Feature-Sensitive Tetrahedral Mesh Generation with Guaranteed Quality
Wang, Jun; Yu, Zeyun
2012-01-01
Tetrahedral meshes are being extensively used in finite element methods (FEM). This paper proposes an algorithm to generate feature-sensitive and high-quality tetrahedral meshes from an arbitrary surface mesh model. A top-down octree subdivision is conducted on the surface mesh and a set of tetrahedra are constructed using adaptive body-centered cubic (BCC) lattices. Special treatments are given to the tetrahedra near the surface such that the quality of the resulting tetrahedral mesh is prov...
Streaming simplification of tetrahedral meshes.
Vo, Huy T; Callahan, Steven P; Lindstrom, Peter; Pascucci, Valerio; Silva, Cláudio T
2007-01-01
Unstructured tetrahedral meshes are commonly used in scientific computing to represent scalar, vector, and tensor fields in three dimensions. Visualization of these meshes can be difficult to perform interactively due to their size and complexity. By reducing the size of the data, we can accomplish real-time visualization necessary for scientific analysis. We propose a two-step approach for streaming simplification of large tetrahedral meshes. Our algorithm arranges the data on disk in a streaming, I/O-efficient format that allows coherent access to the tetrahedral cells. A quadric-based simplification is sequentially performed on small portions of the mesh in-core. Our output is a coherent streaming mesh which facilitates future processing. Our technique is fast, produces high quality approximations, and operates out-of-core to process meshes too large for main memory.
International Nuclear Information System (INIS)
Lu Debao; Zhou Qiyou; Xiao Anlin; Song Zhen
2014-01-01
The paper starts from tetrahedral meshes generation of real terrain, a detailed way of tetradralization toward complicated terrain has been proposed based on comparing of advantage and disadvantage of several methods. DEM image has been used to help to generate tetrahedral mesh of research area. And then, forward soft Gmdata is used to calculate and analyze the topography effect on ERT Image with different kinds of terrain. Meanwhile, a quantitative way to define the topography effect was presented. Based on that, the method is used to eliminate the topography effect. The results show the method is effective and useful. (authors)
Tetrahedral meshing via maximal Poisson-disk sampling
Guo, Jianwei
2016-02-15
In this paper, we propose a simple yet effective method to generate 3D-conforming tetrahedral meshes from closed 2-manifold surfaces. Our approach is inspired by recent work on maximal Poisson-disk sampling (MPS), which can generate well-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform or adaptive sampling, respectively. We also propose an efficient optimization strategy to protect the domain boundaries and to remove slivers to improve the meshing quality. We present various experimental results to illustrate the efficiency and the robustness of our proposed approach. We demonstrate that the performance and quality (e.g., minimal dihedral angle) of our approach are superior to current state-of-the-art optimization-based approaches.
Practical implementation of tetrahedral mesh reconstruction in emission tomography
Boutchko, R.; Sitek, A.; Gullberg, G. T.
2013-05-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio
Practical implementation of tetrahedral mesh reconstruction in emission tomography
International Nuclear Information System (INIS)
Boutchko, R; Gullberg, G T; Sitek, A
2013-01-01
This paper presents a practical implementation of image reconstruction on tetrahedral meshes optimized for emission computed tomography with parallel beam geometry. Tetrahedral mesh built on a point cloud is a convenient image representation method, intrinsically three-dimensional and with a multi-level resolution property. Image intensities are defined at the mesh nodes and linearly interpolated inside each tetrahedron. For the given mesh geometry, the intensities can be computed directly from tomographic projections using iterative reconstruction algorithms with a system matrix calculated using an exact analytical formula. The mesh geometry is optimized for a specific patient using a two stage process. First, a noisy image is reconstructed on a finely-spaced uniform cloud. Then, the geometry of the representation is adaptively transformed through boundary-preserving node motion and elimination. Nodes are removed in constant intensity regions, merged along the boundaries, and moved in the direction of the mean local intensity gradient in order to provide higher node density in the boundary regions. Attenuation correction and detector geometric response are included in the system matrix. Once the mesh geometry is optimized, it is used to generate the final system matrix for ML-EM reconstruction of node intensities and for visualization of the reconstructed images. In dynamic PET or SPECT imaging, the system matrix generation procedure is performed using a quasi-static sinogram, generated by summing projection data from multiple time frames. This system matrix is then used to reconstruct the individual time frame projections. Performance of the new method is evaluated by reconstructing simulated projections of the NCAT phantom and the method is then applied to dynamic SPECT phantom and patient studies and to a dynamic microPET rat study. Tetrahedral mesh-based images are compared to the standard voxel-based reconstruction for both high and low signal-to-noise ratio
Tetrahedral meshing via maximal Poisson-disk sampling
Guo, Jianwei; Yan, Dongming; Chen, Li; Zhang, Xiaopeng; Deussen, Oliver; Wonka, Peter
2016-01-01
-distributed point sets in arbitrary domains. We first perform MPS on the boundary of the input domain, we then sample the interior of the domain, and we finally extract the tetrahedral mesh from the samples by using 3D Delaunay or regular triangulation for uniform
Tetrahedral-Mesh Simulation of Turbulent Flows with the Space-Time Conservative Schemes
Chang, Chau-Lyan; Venkatachari, Balaji; Cheng, Gary C.
2015-01-01
Direct numerical simulations of turbulent flows are predominantly carried out using structured, hexahedral meshes despite decades of development in unstructured mesh methods. Tetrahedral meshes offer ease of mesh generation around complex geometries and the potential of an orientation free grid that would provide un-biased small-scale dissipation and more accurate intermediate scale solutions. However, due to the lack of consistent multi-dimensional numerical formulations in conventional schemes for triangular and tetrahedral meshes at the cell interfaces, numerical issues exist when flow discontinuities or stagnation regions are present. The space-time conservative conservation element solution element (CESE) method - due to its Riemann-solver-free shock capturing capabilities, non-dissipative baseline schemes, and flux conservation in time as well as space - has the potential to more accurately simulate turbulent flows using unstructured tetrahedral meshes. To pave the way towards accurate simulation of shock/turbulent boundary-layer interaction, a series of wave and shock interaction benchmark problems that increase in complexity, are computed in this paper with triangular/tetrahedral meshes. Preliminary computations for the normal shock/turbulence interactions are carried out with a relatively coarse mesh, by direct numerical simulations standards, in order to assess other effects such as boundary conditions and the necessity of a buffer domain. The results indicate that qualitative agreement with previous studies can be obtained for flows where, strong shocks co-exist along with unsteady waves that display a broad range of scales, with a relatively compact computational domain and less stringent requirements for grid clustering near the shock. With the space-time conservation properties, stable solutions without any spurious wave reflections can be obtained without a need for buffer domains near the outflow/farfield boundaries. Computational results for the
Fast and Exact Fiber Surfaces for Tetrahedral Meshes.
Klacansky, Pavol; Tierny, Julien; Carr, Hamish; Zhao Geng
2017-07-01
Isosurfaces are fundamental geometrical objects for the analysis and visualization of volumetric scalar fields. Recent work has generalized them to bivariate volumetric fields with fiber surfaces, the pre-image of polygons in range space. However, the existing algorithm for their computation is approximate, and is limited to closed polygons. Moreover, its runtime performance does not allow instantaneous updates of the fiber surfaces upon user edits of the polygons. Overall, these limitations prevent a reliable and interactive exploration of the space of fiber surfaces. This paper introduces the first algorithm for the exact computation of fiber surfaces in tetrahedral meshes. It assumes no restriction on the topology of the input polygon, handles degenerate cases and better captures sharp features induced by polygon bends. The algorithm also allows visualization of individual fibers on the output surface, better illustrating their relationship with data features in range space. To enable truly interactive exploration sessions, we further improve the runtime performance of this algorithm. In particular, we show that it is trivially parallelizable and that it scales nearly linearly with the number of cores. Further, we study acceleration data-structures both in geometrical domain and range space and we show how to generalize interval trees used in isosurface extraction to fiber surface extraction. Experiments demonstrate the superiority of our algorithm over previous work, both in terms of accuracy and running time, with up to two orders of magnitude speedups. This improvement enables interactive edits of range polygons with instantaneous updates of the fiber surface for exploration purpose. A VTK-based reference implementation is provided as additional material to reproduce our results.
International Nuclear Information System (INIS)
Biondo, Elliott D.; Davis, Andrew; Wilson, Paul P.H.
2016-01-01
Highlights: • A CAD-based shutdown dose rate analysis workflow has been implemented. • Cartesian and superimposed tetrahedral mesh are fully supported. • Biased and unbiased photon source sampling options are available. • Hybrid Monte Carlo/deterministic techniques accelerate photon transport. • The workflow has been validated with the FNG-ITER benchmark problem. - Abstract: In fusion energy systems (FES) high-energy neutrons born from burning plasma activate system components to form radionuclides. The biological dose rate that results from photons emitted by these radionuclides after shutdown—the shutdown dose rate (SDR)—must be quantified for maintenance planning. This can be done using the Rigorous Two-Step (R2S) method, which involves separate neutron and photon transport calculations, coupled by a nuclear inventory analysis code. The geometric complexity and highly attenuating configuration of FES motivates the use of CAD geometry and advanced variance reduction for this analysis. An R2S workflow has been created with the new capability of performing SDR analysis directly from CAD geometry with Cartesian or tetrahedral meshes and with biased photon source sampling, enabling the use of the Consistent Adjoint Driven Importance Sampling (CADIS) variance reduction technique. This workflow has been validated with the Frascati Neutron Generator (FNG)-ITER SDR benchmark using both Cartesian and tetrahedral meshes and both unbiased and biased photon source sampling. All results are within 20.4% of experimental values, which constitutes satisfactory agreement. Photon transport using CADIS is demonstrated to yield speedups as high as 8.5·10"5 for problems using the FNG geometry.
Multi-phase Volume Segmentation with Tetrahedral Mesh
DEFF Research Database (Denmark)
Nguyen Trung, Tuan; Dahl, Vedrana Andersen; Bærentzen, Jakob Andreas
Volume segmentation is efficient for reconstructing material structure, which is important for several analyses, e.g. simulation with finite element method, measurement of quantitative information like surface area, surface curvature, volume, etc. We are concerned about the representations of the 3......D volumes, which can be categorized into two groups: fixed voxel grids [1] and unstructured meshes [2]. Among these two representations, the voxel grids are more popular since manipulating a fixed grid is easier than an unstructured mesh, but they are less efficient for quantitative measurements....... In many cases, the voxel grids are converted to explicit meshes, however the conversion may reduce the accuracy of the segmentations, and the effort for meshing is also not trivial. On the other side, methods using unstructured meshes have difficulty in handling topology changes. To reduce the complexity...
Farquharson, C.; Long, J.; Lu, X.; Lelievre, P. G.
2017-12-01
Real-life geology is complex, and so, even when allowing for the diffusive, low resolution nature of geophysical electromagnetic methods, we need Earth models that can accurately represent this complexity when modelling and inverting electromagnetic data. This is particularly the case for the scales, detail and conductivity contrasts involved in mineral and hydrocarbon exploration and development, but also for the larger scale of lithospheric studies. Unstructured tetrahedral meshes provide a flexible means of discretizing a general, arbitrary Earth model. This is important when wanting to integrate a geophysical Earth model with a geological Earth model parameterized in terms of surfaces. Finite-element and finite-volume methods can be derived for computing the electric and magnetic fields in a model parameterized using an unstructured tetrahedral mesh. A number of such variants have been proposed and have proven successful. However, the efficiency and accuracy of these methods can be affected by the "quality" of the tetrahedral discretization, that is, how many of the tetrahedral cells in the mesh are long, narrow and pointy. This is particularly the case if one wants to use an iterative technique to solve the resulting linear system of equations. One approach to deal with this issue is to develop sophisticated model and mesh building and manipulation capabilities in order to ensure that any mesh built from geological information is of sufficient quality for the electromagnetic modelling. Another approach is to investigate other methods of synthesizing the electromagnetic fields. One such example is a "meshfree" approach in which the electromagnetic fields are synthesized using a mesh that is distinct from the mesh used to parameterized the Earth model. There are then two meshes, one describing the Earth model and one used for the numerical mathematics of computing the fields. This means that there are no longer any quality requirements on the model mesh, which
ALGORITHMS FOR TETRAHEDRAL NETWORK (TEN) GENERATION
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The Tetrahedral Network(TEN) is a powerful 3-D vector structure in GIS, which has a lot of advantages such as simple structure, fast topological relation processing and rapid visualization. The difficulty of TEN application is automatic creating data structure. Al though a raster algorithm has been introduced by some authors, the problems in accuracy, memory requirement, speed and integrity are still existent. In this paper, the raster algorithm is completed and a vector algorithm is presented after a 3-D data model and structure of TEN have been introducted. Finally, experiment, conclusion and future work are discussed.
Polygonal Prism Mesh in the Viscous Layers for the Polyhedral Mesh Generator, PolyGen
International Nuclear Information System (INIS)
Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan
2015-01-01
Polyhedral mesh has been known to have some benefits over the tetrahedral mesh. Efforts have been made to set up a polyhedral mesh generation system with open source programs SALOME and TetGen. The evaluation has shown that the polyhedral mesh generation system is promising. But it is necessary to extend the capability of the system to handle the viscous layers to be a generalized mesh generator. A brief review to the previous works on the mesh generation for the viscous layers will be made in section 2. Several challenging issues for the polygonal prism mesh generation will be discussed as well. The procedure to generate a polygonal prism mesh will be discussed in detail in section 3. Conclusion will be followed in section 4. A procedure to generate meshes in the viscous layers with PolyGen has been successfully designed. But more efforts have to be exercised to find the best way for the generating meshes for viscous layers. Using the extrusion direction of the STL data will the first of the trials in the near future
Split-Cell Exponential Characteristic Transport Method for Unstructured Tetrahedral Meshes
International Nuclear Information System (INIS)
Brennan, Charles R.; Miller, Rodney L.; Mathews, Kirk A.
2001-01-01
The nonlinear, exponential characteristic (EC) method is extended to unstructured meshes of tetrahedral cells in three-dimensional Cartesian coordinates. The split-cell approach developed for the linear characteristic (LC) method on such meshes is used. Exponential distributions of the source within a cell and of the inflow flux on upstream faces of the cell are assumed. The coefficients of these distributions are determined by nonlinear root solving so as to match the zeroth and first moments of the source or entering flux. Good conditioning is achieved by casting the formulas for the moments of the source, inflow flux, and solution flux as sums of positive functions and by using accurate and robust algorithms for evaluation of those functions. Various test problems are used to compare the performance of the EC and LC methods. The EC method is somewhat less accurate than the LC method in regions of net out leakage but is strictly positive and retains good accuracy with optically thick cells, as in shielding problems, unlike the LC method. The computational cost per cell is greater for the EC method, but the use of substantially coarser meshes can make the EC method less expensive in total cost. The EC method, unlike the LC method, may fail if negative cross sections or angular quadrature weights are used. It is concluded that the EC and LC methods should be practical, reliable, and complimentary schemes for these meshes
Planet map generation by tetrahedral subdivision
DEFF Research Database (Denmark)
Mogensen, Torben Ægidius
2010-01-01
We present a method for generating pseudo-random, zoomable planet maps for games and art. The method is based on spatial subdivision using tetrahedrons. This ensures planet maps without discontinuities caused by mapping a flat map onto a sphere. We compare the method to other map...
Pelties, Christian
2012-02-18
Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic data into emerging approaches for dynamic source inversion, and to generate realistic physics-based earthquake scenarios for hazard assessment. Modeling of spontaneous earthquake rupture and seismic wave propagation by a high-order discontinuous Galerkin (DG) method combined with an arbitrarily high-order derivatives (ADER) time integration method was introduced in two dimensions by de la Puente et al. (2009). The ADER-DG method enables high accuracy in space and time and discretization by unstructured meshes. Here we extend this method to three-dimensional dynamic rupture problems. The high geometrical flexibility provided by the usage of tetrahedral elements and the lack of spurious mesh reflections in the ADER-DG method allows the refinement of the mesh close to the fault to model the rupture dynamics adequately while concentrating computational resources only where needed. Moreover, ADER-DG does not generate spurious high-frequency perturbations on the fault and hence does not require artificial Kelvin-Voigt damping. We verify our three-dimensional implementation by comparing results of the SCEC TPV3 test problem with two well-established numerical methods, finite differences, and spectral boundary integral. Furthermore, a convergence study is presented to demonstrate the systematic consistency of the method. To illustrate the capabilities of the high-order accurate ADER-DG scheme on unstructured meshes, we simulate an earthquake scenario, inspired by the 1992 Landers earthquake, that includes curved faults, fault branches, and surface topography. Copyright 2012 by the American Geophysical Union.
TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling
Energy Technology Data Exchange (ETDEWEB)
Zhong, Z; Zhuang, L [Wayne State University, Detroit, MI (United States); Gu, X; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Chen, H; Zhen, X [Southern Medical University, Guangzhou, Guangdong (China)
2016-06-15
Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.
TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling
International Nuclear Information System (INIS)
Zhong, Z; Zhuang, L; Gu, X; Wang, J; Chen, H; Zhen, X
2016-01-01
Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.
KIM, Jong Woon; LEE, Young-Ouk
2017-09-01
As computing power gets better and better, computer codes that use a deterministic method seem to be less useful than those using the Monte Carlo method. In addition, users do not like to think about space, angles, and energy discretization for deterministic codes. However, a deterministic method is still powerful in that we can obtain a solution of the flux throughout the problem, particularly as when particles can barely penetrate, such as in a deep penetration problem with small detection volumes. Recently, a new state-of-the-art discrete-ordinates code, ATTILA, was developed and has been widely used in several applications. ATTILA provides the capabilities to solve geometrically complex 3-D transport problems by using an unstructured tetrahedral mesh. Since 2009, we have been developing our own code by benchmarking ATTILA. AETIUS is a discrete ordinates code that uses an unstructured tetrahedral mesh such as ATTILA. For pre- and post- processing, Gmsh is used to generate an unstructured tetrahedral mesh by importing a CAD file (*.step) and visualizing the calculation results of AETIUS. Using a CAD tool, the geometry can be modeled very easily. In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
GENERATION OF IRREGULAR HEXAGONAL MESHES
Directory of Open Access Journals (Sweden)
Vlasov Aleksandr Nikolaevich
2012-07-01
Decomposition is performed in a constructive way and, as option, it involves meshless representation. Further, this mapping method is used to generate the calculation mesh. In this paper, the authors analyze different cases of mapping onto simply connected and bi-connected canonical domains. They represent forward and backward mapping techniques. Their potential application for generation of nonuniform meshes within the framework of the asymptotic homogenization theory is also performed to assess and project effective characteristics of heterogeneous materials (composites.
International Nuclear Information System (INIS)
Fonseca, Gabriel Paiva; Yoriyaz, Hélio; Landry, Guillaume; White, Shane; Reniers, Brigitte; Verhaegen, Frank; D’Amours, Michel; Beaulieu, Luc
2014-01-01
Accounting for brachytherapy applicator attenuation is part of the recommendations from the recent report of AAPM Task Group 186. To do so, model based dose calculation algorithms require accurate modelling of the applicator geometry. This can be non-trivial in the case of irregularly shaped applicators such as the Fletcher Williamson gynaecological applicator or balloon applicators with possibly irregular shapes employed in accelerated partial breast irradiation (APBI) performed using electronic brachytherapy sources (EBS). While many of these applicators can be modelled using constructive solid geometry (CSG), the latter may be difficult and time-consuming. Alternatively, these complex geometries can be modelled using tessellated geometries such as tetrahedral meshes (mesh geometries (MG)). Recent versions of Monte Carlo (MC) codes Geant4 and MCNP6 allow for the use of MG. The goal of this work was to model a series of applicators relevant to brachytherapy using MG. Applicators designed for 192 Ir sources and 50 kV EBS were studied; a shielded vaginal applicator, a shielded Fletcher Williamson applicator and an APBI balloon applicator. All applicators were modelled in Geant4 and MCNP6 using MG and CSG for dose calculations. CSG derived dose distributions were considered as reference and used to validate MG models by comparing dose distribution ratios. In general agreement within 1% for the dose calculations was observed for all applicators between MG and CSG and between codes when considering volumes inside the 25% isodose surface. When compared to CSG, MG required longer computation times by a factor of at least 2 for MC simulations using the same code. MCNP6 calculation times were more than ten times shorter than Geant4 in some cases. In conclusion we presented methods allowing for high fidelity modelling with results equivalent to CSG. To the best of our knowledge MG offers the most accurate representation of an irregular APBI balloon applicator. (paper)
Crack growth simulation for plural crack using hexahedral mesh generation technique
International Nuclear Information System (INIS)
Orita, Y; Wada, Y; Kikuchi, M
2010-01-01
This paper describes a surface crack growth simulation using a new mesh generation technique. The generated mesh is constituted of all hexahedral elements. Hexahedral elements are suitable for an analysis of fracture mechanics parameters, i.e. stress intensity factor. The advantage of a hexahedral mesh is good accuracy of an analysis and less number of degrees of freedoms than a tetrahedral mesh. In this study, a plural crack growth simulation is computed using the hexahedral mesh and its distribution of stress intensity factor is investigated.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
Energy Technology Data Exchange (ETDEWEB)
Jain, Rajeev [Argonne National Lab. (ANL), Argonne, IL (United States); Mahadevan, Vijay [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing. RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh
International Nuclear Information System (INIS)
Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao
2008-01-01
A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions
Palmesi, P.; Exl, L.; Bruckner, F.; Abert, C.; Suess, D.
2017-11-01
The long-range magnetic field is the most time-consuming part in micromagnetic simulations. Computational improvements can relieve problems related to this bottleneck. This work presents an efficient implementation of the Fast Multipole Method [FMM] for the magnetic scalar potential as used in micromagnetics. The novelty lies in extending FMM to linearly magnetized tetrahedral sources making it interesting also for other areas of computational physics. We treat the near field directly and in use (exact) numerical integration on the multipole expansion in the far field. This approach tackles important issues like the vectorial and continuous nature of the magnetic field. By using FMM the calculations scale linearly in time and memory.
Strongly regular family of boundary-fitted tetrahedral meshes of bounded C^2 domains
Czech Academy of Sciences Publication Activity Database
Hošek, Radim
2016-01-01
Roč. 61, č. 3 (2016), s. 233-251 ISSN 0862-7940 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : boundary fitted mesh * strongly regular family * Sommerville tetrahedron Subject RIV: BA - General Mathematics Impact factor: 0.618, year: 2016 http://hdl.handle.net/10338.dmlcz/145699
RGG: Reactor geometry (and mesh) generator
International Nuclear Information System (INIS)
Jain, R.; Tautges, T.
2012-01-01
The reactor geometry (and mesh) generator RGG takes advantage of information about repeated structures in both assembly and core lattices to simplify the creation of geometry and mesh. It is released as open source software as a part of the MeshKit mesh generation library. The methodology operates in three stages. First, assembly geometry models of various types are generated by a tool called AssyGen. Next, the assembly model or models are meshed by using MeshKit tools or the CUBIT mesh generation tool-kit, optionally based on a journal file output by AssyGen. After one or more assembly model meshes have been constructed, a tool called CoreGen uses a copy/move/merge process to arrange the model meshes into a core model. In this paper, we present the current state of tools and new features in RGG. We also discuss the parallel-enabled CoreGen, which in several cases achieves super-linear speedups since the problems fit in available RAM at higher processor counts. Several RGG applications - 1/6 VHTR model, 1/4 PWR reactor core, and a full-core model for Monju - are reported. (authors)
Video Vectorization via Tetrahedral Remeshing.
Wang, Chuan; Zhu, Jie; Guo, Yanwen; Wang, Wenping
2017-02-09
We present a video vectorization method that generates a video in vector representation from an input video in raster representation. A vector-based video representation offers the benefits of vector graphics, such as compactness and scalability. The vector video we generate is represented by a simplified tetrahedral control mesh over the spatial-temporal video volume, with color attributes defined at the mesh vertices. We present novel techniques for simplification and subdivision of a tetrahedral mesh to achieve high simplification ratio while preserving features and ensuring color fidelity. From an input raster video, our method is capable of generating a compact video in vector representation that allows a faithful reconstruction with low reconstruction errors.
Automatic mesh generation with QMESH program
International Nuclear Information System (INIS)
Ise, Takeharu; Tsutsui, Tsuneo
1977-05-01
Usage of the two-dimensional self-organizing mesh generation program, QMESH, is presented together with the descriptions and the experience, as it has recently been converted and reconstructed from the NEACPL version to the FACOM. The program package consists of the QMESH code to generate quadrilaterial meshes with smoothing techniques, the QPLOT code to plot the data obtained from the QMESH on the graphic COM, and the RENUM code to renumber the meshes by using a bandwidth minimization procedure. The technique of mesh reconstructuring coupled with smoothing techniques is especially useful when one generates the meshes for computer codes based on the finite element method. Several typical examples are given for easy access to the QMESH program, which is registered in the R.B-disks of JAERI for users. (auth.)
Energy Technology Data Exchange (ETDEWEB)
Hepburn, I.; De Schutter, E., E-mail: erik@oist.jp [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan); Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp 2610 (Belgium); Chen, W. [Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495 (Japan)
2016-08-07
Spatial stochastic molecular simulations in biology are limited by the intense computation required to track molecules in space either in a discrete time or discrete space framework, which has led to the development of parallel methods that can take advantage of the power of modern supercomputers in recent years. We systematically test suggested components of stochastic reaction-diffusion operator splitting in the literature and discuss their effects on accuracy. We introduce an operator splitting implementation for irregular meshes that enhances accuracy with minimal performance cost. We test a range of models in small-scale MPI simulations from simple diffusion models to realistic biological models and find that multi-dimensional geometry partitioning is an important consideration for optimum performance. We demonstrate performance gains of 1-3 orders of magnitude in the parallel implementation, with peak performance strongly dependent on model specification.
ZONE: a finite element mesh generator
International Nuclear Information System (INIS)
Burger, M.J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures
New software developments for quality mesh generation and optimization from biomedical imaging data.
Yu, Zeyun; Wang, Jun; Gao, Zhanheng; Xu, Ming; Hoshijima, Masahiko
2014-01-01
In this paper we present a new software toolkit for generating and optimizing surface and volumetric meshes from three-dimensional (3D) biomedical imaging data, targeted at image-based finite element analysis of some biomedical activities in a single material domain. Our toolkit includes a series of geometric processing algorithms including surface re-meshing and quality-guaranteed tetrahedral mesh generation and optimization. All methods described have been encapsulated into a user-friendly graphical interface for easy manipulation and informative visualization of biomedical images and mesh models. Numerous examples are presented to demonstrate the effectiveness and efficiency of the described methods and toolkit. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.
2013-01-01
In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.
Symbolic Block Decomposition In Hexahedral Mesh Generation
Directory of Open Access Journals (Sweden)
Andrzej Adamek
2005-01-01
Full Text Available Hexahedral mesh generation for three-dimensional solid objects is often done in stages. Usually an object is ﬁrst subdivided into simple-shaped subregions, which then are ﬁlled withhexahedral ﬁnite elements. This article presents an automatic subdividing method of polyhedron with planar faces. The subdivision is based on medial surface, axes and nodes of a solid.The main emphasis is put on creating a topology of subregions. Obtaining such a topologyinvolves deﬁning a graph structure OMG which contains necessary information about medialsurface topology and object topology, followed by simple symbolic processing on it.
Directory of Open Access Journals (Sweden)
JONG WOON KIM
2014-04-01
In this paper, we introduce a modified scattering kernel approach to avoid the unnecessarily repeated calculations involved with the scattering source calculation, and used it with parallel computing to effectively reduce the computation time. Its computational efficiency was tested for three-dimensional full-coupled photon-electron transport problems using our computer program which solves the multi-group discrete ordinates transport equation by using the discontinuous finite element method with unstructured tetrahedral meshes for complicated geometrical problems. The numerical tests show that we can improve speed up to 17∼42 times for the elapsed time per iteration using the modified scattering kernel, not only in the single CPU calculation but also in the parallel computing with several CPUs.
Automated quadrilateral mesh generation for digital image structures
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
With the development of advanced imaging technology, digital images are widely used. This paper proposes an automatic quadrilateral mesh generation algorithm for multi-colour imaged structures. It takes an original arbitrary digital image as an input for automatic quadrilateral mesh generation, this includes removing the noise, extracting and smoothing the boundary geometries between different colours, and automatic all-quad mesh generation with the above boundaries as constraints. An application example is...
HypGrid2D. A 2-d mesh generator
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N N
1998-03-01
The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)
SALOME PLATFORM and TetGen for Polyhedral Mesh Generation
Energy Technology Data Exchange (ETDEWEB)
Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan [KEPCO E and C Company, Inc., Daejeon (Korea, Republic of)
2014-05-15
SPACE and CUPID use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be evaluated for the efforts in conjunction with TetGen. In section 2, review will be made on the CAD and mesh generation capability of SALOME. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Edge removal on the flat surface and vertex reattachment to the solid are two challenging tasks. It is worthwhile to point out that the Python script capability of the SALOME should be fully utilized for the future investigation.
Parallel octree-based hexahedral mesh generation for eulerian to lagrangian conversion.
Energy Technology Data Exchange (ETDEWEB)
Staten, Matthew L.; Owen, Steven James
2010-09-01
Computational simulation must often be performed on domains where materials are represented as scalar quantities or volume fractions at cell centers of an octree-based grid. Common examples include bio-medical, geotechnical or shock physics calculations where interface boundaries are represented only as discrete statistical approximations. In this work, we introduce new methods for generating Lagrangian computational meshes from Eulerian-based data. We focus specifically on shock physics problems that are relevant to ASC codes such as CTH and Alegra. New procedures for generating all-hexahedral finite element meshes from volume fraction data are introduced. A new primal-contouring approach is introduced for defining a geometric domain. New methods for refinement, node smoothing, resolving non-manifold conditions and defining geometry are also introduced as well as an extension of the algorithm to handle tetrahedral meshes. We also describe new scalable MPI-based implementations of these procedures. We describe a new software module, Sculptor, which has been developed for use as an embedded component of CTH. We also describe its interface and its use within the mesh generation code, CUBIT. Several examples are shown to illustrate the capabilities of Sculptor.
AUTOMATIC MESH GENERATION OF 3-D GEOMETRIC MODELS
Institute of Scientific and Technical Information of China (English)
刘剑飞
2003-01-01
In this paper the presentation of the ball-packing method is reviewed,and a scheme to generate mesh for complex 3-D geometric models is given,which consists of 4 steps:(1)create nodes in 3-D models by ball-packing method,(2)connect nodes to generate mesh by 3-D Delaunay triangulation,(3)retrieve the boundary of the model after Delaunay triangulation,(4)improve the mesh.
Improved mesh generator for the POISSON Group Codes
International Nuclear Information System (INIS)
Gupta, R.C.
1987-01-01
This paper describes the improved mesh generator of the POISSON Group Codes. These improvements enable one to have full control over the way the mesh is generated and in particular the way the mesh density is distributed throughout this model. A higher mesh density in certain regions coupled with a successively lower mesh density in others keeps the accuracy of the field computation high and the requirements on the computer time and computer memory low. The mesh is generated with the help of codes AUTOMESH and LATTICE; both have gone through a major upgrade. Modifications have also been made in the POISSON part of these codes. We shall present an example of a superconducting dipole magnet to explain how to use this code. The results of field computations are found to be reliable within a few parts in a hundred thousand even in such complex geometries
Image-Based Geometric Modeling and Mesh Generation
2013-01-01
As a new interdisciplinary research area, “image-based geometric modeling and mesh generation” integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion,...
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with
H-Morph: An indirect approach to advancing front hex meshing
Energy Technology Data Exchange (ETDEWEB)
OWEN,STEVEN J.; SAIGAL,SUNIL
2000-05-30
H-Morph is a new automatic algorithm for the generation of a hexahedral-dominant finite element mesh for arbitrary volumes. The H-Morph method starts with an initial tetrahedral mesh and systematically transforms and combines tetrahedral into hexahedra. It uses an advancing front technique where the initial front consists of a set of prescribed quadrilateral surface facets. Fronts are individually processed by recovering each of the six quadrilateral faces of a hexahedron from the tetrahedral mesh. Recovery techniques similar to those used in boundary constrained Delaunay mesh generation are used. Tetrahedral internal to the six hexahedral faces are then removed and a hexahedron is formed. At any time during the H-Morph procedure a valid mixed hexahedral-tetrahedral mesh is in existence within the volume. The procedure continues until no tetrahedral remain within the volume, or tetrahedral remain which cannot be transformed or combined into valid hexahedral elements. Any remaining tetrahedral are typically towards the interior of the volume, generally a less critical region for analysis. Transition from tetrahedral to hexahedra in the final mesh is accomplished through pyramid shaped elements. Advantages of the proposed method include its ability to conform to an existing quadrilateral surface mesh, its ability to mesh without the need to decompose or recognize special classes of geometry, and its characteristic well-aligned layers of elements parallel to the boundary. Example test cases are presented on a variety of models.
A geometric toolbox for tetrahedral finite element partitions
Brandts, J.; Korotov, S.; Křížek, M.; Axelsson, O.; Karátson, J.
2011-01-01
In this work we present a survey of some geometric results on tetrahedral partitions and their refinements in a unified manner. They can be used for mesh generation and adaptivity in practical calculations by the finite element method (FEM), and also in theoretical finite element (FE) analysis.
A suitable low-order, eight-node tetrahedral finite element for solids
Energy Technology Data Exchange (ETDEWEB)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping, and the element`s performance in applications are presented. In particular they examine the eight-node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties.
A suitable low-order, eight-node tetrahedral finite element for solids
International Nuclear Information System (INIS)
Key, S.W.; Heinstein, M.S.; Stone, C.M.; Mello, F.J.; Blanford, M.L.; Budge, K.G.
1998-03-01
To use the all-tetrahedral mesh generation existing today, the authors have explored the creation of a computationally efficient eight-node tetrahedral finite element (a four-node tetrahedral finite element enriched with four mid-face nodal points). The derivation of the element's gradient operator, studies in obtaining a suitable mass lumping, and the element's performance in applications are presented. In particular they examine the eight-node tetrahedral finite element's behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element samples only constant strain states and, therefore, has 12 hour-glass modes. In this regard it bears similarities to the eight-node, mean-quadrature hexahedral finite element. Comparisons with the results obtained from the mean-quadrature eight-node hexahedral finite element and the four-node tetrahedral finite element are included. Given automatic all-tetrahedral meshing, the eight-node, constant-strain tetrahedral finite element is a suitable replacement for the eight-node hexahedral finite element in those cases where mesh generation requires an inordinate amount of user intervention and direction to obtain acceptable mesh properties
Moving mesh generation with a sequential approach for solving PDEs
DEFF Research Database (Denmark)
In moving mesh methods, physical PDEs and a mesh equation derived from equidistribution of an error metrics (so-called the monitor function) are simultaneously solved and meshes are dynamically concentrated on steep regions (Lim et al., 2001). However, the simultaneous solution procedure...... a simple and robust moving mesh algorithm in one or multidimension. In this study, we propose a sequential solution procedure including two separate parts: prediction step to obtain an approximate solution to a next time level (integration of physical PDEs) and regriding step at the next time level (mesh...... generation and solution interpolation). Convection terms, which appear in physical PDEs and a mesh equation, are discretized by a WENO (Weighted Essentially Non-Oscillatory) scheme under the consrvative form. This sequential approach is to keep the advantages of robustness and simplicity for the static...
