrial cancer. Mutations in AKR1C1 and AKR1C4 are responsible for sexual development dysgenesis and mutations in AKR1D1 are causative in bile-acid deficiency. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. 5-methyl-tetrahydrofolate and the S-adenosylmethionine cycle in C57BL/6J mouse tissues: gender differences and effects of arylamine N-acetyltransferase-1 deletion.

    Directory of Open Access Journals (Sweden)

    Katey L Witham

    Full Text Available Folate catabolism involves cleavage of the C(9-N(10 bond to form p-aminobenzoylgluamate (PABG and pterin. PABG is then acetylated by human arylamine N-acetyltransferase 1 (NAT1 before excretion in the urine. Mice null for the murine NAT1 homolog (Nat2 show several phenotypes consistent with altered folate homeostasis. However, the exact role of Nat2 in the folate pathway in vivo has not been reported. Here, we examined the effects of Nat2 deletion in male and female mice on the tissue levels of 5-methyl-tetrahydrofolate and the methionine-S-adenosylmethionine cycle. We found significant gender differences in hepatic and renal homocysteine, S-adenosylmethionine and methionine levels consistent with a more active methionine-S-adenosylmethionine cycle in female tissues. In addition, methionine levels were significantly higher in female liver and kidney. PABG was higher in female liver tissue but lower in kidney compared to male tissues. In addition, qPCR of mRNA extracted from liver tissue suggested a significantly lower level of Nat2 expression in female animals. Deletion of Nat2 affected liver 5- methyl-tetrahydrofolate in female mice but had little effect on other components of the methionine-S-adenosylmethionine cycle. No N-acetyl-PABG was observed in any tissues in Nat2 null mice, consistent with the role of Nat2 in PABG acetylation. Surprisingly, tissue PABG levels were similar between wild type and Nat2 null mice. These results show that Nat2 is not required to maintain tissue PABG homeostasis in vivo under normal conditions.

  7. Biliverdin reductase: A major physiologic cytoprotectant

    Science.gov (United States)

    Barañano, David E.; Rao, Mahil; Ferris, Christopher D.; Snyder, Solomon H.

    2002-01-01

    Bilirubin, an abundant pigment that causes jaundice, has long lacked any clear physiologic role. It arises from enzymatic reduction by biliverdin reductase of biliverdin, a product of heme oxygenase activity. Bilirubin is a potent antioxidant that we show can protect cells from a 10,000-fold excess of H2O2. We report that bilirubin is a major physiologic antioxidant cytoprotectant. Thus, cellular depletion of bilirubin by RNA interference markedly augments tissue levels of reactive oxygen species and causes apoptotic cell death. Depletion of glutathione, generally regarded as a physiologic antioxidant cytoprotectant, elicits lesser increases in reactive oxygen species and cell death. The potent physiologic antioxidant actions of bilirubin reflect an amplification cycle whereby bilirubin, acting as an antioxidant, is itself oxidized to biliverdin and then recycled by biliverdin reductase back to bilirubin. This redox cycle may constitute the principal physiologic function of bilirubin. PMID:12456881

  8. The Effect of Folinic Acid on Methylenetetrahydrofolate Reductase Polymorphisms in Methotrexate-Treated Allogeneic Hematopoietic Stem Cell Transplants

    NARCIS (Netherlands)

    Murphy, Nicholas M.; Diviney, Mary; Szer, Jeff; Bardy, Peter; Grigg, Andrew; Hoyt, Rosemary; King-Kalimanis, Bellinda; Holdsworth, Rhonda; McCluskey, James; Tait, Brian D.

    2012-01-01

    This study examined the contribution single nucleotide polymorphisms (SNPs) of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene have on clinical outcomes in hematopoietic stem cell transplant patients treated with the antiproliferative drug methotrexate. Two common SNPs, 677C>T and 1298A>C,

  9. Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2003-01-01

    We changed the fluxes of xylose metabolites in recombinant Saccharomyces cerevisiae by manipulating expression of Pichia stipitis genes(XYL1 and XYL2) coding for xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively. XYL1 copy number was kept constant by integrating it into the chromosome. Copy numbers of XYL2 were varied either by integrating XYL2 into...

  10. YLL056C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity.

    Science.gov (United States)

    Wang, Han-Yu; Xiao, Di-Fan; Zhou, Chang; Wang, Lin-Lu; Wu, Lan; Lu, Ya-Ting; Xiang, Quan-Ju; Zhao, Ke; Li, Xi; Ma, Meng -Gen

    2017-06-01

    The short-chain dehydrogenase/reductase (SDR) family, the largest family in dehydrogenase/reductase superfamily, is divided into "classical," "extended," "intermediate," "divergent," "complex," and "atypical" groups. Recently, several open reading frames (ORFs) were characterized as intermediate SDR aldehyde reductase genes in Saccharomyces cerevisiae. However, no functional protein in the atypical group has been characterized in S. cerevisiae till now. Herein, we report that an uncharacterized ORF YLL056C from S. cerevisiae was significantly upregulated under high furfural (2-furaldehyde) or 5-(hydroxymethyl)-2-furaldehyde concentrations, and transcription factors Yap1p, Hsf1p, Pdr1/3p, Yrr1p, and Stb5p likely controlled its upregulated transcription. This ORF indeed encoded a protein (Yll056cp), which was grouped into the atypical subgroup 7 in the SDR family and localized to the cytoplasm. Enzyme activity assays showed that Yll056cp is not a quinone or ketone reductase but an NADH-dependent aldehyde reductase, which can reduce at least seven aldehyde compounds. This enzyme showed the best Vmax, Kcat, and Kcat/Km to glycolaldehyde, but the highest affinity (Km) to formaldehyde. The optimum pH and temperature of this enzyme was pH 6.5 for reduction of glycolaldehyde, furfural, formaldehyde, butyraldehyde, and propylaldehyde, and 30 °C for reduction of formaldehyde or 35 °C for reduction of glycolaldehyde, furfural, butyraldehyde, and propylaldehyde. Temperature and pH affected stability of this enzyme and this influence varied with aldehyde substrate. Metal ions, salts, and chemical protective additives, especially at high concentrations, had different influence on enzyme activities for reduction of different aldehydes. This research provided guidelines for study of more uncharacterized atypical SDR enzymes from S. cerevisiae and other organisms.

  11. Structural Elucidation of Chalcone Reductase and Implications for Deoxychalcone Biosynthesis

    Science.gov (United States)

    Bomati, Erin K.; Austin, Michael B.; Bowman, Marianne E.; Dixon, Richard A.; Noel, Joseph P.

    2010-01-01

    4,2′,4′,6′-tetrahydroxychalcone (chalcone) and 4,2′,4′-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/ketoreductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase. PMID:15970585

  12. Cloning and nitrate induction of nitrate reductase mRNA

    OpenAIRE

    Cheng, Chi-Lien; Dewdney, Julia; Kleinhofs, Andris; Goodman, Howard M.

    1986-01-01

    Nitrate is the major source of nitrogen taken from the soil by higher plants but requires reduction to ammonia prior to incorporation into amino acids. The first enzyme in the reducing pathway is a nitrate-inducible enzyme, nitrate reductase (EC 1.6.6.1). A specific polyclonal antiserum raised against purified barley nitrate reductase has been used to immunoprecipitate in vivo labeled protein and in vitro translation products, demonstrating that nitrate induction increases nitrate reductase p...

  13. Co-Expression of Monodehydroascorbate Reductase and Dehydroascorbate Reductase from Brassica rapa Effectively Confers Tolerance to Freezing-Induced Oxidative Stress

    Science.gov (United States)

    Shin, Sun-Young; Kim, Myung-Hee; Kim, Yul-Ho; Park, Hyang-Mi; Yoon, Ho-Sung

    2013-01-01

    Plants are exposed to various environmental stresses and have therefore developed antioxidant enzymes and molecules to protect their cellular components against toxicity derived from reactive oxygen species (ROS). Ascorbate is a very important antioxidant molecule in plants, and monodehydroascorbate reductase (MDHAR; EC 1.6.5.4) and dehydroascorbate reductase (DHAR; EC 1.8.5.1) are essential to regeneration of ascorbate for maintenance of ROS scavenging ability. The MDHAR and DHAR genes from Brassica rapa were cloned, transgenic plants overexpressing either BrMDHAR and BrDHAR were established, and then, each transgenic plant was hybridized to examine the effects of co-expression of both genes conferring tolerance to freezing. Transgenic plants co-overexpressing BrMDHAR and BrDHAR showed activated expression of relative antioxidant enzymes, and enhanced levels of glutathione and phenolics under freezing condition. Then, these alteration caused by co-expression led to alleviated redox status and lipid peroxidation and consequently conferred improved tolerance against severe freezing stress compared to transgenic plants overexpressing single gene. The results of this study suggested that although each expression of BrMDHAR or BrDHAR was available to according tolerance to freezing, the simultaneous expression of two genes generated synergistic effects conferring improved tolerance more effectively even severe freezing. PMID:24170089

  14. Crystal structure of the YffB protein from Pseudomonas aeruginosa suggests a glutathione-dependent thiol reductase function

    Directory of Open Access Journals (Sweden)

    Dauter Zbigniew

    2004-03-01

    Full Text Available Abstract Background The yffB (PA3664 gene of Pseudomonas aeruginosa encodes an uncharacterized protein of 13 kDa molecular weight with a marginal sequence similarity to arsenate reductase from Escherichia coli. The crystal structure determination of YffB was undertaken as part of a structural genomics effort in order to assist with the functional assignment of the protein. Results The structure was determined at 1.0 Å resolution by single-wavelength anomalous diffraction. The fold is very similar to that of arsenate reductase, which is an extension of the thioredoxin fold. Conclusion Given the conservation of the functionally important residues and the ability to bind glutathione, YffB is likely to function as a GSH-dependent thiol reductase.

  15. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression.

    Science.gov (United States)

    Habib, Fouad K; Ross, Margaret; Ho, Clement K H; Lyons, Valerie; Chapman, Karen

    2005-03-20

    The phytotherapeutic agent Serenoa repens is an effective dual inhibitor of 5alpha-reductase isoenzyme activity in the prostate. Unlike other 5alpha-reductase inhibitors, Serenoa repens induces its effects without interfering with the cellular capacity to secrete PSA. Here, we focussed on the possible pathways that might differentiate the action of Permixon from that of synthetic 5alpha-reductase inhibitors. We demonstrate that Serenoa repens, unlike other 5alpha-reductase inhibitors, does not inhibit binding between activated AR and the steroid receptor-binding consensus in the promoter region of the PSA gene. This was shown by a combination of techniques: assessment of the effect of Permixon on androgen action in the LNCaP prostate cancer cell line revealed no suppression of AR and maintenance of PSA protein expression at control levels. This was consistent with reporter gene experiments showing that Permixon failed to interfere with AR-mediated transcriptional activation of PSA and that both testosterone and DHT were equally effective at maintaining this activity. Our results demonstrate that despite Serenoa repens effective inhibition of 5alpha-reductase activity in the prostate, it did not suppress PSA secretion. Therefore, we confirm the therapeutic advantage of Serenoa repens over other 5alpha-reductase inhibitors as treatment with the phytotherapeutic agent will permit the continuous use of PSA measurements as a useful biomarker for prostate cancer screening and for evaluating tumour progression. (c) 2004 Wiley-Liss, Inc.

  16. The Role of Oxophytodienoate Reductases in the Detoxification of the Explosive 2,4,6-Trinitrotoluene by Arabidopsis

    Science.gov (United States)

    2009-09-01

    detoxification in plants. To further elucidate this, we used microarray analysis to identify Arabidopsis ( Arabidopsis thaliana) genes up-regulated by exposure... Arabidopsis plants overexpressing OPR1 removed TNT more quickly from liquid culture, produced increased levels of transformation products, and...Mezzari et al., 2005) have found that members of the small gene family of oxophyto- dienoate reductases (OPRs) in Arabidopsis (Arabidop- sis thaliana

  17. Differential regulation of wheat quinone reductases in response to powdery mildew infection.

    Science.gov (United States)

    Greenshields, David L; Liu, Guosheng; Selvaraj, Gopalan; Wei, Yangdou

    2005-11-01

    At least two types of quinone reductases are present in plants: (1) the zeta-crystallin-like quinone reductases (QR1, EC 1.6.5.5) that catalyze the univalent reduction of quinones to semiquinone radicals, and (2) the DT-diaphorase-like quinone reductases (QR2, EC 1.6.99.2) that catalyze the divalent reduction of quinones to hydroquinones. QR2s protect cells from oxidative stress by making the quinones available for conjugation, thereby releasing them from the superoxide-generating one electron redox cycling, catalyzed by QR1s. Two genes, putatively encoding a QR1 and a QR2, respectively, were isolated from an expressed sequence tag collection derived from the epidermis of a diploid wheat Triticum monococcum L. 24 h after inoculation with the powdery mildew fungus Blumeria graminis (DC) EO Speer f. sp. tritici Em. Marchal. Northern analysis and tissue-specific RT-PCR showed that TmQR1 was repressed while TmQR2 was induced in the epidermis during powdery mildew infection. Heterologous expression of TmQR2 in Escherichia coli confirmed that the gene encoded a functional, dicumarol-inhibitable QR2 that could use either NADH or NADPH as an electron donor. The localization of dicumarol-inhibitable QR2 activity around powdery mildew infection sites was accomplished using a histochemical technique, based on tetrazolium dye reduction.