Volume Decomposition and Feature Recognition for Hexahedral Mesh Generation
Energy Technology Data Exchange (ETDEWEB)
GADH,RAJIT; LU,YONG; TAUTGES,TIMOTHY J.
1999-09-27
Considerable progress has been made on automatic hexahedral mesh generation in recent years. Several automatic meshing algorithms have proven to be very reliable on certain classes of geometry. While it is always worth pursuing general algorithms viable on more general geometry, a combination of the well-established algorithms is ready to take on classes of complicated geometry. By partitioning the entire geometry into meshable pieces matched with appropriate meshing algorithm the original geometry becomes meshable and may achieve better mesh quality. Each meshable portion is recognized as a meshing feature. This paper, which is a part of the feature based meshing methodology, presents the work on shape recognition and volume decomposition to automatically decompose a CAD model into meshable volumes. There are four phases in this approach: (1) Feature Determination to extinct decomposition features, (2) Cutting Surfaces Generation to form the ''tailored'' cutting surfaces, (3) Body Decomposition to get the imprinted volumes; and (4) Meshing Algorithm Assignment to match volumes decomposed with appropriate meshing algorithms. The feature determination procedure is based on the CLoop feature recognition algorithm that is extended to be more general. Results are demonstrated over several parts with complicated topology and geometry.
Automatic two- and three-dimensional mesh generation based on fuzzy knowledge processing
Yagawa, G.; Yoshimura, S.; Soneda, N.; Nakao, K.
1992-09-01
This paper describes the development of a novel automatic FEM mesh generation algorithm based on the fuzzy knowledge processing technique. A number of local nodal patterns are stored in a nodal pattern database of the mesh generation system. These nodal patterns are determined a priori based on certain theories or past experience of experts of FEM analyses. For example, such human experts can determine certain nodal patterns suitable for stress concentration analyses of cracks, corners, holes and so on. Each nodal pattern possesses a membership function and a procedure of node placement according to this function. In the cases of the nodal patterns for stress concentration regions, the membership function which is utilized in the fuzzy knowledge processing has two meanings, i.e. the “closeness” of nodal location to each stress concentration field as well as “nodal density”. This is attributed to the fact that a denser nodal pattern is required near a stress concentration field. What a user has to do in a practical mesh generation process are to choose several local nodal patterns properly and to designate the maximum nodal density of each pattern. After those simple operations by the user, the system places the chosen nodal patterns automatically in an analysis domain and on its boundary, and connects them smoothly by the fuzzy knowledge processing technique. Then triangular or tetrahedral elements are generated by means of the advancing front method. The key issue of the present algorithm is an easy control of complex two- or three-dimensional nodal density distribution by means of the fuzzy knowledge processing technique. To demonstrate fundamental performances of the present algorithm, a prototype system was constructed with one of object-oriented languages, Smalltalk-80 on a 32-bit microcomputer, Macintosh II. The mesh generation of several two- and three-dimensional domains with cracks, holes and junctions was presented as examples.
Procedure for the automatic mesh generation of innovative gear teeth
Directory of Open Access Journals (Sweden)
Radicella Andrea Chiaramonte
2016-01-01
Full Text Available After having described gear wheels with teeth having the two sides constituted by different involutes and their importance in engineering applications, we stress the need for an efficient procedure for the automatic mesh generation of innovative gear teeth. First, we describe the procedure for the subdivision of the tooth profile in the various possible cases, then we show the method for creating the subdivision mesh, defined by two series of curves called meridians and parallels. Finally, we describe how the above procedure for automatic mesh generation is able to solve specific cases that may arise when dealing with teeth having the two sides constituted by different involutes.
AUTOMATIC MESH GENERATION OF 3—D GEOMETRIC MODELS
Institute of Scientific and Technical Information of China (English)
刘剑飞
2003-01-01
In this paper the presentation of the ball-packing method is reviewed, and a schemeto generate mesh for complex 3-D geometric models is given, which consists of 4 steps: (1) createnodes in 3-D models by ball-packing method, (2) connect nodes to generate mesh by 3-D Delaunaytriangulation, (3) retrieve the boundary of the model after Delaunay triangulation, (4) improve themesh.
Mesh Generation via Local Bisection Refinement of Triangulated Grids
2015-06-01
Science and Technology Organisation DSTO–TR–3095 ABSTRACT This report provides a comprehensive implementation of an unstructured mesh generation method...and Technology Organisation 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia Telephone: 1300 333 362 Facsimile: (03) 9626 7999 c© Commonwealth...their behaviour is critically linked to Maubach’s method and the data structures N and T . The top- level mesh refinement algorithm is also presented
r-Adaptive mesh generation for shell finite element analysis
International Nuclear Information System (INIS)
Cho, Maenghyo; Jun, Seongki
2004-01-01
An r-adaptive method or moving grid technique relocates a grid so that it becomes concentrated in the desired region. This concentration improves the accuracy and efficiency of finite element solutions. We apply the r-adaptive method to computational mesh of shell surfaces, which is initially regular and uniform. The r-adaptive method, given by Liao and Anderson [Appl. Anal. 44 (1992) 285], aggregate the grid in the region with a relatively high weight function without any grid-tangling. The stress error estimator is calculated in the initial uniform mesh for a weight function. However, since the r-adaptive method is a method that moves the grid, shell surface geometry error such as curvature error and mesh distortion error will increase. Therefore, to represent the exact geometry of a shell surface and to prevent surface geometric errors, we use the Naghdi's shell theory and express the shell surface by a B-spline patch. In addition, using a nine-node element, which is relatively less sensitive to mesh distortion, we try to diminish mesh distortion error in the application of an r-adaptive method. In the numerical examples, it is shown that the values of the error estimator for a cylinder, hemisphere, and torus in the overall domain can be reduced effectively by using the mesh generated by the r-adaptive method. Also, the reductions of the estimated relative errors are demonstrated in the numerical examples. In particular, a new functional is proposed to construct an adjusted mesh configuration by considering a mesh distortion measure as well as the stress error function. The proposed weight function provides a reliable mesh adaptation method after a parameter value in the weight function is properly chosen
Study on boundary search method for DFM mesh generation
Directory of Open Access Journals (Sweden)
Li Ri
2012-08-01
Full Text Available The boundary mesh of the casting model was determined by direct calculation on the triangular facets extracted from the STL file of the 3D model. Then the inner and outer grids of the model were identified by the algorithm in which we named Inner Seed Grid Method. Finally, a program to automatically generate a 3D FDM mesh was compiled. In the paper, a method named Triangle Contraction Search Method (TCSM was put forward to ensure not losing the boundary grids; while an algorithm to search inner seed grids to identify inner/outer grids of the casting model was also brought forward. Our algorithm was simple, clear and easy to construct program. Three examples for the casting mesh generation testified the validity of the program.
Computational mesh generation for vascular structures with deformable surfaces
International Nuclear Information System (INIS)
Putter, S. de; Laffargue, F.; Breeuwer, M.; Vosse, F.N. van de; Gerritsen, F.A.; Philips Medical Systems, Best
2006-01-01
Computational blood flow and vessel wall mechanics simulations for vascular structures are becoming an important research tool for patient-specific surgical planning and intervention. An important step in the modelling process for patient-specific simulations is the creation of the computational mesh based on the segmented geometry. Most known solutions either require a large amount of manual processing or lead to a substantial difference between the segmented object and the actual computational domain. We have developed a chain of algorithms that lead to a closely related implementation of image segmentation with deformable models and 3D mesh generation. The resulting processing chain is very robust and leads both to an accurate geometrical representation of the vascular structure as well as high quality computational meshes. The chain of algorithms has been tested on a wide variety of shapes. A benchmark comparison of our mesh generation application with five other available meshing applications clearly indicates that the new approach outperforms the existing methods in the majority of cases. (orig.)
Loft: An Automated Mesh Generator for Stiffened Shell Aerospace Vehicles
Eldred, Lloyd B.
2011-01-01
Loft is an automated mesh generation code that is designed for aerospace vehicle structures. From user input, Loft generates meshes for wings, noses, tanks, fuselage sections, thrust structures, and so on. As a mesh is generated, each element is assigned properties to mark the part of the vehicle with which it is associated. This property assignment is an extremely powerful feature that enables detailed analysis tasks, such as load application and structural sizing. This report is presented in two parts. The first part is an overview of the code and its applications. The modeling approach that was used to create the finite element meshes is described. Several applications of the code are demonstrated, including a Next Generation Launch Technology (NGLT) wing-sizing study, a lunar lander stage study, a launch vehicle shroud shape study, and a two-stage-to-orbit (TSTO) orbiter. Part two of the report is the program user manual. The manual includes in-depth tutorials and a complete command reference.
Aranha: a 2D mesh generator for triangular finite elements
International Nuclear Information System (INIS)
Fancello, E.A.; Salgado, A.C.; Feijoo, R.A.
1990-01-01
A method for generating unstructured meshes for linear and quadratic triangular finite elements is described in this paper. Some topics on the C language data structure used in the development of the program Aranha are also presented. The applicability for adaptive remeshing is shown and finally several examples are included to illustrate the performance of the method in irregular connected planar domains. (author)
MESH2D Grid generator design and use
Energy Technology Data Exchange (ETDEWEB)
Flach, G. P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2017-10-31
Mesh2d is a Fortran90 program originally designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). x-coordinates depending only on index i implies strictly vertical x-grid lines, whereas the y-grid lines can undulate. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. Since the original development effort, Mesh2d has been extended to more general two-dimensional structured grids of the form [x(i,j),(i,j)].
Conforming to interface structured adaptive mesh refinement: 3D algorithm and implementation
Nagarajan, Anand; Soghrati, Soheil
2018-03-01
A new non-iterative mesh generation algorithm named conforming to interface structured adaptive mesh refinement (CISAMR) is introduced for creating 3D finite element models of problems with complex geometries. CISAMR transforms a structured mesh composed of tetrahedral elements into a conforming mesh with low element aspect ratios. The construction of the mesh begins with the structured adaptive mesh refinement of elements in the vicinity of material interfaces. An r-adaptivity algorithm is then employed to relocate selected nodes of nonconforming elements, followed by face-swapping a small fraction of them to eliminate tetrahedrons with high aspect ratios. The final conforming mesh is constructed by sub-tetrahedralizing remaining nonconforming elements, as well as tetrahedrons with hanging nodes. In addition to studying the convergence and analyzing element-wise errors in meshes generated using CISAMR, several example problems are presented to show the ability of this method for modeling 3D problems with intricate morphologies.
Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase II
National Aeronautics and Space Administration — The innovations proposed are twofold: 1) a robust unstructured mesh movement method able to handle isotropic (Euler), anisotropic (viscous), mixed element (hybrid)...
Status of the Polyhedral Mesh Generator using SALOME PLATFORM and TetGen
International Nuclear Information System (INIS)
Lee, Sang Yong; Park, Chan Eok; Kim, Shin Whan
2014-01-01
Recently developed porous body approach codes such as SPACE and CUPID require a CAD system to estimate the porosity. Since they use the unstructured mesh and they also require reliable mesh generation system. The combination of CAD system and mesh generation system is necessary to cope with a large number of cells and the complex fluid system with structural materials inside. In the past, a CAD system Pro/Engineer and mesh generator Pointwise were evaluated for this application. But, the cost of those commercial CAD and mesh generator is sometimes a great burden. Therefore, efforts have been made to set up a mesh generation system with open source programs. The evaluation of the TetGen has been made in focusing the application for the polyhedral mesh generation. In this paper, SALOME will be described for the efforts to combine TetGen with it. In section 2, brief introduction will be made on the CAD and mesh generation capability of SALOME and Tetgen. SALOME and TetGen codes are being integrated to construct robust polyhedral mesh generator. Procedures to merge boundary faces and to cut concave cells are developed to remove concave cells to get final convex polyhedral mesh. Treating the internal boundary face, i.e. non-manifold face will be the next task in the future investigation
Efficient computation of clipped Voronoi diagram for mesh generation
Yan, Dongming
2013-04-01
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.
Efficient computation of clipped Voronoi diagram for mesh generation
Yan, Dongming; Wang, Wen Ping; Lé vy, Bruno L.; Liu, Yang
2013-01-01
The Voronoi diagram is a fundamental geometric structure widely used in various fields, especially in computer graphics and geometry computing. For a set of points in a compact domain (i.e. a bounded and closed 2D region or a 3D volume), some Voronoi cells of their Voronoi diagram are infinite or partially outside of the domain, but in practice only the parts of the cells inside the domain are needed, as when computing the centroidal Voronoi tessellation. Such a Voronoi diagram confined to a compact domain is called a clipped Voronoi diagram. We present an efficient algorithm to compute the clipped Voronoi diagram for a set of sites with respect to a compact 2D region or a 3D volume. We also apply the proposed method to optimal mesh generation based on the centroidal Voronoi tessellation. Crown Copyright © 2011 Published by Elsevier Ltd. All rights reserved.
A computational study of nodal-based tetrahedral element behavior.
Energy Technology Data Exchange (ETDEWEB)
Gullerud, Arne S.
2010-09-01
This report explores the behavior of nodal-based tetrahedral elements on six sample problems, and compares their solution to that of a corresponding hexahedral mesh. The problems demonstrate that while certain aspects of the solution field for the nodal-based tetrahedrons provide good quality results, the pressure field tends to be of poor quality. Results appear to be strongly affected by the connectivity of the tetrahedral elements. Simulations that rely on the pressure field, such as those which use material models that are dependent on the pressure (e.g. equation-of-state models), can generate erroneous results. Remeshing can also be strongly affected by these issues. The nodal-based test elements as they currently stand need to be used with caution to ensure that their numerical deficiencies do not adversely affect critical values of interest.
h-Adaptive Mesh Generation using Electric Field Intensity Value as a Criterion (in Japanese)
Toyonaga, Kiyomi; Cingoski, Vlatko; Kaneda, Kazufumi; Yamashita, Hideo
1994-01-01
Finite mesh divisions are essential to obtain accurate solution of two dimensional electric field analysis. It requires the technical knowledge to generate a suitable fine mesh divisions. In electric field problem, analysts are usually interested in the electric field intensity and its distribution. In order to obtain electric field intensity with high-accuracy, we have developed and adaptive mesh generator using electric field intensity value as a criterion.
6th International Meshing Roundtable '97
Energy Technology Data Exchange (ETDEWEB)
White, D.
1997-09-01
The goal of the 6th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the pas~ the Roundtable has enjoyed significant participation born each of these groups from a wide variety of countries. The Roundtable will consist of technical presentations from contributed papers and abstracts, two invited speakers, and two invited panels of experts discussing topics related to the development and use of automatic mesh generation tools. In addition, this year we will feature a "Bring Your Best Mesh" competition and poster session to encourage discussion and participation from a wide variety of mesh generation tool users. The schedule and evening social events are designed to provide numerous opportunities for informal dialog. A proceedings will be published by Sandia National Laboratories and distributed at the Roundtable. In addition, papers of exceptionally high quaIity will be submitted to a special issue of the International Journal of Computational Geometry and Applications. Papers and one page abstracts were sought that present original results on the meshing process. Potential topics include but are got limited to: Unstructured triangular and tetrahedral mesh generation Unstructured quadrilateral and hexahedral mesh generation Automated blocking and structured mesh generation Mixed element meshing Surface mesh generation Geometry decomposition and clean-up techniques Geometry modification techniques related to meshing Adaptive mesh refinement and mesh quality control Mesh visualization Special purpose meshing algorithms for particular applications Theoretical or novel ideas with practical potential Technical presentations from industrial researchers.
Adaptive mesh generation for image registration and segmentation
DEFF Research Database (Denmark)
Fogtmann, Mads; Larsen, Rasmus
2013-01-01
measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....
Challenges in Second-Generation Wireless Mesh Networks
Directory of Open Access Journals (Sweden)
Pescapé Antonio
2008-01-01
Full Text Available Wireless mesh networks have the potential to provide ubiquitous high-speed Internet access at low costs. The good news is that initial deployments of WiFi meshes show the feasibility of providing ubiquitous Internet connectivity. However, their performance is far below the necessary and achievable limit. Moreover, users' subscription in the existing meshes is dismal even though the technical challenges to get connectivity are low. This paper provides an overview of the current status of mesh networks' deployment, and highlights the technical, economical, and social challenges that need to be addressed in the next years. As a proof-of-principle study, we discuss the above-mentioned challenges with reference to three real networks: (i MagNets, an operator-driven planned two-tier mesh network; (ii Berlin Freifunk network as a pure community-driven single-tier network; (iii Weimar Freifunk network, also a community-driven but two-tier network.
LOOM-P: a finite element mesh generation program with on-line graphic display
International Nuclear Information System (INIS)
Ise, Takeharu; Yamazaki, Toshio.
1977-06-01
A description of the two-dimensional mesh generation program, LOOM-P, is given in detail. The program is developed newly to produce a mesh network for a reactor core geometry with the help of an automatic mesh generation routine built in it, under the control of the refresh-type graphic display. It is therefore similar to the edit program of the self-organizing mesh generator, QMESH-RENUM. Additional techniques are incorporated to improve the pattern of mesh elements by means of on-line conversational mode. The obtained mesh network is edited out as input data to the three-dimensional neutron diffusion theory code, FEM-BABEL. (auth.)
ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator
International Nuclear Information System (INIS)
Bass, B.R.; Bryson, J.W.
1994-01-01
1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements
DEFF Research Database (Denmark)
2015-01-01
Mesh generation and visualization software based on the CGAL library. Folder content: drawmesh Visualize slices of the mesh (surface/volumetric) as wireframe on top of an image (3D). drawsurf Visualize surfaces of the mesh (surface/volumetric). img2mesh Convert isosurface in image to volumetric m...... mesh (medit format). img2off Convert isosurface in image to surface mesh (off format). off2mesh Convert surface mesh (off format) to volumetric mesh (medit format). reduce Crop and resize 3D and stacks of images. data Example data to test the library on...
EURCYL. A program to generate finite element meshes for pressure vessel nozzles
International Nuclear Information System (INIS)
De Windt, P.; Reynen, J.
1974-12-01
EURCYL is a program dealing with the automatic generation of finite element meshes for pressure vessel nozzles, using isoparametric elements with 8, 20 or 32 nodes. Options exist to generate BWR nozzles as well as PWR nozzles
Energy Technology Data Exchange (ETDEWEB)
Lober, R.R.; Tautges, T.J.; Vaughan, C.T.
1997-03-01
Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.
Delaunay Tetrahedralization of the Heart Based on Integration of Open Source Codes
International Nuclear Information System (INIS)
Pavarino, E; Neves, L A; Machado, J M; Momente, J C; Zafalon, G F D; Pinto, A R; Valêncio, C R; Godoy, M F de; Shiyou, Y; Nascimento, M Z do
2014-01-01
The Finite Element Method (FEM) is a way of numerical solution applied in different areas, as simulations used in studies to improve cardiac ablation procedures. For this purpose, the meshes should have the same size and histological features of the focused structures. Some methods and tools used to generate tetrahedral meshes are limited mainly by the use conditions. In this paper, the integration of Open Source Softwares is presented as an alternative to solid modeling and automatic mesh generation. To demonstrate its efficiency, the cardiac structures were considered as a first application context: atriums, ventricles, valves, arteries and pericardium. The proposed method is feasible to obtain refined meshes in an acceptable time and with the required quality for simulations using FEM
Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase I
National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....
Mesh Generation and Adaption for High Reynolds Number RANS Computations, Phase II
National Aeronautics and Space Administration — This proposal offers to provide NASA with an automatic mesh generator for the simulation of aerodynamic flows using Reynolds-Averages Navier-Stokes (RANS) models....
Energy Technology Data Exchange (ETDEWEB)
Balaven-Clermidy, S.
2001-12-01
Oil reservoir simulations study multiphase flows in porous media. These flows are described and evaluated through numerical schemes on a discretization of the reservoir domain. In this thesis, we were interested in this spatial discretization and a new kind of hybrid mesh has been proposed where the radial nature of flows in the vicinity of wells is directly taken into account in the geometry. Our modular approach described wells and their drainage area through radial circular meshes. These well meshes are inserted in a structured reservoir mesh (a Corner Point Geometry mesh) made up with hexahedral cells. Finally, in order to generate a global conforming mesh, proper connections are realized between the different kinds of meshes through unstructured transition ones. To compute these transition meshes that we want acceptable in terms of finite volume methods, an automatic method based on power diagrams has been developed. Our approach can deal with a homogeneous anisotropic medium and allows the user to insert vertical or horizontal wells as well as secondary faults in the reservoir mesh. Our work has been implemented, tested and validated in 2D and 2D1/2. It can also be extended in 3D when the geometrical constraints are simplicial ones: points, segments and triangles. (author)
Molecular surface mesh generation by filtering electron density map.
Giard, Joachim; Macq, Benoît
2010-01-01
Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
Molecular Surface Mesh Generation by Filtering Electron Density Map
Directory of Open Access Journals (Sweden)
Joachim Giard
2010-01-01
Full Text Available Bioinformatics applied to macromolecules are now widely spread and in continuous expansion. In this context, representing external molecular surface such as the Van der Waals Surface or the Solvent Excluded Surface can be useful for several applications. We propose a fast and parameterizable algorithm giving good visual quality meshes representing molecular surfaces. It is obtained by isosurfacing a filtered electron density map. The density map is the result of the maximum of Gaussian functions placed around atom centers. This map is filtered by an ideal low-pass filter applied on the Fourier Transform of the density map. Applying the marching cubes algorithm on the inverse transform provides a mesh representation of the molecular surface.
Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
Zachariah, S G; Sanders, J E; Turkiyyah, G M
1996-06-01
A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.
INGEN: a general-purpose mesh generator for finite element codes
International Nuclear Information System (INIS)
Cook, W.A.
1979-05-01
INGEN is a general-purpose mesh generator for two- and three-dimensional finite element codes. The basic parts of the code are surface and three-dimensional region generators that use linear-blending interpolation formulas. These generators are based on an i, j, k index scheme that is used to number nodal points, construct elements, and develop displacement and traction boundary conditions. This code can generate truss elements (2 modal points); plane stress, plane strain, and axisymmetry two-dimensional continuum elements (4 to 8 nodal points); plate elements (4 to 8 nodal points); and three-dimensional continuum elements (8 to 21 nodal points). The traction loads generated are consistent with the element generated. The expansion--contraction option is of special interest. This option makes it possible to change an existing mesh such that some regions are refined and others are made coarser than the original mesh. 9 figures
Polyhedral meshing in numerical analysis of conjugate heat transfer
Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata
2018-06-01
Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.
ZONE: a finite element mesh generator. [In FORTRAN IV for CDC 7600
Energy Technology Data Exchange (ETDEWEB)
Burger, M. J.
1976-05-01
The ZONE computer program is a finite-element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is subdivided into a mesh of quadrilateral and triangular zones arranged sequentially in an ordered march through the geometry. The order of march can be chosen so that the minimum bandwidth is obtained. The node points are defined in terms of the x and y coordinates in a global rectangular coordinate system. The zones generated are quadrilaterals or triangles defined by four node points in a counterclockwise sequence. Node points defining the outside boundary are generated to describe pressure boundary conditions. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. The output from ZONE is essentially the input file to NAOS, HONDO, and other axisymmetric finite element programs. 14 figures. (RWR)
Atlas-Based Automatic Generation of Subject-Specific Finite Element Tongue Meshes.
Bijar, Ahmad; Rohan, Pierre-Yves; Perrier, Pascal; Payan, Yohan
2016-01-01
Generation of subject-specific 3D finite element (FE) models requires the processing of numerous medical images in order to precisely extract geometrical information about subject-specific anatomy. This processing remains extremely challenging. To overcome this difficulty, we present an automatic atlas-based method that generates subject-specific FE meshes via a 3D registration guided by Magnetic Resonance images. The method extracts a 3D transformation by registering the atlas' volume image to the subject's one, and establishes a one-to-one correspondence between the two volumes. The 3D transformation field deforms the atlas' mesh to generate the subject-specific FE mesh. To preserve the quality of the subject-specific mesh, a diffeomorphic non-rigid registration based on B-spline free-form deformations is used, which guarantees a non-folding and one-to-one transformation. Two evaluations of the method are provided. First, a publicly available CT-database is used to assess the capability to accurately capture the complexity of each subject-specific Lung's geometry. Second, FE tongue meshes are generated for two healthy volunteers and two patients suffering from tongue cancer using MR images. It is shown that the method generates an appropriate representation of the subject-specific geometry while preserving the quality of the FE meshes for subsequent FE analysis. To demonstrate the importance of our method in a clinical context, a subject-specific mesh is used to simulate tongue's biomechanical response to the activation of an important tongue muscle, before and after cancer surgery.
Mobility Models for Next Generation Wireless Networks Ad Hoc, Vehicular and Mesh Networks
Santi, Paolo
2012-01-01
Mobility Models for Next Generation Wireless Networks: Ad Hoc, Vehicular and Mesh Networks provides the reader with an overview of mobility modelling, encompassing both theoretical and practical aspects related to the challenging mobility modelling task. It also: Provides up-to-date coverage of mobility models for next generation wireless networksOffers an in-depth discussion of the most representative mobility models for major next generation wireless network application scenarios, including WLAN/mesh networks, vehicular networks, wireless sensor networks, and
Raut, Samarth S.; Liu, Peng; Finol, Ender A.
2015-01-01
In this work, we present a computationally efficient image-derived volume mesh generation approach for vasculatures that implements spatially varying patient-specific wall thickness with a novel inward extrusion of the wall surface mesh. Multi-domain vascular meshes with arbitrary numbers, locations, and patterns of both iliac bifurcations and thrombi can be obtained without the need to specify features or landmark points as input. In addition, the mesh output is coordinate-frame independent ...
Directory of Open Access Journals (Sweden)
Juan J. Garcia-Cantero
2017-06-01
Full Text Available Gaining a better understanding of the human brain continues to be one of the greatest challenges for science, largely because of the overwhelming complexity of the brain and the difficulty of analyzing the features and behavior of dense neural networks. Regarding analysis, 3D visualization has proven to be a useful tool for the evaluation of complex systems. However, the large number of neurons in non-trivial circuits, together with their intricate geometry, makes the visualization of a neuronal scenario an extremely challenging computational problem. Previous work in this area dealt with the generation of 3D polygonal meshes that approximated the cells’ overall anatomy but did not attempt to deal with the extremely high storage and computational cost required to manage a complex scene. This paper presents NeuroTessMesh, a tool specifically designed to cope with many of the problems associated with the visualization of neural circuits that are comprised of large numbers of cells. In addition, this method facilitates the recovery and visualization of the 3D geometry of cells included in databases, such as NeuroMorpho, and provides the tools needed to approximate missing information such as the soma’s morphology. This method takes as its only input the available compact, yet incomplete, morphological tracings of the cells as acquired by neuroscientists. It uses a multiresolution approach that combines an initial, coarse mesh generation with subsequent on-the-fly adaptive mesh refinement stages using tessellation shaders. For the coarse mesh generation, a novel approach, based on the Finite Element Method, allows approximation of the 3D shape of the soma from its incomplete description. Subsequently, the adaptive refinement process performed in the graphic card generates meshes that provide good visual quality geometries at a reasonable computational cost, both in terms of memory and rendering time. All the described techniques have been
International Nuclear Information System (INIS)
Apisit, Patchimpattapong; Alireza, Haghighat; Shedlock, D.
2003-01-01
An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)
2D automatic body-fitted structured mesh generation using advancing extraction method
Zhang, Yaoxin; Jia, Yafei
2018-01-01
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.
Energy Technology Data Exchange (ETDEWEB)
Apisit, Patchimpattapong [Electricity Generating Authority of Thailand, Office of Corporate Planning, Bangkruai, Nonthaburi (Thailand); Alireza, Haghighat; Shedlock, D. [Florida Univ., Department of Nuclear and Radiological Engineering, Gainesville, FL (United States)
2003-07-01
An expert system for generating an effective mesh distribution for the SN particle transport simulation has been developed. This expert system consists of two main parts: 1) an algorithm for generating an effective mesh distribution in a serial environment, and 2) an algorithm for inference of an effective domain decomposition strategy for parallel computing. For the first part, the algorithm prepares an effective mesh distribution considering problem physics and the spatial differencing scheme. For the second part, the algorithm determines a parallel-performance-index (PPI), which is defined as the ratio of the granularity to the degree-of-coupling. The parallel-performance-index provides expected performance of an algorithm depending on computing environment and resources. A large index indicates a high granularity algorithm with relatively low coupling among processors. This expert system has been successfully tested within the PENTRAN (Parallel Environment Neutral-Particle Transport) code system for simulating real-life shielding problems. (authors)
TET_2MCNP: A conversion program to implement tetrahearal-mesh models in MCNP
International Nuclear Information System (INIS)
Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong
2016-01-01
Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET_2MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET_2MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET_2MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET_2MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET_2MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code
TET{sub 2}MCNP: A conversion program to implement tetrahearal-mesh models in MCNP
Energy Technology Data Exchange (ETDEWEB)
Han, Min Cheol; Yeom, Yeon Soo; Nguyen, Thng Tat; Choi, Chan Soo; Lee, Hyun Su; Kim, Chan Hyeong [Dept. of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)
2016-12-15
Tetrahedral-mesh geometries can be used in the MCNP code, but the MCNP code accepts only the geometry in the Abaqus input file format; hence, the existing tetrahedral-mesh models first need to be converted to the Abacus input file format to be used in the MCNP code. In the present study, we developed a simple but useful computer program, TET{sub 2}MCNP, for converting TetGen-generated tetrahedral-mesh models to the Abacus input file format. TET{sub 2}MCNP is written in C++ and contains two components: one for converting a TetGen output file to the Abacus input file and the other for the reverse conversion process. The TET{sub 2}MCP program also produces an MCNP input file. Further, the program provides some MCNP-specific functions: the maximum number of elements (i.e., tetrahedrons) per part can be limited, and the material density of each element can be transferred to the MCNP input file. To test the developed program, two tetrahedral-mesh models were generated using TetGen and converted to the Abaqus input file format using TET{sub 2}MCNP. Subsequently, the converted files were used in the MCNP code to calculate the object- and organ-averaged absorbed dose in the sphere and phantom, respectively. The results show that the converted models provide, within statistical uncertainties, identical dose values to those obtained using the PHITS code, which uses the original tetrahedral-mesh models produced by the TetGen program. The results show that the developed program can successfully convert TetGen tetrahedral-mesh models to Abacus input files. In the present study, we have developed a computer program, TET{sub 2}MCNP, which can be used to convert TetGen-generated tetrahedral-mesh models to the Abaqus input file format for use in the MCNP code. We believe this program will be used by many MCNP users for implementing complex tetrahedral-mesh models, including computational human phantoms, in the MCNP code.
SLIC: an interactive mesh generator for finite element and finite difference application programs
International Nuclear Information System (INIS)
Gerhard, M.A.; Greenlaw, R.C.
1979-01-01
Computers with extended memory, such as the CDC STAR 100 and the CRAY 1 with mega-word capacities, are greatly enlarging the size of finite element problems which can be solved. The cost of developing and testing large meshes can be prohibitive unless one uses a computer program for mesh generation and plotting. SLIC is an interactive mesh program which builds and plots 2- and 3-D continuum meshes from interactive terminal or disc input. The user inputs coordinates for certain key points and enters commands which complete the description of the geometry. Entire surfaces and volumes are then generated from the geometric skeleton. SLIC allows the user to correct input errors and saves the corrected command list for later reuse. The mesh can be plotted on a video display at any stage of development to evaluate the work in progress. Output is in the form of an input file to a user-selected computer code. Among the available output types are ADINA, SAP4, and NIKE2D. 11 figures
Transonic Airfoil Flow Simulation. Part I: Mesh Generation and Inviscid Method
Directory of Open Access Journals (Sweden)
Vladimir CARDOS
2010-06-01
Full Text Available A calculation method for the subsonic and transonic viscous flow over airfoil using thedisplacement surface concept is described. Part I presents a mesh generation method forcomputational grid and a finite volume method for the time-dependent Euler equations. The inviscidsolution is used for the inviscid-viscous coupling procedure presented in the Part II.
Medical Image Processing for Fully Integrated Subject Specific Whole Brain Mesh Generation
Directory of Open Access Journals (Sweden)
Chih-Yang Hsu
2015-05-01
Full Text Available Currently, anatomically consistent segmentation of vascular trees acquired with magnetic resonance imaging requires the use of multiple image processing steps, which, in turn, depend on manual intervention. In effect, segmentation of vascular trees from medical images is time consuming and error prone due to the tortuous geometry and weak signal in small blood vessels. To overcome errors and accelerate the image processing time, we introduce an automatic image processing pipeline for constructing subject specific computational meshes for entire cerebral vasculature, including segmentation of ancillary structures; the grey and white matter, cerebrospinal fluid space, skull, and scalp. To demonstrate the validity of the new pipeline, we segmented the entire intracranial compartment with special attention of the angioarchitecture from magnetic resonance imaging acquired for two healthy volunteers. The raw images were processed through our pipeline for automatic segmentation and mesh generation. Due to partial volume effect and finite resolution, the computational meshes intersect with each other at respective interfaces. To eliminate anatomically inconsistent overlap, we utilized morphological operations to separate the structures with a physiologically sound gap spaces. The resulting meshes exhibit anatomically correct spatial extent and relative positions without intersections. For validation, we computed critical biometrics of the angioarchitecture, the cortical surfaces, ventricular system, and cerebrospinal fluid (CSF spaces and compared against literature values. Volumina and surface areas of the computational mesh were found to be in physiological ranges. In conclusion, we present an automatic image processing pipeline to automate the segmentation of the main intracranial compartments including a subject-specific vascular trees. These computational meshes can be used in 3D immersive visualization for diagnosis, surgery planning with haptics
Manual for automatic generation of finite element models of spiral bevel gears in mesh
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
Mapping method for generating three-dimensional meshes: past and present
International Nuclear Information System (INIS)
Cook, W.A.; Oakes, W.R.