  18. Role of methylenetetrahydrofolate reductase A1298C polymorphism in cerebral venous thrombosis.

    Science.gov (United States)

    Fekih-Mrissa, Najiba; Klai, Sarra; Mrad, Meriem; Zaouali, Jamel; Sayeh, Aycha; Nsiri, Brahim; Gritli, Nasreddine; Mrissa, Ridha

    2013-03-01

    The association between the methylenetetrahydrofolate reductase (MTHFR) gene and cerebral venous thrombosis (CVT) remains controversial. This study principally investigated the potential role of the MTHFR A1298C variant and CVT. The genotyping of the A1298C variant of the MTHFR gene was performed in 35 CVT patients and 200 healthy controls. The frequency of A1298C genotype among CVT patients was significantly higher compared with controls (P MTHFR A1298C variant and CVT. Large study populations would be required to understand the contribution of this marker in the risk of CVT.

  19. Polymorphisms of Pyrimidine Pathway Enzymes Encoding Genes and HLA-B*40∶01 Carriage in Stavudine-Associated Lipodystrophy in HIV-Infected Patients.

    Directory of Open Access Journals (Sweden)

    Pere Domingo

    Full Text Available To assess in a cohort of Caucasian patients exposed to stavudine (d4T the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40∶01 carriage with HIV/Highly active antiretroviral therapy (HAART-associated lipodystrophy syndrome (HALS.Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS and methylene-tetrahydrofolate reductase (MTHFR genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP by a LC-MS/MS assay method.HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53-3.88, P<0.0001. MTHFR gene polymorphisms and HLA-B*40∶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/10(6 cells, P<0.0001. Independent factors associated with HALS were(OR [95%CI]: (a Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.: 'A+A'; OR for 'A+B' vs. ref.: 1.39 [0.69-2.80]; OR for 'B+A' vs. ref.: 2.16 [1.22-3.83]; OR for 'B+B' vs. ref.: 3.13, 95%CI: 1.54-6.35, (b maximum viral load ≥5 log10 (OR: 2.55, 95%CI: 1.56-4.14, P = 0.001, (c use of EFV (1.10 [1.00-1.21], P = 0.008, per year of use.HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40∶01 carriage in Caucasian patients with long-term exposure to stavudine.

  20. Polymorphisms of Pyrimidine Pathway Enzymes Encoding Genes and HLA-B*40∶01 Carriage in Stavudine-Associated Lipodystrophy in HIV-Infected Patients.

    Science.gov (United States)

    Domingo, Pere; Mateo, Maria Gracia; Pruvost, Alain; Torres, Ferran; Salazar, Juliana; Gutierrez, Maria Del Mar; Domingo, Joan Carles; Fernandez, Irene; Villarroya, Francesc; Vidal, Francesc; Baiget, Montserrat; de la Calle-Martín, Oscar

    2013-01-01

    To assess in a cohort of Caucasian patients exposed to stavudine (d4T) the association of polymorphisms in pyrimidine pathway enzymes and HLA-B*40∶01 carriage with HIV/Highly active antiretroviral therapy (HAART)-associated lipodystrophy syndrome (HALS). Three-hundred and thirty-six patients, 187 with HALS and 149 without HALS, and 72 uninfected subjects were recruited. The diagnosis of HALS was performed following the criteria of the Lipodystrophy Severity Grading Scale. Polymorphisms in the thymidylate synthase (TS) and methylene-tetrahydrofolate reductase (MTHFR) genes were determined by direct sequencing, HLA-B genotyping by PCR-SSOr Luminex Technology, and intracellular levels of stavudine triphosphate (d4T-TP) by a LC-MS/MS assay method. HALS was associated with the presence of a low expression TS genotype polymorphism (64.7% vs. 42.9%, OR = 2.43; 95%CI: 1.53-3.88, P<0.0001). MTHFR gene polymorphisms and HLA-B*40∶01 carriage were not associated with HALS or d4T-TP intracellular levels. Low and high expression TS polymorphisms had different d4T-TP intracellular levels (25.60 vs. 13.60 fmol/10(6) cells, P<0.0001). Independent factors associated with HALS were(OR [95%CI]: (a) Combined TS and MTHFR genotypes (p = 0.006, reference category (ref.): 'A+A'; OR for 'A+B' vs. ref.: 1.39 [0.69-2.80]; OR for 'B+A' vs. ref.: 2.16 [1.22-3.83]; OR for 'B+B' vs. ref.: 3.13, 95%CI: 1.54-6.35), (b) maximum viral load ≥5 log10 (OR: 2.55, 95%CI: 1.56-4.14, P = 0.001), (c) use of EFV (1.10 [1.00-1.21], P = 0.008, per year of use). HALS is associated with combined low-expression TS and MTHFR associated with high activity polymorphisms but not with HLA-B*40∶01 carriage in Caucasian patients with long-term exposure to stavudine.

  1. Methylenetetrahydrofolate reductase (MTHFR) deficiency enhances resistance against cytomegalovirus infection.

    Science.gov (United States)

    Fodil-Cornu, N; Kozij, N; Wu, Q; Rozen, R; Vidal, S M

    2009-10-01

    Folates provide one-carbon units for nucleotide synthesis and methylation reactions. A common polymorphism in the MTHFR gene (677C --> T) results in reduced enzymatic activity, and is associated with an increased risk for neural tube defects and cardiovascular disease. The high prevalence of this polymorphism suggests that it may have experienced a selective advantage under environmental pressure, possibly an infectious agent. To test the hypothesis that methylenetetrahydrofolate reductase (MTHFR) genotype influences the outcome of infectious disease, we examined the response of Mthfr-deficient mice against mouse cytomegalovirus (MCMV) infection. Acute MCMV infection of Mthfr(-/-) mice resulted in early control of cytokine secretion, decreased viral titer and preservation of spleen immune cells, in contrast to Mthfr wild-type littermates. The phenotype was abolished in MTHFR transgenic mice carrying an extra copy of the gene. Infection of primary fibroblasts with MCMV showed a decrease in viral replication and in the number of productively infected cells in Mthfr(+/-) fibroblasts compared with wild-type cells. These results indicate that Mthfr deficiency protects against MCMV infection in vivo and in vitro, suggesting that human genetic variants may provide an advantage in the host response against certain pathogens.

  2. Thioredoxin reductase-dependent inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Machado, A K; Morgan, B A; Merrill, G F

    1997-07-04

    Mlu1 cell cycle box (MCB) elements are found near the start site of yeast genes expressed at G1/S. Basal promoters dependent on the elements for upstream activating sequence activity are inactive in Deltaswi6 yeast. Yeast were screened for mutations that activated MCB reporter genes in the absence of Swi6. The mutations identified a single complementation group. Functional cloning revealed the mutations were alleles of the TRR1 gene encoding thioredoxin reductase. Although deletion of TRR1 activated MCB reporter genes, high copy expression did not suppress reporter gene activity. The trr1 mutations strongly (20-fold) stimulated MCB- and SCB (Swi4/Swi6 cell cycle box)-containing reporter genes, but also weakly (3-fold) stimulated reporter genes that lacked these elements. The trr1 mutations did not affect the level or periodicity of three endogenous MCB gene mRNAs (TMP1, RNR1, and SWI4). Deletion of thioredoxin genes TRX1 and TRX2 recapitulated the stimulatory effect of trr1 mutations on MCB reporter gene activity. Conditions expected to oxidize thioredoxin (exposure to H2O2) induced MCB gene expression, whereas conditions expected to conserve thioredoxin (exposure to hydroxyurea) inhibited MCB gene expression. The results suggest that thioredoxin oxidation contributes to MCB element activation and suggest a link between thioredoxin-oxidizing processes such as ribonucleotide reduction and cell cycle-specific gene transcription.

  3. Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression.

    Science.gov (United States)

    Bronstein, M; Schütz, M; Hauska, G; Padan, E; Shahak, Y

    2000-06-01

    The gene encoding sulfide-quinone reductase (SQR; E.C.1.8.5.'), the enzyme catalyzing the first step of anoxygenic photosynthesis in the filamentous cyanobacterium Oscillatoria limnetica, was cloned by use of amino acid sequences of tryptic peptides as well as sequences conserved in the Rhodobacter capsulatus SQR and in an open reading frame found in the genome of Aquifex aeolicus. SQR activity was also detected in the unicellular cyanobacterium Aphanothece halophytica following sulfide induction, with a V(max) of 180 micromol of plastoquinone-1 (PQ-1) reduced/mg of chlorophyll/h and apparent K(m) values of 20 and 40 microM for sulfide and quinone, respectively. Based on the conserved sequences, the gene encoding A. halophytica SQR was also cloned. The SQR polypeptides deduced from the two cyanobacterial genes consist of 436 amino acids for O. limnetica SQR and 437 amino acids for A. halophytica SQR and show 58% identity and 74% similarity. The calculated molecular mass is about 48 kDa for both proteins; the theoretical isoelectric points are 7.7 and 5.6 and the net charges at a neutral pH are 0 and -14 for O. limnetica SQR and A. halophytica SQR, respectively. A search of databases showed SQR homologs in the genomes of the cyanobacterium Anabaena PCC7120 as well as the chemolithotrophic bacteria Shewanella putrefaciens and Thiobacillus ferrooxidans. All SQR enzymes contain characteristic flavin adenine dinucleotide binding fingerprints. The cyanobacterial proteins were expressed in Escherichia coli under the control of the T7 promoter. Membranes isolated from E. coli cells expressing A. halophytica SQR performed sulfide-dependent PQ-1 reduction that was sensitive to the quinone analog inhibitor 2n-nonyl-4-hydroxyquinoline-N-oxide. The wide distribution of SQR genes emphasizes the important role of SQR in the sulfur cycle in nature.

  4. Prokaryotic arsenate reductase enhances arsenate resistance in Mammalian cells.

    Science.gov (United States)

    Wu, Dan; Tao, Xuanyu; Wu, Gaofeng; Li, Xiangkai; Liu, Pu

    2014-01-01

    Arsenic is a well-known heavy metal toxicant in the environment. Bioremediation of heavy metals has been proposed as a low-cost and eco-friendly method. This article described some of recent patents on transgenic plants with enhanced heavy metal resistance. Further, to test whether genetic modification of mammalian cells could render higher arsenic resistance, a prokaryotic arsenic reductase gene arsC was transfected into human liver cancer cell HepG2. In the stably transfected cells, the expression level of arsC gene was determined by quantitative real-time PCR. Results showed that arsC was expressed in HepG2 cells and the expression was upregulated by 3 folds upon arsenate induction. To further test whether arsC has function in HepG2 cells, the viability of HepG2-pCI-ArsC cells exposed to arsenite or arsenate was compared to that of HepG2-pCI cells without arsC gene. The results indicated that arsC increased the viability of HepG2 cells by 25% in arsenate, but not in arsenite. And the test of reducing ability of stably transfected cells revealed that the concentration of accumulated trivalent arsenic increased by 25% in HepG2-pCI-ArsC cells. To determine the intracellular localization of ArsC, a fusion vector with fluorescent marker pEGFP-N1-ArsC was constructed and transfected into.HepG2. Laser confocal microscopy showed that EGFP-ArsC fusion protein was distributed throughout the cells. Taken together, these results demonstrated that prokaryotic arsenic resistant gene arsC integrated successfully into HepG2 genome and enhanced arsenate resistance of HepG2, which brought new insights of arsenic detoxification in mammalian cells.

  5. Mercuric reductase activity of multiple heavy metal-resistant Lysinibacillus sphaericus G1.

    Science.gov (United States)

    Bafana, Amit; Chakrabarti, Tapan; Krishnamurthi, Kannan

    2015-03-01

    A culture was isolated from an industrial mercuric salt-contaminated soil, which could tolerate Cd, Co, Zn, Cr, and Hg up to 190, 525, 350, 935, and 370 μM, respectively. The isolate was identified as Lysinibacillus sphaericus by 16S rRNA gene sequencing. It bioaccumulated Cd, Co, and Zn, and reductively detoxified Cr and Hg. Chromate reductase and mercuric reductase (MerA) activities in the cell extract were 2.4 and 0.13 units mg(-1) protein, respectively. The study also describes designing of broad-specificity primers based on firmicute merA genes. These primers were successfully used to amplify a 440 bp merA fragment from the current isolate. Based on the partial sequence, complete merA ORF of 1641 bp was amplified. It showed 99% similarity to a putative merA gene from distantly related Streptococcus agalactiae, but only 72% identity with the well-characterized merA from a more closely related Bacillus cereus RC607. The gene sequence possessed all the features required for the functioning of MerA enzyme, and its function was confirmed by recombinant expression in E. coli. To the best of our knowledge, this is the first report of full length merA gene from L. sphaericus. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structural and biochemical characterization of cinnamoyl-coa reductases

    Science.gov (United States)

    Cinnamoyl-coenzyme A reductase (CCR) catalyzes the reduction of hydroxycinnamoyl-coenzyme A (CoA) esters using NADPH to produce hydroxycinnamyl aldehyde precursors in lignin synthesis. The catalytic mechanism and substrate specificity of cinnamoyl-CoA reductases from sorghum (Sorghum bicolor), a str...

  7. Optimum conditions for cotton nitrate reductase extraction and ...

    African Journals Online (AJOL)

    GREGO

    nitrate transformation into nitrite (µg of NO2. -/min/g F.W) is observed when incubation period of enzyme is short (1 to 5 min). Key words: Extraction, dosage, nitrate reductase activity, callus, cotton. INTRODUCTION. Nitrate reductase (EC. 1.7.99.4) is an oxidoreductase enzyme involved in nitrogen assimilation in plant. It.

  8. Biliverdin Reductase: a Target for Cancer Therapy?

    Directory of Open Access Journals (Sweden)

    Peter eGibbs

    2015-06-01

    Full Text Available Biliverdin reductase (BVR is a multifunctional protein that is the primary source of the potent antioxidant, bilirubin. BVR regulates activities/functions in the insulin/IGF-1/IRK/PI3K/MAPK pathways. Activation of certain kinases in these pathways is/are hallmark(s of cancerous cells. The protein is a scaffold/bridge and intracellular transporter of kinases that regulate growth and proliferation of cells, including PKCs, ERK and Akt, and their targets including NF-κB, Elk1, HO-1 and iNOS. The scaffold and transport functions enable activated BVR to relocate from the cytosol to the nucleus or to the plasma membrane, depending on the activating stimulus. This enables the reductase to function in diverse signaling pathways. And, its expression at the transcript and protein levels are increased in human tumors and the infiltrating T-cells, monocytes and circulating lymphocytes, as well as the circulating and infiltrating macrophages. These functions suggest that the cytoprotective role of BVR may be permissive for cancer/tumor growth. In this review, we summarize the recent developments that define the pro-growth activities of BVR, particularly with respect to its input into the MAPK signaling pathway and present evidence that BVR-based peptides inhibit activation of protein kinases, including MEK, PKCδ and ERK as well as downstream targets including Elk1 and iNOS, and thus offers a credible novel approach to reduce cancer cell proliferation.

  9. Avaliação do polimorfismo no gene da metilenotetrahidrofolato redutase e concentração de folato e vitamina B12 em pacientes portadores do HIV-1 em tratamento com anti-retrovirais Evaluation of the polymorphisms in methylenetetrahydrofolate reductase gene and the levels of folate and B12 in HIV-infected patients under antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Iran Malavazi

    2004-12-01

    Full Text Available Neste trabalho, investigamos concentração da vitamina B12 e folato, considerando-se a influência dos genótipos da metilenotetrahidrofolato redutase, o perfil imunológico e a terapia antiretroviral utilizada na população brasileira portadora do HIV. Um grupo de 86 indivíduos portadores do HIV-1 e 29 doadores de sangue foram recrutados para compor a casuística. Entre os infectados pelo HIV-1, observou-se menor concentração de B12 no grupo com maior número de linfócitos TCD4+. Não encontramos diferença na distribuição genotípica para as mutações MTHFR C677T e A1298C entre infectados e não infectados pelo HIV-1. Indivíduos portadores do HIV, genótipo C677C, apresentaram concentrações menores de B12 em relação ao grupo controle de mesmo genótipo. A terapia antiretroviral não mostrou qualquer influência nos valores de folato e vitamina B12. Estudos adicionais são necessários para reavaliar a prevalência de menores concentrações de B12 e folato e de hiperhomocisteinemia na população portadora do HIV sob a ótica do uso de HAART e da melhoria na sobrevida dos pacientes.In this study we sought to investigate the B12 and folate levels regarding the influence of methylenetetrahydrofolate reductase genotypes, immunological profile and antiretroviral therapy in the Brazilian HIV-infected population. The study group comprised 89 HIV-infected individuals and 29 blood donors. There was a decrease in the B12 levels in the HIV-infected group with higher TCD4+ lymphocyte counts. No differences in the genotype distribution for methylenetetrahydrofolate reductase polymorphisms between the HIV-infected individuals and the controls were found. HIV-infected individuals carrying the C677C genotype presented lower B12 levels (313.91 ± 154.05 than those with the same genotype in the control group (408.27 ± 207.69. Also, the antiretroviral therapy was not a source of variation of the folate and B12 serum levels. Further studies are

  10. [High throughput screening of active and stereoselective carbonyl reductases].

    Science.gov (United States)

    Zhang, Hang; Chen, Xi; Feng, Jinhui; Bao, Jinku; Wu, Qiaqing; Zhu, Dunming

    2015-02-01

    In this study, a fast carbonyl reductases colorimetric screening method for discovering stereoselective carbonyl reductases was established by combining the reverse alcohol oxidation with the azoreductase-catalyzed reduction of azo dye. When azo dye (Orange I , 4-(4-hydroxy-1-naphthylazo) benzenesulfonic acid) and azoreductase (AzoB) were added into the reaction system of alcohol oxidation catalyzed by carbonyl reductase, the produced NAD(P)H served as electron donor for the azoreductase to reduce the azo dye, resulting the color fade. Hence, the carbonyl reductases can be screened by the obvious color change. When chiral alcohol was used as the substrate, the activity and stereoselectivity of carbonyl reductases can be screened at the same time.

  11. Isolation and expression of the Pneumocystis carinii dihydrofolate reductase gene

    DEFF Research Database (Denmark)

    Edman, J C; Edman, U; Cao, Mi-Mi

    1989-01-01

    , sequence analysis and chromosomal localization show that DHFR is neither physically nor genetically linked to thymidylate synthase. Expression of recombinant P. carinii DHFR in heterologous hosts provides an abundant source of the enzyme that may form a basis for the development of new therapies...

  12. Evaluation of the conserve flavin reductase gene from three ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Piddington CS, Kovacevich BR, Rambosek J (1995).Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. Strain. IGTS8. Appl. Environ. Microbiol. 61: 468-475. Raheb J, Naghdi S, Karkhane AA, Yakhchali B, Flint KP (2004).

  13. Cloning and characterization of a nitrite reductase gene related to ...

    African Journals Online (AJOL)

    ... among different somatic embryogenesis stages, and that the level of GhNiR mRNA was also higher in the cultivar with higher somatic embryogenesis ability. The catalytic GhNiR was verified by transformation in E. coli BL21 (DE3) strain with the recombinant expression vector pET-28A-GhNiR. NiR activity assay showed

  14. Overexpression of Soybean Isoflavone Reductase (GmIFR) Enhances Resistance to Phytophthora sojae in Soybean.

    Science.gov (United States)

    Cheng, Qun; Li, Ninghui; Dong, Lidong; Zhang, Dayong; Fan, Sujie; Jiang, Liangyu; Wang, Xin; Xu, Pengfei; Zhang, Shuzhen

    2015-01-01

    Isoflavone reductase (IFR) is an enzyme involved in the biosynthetic pathway of isoflavonoid phytoalexin in plants. IFRs are unique to the plant kingdom and are considered to have crucial roles in plant response to various biotic and abiotic environmental stresses. Here, we report the characterization of a novel member of the soybean isoflavone reductase gene family GmIFR. Overexpression of GmIFR transgenic soybean exhibited enhanced resistance to Phytophthora sojae. Following stress treatments, GmIFR was significantly induced by P. sojae, ethephon (ET), abscisic acid (placeCityABA), salicylic acid (SA). It is located in the cytoplasm when transiently expressed in soybean protoplasts. The daidzein levels reduced greatly for the seeds of transgenic plants, while the relative content of glyceollins in transgenic plants was significantly higher than that of non-transgenic plants. Furthermore, we found that the relative expression levels of reactive oxygen species (ROS) of transgenic soybean plants were significantly lower than those of non-transgenic plants after incubation with P. sojae, suggesting an important role of GmIFR might function as an antioxidant to reduce ROS in soybean. The enzyme activity assay suggested that GmIFR has isoflavone reductase activity.

  15. Genes encoding chimeras of Neurospora crassa erg-3 and human ...

    Indian Academy of Sciences (India)

    Unknown

    In the yeast Saccharomyces cerevisiae, sterol. C-14 reductase is encoded by the ERG24 gene and erg24 null mutants are not viable on rich medium but they are viable on synthetic medium (Crowley et al 1996). Both the Neurospora and the yeast mutants have been used previously to test for sterol C-14 reductase function ...

  16. Genes encoding chimeras of Neurospora crassa erg-3 and human ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jbsc/027/02/0105-0112. Keywords. Lamin B receptor; sterol reductase. Abstract. The human gene TM7SF2 encodes a polypeptide (SR-1) with high sequence similarity to sterol C-14 reductase, a key sterol biosynthetic enzyme in fungi, plants and mammals. In Neurospora and yeast this ...

  17. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  18. Monodehydroascorbate reductase mediates TNT toxicity in plants.

    Science.gov (United States)

    Johnston, Emily J; Rylott, Elizabeth L; Beynon, Emily; Lorenz, Astrid; Chechik, Victor; Bruce, Neil C

    2015-09-04

    The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. Due to the scale of affected areas, one of the most cost-effective and environmentally friendly means of removing explosives pollution could be the use of plants. However, mechanisms of TNT phytotoxicity have been elusive. Here, we reveal that phytotoxicity is caused by reduction of TNT in the mitochondria, forming a nitro radical that reacts with atmospheric oxygen, generating reactive superoxide. The reaction is catalyzed by monodehydroascorbate reductase 6 (MDHAR6), with Arabidopsis deficient in MDHAR6 displaying enhanced TNT tolerance. This discovery will contribute toward the remediation of contaminated sites. Moreover, in an environment of increasing herbicide resistance, with a shortage in new herbicide classes, our findings reveal MDHAR6 as a valuable plant-specific target. Copyright © 2015, American Association for the Advancement of Science.

  19. Structures of mammalian cytosolic quinone reductases.

    Science.gov (United States)

    Foster, C E; Bianchet, M A; Talalay, P; Faig, M; Amzel, L M

    2000-08-01

    The metabolism of quinone compounds presents one source of oxidative stress in mammals, as many pathways proceed by mechanisms that generate reactive oxygen species as by-products. One defense against quinone toxicity is the enzyme NAD(P)H:quinone oxidoreductase type 1 (QR1), which metabolizes quinones by a two-electron reduction mechanism, thus averting production of radicals. QR1 is expressed in the cytoplasm of many tissues, and is highly inducible. A closely related homologue, quinone reductase type 2 (QR2), has been identified in several mammalian species. QR2 is also capable of reducing quinones to hydroquinones, but unlike QR1, cannot use NAD(P)H. X-ray crystallographic studies of QR1 and QR2 illustrate that despite their different biochemical properties, these enzymes have very similar three-dimensional structures. In particular, conserved features of the active sites point to the close relationship between these two enzymes.

  20. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of delta(1)-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  1. Functional Characterization of Four Putative δ1-Pyrroline-5-Carboxylate Reductases from Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Forlani, Giuseppe; Nocek, Boguslaw; Chakravarthy, Srinivas; Joachimiak, Andrzej

    2017-08-02

    In most living organisms, the amino acid proline is synthesized starting from both glutamate and ornithine. In prokaryotes, in the absence of an ornithine cyclodeaminase that has been identified to date only in a small number of soil and plant bacteria, these pathways share the last step, the reduction of δ1-pyrroline-5-carboxylate (P5C) catalyzed by P5C reductase (EC 1.5.1.2). In several species, multiple forms of P5C reductase have been reported, possibly reflecting the dual function of proline. Aside from its common role as a building block of proteins, proline is indeed also involved in the cellular response to osmotic and oxidative stress conditions. Genome analysis of Bacillus subtilis identifies the presence of four genes (ProH, ProI, ProG, and ComER) that, based on bioinformatic and phylogenic studies, were defined as respectively coding a putative P5C reductase. Here we describe the cloning, heterologous expression, functional analysis and small-angle X-ray scattering studies of the four affinity-purified proteins. Results showed that two of them, namely ProI and ComER, lost their catalytic efficiency or underwent subfunctionalization. In the case of ComER, this could be likely explained by the loss of the ability to form a dimer, which has been previously shown to be an essential structural feature of the catalytically active P5C reductase. The properties of the two active enzymes are consistent with a constitutive role for ProG, and suggest that ProH expression may be beneficial to satisfy an increased need for proline.