1982-01-01
Two transformations are derived in this paper. One is a mapping of a unit square onto a surve and the other is a mapping of a unit cube onto a three-dimensional region. Two meshing computer programs are then discussed that use these mappings. The first is INGEN, which has been used to calculate three-dimensional meshes for approximately 15 years. This meshing program uses an index scheme to number boundaries, surfaces, and regions. With such an index scheme, it is possible to control nodal points, elements, and boundary conditions. The second is ESCHER, a meshing program now being developed. Two primary considerations governing development of ESCHER are that meshes graded using quadrilaterals are required and that edge-line geometry defined by Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) systems will be a major source of geometry definition. This program separates the processes of nodal-point connectivity generation, computation of nodal-point mapping space coordinates, and mapping of nodal points into model space
3D active shape models of human brain structures: application to patient-specific mesh generation
Ravikumar, Nishant; Castro-Mateos, Isaac; Pozo, Jose M.; Frangi, Alejandro F.; Taylor, Zeike A.
2015-03-01
The use of biomechanics-based numerical simulations has attracted growing interest in recent years for computer-aided diagnosis and treatment planning. With this in mind, a method for automatic mesh generation of brain structures of interest, using statistical models of shape (SSM) and appearance (SAM), for personalised computational modelling is presented. SSMs are constructed as point distribution models (PDMs) while SAMs are trained using intensity profiles sampled from a training set of T1-weighted magnetic resonance images. The brain structures of interest are, the cortical surface (cerebrum, cerebellum & brainstem), lateral ventricles and falx-cerebri membrane. Two methods for establishing correspondences across the training set of shapes are investigated and compared (based on SSM quality): the Coherent Point Drift (CPD) point-set registration method and B-spline mesh-to-mesh registration method. The MNI-305 (Montreal Neurological Institute) average brain atlas is used to generate the template mesh, which is deformed and registered to each training case, to establish correspondence over the training set of shapes. 18 healthy patients' T1-weightedMRimages form the training set used to generate the SSM and SAM. Both model-training and model-fitting are performed over multiple brain structures simultaneously. Compactness and generalisation errors of the BSpline-SSM and CPD-SSM are evaluated and used to quantitatively compare the SSMs. Leave-one-out cross validation is used to evaluate SSM quality in terms of these measures. The mesh-based SSM is found to generalise better and is more compact, relative to the CPD-based SSM. Quality of the best-fit model instance from the trained SSMs, to test cases are evaluated using the Hausdorff distance (HD) and mean absolute surface distance (MASD) metrics.
Algebraic mesh generation for large scale viscous-compressible aerodynamic simulation
International Nuclear Information System (INIS)
Smith, R.E.
1984-01-01
Viscous-compressible aerodynamic simulation is the numerical solution of the compressible Navier-Stokes equations and associated boundary conditions. Boundary-fitted coordinate systems are well suited for the application of finite difference techniques to the Navier-Stokes equations. An algebraic approach to boundary-fitted coordinate systems is one where an explicit functional relation describes a mesh on which a solution is obtained. This approach has the advantage of rapid-precise mesh control. The basic mathematical structure of three algebraic mesh generation techniques is described. They are transfinite interpolation, the multi-surface method, and the two-boundary technique. The Navier-Stokes equations are transformed to a computational coordinate system where boundary-fitted coordinates can be applied. Large-scale computation implies that there is a large number of mesh points in the coordinate system. Computation of viscous compressible flow using boundary-fitted coordinate systems and the application of this computational philosophy on a vector computer are presented
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
International Nuclear Information System (INIS)
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J.
2012-01-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
Mesh generation and energy group condensation studies for the jaguar deterministic transport code
Energy Technology Data Exchange (ETDEWEB)
Kennedy, R. A.; Watson, A. M.; Iwueke, C. I.; Edwards, E. J. [Knolls Atomic Power Laboratory, Bechtel Marine Propulsion Corporation, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)
2012-07-01
The deterministic transport code Jaguar is introduced, and the modeling process for Jaguar is demonstrated using a two-dimensional assembly model of the Hoogenboom-Martin Performance Benchmark Problem. This single assembly model is being used to test and analyze optimal modeling methodologies and techniques for Jaguar. This paper focuses on spatial mesh generation and energy condensation techniques. In this summary, the models and processes are defined as well as thermal flux solution comparisons with the Monte Carlo code MC21. (authors)
Tetrahedral hohlraums at omega
International Nuclear Information System (INIS)
Kyrala, G.A.; Goldman, S.R.; Batha, S.H.; Wallace, J.M.; Klare, K.A.; Schappert, G.T.; Oertel, J.; Turner, R.E.
2000-01-01
We have initiated a study of the usefulness of tetrahedrally illuminated spherical hohlraums, using the Omega laser beams, to drive planar shocks in packages that require indirect drive. A first suite of experiments used spherical hohlraums with a 2-μm thick gold wall surrounded by a 100-μm thick epoxy layer and had an internal diameter of 2.8 mm. Four laser entrance holes each of diameter 700 μm, located on the tips of a regular tetrahedron were used. The shock velocities and the shock uniformities were measured using optical shock break out techniques. The hohlraum x-ray radiation spectrum was also measured using a 10-channel x-ray detector. Tentatively, peak temperatures approaching 195 eV were achieved and shock speeds of 60 μm/ns were measured, when the hohlraum was driven by 22 kJ of 3 ω radiation. (authors)
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Energy Technology Data Exchange (ETDEWEB)
Pereira, N F; Sitek, A, E-mail: nfp4@bwh.harvard.ed, E-mail: asitek@bwh.harvard.ed [Department of Radiology, Brigham and Women' s Hospital-Harvard Medical School Boston, MA (United States)
2010-09-21
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
Pereira, N. F.; Sitek, A.
2010-09-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method
International Nuclear Information System (INIS)
Pereira, N F; Sitek, A
2010-01-01
Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated.
Comment on "A note on generalized radial mesh generation for plasma electronic structure"
Pain, J.-Ch.
2011-12-01
In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.
International Nuclear Information System (INIS)
Burger, M. J.
1981-01-01
1 - Description of problem or function: The ZONE program is a finite element mesh generator which produces the nodes and element description of any two-dimensional geometry. The geometry is divided into a mesh of quadrilateral and triangular zones defined by node points taken in a counter-clockwise sequence. The zones are arranged sequentially in an ordered march through the geometry. The order can be chosen so that the minimum bandwidth is obtained. The mesh that is generated can be used as input to any two-dimensional as well as any axisymmetrical structure program. 2 - Method of solution: The basic concept used is the definition of a two-dimensional structure by the intersection of two sets of lines which describe the geometric and material boundaries. A set of lines called meridians define the geometric and material boundaries and generally run in the same direction. Another set of linear line segments called rays which intersect the meridians are also defined at the material and geometric boundaries. The section of the structure between successive rays is called a region. The ray segment between any two consecutive ray-meridian intersections or void area in the structure is called a layer and is described as passing through, or bounding a material. The boundaries can be directly defined as a sequence of straight line segments or can be computed in terms of elliptic segments or circular arcs. A meridian or ray can also be made to follow a previously-defined meridian or ray at a fixed distance by invoking an offset option. 3 - Restrictions on the complexity of the problem: The following are limited only by a DIMENSION statement. The code currently has a maxima of: 100 coordinate points defining a meridian or ray, 40 meridians, 40 layers. There are no limits on the number of zones or nodes for any problems
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar
2017-01-01
Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the
Automatic mesh generation for finite element calculations in the case of thermal loads
International Nuclear Information System (INIS)
Cords, H.; Zimmermann, R.
1975-01-01
The presentation describes a method to generate finite element nodal point networks on the basis of isothermals and flux lines. Such a mesh provides a relatively fine partitioning at regions where pronounced temperature variations exist. In case of entirely thermal loads a net of this kind is advantageous since the refinement is provided at exactly those locations where high stress levels are expected. In the present contribution the method was employed to analyze the structural behavior of a nuclear fuel element under operating conditions. The graphite block fuel elements for high temperature reactors are of prismatic shape with a large number of parallel bores in the axial direction. Some of these bores are open at both ends and cooling is effected by helium flowing through. Blind holes contain the fuel as compacts or cartridges. The basic temperature distribution in a horizontal section of the block was obtained by the boundary point least squares method which yields analytical expressions for both temperature and thermal flux. The corresponding computer code was presented at an earlier SMiRT conference. The method is particularly useful for regular arrays of heat sources and sinks as encountered in heat exchanger problems. The generated mesh matches the requirements of a subsequent structural analysis with finite elements provided there are no other than thermal loads
Sentís, Manuel Lorenzo; Gable, Carl W.
2017-11-01
There are many applications in science and engineering modeling where an accurate representation of a complex model geometry in the form of a mesh is important. In applications of flow and transport in subsurface porous media, this is manifest in models that must capture complex geologic stratigraphy, structure (faults, folds, erosion, deposition) and infrastructure (tunnels, boreholes, excavations). Model setup, defined as the activities of geometry definition, mesh generation (creation, optimization, modification, refine, de-refine, smooth), assigning material properties, initial conditions and boundary conditions requires specialized software tools to automate and streamline the process. In addition, some model setup tools will provide more utility if they are designed to interface with and meet the needs of a particular flow and transport software suite. A control volume discretization that uses a two point flux approximation is for example most accurate when the underlying control volumes are 2D or 3D Voronoi tessellations. In this paper we will present the coupling of LaGriT, a mesh generation and model setup software suite and TOUGH2 (Pruess et al., 1999) to model subsurface flow problems and we show an example of how LaGriT can be used as a model setup tool for the generation of a Voronoi mesh for the simulation program TOUGH2. To generate the MESH file for TOUGH2 from the LaGriT output a standalone module Lagrit2Tough2 was developed, which is presented here and will be included in a future release of LaGriT. In this paper an alternative method to generate a Voronoi mesh for TOUGH2 with LaGriT is presented and thanks to the modular and command based structure of LaGriT this method is well suited to generating a mesh for complex models.
Optical breast shape capture and finite-element mesh generation for electrical impedance tomography
International Nuclear Information System (INIS)
Forsyth, J; Borsic, A; Halter, R J; Hartov, A; Paulsen, K D
2011-01-01
X-ray mammography is the standard for breast cancer screening. The development of alternative imaging modalities is desirable because mammograms expose patients to ionizing radiation. Electrical impedance tomography (EIT) may be used to determine tissue conductivity, a property which is an indicator of cancer presence. EIT is also a low-cost imaging solution and does not involve ionizing radiation. In breast EIT, impedance measurements are made using electrodes placed on the surface of the patient's breast. The complex conductivity of the volume of the breast is estimated by a reconstruction algorithm. EIT reconstruction is a severely ill-posed inverse problem. As a result, noisy instrumentation and incorrect modelling of the electrodes and domain shape produce significant image artefacts. In this paper, we propose a method that has the potential to reduce these errors by accurately modelling the patient breast shape. A 3D hand-held optical scanner is used to acquire the breast geometry and electrode positions. We develop methods for processing the data from the scanner and producing volume meshes accurately matching the breast surface and electrode locations, which can be used for image reconstruction. We demonstrate this method for a plaster breast phantom and a human subject. Using this approach will allow patient-specific finite-element meshes to be generated which has the potential to improve the clinical value of EIT for breast cancer diagnosis
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.
Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua
2016-01-01
By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.
3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes
Directory of Open Access Journals (Sweden)
Zichun Zhong
2016-01-01
Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.
Energy Technology Data Exchange (ETDEWEB)
Ricard, L.
2005-12-15
The high level geo-statistic description of the subsurface are often far too detailed for use in routine flow simulators. To make flow simulations tractable, the number of grid blocks has to be reduced: an approximation, still relevant with flow description, is necessary. In this work, we place the emphasis on the scaling procedure from the fine scale model to the multi-scale reservoir model. Two main problems appear: Near wells, faults and channels, the volume of flexible cells may be less than fine ones, so we need to solve a down-scaling problem; Far from these regions, the volume of cells are bigger than fine ones so we need to solve an up-scaling problem. In this work, research has been done on each of these three areas: down-scaling, up-scaling and fluid flow simulation. For each of these subjects, a review, some news improvements and comparative study are proposed. The proposed down-scaling method is build to be compatible with existing data integration methods. The comparative study shows that empirical methods are not enough accurate to solve the problem. Concerning the up-scaling step, the proposed approach is based on an existing method: the perturbed boundary conditions. An extension to unstructured mesh is developed for the inter-cell permeability tensor. The comparative study shows that numerical methods are not always as accurate as expected and the empirical model can be sufficient in lot of cases. A new approach to single-phase fluid flow simulation is developed. This approach can handle with full tensorial permeability fields with source or sink terms.(author)
International Nuclear Information System (INIS)
Jones, R.E.; Schkade, A.F.; Eyberger, L.R.
1991-01-01
1 - Description of problem or function: A set of five programs which make up a self-organising mesh generation package. QMESH generates meshes having quadrilateral elements on arbitrarily-shaped, two-dimensional (planar or axisymmetric) bodies. It is designed for use with two-dimensional finite element analysis applications. A flexible hierarchical input scheme is used to describe bodies to QMESH as collections of regions. A mesh for each region is developed independently, with the final assembly and bandwidth minimization performed by the independent program, RENUM or RENUM8. RENUM is applied when four-node elements are desired. Eight-node elements (with mid-side nodes) may be obtained with RENUM8., QPLOT and QPLOT8 are plot programs for meshes generated by the QMESH/RENUM and QMESH/RENUM8 program pairs, respectively. QPLOT and QPLOT8 automatically section the mesh into appropriately-sized sections for legible display of node and element numbers. An overall plot showing the position of the selected plot areas is produced. 2 - Method of solution: The mesh generating process for each individual region begins with the installation of an initial mesh which is a transformation of a regular grid on the unit square. The dimensions and orientation of the initial mesh may be defined by the user or, optionally, may be chosen by QMESH. Various smoothing algorithms may be applied to the initial mesh. Then, the mesh may be 'restructured' using an iterative scheme involving 'element pair restructuring', 'acute element deletion', and smoothing. In element pair restructuring, the interface side between two elements is removed and placed between two different nodes belonging to the pair of elements, provided that the change produces an overall improvement in the shapes of the two elements. In acute element deletion, an element having one diagonal much shorter than the other is deleted by collapsing the short diagonal to zero length The exact order in which restructuring, element
Energy Technology Data Exchange (ETDEWEB)
Flandrin, N.
2005-09-15
During the exploitation of an oil reservoir, it is important to predict the recovery of hydrocarbons and to optimize its production. A better comprehension of the physical phenomena requires to simulate 3D multiphase flows in increasingly complex geological structures. In this thesis, we are interested in this spatial discretization and we propose to extend in 3D the 2D hybrid model proposed by IFP in 1998 that allows to take directly into account in the geometry the radial characteristics of the flows. In these hybrid meshes, the wells and their drainage areas are described by structured radial circular meshes and the reservoirs are represented by structured meshes that can be a non uniform Cartesian grid or a Corner Point Geometry grids. In order to generate a global conforming mesh, unstructured transition meshes based on power diagrams and satisfying finite volume properties are used to connect the structured meshes together. Two methods have been implemented to generate these transition meshes: the first one is based on a Delaunay triangulation, the other one uses a frontal approach. Finally, some criteria are introduced to measure the quality of the transition meshes and optimization procedures are proposed to increase this quality under finite volume properties constraints. (author)
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical
Fast precalculated triangular mesh algorithm for 3D binary computer-generated holograms.
Yang, Fan; Kaczorowski, Andrzej; Wilkinson, Tim D
2014-12-10
A new method for constructing computer-generated holograms using a precalculated triangular mesh is presented. The speed of calculation can be increased dramatically by exploiting both the precalculated base triangle and GPU parallel computing. Unlike algorithms using point-based sources, this method can reconstruct a more vivid 3D object instead of a "hollow image." In addition, there is no need to do a fast Fourier transform for each 3D element every time. A ferroelectric liquid crystal spatial light modulator is used to display the binary hologram within our experiment and the hologram of a base right triangle is produced by utilizing just a one-step Fourier transform in the 2D case, which can be expanded to the 3D case by multiplying by a suitable Fresnel phase plane. All 3D holograms generated in this paper are based on Fresnel propagation; thus, the Fresnel plane is treated as a vital element in producing the hologram. A GeForce GTX 770 graphics card with 2 GB memory is used to achieve parallel computing.
Quadrilateral mesh fitting that preserves sharp features based on multi-normals for Laplacian energy
Directory of Open Access Journals (Sweden)
Yusuke Imai
2014-04-01
Full Text Available Because the cost of performance testing using actual products is expensive, manufacturers use lower-cost computer-aided design simulations for this function. In this paper, we propose using hexahedral meshes, which are more accurate than tetrahedral meshes, for finite element analysis. We propose automatic hexahedral mesh generation with sharp features to precisely represent the corresponding features of a target shape. Our hexahedral mesh is generated using a voxel-based algorithm. In our previous works, we fit the surface of the voxels to the target surface using Laplacian energy minimization. We used normal vectors in the fitting to preserve sharp features. However, this method could not represent concave sharp features precisely. In this proposal, we improve our previous Laplacian energy minimization by adding a term that depends on multi-normal vectors instead of using normal vectors. Furthermore, we accentuate a convex/concave surface subset to represent concave sharp features.
Lee, Won Hee; Kim, Tae-Seong
2012-01-01
This study proposes an advanced finite element (FE) head modeling technique through which high-resolution FE meshes adaptive to the degree of tissue anisotropy can be generated. Our adaptive meshing scheme (called wMesh) uses MRI structural information and fractional anisotropy maps derived from diffusion tensors in the FE mesh generation process, optimally reflecting electrical properties of the human brain. We examined the characteristics of the wMeshes through various qualitative and quantitative comparisons to the conventional FE regular-sized meshes that are non-adaptive to the degree of white matter anisotropy. We investigated numerical differences in the FE forward solutions that include the electrical potential and current density generated by current sources in the brain. The quantitative difference was calculated by two statistical measures of relative difference measure (RDM) and magnification factor (MAG). The results show that the wMeshes are adaptive to the anisotropic density of the WM anisotropy, and they better reflect the density and directionality of tissue conductivity anisotropy. Our comparison results between various anisotropic regular mesh and wMesh models show that there are substantial differences in the EEG forward solutions in the brain (up to RDM=0.48 and MAG=0.63 in the electrical potential, and RDM=0.65 and MAG=0.52 in the current density). Our analysis results indicate that the wMeshes produce different forward solutions that are different from the conventional regular meshes. We present some results that the wMesh head modeling approach enhances the sensitivity and accuracy of the FE solutions at the interfaces or in the regions where the anisotropic conductivities change sharply or their directional changes are complex. The fully automatic wMesh generation technique should be useful for modeling an individual-specific and high-resolution anisotropic FE head model incorporating realistic anisotropic conductivity distributions
Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells
Luo, Yong
2011-11-01
An inexpensive carbon material, carbon mesh, was examined to replace the more expensive carbon cloth usually used to make cathodes in air-cathode microbial fuel cells (MFCs). Three different diffusion layers were tested using carbon mesh: poly(dimethylsiloxane) (PDMS), polytetrafluoroethylene (PTFE), and Goretex cloth. Carbon mesh with a mixture of PDMS and carbon black as a diffusion layer produced a maximum power density of 1355 ± 62 mW m -2 (normalized to the projected cathode area), which was similar to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest value for the carbon mesh and PDMS (79%) larger than that for carbon cloth (63%). The cost of the carbon mesh cathode with PDMS/Carbon or PTFE (excluding catalyst and binder costs) is only 2.5% of the cost of the carbon cloth cathode. These results show that low cost carbon materials such as carbon mesh can be used as the cathode in an MFC without reducing the performance compared to more expensive carbon cloth. © 2011 Elsevier B.V.
Multiphase flow of immiscible fluids on unstructured moving meshes
DEFF Research Database (Denmark)
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam
2012-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...
Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes
DEFF Research Database (Denmark)
Misztal, Marek Krzysztof; Erleben, Kenny; Bargteil, Adam
2013-01-01
In this paper, we present a method for animating multiphase flow of immiscible fluids using unstructured moving meshes. Our underlying discretization is an unstructured tetrahedral mesh, the deformable simplicial complex (DSC), that moves with the flow in a Lagrangian manner. Mesh optimization op...
Software tools for manipulating fe mesh, virtual surgery and post-processing
Directory of Open Access Journals (Sweden)
Milašinović Danko Z.
2009-01-01
Full Text Available This paper describes a set of software tools which we developed for the calculation of fluid flow through cardiovascular organs. Our tools work with medical data from a CT scanner, but could be used with any other 3D input data. For meshing we used a Tetgen tetrahedral mesh generator, as well as a mesh re-generator that we have developed for conversion of tetrahedral elements into bricks. After adequate meshing we used our PAKF solver for calculation of fluid flow. For human-friendly presentation of results we developed a set of post-processing software tools. With modification of 2D mesh (boundary of cardiovascular organ it is possible to do virtual surgery, so in a case of an aorta with aneurism, which we had received from University Clinical center in Heidelberg from a multi-slice 64-CT scanner, we removed the aneurism and ran calculations on both geometrical models afterwards. The main idea of this methodology is creating a system that could be used in clinics.
An Efficient Mesh Generation Method for Fractured Network System Based on Dynamic Grid Deformation
Directory of Open Access Journals (Sweden)
Shuli Sun
2013-01-01
Full Text Available Meshing quality of the discrete model influences the accuracy, convergence, and efficiency of the solution for fractured network system in geological problem. However, modeling and meshing of such a fractured network system are usually tedious and difficult due to geometric complexity of the computational domain induced by existence and extension of fractures. The traditional meshing method to deal with fractures usually involves boundary recovery operation based on topological transformation, which relies on many complicated techniques and skills. This paper presents an alternative and efficient approach for meshing fractured network system. The method firstly presets points on fractures and then performs Delaunay triangulation to obtain preliminary mesh by point-by-point centroid insertion algorithm. Then the fractures are exactly recovered by local correction with revised dynamic grid deformation approach. Smoothing algorithm is finally applied to improve the quality of mesh. The proposed approach is efficient, easy to implement, and applicable to the cases of initial existing fractures and extension of fractures. The method is successfully applied to modeling of two- and three-dimensional discrete fractured network (DFN system in geological problems to demonstrate its effectiveness and high efficiency.
Vibrational Spectra of Tetrahedral Fullerenes.
Cheng; Li; Tang
1999-01-01
From the topological structures of the following classes of tetrahedral fullerenes-(1) Cn(h, h; -i, i), Cn(h, 0; -i, 2i), Cn(2h + i, -h + i; i, i), Cn(h - i, h + 2i; -i, 2i), and Cn(h, i; 0, i) for Td symmetry; (2) Cn(h, k; k, h), Cn(h, k; -h - k, k), and Cn(h, k; -h, h + k) for Th symmetry; (3) Cn(h, k; i, j) for T symmetry-we have obtained theoretically the formulas for the numbers of their IR and Raman active modes for all of the tetrahedral fullerenes through the decomposition of their nuclear motions into irreducible representations by means of group theory. Copyright 1999 Academic Press.
Tetrahedral Mesh Improvement Using Multi-face Retriangulation
DEFF Research Database (Denmark)
Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas; Anton, François
2009-01-01
the algorithm is completely general with regard to quality criterion, we target improvement of the dihedral angle. The central idea in our algorithm is the introduction of a new local operation called multi-face retriangulation (MFRT) which supplements other known local operations. Like in many previous papers...
Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells
Luo, Yong; Zhang, Fang; Wei, Bin; Liu, Guangli; Zhang, Renduo; Logan, Bruce E.
2011-01-01
to that obtained with a carbon cloth cathode (1390 ± 72 mW m-2). Carbon mesh with a PTFE diffusion layer produced only a slightly lower (6.6%) maximum power density (1303 ± 48 mW m-2). The Coulombic efficiencies were a function of current density, with the highest
Directory of Open Access Journals (Sweden)
Sosnowski Marcin
2017-01-01
Full Text Available Chemical Looping Combustion (CLC is a technology that allows the separation of CO2, which is generated by the combustion of fossil fuels. The majority of process designs currently under investigation are systems of coupled fluidized beds. Advances in the development of power generation system using CLC cannot be introduced without using numerical modelling as a research tool. The primary and critical activity in numerical modelling is the computational domain discretization. It influences the numerical diffusion as well as convergence of the model and therefore the overall accuracy of the obtained results. Hence an innovative approach of computational domain discretization using polyhedral (POLY mesh is proposed in the paper. This method reduces both the numerical diffusion of the mesh as well as the time cost of preparing the model for subsequent calculation. The major advantage of POLY mesh is that each individual cell has many neighbours, so gradients can be much better approximated in comparison to commonly-used tetrahedral (TET mesh. POLYs are also less sensitive to stretching than TETs which results in better numerical stability of the model. Therefore detailed comparison of numerical modelling results concerning subsection of CLC system using tetrahedral and polyhedral mesh is covered in the paper.
Solid Mesh Registration for Radiotherapy Treatment Planning
DEFF Research Database (Denmark)
Noe, Karsten Østergaard; Sørensen, Thomas Sangild
2010-01-01
We present an algorithm for solid organ registration of pre-segmented data represented as tetrahedral meshes. Registration of the organ surface is driven by force terms based on a distance field representation of the source and reference shapes. Registration of internal morphology is achieved usi...
Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell
Zhang, Fang
2009-11-01
An inexpensive activated carbon (AC) air cathode was developed as an alternative to a platinum-catalyzed electrode for oxygen reduction in a microbial fuel cell (MFC). AC was cold-pressed with a polytetrafluoroethylene (PTFE) binder to form the cathode around a Ni mesh current collector. This cathode construction avoided the need for carbon cloth or a metal catalyst, and produced a cathode with high activity for oxygen reduction at typical MFC current densities. Tests with the AC cathode produced a maximum power density of 1220 mW/m2 (normalized to cathode projected surface area; 36 W/m3 based on liquid volume) compared to 1060 mW/m2 obtained by Pt catalyzed carbon cloth cathode. The Coulombic efficiency ranged from 15% to 55%. These findings show that AC is a cost-effective material for achieving useful rates of oxygen reduction in air cathode MFCs. © 2009 Elsevier B.V. All rights reserved.
Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard
2017-06-01
At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.
International Nuclear Information System (INIS)
Dahdouh, S; Serrurier, A; De la Plata, J-P; Anquez, J; Angelini, E D; Bloch, I; Varsier, N; Wiart, J
2014-01-01
Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer. (paper)
An enhanced geometry-independent mesh weight window generator for MCNP
International Nuclear Information System (INIS)
Evans, T.M.; Hendricks, J.S.
1997-01-01
A new, enhanced, weight window generator suite has been developed for MCNP trademark. The new generator correctly estimates importances in either an user-specified, geometry-independent orthogonal grid or in MCNP geometric cells. The geometry-independent option alleviates the need to subdivide the MCNP cell geometry for variance reduction purposes. In addition, the new suite corrects several pathologies in the existing MCNP weight window generator. To verify the correctness of the new implementation, comparisons are performed with the analytical solution for the cell importance. Using the new generator, differences between Monte Carlo generated and analytical importances are less than 0.1%. Also, assumptions implicit in the original MCNP generator are shown to be poor in problems with high scattering media. The new generator is fully compatible with MCNP's AVATAR trademark automatic variance reduction method. The new generator applications, together with AVATAR, gives MCNP an enhanced suite of variance reduction methods. The flexibility and efficacy of this suite is demonstrated in a neutron porosity tool well-logging problem
Tetrahedrality and hydrogen bonds in water
Székely, Eszter; Varga, Imre K.; Baranyai, András
2016-06-01
We carried out extensive calculations of liquid water at different temperatures and pressures using the BK3 model suggested recently [P. T. Kiss and A. Baranyai, J. Chem. Phys. 138, 204507 (2013)]. In particular, we were interested in undercooled regions to observe the propensity of water to form tetrahedral coordination of closest neighbors around a central molecule. We compared the found tetrahedral order with the number of hydrogen bonds and with the partial pair correlation functions unfolded as distributions of the closest, the second closest, etc. neighbors. We found that contrary to the number of hydrogen bonds, tetrahedrality changes substantially with state variables. Not only the number of tetrahedral arrangements increases with lowering the pressure, the density, and the temperature but the domain size of connecting tetrahedral structures as well. The difference in tetrahedrality is very pronounced between the two sides of the Widom line and even more so between the low density amorphous (LDA) and high density amorphous (HDA) phases. We observed that in liquid water and in HDA, the 5th water molecule, contrary to ice and LDA, is positioned between the first and the second coordination shell. We found no convincing evidence of structural heterogeneity or regions referring to structural transition.
Wang, Yang; Ma, Guowei; Ren, Feng; Li, Tuo
2017-12-01
A constrained Delaunay discretization method is developed to generate high-quality doubly adaptive meshes of highly discontinuous geological media. Complex features such as three-dimensional discrete fracture networks (DFNs), tunnels, shafts, slopes, boreholes, water curtains, and drainage systems are taken into account in the mesh generation. The constrained Delaunay triangulation method is used to create adaptive triangular elements on planar fractures. Persson's algorithm (Persson, 2005), based on an analogy between triangular elements and spring networks, is enriched to automatically discretize a planar fracture into mesh points with varying density and smooth-quality gradient. The triangulated planar fractures are treated as planar straight-line graphs (PSLGs) to construct piecewise-linear complex (PLC) for constrained Delaunay tetrahedralization. This guarantees the doubly adaptive characteristic of the resulted mesh: the mesh is adaptive not only along fractures but also in space. The quality of elements is compared with the results from an existing method. It is verified that the present method can generate smoother elements and a better distribution of element aspect ratios. Two numerical simulations are implemented to demonstrate that the present method can be applied to various simulations of complex geological media that contain a large number of discontinuities.
Efficient Simplification Methods for Generating High Quality LODs of 3D Meshes
Institute of Scientific and Technical Information of China (English)
Muhammad Hussain
2009-01-01
Two simplification algorithms are proposed for automatic decimation of polygonal models, and for generating their LODs. Each algorithm orders vertices according to their priority values and then removes them iteratively. For setting the priority value of each vertex, exploiting normal field of its one-ring neighborhood, we introduce a new measure of geometric fidelity that reflects well the local geometric features of the vertex. After a vertex is selected, using other measures of geometric distortion that are based on normal field deviation and distance measure, it is decided which of the edges incident on the vertex is to be collapsed for removing it. The collapsed edge is substituted with a new vertex whose position is found by minimizing the local quadric error measure. A comparison with the state-of-the-art algorithms reveals that the proposed algorithms are simple to implement, are computationally more efficient, generate LODs with better quality, and preserve salient features even after drastic simplification. The methods are useful for applications such as 3D computer games, virtual reality, where focus is on fast running time, reduced memory overhead, and high quality LODs.
SU-D-207-04: GPU-Based 4D Cone-Beam CT Reconstruction Using Adaptive Meshing Method
International Nuclear Information System (INIS)
Zhong, Z; Gu, X; Iyengar, P; Mao, W; Wang, J; Guo, X
2015-01-01
Purpose: Due to the limited number of projections at each phase, the image quality of a four-dimensional cone-beam CT (4D-CBCT) is often degraded, which decreases the accuracy of subsequent motion modeling. One of the promising methods is the simultaneous motion estimation and image reconstruction (SMEIR) approach. The objective of this work is to enhance the computational speed of the SMEIR algorithm using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the tetrahedral mesh based on the features of a reference phase 4D-CBCT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. After the mesh generation, the updated motion model and other phases of 4D-CBCT can be obtained by matching the 4D-CBCT projection images at each phase with the corresponding forward projections of the deformed reference phase of 4D-CBCT. The entire process of this 4D-CBCT reconstruction method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its tremendous parallel computing ability. Results: A 4D XCAT digital phantom was used to test the proposed mesh-based image reconstruction algorithm. The image Result shows both bone structures and inside of the lung are well-preserved and the tumor position can be well captured. Compared to the previous voxel-based CPU implementation of SMEIR, the proposed method is about 157 times faster for reconstructing a 10 -phase 4D-CBCT with dimension 256×256×150. Conclusion: The GPU-based parallel 4D CBCT reconstruction method uses the feature-based mesh for estimating motion model and demonstrates equivalent image Result with previous voxel-based SMEIR approach, with significantly improved computational speed
International Nuclear Information System (INIS)
Marttila, D.; Patrick, P.; Gregoris, C.
2009-01-01
Ontario Power Generation's Pickering Nuclear has experienced a number of events in which attached algae have become entrained in the water intake costing approximately $30M over the 1995-2005 period as a result of deratings, Unit shutdowns and other operational issues. In 2005-2006 OPG and Kinectrics worked collaboratively on evaluating different potential solutions to reduce the impact of algae on the station. One of the solutions developed by Kinectrics included a strategically placed barrier net designed to regulate algae flow into the station intake. In 2006, Kinectrics designed and installed the system, the first of its kind at a Nuclear Power Plant in Canada. The system was operational by May 2007. OPG completed an effectiveness study in 2007 and concluded the barrier system had a beneficial effect on reducing algae impact on the station. (author)
Energy Technology Data Exchange (ETDEWEB)
Cahn, Frederick [Biomedical Strategies Inc., San Diego, CA (United States); Kyriakides, Themis R [Vascular Biology and Therapeutics, Yale University, New Haven, CT 06536-9812 (United States)], E-mail: themis.kyriakides@yale.edu
2008-09-01
Generation of a stable interface between soft tissues and biomaterials could improve the function of transcutaneous prostheses, primarily by minimizing chronic infections. We hypothesized that inclusion of non-biodegradable biomaterials in an artificial skin substrate would improve integration of the neodermis. In the present study, we compared the biocompatibility of an experimental substrate, consisting of collagen and glycosylaminoglycans, with commercially available artificial skin of similar composition. By utilizing a mouse excisional wound model, we found that the source of collagen (bovine tendon versus hide), extent of injury and wound contraction were critical determinants of inflammation and neodermis formation. Reducing the extent of injury to underlying muscle reduced inflammation and improved remodeling; the improved conditions allowed the detection of a pro-inflammatory effect of hide-derived collagen. To eliminate the complication of wound contraction, subsequent grafts were performed in guinea pigs and showed that inclusion of carbon fibers or non-degradable sutures resulted in increased foreign body response (FBR) and altered remodeling. On the other hand, inclusion of a polyester multi-stranded mesh induced a mild FBR and allowed normal neodermis formation. Taken together, our observations suggest that non-degradable biomaterials can be embedded in an artificial skin construct without compromising its ability to induce neodermis formation.
Verification of the three-dimensional tetrahedral grid SN code THOR
International Nuclear Information System (INIS)
Schunert, S.; Ferrer, R.; Azmy, Y.