  2. A second target of benzamide riboside: dihydrofolate reductase.

    Science.gov (United States)

    Roussel, Breton; Johnson-Farley, Nadine; Kerrigan, John E; Scotto, Kathleen W; Banerjee, Debabrata; Felczak, Krzysztof; Pankiewicz, Krzysztof W; Gounder, Murugesan; Lin, HongXia; Abali, Emine Ercikan; Bertino, Joseph R

    2012-11-01

    Dihydrofolate reductase (DHFR) is an essential enzyme involved in de novo purine and thymidine biosynthesis. For several decades, selective inhibition of DHFR has proven to be a potent therapeutic approach in the treatment of various cancers including acute lymphoblastic leukemia, non-Hodgkin's lymphoma, osteogenic sarcoma, carcinoma of the breast, and head and neck cancer. Therapeutic success with DHFR inhibitor methotrexate (MTX) has been compromised in the clinic, which limits the success of MTX treatment by both acquired and intrinsic resistance mechanisms. We report that benzamide riboside (BR), via anabolism to benzamide adenine dinucleotide (BAD) known to potently inhibit inosine monophosphate dehydrogenase (IMPDH), also inhibits cell growth through a mechanism involving downregulation of DHFR protein. Evidence to support this second site of action of BR includes the finding that CCRF-CEM/R human T-cell lymphoblasic leukemia cells, resistant to MTX as a consequence of gene amplification and overexpression of DHFR, are more resistant to BR than are parental cells. Studies of the mechanism by which BR lowers DHFR showed that BR, through its metabolite BAD, reduced NADP and NADPH cellular levels by inhibiting nicotinamide adenine dinucleotide kinase (NADK). As consequence of the lack of NADPH, DHFR was shown to be destabilized. We suggest that, inhibition of NADK is a new approach to downregulate DHFR and to inhibit cell growth.

  3. Prognostic Relevance of Methylenetetrahydrofolate Reductase Polymorphisms for Prostate Cancer.

    Science.gov (United States)

    Lin, Victor C; Lu, Te-Ling; Yin, Hsin-Ling; Yang, Sheau-Fang; Lee, Yung-Chin; Liu, Chia-Chu; Huang, Chao-Yuan; Yu, Chia-Cheng; Chang, Ta-Yuan; Huang, Shu-Pin; Bao, Bo-Ying

    2016-11-29

    Folate metabolism has been associated with cancers via alterations in nucleotide synthesis, DNA methylation, and DNA repair. We hypothesized that genetic variants in methylenetetrahydrofolate reductase (MTHFR), a key enzyme of folate metabolism, would affect the prognosis of prostate cancer. Three haplotype-tagging single-nucleotide polymorphisms (SNPs) across the MTHFR gene region were genotyped in a cohort of 458 patients with clinically localized prostate cancer treated with radical prostatectomy. One SNP, rs9651118, was associated with disease recurrence, and the association persisted after multivariate analyses adjusting for known risk factors. Public dataset analyses suggested that rs9651118 affects MTHFR expression. Quantitative real-time polymerase chain reaction analysis revealed that MTHFR expression is significantly upregulated in prostate tumor tissues when compared with adjacent normal tissues. Furthermore, overexpression of MTHFR correlates with cancer recurrence and death in two independent publicly available prostate cancer datasets. In conclusion, our data provide rationale to further validate the clinical utility of MTHFR rs9651118 as a biomarker for prognosis in prostate cancer.

  4. Enhancement of nitrate reductase activity by benzyladenine in Agrostemma githago

    Energy Technology Data Exchange (ETDEWEB)

    Kende, H.; Hahn, H.; Kays, S.E.

    1971-01-01

    Nitrate reductase activity in excised embryos of Agrostemma githago increases in response to both NO/sub 3//sup -/ and cytokinins. Discussed was whether cytokinins affected nitrate reductase activity directly or through NO/sub 3//sup -/, either by amplifying the effect of low endogenous NO/sub 3//sup -/ levels, or by making NO/sub 3//sup -/ available for induction from a metabolically inactive compartment. Nitrate reductase activity was enhanced on the average by 50% after 1 hour of benzyladenine treatment. In some experiments, the cytokinin response was detectable as early as 30 minutes after addition of benzyladenine. Nitrate reductase activity increased linearly for 4 hours and began to decay 13 hours after start of the hormone treatment. When embryos were incubated in solutions containing mixtures of NO/sub 3//sup -/ and benzyladenine, additive responses were obtained. The effects of NO/sub 3//sup -/ and benzyladenine were counteracted by abscisic acid. The increase in nitrate reductase activity was inhibited at lower abscisic acid concentrations in embryos which were induced with NO/sub 3//sup -/, as compared to embryos treated with benzyladenine. Casein hydrolysate inhibited the development of nitrate reductase activity. The response to NO/sub 3//sup -/ was more susceptible to inhibition by casein hydrolysate than the response to the hormone. When NO/sub 3//sup -/ and benzyladenine were withdrawn from the medium after maximal enhancement of nitrate reductase activity, the level of the enzyme decreased rapidly. Nitrate reductase activity increased again as a result of a second treatment with benzyladenine but not with NO/sub 3//sup -/. At the time of the second exposure to benzyladenine, no NO/sub 3//sup -/ was detectable in extracts of Agrostemma embryos. This is taken as evidence that cytokinins enhance nitrate reductase activity directly and not through induction by NO/sub 3//sup -/. 11 references, 5 figures, 3 tables.

  5. Application of a Colorimetric Assay to Identify Putative Ribofuranosylaminobenzene 5'-Phosphate Synthase Genes Expressed with Activity in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Bechard Matthew E.

    2003-01-01

    Full Text Available Tetrahydromethanopterin (H4MPT is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5'-phosphate synthase (RFAP synthase. Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies in Escherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase from Archaeoglobus fulgidus was produced in E. coli and purified to homogeneity. The production of active RFAP synthase from Methanothermobacter thermautotrophicus was achieved by coexpression of the gene MTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

  6. Identification of a fish short-chain dehydrogenase/reductase associated with bone metabolism.

    Science.gov (United States)

    Rosa, Joana; Cox, Cymon J; Leonor Cancela, M; Laizé, Vincent

    2017-12-14

    Although human and mouse genetics have largely contributed to the better understanding of the mechanisms underlying skeletogenesis, much more remains to be uncovered. In this regard alternative and complementary systems have been sought and cell systems capable of in vitro calcification have been developed to study the mechanisms underlying bone formation. In gilthead seabream (Sparus aurata), a gene coding for an unknown protein that is strongly up-regulated during extracellular matrix (ECM) mineralization of a pre-osteoblast cell line was recently identified as a potentially important player in bone formation. In silico analysis of the deduced protein revealed the presence of domains typical of short-chain dehydrogenase/reductases (SDR). Closely related to carbonyl reductase 1, seabream protein belongs to a novel subfamily of SDR proteins with no orthologs in mammals. Analysis of gene expression by qPCR confirmed the strong up-regulation of sdr-like expression during in vitro mineralization but also revealed high expression levels in calcified tissues. A possible role for Sdr-like in osteoblast and bone metabolism was further evidenced through (i) the localization by in situ hybridization of sdr-like transcript in pre-osteoblasts of the operculum and (ii) the regulation of sdr-like gene transcription by Runx2 and retinoic acid receptor, two regulators of osteoblast differentiation and mineralization. Expression data also indicated a role for Sdr-like in gastrointestinal tract homeostasis and during gilthead seabream development at gastrulation and metamorphosis. This study reports a new subfamily of short-chain dehydrogenases/reductases in vertebrates and, for the first time, provides evidence of a role for SDRs in bone metabolism, osteoblast differentiation and/or tissue mineralization. Copyright © 2017. Published by Elsevier B.V.

  7. A novel arsenate reductase from the bacterium Thermus thermophilus HB27: its role in arsenic detoxification.

    Science.gov (United States)

    Del Giudice, Immacolata; Limauro, Danila; Pedone, Emilia; Bartolucci, Simonetta; Fiorentino, Gabriella

    2013-10-01

    Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20mM and 15mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram+bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2×10(4)M(-1)s(-1). It also exhibited weak phosphatase activity with a kcat/KM value of 2.7×10(-4)M(-1)s(-1). The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural-functional characterization of a thermophilic arsenate reductase. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Association of methylenetetrahydrofolate reductase A1298C polymorphism but not of C677T with multiple sclerosis in Tunisian patients.

    Science.gov (United States)

    Fekih Mrissa, Najiba; Mrad, Meriem; Klai, Sarra; Zaouali, Jamel; Sayeh, Aycha; Mazigh, Chakib; Nsiri, Brahim; Machgoul, Salem; Gritli, Nasreddine; Mrissa, Ridha

    2013-09-01

    Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination of nerve axons. The aim of this study was to investigate a possible association between the methylenetetrahydrofolate reductase (MTHFR) gene and multiple sclerosis in Tunisian patients. The genotyping of two missense variants of the methylenetetrahydrofolate reductase (MTHFR) gene, C677T and A1298C was performed in 80 multiple sclerosis patients and 200 healthy controls. No significant differences were found in the frequency of the MTHFR C677T polymorphism between MS patients and healthy controls. However, the genotype prevalence of the missense variant MTHFR A1298C was significantly different between patients and controls (A/C: 55% versus 7%, pMTHFR C677T variants and MS, there is evidence to suggest a significant association between the MTHFR A1298C polymorphisms and MS. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age at onset of schizophrenia

    DEFF Research Database (Denmark)

    Saetre, Peter; Grove, Jakob; Børglum, Anders

    2012-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is an enzyme involved in metabolic pathways of importance for nucleotide synthesis and methylation of DNA, membranes, proteins and lipids. The MTHFR gene includes a common polymorphism (rs1801133 or C677T), which is associated with enzyme activity. The T...... the original Scandinavian samples, there was no significant association between MTHFR C677T polymorphism and age at onset in schizophrenia. The present results do not suggest that the investigated MTHFR polymorphism has any significant influence on age at onset of schizophrenia in the Nordic population. © 2012...

  10. Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system

    DEFF Research Database (Denmark)

    Holkenbrink, Carina; Ocón Barbas, Santiago; Mellerup, Anders

    2011-01-01

    Green sulfur bacteria oxidize sulfide and thiosulfate to sulfate with extracellular globules of elemental sulfur as intermediate. Here we investigated which genes are involved in the formation and consumption of these sulfur globules in the green sulfur bacterium Chlorobaculum tepidum. We show...... that sulfur globule oxidation is strictly dependent on the dissimilatory sulfite reductase (DSR) system. Deletion of dsrM/CT2244 or dsrT/CT2245 or the two dsrCABL clusters (CT0851-CT0854, CT2247-2250) abolished sulfur globule oxidation and prevented formation of sulfate from sulfide, whereas deletion of dsr...

  11. Hyperhomocysteinaemia, methylenetetrahydrofolate reductase polymorphism and risk of coronary artery disease.

    Science.gov (United States)

    Kerkeni, Mohsen; Addad, Faouzi; Chauffert, Maryline; Myara, Anne; Gerhardt, Marie; Chevenne, Didier; Trivin, François; Farhat, Mohamed Ben; Miled, Abdelhedi; Maaroufi, Khira

    2006-05-01

    Hyperhomocysteinaemia is an independent, graded risk factor for coronary artery disease (CAD). The methylenetetrahydrofolate reductase (MTHFR) polymorphism is associated with hyperhomcysteinaemia and may therefore influence individual susceptibility to CAD. We have investigated this risk factor in a Tunisian Arab population. Polymerase chain reaction-restriction fragment length polymorphism analysis was used to detect the C677T and A1298C variants of the MTHFR gene in 100 patients with CAD and 120 healthy controls. The severity of CAD was expressed as the number of affected vessels. Plasma total homocysteine (tHcy) concentration was determined using a direct chemiluminescence assay. MTHFR CC, CT and TT genotype frequencies in the CAD group were significantly different from those observed in the control group (49%, 35% and 16% versus 48.3%, 45.8% and 5.8%, respectively; P = 0.031). However, MTHFR AA, AC and CC genotypes frequencies in the CAD group were not significantly different from the control group ( P = 0.568). Patients with CAD showed higher plasma tHcy concentrations than patients without CAD (15.86 +/- 8.63 micromol/L versus 11.90 +/- 3.25 micromol/L, P MTHFR polymorphisms and the number of stenosed vessels. Patients with the MTHFR TT genotype had higher plasma tHcy, serum creatinine, cholesterol and triglyceride concentrations than patients with the MTHFR CC genotype. The C677T polymorphism of the MTHFR gene is associated with hyperhomocysteinaemia, lipid dysregulation and the presence of CAD in this Tunisian Arab population.

  12. The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in Arabidopsis roots.

    Science.gov (United States)

    Einset, John; Winge, Per; Bones, Atle M; Connolly, Erin L

    2008-10-01

    FRO2 (At1g01580) codes for an NADPH-dependent ferric reductase in plasma membranes of root epidermal cells with a demonstrated role in iron uptake by plants. Ferric reductase activity has been shown to be the rate-limiting step for iron uptake in strategy I plants like Arabidopsis and in rice, but it has been unclear whether FRO genes have other physiological functions. We hypothesized that FRO2 was involved in chilling stress tolerance because its expression was upregulated by treatment of plants with glycine betaine (GB), a chemical that prevents reactive oxygen species (ROS) signaling in chilling stress. This idea was confirmed by showing that the FRO2 null mutant frd1-1 failed to respond to GB in chilling assays either in relation to root growth recovery or inhibition of ROS accumulation. Measurements of ferric reductase activity in wild-type plants treated with GB before chilling showed no significant GB effect compared with controls. In addition, 35S-FRO2 transgenics with elevated mRNA levels did not have improved chilling tolerance. However, ferric reductase activity in wild-type plants or 35S-FRO2 transgenics pretreated with GB was several-fold higher after chilling compared with non-pretreated controls. These experiments identify a new physiological function for FRO2, i.e. blocking ROS accumulation during chilling. They also suggest that GB has a major effect on FRO2 activity posttranscriptionally in the cold.

  13. Biliverdin reductase: new features of an old enzyme and its potential therapeutic significance.

    Science.gov (United States)

    Florczyk, Urszula M; Jozkowicz, Alicja; Dulak, Jozef

    2008-01-01

    Biliverdin reductase (BVR) was known for a long time solely as an enzyme converting biliverdin to bilirubin, the major physiological antioxidant. Recent years revealed unique features of this protein which are not related to its reductase activity. The most intriguing and surprising finding is its dual-specificity kinase character. As such serine/threonine/tyrosine kinase BVR is involved in regulation of glucose metabolism or in control of cell growth and apoptosis. In consequence, it may play a role in pathogenesis of many diseases, such as diabetes or cancers. Moreover, in the nucleus BVR, being a leucine zipper-like DNA binding protein, can act as a transcription factor for activator protein 1 (AP-1)-regulated genes. It has been shown that BVR modulates ATF-2 and HO-1 expression, what suggests its potential role in control of AP-1 and cAMP-regulated genes. In conclusion, BVR together with its substrate, biliverdin, and product, bilirubin, are revealed to be important players in cellular signal transduction pathways, gene expression and oxidative response. These features make BVR unusually interesting and unique among all enzymes characterized to date.

  14. Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance.

    Science.gov (United States)

    Che, Dongsheng; Meagher, Richard B; Heaton, Andrew C P; Lima, Amparo; Rugh, Clayton L; Merkle, Scott A

    2003-07-01

    Mercury is one of the most hazardous heavy metals and is a particular problem in aquatic ecosystems, where organic mercury is biomagnified in the food chain. Previous studies demonstrated that transgenic model plants expressing a modified mercuric ion reductase gene from bacteria could detoxify mercury by converting the more toxic and reductive ionic form [Hg(II)] to less toxic elemental mercury [Hg(0)]. To further investigate if a genetic engineering approach for mercury phytoremediation can be effective in trees with a greater potential in riparian ecosystems, we generated transgenic Eastern cottonwood (Populus deltoides) trees expressing modified merA9 and merA18 genes. Leaf sections from transgenic plantlets produced adventitious shoots in the presence of 50 microm Hg(II) supplied as HgCl2, which inhibited shoot induction from leaf explants of wild-type plantlets. Transgenic shoots cultured in a medium containing 25 microm Hg(II) showed normal growth and rooted, while wild-type shoots were killed. When the transgenic cottonwood plantlets were exposed to Hg(II), they evolved 2-4-fold the amount of Hg(0) relative to wild-type plantlets. Transgenic merA9 and merA18 plants accumulated significantly higher biomass than control plants on a Georgia Piedmont soil contaminated with 40 p.p.m. Hg(II). Our results indicate that Eastern cottonwood plants expressing the bacterial mercuric ion reductase gene have potential as candidates for in situ remediation of mercury-contaminated soils or wastewater.

  15. Methylenetetrahydrofolate Reductase Activity Is Involved in the Plasma Membrane Redox System Required for Pigment Biosynthesis in Filamentous Fungi ▿ †

    OpenAIRE

    Frandsen, Rasmus J. N.; Albertsen, Klaus Selk; Stougaard, Peter; Sørensen, Jens L.; Nielsen, Kristian F.; Olsson, Stefan; Giese, Henriette

    2010-01-01

    Methylenetetrahydrofolate reductases (MTHFRs) play a key role in biosynthesis of methionine and S-adenosyl-l-methionine (SAM) via the recharging methionine biosynthetic pathway. Analysis of 32 complete fungal genomes showed that fungi were unique among eukaryotes by having two MTHFRs, MET12 and MET13. The MET12 type contained an additional conserved sequence motif compared to the sequences of MET13 and MTHFRs from other eukaryotes and bacteria. Targeted gene replacement of either of the two M...

  16. Methylenetetrahydrofolate Reductase A1298C Polymorphism and Breast Cancer Risk: A Meta-analysis of 33 Studies

    OpenAIRE

    Rai, V

    2014-01-01

    Methylenetetrahydrofolate reductase (MTHFR) enzyme is essential for DNA synthesis and DNA methylation, and its gene polymorphisms have been implicated as risk factors for birth defects, neurological disorders, and different types of cancers. Several studies have investigated the association between the MTHFR A1298C polymorphism and breast cancer (BC) risk, but the results were inconclusive. To assess the risk associated with MTHFR A1298C polymorphism, a comprehensive meta-analysis was perform...

  17. [Fumarate reductase in the mitochondria of the trematode Calicophoron ijimai].

    Science.gov (United States)

    Iarygina, G V; Vykhrestiuk, N P; Burenina, E A

    1983-01-01

    The presence of active fumarate reductase system in mitochondria of the trematode Calicophoron ijimai was shown. Fumarate reductase activities in different collections of C. ijimai vary considerably. Maximum activity accounts for 47.7 +/- 1.0 nM/min/mg protein whereas minimum--for 15.1 +/- 0.1. Some properties of the enzyme were studied. The effect of thiabendazole, bitionol, oxinid and preparations of G-1026 and G-937 on the fumarate reductase activity was investigated. G-1026, G-937 preparations and bitionol have the strongest inhibitory effect on the enzyme. Thiabendazole inhibited but little the fumarate reductase reaction in C. ijimai. The enzyme activity was not affected by oxinid.

  18. Regulation of ribonucleotide reductase by Spd1 involves multiple mechanisms

    DEFF Research Database (Denmark)

    Nestoras, Konstantinos; Mohammed, Asma Hadi; Schreurs, Ann-Sofie

    2010-01-01

    The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and...

  19. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima

    NARCIS (Netherlands)

    Loveridge, E Joel; Hroch, Lukas; Hughes, Robert L; Williams, Thomas; Davies, Rhidian L; Angelastro, Antonio; Luk, Louis Y P; Maglia, Giovanni; Allemann, Rudolf K

    2017-01-01

    Mammalian dihydrofolate reductases (DHFR) catalyse the reduction of folate more efficiently than the equivalent bacterial enzymes, despite typically having similar efficiencies for the reduction of their natural substrate dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic

  20. Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in Mycobacterium tuberculosis Drug Resistance

    KAUST Repository

    Koser, C. U.

    2010-09-17

    We would like to comment on a number of recent reports in this journal (6, 8, 12, 18) concerning Mycobacterium tuberculosis dihydrofolate reductase (DHFR), encoded by dfrA (Rv2763c). Around 36% of phenotypically para-aminosalicylic acid (PAS)-resistant M. tuberculosis strains harbor mutations in thyA (Rv2764c), which encodes a thymidylate synthase (20). In their effort to elucidate the remaining unknown resistance mechanism(s), Mathys et al. extended their sequence analysis to a number of additional genes, including dfrA (12). It was unclear whether the three dfrA mutations they identified in the PAS-resistant strains P-693 and P-3158 could contribute to PAS resistance on their own. Nonetheless, these findings are notable for two reasons. First, isoniazid (INH) has been shown to inhibit M. tuberculosis DHFR in vitro (1). Whether the same holds true for ethionamide, which shares a number of common resistance mechanisms with INH, was not tested (J. Blanchard, personal communication). In any case, the clinical relevance of DHFR-mediated INH resistance remains enigmatic. To date, only Ho et al. have addressed this question, but they did not identify any dfrA mutations in a screen of 127 INH-resistant clinical isolates (8). Consequently, Mathys et al. remain the first to describe mutations in this target (12). However, given that isolates with mutated DHFR are members of a cluster with baseline INH resistance, the importance of these mutations with respect to INH resistance remains unclear. Irrespective of their relevance in INH resistance, these dfrA mutations are noteworthy for a second reason. Contrary to previous wisdom, Forgacs et al. recently showed that M. tuberculosis is sensitive to the drug combination trimethoprim-sulfamethoxazole (TMP-SMX) (6, 18). DHFR is competitively inhibited by TMP, and consequently, mutations therein lead to resistance in a variety of organisms (9, 16, 19). The crystal structures of the wild-type M. tuberculosis DHFR in complex with

  1. Molecular Cloning and Characterization of Ecdysone oxidase and 3-dehydroecdysone-3α-reductase Involved in the Ecdysone Inactivation Pathway of Silkworm, Bombyx mori

    Science.gov (United States)

    Sun, Wei; Shen, Yi-Hong; Qi, Deng-Wei; Xiang, Zhong-Huai; Zhang, Ze

    2012-01-01

    Molting hormone (ecdysteroid) is one of the most important hormones in insects. The synthesis and inactivation of the ecdysteroid regulate the developmental process of insects. A major pathway of ecdysone inactivation is that ecdysone is converted to 3-dehydroecdysone, and then further to 3-epiecdysone in insects. Two enzymes (ecdysone oxidase: EO and 3DE-3α-reductase) participate in this pathway. In this study, based on the previously characterized cDNAs in Spodoptera littoralis, we cloned and characterized EO and 3DE-3α-reductase genes in the silkworm, Bombyx mori. The heterologously expressed proteins of the two genes in yeast showed the ecdysone oxidase and 3DE-3α-reductase activities, respectively. Expression of BmEO was only detected in the midgut at transcriptional and translational levels. We also localized EO within the midgut goblet cell cavities. For Bm3DE-3α-reductase gene, RT-PCR and western blot showed that it was expressed in the midgut and the Malpighian tubules. Moreover, we localized 3DE-3α-reductase within the midgut goblet cell cavities and the cytosol of principal cells of the Malpighian tubules. These two genes have similar expression profiles during different developmental stages. Both genes were highly expressed at the beginning of the 5th instar, and remained a relative low level during the feeding stage, and then were highly expressed at the wandering stage. All these results showed that the profiles of the two genes were well correlated with the ecdysteroid titer. The functional characterization of the enzymes participating in ecdysone inactivation in the silkworm provides hints for the artificial regulation of the silkworm development and biological control of pests. PMID:22215981

  2. Risk of venous thromboembolism associated with single and combined effects of Factor V Leiden, Prothrombin 20210A and Methylenetethraydrofolate reductase C677T

    DEFF Research Database (Denmark)

    Simone, Benedetto; De Stefano, Valerio; Leoncini, Emanuele

    2013-01-01

    Genetic and environmental factors interact in determining the risk of venous thromboembolism (VTE). The risk associated with the polymorphic variants G1691A of factor V (Factor V Leiden, FVL), G20210A of prothrombin (PT20210A) and C677T of methylentetrahydrofolate reductase (C677T MTHFR) genes ha...

  3. Methylenetetrahydrofolate reductase (MTHFR) C677T and A1298C polymorphisms and age of onset in schizophrenia: a combined analysis of independent samples

    NARCIS (Netherlands)

    Saetre, P.; Vares, M.; Werge, T.; Andreassen, O.A.; Arinami, T.; Ishiguro, H.; Nanko, S.; Tan, E.; Han, D.H.; Roffman, J.L.; Muntjewerff, J.W.; Jagodzinski, P.P.; Kempisty, B.; Hauser, J.; Vilella, E.; Betcheva, E.; Nakamura, Y.; Regland, B.; Agartz, I.; Hall, H.; Terenius, L.; Jonsson, E.G.

    2011-01-01

    Methylenetetrahydrofolate reductase (MTHFR) is involved in the one-carbon cycle, which is of importance for nucleotide synthesis and methylation of DNA, membranes, proteins and lipids. The MTHFR gene includes two common polymorphisms (rs1801133 or C677T; rs1801131 or A1298C) which both alter enzyme

  4. The nitric oxide reductase activity of cytochrome c nitrite reductase from Escherichia coli.

    Science.gov (United States)

    van Wonderen, Jessica H; Burlat, Bénédicte; Richardson, David J; Cheesman, Myles R; Butt, Julea N

    2008-04-11

    Cytochrome c nitrite reductase (NrfA) from Escherichia coli has a well established role in the respiratory reduction of nitrite to ammonium. More recently the observation that anaerobically grown E. coli nrf mutants were more sensitive to NO. than the parent strain led to the proposal that NrfA might also participate in NO. detoxification. Here we describe protein film voltammetry that presents a quantitative description of NrfA NO. reductase activity. NO. reduction is initiated at similar potentials to NrfA-catalyzed reduction of nitrite and hydroxylamine. All three activities are strongly inhibited by cyanide. Together these results suggest a common site for reduction of all three substrates as axial ligands to the lysine-coordinated NrfA heme rather than nonspecific NO. reduction at one of the four His-His coordinated hemes also present in each NrfA subunit. NO. reduction by NrfA is described by a K(m) of the order of 300 microm. The predicted turnover number of approximately 840 NO. s(-1) is much higher than that of the dedicated respiratory NO. reductases of denitrification and the flavorubredoxin and flavohemoglobin of E. coli that are also proposed to play roles in NO. detoxification. In considering the manner by which anaerobically growing E. coli might detoxify exogenously generated NO. encountered during invasion of a human host it appears that the periplasmically located NrfA should be effective in maintaining low NO. levels such that any NO. reaching the cytoplasm is efficiently removed by flavorubredoxin (K(m) approximately 0.4 microm).