2013-01-01
In this work current capabilities implemented in the novel, arbitrary-order, tetrahedral-grid short characteristics S N radiation transport code THOR are verified based on four benchmark problems: (1) A one-group Method of Manufactured Solution (MMS) problem on a cuboidal domain, (2) an infinite medium eigenvalue problem with up-scattering, (3) a homogeneous torus and (4) a bare cube eigenvalue problem with anisotropic scattering up to order three. The first benchmark problem exercises the various spatial discretization options available in THOR: The short characteristics method in conjunction with polynomial expansions of the source and face fluxes either using the complete or Lagrange family of arbitrary orders. Using the numerical solution's order of convergence test in the framework of a mesh refinement study, correct implementation of a selection of spatial expansion orders is demonstrated for two meshes with tetrahedral aspect ratios close to unity and 50. The second benchmark problem exercises the implementation of angular fluxes on reflective boundary faces that are implicit within a mesh sweep, and up-scattering. The third benchmark problem comprises cyclic dependencies within the mesh sweep thus exercising the algorithm devised for 'breaking' the cyclic dependencies. Finally, the fourth benchmark problem, a simple bare cube, is used to test correct implementation of the anisotropic scattering capability. For all test problems THOR obtains solutions that converge to the reference/exact solution with the expected rate thereby contributing to our confidence in the correctness of its tested features in the present implementation. (authors)
SUPERIMPOSED MESH PLOTTING IN MCNP
Energy Technology Data Exchange (ETDEWEB)
J. HENDRICKS
2001-02-01
The capability to plot superimposed meshes has been added to MCNP{trademark}. MCNP4C featured a superimposed mesh weight window generator which enabled users to set up geometries without having to subdivide geometric cells for variance reduction. The variance reduction was performed with weight windows on a rectangular or cylindrical mesh superimposed over the physical geometry. Experience with the new capability was favorable but also indicated that a number of enhancements would be very beneficial, particularly a means of visualizing the mesh and its values. The mathematics for plotting the mesh and its values is described here along with a description of other upgrades.
Electronic structure of filled tetrahedral semiconductors
Wood, D.M.; Zunger, Alex; Groot, R. de
1985-01-01
We discuss the susceptibility of zinc-blende semiconductors to band-structure modification by insertion of small atoms at their tetrahedral interstitial states. GaP is found to become a direct-gap semiconductor with two He atoms present at its interstitial sites; Si does not. Analysis of the factors
Notes on the Mesh Handler and Mesh Data Conversion
International Nuclear Information System (INIS)
Lee, Sang Yong; Park, Chan Eok
2009-01-01
At the outset of the development of the thermal-hydraulic code (THC), efforts have been made to utilize the recent technology of the computational fluid dynamics. Among many of them, the unstructured mesh approach was adopted to alleviate the restriction of the grid handling system. As a natural consequence, a mesh handler (MH) has been developed to manipulate the complex mesh data from the mesh generator. The mesh generator, Gambit, was chosen at the beginning of the development of the code. But a new mesh generator, Pointwise, was introduced to get more flexible mesh generation capability. An open source code, Paraview, was chosen as a post processor, which can handle unstructured as well as structured mesh data. Overall data processing system for THC is shown in Figure-1. There are various file formats to save the mesh data in the permanent storage media. A couple of dozen of file formats are found even in the above mentioned programs. A competent mesh handler should have the capability to import or export mesh data as many as possible formats. But, in reality, there are two aspects that make it difficult to achieve the competence. The first aspect to consider is the time and efforts to program the interface code. And the second aspect, which is even more difficult one, is the fact that many mesh data file formats are proprietary information. In this paper, some experience of the development of the format conversion programs will be presented. File formats involved are Gambit neutral format, Ansys-CFX grid file format, VTK legacy file format, Nastran format and CGNS
Atomic Nuclei with Tetrahedral and Octahedral Symmetries
International Nuclear Information System (INIS)
Dudek, J.; Gozdz, A.; Schunck, N.
2003-01-01
We present possible manifestations of octahedral and tetrahedral symmetries in nuclei. These symmetries are associated with the O D h and T D d double point groups. Both of them have very characteristic finger-prints in terms of the nucleonic level properties - unique in the Fermionic universe. The tetrahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra; it does not preserve the parity. The octahedral symmetry leads to the four-fold degeneracies in the nucleonic spectra as well but it does preserve the parity. Microscopic predictions have been obtained using mean-field theory based on the relativistic equations and confirmed by using ''traditional'' Schrodinger equation formalism. Calculations are performed in multidimensional deformation spaces using newly designed algorithms. We discuss some experimental fingerprints of the hypothetical new symmetries and possibilities of their verification through experiments. (author)
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available Paper presents new original application WOOD3D in form of program code assembling. The work extends the previous article “Part I – Theoretical approach” in detail description of implemented C++ classes of utilized projects Visualization Toolkit (VTK, Insight Toolkit (ITK and MIMX. Code is written in CMake style and it is available as multiplatform application. Currently GNU Linux (32/64b and MS Windows (32/64b platforms were released. Article discusses various filter classes for image filtering. Mainly Otsu and Binary threshold filters are classified for anatomy wood samples thresholding. Registration of images series is emphasized for difference of colour spaces compensation is included. Resulted work flow of image analysis is new methodological approach for images processing through the composition, visualization, filtering, registration and finite element mesh formation. Application generates script in ANSYS parametric design language (APDL which is fully compatible with ANSYS finite element solver and designer environment. The script includes the whole definition of unstructured finite element mesh formed by individual elements and nodes. Due to simple notation, the same script can be used for generation of geometrical entities in element positions. Such formed volumetric entities are prepared for further geometry approximation (e.g. by boolean or more advanced methods. Hexahedral and tetrahedral types of mesh elements are formed on user request with specified mesh options. Hexahedral meshes are formed both with uniform element size and with anisotropic character. Modified octree method for hexahedral mesh with anisotropic character was declared in application. Multicore CPUs in the application are supported for fast image analysis realization. Visualization of image series and consequent 3D image are realized in VTK format sufficiently known and public format, visualized in GPL application Paraview. Future work based on mesh
User Manual for the PROTEUS Mesh Tools
Energy Technology Data Exchange (ETDEWEB)
Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-06-01
This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as “mesh” input for any of the mesh tools discussed in this manual.
User Manual for the PROTEUS Mesh Tools
International Nuclear Information System (INIS)
Smith, Micheal A.; Shemon, Emily R.
2015-01-01
This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT M eshToMesh.x and the MT R adialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial or .merge) can be used as ''mesh'' input for any of the mesh tools discussed in this manual.
Salo, Zoryana; Beek, Maarten; Wright, David; Whyne, Cari Marisa
2015-04-13
Current methods for the development of pelvic finite element (FE) models generally are based upon specimen specific computed tomography (CT) data. This approach has traditionally required segmentation of CT data sets, which is time consuming and necessitates high levels of user intervention due to the complex pelvic anatomy. The purpose of this research was to develop and assess CT landmark-based semi-automated mesh morphing and mapping techniques to aid the generation and mechanical analysis of specimen-specific FE models of the pelvis without the need for segmentation. A specimen-specific pelvic FE model (source) was created using traditional segmentation methods and morphed onto a CT scan of a different (target) pelvis using a landmark-based method. The morphed model was then refined through mesh mapping by moving the nodes to the bone boundary. A second target model was created using traditional segmentation techniques. CT intensity based material properties were assigned to the morphed/mapped model and to the traditionally segmented target models. Models were analyzed to evaluate their geometric concurrency and strain patterns. Strains generated in a double-leg stance configuration were compared to experimental strain gauge data generated from the same target cadaver pelvis. CT landmark-based morphing and mapping techniques were efficiently applied to create a geometrically multifaceted specimen-specific pelvic FE model, which was similar to the traditionally segmented target model and better replicated the experimental strain results (R(2)=0.873). This study has shown that mesh morphing and mapping represents an efficient validated approach for pelvic FE model generation without the need for segmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
An Interpreted Language and System for the Visualization of Unstructured Meshes
Moran, Patrick J.; Gerald-Yamasaki, Michael (Technical Monitor)
1998-01-01
We present an interpreted language and system supporting the visualization of unstructured meshes and the manipulation of shapes defined in terms of mesh subsets. The language features primitives inspired by geometric modeling, mathematical morphology and algebraic topology. The adaptation of the topology ideas to an interpreted environment, along with support for programming constructs such, as user function definition, provide a flexible system for analyzing a mesh and for calculating with shapes defined in terms of the mesh. We present results demonstrating some of the capabilities of the language, based on an implementation called the Shape Calculator, for tetrahedral meshes in R^3.
Verification of the three-dimensional tetrahedral grid S{sub N} code THOR
Energy Technology Data Exchange (ETDEWEB)
Schunert, S. [Department of Nuclear Engineering, North Carolina State University (United States); Ferrer, R. [Studsvik Scandpower, Idaho Falls, ID (United States); Azmy, Y. [Department of Nuclear Engineering, North Carolina State University (United States)
2013-07-01
In this work current capabilities implemented in the novel, arbitrary-order, tetrahedral-grid short characteristics S{sub N} radiation transport code THOR are verified based on four benchmark problems: (1) A one-group Method of Manufactured Solution (MMS) problem on a cuboidal domain, (2) an infinite medium eigenvalue problem with up-scattering, (3) a homogeneous torus and (4) a bare cube eigenvalue problem with anisotropic scattering up to order three. The first benchmark problem exercises the various spatial discretization options available in THOR: The short characteristics method in conjunction with polynomial expansions of the source and face fluxes either using the complete or Lagrange family of arbitrary orders. Using the numerical solution's order of convergence test in the framework of a mesh refinement study, correct implementation of a selection of spatial expansion orders is demonstrated for two meshes with tetrahedral aspect ratios close to unity and 50. The second benchmark problem exercises the implementation of angular fluxes on reflective boundary faces that are implicit within a mesh sweep, and up-scattering. The third benchmark problem comprises cyclic dependencies within the mesh sweep thus exercising the algorithm devised for 'breaking' the cyclic dependencies. Finally, the fourth benchmark problem, a simple bare cube, is used to test correct implementation of the anisotropic scattering capability. For all test problems THOR obtains solutions that converge to the reference/exact solution with the expected rate thereby contributing to our confidence in the correctness of its tested features in the present implementation. (authors)
Surface meshing with curvature convergence
Li, Huibin; Zeng, Wei; Morvan, Jean-Marie; Chen, Liming; Gu, Xianfengdavid
2014-01-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Surface meshing with curvature convergence
Li, Huibin
2014-06-01
Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations. The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm. © 2014 IEEE.
Urogynecologic Surgical Mesh Implants
... procedures performed to treat pelvic floor disorders with surgical mesh: Transvaginal mesh to treat POP Transabdominal mesh to treat ... address safety risks Final Order for Reclassification of Surgical Mesh for Transvaginal Pelvic Organ Prolapse Repair Final Order for Effective ...
International Nuclear Information System (INIS)
Orsi, Roberto; Bidaud, Adrien
2007-01-01
describe the user's scheme. According to the mesh grid refinement options, GGTM introduces further co-ordinate values, which complete the input mesh grid. A loop for each cell is performed to determine the zone and the material to be attributed to the cell. The cell is ideally represented by its centre and it is relatively simple to determine which material zone the cell belongs to. Material zones may have very complicated geometrical shapes in space thanks to the combinatorial geometry among volumes existing in GGTM. Moreover, the priority parameter associated to each material zone can easily solve any overlapping situation among zones. Fixed neutron sources, if any, are adapted to the mesh refinement at the same time. As from version 5.0, GGTM can optionally calculate errors in volume values due to the stair-cased approximation in geometry. GGTM considers a 'very' refined uniform sub-grid for those single meshes cutting more than one material zone at zone interfaces and works in same way as previously described in the mesh attribution to zones for each single sub-mesh. This method lets users calculate the exact material zone volume values with great precision, independently of the geometry complexity and lets GGTM automatically update material zone densities to conserve mass. As for the plot programs DDM, DTM2 and DTM3, they do not make any value interpolations among cell values to have contours, when used as post-processors or to plot any fixed neutron source distribution; they simply attribute the entire single mesh grid cell the colour corresponding to the adopted value scale. This simple and fast method lets users faithfully reproduce transport results and overlap material, zone, body or mesh borders on the same plots without overcrowding them with too many lines. 3 - Restrictions on the complexity of the problem: Only a continuous space mesh grid can be generated by GGDM and GGTM and input to DDM, DTM2, DTM3, RVARSCL, COMPARE and MKSRC
User Manual for the PROTEUS Mesh Tools
Energy Technology Data Exchange (ETDEWEB)
Smith, Micheal A. [Argonne National Lab. (ANL), Argonne, IL (United States); Shemon, Emily R [Argonne National Lab. (ANL), Argonne, IL (United States)
2016-09-19
PROTEUS is built around a finite element representation of the geometry for visualization. In addition, the PROTEUS-SN solver was built to solve the even-parity transport equation on a finite element mesh provided as input. Similarly, PROTEUS-MOC and PROTEUS-NEMO were built to apply the method of characteristics on unstructured finite element meshes. Given the complexity of real world problems, experience has shown that using commercial mesh generator to create rather simple input geometries is overly complex and slow. As a consequence, significant effort has been put into place to create multiple codes that help assist in the mesh generation and manipulation. There are three input means to create a mesh in PROTEUS: UFMESH, GRID, and NEMESH. At present, the UFMESH is a simple way to generate two-dimensional Cartesian and hexagonal fuel assembly geometries. The UFmesh input allows for simple assembly mesh generation while the GRID input allows the generation of Cartesian, hexagonal, and regular triangular structured grid geometry options. The NEMESH is a way for the user to create their own mesh or convert another mesh file format into a PROTEUS input format. Given that one has an input mesh format acceptable for PROTEUS, we have constructed several tools which allow further mesh and geometry construction (i.e. mesh extrusion and merging). This report describes the various mesh tools that are provided with the PROTEUS code giving both descriptions of the input and output. In many cases the examples are provided with a regression test of the mesh tools. The most important mesh tools for any user to consider using are the MT_MeshToMesh.x and the MT_RadialLattice.x codes. The former allows the conversion between most mesh types handled by PROTEUS while the second allows the merging of multiple (assembly) meshes into a radial structured grid. Note that the mesh generation process is recursive in nature and that each input specific for a given mesh tool (such as .axial
Management of complications of mesh surgery.
Lee, Dominic; Zimmern, Philippe E
2015-07-01
Transvaginal placements of synthetic mid-urethral slings and vaginal meshes have largely superseded traditional tissue repairs in the current era because of presumed efficacy and ease of implant with device 'kits'. The use of synthetic material has generated novel complications including mesh extrusion, pelvic and vaginal pain and mesh contraction. In this review, our aim is to discuss the management, surgical techniques and outcomes associated with mesh removal. Recent publications have seen an increase in presentation of these mesh-related complications, and reports from multiple tertiary centers have suggested that not all patients benefit from surgical intervention. Although the true incidence of mesh complications is unknown, recent publications can serve to guide physicians and inform patients of the surgical outcomes from mesh-related complications. In addition, the literature highlights the growing need for a registry to account for a more accurate reporting of these events and to counsel patients on the risk and benefits before proceeding with mesh surgeries.
International Nuclear Information System (INIS)
Fujihara, Hirohiko; Ueda, Masahiro
1975-01-01
In the design of chemical reactors or nuclear pressure vessels it is often important to evaluate the stress distribution in nozzle-to-shell intersections. The finite element method is a powerful tool for stress analysis, but it has a defects to require troublesome work in preparing input data. Specially, the mesh data of oblique nozzles and tangential nozzles, in which stress concentration is very high, are very difficult to be prepared. The authors made a mesh generation program which can be used to any nozzle-to-shell intersections, and combining this program with a three dimensional stress analysis program by the finite element method they made the stress analysis of nozzle-to-shell intersections under internal pressure. Consequently, stresses, strains and deformations of nozzles nonsymmetrical to spherical shells and nozzles tangential to cylindrical shells were made clear and it was shown that the curvature of the inner surface of the nozzle corner was a controlling factor in reducing stress concentration. (auth.)
National Research Council Canada - National Science Library
Litvin, Faydor
2000-01-01
.... Such a function results in the reduction of noise and vibrations. Methods for the generation of the proposed gear tooth surfaces by grinding and hobbing are considered, and a tooth contact analysis (TCA...
Adaptive and dynamic meshing methods for numerical simulations
Acikgoz, Nazmiye
For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad
S, Kyriacou; E, Kontoleontos; S, Weissenberger; L, Mangani; E, Casartelli; I, Skouteropoulou; M, Gattringer; A, Gehrer; M, Buchmayr
2014-03-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure.
International Nuclear Information System (INIS)
Kyriacou S; Kontoleontos E; Weissenberger S; Mangani L; Casartelli E; Skouteropoulou I; Gattringer M; Gehrer A; Buchmayr M
2014-01-01
An efficient hydraulic optimization procedure, suitable for industrial use, requires an advanced optimization tool (EASY software), a fast solver (block coupled CFD) and a flexible geometry generation tool. EASY optimization software is a PCA-driven metamodel-assisted Evolutionary Algorithm (MAEA (PCA)) that can be used in both single- (SOO) and multiobjective optimization (MOO) problems. In MAEAs, low cost surrogate evaluation models are used to screen out non-promising individuals during the evolution and exclude them from the expensive, problem specific evaluation, here the solution of Navier-Stokes equations. For additional reduction of the optimization CPU cost, the PCA technique is used to identify dependences among the design variables and to exploit them in order to efficiently drive the application of the evolution operators. To further enhance the hydraulic optimization procedure, a very robust and fast Navier-Stokes solver has been developed. This incompressible CFD solver employs a pressure-based block-coupled approach, solving the governing equations simultaneously. This method, apart from being robust and fast, also provides a big gain in terms of computational cost. In order to optimize the geometry of hydraulic machines, an automatic geometry and mesh generation tool is necessary. The geometry generation tool used in this work is entirely based on b-spline curves and surfaces. In what follows, the components of the tool chain are outlined in some detail and the optimization results of hydraulic machine components are shown in order to demonstrate the performance of the presented optimization procedure
Litvin, Faydor L.; Nava, Alessandro; Fan, Qi; Fuentes, Alfonso
2002-01-01
New geometry of face worm gear drives with conical and cylindrical worms is proposed. The generation of the face worm-gear is based on application of a tilted head-cutter (grinding tool) instead of application of a hob applied at present. The generation of a conjugated worm is based on application of a tilted head-cutter (grinding tool) as well. The bearing contact of the gear drive is localized and is oriented longitudinally. A predesigned parabolic function of transmission errors for reduction of noise and vibration is provided. The stress analysis of the gear drive is performed using a three-dimensional finite element analysis. The contacting model is automatically generated. The developed theory is illustrated with numerical examples.
Parallel unstructured mesh optimisation for 3D radiation transport and fluids modelling
International Nuclear Information System (INIS)
Gorman, G.J.; Pain, Ch. C.; Oliveira, C.R.E. de; Umpleby, A.P.; Goddard, A.J.H.
2003-01-01
In this paper we describe the theory and application of a parallel mesh optimisation procedure to obtain self-adapting finite element solutions on unstructured tetrahedral grids. The optimisation procedure adapts the tetrahedral mesh to the solution of a radiation transport or fluid flow problem without sacrificing the integrity of the boundary (geometry), or internal boundaries (regions) of the domain. The objective is to obtain a mesh which has both a uniform interpolation error in any direction and the element shapes are of good quality. This is accomplished with use of a non-Euclidean (anisotropic) metric which is related to the Hessian of the solution field. Appropriate scaling of the metric enables the resolution of multi-scale phenomena as encountered in transient incompressible fluids and multigroup transport calculations. The resulting metric is used to calculate element size and shape quality. The mesh optimisation method is based on a series of mesh connectivity and node position searches of the landscape defining mesh quality which is gauged by a functional. The mesh modification thus fits the solution field(s) in an optimal manner. The parallel mesh optimisation/adaptivity procedure presented in this paper is of general applicability. We illustrate this by applying it to a transient CFD (computational fluid dynamics) problem. Incompressible flow past a cylinder at moderate Reynolds numbers is modelled to demonstrate that the mesh can follow transient flow features. (authors)
International Nuclear Information System (INIS)
Pescarini, M.; Orsi, R.; Martinelli, T.
2003-01-01
In many practical radiation transport applications today the cost for solving refined, large size and complex multi-dimensional problems is not so much computing but is linked to the cumbersome effort required by an expert to prepare a detailed geometrical model, verify and validate that it is correct and represents, to a specified tolerance, the real design or facility. This situation is, in particular, relevant and frequent in reactor core criticality and shielding calculations, with three-dimensional (3D) general purpose radiation transport codes, requiring a very large number of meshes and high performance computers. The need for developing tools that make easier the task to the physicist or engineer, by reducing the time required, by facilitating through effective graphical display the verification of correctness and, finally, that help the interpretation of the results obtained, has clearly emerged. The paper shows the results of efforts in this field through detailed simulations of a complex shielding benchmark experiment. In the context of the activities proposed by the OECD/NEA Nuclear Science Committee (NSC) Task Force on Computing Radiation Dose and Modelling of Radiation-Induced Degradation of Reactor Components (TFRDD), the ENEA-Bologna Nuclear Data Centre contributed with an analysis of the VENUS-3 low-flux neutron shielding benchmark experiment (SCK/CEN-Mol, Belgium). One of the targets of the work was to test the BOT3P system, originally developed at the Nuclear Data Centre in ENEA-Bologna and actually released to OECD/NEA Data Bank for free distribution. BOT3P, ancillary system of the DORT (2D) and TORT (3D) SN codes, permits a flexible automatic generation of spatial mesh grids in Cartesian or cylindrical geometry, through combinatorial geometry algorithms, following a simplified user-friendly approach. This system demonstrated its validity also in core criticality analyses, as for example the Lewis MOX fuel benchmark, permitting to easily
Mesh Excision: Is Total Mesh Excision Necessary?
Wolff, Gillian F; Winters, J Christian; Krlin, Ryan M
2016-04-01
Nearly 29% of women will undergo a secondary, repeat operation for pelvic organ prolapse (POP) symptom recurrence following a primary repair, as reported by Abbott et al. (Am J Obstet Gynecol 210:163.e1-163.e1, 2014). In efforts to decrease the rates of failure, graft materials have been utilized to augment transvaginal repairs. Following the success of using polypropylene mesh (PPM) for stress urinary incontinence (SUI), the use of PPM in the transvaginal repair of POP increased. However, in recent years, significant concerns have been raised about the safety of PPM mesh. Complications, some specific to mesh, such as exposures, erosion, dyspareunia, and pelvic pain, have been reported with increased frequency. In the current literature, there is not substantive evidence to suggest that PPM has intrinsic properties that warrant total mesh removal in the absence of complications. There are a number of complications that can occur after transvaginal mesh placement that do warrant surgical intervention after failure of conservative therapy. In aggregate, there are no high-quality controlled studies that clearly demonstrate that total mesh removal is consistently more likely to achieve pain reduction. In the cases of obstruction and erosion, it seems clear that definitive removal of the offending mesh is associated with resolution of symptoms in the majority of cases and reasonable practice. There are a number of complications that can occur with removal of mesh, and patients should be informed of this as they formulate a choice of treatment. We will review these considerations as we examine the clinical question of whether total versus partial removal of mesh is necessary for the resolution of complications following transvaginal mesh placement.
Highly Symmetric and Congruently Tiled Meshes for Shells and Domes
Rasheed, Muhibur; Bajaj, Chandrajit
2016-01-01
We describe the generation of all possible shell and dome shapes that can be uniquely meshed (tiled) using a single type of mesh face (tile), and following a single meshing (tiling) rule that governs the mesh (tile) arrangement with maximal vertex, edge and face symmetries. Such tiling arrangements or congruently tiled meshed shapes, are frequently found in chemical forms (fullerenes or Bucky balls, crystals, quasi-crystals, virus nano shells or capsids), and synthetic shapes (cages, sports domes, modern architectural facades). Congruently tiled meshes are both aesthetic and complete, as they support maximal mesh symmetries with minimal complexity and possess simple generation rules. Here, we generate congruent tilings and meshed shape layouts that satisfy these optimality conditions. Further, the congruent meshes are uniquely mappable to an almost regular 3D polyhedron (or its dual polyhedron) and which exhibits face-transitive (and edge-transitive) congruency with at most two types of vertices (each type transitive to the other). The family of all such congruently meshed polyhedra create a new class of meshed shapes, beyond the well-studied regular, semi-regular and quasi-regular classes, and their duals (platonic, Catalan and Johnson). While our new mesh class is infinite, we prove that there exists a unique mesh parametrization, where each member of the class can be represented by two integer lattice variables, and moreover efficiently constructable. PMID:27563368
Connectivity editing for quadrilateral meshes
Peng, Chihan; Zhang, Eugene; Kobayashi, Yoshihiro; Wonka, Peter
2011-01-01
We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.
Connectivity editing for quadrilateral meshes
Peng, Chihan
2011-12-12
We propose new connectivity editing operations for quadrilateral meshes with the unique ability to explicitly control the location, orientation, type, and number of the irregular vertices (valence not equal to four) in the mesh while preserving sharp edges. We provide theoretical analysis on what editing operations are possible and impossible and introduce three fundamental operations to move and re-orient a pair of irregular vertices. We argue that our editing operations are fundamental, because they only change the quad mesh in the smallest possible region and involve the fewest irregular vertices (i.e., two). The irregular vertex movement operations are supplemented by operations for the splitting, merging, canceling, and aligning of irregular vertices. We explain how the proposed highlevel operations are realized through graph-level editing operations such as quad collapses, edge flips, and edge splits. The utility of these mesh editing operations are demonstrated by improving the connectivity of quad meshes generated from state-of-art quadrangulation techniques. © 2011 ACM.
Tetrahedral gray code for visualization of genome information.
Directory of Open Access Journals (Sweden)
Natsuhiro Ichinose
Full Text Available We propose a tetrahedral Gray code that facilitates visualization of genome information on the surfaces of a tetrahedron, where the relative abundance of each [Formula: see text]-mer in the genomic sequence is represented by a color of the corresponding cell of a triangular lattice. For biological significance, the code is designed such that the [Formula: see text]-mers corresponding to any adjacent pair of cells differ from each other by only one nucleotide. We present a simple procedure to draw such a pattern on the development surfaces of a tetrahedron. The thus constructed tetrahedral Gray code can demonstrate evolutionary conservation and variation of the genome information of many organisms at a glance. We also apply the tetrahedral Gray code to the honey bee (Apis mellifera genome to analyze its methylation structure. The results indicate that the honey bee genome exhibits CpG overrepresentation in spite of its methylation ability and that two conserved motifs, CTCGAG and CGCGCG, in the unmethylated regions are responsible for the overrepresentation of CpG.
Relativistic Jahn-Teller effect in tetrahedral systems
International Nuclear Information System (INIS)
Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.
2010-01-01
It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.
How to model wireless mesh networks topology
International Nuclear Information System (INIS)
Sanni, M L; Hashim, A A; Anwar, F; Ali, S; Ahmed, G S M
2013-01-01
The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches
... knitted mesh or non-knitted sheet forms. The synthetic materials used can be absorbable, non-absorbable or a combination of absorbable and non-absorbable materials. Animal-derived mesh are made of animal tissue, such as intestine or skin, that has been processed and disinfected to be ...
Tetrahedral node for Transmission-Line Modeling (TLM) applied to Bio-heat Transfer.
Milan, Hugo F M; Gebremedhin, Kifle G
2016-12-01
Transmission-Line Modeling (TLM) is a numerical method used to solve complex and time-domain bio-heat transfer problems. In TLM, parallelepipeds are used to discretize three-dimensional problems. The drawback in using parallelepiped shapes is that instead of refining only the domain of interest, a large additional domain would also have to be refined, which results in increased computational time and memory space. In this paper, we developed a tetrahedral node for TLM applied to bio-heat transfer that does not have the drawback associated with the parallelepiped node. The model includes heat source, blood perfusion, boundary conditions and initial conditions. The boundary conditions could be adiabatic, temperature, heat flux, or convection. The predicted temperature and heat flux were compared against results from an analytical solution and the results agreed within 2% for a mesh size of 69,941 nodes and a time step of 5ms. The method was further validated against published results of maximum skin-surface temperature difference in a breast with and without tumor and the results agreed within 6%. The published results were obtained from a model that used parallelepiped TLM node. An open source software, TLMBHT, was written using the theory developed herein and is available for download free-of-charge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals
Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun
2017-11-01
Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.
22nd International Meshing Roundtable
Staten, Matthew
2014-01-01
This volume contains the articles presented at the 22nd International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on Oct 13-16, 2013 in Orlando, Florida, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics and visualization.
21st International Meshing Roundtable
Weill, Jean-Christophe
2013-01-01
This volume contains the articles presented at the 21st International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held on October 7–10, 2012 in San Jose, CA, USA. The first IMR was held in 1992, and the conference series has been held annually since. Each year the IMR brings together researchers, developers, and application experts in a variety of disciplines, from all over the world, to present and discuss ideas on mesh generation and related topics. The technical papers in this volume present theoretical and novel ideas and algorithms with practical potential, as well as technical applications in science and engineering, geometric modeling, computer graphics, and visualization.
Electron emission induced modifications in amorphous tetrahedral diamondlike carbon
International Nuclear Information System (INIS)
Mercer, T.W.; DiNardo, N.J.; Rothman, J.B.; Siegal, M.P.; Friedmann, T.A.; Martinez-Miranda, L.J.
1998-01-01
The cold-cathode electron emission properties of amorphous tetrahedral diamondlike carbon are promising for flat-panel display and vacuum microelectronics technologies. The onset of electron emission is, typically, preceded by open-quotes conditioningclose quotes where the material is stressed by an applied electric field. To simulate conditioning and assess its effect, we combined the spatially localized field and current of a scanning tunneling microscope tip with high-spatial-resolution characterization. Scanning force microscopy shows that conditioning alters surface morphology and electronic structure. Spatially resolved electron-energy-loss spectroscopy indicates that the predominant bonding configuration changes from predominantly fourfold to threefold coordination. copyright 1998 American Institute of Physics
Directory of Open Access Journals (Sweden)
Petr Koňas
2009-01-01
Full Text Available The work summarizes created algorithms for formation of finite element (FE mesh which is derived from bitmap pattern. Process of registration, segmentation and meshing is described in detail. C++ library of STL from Insight Toolkit (ITK Project together with Visualization Toolkit (VTK were used for base processing of images. Several methods for appropriate mesh output are discussed. Multiplatform application WOOD3D for the task under GNU GPL license was assembled. Several methods of segmentation and mainly different ways of contouring were included. Tetrahedral and rectilinear types of mesh were programmed. Improving of mesh quality in some simple ways is mentioned. Testing and verification of final program on wood anatomy samples of spruce and walnut was realized. Methods of microscopic anatomy samples preparation are depicted. Final utilization of formed mesh in the simple structural analysis was performed.The article discusses main problems in image analysis due to incompatible colour spaces, samples preparation, thresholding and final conversion into finite element mesh. Assembling of mentioned tasks together and evaluation of the application are main original results of the presented work. In presented program two thresholding filters were used. By utilization of ITK two following filters were included. Otsu filter based and binary filter based were used. The most problematic task occurred in a production of wood anatomy samples in the unique light conditions with minimal or zero colour space shift and the following appropriate definition of thresholds (corresponding thresholding parameters and connected methods (prefiltering + registration which influence the continuity and mainly separation of wood anatomy structure. Solution in samples staining is suggested with the following quick image analysis realization. Next original result of the work is complex fully automated application which offers three types of finite element mesh
Capacity Analysis of Wireless Mesh Networks
Directory of Open Access Journals (Sweden)
M. I. Gumel
2012-06-01
Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.
MeSH Now: automatic MeSH indexing at PubMed scale via learning to rank.
Mao, Yuqing; Lu, Zhiyong
2017-04-17
MeSH indexing is the task of assigning relevant MeSH terms based on a manual reading of scholarly publications by human indexers. The task is highly important for improving literature retrieval and many other scientific investigations in biomedical research. Unfortunately, given its manual nature, the process of MeSH indexing is both time-consuming (new articles are not immediately indexed until 2 or 3 months later) and costly (approximately ten dollars per article). In response, automatic indexing by computers has been previously proposed and attempted but remains challenging. In order to advance the state of the art in automatic MeSH indexing, a community-wide shared task called BioASQ was recently organized. We propose MeSH Now, an integrated approach that first uses multiple strategies to generate a combined list of candidate MeSH terms for a target article. Through a novel learning-to-rank framework, MeSH Now then ranks the list of candidate terms based on their relevance to the target article. Finally, MeSH Now selects the highest-ranked MeSH terms via a post-processing module. We assessed MeSH Now on two separate benchmarking datasets using traditional precision, recall and F 1 -score metrics. In both evaluations, MeSH Now consistently achieved over 0.60 in F-score, ranging from 0.610 to 0.612. Furthermore, additional experiments show that MeSH Now can be optimized by parallel computing in order to process MEDLINE documents on a large scale. We conclude that MeSH Now is a robust approach with state-of-the-art performance for automatic MeSH indexing and that MeSH Now is capable of processing PubMed scale documents within a reasonable time frame. http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/Demo/MeSHNow/ .
Geometrically Consistent Mesh Modification
Bonito, A.
2010-01-01
A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.
Tetrahedral hydrocarbon nanoparticles in space: X-ray spectra
Bilalbegović, G.; Maksimović, A.; Valencic, L. A.
2018-06-01
It has been proposed, or confirmed, that diamond nanoparticles exist in various environments in space: close to active galactic nuclei, in the vicinity of supernovae and pulsars, in the interior of several planets in the Solar system, in carbon planets, and other exoplanets, carbon-rich stars, meteorites, in X-ray active Herbig Ae/Be stars, and in the interstellar medium. Using density functional theory methods, we calculate the carbon K-edge X-ray absorption spectrum of two large tetrahedral nanodiamonds: C26H32 and C51H52. We also study and test our methods on the astrophysical molecule CH4, the smallest C-H tetrahedral structure. A possible detection of nanodiamonds from X-ray spectra by future telescopes, such as the project Arcus, is proposed. Simulated spectra of the diffuse interstellar medium using Cyg X-2 as a source show that nanodiamonds studied in this work can be detected by Arcus, a high-resolution X-ray spectrometer mission selected by NASA for a Phase A concept study.
Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji
2017-01-01
In the multi-dimensional space-time conservation element and solution element16 (CESE) method, triangles and tetrahedral mesh elements turn out to be the most natural building blocks for 2D and 3D spatial grids, respectively. As such, the CESE method is naturally compatible with the simplest 2D and 3D unstructured grids and thus can be easily applied to solve problems with complex geometries. However, because (a) accurate solution of a high-Reynolds number flow field near a solid wall requires that the grid intervals along the direction normal to the wall be much finer than those in a direction parallel to the wall and, as such, the use of grid cells with extremely high aspect ratio (103 to 106) may become mandatory, and (b) unlike quadrilateral hexahedral grids, it is well-known that accuracy of gradient computations involving triangular tetrahedral grids tends to deteriorate rapidly as cell aspect ratio increases. As a result, the use of triangular tetrahedral grid cells near a solid wall has long been deemed impractical by CFD researchers. In view of (a) the critical role played by triangular tetrahedral grids in the CESE development, and (b) the importance of accurate resolution of high-Reynolds number flow field near a solid wall, as will be presented in the main paper, a comprehensive and rigorous mathematical framework that clearly identifies the reasons behind the accuracy deterioration as described above has been developed for the 2D case involving triangular cells. By avoiding the pitfalls identified by the 2D framework, and its 3D extension, it has been shown numerically.
International Nuclear Information System (INIS)
McCann, R.; Roy, S.S.; Papakonstantinou, P.; Bain, M.F.; Gamble, H.S.; McLaughlin, J.A.
2005-01-01
Tetrahedral amorphous carbon (ta-C) and nitrogenated tetrahedral amorphous carbon films (ta-CN x ), deposited by double bend off plane Filtered Vacuum Cathodic Arc were annealed up to 1000 deg. C in flowing argon for 2 min. Modifications on the chemical bonding structure of the rapidly annealed films, as a function of temperature, were investigated by NEXAFS, X-ray photoelectron and Raman spectroscopies. The interpretation of these spectra is discussed. The results demonstrate that the structure of undoped ta-C films prepared at floating potential with an arc current of 80 A remains stable up to 900 deg. C, whereas that of ta-CN x containing 12 at.% nitrogen is stable up to 700 deg. C. At higher temperatures, all the spectra indicated the predominant formation of graphitic carbon. Through NEXAFS studies, we clearly observed three π* resonance peaks at the ' N K edge structure. The origin of these three peaks is not well established in the literature. However our temperature-dependant study ascertained that the first peak originates from C=N bonds and the third peak originates from the incorporation of nitrogen into the graphite like domains
International Nuclear Information System (INIS)
Carpene, E; Mancini, E; Dallera, C; Schwen, D; Ronning, C; Silvestri, S De
2007-01-01
We report the investigation of the ultrafast carrier dynamics in thin tetrahedral amorphous carbon films by means of femtosecond time-resolved reflectivity. We estimated the electron-phonon relaxation time of a few hundred femtoseconds and we observed that under low optical excitation photo-generated carriers decay according to two distinct mechanisms attributed to trapping by defect states and direct electron-hole recombination. With high excitation, when photo-carrier and trap densities are comparable, a unique temporal evolution develops, as the time dependence of the trapping process becomes degenerate with the electron-hole recombination. This experimental evidence highlights the role of defects in the ultrafast electronic dynamics and is not specific to this particular form of carbon, but has general validity for amorphous and disordered semiconductors
Energy Technology Data Exchange (ETDEWEB)
Lieberoth, J.
1975-06-15
The numerical solution of the neutron diffusion equation plays a very important role in the analysis of nuclear reactors. A wide variety of numerical procedures has been proposed, at which most of the frequently used numerical methods are fundamentally based on the finite- difference approximation where the partial derivatives are approximated by the finite difference. For complex geometries, typical of the practical reactor problems, the computational accuracy of the finite-difference method is seriously affected by the size of the mesh width relative to the neutron diffusion length and by the heterogeneity of the medium. Thus, a very large number of mesh points are generally required to obtain a reasonably accurate approximate solution of the multi-dimensional diffusion equation. Since the computation time is approximately proportional to the number of mesh points, a detailed multidimensional analysis, based on the conventional finite-difference method, is still expensive even with modern large-scale computers. Accordingly, there is a strong incentive to develop alternatives that can reduce the number of mesh-points and still retain accuracy. One of the promising alternatives is the finite element method, which consists of the expansion of the neutron flux by piecewise polynomials. One of the advantages of this procedure is its flexibility in selecting the locations of the mesh points and the degree of the expansion polynomial. The small number of mesh points of the coarse grid enables to store the results of several of the least outer iterations and to calculate well extrapolated values of them by comfortable formalisms. This holds especially if only one energy distribution of fission neutrons is assumed for all fission processes in the reactor, because the whole information of an outer iteration is contained in a field of fission rates which has the size of all mesh points of the coarse grid.
Nuclear tetrahedral symmetry: possibly present throughout the periodic table.
Dudek, J; Goźdź, A; Schunck, N; Miśkiewicz, M
2002-06-24
More than half a century after the fundamental, spherical shell structure in nuclei had been established, theoretical predictions indicated that the shell gaps comparable or even stronger than those at spherical shapes may exist. Group-theoretical analysis supported by realistic mean-field calculations indicate that the corresponding nuclei are characterized by the TD(d) ("double-tetrahedral") symmetry group. Strong shell-gap structure is enhanced by the existence of the four-dimensional irreducible representations of TD(d); it can be seen as a geometrical effect that does not depend on a particular realization of the mean field. Possibilities of discovering the TD(d) symmetry in experiment are discussed.
3He/4He production ratios by tetrahedral symmetric condensation
International Nuclear Information System (INIS)
Takahashi, Akito
2006-01-01
The present paper treats application of the Electronic Quasi-Particle Expansion Theory (EQPET) model for Tetrahedral Symmetric Condensate (TSC) of H/D mixed systems for Pd host metal. Production ratios of 3 He/ 4 He for multi-body fusion reactions in H/D mixed TSC systems are calculated as a function of H/D mixing ratio. The model is further extended to treat direct nuclear interactions between host-metal nucleus and TSC of pure four protons (or four deuterons), since TSC can become very small (far less than 1 pm radius) charge-neutral pseudo-particle. Results for the case of Ni + 4p/TSC are discussed with Ni + p capture reactions and Ni + 4p fission reactions. (authors)
Modeling amorphization of tetrahedral structures under local approaches
International Nuclear Information System (INIS)
Jesurum, C.E.; Pulim, V.; Berger, B.; Hobbs, L.W.
1997-01-01
Many crystalline ceramics can be topologically disordered (amorphized) by disordering radiation events involving high-energy collision cascades or (in some cases) successive single-atom displacements. The authors are interested in both the potential for disorder and the possible aperiodic structures adopted following the disordering event. The potential for disordering is related to connectivity, and among those structures of interest are tetrahedral networks (such as SiO 2 , SiC and Si 3 N 4 ) comprising corner-shared tetrahedral units whose connectivities are easily evaluated. In order to study the response of these networks to radiation, the authors have chosen to model their assembly according to the (simple) local rules that each corner obeys in connecting to another tetrahedron; in this way they easily erect large computer models of any crystalline polymorphic form. Amorphous structures can be similarly grown by application of altered rules. They have adopted a simple model of irradiation in which all bonds in the neighborhood of a designated tetrahedron are destroyed, and they reform the bonds in this region according to a set of (possibly different) local rules appropriate to the environmental conditions. When a tetrahedron approaches the boundary of this neighborhood, it undergoes an optimization step in which a spring is inserted between two corners of compatible tetrahedra when they are within a certain distance of one another; component forces are then applied that act to minimize the distance between these corners and minimize the deviation from the rules. The resulting structure is then analyzed for the complete adjacency matrix, irreducible ring statistics, and bond angle distributions
MeshVoro: A Three-Dimensional Voronoi Mesh Building Tool for the TOUGH Family of Codes
Energy Technology Data Exchange (ETDEWEB)
Freeman, C. M.; Boyle, K. L.; Reagan, M.; Johnson, J.; Rycroft, C.; Moridis, G. J.
2013-09-30
Few tools exist for creating and visualizing complex three-dimensional simulation meshes, and these have limitations that restrict their application to particular geometries and circumstances. Mesh generation needs to trend toward ever more general applications. To that end, we have developed MeshVoro, a tool that is based on the Voro (Rycroft 2009) library and is capable of generating complex threedimensional Voronoi tessellation-based (unstructured) meshes for the solution of problems of flow and transport in subsurface geologic media that are addressed by the TOUGH (Pruess et al. 1999) family of codes. MeshVoro, which includes built-in data visualization routines, is a particularly useful tool because it extends the applicability of the TOUGH family of codes by enabling the scientifically robust and relatively easy discretization of systems with challenging 3D geometries. We describe several applications of MeshVoro. We illustrate the ability of the tool to straightforwardly transform a complex geological grid into a simulation mesh that conforms to the specifications of the TOUGH family of codes. We demonstrate how MeshVoro can describe complex system geometries with a relatively small number of grid blocks, and we construct meshes for geometries that would have been practically intractable with a standard Cartesian grid approach. We also discuss the limitations and appropriate applications of this new technology.
Toward An Unstructured Mesh Database
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi
Pelties, Christian; de la Puente, Josep; Ampuero, Jean-Paul; Brietzke, Gilbert B.; Kä ser, Martin
2012-01-01
Accurate and efficient numerical methods to simulate dynamic earthquake rupture and wave propagation in complex media and complex fault geometries are needed to address fundamental questions in earthquake dynamics, to integrate seismic and geodetic
A Reconfigurable Mesh-Ring Topology for Bluetooth Sensor Networks
Directory of Open Access Journals (Sweden)
Ben-Yi Wang
2018-05-01
Full Text Available In this paper, a Reconfigurable Mesh-Ring (RMR algorithm is proposed for Bluetooth sensor networks. The algorithm is designed in three stages to determine the optimal configuration of the mesh-ring network. Firstly, a designated root advertises and discovers its neighboring nodes. Secondly, a scatternet criterion is built to compute the minimum number of piconets and distributes the connection information for piconet and scatternet. Finally, a peak-search method is designed to determine the optimal mesh-ring configuration for various sizes of networks. To maximize the network capacity, the research problem is formulated by determining the best connectivity of available mesh links. During the formation and maintenance phases, three possible configurations (including piconet, scatternet, and hybrid are examined to determine the optimal placement of mesh links. The peak-search method is a systematic approach, and is implemented by three functional blocks: the topology formation block generates the mesh-ring topology, the routing efficiency block computes the routing performance, and the optimum decision block introduces a decision-making criterion to determine the optimum number of mesh links. Simulation results demonstrate that the optimal mesh-ring configuration can be determined and that the scatternet case achieves better overall performance than the other two configurations. The RMR topology also outperforms the conventional ring-based and cluster-based mesh methods in terms of throughput performance for Bluetooth configurable networks.
International Nuclear Information System (INIS)
Patchimpattapong, Apisit; Haghighat, Alireza
2001-01-01
The discrete ordinates (S N ) method is widely used to obtain numerical solutions of the transport equation. The method calls for discretization of spatial, energy, and angular variables. To generate an 'effective' spatial mesh distribution, one has to consider various factors including particle mean free path (mfp), material and source discontinuities, and problem objectives. This becomes more complicated if we consider the effect of numerics such as differencing schemes, parallel processing strategies, and computation resources. As a result, one may often over/under-mesh depending upon limitations on accuracy, computing resources, and time allotted. To overcome the foregoing issues, we are developing an expert system for input preparation of the discrete ordinates (S N ) method. This project is a part of an ongoing project sponsored by Nuclear Engineering Education Research. Our expert system consists of two parts: (a) an algorithm for generation of a mesh distribution for a serial calculation and (b) an algorithm for extension to parallel computing, which accounts for parallelization parameters including granularity, load balancing, parallel algorithms, and possible architectural issues. Thus far, we have developed a stand-alone algorithm for generation of an 'effective' mesh distribution for a serial calculation. The algorithm has been successfully tested with the Parallel Environment Neutral-Particle Transport (PENTRAN) code system. In this paper, we discuss the structure of our algorithm and present its use for simulating the VENUS-3 experimental facility. To date, we have developed and tested part 1 of this system. This part comprises of four steps: creation of a geometric model and coarse meshes, calculation of un-collided flux, selection of differencing schemes, and generation of fine-mesh distribution. For the un-collided flux calculation, we have developed a parallel code called PENFC. It is capable of calculating un-collided and first-collision fluxes
Polyamorphism in tetrahedral substances: Similarities between silicon and ice
Garcez, K. M. S.; Antonelli, A.
2015-07-01
Tetrahedral substances, such as silicon, water, germanium, and silica, share various unusual phase behaviors. Among them, the so-called polyamorphism, i.e., the existence of more than one amorphous form, has been intensively investigated in the last three decades. In this work, we study the metastable relations between amorphous states of silicon in a wide range of pressures, using Monte Carlo simulations. Our results indicate that the two amorphous forms of silicon at high pressures, the high density amorphous (HDA) and the very high density amorphous (VHDA), can be decompressed from high pressure (˜20 GPa) down to the tensile regime, where both convert into the same low density amorphous. Such behavior is also observed in ice. While at high pressure (˜20 GPa), HDA is less stable than VHDA, at the pressure of 10 GPa both forms exhibit similar stability. On the other hand, at much lower pressure (˜5 GPa), HDA and VHDA are no longer the most stable forms, and, upon isobaric annealing, an even less dense form of amorphous silicon emerges, the expanded high density amorphous, again in close similarity to what occurs in ice.
Hydrogen solution in tetrahedral or octahedral interstitial sites in Al
International Nuclear Information System (INIS)
Zeng, C.A.; Hu, J.P.; Ouyang, C.Y.
2011-01-01
Highlights: → The physical nature of the site preference for H solution in BCC Al is revealed. → The site preference is result of competition between Al-H bonding interaction and local lattice distortion. → The Al-H bonding interaction lowers the solution energy while the local lattice distortion increases the solution energy. - Abstract: It is reported that H atoms prefer to stay at interstitial (defect) sites with larger space in most metals. However, H atom prefers to occupy tetrahedral interstitial sites (T-site) that provide smaller space than octahedral sites (O-site) in Al. This paper studied the H-Al interactions from first principles calculations. Through analysis of the H-induced electronic states and the local atomic relaxations, we show that H-Al bonding interaction is stronger for T-site H, which is in favor of the solution energy. On the other hand, larger local atomic distortion is observed around the T-site H, which increases the total energy.
Energy mesh optimization for multi-level calculation schemes
International Nuclear Information System (INIS)
Mosca, P.; Taofiki, A.; Bellier, P.; Prevost, A.
2011-01-01
The industrial calculations of third generation nuclear reactors are based on sophisticated strategies of homogenization and collapsing at different spatial and energetic levels. An important issue to ensure the quality of these calculation models is the choice of the collapsing energy mesh. In this work, we show a new approach to generate optimized energy meshes starting from the SHEM 281-group library. The optimization model is applied on 1D cylindrical cells and consists of finding an energy mesh which minimizes the errors between two successive collision probability calculations. The former is realized over the fine SHEM mesh with Livolant-Jeanpierre self-shielded cross sections and the latter is performed with collapsed cross sections over the energy mesh being optimized. The optimization is done by the particle swarm algorithm implemented in the code AEMC and multigroup flux solutions are obtained from standard APOLLO2 solvers. By this new approach, a set of new optimized meshes which encompass from 10 to 50 groups has been defined for PWR and BWR calculations. This set will allow users to adapt the energy detail of the solution to the complexity of the calculation (assembly, multi-assembly, two-dimensional whole core). Some preliminary verifications, in which the accuracy of the new meshes is measured compared to a direct 281-group calculation, show that the 30-group optimized mesh offers a good compromise between simulation time and accuracy for a standard 17 x 17 UO 2 assembly with and without control rods. (author)
Wang, Xinheng
2008-01-01
Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand; Alliez, Pierre; Morvan, Jean-Marie
2011-01-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse
A simple nodal force distribution method in refined finite element meshes
Energy Technology Data Exchange (ETDEWEB)
Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)
2017-05-15
In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.
Mesh erosion after abdominal sacrocolpopexy.
Kohli, N; Walsh, P M; Roat, T W; Karram, M M
1998-12-01
To report our experience with erosion of permanent suture or mesh material after abdominal sacrocolpopexy. A retrospective chart review was performed to identify patients who underwent sacrocolpopexy by the same surgeon over 8 years. Demographic data, operative notes, hospital records, and office charts were reviewed after sacrocolpopexy. Patients with erosion of either suture or mesh were treated initially with conservative therapy followed by surgical intervention as required. Fifty-seven patients underwent sacrocolpopexy using synthetic mesh during the study period. The mean (range) postoperative follow-up was 19.9 (1.3-50) months. Seven patients (12%) had erosions after abdominal sacrocolpopexy with two suture erosions and five mesh erosions. Patients with suture erosion were asymptomatic compared with patients with mesh erosion, who presented with vaginal bleeding or discharge. The mean (+/-standard deviation) time to erosion was 14.0+/-7.7 (range 4-24) months. Both patients with suture erosion were treated conservatively with estrogen cream. All five patients with mesh erosion required transvaginal removal of the mesh. Mesh erosion can follow abdominal sacrocolpopexy over a long time, and usually presents as vaginal bleeding or discharge. Although patients with suture erosion can be managed successfully with conservative treatment, patients with mesh erosion require surgical intervention. Transvaginal removal of the mesh with vaginal advancement appears to be an effective treatment in patients failing conservative management.
A Survey of Solver-Related Geometry and Meshing Issues
Masters, James; Daniel, Derick; Gudenkauf, Jared; Hine, David; Sideroff, Chris
2016-01-01
There is a concern in the computational fluid dynamics community that mesh generation is a significant bottleneck in the CFD workflow. This is one of several papers that will help set the stage for a moderated panel discussion addressing this issue. Although certain general "rules of thumb" and a priori mesh metrics can be used to ensure that some base level of mesh quality is achieved, inadequate consideration is often given to the type of solver or particular flow regime on which the mesh will be utilized. This paper explores how an analyst may want to think differently about a mesh based on considerations such as if a flow is compressible vs. incompressible or hypersonic vs. subsonic or if the solver is node-centered vs. cell-centered. This paper is a high-level investigation intended to provide general insight into how considering the nature of the solver or flow when performing mesh generation has the potential to increase the accuracy and/or robustness of the solution and drive the mesh generation process to a state where it is no longer a hindrance to the analysis process.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Discrete Surface Evolution and Mesh Deformation for Aircraft Icing Applications
Thompson, David; Tong, Xiaoling; Arnoldus, Qiuhan; Collins, Eric; McLaurin, David; Luke, Edward; Bidwell, Colin S.
2013-01-01
Robust, automated mesh generation for problems with deforming geometries, such as ice accreting on aerodynamic surfaces, remains a challenging problem. Here we describe a technique to deform a discrete surface as it evolves due to the accretion of ice. The surface evolution algorithm is based on a smoothed, face-offsetting approach. We also describe a fast algebraic technique to propagate the computed surface deformations into the surrounding volume mesh while maintaining geometric mesh quality. Preliminary results presented here demonstrate the ecacy of the approach for a sphere with a prescribed accretion rate, a rime ice accretion, and a more complex glaze ice accretion.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Numerical convergence of discrete exterior calculus on arbitrary surface meshes
Mohamed, Mamdouh S.
2018-02-13
Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Delaunay) triangulations, which complicated the mesh generation process especially for curved surfaces. This paper presents numerical evidence demonstrating that this restriction is unnecessary. Convergence experiments are carried out for various physical problems using both Delaunay and non-Delaunay triangulations. Signed diagonal definition for the key DEC operator (Hodge star) is adopted. The errors converge as expected for all considered meshes and experiments. This relieves the DEC paradigm from unnecessary triangulation limitation.
Audette, M. A.; Hertel, I.; Burgert, O.; Strauss, G.
This paper presents on-going work on a method for determining which subvolumes of a patient-specific tissue map, extracted from CT data of the head, are relevant to simulating endoscopic sinus surgery of that individual, and for decomposing these relevant tissues into triangles and tetrahedra whose mesh size is well controlled. The overall goal is to limit the complexity of the real-time biomechanical interaction while ensuring the clinical relevance of the simulation. Relevant tissues are determined as the union of the pathology present in the patient, of critical tissues deemed to be near the intended surgical path or pathology, and of bone and soft tissue near the intended path, pathology or critical tissues. The processing of tissues, prior to meshing, is based on the Fast Marching method applied under various guises, in a conditional manner that is related to tissue classes. The meshing is based on an adaptation of a meshing method of ours, which combines the Marching Tetrahedra method and the discrete Simplex mesh surface model to produce a topologically faithful surface mesh with well controlled edge and face size as a first stage, and Almost-regular Tetrahedralization of the same prescribed mesh size as a last stage.
International Nuclear Information System (INIS)
Zhu, Hai; Chi, Quan; Zhao, Yanxi; Li, Chunya; Tang, Heqing; Li, Jinlin; Huang, Tao; Liu, Hanfan
2012-01-01
Graphical abstract: By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals were successfully synthesized. CO flow rate was the most essential for the formation of the concave tetrahedral nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. Highlights: ► By using CO as a reducing agent, concave tetrahedral Pd nanocrystals were obtained. ► CO flow rate is critical to the formation of concave tetrahedral Pd nanocrystals. ► The selective adsorption of CO on (1 1 0) facets is essential to concave Pd tetrahedra. -- Abstract: CO reducing strategy to control the morphologies of palladium nanocrystals was investigated. By using CO as a reducing agent, uniform and well-defined concave tetrahedral Pd nanocrystals with a mean size of about 55 ± 2 nm were readily synthesized with Pd(acac) 2 as a precursor and PVP as a stabilizer. The structures of the as-prepared Pd nanocrystals were characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), ultraviolet–visible (UV–vis) absorption spectroscopy and electrochemical measurements. The results demonstrated that CO was the most essential for the formation of the concave tetrahedral Pd nanostructures. The morphologies and sizes of the final products can be well controlled by adjusting the flow rate of CO. The most appropriate CO flow rate, temperature and time for the formation of the ideal concave tetrahedral Pd nanocrystals was 0.033 mL s −1 , 100 °C and 3 h, respectively.
Energy Technology Data Exchange (ETDEWEB)
Glass, H. [Cellnet, Alpharetta, GA (United States)
2006-07-01
Mesh network applications are used by utilities for metering, demand response, and mobile workforce management. This presentation provided an overview of a multi-dimensional mesh application designed to offer improved scalability and higher throughput in advanced metering infrastructure (AMI) systems. Mesh applications can be used in AMI for load balancing and forecasting, as well as for distribution and transmission planning. New revenue opportunities can be realized through the application's ability to improve notification and monitoring services, and customer service communications. Mesh network security features include data encryption, data fragmentation and the automatic re-routing of data. In order to use mesh network applications, networks must have sufficient bandwidth and provide flexibility at the endpoint layer to support multiple devices from multiple vendors, as well as support multiple protocols. It was concluded that smart meters will not enable energy response solutions without an underlying AMI that is reliable, scalable and self-healing. .refs., tabs., figs.
Finite element simulation of impact response of wire mesh screens
Directory of Open Access Journals (Sweden)
Wang Caizheng
2015-01-01
Full Text Available In this paper, the response of wire mesh screens to low velocity impact with blunt objects is investigated using finite element (FE simulation. The woven wire mesh is modelled with homogeneous shell elements with equivalent smeared mechanical properties. The mechanical behaviour of the woven wire mesh was determined experimentally with tensile tests on steel wire mesh coupons to generate the data for the smeared shell material used in the FE. The effects of impacts with a low mass (4 kg and a large mass (40 kg providing the same impact energy are studied. The joint between the wire mesh screen and the aluminium frame surrounding it is modelled using contact elements with friction between the corresponding elements. Damage to the screen of different types compromising its structural integrity, such as mesh separation and pulling out from the surrounding frame is modelled. The FE simulation is validated with results of impact tests conducted on woven steel wire screen meshes.
Energy Technology Data Exchange (ETDEWEB)
Greene, Patrick T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schofield, Samuel P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Nourgaliev, Robert [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-06-21
A new mesh smoothing method designed to cluster mesh cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function being computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered elds, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well for the weight function as the actual level set. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Dynamic cases for moving interfaces are presented to demonstrate the method's potential usefulness to arbitrary Lagrangian Eulerian (ALE) methods.
Streaming Compression of Hexahedral Meshes
Energy Technology Data Exchange (ETDEWEB)
Isenburg, M; Courbet, C
2010-02-03
We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.
Determination of the population of octahedral and tetrahedral interstitials in zirconium hydrides
International Nuclear Information System (INIS)
Fedorov, V.M.; Gogava, V.V.; Shilo, S.I.; Biryukova, E.A.
1983-01-01
Results of neutron investigations of ZrHsub(1.66), ZrHsub(1.75) and ZrHsub(1.98) zirconium hydrides are presented. Investigations were conducted using plane polycrystal samples by multidetector system of scattered neutron detection. Neutron diffraction method was used to determine the number of interstitial hydrogen atoms in interstitials of the lattice cell in the case of statistic atom distribution. The numbers of interstitial atoms in octahedral interstitials for zirconium hydrides were determined experimentally; the difference of potential energies of hydrogen atoms in octa- and tetrahedral interstitials was determined as well. It is shown that experimentally determined difference of potential energies of hydrogen atoms, occupying octa- and tetrahedral positions in investigated zirconium hydrides results at room temperature in the pretailing occupation of tetrahedral interstitials by hydrogen atoms (85-90%); the occupation number grows with temperature decrease and the ordering of interstitial vacancies with formation of hydrogen superstructure takes place at low temperatures
International Nuclear Information System (INIS)
Pasaja, Nitisak; Sansongsiri, Sakon; Intarasiri, Saweat; Vilaithong, Thiraphat; Anders, Andre
2007-01-01
Metal-containing tetrahedral amorphous carbon films were produced by dual filtered cathodic vacuum arc plasma sources operated in sequentially pulsed mode. Negatively pulsed bias was applied to the substrate when carbon plasma was generated, whereas it was absent when the molybdenum plasma was presented. Film thickness was measured after deposition by profilometry. Glass slides with silver pads were used as substrates for the measurement of the sheet resistance. The microstructure and composition of the films were characterized by Raman spectroscopy and Rutherford backscattering, respectively. It was found that the electrical resistivity decreases with an increase of the Mo content, which can be ascribed to an increase of the sp 2 content and an increase of the sp 2 cluster size
A novel three-dimensional mesh deformation method based on sphere relaxation
International Nuclear Information System (INIS)
Zhou, Xuan; Li, Shuixiang
2015-01-01
In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations
A novel three-dimensional mesh deformation method based on sphere relaxation
Energy Technology Data Exchange (ETDEWEB)
Zhou, Xuan [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing, 100094 (China); Li, Shuixiang, E-mail: lsx@pku.edu.cn [Department of Mechanics & Engineering Science, College of Engineering, Peking University, Beijing, 100871 (China)
2015-10-01
In our previous work (2013) [19], we developed a disk relaxation based mesh deformation method for two-dimensional mesh deformation. In this paper, the idea of the disk relaxation is extended to the sphere relaxation for three-dimensional meshes with large deformations. We develop a node based pre-displacement procedure to apply initial movements on nodes according to their layer indices. Afterwards, the nodes are moved locally by the improved sphere relaxation algorithm to transfer boundary deformations and increase the mesh quality. A three-dimensional mesh smoothing method is also adopted to prevent the occurrence of the negative volume of elements, and further improve the mesh quality. Numerical applications in three-dimension including the wing rotation, bending beam and morphing aircraft are carried out. The results demonstrate that the sphere relaxation based approach generates the deformed mesh with high quality, especially regarding complex boundaries and large deformations.
Mesh Adaptation and Shape Optimization on Unstructured Meshes, Phase I
National Aeronautics and Space Administration — In this SBIR CRM proposes to implement the entropy adjoint method for solution adaptive mesh refinement into the Loci/CHEM unstructured flow solver. The scheme will...
Ab initio investigation of inversion in tetrahedral molecules of transition metals
International Nuclear Information System (INIS)
Musaev, D.G.; Boldyrev, A.I.
1984-01-01
Tetrahedral and plane square configurations of TiH 4 , TiF 4 , molecules and ScH 4 - , ScF 4 - anions are optimized in the frames of Hartree-Fock-Roothaan method with the bases of DZHD and DZRS type. Inversion barriers of tetrahedral molecules through plane sqUare configuration which make up 46; 70; 27 and 39 kcal/mol in TiH 4 , TiF 4 , SoH 4 - and ScF 4 - respectively are estimated. Correlation diagrams under inversion are analyzed
Physics at low spin in the mass 160 region: the search for tetrahedral shapes
International Nuclear Information System (INIS)
Bark, R.A.; Sharpey-Schafer, J.F.; Maliage, S.M.; Madiba, T.E.; Komati, F.S.; Lawrie, E.A.; Lawrie, J.J.; Lindasy, R.; Maine, P.; Mullins, S.M.; Murray, S.H.T.; Ncapayi, N.J.; Ramashidza, T.M.; Smit, F.D.; Vymers, P.
2010-01-01
The low-lying, odd-spin negative parity bands in the mass 160 region have been identified as candidates for the rotation of a tetrahedral shape, as they have very weak in-band E2 transitions. We report the observation of such bands in 160 Yb and 154 Gd. They are crossed by 2 quasiparticle bands which allow band mixing calculations to be carried out to derive relative quadrupole moments. However, those studied are not consistent with zero, as required for tetrahedral shape. The aligned angular momenta of the bands suggest an octupole vibrational assignment.
Interoperable mesh and geometry tools for advanced petascale simulations
International Nuclear Information System (INIS)
Diachin, L; Bauer, A; Fix, B; Kraftcheck, J; Jansen, K; Luo, X; Miller, M; Ollivier-Gooch, C; Shephard, M S; Tautges, T; Trease, H
2007-01-01
SciDAC applications have a demonstrated need for advanced software tools to manage the complexities associated with sophisticated geometry, mesh, and field manipulation tasks, particularly as computer architectures move toward the petascale. The Center for Interoperable Technologies for Advanced Petascale Simulations (ITAPS) will deliver interoperable and interchangeable mesh, geometry, and field manipulation services that are of direct use to SciDAC applications. The premise of our technology development goal is to provide such services as libraries that can be used with minimal intrusion into application codes. To develop these technologies, we focus on defining a common data model and data-structure neutral interfaces that unify a number of different services such as mesh generation and improvement, front tracking, adaptive mesh refinement, shape optimization, and solution transfer operations. We highlight the use of several ITAPS services in SciDAC applications
Mersiline mesh in premaxillary augmentation.
Foda, Hossam M T
2005-01-01
Premaxillary retrusion may distort the aesthetic appearance of the columella, lip, and nasal tip. This defect is characteristically seen in, but not limited to, patients with cleft lip nasal deformity. This study investigated 60 patients presenting with premaxillary deficiencies in which Mersiline mesh was used to augment the premaxilla. All the cases had surgery using the external rhinoplasty technique. Two methods of augmentation with Mersiline mesh were used: the Mersiline roll technique, for the cases with central symmetric deficiencies, and the Mersiline packing technique, for the cases with asymmetric deficiencies. Premaxillary augmentation with Mersiline mesh proved to be simple technically, easy to perform, and not associated with any complications. Periodic follow-up evaluation for a mean period of 32 months (range, 12-98 months) showed that an adequate degree of premaxillary augmentation was maintained with no clinically detectable resorption of the mesh implant.
Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows
International Nuclear Information System (INIS)
Ishigaki, Masahiro; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke
2017-01-01
Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.
Influence of mesh non-orthogonality on numerical simulation of buoyant jet flows
Energy Technology Data Exchange (ETDEWEB)
Ishigaki, Masahiro, E-mail: ishigaki.masahiro@jaea.go.jp; Abe, Satoshi; Sibamoto, Yasuteru; Yonomoto, Taisuke
2017-04-01
Highlights: • Influence of mesh non-orthogonality on numerical solution of buoyant jet flows. • Buoyant jet flows are simulated with hexahedral and prismatic meshes. • Jet instability with prismatic meshes may be overestimated compared to that with hexahedral meshes. • Modified solvers that can reduce the influence of mesh non-orthogonality and reduce computation time are proposed. - Abstract: In the present research, we discuss the influence of mesh non-orthogonality on numerical solution of a type of buoyant flow. Buoyant jet flows are simulated numerically with hexahedral and prismatic mesh elements in an open source Computational Fluid Dynamics (CFD) code called “OpenFOAM”. Buoyant jet instability obtained with the prismatic meshes may be overestimated compared to that obtained with the hexahedral meshes when non-orthogonal correction is not applied in the code. Although the non-orthogonal correction method can improve the instability generated by mesh non-orthogonality, it may increase computation time required to reach a convergent solution. Thus, we propose modified solvers that can reduce the influence of mesh non-orthogonality and reduce the computation time compared to the existing solvers in OpenFOAM. It is demonstrated that calculations for a buoyant jet with a large temperature difference are performed faster by the modified solver.
Cignoni, Paolo; Pietroni, Nico; Malomo, Luigi
2014-01-01
Mesh joinery is an innovative method to produce illustrative shape approximations suitable for fabrication. Mesh joinery is capable of producing complex fabricable structures in an efficient and visually pleasing manner. We represent an input geometry as a set of planar pieces arranged to compose a rigid structure, by exploiting an efficient slit mechanism. Since slices are planar, to fabricate them a standard 2D cutting system is enough. We automatically arrange slices according to a smooth ...
Topological patterns of mesh textures in serpentinites
Miyazawa, M.; Suzuki, A.; Shimizu, H.; Okamoto, A.; Hiraoka, Y.; Obayashi, I.; Tsuji, T.; Ito, T.
2017-12-01
Serpentinization is a hydration process that forms serpentine minerals and magnetite within the oceanic lithosphere. Microfractures crosscut these minerals during the reactions, and the structures look like mesh textures. It has been known that the patterns of microfractures and the system evolutions are affected by the hydration reaction and fluid transport in fractures and within matrices. This study aims at quantifying the topological patterns of the mesh textures and understanding possible conditions of fluid transport and reaction during serpentinization in the oceanic lithosphere. Two-dimensional simulation by the distinct element method (DEM) generates fracture patterns due to serpentinization. The microfracture patterns are evaluated by persistent homology, which measures features of connected components of a topological space and encodes multi-scale topological features in the persistence diagrams. The persistence diagrams of the different mesh textures are evaluated by principal component analysis to bring out the strong patterns of persistence diagrams. This approach help extract feature values of fracture patterns from high-dimensional and complex datasets.