  5. Aldose reductase mediates retinal microglia activation

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J. Mark, E-mail: mark.petrash@ucdenver.edu

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1{sup GFP} mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR{sup WT} background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. - Highlights: • AR inhibition prevents retinal microglial activation. • Endotoxin-induced ocular cytokine production is reduced in AR null mice. • Overexpression of AR spontaneously induces retinal microglial activation.

  6. Evaluation of constitutive iron reductase (AtFRO2 expression on mineral accumulation and distribution in soybean (Glycine max. L

    Directory of Open Access Journals (Sweden)

    Marta Wilton Vasconcelos

    2014-04-01

    Full Text Available Iron is an important micronutrient in human and plant nutrition. Adequate iron nutrition during crop production is central for assuring appropriate iron concentrations in the harvestable organs, for human food or animal feed. The whole-plant movement of iron involves several processes, including the reduction of ferric to ferrous iron at several locations throughout the plant, prior to transmembrane trafficking of ferrous iron. In this study, soybean plants that constitutively expressed the AtFRO2 iron reductase gene were analyzed for leaf iron reductase activity, as well as the effect of this transgene's expression on root, leaf, pod wall, and seed mineral concentrations. High Fe supply, in combination with the constitutive expression of AtFRO2, resulted in significantly higher concentrations of different minerals in roots (K, P, Zn, Ca, Ni, Mg and Mo, pod walls (Fe, K, P, Cu and Ni, leaves (Fe, P, Cu, Ca, Ni and Mg and seeds (Fe, Zn, Cu and Ni. Leaf and pod wall iron concentrations increased as much as 500% in transgenic plants, while seed iron concentrations only increased by 10%, suggesting that factors other than leaf and pod wall reductase activity were limiting the translocation of iron to seeds. Protoplasts isolated from transgenic leaves had three-fold higher reductase activity than controls. Expression levels of the iron storage protein, ferritin, were higher in the transgenic leaves than in wild-type, suggesting that the excess iron may be stored as ferritin in the leaves and therefore unavailable for phloem loading and delivery to the seeds. Also, citrate and malate levels in the roots and leaves of transgenic plants were significantly higher than in wild-type, suggesting that organic acid production could be related to the increased accumulation of minerals in roots, leaves and pod walls, but not in the seeds. All together, these results suggest a more ubiquitous role for the iron reductase in whole-plant mineral accumulation and

  7. Cloning and characterization of a novel 2-ketoisovalerate reductase from the beauvericin producer Fusarium proliferatum LF061

    Directory of Open Access Journals (Sweden)

    Zhang Tao

    2012-08-01

    Full Text Available Abstract Background The ketoisovalerate reductase (EC 1.2.7.7 is required for the formation of beauvericin via the nonribosomal peptide synthetase biosynthetic pathway. It catalyzes the NADPH-specific reduction of ketoisovaleric acid to hydroxyisovalerate. However, little is known about the bioinformatics’ data about the 2-Kiv reductase in Fusarium. To date, heterologous production of the gene KivRFp from Fusarium has not been achieved. Results The KivRFp gene was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The gene KivRFp contained a 1,359 bp open reading frame (ORF encoding a polypeptide of 452 amino acids with a molecular mass of 52 kDa. Sequence analysis indicated that it showed 61% and 52% amino acid identities to ketoisovalerate reductase from Beauveria bassiana ATCC 7159 (ACI30654 and Metarhizium acridum CQMa 102 (EFY89891, respectively; and several conserved regions were identified, including the putative nucleotide-binding signature site, GXGXXG, a catalytic triad (Glu405, Asn184, and Lys285. The KivRFp exhibited the highest activity at 35°C and pH 7.5 respectively, by reduction of ketoisovalerate. It also exhibited the high level of stability over wide temperature and pH spectra and in the presence of metal ions or detergents. Conclusions A new ketoisovalerate reductase KivRFp was identified and characterized from the depsipeptide-producing fungus F. proliferatum. KivRFp has been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering and directed evolution, towards the goal of developing efficient enzyme for downstream biotechnological applications.

  8. The role of light in the inducation of nitrate reductase and nitrite reductase in cucumber seedlings

    Directory of Open Access Journals (Sweden)

    J. Buczek

    2015-01-01

    Full Text Available The activity of nitrate reductase (NR and nitrite reductase (NiR was investigated in vivo and in vitro in the roots and NR activity in 3-day-old cotyledons of cucumber seedlings. NR activity in the roots appears almost immediately after addition of nitrate ions to the induction medium, whereas, in the cotyledones NR induction is delayed. In general light enhances NR activity in the cotyledons and depresses it in the roots in experiments of short duration. Etiolation of the cotyledons reduces NR activity in the roots and leads to disappearance of the activity of this enzyme in the cotyledons, whereas the NR activity of roots kept in darkness, after transfer of the etiolated plants to light, increases threefold. In roots growing in darkness a delay in NiR induction is observed, while in those growing in ligth it occurs at the same time as NR induction. Chlormaphenicol (CAP, cycloheximide (CHI and actinomycin D (ACM applied at the beginning of the period of seedling induction with initrates inhibit NR activity in the cotyledons, whereas in the roots only CHI and ACM exert such an effect. To sum up, NR is synthesized in cucumber roots and cotyledons de novo on the cytoplasmic polyribosomes, and light per se is not indispensable for this synthesis, but it has an indirect influence on the activity level of NR and NiR both in the roots and the cotyledons.

  9. Purification and Properties of an NADPH-Aldose Reductase (Aldehyde Reductase) from Euonymus japonica Leaves

    Science.gov (United States)

    Negm, Fayek B.

    1986-01-01

    The enzyme aldose (aldehyde) reductase was partially purified (142-fold) and characterized from Euonymus japonica leaves. The reductase, a dimer, had an average molecular weight of 67,000 as determined by gel filtration on Sephadex G-100. The enzyme was NADPH specific and reduced a broad range of substrates including aldoses, aliphatic aldehydes, and aromatic aldehydes. Maximum activity was observed at pH 8 in phosphate and Tris-HCl buffers and at pH 8.6 to 9.0 in glycine-NaOH buffer using dl-glyceraldehyde or 3-pyridinecarboxaldehyde as substrate. NADP was a competitive inhibitor with respect to NADPH with a Ki of 60 micromolar. Glycerol was an uncompetitive inhibitor to dl-glyceraldehyde (K′i = 460 millimolar). The Euonymus enzyme was inhibited by sulfhydryl inhibitor, phenobarbital, and high concentrations of Li2SO4. Pyrazol and metal chelating agents inhibited the enzyme slightly. Enzyme activity was detected in the leaves and berries of Celastrus orbiculatus and several species of Euonymus. Probable function of this enzyme is to reduce d-galactose to galactitol, a characteristic metabolite in phloem sap of members of the Celastraceae family. Images Fig. 1 PMID:16664750

  10. Metabolic derangement of methionine and folate metabolism in mice deficient in methionine synthase reductase

    Science.gov (United States)

    Elmore, C. Lee; Wu, Xuchu; Leclerc, Daniel; Watson, Erica D.; Bottiglieri, Teodoro; Krupenko, Natalia I.; Krupenko, Sergey A.; Cross, James C.; Rozen, Rima; Gravel, Roy A.; Matthews, Rowena G.

    2007-01-01

    Hyperhomocyst(e)inemia is a metabolic derangement that is linked to the distribution of folate pools, which provide one-carbon units for biosynthesis of purines and thymidylate and for remethylation of homocysteine to form methionine. In humans, methionine synthase deficiency results in the accumulation of methyltetrahydrofolate at the expense of folate derivatives required for purine and thymidylate biosynthesis. Complete ablation of methionine synthase activity in mice results in embryonic lethality. Other mouse models for hyperhomocyst(e)inemia have normal or reduced levels of methyltetrahydrofolate and are not embryonic lethal, although they have decreased ratios of AdoMet/AdoHcy and impaired methylation. We have constructed a mouse model with a gene trap insertion in the Mtrr gene specifying methionine synthase reductase, an enzyme essential for the activity of methionine synthase. This model is a hypomorph, with reduced methionine synthase reductase activity, thus avoiding the lethality associated with the absence of methionine synthase activity. Mtrrgt/gt mice have increased plasma homocyst(e)ine, decreased plasma methionine, and increased tissue methyltetrahydrofolate. Unexpectedly, Mtrrgt/gt mice do not show decreases in the AdoMet/AdoHcy ratio in most tissues. The different metabolite profiles in the various genetic mouse models for hyperhomocysteinemia may be useful in understanding biological effects of elevated homocyst(e)ine. PMID:17369066

  11. Glutathione Reductase/Glutathione Is Responsible for Cytotoxic Elemental Sulfur Tolerance via Polysulfide Shuttle in Fungi*

    Science.gov (United States)

    Sato, Ikuo; Shimatani, Kanami; Fujita, Kensaku; Abe, Tsuyoshi; Shimizu, Motoyuki; Fujii, Tatsuya; Hoshino, Takayuki; Takaya, Naoki

    2011-01-01

    Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction. PMID:21474441

  12. Glutathione reductase/glutathione is responsible for cytotoxic elemental sulfur tolerance via polysulfide shuttle in fungi.

    Science.gov (United States)

    Sato, Ikuo; Shimatani, Kanami; Fujita, Kensaku; Abe, Tsuyoshi; Shimizu, Motoyuki; Fujii, Tatsuya; Hoshino, Takayuki; Takaya, Naoki

    2011-06-10

    Fungi that can reduce elemental sulfur to sulfide are widely distributed, but the mechanism and physiological significance of the reaction have been poorly characterized. Here, we purified elemental sulfur-reductase (SR) and cloned its gene from the elemental sulfur-reducing fungus Fusarium oxysporum. We found that NADPH-glutathione reductase (GR) reduces elemental sulfur via glutathione as an intermediate. A loss-of-function mutant of the SR/GR gene generated less sulfide from elemental sulfur than the wild-type strain. Its growth was hypersensitive to elemental sulfur, and it accumulated higher levels of oxidized glutathione, indicating that the GR/glutathione system confers tolerance to cytotoxic elemental sulfur by reducing it to less harmful sulfide. The SR/GR reduced polysulfide as efficiently as elemental sulfur, which implies that soluble polysulfide shuttles reducing equivalents to exocellular insoluble elemental sulfur and generates sulfide. The ubiquitous distribution of the GR/glutathione system together with our findings that GR-deficient mutants derived from Saccharomyces cerevisiae and Aspergillus nidulans reduced less sulfur and that their growth was hypersensitive to elemental sulfur indicated a wide distribution of the system among fungi. These results indicate a novel biological function of the GR/glutathione system in elemental sulfur reduction, which is distinguishable from bacterial and archaeal mechanisms of glutathione- independent sulfur reduction.

  13. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    Science.gov (United States)

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  14. Deletion of thioredoxin reductase and effects of selenite and selenate toxicity in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Christopher J Boehler

    Full Text Available Thioredoxin reductase-1 (TRXR-1 is the sole selenoprotein in C. elegans, and selenite is a substrate for thioredoxin reductase, so TRXR-1 may play a role in metabolism of selenium (Se to toxic forms. To study the role of TRXR in Se toxicity, we cultured C. elegans with deletions of trxr-1, trxr-2, and both in axenic media with increasing concentrations of inorganic Se. Wild-type C. elegans cultured for 12 days in Se-deficient axenic media grow and reproduce equivalent to Se-supplemented media. Supplementation with 0-2 mM Se as selenite results in inverse, sigmoidal response curves with an LC50 of 0.20 mM Se, due to impaired growth rather than reproduction. Deletion of trxr-1, trxr-2 or both does not modulate growth or Se toxicity in C. elegans grown axenically, and (75Se labeling showed that TRXR-1 arises from the trxr-1 gene and not from bacterial genes. Se response curves for selenide (LC50 0.23 mM Se were identical to selenite, but selenate was 1/4(th as toxic (LC50 0.95 mM Se as selenite and not modulated by TRXR deletion. These nutritional and genetic studies in axenic media show that Se and TRXR are not essential for C. elegans, and that TRXR alone is not essential for metabolism of inorganic Se to toxic species.

  15. 5α-reductases in human physiology: an unfolding story.