Improved Mesh_Based Image Morphing
Directory of Open Access Journals (Sweden)
Mohammed Abdullah Taha
2017-11-01
Full Text Available Image morphing is a multi-step process that generates a sequence of transitions between two images. The thought is to get a ₔgrouping of middle pictures which, when ₔassembled with the first pictures would represent the change from one picture to the other. The process of morphing requires time and attention to detail in order to get good results. Morphing image requires at least two processes warping and cross dissolve. Warping is the process of geometric transformation of images. The cross dissolve is the process interpolation of color of eachₔ pixel from the first image value to theₔ corresponding second imageₔ value over the time. Image morphing techniques differ from in the approach of image warping procedure. This work presents a survey of different techniques to construct morphing images by review the different warping techniques. One of the predominant approaches of warping process is mesh warping which suffers from some problems including ghosting. This work proposed and implements an improved mesh warping technique to construct morphing images. The results show that the proposed approach can overcome the problems of the traditional mesh technique
Jahandari, H.; Farquharson, C. G.
2017-11-01
Unstructured grids enable representing arbitrary structures more accurately and with fewer cells compared to regular structured grids. These grids also allow more efficient refinements compared to rectilinear meshes. In this study, tetrahedral grids are used for the inversion of magnetotelluric (MT) data, which allows for the direct inclusion of topography in the model, for constraining an inversion using a wireframe-based geological model and for local refinement at the observation stations. A minimum-structure method with an iterative model-space Gauss-Newton algorithm for optimization is used. An iterative solver is employed for solving the normal system of equations at each Gauss-Newton step and the sensitivity matrix-vector products that are required by this solver are calculated using pseudo-forward problems. This method alleviates the need to explicitly form the Hessian or Jacobian matrices which significantly reduces the required computation memory. Forward problems are formulated using an edge-based finite-element approach and a sparse direct solver is used for the solutions. This solver allows saving and re-using the factorization of matrices for similar pseudo-forward problems within a Gauss-Newton iteration which greatly minimizes the computation time. Two examples are presented to show the capability of the algorithm: the first example uses a benchmark model while the second example represents a realistic geological setting with topography and a sulphide deposit. The data that are inverted are the full-tensor impedance and the magnetic transfer function vector. The inversions sufficiently recovered the models and reproduced the data, which shows the effectiveness of unstructured grids for complex and realistic MT inversion scenarios. The first example is also used to demonstrate the computational efficiency of the presented model-space method by comparison with its data-space counterpart.
Finite element meshing approached as a global minimization process
Energy Technology Data Exchange (ETDEWEB)
WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.; LEUNG,VITUS J.
2000-03-01
The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within a charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested
Method and system for mesh network embedded devices
Wang, Ray (Inventor)
2009-01-01
A method and system for managing mesh network devices. A mesh network device with integrated features creates an N-way mesh network with a full mesh network topology or a partial mesh network topology.
Mesh versus non-mesh repair of ventral abdominal hernias
International Nuclear Information System (INIS)
Jawaid, M.A.; Talpur, A.H.
2008-01-01
To investigate the relative effectiveness of mesh and suture repair of ventral abdominal hernias in terms of clinical outcome, quality of life and rate of recurrence in both the techniques. This is a retrospective descriptive analysis of 236 patients with mesh and non-mesh repair of primary ventral hernias performed between January 2000 to December 2004 at Surgery Department, Liaquat University of Medical and Health Sciences, Jamshoro. The record sheets of the patients were analyzed and data retrieved to compare the results of both techniques for short-term and long-term results. The data retrieved is statistically analyzed on SPSS version 11. There were 43 (18.22%) males and 193 (81.77%) females with a mean age of 51.79 years and a range of 59 (81-22). Para-umbilical hernia was the commonest of ventral hernia and accounted for 49.8% (n=118) of the total study population followed by incisional hernia comprising 24% (n=57) of the total number. There was a significant difference in the recurrent rate at 3 years interval with 23/101 (22.77%) recurrences in suture-repaired subjects compared to 10/135 (7.40%) in mesh repair group. Chronic pain lasting up to 1-2 years was noted in 14 patients with suture repair. Wound infection is comparatively more common (8.14%) in mesh group. The other variables such as operative and postoperative complications, total hospital stay and quality of life is also discussed. Mesh repair of ventral hernia is much superior to non-mesh suture repair in terms of recurrence and overall outcome. (author)
Caputo, Christopher B; Vukotic, V Nicholas; Sirizzotti, Natalie M; Loeb, Stephen J
2011-08-14
A new tetradentate, pyridine ligand with a rigid tetrahedral core can be prepared in good yield by a cross-coupling methodology. Two metal organic framework structures of Cu(II) with PtS-type topology having a carbon atom as the tetrahedral node have been characterized utilising this ligand. This journal is © The Royal Society of Chemistry 2011
DNA tetrahedral scaffolds-based platform for the construction of electrochemiluminescence biosensor.
Feng, Qiu-Mei; Zhou, Zhen; Li, Mei-Xing; Zhao, Wei; Xu, Jing-Juan; Chen, Hong-Yuan
2017-04-15
Proximal metallic nanoparticles (NPs) could quench the electrochemiluminescence (ECL) emission of semiconductor quantum dots (QDs) due to Förster energy transfer (FRET), but at a certain distance, the coupling of light-emission with surface plasmon resonance (SPR) result in enhanced ECL. Thus, the modification strategies and distances control between QDs and metallic NPs are critical for the ECL intensity of QDs. In this strategy, a SPR enhanced ECL sensor based on DNA tetrahedral scaffolds modified platform was reported for the detection of telomerase activity. Due to the rigid three-dimensional structure, DNA tetrahedral scaffolds grafting on the electrode surface could accurately modulate the distance between CdS QDs and luminol labelled gold nanoparticles (L-Au NPs), meanwhile provide an enhanced spatial dimension and accessibility for the assembly of multiple L-Au NPs. The ECL intensities of both CdS QDs (-1.25V vs. SCE) and luminol (+0.33V vs. SCE) gradually increased along with the formation of multiple L-Au NPs at the vertex of DNA tetrahedral scaffolds induced by telomerase, bringing in a dual-potential ECL analysis. The proposed method showed high sensitivity for the identification of telomerase and was successfully applied for the differentiation of cancer cells from normal cells. This work suggests that DNA tetrahedral scaffolds could serve as an excellent choice for the construction of SPR-ECL system. Copyright © 2016 Elsevier B.V. All rights reserved.
3D Mesh Compression and Transmission for Mobile Robotic Applications
Directory of Open Access Journals (Sweden)
Bailin Yang
2016-01-01
Full Text Available Mobile robots are useful for environment exploration and rescue operations. In such applications, it is crucial to accurately analyse and represent an environment, providing appropriate inputs for motion planning in order to support robot navigation and operations. 2D mapping methods are simple but cannot handle multilevel or multistory environments. To address this problem, 3D mapping methods generate structural 3D representations of the robot operating environment and its objects by 3D mesh reconstruction. However, they face the challenge of efficiently transmitting those 3D representations to system modules for 3D mapping, motion planning, and robot operation visualization. This paper proposes a quality-driven mesh compression and transmission method to address this. Our method is efficient, as it compresses a mesh by quantizing its transformed vertices without the need to spend time constructing an a-priori structure over the mesh. A visual distortion function is developed to govern the level of quantization, allowing mesh transmission to be controlled under different network conditions or time constraints. Our experiments demonstrate how the visual quality of a mesh can be manipulated by the visual distortion function.
Unbiased Sampling and Meshing of Isosurfaces
Yan, Dongming
2014-05-07
In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.
Shadowfax: Moving mesh hydrodynamical integration code
Vandenbroucke, Bert
2016-05-01
Shadowfax simulates galaxy evolution. Written in object-oriented modular C++, it evolves a mixture of gas, subject to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold dark matter or stars. For the hydrodynamical integration, it makes use of a (co-) moving Lagrangian mesh. The code has a 2D and 3D version, contains utility programs to generate initial conditions and visualize simulation snapshots, and its input/output is compatible with a number of other simulation codes, e.g. Gadget2 (ascl:0003.001) and GIZMO (ascl:1410.003).
Unbiased Sampling and Meshing of Isosurfaces
Yan, Dongming; Wallner, Johannes; Wonka, Peter
2014-01-01
In this paper, we present a new technique to generate unbiased samples on isosurfaces. An isosurface, F(x,y,z) = c , of a function, F , is implicitly defined by trilinear interpolation of background grid points. The key idea of our approach is that of treating the isosurface within a grid cell as a graph (height) function in one of the three coordinate axis directions, restricted to where the slope is not too high, and integrating / sampling from each of these three. We use this unbiased sampling algorithm for applications in Monte Carlo integration, Poisson-disk sampling, and isosurface meshing.
International Nuclear Information System (INIS)
Kannan, Chellapandian; Sundaram, Thiravium; Palvannan, Thayumanavan
2008-01-01
The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol -1 ) than silica (69.93 kJ mol -1 ). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (ΔH o > 40 kJ mol -1 ) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina
Energy Technology Data Exchange (ETDEWEB)
Kannan, Chellapandian [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India)], E-mail: chellapandiankannan@gmail.com; Sundaram, Thiravium [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Palvannan, Thayumanavan [Department of Biochemistry, Periyar University, Salem 636011, Tamilnadu (India)
2008-08-30
The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol{sup -1}) than silica (69.93 kJ mol{sup -1}). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions ({delta}H{sup o} > 40 kJ mol{sup -1}) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.
International Nuclear Information System (INIS)
Yoon, S; Lindstrom, P; Pascucci, V; Manocha, D
2005-01-01
We present a novel method for computing cache-oblivious layouts of large meshes that improve the performance of interactive visualization and geometric processing algorithms. Given that the mesh is accessed in a reasonably coherent manner, we assume no particular data access patterns or cache parameters of the memory hierarchy involved in the computation. Furthermore, our formulation extends directly to computing layouts of multi-resolution and bounding volume hierarchies of large meshes. We develop a simple and practical cache-oblivious metric for estimating cache misses. Computing a coherent mesh layout is reduced to a combinatorial optimization problem. We designed and implemented an out-of-core multilevel minimization algorithm and tested its performance on unstructured meshes composed of tens to hundreds of millions of triangles. Our layouts can significantly reduce the number of cache misses. We have observed 2-20 times speedups in view-dependent rendering, collision detection, and isocontour extraction without any modification of the algorithms or runtime applications
A SURVEY on WIRELESS MESH NETWORKS, ROUTING METRICS and PROTOCOLS
Directory of Open Access Journals (Sweden)
Safak DURUKAN ODABASI
2013-01-01
Full Text Available Today, Internet has become an indispensable part of our daily lives. It has a growing user community in many fields from banking transactions to online entertainment. It will be very efficient for users, as the next generation internet access becomes wireless like frequently used services such as cellular phones. But for providing this, a new network is needed to be designed or an existing network must be improved as well as making changes on infrastructure. At this point, mesh network infrastructure arises and offers more sophisticated internet access with less need. The most important advantage of mesh networks is the capability of working without infrastructure. Mesh networks are an additional access technology more than being a renewed one in the next generation wireless networks called 4G. In this study, wireless mesh networks and example applications are mentioned. Base architecture and design factors are emphasized, current routing protocols that are used on wireless mesh networks and routing metrics on which these protocols are based, are explained. Finally, the performance effects of these protocols and metrics on different network topologies are referred.
THM-GTRF: New Spider meshes, New Hydra-TH runs
Energy Technology Data Exchange (ETDEWEB)
Bakosi, Jozsef [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory; Francois, Marianne M. [Los Alamos National Laboratory; Lowrie, Robert B. [Los Alamos National Laboratory; Nourgaliev, Robert [Los Alamos National Laboratory
2012-06-20
Progress is reported on computational capabilities for the grid-to-rod-fretting (GTRF) problem of pressurized water reactors. Numeca's Hexpress/Hybrid mesh generator is demonstrated as an excellent alternative to generating computational meshes for complex flow geometries, such as in GTRF. Mesh assessment is carried out using standard industrial computational fluid dynamics practices. Hydra-TH, a simulation code developed at LANL for reactor thermal-hydraulics, is demonstrated on hybrid meshes, containing different element types. A series of new Hydra-TH calculations has been carried out collecting turbulence statistics. Preliminary results on the newly generated meshes are discussed; full analysis will be documented in the L3 milestone, THM.CFD.P5.05, Sept. 2012.
A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation
Diosady, Laslo T.; Murman, Scott M.
2018-01-01
A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.
Energy Technology Data Exchange (ETDEWEB)
Jalarvo, Niina H [ORNL; Gourdon, Olivier [ORNL; Bi, Zhonghe [ORNL; Gout, Delphine J [ORNL; Ohl, Michael E [ORNL; Paranthaman, Mariappan Parans [ORNL
2013-01-01
Combined experimental study of impedance spectroscopy, neutron powder diffraction and quasielastic neutron scattering was performed to shed light into the atomic scale ion migration processes in proton and oxide ion conductor; La0.8Ba1.2GaO3.9 . This material consist of tetrahedral GaO4 units, which are rather flexible and rocking motion of these units promotes the ionic migration process. The oxide ion (vacancy) conduction takes place on channels along c axis, involving a single elementary step, which occurs between adjacent tetrahedron (inter-tetrahedron jump). The proton conduction mechanism consists of intra-tetrahedron and inter-tetrahedron elementary processes. The intra-tetrahedron proton transport is the rate-limiting process, with activation energy of 0.44 eV. The rocking motion of the GaO4 tetrahedron aids the inter-tetrahedral proton transport, which has the activation energy of 0.068 eV.
Multigrid for refined triangle meshes
Energy Technology Data Exchange (ETDEWEB)
Shapira, Yair
1997-02-01
A two-level preconditioning method for the solution of (locally) refined finite element schemes using triangle meshes is introduced. In the isotropic SPD case, it is shown that the condition number of the preconditioned stiffness matrix is bounded uniformly for all sufficiently regular triangulations. This is also verified numerically for an isotropic diffusion problem with highly discontinuous coefficients.
A tetrahedrally coordinated cobalt(II) aminophosphonate containing one-dimensional channels
International Nuclear Information System (INIS)
Gemmill, William R.; Smith, Mark D.; Reisner, Barbara A.
2005-01-01
A tetrahedrally coordinated cobalt(II) phosphonate, Co(O 3 PCH 2 CH 2 NH 2 ), has been synthesized using hydrothermal techniques. X-ray diffraction indicates that this material is a three-dimensional open framework with rings aligned along a single axis forming infinite one-dimensional channels. The framework decomposes just above 400 deg. C. Magnetic susceptibility data are consistent with weak antiferromagnetic ordering at low temperatures
Urea-functionalized crystalline capsules for recognition and separation of tetrahedral oxoanions
Energy Technology Data Exchange (ETDEWEB)
Custelcean, Radu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
2012-12-21
We reviewed the persistent ability of tripodal TREN-based tris-urea receptors (TREN = tris(2-aminoethyl)amine) to self-assemble with a variety of oxoanions into dimeric capsules upon crystallization. The capsule crystallization allows for charge-, shape-, and size-selective encapsulation of tetrahedral XO_{4}^{n-}anions (n = 2,3), and provides an effective way to separate these anions from competitive aqueous environments.
Reactor physics verification of the MCNP6 unstructured mesh capability
International Nuclear Information System (INIS)
Burke, T. P.; Kiedrowski, B. C.; Martz, R. L.; Martin, W. R.
2013-01-01
The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)
Reactor physics verification of the MCNP6 unstructured mesh capability
Energy Technology Data Exchange (ETDEWEB)
Burke, T. P. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States); Kiedrowski, B. C.; Martz, R. L. [X-Computational Physics Division, Monte Carlo Codes Group, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Martin, W. R. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109 (United States)
2013-07-01
The Monte Carlo software package MCNP6 has the ability to transport particles on unstructured meshes generated from the Computed-Aided Engineering software Abaqus. Verification is performed using benchmarks with features relevant to reactor physics - Big Ten and the C5G7 computational benchmark. Various meshing strategies are tested and results are compared to reference solutions. Computational performance results are also given. The conclusions show MCNP6 is capable of producing accurate calculations for reactor physics geometries and the computational requirements for small lattice benchmarks are reasonable on modern computing platforms. (authors)
Resterilized Polypropylene Mesh for Inguinal Hernia Repair
African Journals Online (AJOL)
2018-04-19
Apr 19, 2018 ... Conclusion: The use of sterilized polypropylene mesh for the repair of inguinal ... and nonabsorbable materials to reduce the tissue–mesh. INTRODUCTION ... which we have been practicing in our center since we introduced ...
Kinetic solvers with adaptive mesh in phase space
Arslanbekov, Robert R.; Kolobov, Vladimir I.; Frolova, Anna A.
2013-12-01
An adaptive mesh in phase space (AMPS) methodology has been developed for solving multidimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a “tree of trees” (ToT) data structure. The r mesh is automatically generated around embedded boundaries, and is dynamically adapted to local solution properties. The v mesh is created on-the-fly in each r cell. Mappings between neighboring v-space trees is implemented for the advection operator in r space. We have developed algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive v mesh: the importance sampling, multipoint projection, and variance reduction methods. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions of hot light particles in a Lorentz gas. Our AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light-particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce the computational cost and memory usage for solving challenging kinetic problems.
Energy Technology Data Exchange (ETDEWEB)
Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich
2015-10-15
Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.
Salinas, P.; Pavlidis, D.; Jacquemyn, C.; Lei, Q.; Xie, Z.; Pain, C.; Jackson, M.
2017-12-01
It is well known that the pressure gradient into a production well increases with decreasing distance to the well. To properly capture the local pressure drawdown into the well a high grid or mesh resolution is required; moreover, the location of the well must be captured accurately. In conventional simulation models, the user must interact with the model to modify grid resolution around wells of interest, and the well location is approximated on a grid defined early in the modelling process.We report a new approach for improved simulation of near wellbore flow in reservoir scale models through the use of dynamic mesh optimisation and the recently presented double control volume finite element method. Time is discretized using an adaptive, implicit approach. Heterogeneous geologic features are represented as volumes bounded by surfaces. Within these volumes, termed geologic domains, the material properties are constant. Up-, cross- or down-scaling of material properties during dynamic mesh optimization is not required, as the properties are uniform within each geologic domain. A given model typically contains numerous such geologic domains. Wells are implicitly coupled with the domain, and the fluid flows is modelled inside the wells. The method is novel for two reasons. First, a fully unstructured tetrahedral mesh is used to discretize space, and the spatial location of the well is specified via a line vector, ensuring its location even if the mesh is modified during the simulation. The well location is therefore accurately captured, the approach allows complex well trajectories and wells with many laterals to be modelled. Second, computational efficiency is increased by use of dynamic mesh optimization, in which an unstructured mesh adapts in space and time to key solution fields (preserving the geometry of the geologic domains), such as pressure, velocity or temperature, this also increases the quality of the solutions by placing higher resolution where required
Voltammetry at micro-mesh electrodes
Directory of Open Access Journals (Sweden)
Wadhawan Jay D.
2003-01-01
Full Text Available The voltammetry at three micro-mesh electrodes is explored. It is found that at sufficiently short experimental durations, the micro-mesh working electrode first behaves as an ensemble of microband electrodes, then follows the behaviour anticipated for an array of diffusion-independent micro-ring electrodes of the same perimeter as individual grid-squares within the mesh. During prolonged electrolysis, the micro-mesh electrode follows that behaviour anticipated theoretically for a cubically-packed partially-blocked electrode. Application of the micro-mesh electrode for the electrochemical determination of carbon dioxide in DMSO electrolyte solutions is further illustrated.
Adaptive Mesh Refinement in CTH
International Nuclear Information System (INIS)
Crawford, David
1999-01-01
This paper reports progress on implementing a new capability of adaptive mesh refinement into the Eulerian multimaterial shock- physics code CTH. The adaptivity is block-based with refinement and unrefinement occurring in an isotropic 2:1 manner. The code is designed to run on serial, multiprocessor and massive parallel platforms. An approximate factor of three in memory and performance improvements over comparable resolution non-adaptive calculations has-been demonstrated for a number of problems
Fernandez, D.; Torregrosa, A.; Weiss-Penzias, P. S.; Oliphant, A. J.; Dodge, C.; Bowman, M.; Wilson, S.; Mairs, A. A.; Gravelle, M.; Barkley, T.
2016-12-01
At multiple sites across central CA, several passive fog water collectors have been deployed for the past 3 years. All of the sites employ standard Raschel polypropylene mesh as the fog collection medium and five of them also integrated a novel polypropylene mesh of German manufacture with a 3-dimensional internal structure. Additionally, six metal mesh manufactured by McMaster-Carr of various hole sizing were coated with a POSS-PEMA substance at the Massachusetts Institute of Technology and deployed in parallel with the Raschel mesh at six distinct locations. Finally, fluorine-free versions of the POSS-PEMA substance were generated by NBD Nanotechnology and coated on a much finer mesh substrate. Three of those and one control (uncoated mesh) were deployed at one of the fog collection sites for one season, along with a standard Raschel mesh. Preliminary results from one intercomparison from just one pair of mesh over two seasons seem to reveal a wind speed and also, possibly, a droplet-size dependence on the fog collection efficiency for the mesh. This study will continue to intercompare the various mesh in conjunction with the wind speed and direction data. If a collection efficiency dependence on mesh size or coating is confirmed, it may point to interesting and relevant mechanisms for fog droplet capture and collection hitherto unobserved in field conditions.
TESS: A RELATIVISTIC HYDRODYNAMICS CODE ON A MOVING VORONOI MESH
International Nuclear Information System (INIS)
Duffell, Paul C.; MacFadyen, Andrew I.
2011-01-01
We have generalized a method for the numerical solution of hyperbolic systems of equations using a dynamic Voronoi tessellation of the computational domain. The Voronoi tessellation is used to generate moving computational meshes for the solution of multidimensional systems of conservation laws in finite-volume form. The mesh-generating points are free to move with arbitrary velocity, with the choice of zero velocity resulting in an Eulerian formulation. Moving the points at the local fluid velocity makes the formulation effectively Lagrangian. We have written the TESS code to solve the equations of compressible hydrodynamics and magnetohydrodynamics for both relativistic and non-relativistic fluids on a dynamic Voronoi mesh. When run in Lagrangian mode, TESS is significantly less diffusive than fixed mesh codes and thus preserves contact discontinuities to high precision while also accurately capturing strong shock waves. TESS is written for Cartesian, spherical, and cylindrical coordinates and is modular so that auxiliary physics solvers are readily integrated into the TESS framework and so that this can be readily adapted to solve general systems of equations. We present results from a series of test problems to demonstrate the performance of TESS and to highlight some of the advantages of the dynamic tessellation method for solving challenging problems in astrophysical fluid dynamics.
Model of Random Polygon Particles for Concrete and Mesh Automatic Subdivision
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
In order to study the constitutive behavior of concrete in mesoscopic level, a new method is proposed in this paper. This method uses random polygon particles to simulate full grading broken aggregates of concrete. Based on computational geometry, we carry out the automatic generation of the triangle finite element mesh for the model of random polygon particles of concrete. The finite element mesh generated in this paper is also applicable to many other numerical methods.
International Nuclear Information System (INIS)
Wang Xinhua; Qu Shaobo; Wu Xiang; Wang Jiafu; Ma Hua; Xu Zhuo
2010-01-01
By means of embedded optical transformation, three-dimensional diamond-shaped invisible cloaks composed of tetrahedral homogeneous blocks have been designed in this paper. The constitutive parameters of the invisible cloaks can be obtained based on the form invariance of Maxwell's equations in coordinate transformation. Numerical methods using the finite element method verified the diamond-shaped cloaks. The invisible properties of the designed cloaks are nearly perfect when the original line section is sufficiently short compared with its counterpart in the after-transformed space. The designed cloaks can operate in a wide bandwidth due to the line transformation in the coordinate transformation process.
A three-dimensional tetrahedral-shaped conjugated small molecule for organic solar cells
Directory of Open Access Journals (Sweden)
QIN Yang
2014-04-01
Full Text Available We report the synthesis of a novel three-dimensional tetrahedral-shaped small molecule,SO,containing a tetraphenylsilane core and cyanoester functionalized terthiophene arms.A deep lying HOMO energy level of -5.3 eV and a narrow bandgap of 1.9 eV were obtained from cyclic voltammetry measurements.Absorption,X-ray scattering and differential scanning calorimetry experiments all indicate high crystallinity of this compound.Solar cells employing SO were fabricated and evaluated.The relatively low performance was mainly ascribed to lack of appreciable phase separation,which is confirmed by optical microscopy.
H2O-induced trigonal-to-tetrahedral transition in boron zeolites
International Nuclear Information System (INIS)
Fois, E.; Gamba, A.; Trudu, F.; Tabacchi, G.
2008-01-01
The behaviour of a protonated boron-containing zeolite at intermediate hydration degree has been investigated by means of periodic DFT approaches. Results of a combined room-temperature Car-Parrinello molecular dynamics blue-moon path sampling simulation indicate that, in the line with experimental findings, the BO 3 /Si-OH acid site typical of dry samples is converted to a hydrated H 3 O + hydrogen bonded to tetrahedral BO 4 - at moderate water content (four H 2 O per B site) with an activation free barrier of the order of few k T.
The application of Car-Parrinello molecular dynamics to the study of tetrahedral amorphous carbon
International Nuclear Information System (INIS)
McKenzie, D.R.; McCulloch, D.G.; Goringe, C.M.
1998-01-01
The Car-Parrinello method for carrying out molecular dynamics enables the forces between atoms to be calculated by solving Schroedinger's equation for the valence electrons using Density Functional Theory. The method is capable of giving good structural predictions for amorphous network solids by quenching from the melt, even in situations where the bonding changes from one site to another. In amorphous carbon where, depending on its environment, carbon may show sp 2 or sp 3 bonds. The method is applied here to the study of network solids using the example of tetrahedral amorphous carbon
White, Miles A; Medina-Gonzalez, Alan M; Vela, Javier
2018-03-12
Filled tetrahedral semiconductors are a rich family of compounds with tunable electronic structure, making them ideal for applications in thermoelectrics, photovoltaics, and battery anodes. Furthermore, these materials crystallize in a plethora of related structures that are very close in energy, giving rise to polytypism through the manipulation of synthetic parameters. This Minireview highlights recent advances in the solution-phase synthesis and nanostructuring of these materials. These methods enable the synthesis of metastable phases and polytypes that were previously unobtainable. Additionally, samples synthesized in solution phase have enhanced thermoelectric performance due to their decreased grain size. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Protasevich, Alexander E.; Nikitin, Andrei V.
2018-01-01
In this work, we propose an algorithm for calculating the matrix elements of the kinetic energy operator for tetrahedral molecules. This algorithm uses the dependent six-angle coordinates (6A) and takes into account the full symmetry of molecules. Unlike A.V. Nikitin, M. Rey, and Vl. G. Tyuterev who operate with the kinetic energy operator only in Radau orthogonal coordinates, we consider a general case. The matrix elements are shown to be a sum of products of one-dimensional integrals.
Tetrahedral ↔ octahedral network structure transition in simulated vitreous SiO2
International Nuclear Information System (INIS)
Vo Van Hoang; Nguyen Trung Hai; Hoang Zung
2006-01-01
By using molecular dynamics (MD) simulations we found a transition from a tetrahedral to an octahedral network structure in an amorphous SiO 2 model under compression from 2.20 to 5.35 g/cm 3 . And on heating of a high density amorphous (hda) model of 5.35 g/cm 3 at zero pressure, the structure transforms to a low density amorphous (lda) form. Simulations were done in a model containing 3000 particles under periodic boundary conditions with interatomic potentials which have a weak Coulomb interaction and a Morse type short-range interaction
DNA-mediated self-assembly of tetrahedral plasmonic clusters for metafluids
Schade, Nicholas; Sun, Li; Lee, You-Jin; Fan, Jonathan; Capasso, Federico; Yi, Gi-Ra; Manoharan, Vinothan
2014-03-01
We direct the self-assembly of clusters of gold nanospheres with the goal of creating a bulk, isotropic, optical metafluid. We use spherical gold nanoparticles that are exceptionally smooth, monocrystalline, and monodisperse. These particles exhibit highly reproducible scattering spectra compared with commercially available gold colloids. We label them with DNA sequences and mix them together to self-assemble small clusters. By controlling the particle sizes and the interactions between them, we maximize the yield of tetrahedral clusters, the ideal structures for isotropic metamaterials.
Tetrahedral 1B4Sb nanoclusters in GaP:(B, Sb)
Energy Technology Data Exchange (ETDEWEB)
Elyukhin, V A, E-mail: elyukhin@cinvestav.m [Departamento de Ingenieria Electrica-SEES, CINVESTAV-IPN, Avenida IPN 2508, Col. San Pedro Zacatenco, C. P. 07360, Mexico, D. F. (Mexico)
2009-05-01
Self-assembling conditions of 1B4Sb tetrahedral nanoclusters in GaP doped with boron and Sb isoelectronic impurities are represented in the ultradilute and dilute limits of the boron and Sb contents, respectively. The fulfilled estimates demonstrated the preferential complete or almost complete allocation of boron atoms in 1B4Sb nanoclusters at temperatures of 500 {sup 0}C and 900 {sup 0}C, respectively. The significant decrease of the sum of the free energies of the constituent compounds is the main origin of self-assembling. The reduction of the strain energy is the additional cause of this phenomenon.
Confinement of electron beams by mesh arrays in a relativistic klystron amplifier
International Nuclear Information System (INIS)
Wang Pingshan; Gu Binlin
1998-01-01
Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system
Superconvergence phenomena on three-dimensional meshes
Czech Academy of Sciences Publication Activity Database
Křížek, Michal
2005-01-01
Roč. 2, č. 1 (2005), s. 43-56 ISSN 1705-5105 R&D Projects: GA ČR(CZ) GA201/04/1503 Institutional research plan: CEZ:AV0Z10190503 Keywords : linear and quadratic tetrahedral elements * acute partitions * Poisson equation Subject RIV: BA - General Mathematics
Directory of Open Access Journals (Sweden)
Jennings Jason
2010-01-01
Full Text Available Laparoscopic inguinal herniorraphy via a transabdominal preperitoneal (TAPP approach using Polypropylene Mesh (Mesh and staples is an accepted technique. Mesh induces a localised inflammatory response that may extend to, and involve, adjacent abdominal and pelvic viscera such as the appendix. We present an interesting case of suspected Mesh-induced appendicitis treated successfully with laparoscopic appendicectomy, without Mesh removal, in an elderly gentleman who presented with symptoms and signs of acute appendicitis 18 months after laparoscopic inguinal hernia repair. Possible mechanisms for Mesh-induced appendicitis are briefly discussed.
Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)
2011-01-01
Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.
Short term post-operative morphing of sacrocolpopexy mesh measured by magnetic resonance imaging.
Sindhwani, Nikhil; Callewaert, Geertje; Deprest, Thomas; Housmans, Susanne; Van Beckevoort, Dirk; Deprest, Jan
2018-04-01
Sacrocolpopexy (SC) involves suspension of the vaginal vault or cervix to the sacrum using a mesh. Following insertion, the meshes have been observed to have undergone dimensional changes. To quantify dimensional changes of meshes following implantation and characterize their morphology in-vivo. 24 patients underwent SC using PolyVinyliDeneFluoride mesh loaded with Fe 3 O 4 particles. Tailored anterior and posterior mesh flaps were sutured to the respective vaginal walls, uniting at the apex. The posterior flap continued to the sacrum and was attached there. Meshes were visualized on magnetic resonance (MR) imaging at 12 [3-12] (median [range]) months postoperatively and 3D models of the mesh were generated. Dynamic MR sequences were acquired during valsalva to record mesh mobility. The area of the vagina effectively supported by the mesh (Effective Support Area (ESA)) was calculated. The 3D models' wall thickness map was analyzed to identify the locations of mesh folding. Intraclass correlation (ICC) was calculated to test the reliability of the methods. To measure the laxity and flatness of the mesh, the curvature and the ellipticity of the sacral flap were calculated. The ESA calculation methodology had ICC = 0.97. A reduction of 75.49 [61.55-78.67] % (median [IQR]) in area, 47.64 [38.07-59.81] % in anterior flap, and of 23.95 [10.96-27.21] % in the posterior flap was measured. The mesh appeared thicker near its attachment at the sacral promontory (n = 19) and near the vaginal apex (n = 22). The laxity of the mesh was 1.13 [1.10-1.16] and 60.55 [49.76-76.25] % of the sacral flap was flat. We could not reliably measure mesh mobility (ICC = 0.16). A methodology for complete 3D characterization of SC meshes using MR images was presented. After implantation, the supported area is much lower than what is prepared prior to implantation. We propose this happened during the surgery itself. Copyright © 2018 Elsevier Ltd. All rights reserved.
Assessment of the anti-biofouling potentials of a copper iodide-doped nylon mesh.
Sato, Tetsuya; Fujimori, Yoshie; Nakayama, Tsuruo; Gotoh, Yasuo; Sunaga, Yoshihiko; Nemoto, Michiko; Matsunaga, Tadashi; Tanaka, Tsuyoshi
2012-08-01
We propose a copper iodide (CuI)-doped nylon mesh prepared using polyiodide ions as a precursor toward anti-biofouling polymer textile. The CuI-doped nylon mesh was subjected to the prevention of biofouling in marine environments. The attachment of the marine organisms was markedly inhibited on the CuI-doped nylon mesh surface until 249 days. Scanning electron microscopy-energy dispersive X-ray analysis indicated that copper compounds were maintained in the nylon mesh after the field experiment, although copper content in the nylon mesh was reduced. Therefore, the copper ions slowly dissolved from nylon mesh will contribute to the long-term prevention of biofouling. Furthermore, electron spin resonance analysis revealed the generation of reactive oxygen species (ROS) from CuI-doped nylon mesh after the field experiment. One of the possibilities for toxic action of copper ions will be the direct effect of Cu+ -induced ROS on biofilm forming on nylon mesh surface. The proposed polymer textile can be applied to fishing and aquafarming nets, mooring rope for ship, or silt fence to restrict polluted water in marine environments.
Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar
2018-04-01
The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.
Sierra toolkit computational mesh conceptual model
International Nuclear Information System (INIS)
Baur, David G.; Edwards, Harold Carter; Cochran, William K.; Williams, Alan B.; Sjaardema, Gregory D.
2010-01-01
The Sierra Toolkit computational mesh is a software library intended to support massively parallel multi-physics computations on dynamically changing unstructured meshes. This domain of intended use is inherently complex due to distributed memory parallelism, parallel scalability, heterogeneity of physics, heterogeneous discretization of an unstructured mesh, and runtime adaptation of the mesh. Management of this inherent complexity begins with a conceptual analysis and modeling of this domain of intended use; i.e., development of a domain model. The Sierra Toolkit computational mesh software library is designed and implemented based upon this domain model. Software developers using, maintaining, or extending the Sierra Toolkit computational mesh library must be familiar with the concepts/domain model presented in this report.
Nizar, U. K.; Hidayatul, J.; Sundari, R.; Bahrizal, B.; Amran, A.; Putra, A.; Latisma DJ, L.; Dewata, I.
2018-04-01
This study investigates the correlation of the number of titanium tetrahedral coordination and biodiesel production. The solid-state method has been used to synthesis of silica-titania catalyst for biodiesel production, which the precursors, i.e. silica and titania commercials were heated in the temperature range of 450 - 550°C. The characterization of the prepared silica-titania has been studied by FTIR and DR UV-Vis in order to identify and calculate the presence of titanium tetrahedral coordination in silica-titania catalyst. A very small peak at around 950 cm-1 indicated the presence of titanium tetrahedral coordination through Si–O–Ti bonds. Deconvolution of DR UV-Vis spectra showed the coordination of titanium in silica-titania is more octahedral. However, the number of titanium tetrahedral coordination of the prepared silica-titania is found higher than that of TiO2 commercial. The increasing of titanium tetrahedral fraction in silica-titania affects the physical properties of biodiesel in terms of boiling point, viscosity and density, which is produced by the reaction of methanol and palm oil.
Dudek, J.; Curien, D.; Dedes, I.; Mazurek, K.; Tagami, S.; Shimizu, Y. R.; Bhattacharjee, T.
2018-02-01
We formulate criteria for identification of the nuclear tetrahedral and octahedral symmetries and illustrate for the first time their possible realization in a rare earth nucleus 152Sm. We use realistic nuclear mean-field theory calculations with the phenomenological macroscopic-microscopic method, the Gogny-Hartree-Fock-Bogoliubov approach, and general point-group theory considerations to guide the experimental identification method as illustrated on published experimental data. Following group theory the examined symmetries imply the existence of exotic rotational bands on whose properties the spectroscopic identification criteria are based. These bands may contain simultaneously states of even and odd spins, of both parities and parity doublets at well-defined spins. In the exact-symmetry limit those bands involve no E 2 transitions. We show that coexistence of tetrahedral and octahedral deformations is essential when calculating the corresponding energy minima and surrounding barriers, and that it has a characteristic impact on the rotational bands. The symmetries in question imply the existence of long-lived shape isomers and, possibly, new waiting point nuclei—impacting the nucleosynthesis processes in astrophysics—and an existence of 16-fold degenerate particle-hole excitations. Specifically designed experiments which aim at strengthening the identification arguments are briefly discussed.
Homemdemello, Luiz S.
1992-01-01
An assembly planner for tetrahedral truss structures is presented. To overcome the difficulties due to the large number of parts, the planner exploits the simplicity and uniformity of the shapes of the parts and the regularity of their interconnection. The planning automation is based on the computational formalism known as production system. The global data base consists of a hexagonal grid representation of the truss structure. This representation captures the regularity of tetrahedral truss structures and their multiple hierarchies. It maps into quadratic grids and can be implemented in a computer by using a two-dimensional array data structure. By maintaining the multiple hierarchies explicitly in the model, the choice of a particular hierarchy is only made when needed, thus allowing a more informed decision. Furthermore, testing the preconditions of the production rules is simple because the patterned way in which the struts are interconnected is incorporated into the topology of the hexagonal grid. A directed graph representation of assembly sequences allows the use of both graph search and backtracking control strategies.
Impact of local symmetry breaking on the physical properties of tetrahedral liquids.
Shi, Rui; Tanaka, Hajime
2018-02-27
Water and silica are the most important materials with local tetrahedral symmetry. They have similar crystalline polymorphs and exhibit anomalous density maximum in the liquid state. However, water and silica also show very different characteristics. For instance, the density of water varies much more sharply than that of liquid silica near the maximum as temperature changes. More notably, silica is a very good glass-former, but water is an extremely poor one. The physical origins of these similarities and differences still remain elusive, due to the lack of a microscopic understanding of the structural ordering in these two important liquids. Here, by accessing microscopic structural information by computer simulations, we reveal that local translational symmetry breaking is responsible for the density anomalies. On the other hand, the difference in the degree of local orientational symmetry breaking between water and silica, which originates from the difference in their bonding nature, causes not only the difference in the sharpness of density anomalies, but also their distinct glass-forming abilities. Our work not only shows the crucial roles of local translational and orientational symmetry breaking in the physical properties of the two extremely important materials, water and silica, but also provides a unified scenario applicable for other tetrahedral liquids such as Si, Ge, C, BeF 2 , and GeO 2 .
Anisotropic evaluation of synthetic surgical meshes.
Saberski, E R; Orenstein, S B; Novitsky, Y W
2011-02-01
The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.
Parallel Performance Optimizations on Unstructured Mesh-based Simulations
Energy Technology Data Exchange (ETDEWEB)
Sarje, Abhinav; Song, Sukhyun; Jacobsen, Douglas; Huck, Kevin; Hollingsworth, Jeffrey; Malony, Allen; Williams, Samuel; Oliker, Leonid
2015-01-01
© The Authors. Published by Elsevier B.V. This paper addresses two key parallelization challenges the unstructured mesh-based ocean modeling code, MPAS-Ocean, which uses a mesh based on Voronoi tessellations: (1) load imbalance across processes, and (2) unstructured data access patterns, that inhibit intra- and inter-node performance. Our work analyzes the load imbalance due to naive partitioning of the mesh, and develops methods to generate mesh partitioning with better load balance and reduced communication. Furthermore, we present methods that minimize both inter- and intranode data movement and maximize data reuse. Our techniques include predictive ordering of data elements for higher cache efficiency, as well as communication reduction approaches. We present detailed performance data when running on thousands of cores using the Cray XC30 supercomputer and show that our optimization strategies can exceed the original performance by over 2×. Additionally, many of these solutions can be broadly applied to a wide variety of unstructured grid-based computations.
Unstructured mesh adaptivity for urban flooding modelling
Hu, R.; Fang, F.; Salinas, P.; Pain, C. C.
2018-05-01
Over the past few decades, urban floods have been gaining more attention due to their increase in frequency. To provide reliable flooding predictions in urban areas, various numerical models have been developed to perform high-resolution flood simulations. However, the use of high-resolution meshes across the whole computational domain causes a high computational burden. In this paper, a 2D control-volume and finite-element flood model using adaptive unstructured mesh technology has been developed. This adaptive unstructured mesh technique enables meshes to be adapted optimally in time and space in response to the evolving flow features, thus providing sufficient mesh resolution where and when it is required. It has the advantage of capturing the details of local flows and wetting and drying front while reducing the computational cost. Complex topographic features are represented accurately during the flooding process. For example, the high-resolution meshes around the buildings and steep regions are placed when the flooding water reaches these regions. In this work a flooding event that happened in 2002 in Glasgow, Scotland, United Kingdom has been simulated to demonstrate the capability of the adaptive unstructured mesh flooding model. The simulations have been performed using both fixed and adaptive unstructured meshes, and then results have been compared with those published 2D and 3D results. The presented method shows that the 2D adaptive mesh model provides accurate results while having a low computational cost.
Adaptive hybrid mesh refinement for multiphysics applications
International Nuclear Information System (INIS)
Khamayseh, Ahmed; Almeida, Valmor de
2007-01-01
The accuracy and convergence of computational solutions of mesh-based methods is strongly dependent on the quality of the mesh used. We have developed methods for optimizing meshes that are comprised of elements of arbitrary polygonal and polyhedral type. We present in this research the development of r-h hybrid adaptive meshing technology tailored to application areas relevant to multi-physics modeling and simulation. Solution-based adaptation methods are used to reposition mesh nodes (r-adaptation) or to refine the mesh cells (h-adaptation) to minimize solution error. The numerical methods perform either the r-adaptive mesh optimization or the h-adaptive mesh refinement method on the initial isotropic or anisotropic meshes to equidistribute weighted geometric and/or solution error function. We have successfully introduced r-h adaptivity to a least-squares method with spherical harmonics basis functions for the solution of the spherical shallow atmosphere model used in climate modeling. In addition, application of this technology also covers a wide range of disciplines in computational sciences, most notably, time-dependent multi-physics, multi-scale modeling and simulation
Meshes optimized for discrete exterior calculus (DEC).
Energy Technology Data Exchange (ETDEWEB)
Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-12-01
We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.
Transrectal Mesh Erosion Requiring Bowel Resection.
Kemp, Marta Maria; Slim, Karem; Rabischong, Benoît; Bourdel, Nicolas; Canis, Michel; Botchorishvili, Revaz
To report a case of a transrectal mesh erosion as complication of laparoscopic promontofixation with mesh repair, necessitating bowel resection and subsequent surgical interventions. Sacrocolpopexy has become a standard procedure for vaginal vault prolapse [1], and the laparoscopic approach has gained popularity owing to more rapid recovery and less morbidity [2,3]. Mesh erosion is a well-known complication of surgical treatment for prolapse as reported in several negative evaluations, including a report from the US Food and Drug Administration in 2011 [4]. Mesh complications are more common after surgeries via the vaginal approach [5]; nonetheless, the incidence of vaginal mesh erosion after laparoscopic procedures is as high as 9% [6]. The incidence of transrectal mesh exposure after laparoscopic ventral rectopexy is roughly 1% [7]. The diagnosis may be delayed because of its rarity and variable presentation. In addition, polyester meshes, such as the mesh used in this case, carry a higher risk of exposure [8]. A 57-year-old woman experiencing genital prolapse, with the cervix classified as +3 according to the Pelvic Organ Prolapse Quantification system, underwent laparoscopic standard sacrocolpopexy using polyester mesh. Subtotal hysterectomy and bilateral adnexectomy were performed concomitantly. A 3-year follow-up consultation demonstrated no signs or symptoms of erosion of any type. At 7 years after the surgery, however, the patient presented with rectal discharge, diagnosed as infectious rectocolitis with the isolation of Clostridium difficile. She underwent a total of 5 repair surgeries in a period of 4 months, including transrectal resection of exposed mesh, laparoscopic ablation of mesh with digestive resection, exploratory laparoscopy with abscess drainage, and exploratory laparoscopy with ablation of residual mesh and transverse colostomy. She recovered well after the last intervention, exhibiting no signs of vaginal or rectal fistula and no recurrence
Parallel adaptive simulations on unstructured meshes
International Nuclear Information System (INIS)
Shephard, M S; Jansen, K E; Sahni, O; Diachin, L A
2007-01-01
This paper discusses methods being developed by the ITAPS center to support the execution of parallel adaptive simulations on unstructured meshes. The paper first outlines the ITAPS approach to the development of interoperable mesh, geometry and field services to support the needs of SciDAC application in these areas. The paper then demonstrates the ability of unstructured adaptive meshing methods built on such interoperable services to effectively solve important physics problems. Attention is then focused on ITAPs' developing ability to solve adaptive unstructured mesh problems on massively parallel computers
Directory of Open Access Journals (Sweden)
KIM Jong Woon
2017-01-01
In this paper, we describe a brief overview of AETIUS and provide numerical results from both AETIUS and a Monte Carlo code, MCNP5, in a deep penetration problem with small detection volumes. The results demonstrate the effectiveness and efficiency of AETIUS for such calculations.
International Nuclear Information System (INIS)
Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna
2014-01-01
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers
Energy Technology Data Exchange (ETDEWEB)
Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)
2014-12-09
The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.
Directory of Open Access Journals (Sweden)
Ming-Hsiung Hsiao
2018-06-01
Full Text Available The device mesh and mesh app revealed by Gartner as the future strategic technology trend are able to predict people's need from their historic data, then provides the needed services or service innovation to support their activity engagement. However, many theories have identified that it is the motivation, rather than technology, that drives people to engage in activities or tasks. For this reason, this study builds a conceptual framework by integrating the extant logic and theories to explore how future technology would generate benefits for people. It integrates task-technology fit (TTF model and motivation theory (mainly expectancy-value theory to explain such technology user behavior. It also points out the difference between technology-enabled and technology-dependent user behavior and concludes that too much emphasis on the role of technology with too little attention on motivation would distort technology user behavior, and the role of technology as well. Keywords: Device mesh, Mesh app, Expectancy-value theory, Task-technology fit (TTF, Technology-enabled user, Technology-dependent user
Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application
Tanawade, A. G.; Modhera, C. D.
2017-08-01
Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.
Zhang, Fang; Merrill, Matthew D.; Tokash, Justin C.; Saito, Tomonori; Cheng, Shaoan; Hickner, Michael A.; Logan, Bruce E.
2011-01-01
that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid
Intravesical midurethral sling mesh erosion secondary to transvaginal mesh reconstructive surgery
Directory of Open Access Journals (Sweden)
Sukanda Bin Jaili
2015-05-01
Conclusion: Repeated vaginal reconstructive surgery may jeopardize a primary mesh or sling, and pose a high risk of mesh erosion, which may be delayed for several years. Removal of the mesh erosion and bladder repair are feasible pervaginally with good outcome.
International Nuclear Information System (INIS)
Hussain, M.; Khan, J.A.
2004-01-01
A numerical study of flow in distributor of Francis Turbine is carried out by using two different techniques of flow zone generation. Distributor of GAMM Francis Turbine is used for present calculation. In present work, flow is assumed to be periodic around the distributor in steady state conditions, therefore computational domain consists of only one blade channel (one stay vane and one guide vane). The distributor computational domain is bounded up stream by cylindrical and downstream by conical patches. The first one corresponds to the spiral casing outflow section, while the second one is considered to be the distributor outlet or runner inlet. Upper and lower surfaces are generated by the revolution of hub and shroud edges. Single connected and multiple connected techniques are considered to generate distributor flow zone for numerical flow analysis of GAMM Francis turbine. The tetrahedral meshes are generated in both the flow zones. Same boundary conditions are applied for both the equivalent flow zones. The three dimensional, laminar flow analysis for both the distributor flow zones of the GAMM Francis turbine operating at the best efficiency point is performed. Gambit and G- Turbo are used as a preprocessor while calculations are done by using Fluent. Finally, numerical results obtained on the distributor outlet are compared with the available experimental data to validate the two different methodologies and examine their accuracy. (author)
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
Laparoscopic Pelvic Floor Repair Using Polypropylene Mesh
Directory of Open Access Journals (Sweden)
Shih-Shien Weng
2008-09-01
Conclusion: Laparoscopic pelvic floor repair using a single piece of polypropylene mesh combined with uterosacral ligament suspension appears to be a feasible procedure for the treatment of advanced vaginal vault prolapse and enterocele. Fewer mesh erosions and postoperative pain syndromes were seen in patients who had no previous pelvic floor reconstructive surgery.
Robust diamond meshes with unique wettability properties.
Yang, Yizhou; Li, Hongdong; Cheng, Shaoheng; Zou, Guangtian; Wang, Chuanxi; Lin, Quan
2014-03-18
Robust diamond meshes with excellent superhydrophobic and superoleophilic properties have been fabricated. Superhydrophobicity is observed for water with varying pH from 1 to 14 with good recyclability. Reversible superhydrophobicity and hydrophilicity can be easily controlled. The diamond meshes show highly efficient water-oil separation and water pH droplet transference.
Mesh-graft urethroplasty: a case report
田中, 敏博; 滝川, 浩; 香川, 征; 長江, 浩朗
1987-01-01
We used a meshed free-foreskin transplant in a two-stage procedure for reconstruction of the extended stricture of urethra after direct vision urethrotomy. The results were excellent. Mesh-graft urethroplasty is a useful method for patients with extended strictures of the urethra or recurrent strictures after several operations.
7th International Meshing Roundtable '98
Energy Technology Data Exchange (ETDEWEB)
Eldred, T.J.
1998-10-01
The goal of the 7th International Meshing Roundtable is to bring together researchers and developers from industry, academia, and government labs in a stimulating, open environment for the exchange of technical information related to the meshing process. In the past, the Roundtable has enjoyed significant participation from each of these groups from a wide variety of countries.
Postoperative pain outcomes after transvaginal mesh revision.
Danford, Jill M; Osborn, David J; Reynolds, W Stuart; Biller, Daniel H; Dmochowski, Roger R
2015-01-01
Although the current literature discusses mesh complications including pain, as well as suggesting different techniques for removing mesh, there is little literature regarding pain outcomes after surgical removal or revision. The purpose of this study is to determine if surgical removal or revision of vaginal mesh improves patient's subjective complaints of pelvic pain associated with original placement of mesh. After obtaining approval from the Vanderbilt University Medical Center Institutional Review Board, a retrospective review of female patients with pain secondary to previous mesh placement who underwent excision or revision of vaginal mesh from January 2000 to August 2012 was performed. Patient age, relevant medical history including menopause status, previous hysterectomy, smoking status, and presence of diabetes, fibromyalgia, interstitial cystitis, and chronic pelvic pain, was obtained. Patients' postoperative pain complaints were assessed. Of the 481 patients who underwent surgery for mesh revision, removal or urethrolysis, 233 patients met our inclusion criteria. One hundred and sixty-nine patients (73 %) reported that their pain improved, 19 (8 %) reported that their pain worsened, and 45 (19 %) reported that their pain remained unchanged after surgery. Prior history of chronic pelvic pain was associated with increased risk of failure of the procedure to relieve pain (OR 0.28, 95 % CI 0.12-0.64, p = 0.003). Excision or revision of vaginal mesh appears to be effective in improving patients' pain symptoms most of the time. Patients with a history of chronic pelvic pain are at an increased risk of no improvement or of worsening pain.
Converting skeletal structures to quad dominant meshes
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Misztal, Marek Krzysztof; Welnicka, Katarzyna
2012-01-01
We propose the Skeleton to Quad-dominant polygonal Mesh algorithm (SQM), which converts skeletal structures to meshes composed entirely of polar and annular regions. Both types of regions have a regular structure where all faces are quads except for a single ring of triangles at the center of each...
Adaptive mesh refinement in titanium
Energy Technology Data Exchange (ETDEWEB)
Colella, Phillip; Wen, Tong
2005-01-21
In this paper, we evaluate Titanium's usability as a high-level parallel programming language through a case study, where we implement a subset of Chombo's functionality in Titanium. Chombo is a software package applying the Adaptive Mesh Refinement methodology to numerical Partial Differential Equations at the production level. In Chombo, the library approach is used to parallel programming (C++ and Fortran, with MPI), whereas Titanium is a Java dialect designed for high-performance scientific computing. The performance of our implementation is studied and compared with that of Chombo in solving Poisson's equation based on two grid configurations from a real application. Also provided are the counts of lines of code from both sides.
A software platform for continuum modeling of ion channels based on unstructured mesh
International Nuclear Information System (INIS)
Tu, B; Bai, S Y; Xie, Y; Zhang, L B; Lu, B Z; Chen, M X
2014-01-01
Most traditional continuum molecular modeling adopted finite difference or finite volume methods which were based on a structured mesh (grid). Unstructured meshes were only occasionally used, but an increased number of applications emerge in molecular simulations. To facilitate the continuum modeling of biomolecular systems based on unstructured meshes, we are developing a software platform with tools which are particularly beneficial to those approaches. This work describes the software system specifically for the simulation of a typical, complex molecular procedure: ion transport through a three-dimensional channel system that consists of a protein and a membrane. The platform contains three parts: a meshing tool chain for ion channel systems, a parallel finite element solver for the Poisson–Nernst–Planck equations describing the electrodiffusion process of ion transport, and a visualization program for continuum molecular modeling. The meshing tool chain in the platform, which consists of a set of mesh generation tools, is able to generate high-quality surface and volume meshes for ion channel systems. The parallel finite element solver in our platform is based on the parallel adaptive finite element package PHG which wass developed by one of the authors [1]. As a featured component of the platform, a new visualization program, VCMM, has specifically been developed for continuum molecular modeling with an emphasis on providing useful facilities for unstructured mesh-based methods and for their output analysis and visualization. VCMM provides a graphic user interface and consists of three modules: a molecular module, a meshing module and a numerical module. A demonstration of the platform is provided with a study of two real proteins, the connexin 26 and hemolysin ion channels. (paper)
Amorphous-tetrahedral diamondlike carbon layered structures resulting from film growth energetics
Siegal, M. P.; Barbour, J. C.; Provencio, P. N.; Tallant, D. R.; Friedmann, T. A.
1998-08-01
High-resolution transmission electron microscopy (HRTEM) shows that amorphous-tetrahedral diamondlike carbon (a-tC) films grown by pulsed-laser deposition on Si(100) consist of three-to-four layers, depending on the growth energetics. We estimate the density of each layer using both HRTEM image contrast and Rutherford backscattering spectrometry. The first carbon layer and final surface layer have relatively low density. The bulk of the film between these two layers has higher density. For films grown under the most energetic conditions, there exists a superdense a-tC layer between the interface and bulk layers. The density of all four layers, and the thickness of the surface and interfacial layers, correlate well with the energetics of the depositing carbon species.
Single walled carbon nanotube network—Tetrahedral amorphous carbon composite film
Energy Technology Data Exchange (ETDEWEB)
Iyer, Ajai, E-mail: ajai.iyer@aalto.fi; Liu, Xuwen; Koskinen, Jari [Department of Materials Science and Engineering, School of Chemical Technology, Aalto University, POB 16200, 00076 Espoo (Finland); Kaskela, Antti; Kauppinen, Esko I. [NanoMaterials Group, Department of Applied Physics, School of Science, Aalto University, POB 15100, 00076 Espoo (Finland); Johansson, Leena-Sisko [Department of Forest Products Technology, School of Chemical Technology, Aalto University, POB 16400, 00076 Espoo (Finland)
2015-06-14
Single walled carbon nanotube network (SWCNTN) was coated by tetrahedral amorphous carbon (ta-C) using a pulsed Filtered Cathodic Vacuum Arc system to form a SWCNTN—ta-C composite film. The effects of SWCNTN areal coverage density and ta-C coating thickness on the composite film properties were investigated. X-Ray photoelectron spectroscopy measurements prove the presence of high quality sp{sup 3} bonded ta-C coating on the SWCNTN. Raman spectroscopy suggests that the single wall carbon nanotubes (SWCNTs) forming the network survived encapsulation in the ta-C coating. Nano-mechanical testing suggests that the ta-C coated SWCNTN has superior wear performance compared to uncoated SWCNTN.
Energy Technology Data Exchange (ETDEWEB)
Dabiri, Zohreh, E-mail: z.dabiri@stu.yazd.ac.ir [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Kazempour, Ali [Department of Physics, Payame Noor University, P.O. BOX 119395-3697, Tehran (Iran, Islamic Republic of); Nano Structured Coatings Institute of Yazd Payame Noor University, P.O. Code 89431-74559, Yazd (Iran, Islamic Republic of); Sadeghzadeh, Mohammad Ali [Physics Department, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)
2016-11-15
The strength of phonon anharmonicity is investigated in the framework of the Density Functional Perturbation Theory via an applied constant electric field. In contrast to routine approaches, we have employed the electric field as an effective probe to quest after the quasi-harmonic and anharmonic effects. Two typical tetrahedral semiconductors (diamond and silicon) have been selected to test the efficiency of this approach. In this scheme the applied field is responsible for establishing the perturbation and also inducing the anharmonicity in systems. The induced polarization is a result of changing the electronic density while ions are located at their ground state coordinates or at a specified strain. Employing this method, physical quantities of the semiconductors are calculated in presence of the electron–phonon interaction directly and, phonon–phonon interaction, indirectly. The present approach, which is in good agreement with previous theoretical and experimental studies, can be introduced as a benchmark to simply investigate the anharmonicity and pertinent consequences in materials.
Three-dimensional modeling of capsule implosions in OMEGA tetrahedral hohlraums
International Nuclear Information System (INIS)
Schnittman, J. D.; Craxton, R. S.
2000-01-01
Tetrahedral hohlraums have been proposed as a means for achieving the highly uniform implosions needed for ignition with inertial confinement fusion (ICF) [J. D. Schnittman and R. S. Craxton, Phys. Plasmas 3, 3786 (1996)]. Recent experiments on the OMEGA laser system have achieved good drive uniformity consistent with theoretical predictions [J. M. Wallace et al., Phys. Rev. Lett. 82, 3807 (1999)]. To better understand these experiments and future investigations of high-convergence ICF implosions, the three-dimensional (3-D) view-factor code BUTTERCUP has been expanded to model the time-dependent radiation transport in the hohlraum and the hydrodynamic implosion of the capsule. Additionally, a 3-D postprocessor has been written to simulate x-ray images of the imploded core. Despite BUTTERCUP's relative simplicity, its predictions for radiation drive temperatures, fusion yields, and core deformation show close agreement with experiment. (c) 2000 American Institute of Physics
Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.
Kastner, Katharina; Puscher, Bianka; Streb, Carsten
2013-01-07
We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.
Fog water collection effectiveness: Mesh intercomparisons
Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew
2018-01-01
To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of steel mesh collected 3% more and at wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.
International Nuclear Information System (INIS)
Vancraeyenest, A.
2010-10-01
The major part of this work is about the realization and complete analysis of an experiment for studying isomeric states in 138,139,140 Nd nuclei. This was performed at Jyvaeskylae laboratory (Finland) using a fusion-evaporation reaction with 48 Ca beam on a thin 96 Zr target. Experimental setup consisted in the target position gamma ray detector Jurogam II which was coupled with the RITU recoil separator and the GREAT focal plane detector array. This particularly well adapted setup permit to manage γ spectroscopy of the interest nuclei around isomeric states. Indeed, we used prompt-delayed matrices to separate rays that come onto isomeric states and these who decay from them. Then, the correlations between the two components permit to establish feeding transitions of isomeric states. Thanks to this experiment, a new isomeric state was also highlighted in 139 Nd with spin 23/2+, which was predicted and interpreted in Cranked-Nilsson-Strutinsky calculation. Finally, very clean time spectra allow to determine precisely life-time of four states in four nuclei. This Ph.d. is also made of a part of the analysis of the first experimental search for fingerprints of tetrahedral symmetry in 156 Gd using high fold gamma ray spectroscopy. Thanks to a large number of triple coincidence events, we managed a detailed spectroscopy of this nucleus. Particularly, we found out 13 new transitions in positive parity bands. As a complement of this work, we have done GEANT4 simulations about the detection limits of low intensity transitions by Agata multidetector. Indeed, tetrahedral symmetry predicts vanishing of E2 transitions at lower spin states and simulations permit to determine observation limit of these transitions with different version of Agata. (author)
Proceedings of the 20th International Meshing Roundtable
2012-01-01
This volume contains the articles presented at the 20th International Meshing Roundtable (IMR) organized, in part, by Sandia National Laboratories and was held in Paris, France on Oct 23-26, 2011. This is the first year the IMR was held outside the United States territory. Other sponsors of the 20th IMR are Systematic Paris Region Systems & ICT Cluster, AIAA, NAFEMS, CEA, and NSF. The Sandia National Laboratories started the first IMR in 1992, and the conference has been held annually since. Each year the IMR brings together researchers, developers, and application experts, from a variety of disciplines, to present and discuss ideas on mesh generation and related topics. The topics covered by the IMR have applications in numerical analysis, computational geometry, computer graphics, as well as other areas, and the presentations describe novel work ranging from theory to application. .
Smart-Home Architecture Based on Bluetooth mesh Technology
Wan, Qing; Liu, Jianghua
2018-03-01
This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.
Schoedel, Alexander; Cairns, Amy; Belmabkhout, Youssef; Wojtas, Łukasz; Mohamed, Mona Hassan; Zhang, ZhenJie; Proserpio, Davide Maria; Eddaoudi, Mohamed; Zaworotko, Michael J.
2013-01-01
The self-assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks affords the first example of a trinodal family of metal-organic materials. Four examples of isoreticular expanded and functionalized frameworks are detailed. Gas adsorption experiments validated the permanent porosity of the parent structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Schoedel, Alexander
2013-02-10
The self-assembly of triangular, tetrahedral, and trigonal-prismatic molecular building blocks affords the first example of a trinodal family of metal-organic materials. Four examples of isoreticular expanded and functionalized frameworks are detailed. Gas adsorption experiments validated the permanent porosity of the parent structure. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[CLINICAL EVALUATION OF THE NEW ANTISEPTIC MESHES].
Gogoladze, M; Kiladze, M; Chkhikvadze, T; Jiqia, D
2016-12-01
Improving the results of hernia treatment and prevention of complications became a goal of our research which included two parts - experimental and clinical. Histomorphological and bacteriological researches showed that the best result out of the 3 control groups was received in case of covering implant "Coladerm"+ with chlorhexidine. Based on the experiment results working process continued in clinics in order to test and introduce new "coladerm"+ chlorhexidine covered poliprophilene meshes into practice. For clinical illustration there were 60 patients introduced to the research who had hernioplasty procedures by different nets: I group - standard meshes+"coladerm"+chlorhexidine, 35 patients; II group - standard meshes +"coladerm", 15 patients; III group - standard meshes, 10 patients. Assessment of the wound and echo-control was done post-surgery on the 8th, 30th and 90th days. This clinical research based on the experimental results once again showed the best anti-microbe features of new antiseptic polymeric biocomposite meshes (standard meshes+"coladerm"+chlorhexidine); timely termination of regeneration and reparation processes without any post-surgery suppurative complications. We hope that new antiseptic polymeric biocomposite meshes presented by us will be successfully used in surgical practice of hernia treatment based on and supported by expermental-clinical research.
Directory of Open Access Journals (Sweden)
Daniel Pérez-Grande
2016-11-01
Full Text Available This manuscript explores numerical errors in highly anisotropic diffusion problems. First, the paper addresses the use of regular structured meshes in numerical solutions versus meshes aligned with the preferential directions of the problem. Numerical diffusion in structured meshes is quantified by solving the classical anisotropic diffusion problem; the analysis is exemplified with the application to a numerical model of conducting fluids under magnetic confinement, where rates of transport in directions parallel and perpendicular to a magnetic field are quite different. Numerical diffusion errors in this problem promote the use of magnetic field aligned meshes (MFAM. The generation of this type of meshes presents some challenges; several meshing strategies are implemented and analyzed in order to provide insight into achieving acceptable mesh regularity. Second, Gradient Reconstruction methods for magnetically aligned meshes are addressed and numerical errors are compared for the structured and magnetically aligned meshes. It is concluded that using the latter provides a more correct and straightforward approach to solving problems where anisotropicity is present, especially, if the anisotropicity level is high or difficult to quantify. The conclusions of the study may be extrapolated to the study of anisotropic flows different from conducting fluids.
Fog water collection effectiveness: Mesh intercomparisons
Fernandez, Daniel; Torregrosa, Alicia; Weiss-Penzias, Peter; Zhang, Bong June; Sorensen, Deckard; Cohen, Robert; McKinley, Gareth; Kleingartner, Justin; Oliphant, Andrew; Bowman, Matthew
2018-01-01
To explore fog water harvesting potential in California, we conducted long-term measurements involving three types of mesh using standard fog collectors (SFC). Volumetric fog water measurements from SFCs and wind data were collected and recorded in 15-minute intervals over three summertime fog seasons (2014–2016) at four California sites. SFCs were deployed with: standard 1.00 m2 double-layer 35% shade coefficient Raschel; stainless steel mesh coated with the MIT-14 hydrophobic formulation; and FogHa-Tin, a German manufactured, 3-dimensional spacer fabric deployed in two orientations. Analysis of 3419 volumetric samples from all sites showed strong relationships between mesh efficiency and wind speed. Raschel mesh collected 160% more fog water than FogHa-Tin at wind speeds less than 1 m s–1 and 45% less for wind speeds greater than 5 m s–1. MIT-14 coated stainless-steel mesh collected more fog water than Raschel mesh at all wind speeds. At low wind speeds of wind speeds of 4–5 m s–1, it collected 41% more. FogHa-Tin collected 5% more fog water when the warp of the weave was oriented vertically, per manufacturer specification, than when the warp of the weave was oriented horizontally. Time series measurements of three distinct mesh across similar wind regimes revealed inconsistent lags in fog water collection and inconsistent performance. Since such differences occurred under similar wind-speed regimes, we conclude that other factors play important roles in mesh performance, including in-situ fog event and aerosol dynamics that affect droplet-size spectra and droplet-to-mesh surface interactions.
Transvaginal mesh procedures for pelvic organ prolapse.
Walter, Jens-Erik
2011-02-01
To provide an update on transvaginal mesh procedures, newly available minimally invasive surgical techniques for pelvic floor repair. The discussion is limited to minimally invasive transvaginal mesh procedures. PubMed and Medline were searched for articles published in English, using the key words "pelvic organ prolapse," transvaginal mesh," and "minimally invasive surgery." Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. Searches were updated on a regular basis, and articles were incorporated in the guideline to May 2010. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on the Preventive Health Care. Recommendations for practice were ranked according to the method described in that report (Table 1). Counselling for the surgical treatment of pelvic organ prolapse should consider all benefits, harms, and costs of the surgical procedure, with particular emphasis on the use of mesh. 1. Patients should be counselled that transvaginal mesh procedures are considered novel techniques for pelvic floor repair that demonstrate high rates of anatomical cure in uncontrolled short-term case series. (II-2B) 2. Patients should be informed of the range of success rates until stronger evidence of superiority is published. (II-2B) 3. Training specific to transvaginal mesh procedures should be undertaken before procedures are performed. (III-C) 4. Patients should undergo thorough preoperative counselling regarding (a) the potential serious adverse sequelae of transvaginal mesh repairs, including mesh exposure, pain, and dyspareunia; and (b) the limited data available
Zhang, Fang
2011-02-01
Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.
Automatic mesh adaptivity for CADIS and FW-CADIS neutronics modeling of difficult shielding problems
International Nuclear Information System (INIS)
Ibrahim, A. M.; Peplow, D. E.; Mosher, S. W.; Wagner, J. C.; Evans, T. M.; Wilson, P. P.; Sawan, M. E.
2013-01-01
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macro-material approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm de-couples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, obviating the need for a world-class super computer. (authors)
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Wilson, Paul P.H.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Wagner, John C.; Evans, Thomas M.; Grove, Robert E.
2015-01-01
The CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques dramatically increase the efficiency of neutronics modeling, but their use in the accurate design analysis of very large and geometrically complex nuclear systems has been limited by the large number of processors and memory requirements for their preliminary deterministic calculations and final Monte Carlo calculation. Three mesh adaptivity algorithms were developed to reduce the memory requirements of CADIS and FW-CADIS without sacrificing their efficiency improvement. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation and, additionally, increased the efficiency of the Monte Carlo simulation by a factor of at least 3.4. The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a regular computer cluster, eliminating the need for a world-class super computer
Mesh Optimization for Ground Vehicle Aerodynamics
Adrian Gaylard; Essam F Abo-Serie; Nor Elyana Ahmad
2010-01-01
Mesh optimization strategy for estimating accurate drag of a ground vehicle is proposed based on examining the effect of different mesh parameters. The optimized mesh parameters were selected using design of experiment (DOE) method to be able to work in a...
Engagement of Metal Debris into Gear Mesh
handschuh, Robert F.; Krantz, Timothy L.
2010-01-01
A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
Mesh requirements for neutron transport calculations
International Nuclear Information System (INIS)
Askew, J.R.