    Science.gov (United States)

    Traish, Abdulmaged M

    2012-01-01

    5α-reductases are a family of isozymes expressed in a wide host of tissues including the central nervous system (CNS) and play a pivotal role in male sexual differentiation, development and physiology. A comprehensive literature search from 1970 to 2011 was made through PubMed and the relevant information was summarized. 5α reductases convert testosterone, progesterone, deoxycorticosterone, aldosterone and corticosterone into their respective 5α-dihydro-derivatives, which serve as substrates for 3α-hydroxysteroid dehydrogenase enzymes. The latter transforms these 5α-reduced metabolites into a subclass of neuroactive steroid hormones with distinct physiological functions. The neuroactive steroid hormones modulate a multitude of functions in human physiology encompassing regulation of sexual differentiation, neuroprotection, memory enhancement, anxiety, sleep and stress, among others. In addition, 5α -reductase type 3 is also implicated in the N-glycosylation of proteins via formation of dolichol phosphate. The family of 5α-reductases was targeted for drug development to treat pathophysiological conditions, such as benign prostatic hyperplasia and androgenetic alopecia. While the clinical use of 5α-reductase inhibitors was well established, the scope and the magnitude of the adverse side effects of such drugs, especially on the CNS, is still unrecognized due to lack of knowledge of the various physiological functions of this family of enzymes, especially in the CNS. There is an urgent need to better understand the function of 5α-reductases and the role of neuroactive steroids in human physiology in order to minimize the potential adverse side effects of inhibitors targeting 5α-reductases to treat benign prostatic hyperplasia and androgenic alopecia.

  16. Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase.

    Science.gov (United States)

    Wilks, A; Black, S M; Miller, W L; Ortiz de Montellano, P R

    1995-04-04

    A human heme oxygenase (hHO-1) gene without the sequence coding for the last 23 amino acids has been expressed in Escherichia coli behind the pho A promoter. The truncated enzyme is obtained in high yields as a soluble, catalytically-active protein, making it available for the first time for detailed mechanistic studies. The purified, truncated hHO-1/heme complex is spectroscopically indistinguishable from that of the rat enzyme and converts heme to biliverdin when reconstituted with rat liver cytochrome P450 reductase. A self-sufficient heme oxygenase system has been obtained by fusing the truncated hHO-1 gene to the gene for human cytochrome P450 reductase without the sequence coding for the 20 amino acid membrane binding domain. Expression of the fusion protein in pCWori+ yields a protein that only requires NADPH for catalytic turnover. The failure of exogenous cytochrome P450 reductase to stimulate turnover and the insensitivity of the catalytic rate toward changes in ionic strength establish that electrons are transferred intramolecularly between the reductase and heme oxygenase domains of the fusion protein. The Vmax for the fusion protein is 2.5 times higher than that for the reconstituted system. Therefore, either the covalent tether does not interfere with normal docking and electron transfer between the flavin and heme domains or alternative but equally efficient electron transfer pathways are available that do not require specific docking.

  17. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol.

    Science.gov (United States)

    Gest, Noé; Garchery, Cécile; Gautier, Hélène; Jiménez, Ana; Stevens, Rebecca

    2013-04-01

    Ascorbate is a powerful antioxidant in plants, and its levels are an important quality criteria in commercial species. Factors influencing these levels include environmental variations, particularly light, and the genetic control of its biosynthesis, recycling and degradation. One of the genes involved in the recycling pathway encodes a monodehydroascorbate reductase (MDHAR), an enzyme catalysing reduction of the oxidized radical of ascorbate, monodehydroascorbate, to ascorbate. In plants, MDHAR belongs to a multigene family. Here, we report the presence of an MDHAR isoform in both the cytosol and peroxisomes and show that this enzyme negatively regulates ascorbate levels in Solanum lycopersicum (tomato). Transgenic lines overexpressing MDHAR show a decrease in ascorbate levels in leaves, whereas lines where MDHAR is silenced show an increase in these levels in both fruits and leaves. Furthermore, the intensity of these differences is light dependent. The unexpected effect of this MDHAR on ascorbate levels cannot be explained by changes in the expression of Smirnoff-Wheeler pathway genes, or the activity of enzymes involved in degradation (ascorbate peroxidase) or recycling of ascorbate (dehydroascorbate reductase and glutathione reductase), suggesting a previously unidentified mechanism regulating ascorbate levels. © 2012 INRA Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  18. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  19. Methylenetetrahydrofolate Reductase Activity Is Involved in the Plasma Membrane Redox System Required for Pigment Biosynthesis in Filamentous Fungi

    DEFF Research Database (Denmark)

    Frandsen, Rasmus John Normand; Albertsen, K.S.; Stougaard, P.

    2010-01-01

    Methylenetetrahydrofolate reductases (MTHFRs) play a key role in biosynthesis of methionine and S-adenosyl-L-methionine (SAM) via the recharging methionine biosynthetic pathway. Analysis of 32 complete fungal genomes showed that fungi were unique among eukaryotes by having two MTHFRs, MET12 and MET......13. The MET12 type contained an additional conserved sequence motif compared to the sequences of MET13 and MTHFRs from other eukaryotes and bacteria. Targeted gene replacement of either of the two MTHFR encoding genes in Fusarium graminearum showed that they were essential for survival but could...

  20. Association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age of onset in schizophrenia

    DEFF Research Database (Denmark)

    Vares, Maria; Saetre, Peter; Deng, Hong

    2010-01-01

    ) significantly affected age at onset of schizophrenia in a dose-dependent manner (P = 0.0015), with lower age of onset with increasing numbers of the mutant T-allele. There was no evidence of rs1801131 (A1298C) affecting age of onset in schizophrenia. Within the Chinese high-risk families carriers of the MTHFR......Different lines of evidence indicate that methylenetetrahydrofolate reductase (MTHFR) functional gene polymorphisms, causative in aberrant folate-homocysteine metabolism, are associated with increased vulnerability to several heritable developmental disorders. Opposing views are expressed...... considering the possible association between MTHFR and susceptibility for schizophrenia. In order to evaluate if age of onset could explain some of this discrepancy we investigated the relationship between two functional MTHFR gene polymorphisms and age at onset in this disorder. Scandinavian patients (n...

  1. Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei

    DEFF Research Database (Denmark)

    Yang, Lei; Lübeck, Mette; Ahring, Birgitte K.

    2015-01-01

    production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led......Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities...... on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid...

  2. Association between methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism and age of onset in schizophrenia

    DEFF Research Database (Denmark)

    Vares, Maria; Saetre, Peter; Deng, Hong

    2010-01-01

    = 820) diagnosed with schizophrenia, schizoaffective disorder, and schizophreniform disorder were investigated. Two functional MTHFR single nucleotide polymorphisms (SNPs; rs1801131 and rs1801133) were genotyped and the effect of MTHFR polymorphisms on the age of onset was examined with survival......Different lines of evidence indicate that methylenetetrahydrofolate reductase (MTHFR) functional gene polymorphisms, causative in aberrant folate-homocysteine metabolism, are associated with increased vulnerability to several heritable developmental disorders. Opposing views are expressed...... considering the possible association between MTHFR and susceptibility for schizophrenia. In order to evaluate if age of onset could explain some of this discrepancy we investigated the relationship between two functional MTHFR gene polymorphisms and age at onset in this disorder. Scandinavian patients (n...

  3. Thioredoxin glutathione reductase as a novel drug target: evidence from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    LiJun Song

    Full Text Available BACKGROUND: Schistosomiasis remains a major public health concern affecting billions of people around the world. Currently, praziquantel is the only drug of choice for treatment of human schistosomiasis. The emergence of drug resistance to praziquantel in schistosomes makes the development of novel drugs an urgent task. Thioredoxin glutathione reductase (TGR enzymes in Schistosoma mansoni and some other platyhelminths have been identified as alternative targets. The present study was designed to confirm the existense and the potential value of TGR as a target for development of novel antischistosomal agents in Schistosoma japonicum, a platyhelminth endemic in Asia. METHODS AND FINDINGS: After cloning the S. japonicum TGR (SjTGR gene, the recombinant SjTGR selenoprotein was purified and characterized in enzymatic assays as a multifunctional enzyme with thioredoxin reductase (TrxR, glutathione reductase (GR and glutaredoxin (Grx activities. Immunological and bioinformatic analyses confirmed that instead of having separate TrxR and GR proteins in mammalian, S. japonicum only encodes TGR, which performs the functions of both enzymes and plays a critical role in maintaining the redox balance in this parasite. These results were in good agreement with previous findings in Schistosoma mansoni and some other platyhelminths. Auranofin, a known inhibitor against TGR, caused fatal toxicity in S. japonicum adult worms in vitro and reduced worm and egg burdens in S. japonicum infected mice. CONCLUSIONS: Collectively, our study confirms that a multifunctional enzyme SjTGR selenoprotein, instead of separate TrxR and GR enzymes, exists in S. japonicum. Furthermore, TGR may be a potential target for development of novel agents against schistosomes. This assumption is strengthened by our demonstration that the SjTGR is an essential enzyme for maintaining the thiol-disulfide redox homeostasis of S. japonicum.

  4. Dicarbonyl L-xylulose reductase (DCXR, a "moonlighting protein" in the bovine epididymis.

    Directory of Open Access Journals (Sweden)

    Ayodélé Akintayo

    Full Text Available During maturation and the acquisition of their fertilization potential, male germ cells are subjected to various sequential modifications that occur in the epididymis. Protein addition, reorganization or withdrawal, comprise some of these modifications. Dicarbonyl L-xylulose reductase (DCXR, a multifunctional protein involved in various enzymatic and protein interaction processes in different physiological systems, is one of the proteins added to spermatozoa in the epididymis. DCXR is a well-conserved protein with multiple characteristics including enzymatic activities and mediation of cell-cell interaction. In this study, we characterized the DCXR gene and protein expression in the bovine epididymis. Dicarbonyl L-xylulose reductase mRNA is differentially expressed in the caput, corpus, and cauda epididymide epithelial cells with a higher level observed in the cauda region. Tissue protein expression follows the same pattern as the corresponding mRNA expression with a cytoplasmic and apical distribution in the corpus and cauda epithelial cells, respectively. The protein can also be found with a nuclear localization in cauda epididymidis epithelial cells. Dicarbonyl L-xylulose reductase is secreted in the epididymis luminal compartment in the soluble fraction and is associated with microvesicular elements named epididymosomes. In spermatozoa, the DCXR protein was found in the cytoplasmic and membranous fractions. Expression of the DCXR protein is higher on caput spermatozoa but finally shows a weak detection in semen. These data describe DCXR in the bovine epididymis and reveal that its behavior differs from that found in humans. It seems that, in this model, the DCXR protein might have a questionable involvement in the fertilization process.

  5. Cloning, expression, and characterization of a novel xylose reductase from Rhizopus oryzae.

    Science.gov (United States)

    Zhang, Min; Jiang, Shao-tong; Zheng, Zhi; Li, Xing-jiang; Luo, Shui-zhong; Wu, Xue-feng

    2015-07-01

    Rhizopus oryzae is valuable as a producer of organic acids via lignocellulose catalysis. R. oryzae metabolizes xylose, which is one component of lignocellulose hydrolysate. In this study, a novel NADPH-dependent xylose reductase gene from R. oryzae AS 3.819 (Roxr) was cloned and expressed in Pichia pastoris GS115. Homology alignment suggested that the 320-residue protein contained domains and active sites belonging to the aldo/keto reductase family. SDS-PAGE demonstrated that the recombinant xylose reductase has a molecular weight of approximately 37 kDa. The optimal catalytic pH and temperature of the purified recombinant protein were 5.8 and 50 °C, respectively. The recombinant protein was stable from pH 4.4 to 6.5 and at temperatures below 42 °C. The recombinant enzyme has bias for D-xylose and L-arabinose as substrates and NADPH as its coenzyme. Real-time quantitative reverse transcription PCR tests suggested that native Roxr expression is regulated by a carbon catabolite repression mechanism. Site-directed mutagenesis at two possible key sites involved in coenzyme binding, Thr(226)  → Glu(226) and Val(274)  → Asn(274), were performed, respectively. The coenzyme specificity constants of the resulted RoXR(T226E) and RoXR(V274N) for NADH increased 18.2-fold and 2.4-fold, which suggested possibility to improve the NADH preference of this enzyme through genetic modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Malonic Semialdehyde Reductase from the Archaeon Nitrosopumilus maritimus Is Involved in the Autotrophic 3-Hydroxypropionate/4-Hydroxybutyrate Cycle

    Science.gov (United States)

    Otte, Julia; Mall, Achim; Schubert, Daniel M.; Könneke, Martin

    2014-01-01

    The recently described ammonia-oxidizing archaea of the phylum Thaumarchaeota are highly abundant in marine, geothermal, and terrestrial environments. All characterized representatives of this phylum are aerobic chemolithoautotrophic ammonia oxidizers assimilating inorganic carbon via a recently described thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. Although some genes coding for the enzymes of this cycle have been identified in the genomes of Thaumarchaeota, many other genes of the cycle are not homologous to the characterized enzymes from other species and can therefore not be identified bioinformatically. Here we report the identification and characterization of malonic semialdehyde reductase Nmar_1110 in the cultured marine thaumarchaeon Nitrosopumilus maritimus. This enzyme, which catalyzes the reduction of malonic semialdehyde with NAD(P)H to 3-hydroxypropionate, belongs to the family of iron-containing alcohol dehydrogenases and is not homologous to malonic semialdehyde reductases from Chloroflexus aurantiacus and Metallosphaera sedula. It is highly specific to malonic semialdehyde (Km, 0.11 mM; Vmax, 86.9 μmol min−1 mg−1 of protein) and exhibits only low activity with succinic semialdehyde (Km, 4.26 mM; Vmax, 18.5 μmol min−1 mg−1 of protein). Homologues of N. maritimus malonic semialdehyde reductase can be found in the genomes of all Thaumarchaeota sequenced so far and form a well-defined cluster in the phylogenetic tree of iron-containing alcohol dehydrogenases. We conclude that malonic semialdehyde reductase can be regarded as a characteristic enzyme for the thaumarchaeal version of the 3-hydroxypropionate/4-hydroxybutyrate cycle. PMID:25548047

  7. Sulfite Reductase Activity in Extracts of Various Photosynthetic Bacteria

    Science.gov (United States)

    Peck, H. D.; Tedro, S.; Kamen, M. D.

    1974-01-01

    Extracts of representative bacterial strains from the various families of photosynthetic prokaryotes are demonstrated to possess significant levels of sulfite reductase [EC 1.8.99.1; hydrogen-sulfide: (acceptor)oxidoreductase] activity with reduced methyl viologen as electron donor, but not NADPH2. The enzyme is localized primarily in the soluble fraction of the extracts, in contrast to adenylysulfate reductase [EC 1.8.99.2; AMP, sulfite: (acceptor) oxidoreductase], which is bound normally in the membrane fractions of those bacteria in which it is found. Assignment of the sulfite reductase activities to the biosynthetic (“assimilatory”) pathway is suggested by levels of specific activity noted and ready solubility. PMID:4526215

  8. Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase

    DEFF Research Database (Denmark)

    Farver, Ole; Brunori, Maurizio; Cutruzzolà, Francesca

    2009-01-01

    The cd(1) nitrite reductases, which catalyze the reduction of nitrite to nitric oxide, are homodimers of 60 kDa subunits, each containing one heme-c and one heme-d(1). Heme-c is the electron entry site, whereas heme-d(1) constitutes the catalytic center. The 3D structure of Pseudomonas aeruginosa...... is controlling this internal ET step. In this study we have investigated the internal ET in the wild-type and His369Ala mutant of P. aeruginosa nitrite reductases and have observed similar cooperativity to that of the Pseudomonas stutzeri enzyme. Heme-c was initially reduced, in an essentially diffusion...... nitrite reductase has been determined in both fully oxidized and reduced states. Intramolecular electron transfer (ET), between c and d(1) hemes is an essential step in the catalytic cycle. In earlier studies of the Pseudomonas stutzeri enzyme, we observed that a marked negative cooperativity...

  9. Methemoglobin reductase activity in intact fish red blood cells

    DEFF Research Database (Denmark)

    Jensen, Frank B; Nielsen, Karsten

    2018-01-01

    Hb reductase activity in fish offsets their higher Hb autoxidation and higher likelihood of encountering elevated nitrite. Deoxygenation significantly raised the rates of RBC metHb reduction, and more so in rainbow trout than in carp. The temperature sensitivity of metHb reduction in rainbow trout RBCs......Red blood cells (RBCs) possess methemoglobin reductase activity that counters the ongoing oxidation of hemoglobin (Hb) to methemoglobin (metHb), which in circulating blood is caused by Hb autoxidation or reactions with nitrite. We describe an assay for determining metHb reductase activity in intact...... of counteracting oxidation. This assay was used to compare metHb reduction in rainbow trout and carp RBCs under both oxygenated and deoxygenated conditions. Washing resulted in effective wash-out of nitrite to low and safe values (~2μM). The subsequent decline in [metHb] with time followed first-order kinetics...

  10. The Drosophila carbonyl reductase sniffer is an efficient 4-oxonon-2-enal (4ONE) reductase.

    Science.gov (United States)

    Martin, Hans-Jörg; Ziemba, Marta; Kisiela, Michael; Botella, José A; Schneuwly, Stephan; Maser, Edmund

    2011-05-30

    Studies with the fruit-fly Drosophila melanogaster demonstrated that the enzyme sniffer prevented oxidative stress-induced neurodegeneration. Mutant flies overexpressing sniffer had significantly extended life spans in a 99.5% oxygen atmosphere compared to wild-type flies. However, the molecular mechanism of this protection remained unclear. Sequence analysis and database searches identified sniffer as a member of the short-chain dehydrogenase/reductase superfamily with a 27.4% identity to the human enzyme carbonyl reductase type I (CBR1). As CBR1 catalyzes the reduction of the lipid peroxidation products 4HNE and 4ONE, we tested whether sniffer is able to metabolize these lipid derived aldehydes by carbonyl reduction. To produce recombinant enzyme, the coding sequence of sniffer was amplified from a cDNA-library, cloned into a bacterial expression vector and the His-tagged protein was purified by Ni-chelate chromatography. We found that sniffer catalyzed the NADPH-dependent carbonyl reduction of 4ONE (K(m)=24±2 μM, k(cat)=500±10 min(-1), k(cat)/K(m)=350 s(-1) mM(-1)) but not that of 4HNE. The reaction product of 4ONE reduction by sniffer was mainly 4HNE as shown by HPLC- and GC/MS analysis. Since 4HNE, though still a potent electrophile, is less neurotoxic and protein reactive than 4ONE, one mechanism by which sniffer exerts its neuroprotective effects in Drosophila after oxidative stress may be enzymatic reduction of 4ONE. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  11. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    Directory of Open Access Journals (Sweden)

    William D. Leavitt

    2015-12-01

    Full Text Available The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR. Here we provide the only direct observation of the major (34S/32S and minor (33S/32S, 36S/32S sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB. Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB to be 15.3±2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150±0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3 to 0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr-p = 16.1‰ (r – p indicates reactant versus product, n = 648. This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4-H2S = 17.3±1.5‰ and in modern marine sediments (34εSO4-H2S = 17.3±3.8‰. Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in modern

  12. Mitochondrial Thioredoxin-Glutathione Reductase from Larval Taenia crassiceps (Cysticerci

    Directory of Open Access Journals (Sweden)

    Alberto Guevara-Flores

    2010-01-01

    Full Text Available Mitochondrial thioredoxin-glutathione reductase was purified from larval Taenia crassiceps (cysticerci. The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At 25∘C specific activities were 437  ±  27 mU mg-1 and 840  ±  49 mU mg-1 with thioredoxin and GSSG, respectively. Apparent Km values were 0.87  ±  0.04  μM, 41  ±  6  μM and 19  ±  10  μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2 in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.

  13. Giardia, Entamoeba, and Trichomonas Enzymes Activate Metronidazole (Nitroreductases) and Inactivate Metronidazole (Nitroimidazole Reductases) ▿ †

    Science.gov (United States)

    Pal, Dibyarupa; Banerjee, Sulagna; Cui, Jike; Schwartz, Aaron; Ghosh, Sudip K.; Samuelson, John

    2009-01-01

    Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here. PMID:19015349

  14. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases).

    Science.gov (United States)

    Pal, Dibyarupa; Banerjee, Sulagna; Cui, Jike; Schwartz, Aaron; Ghosh, Sudip K; Samuelson, John

    2009-02-01

    Infections with Giardia lamblia, Entamoeba histolytica, and Trichomonas vaginalis, which cause diarrhea, dysentery, and vaginitis, respectively, are each treated with metronidazole. Here we show that Giardia, Entamoeba, and Trichomonas have oxygen-insensitive nitroreductase (ntr) genes which are homologous to those genes that have nonsense mutations in metronidazole-resistant Helicobacter pylori isolates. Entamoeba and Trichomonas also have nim genes which are homologous to those genes expressed in metronidazole-resistant Bacteroides fragilis isolates. Recombinant Giardia, Entamoeba, and Trichomonas nitroreductases used NADH rather than the NADPH used by Helicobacter, and two recombinant Entamoeba nitroreductases increased the metronidazole sensitivity of transformed Escherichia coli strains. Conversely, the recombinant nitroimidazole reductases (NIMs) of Entamoeba and Trichmonas conferred very strong metronidazole resistance to transformed bacteria. The Ehntr1 gene of the genome project HM-1:IMSS strain of Entamoeba histolytica had a nonsense mutation, and the same nonsense mutation was present in 3 of 22 clinical isolates of Entamoeba. While ntr and nim mRNAs were variably expressed by cultured Entamoeba and Trichomonas isolates, there was no relationship to metronidazole sensitivity. We conclude that microaerophilic protists have bacterium-like enzymes capable of activating metronidazole (nitroreductases) and inactivating metronidazole (NIMs). While Entamoeba and Trichomonas displayed some of the changes (nonsense mutations and gene overexpression) associated with metronidazole resistance in bacteria, these changes did not confer metronidazole resistance to the microaerophilic protists examined here.

  15. NITRATE REDUCTASE ACTIVITY DURING HEAT SHOCK IN WINTER WHEAT

    Directory of Open Access Journals (Sweden)

    Klimenko S.B.

    2006-03-01

    Full Text Available Nitrates are the basic source of nitrogen for the majority of plants. Absorption and transformation of nitrates in plants are determined by external conditions and, first of all, temperature and light intensity. The influence of the temperature increasing till +40 0С on activity of nitrate reductase was studied. It is shown, that the rise of temperature was accompanied by sharp decrease of activity nitrate reductase in leaves of winter wheat, what, apparently, occurred for the account deactivations of enzyme and due to its dissociation.

  16. Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L. and association with seed iron accumulation QTL

    Directory of Open Access Journals (Sweden)

    Fernandez Andrea C

    2010-10-01

    Full Text Available Abstract Background Iron deficiency anemia is a global problem which often affects women and children of developing countries. Strategy I plants, such as common bean (Phaseolus vulgaris L. take up iron through a process that involves an iron reduction mechanism in their roots; this reduction is required to convert ferric iron to ferrous iron. Root absorbed iron is critical for the iron nutrition of the plant, and for the delivery of iron to the shoot and ultimately the seeds. The objectives of this study were to determine the variability and inheritance for iron reductase activity in a range of genotypes and in a low × high seed iron cross (DOR364 × G19833, to identify quantitative trait loci (QTL for this trait, and to assess possible associations with seed iron levels. Results The experiments were carried out with hydroponically grown plants provided different amounts of iron varying between 0 and 20 μM Fe(III-EDDHA. The parents, DOR364 and G19833, plus 13 other cultivated or wild beans, were found to differ in iron reductase activity. Based on these initial experiments, two growth conditions (iron limited and iron sufficient were selected as treatments for evaluating the DOR364 × G19833 recombinant inbred lines. A single major QTL was found for iron reductase activity under iron-limited conditions (1 μM Fe on linkage group b02 and another major QTL was found under iron sufficient conditions (15 μM Fe on linkage group b11. Associations between the b11 QTL were found with several QTL for seed iron. Conclusions Genes conditioning iron reductase activity in iron sufficient bean plants appear to be associated with genes contributing to seed iron accumulation. Markers for bean iron reductase (FRO homologues were found with in silico mapping based on common bean synteny with soybean and Medicago truncatula on b06 and b07; however, neither locus aligned with the QTL for iron reductase activity. In summary, the QTL for iron reductase activity

  17. The effects of oxygen on process rates and gene expression of anammox and denitrification in the Eastern South Pacific oxygen minimum zone

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; Stewart, Frank; De Brabandere, Loreto

    differently to oxygen. When normalized to a housekeeping gene (rpoB), the expression of 4 out of 9 N-cycle-genes changed with increasing oxygen concentration: The expression of ammonium monooxygenase (amoC) was stimulated, whereas expression of nitrite reductase (nirS), nitric oxide reductase (nor...

  18. Characterization and expression patterns of nitrate reductase from Dunaliella bardawil under osmotic stress and dilution shock.

    Science.gov (United States)

    Lao, Yong-Min; Jiang, Jian-Guo; Luo, Li-Xin

    2014-07-01

    A complementary DNA (cDNA) of nitrate reductase (NR) from Dunaliella bardawil was isolated using RT-PCR and RACEs techniques. The full-length D. bardawil NR (DbNR) cDNA is 3,107 bp containing a putative open reading frame of 2,670 bp in length which encodes 889 amino acids with a calculated molecular weight (MW) of 98.37 kDa, a 34-bp 5'-untranslated region, and a 3'-untranslated region of 403 bp with a poly (A) tail. BLAST search showed that the nucleotide and putative protein sequence exhibit sequence identities of 92 and 79% with the corresponding gene from Dunaliella tertiolecta, respectively. Protein structural analysis showed a typical NR structure of DbNR with five structural distinc