1967-07-01
Fine-structure calculations are reported for a cylindrical natural uranium-graphite cell using different solution methods (discrete ordinate and collision probability codes) and varying the spatial mesh. It is suggested that of formulations assuming the source constant in a mesh interval the differential approach is generally to be preferred. Due to cancellation between approximations made in the derivation of the finite difference equations and the errors in neglecting source variation, the discrete ordinate code gave a more accurate estimate of fine structure for a given mesh even for unusually coarse representations. (author)
Coarse-mesh discretized low-order quasi-diffusion equations for subregion averaged scalar fluxes
International Nuclear Information System (INIS)
Anistratov, D. Y.
2004-01-01
In this paper we develop homogenization procedure and discretization for the low-order quasi-diffusion equations on coarse grids for core-level reactor calculations. The system of discretized equations of the proposed method is formulated in terms of the subregion averaged group scalar fluxes. The coarse-mesh solution is consistent with a given fine-mesh discretization of the transport equation in the sense that it preserves a set of average values of the fine-mesh transport scalar flux over subregions of coarse-mesh cells as well as the surface currents, and eigenvalue. The developed method generates numerical solution that mimics the large-scale behavior of the transport solution within assemblies. (authors)
Charged particle tracking through electrostatic wire meshes using the finite element method
Energy Technology Data Exchange (ETDEWEB)
Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk [The Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); Department of Physics, University of Liverpool, Liverpool (United Kingdom)
2016-06-15
Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed. The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.
Numerical simulation of deformation of dynamic mesh in the human vocal tract model
Directory of Open Access Journals (Sweden)
Řidký Václav
2015-01-01
Full Text Available Numerical simulation of the acoustic signal generation in the human vocal tract is a very complex problem. The computational mesh is not static; it is deformed due to vibration of vocal folds. Movement of vocal folds is in this case prescribed as function of translation and rotation. A new boundary condition for the 2DOF motion of the vocal folds was implemented in OpenFOAM, an open-source software package based on finite volume method Work is focused on the dynamic mesh and deformation of structured meshes in the computation a package OpenFOAM. These methods are compared with focus onquality of the mesh (non-orthogonality, aspect ratio and skewness.
Stress adapted embroidered meshes with a graded pattern design for abdominal wall hernia repair
Hahn, J.; Bittrich, L.; Breier, A.; Spickenheuer, A.
2017-10-01
Abdominal wall hernias are one of the most relevant injuries of the digestive system with 25 million patients in 2013. Surgery is recommended primarily using allogenic non-absorbable wrap-knitted meshes. These meshes have in common that their stress-strain behaviour is not adapted to the anisotropic behaviour of native abdominal wall tissue. The ideal mesh should possess an adequate mechanical behaviour and a suitable porosity at the same time. An alternative fabrication method to wrap-knitting is the embroidery technology with a high flexibility in pattern design and adaption of mechanical properties. In this study, a pattern generator was created for pattern designs consisting of a base and a reinforcement pattern. The embroidered mesh structures demonstrated different structural and mechanical characteristics. Additionally, the investigation of the mechanical properties exhibited an anisotropic mechanical behaviour for the embroidered meshes. As a result, the investigated pattern generator and the embroidery technology allow the production of stress adapted mesh structures that are a promising approach for hernia reconstruction.
Obtuse triangle suppression in anisotropic meshes
Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.
2011-01-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Connectivity editing for quad-dominant meshes
Peng, Chihan; Wonka, Peter
2013-01-01
and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Grid adaptation using chimera composite overlapping meshes
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1994-01-01
The objective of this paper is to perform grid adaptation using composite overlapping meshes in regions of large gradient to accurately capture the salient features during computation. The chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using trilinear interpolation. Application to the Euler equations for shock reflections and to shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well-resolved.
Grid adaption using Chimera composite overlapping meshes
Kao, Kai-Hsiung; Liou, Meng-Sing; Chow, Chuen-Yen
1993-01-01
The objective of this paper is to perform grid adaptation using composite over-lapping meshes in regions of large gradient to capture the salient features accurately during computation. The Chimera grid scheme, a multiple overset mesh technique, is used in combination with a Navier-Stokes solver. The numerical solution is first converged to a steady state based on an initial coarse mesh. Solution-adaptive enhancement is then performed by using a secondary fine grid system which oversets on top of the base grid in the high-gradient region, but without requiring the mesh boundaries to join in any special way. Communications through boundary interfaces between those separated grids are carried out using tri-linear interpolation. Applications to the Euler equations for shock reflections and to a shock wave/boundary layer interaction problem are tested. With the present method, the salient features are well resolved.
Shape space exploration of constrained meshes
Yang, Yongliang
2011-12-12
We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.
Shape space exploration of constrained meshes
Yang, Yongliang; Yang, Yijun; Pottmann, Helmut; Mitra, Niloy J.
2011-01-01
We present a general computational framework to locally characterize any shape space of meshes implicitly prescribed by a collection of non-linear constraints. We computationally access such manifolds, typically of high dimension and co-dimension, through first and second order approximants, namely tangent spaces and quadratically parameterized osculant surfaces. Exploration and navigation of desirable subspaces of the shape space with regard to application specific quality measures are enabled using approximants that are intrinsic to the underlying manifold and directly computable in the parameter space of the osculant surface. We demonstrate our framework on shape spaces of planar quad (PQ) meshes, where each mesh face is constrained to be (nearly) planar, and circular meshes, where each face has a circumcircle. We evaluate our framework for navigation and design exploration on a variety of inputs, while keeping context specific properties such as fairness, proximity to a reference surface, etc. © 2011 ACM.
Obtuse triangle suppression in anisotropic meshes
Sun, Feng
2011-12-01
Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.
Mesh Processing in Medical Image Analysis
DEFF Research Database (Denmark)
The following topics are dealt with: mesh processing; medical image analysis; interactive freeform modeling; statistical shape analysis; clinical CT images; statistical surface recovery; automated segmentation; cerebral aneurysms; and real-time particle-based representation....
Energy-efficient wireless mesh networks
CSIR Research Space (South Africa)
Ntlatlapa, N
2007-06-01
Full Text Available This paper outlines the objectives of a recently formed research group at Meraka Institute. The authors consider application of wireless mesh networks in rural infrastructure deficient parts of the African continent where nodes operate on batteries...
LR: Compact connectivity representation for triangle meshes
Energy Technology Data Exchange (ETDEWEB)
Gurung, T; Luffel, M; Lindstrom, P; Rossignac, J
2011-01-28
We propose LR (Laced Ring) - a simple data structure for representing the connectivity of manifold triangle meshes. LR provides the option to store on average either 1.08 references per triangle or 26.2 bits per triangle. Its construction, from an input mesh that supports constant-time adjacency queries, has linear space and time complexity, and involves ordering most vertices along a nearly-Hamiltonian cycle. LR is best suited for applications that process meshes with fixed connectivity, as any changes to the connectivity require the data structure to be rebuilt. We provide an implementation of the set of standard random-access, constant-time operators for traversing a mesh, and show that LR often saves both space and traversal time over competing representations.
Seeking new surgical predictors of mesh exposure after transvaginal mesh repair.
Wu, Pei-Ying; Chang, Chih-Hung; Shen, Meng-Ru; Chou, Cheng-Yang; Yang, Yi-Ching; Huang, Yu-Fang
2016-10-01
The purpose of this study was to explore new preventable risk factors for mesh exposure. A retrospective review of 92 consecutive patients treated with transvaginal mesh (TVM) in the urogynecological unit of our university hospital. An analysis of perioperative predictors was conducted in patients after vaginal repairs using a type 1 mesh. Mesh complications were recorded according to International Urogynecological Association (IUGA) definitions. Mesh-exposure-free durations were calculated by using the Kaplan-Meier method and compared between different closure techniques using log-rank test. Hazard ratios (HR) of predictors for mesh exposure were estimated by univariate and multivariate analyses using Cox proportional hazards regression models. The median surveillance interval was 24.1 months. Two late occurrences were found beyond 1 year post operation. No statistically significant correlation was observed between mesh exposure and concomitant hysterectomy. Exposure risks were significantly higher in patients with interrupted whole-layer closure in univariate analysis. In the multivariate analysis, hematoma [HR 5.42, 95 % confidence interval (CI) 1.26-23.35, P = 0.024), Prolift mesh (HR 5.52, 95 % CI 1.15-26.53, P = 0.033), and interrupted whole-layer closure (HR 7.02, 95 % CI 1.62-30.53, P = 0.009) were the strongest predictors of mesh exposure. Findings indicate the risks of mesh exposure and reoperation may be prevented by avoiding hematoma, large amount of mesh, or interrupted whole-layer closure in TVM surgeries. If these risk factors are prevented, hysterectomy may not be a relative contraindication for TVM use. We also provide evidence regarding mesh exposure and the necessity for more than 1 year of follow-up and preoperative counselling.
Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.
Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa
2013-01-01
Robust generation of pelvic finite element models is necessary to understand the variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis and their strain distributions evaluated. Morphing and mapping techniques were effectively applied to generate good quality geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.
Salo, Zoryana; Beek, Maarten; Whyne, Cari Marisa
2012-08-01
Robust generation of pelvic finite element models is necessary to understand variation in mechanical behaviour resulting from differences in gender, aging, disease and injury. The objective of this study was to apply and evaluate mesh morphing and mapping techniques to facilitate the creation and structural analysis of specimen-specific finite element (FE) models of the pelvis. A specimen-specific pelvic FE model (source mesh) was generated following a traditional user-intensive meshing scheme. The source mesh was morphed onto a computed tomography scan generated target surface of a second pelvis using a landmarked-based approach, in which exterior source nodes were shifted to target surface vertices, while constrained along a normal. A second copy of the morphed model was further refined through mesh mapping, in which surface nodes of the initial morphed model were selected in patches and remapped onto the surfaces of the target model. Computed tomography intensity-based material properties were assigned to each model. The source, target, morphed and mapped models were analyzed under axial compression using linear static FE analysis, and their strain distributions were evaluated. Morphing and mapping techniques were effectively applied to generate good quality and geometrically complex specimen-specific pelvic FE models. Mapping significantly improved strain concurrence with the target pelvis FE model. Copyright © 2012 John Wiley & Sons, Ltd.
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
1998-01-01
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D
Towards Blockchain-enabled Wireless Mesh Networks
Selimi, Mennan; Kabbinale, Aniruddh Rao; Ali, Anwaar; Navarro, Leandro; Sathiaseelan, Arjuna
2018-01-01
Recently, mesh networking and blockchain are two of the hottest technologies in the telecommunications industry. Combining both can reformulate internet access and make connecting to the Internet not only easy, but affordable too. Hyperledger Fabric (HLF) is a blockchain framework implementation and one of the Hyperledger projects hosted by The Linux Foundation. We evaluate HLF in a real production mesh network and in the laboratory, quantify its performance, bottlenecks and limitations of th...
A novel partitioning method for block-structured adaptive meshes
Fu, Lin; Litvinov, Sergej; Hu, Xiangyu Y.; Adams, Nikolaus A.
2017-07-01
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
Gear Mesh Loss-of-Lubrication Experiments and Analytical Simulation
Handschuh, Robert F.; Polly, Joseph; Morales, Wilfredo
2011-01-01
An experimental program to determine the loss-of-lubrication (LOL) characteristics of spur gears in an aerospace simulation test facility has been completed. Tests were conducted using two different emergency lubricant types: (1) an oil mist system (two different misted lubricants) and (2) a grease injection system (two different grease types). Tests were conducted using a NASA Glenn test facility normally used for conducting contact fatigue. Tests were run at rotational speeds up to 10000 rpm using two different gear designs and two different gear materials. For the tests conducted using an air-oil misting system, a minimum lubricant injection rate was determined to permit the gear mesh to operate without failure for at least 1 hr. The tests allowed an elevated steady state temperature to be established. A basic 2-D heat transfer simulation has been developed to investigate temperatures of a simulated gear as a function of frictional behavior. The friction (heat generation source) between the meshing surfaces is related to the position in the meshing cycle, the load applied, and the amount of lubricant in the contact. Experimental conditions will be compared to those from the 2-D simulation.
A novel partitioning method for block-structured adaptive meshes
Energy Technology Data Exchange (ETDEWEB)
Fu, Lin, E-mail: lin.fu@tum.de; Litvinov, Sergej, E-mail: sergej.litvinov@aer.mw.tum.de; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A., E-mail: nikolaus.adams@tum.de
2017-07-15
We propose a novel partitioning method for block-structured adaptive meshes utilizing the meshless Lagrangian particle concept. With the observation that an optimum partitioning has high analogy to the relaxation of a multi-phase fluid to steady state, physically motivated model equations are developed to characterize the background mesh topology and are solved by multi-phase smoothed-particle hydrodynamics. In contrast to well established partitioning approaches, all optimization objectives are implicitly incorporated and achieved during the particle relaxation to stationary state. Distinct partitioning sub-domains are represented by colored particles and separated by a sharp interface with a surface tension model. In order to obtain the particle relaxation, special viscous and skin friction models, coupled with a tailored time integration algorithm are proposed. Numerical experiments show that the present method has several important properties: generation of approximately equal-sized partitions without dependence on the mesh-element type, optimized interface communication between distinct partitioning sub-domains, continuous domain decomposition which is physically localized and implicitly incremental. Therefore it is particularly suitable for load-balancing of high-performance CFD simulations.
Simulating control rod and fuel assembly motion using moving meshes
Energy Technology Data Exchange (ETDEWEB)
Gilbert, D. [Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)], E-mail: gilbertdw1@gmail.com; Roman, J.E. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garland, Wm. J. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada); Poehlman, W.F.S. [Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)
2008-02-15
A prerequisite for designing a transient simulation experiment which includes the motion of control and fuel assemblies is the careful verification of a steady state model which computes k{sub eff} versus assembly insertion distance. Previous studies in nuclear engineering have usually approached the problem of the motion of control rods with the use of nonlinear nodal models. Nodal methods employ special approximations for the leading and trailing cells of the moving assemblies to avoid the rod cusping problem which results from the naive volume weighted cell cross-section approximation. A prototype framework called the MOOSE has been developed for modeling moving components in the presence of diffusion phenomena. A linear finite difference model is constructed, solutions for which are computed by SLEPc, a high performance parallel eigenvalue solver. Design techniques for the implementation of a patched non-conformal mesh which links groups of sub-meshes that can move relative to one another are presented. The generation of matrices which represent moving meshes which conserve neutron current at their boundaries, and the performance of the framework when applied to model reactivity insertion experiments is also discussed.
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.
1996-01-01
We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right
[Implants for genital prolapse : Contra mesh surgery].
Hampel, C
2017-12-01
Alloplastic transvaginal meshes have become very popular in the surgery of pelvic organ prolapse (POP) as did alloplastic suburethral slings in female stress incontinence surgery, but without adequate supporting data. The simplicity of the mesh procedure facilitates its propagation with acceptance of higher revision and complication rates. Since attending physicians do more and more prolapse surgeries without practicing or teaching alternative techniques, expertise in these alternatives, which might be very useful in cases of recurrence, persistence or complications, is permanently lost. It is doubtful that proper and detailed information about alternatives, risks, and benefits of transvaginal alloplastic meshes is provided to every single prolapse patient according to the recommendations of the German POP guidelines, since the number of implanted meshes exceeds the number of properly indicated mesh candidates by far. Although there is no dissent internationally about the available mesh data, thousands of lawsuits in the USA, insolvency of companies due to claims for compensation and unambiguous warnings from foreign urological societies leave German urogynecologists still unimpressed. The existing literature in pelvic organ prolapse exclusively focusses on POP stage and improvement of that stage with surgical therapy. Instead, typical prolapse symptoms should trigger therapy and improvement of these symptoms should be the utmost treatment goal. It is strongly recommended for liability reasons to obtain specific written informed consent.
Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets
Aleksa, Martin; Völlinger, Christine
2002-01-01
The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...
Fire performance of basalt FRP mesh reinforced HPC thin plates
DEFF Research Database (Denmark)
Hulin, Thomas; Hodicky, Kamil; Schmidt, Jacob Wittrup
2013-01-01
An experimental program was carried out to investigate the influence of basalt FRP (BFRP) reinforcing mesh on the fire behaviour of thin high performance concrete (HPC) plates applied to sandwich elements. Samples with BFRP mesh were compared to samples with no mesh, samples with steel mesh...
Molecular dinamics of tetrahedral clelate compounds of Cd(2) in solutions
International Nuclear Information System (INIS)
Nivorozhkin, L.E.; Minkin, V.I.; Borisenko, N.I.; Konstantinovskij, L.E.; Korobov, M.S.; Olekhnovich, R.Ya.
1981-01-01
Interconversion kinetics of enantiomers of tetrahedral intracomplex compounds of metals (ICM) on the base of unsymmetric ligands in solu-- tions is studied for several series of compounds according to the temperature dependence of the shape of line of prochiral substituents using the methods of the dynamic NMR (DNMR). The use of tetracoordinated ICM in the solutions of synthesized compounds of Cd(2) with the inclusion of magnetic isotope 111 Cd(S=1/2) to study molecular dynamics and the application of the corresponding methods of calculation of the DNMR signal forms permitted to clearly separate the mechanisms of digonal twist and degenerated ligand exchange. In ICM solutions the low-barrier transformations, connected with intramolecular digonal twist, take place as well as high-barrier processes of degenerated ligand exchange. The technique suggested can be applied to the studies of ICM molecular dynamics with other magnetic isotopes of metals ( 207 Pb, 199 Hg, etc.) and rapid non-degenerated ligand exchanges [ru
Ion-Assisted Pulsed Laser Deposition of amorphous tetrahedral-coordinated carbon films
Friedmann, T. A.; Tallant, D. R.; Sullivan, J. P.; Siegal, M. P.; Simpson, R. L.
1994-04-01
A parametric study has been performed of amorphous tetrahedral carbon (a-tC) films produced by ion-assisted pulsed laser deposition (IAPLD). The ion voltage, current density, and feed gas composition (nitrogen in argon) have been varied. The resultant films were characterized by thickness, residual stress, Raman spectroscopy, and electrical resistivity. The Raman spectra have been fit to two gaussian peaks, the so called graphitic (G) peak and the disorder (D) peak. It has been found that the magnitude of the D peak and the residual compressive stress are inversely correlated. At low beam voltages and currents, the magnitude of the D peak is low, increasing as the ion beam voltage and current are raised. The ion beam voltage has the most dramatic effect on the magnitude of the D peak. At low voltages (200-500 V) the magnitude of the D peak is greater for ion beams with high percentages of nitrogen possibly indicative of C-N bonding in the films. At higher voltages (500-1500 V) the D peak intensity is less sensitive to the nitrogen content of the beam.
Ordering principles for tetrahedral chains in Ga- and Co-substituted YBCO intergrowths
International Nuclear Information System (INIS)
Milat, O.; Krekels, T.; Tendeloo, G. van; Amelinckx, S.
1993-01-01
A model for superstructure ordering in the ''chain'' layers of Ga (Co) substituted YBCO intergrowths with general formula (REO 2 ) N Sr 2 MCu 2 O 5 (M Co, Ga; n = 1, 2, ..) is proposed. By Ga or Co substitution for Cu, the structure of the ''chain'' layer changes: instead of the CuO 4 planar squares, the chains consist of MO 4 tetrahedra (M = Ga, Co) running along the [110] perovskite direction. The existing model for the Ga substituted ''123'' implies that all the chains are the same. Our new model is based on the results of Electron diffraction and High-resolution electron microscopy investigations. The model reveals the occurene of two types of chains as a consequence of ''opposite'' ordering between neighbouring tetrahedra. The corner linked tetrahedra in each chain appear as alternatingly rotated in opposite sense, and a chain itself, as being displaced with respect to the underlying structure in one of two senses; either forth (right) or back (left) along the chain direction. The regular alternation of chains of opposite type doubles the periodicity within a layer and induces the possibility for intrinsic disorder in the chain layer stacking sequence. The planar superstructure and a staggered stacking of the tetrahedral chain layers is found irrespective of the rest of the intergrowth structure. Superstructure ordering in the case of Co substitution is more perfect than for the Ga substitution. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Prehna, G.; Stebbins, C
2007-01-01
The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3221 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.
Energy Technology Data Exchange (ETDEWEB)
Prehna,G.; Stebbins, E.
2007-01-01
The Rho family of small GTPases represent well characterized signaling molecules that regulate many cellular functions such as actin cytoskeletal arrangement and the cell cycle by acting as molecular switches. A Rac1-GDP-Zn complex has been crystallized in space group P3{sub 2}21 and its crystal structure has been solved at 1.9 {angstrom} resolution. These trigonal crystals reveal the unexpected ability of Rac1 to coordinate Zn atoms in a tetrahedral fashion by use of its biologically relevant switch I and switch II regions. Upon coordination of zinc, the switch I region is stabilized in the GDP-bound conformation and contributes to a Rac1 trimer in the asymmetric unit. Zinc coordination causes switch II to adopt a novel conformation with a symmetry-related molecule. Additionally, zinc was found to displace magnesium from its octahedral coordination at switch I, although GDP binding remained stable. This structure represents the first reported Rac1-GDP-Zn complex, which further underscores the conformational flexibility and versatility of the small GTPase switch regions.
International Nuclear Information System (INIS)
Liu Aiping; Zhu Jiaqi; Han Jiecai; Wu Huaping; Jia Zechun
2007-01-01
We investigate the growth process and structural properties of phosphorus incorporated tetrahedral amorphous carbon (ta-C:P) films which are deposited at different substrate biases by filtered cathodic vacuum arc technique with PH 3 as the dopant source. The films are characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, Raman spectroscopy, residual stress measurement, UV/VIS/NIR absorption spectroscopy and temperature-dependent conductivity measurement. The atomic fraction of phosphorus in the films as a function of substrate bias is obtained by XPS analysis. The optimum bias for phosphorus incorporation is about -80 V. Raman spectra show that the amorphous structures of all samples with atomic-scaled smooth surface are not remarkably changed when PH 3 is implanted, but some small graphitic crystallites are formed. Moreover, phosphorus impurities and higher-energetic impinging ions are favorable for the clustering of sp 2 sites dispersed in sp 3 skeleton and increase the level of structural ordering for ta-C:P films, which further releases the compressive stress and enhances the conductivity of the films. Our analysis establishes an interrelationship between microstructure, stress state, electrical properties, and substrate bias, which helps to understand the deposition mechanism of ta-C:P films
Smallenburg, Frank; Filion, Laura; Sciortino, Francesco
2014-09-01
One of the most controversial hypotheses for explaining the origin of the thermodynamic anomalies characterizing liquid water postulates the presence of a metastable second-order liquid-liquid critical point [1] located in the "no-man's land" [2]. In this scenario, two liquids with distinct local structure emerge near the critical temperature. Unfortunately, since spontaneous crystallization is rapid in this region, experimental support for this hypothesis relies on significant extrapolations, either from the metastable liquid or from amorphous solid water [3, 4]. Although the liquid-liquid transition is expected to feature in many tetrahedrally coordinated liquids, including silicon [5], carbon [6] and silica, even numerical studies of atomic and molecular models have been unable to conclusively prove the existence of this transition. Here we provide such evidence for a model in which it is possible to continuously tune the softness of the interparticle interaction and the flexibility of the bonds, the key ingredients controlling the existence of the critical point. We show that conditions exist where the full coexistence is thermodynamically stable with respect to crystallization. Our work offers a basis for designing colloidal analogues of water exhibiting liquid-liquid transitions in equilibrium, opening the way for experimental confirmation of the original hypothesis.
Growth Mechanism and Origin of High s p3 Content in Tetrahedral Amorphous Carbon
Caro, Miguel A.; Deringer, Volker L.; Koskinen, Jari; Laurila, Tomi; Csányi, Gábor
2018-04-01
We study the deposition of tetrahedral amorphous carbon (ta-C) films from molecular dynamics simulations based on a machine-learned interatomic potential trained from density-functional theory data. For the first time, the high s p3 fractions in excess of 85% observed experimentally are reproduced by means of computational simulation, and the deposition energy dependence of the film's characteristics is also accurately described. High confidence in the potential and direct access to the atomic interactions allow us to infer the microscopic growth mechanism in this material. While the widespread view is that ta-C grows by "subplantation," we show that the so-called "peening" model is actually the dominant mechanism responsible for the high s p3 content. We show that pressure waves lead to bond rearrangement away from the impact site of the incident ion, and high s p3 fractions arise from a delicate balance of transitions between three- and fourfold coordinated carbon atoms. These results open the door for a microscopic understanding of carbon nanostructure formation with an unprecedented level of predictive power.
Energy Technology Data Exchange (ETDEWEB)
Chen, Yuanyuan; Farquhar, Erik R.; Chance, Mark R.; Palczewski, Krzysztof; Kiser, Philip D. (Case Western)
2012-07-11
Aminopeptidases are key enzymes involved in the regulation of signaling peptide activity. Here, we present a detailed biochemical and structural analysis of an evolutionary highly conserved aspartyl aminopeptidase called DNPEP. We show that this peptidase can cleave multiple physiologically relevant substrates, including angiotensins, and thus may play a key role in regulating neuron function. Using a combination of x-ray crystallography, x-ray absorption spectroscopy, and single particle electron microscopy analysis, we provide the first detailed structural analysis of DNPEP. We show that this enzyme possesses a binuclear zinc-active site in which one of the zinc ions is readily exchangeable with other divalent cations such as manganese, which strongly stimulates the enzymatic activity of the protein. The plasticity of this metal-binding site suggests a mechanism for regulation of DNPEP activity. We also demonstrate that DNPEP assembles into a functionally relevant tetrahedral complex that restricts access of peptide substrates to the active site. These structural data allow rationalization of the enzyme's preference for short peptide substrates with N-terminal acidic residues. This study provides a structural basis for understanding the physiology and bioinorganic chemistry of DNPEP and other M18 family aminopeptidases.
Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage
Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay
2018-04-01
The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.
Unstructured Mesh Movement and Viscous Mesh Generation for CFD-Based Design Optimization, Phase I
National Aeronautics and Space Administration — The innovations proposed by ResearchSouth are: 1) a robust method to automatically insert high quality anisotropic prismatic (viscous boundary layer) cells into any...
Prolapse Recurrence after Transvaginal Mesh Removal.
Rawlings, Tanner; Lavelle, Rebecca S; Coskun, Burhan; Alhalabi, Feras; Zimmern, Philippe E
2015-11-01
We determined the rate of pelvic organ prolapse recurrence after transvaginal mesh removal. Following institutional review board approval a longitudinally collected database of women undergoing transvaginal mesh removal for complications after transvaginal mesh placement with at least 1 year minimum followup was queried for pelvic organ prolapse recurrence. Recurrent prolapse was defined as greater than stage 1 on examination or the need for reoperation at the site of transvaginal mesh removal. Outcome measures were based on POP-Q (Pelvic Organ Prolapse Quantification System) at the last visit. Patients were grouped into 3 groups, including group 1--recurrent prolapse in the same compartment as transvaginal mesh removal, 2--persistent prolapse and 3--prolapse in a compartment different than transvaginal mesh removal. Of 73 women 52 met study inclusion criteria from 2007 to 2013, including 73% who presented with multiple indications for transvaginal mesh removal. The mean interval between insertion and removal was 45 months (range 10 to 165). Overall mean followup after transvaginal mesh removal was 30 months (range 12 to 84). In group 1 (recurrent prolapse) the rate was 15% (6 of 40 patients). Four women underwent surgery for recurrent prolapse at a mean 7 of months (range 5 to 10). Two patients elected observation. The rate of persistent prolapse (group 2) was 23% (12 of 52 patients). Three women underwent prolapse reoperation at a mean of 10 months (range 8 to 12). In group 3 (de novo/different compartment prolapse) the rate was 6% (3 of 52 patients). One woman underwent surgical repair at 52 months. At a mean 2.5-year followup 62% of patients (32 of 52) did not have recurrent or persistent prolapse after transvaginal mesh removal and 85% (44 of 52) did not undergo any further procedure for prolapse. Specifically for pelvic organ prolapse in the same compartment as transvaginal mesh removal 12% of patients had recurrence, of whom 8% underwent prolapse repair
Positive Contrast MRI Techniques for Visualization of Iron-Loaded Hernia Mesh Implants in Patients.
Directory of Open Access Journals (Sweden)
Alexander Ciritsis
Full Text Available In MRI, implants and devices can be delineated via susceptibility artefacts. To discriminate susceptibility voids from proton-free structures, different positive contrast techniques were implemented. The purpose of this study was to evaluate a pulse sequence-based positive contrast technique (PCSI and a post-processing susceptibility gradient mapping algorithm (SGM for visualization of iron loaded mesh implants in patients.Five patients with iron-loaded MR-visible inguinal hernia mesh implants were examined at 1.5 Tesla. A gradient echo sequence (GRE; parameters: TR: 8.3ms; TE: 4.3ms; NSA:2; FA:20°; FOV:350mm² and a PCSI sequence (parameters: TR: 25ms; TE: 4.6ms; NSA:4; FA:20°; FOV:350mm² with on-resonant proton suppression were performed. SGM maps were calculated using two algorithms. Image quality and mesh delineation were independently evaluated by three radiologists.On GRE, the iron-loaded meshes generated distinct susceptibility-induced signal voids. PCSI exhibited susceptibility differences including the meshes as hyperintense signals. SGM exhibited susceptibility differences with positive contrast. Visually, the different algorithms presented no significant differences. Overall, the diagnostic value was rated best in GRE whereas PCSI and SGM were barely "sufficient".Both "positive contrast" techniques depicted implanted meshes with hyperintense signal. SGM comes without additional acquisition time and can therefore be utilized in every patient.
International Nuclear Information System (INIS)
Gálisová, Lucia; Strečka, Jozef
2015-01-01
Magnetocaloric effect in a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with three equivalent lattice sites available for mobile electrons, is exactly investigated by considering the one-third electron filling and the ferromagnetic Ising exchange interaction between the mobile electrons and their nearest Ising neighbours. The entropy and the magnetic Grüneisen parameter, which closely relate to the magnetocaloric effect, are exactly calculated in order to investigate the relation between the ground-state degeneracy and the cooling efficiency of the hybrid spin–electron system during the adiabatic demagnetization. - Highlights: • A double-tetrahedral chain of mobile electrons and localized Ising spins is studied. • Magnetic Grüneisen parameter for the system is exactly derived. • Macroscopically degenerate phases FRU and FM constitute the ground state. • MCE is three times higher nearby FRU–FM transition than in FRU phase at small fields
Roth, Ted M; Reight, Ian
2012-07-01
Sacral colpopexy may be complicated by mesh exposure, and the surgical treatment of mesh exposure typically results in minor postoperative morbidity and few delayed complications. A 75-year-old woman presented 7 years after a laparoscopic sacral colpopexy, with Mersilene mesh, with an apical mesh exposure. She underwent an uncomplicated transvaginal excision and was asymptomatic until 8 months later when she presented with vaginal drainage and a sacral abscess. This was successfully treated with laparoscopic enterolysis, drainage of the abscess, and explantation of the remaining mesh. Incomplete excision of exposed colpopexy mesh can lead to ascending infection and sacral abscess. Laparoscopic drainage and mesh removal may be considered in these patients.
A study on the dependency between turbulent models and mesh configurations of CFD codes
International Nuclear Information System (INIS)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook
2015-01-01
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream
A study on the dependency between turbulent models and mesh configurations of CFD codes
Energy Technology Data Exchange (ETDEWEB)
Bang, Jungjin; Heo, Yujin; Jerng, Dong-Wook [CAU, Seoul (Korea, Republic of)
2015-10-15
This paper focuses on the analysis of the behavior of hydrogen mixing and hydrogen stratification, using the GOTHIC code and the CFD code. Specifically, we examined the mesh sensitivity and how the turbulence model affects hydrogen stratification or hydrogen mixing, depending on the mesh configuration. In this work, sensitivity analyses for the meshes and the turbulence models were conducted for missing and stratification phenomena. During severe accidents in a nuclear power plants, the generation of hydrogen may occur and this will complicate the atmospheric condition of the containment by causing stratification of air, steam, and hydrogen. This could significantly impact containment integrity analyses, as hydrogen could be accumulated in local region. From this need arises the importance of research about stratification of gases in the containment. Two computation fluid dynamics code, i.e. GOTHIC and STAR-CCM+ were adopted and the computational results were benchmarked against the experimental data from PANDA facility. The main findings observed through the present work can be summarized as follows: 1) In the case of the GOTHIC code, it was observed that the aspect ratio of the mesh was found more important than the mesh size. Also, if the number of the mesh is over 3,000, the effects of the turbulence models were marginal. 2) For STAR-CCM+, the tendency is quite different from the GOTHIC code. That is, the effects of the turbulence models were small for fewer number of the mesh, however, as the number of mesh increases, the effects of the turbulence models becomes significant. Another observation is that away from the injection orifice, the role of the turbulence models tended to be important due to the nature of mixing process and inducted jet stream.
ABC Triblock Copolymer Vesicles with Mesh-like Morphology
Zhao, Wei; Russell, Thomas; Grason, Gregory
2010-03-01
Polymer vesicles can be made from poly(isoprene-b-styrene-b-2-vinylpyridene) (PI-b-PS-b-P2VP) triblock copolymer under the confinement of anodic aluminum oxide (AAO) membrane. It was found that these vesicles have well-defined, nanoscopic size and a microphase-separated hydrophobic core, comprised of PS and PI blocks. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the core at a well-defined composition of three blocks. Confinement played an important role in generating these vesicles with such an unusual morphology.
Ridgeway, Beri; Walters, Mark D; Paraiso, Marie Fidela R; Barber, Matthew D; McAchran, Sarah E; Goldman, Howard B; Jelovsek, J Eric
2008-12-01
The purpose of this study was to determine the complications, treatments, and outcomes in patients choosing to undergo removal of mesh previously placed with a mesh procedural kit. This was a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 3-year period at Cleveland Clinic. At last follow-up, patients reported degree of pain, level of improvement, sexual activity, and continued symptoms. Nineteen patients underwent removal of mesh during the study period. Indications for removal included chronic pain (6/19), dyspareunia (6/19), recurrent pelvic organ prolapse (8/19), mesh erosion (12/19), and vesicovaginal fistula (3/19), with most patients (16/19) citing more than 1 reason. There were few complications related to the mesh removal. Most patients reported significant relief of symptoms. Mesh removal can be technically difficult but appears to be safe with few complications and high relief of symptoms, although some symptoms can persist.
Interacting spin-1/2 tetrahedral system Cu2Te2O5X2 (X = Cl, Br)
DEFF Research Database (Denmark)
Jensen, Jens
2009-01-01
Magnetic ordering and excitations of Cu2Te2O5Cl2 are analyzed in terms of a tetramerized spin model for the tetrahedral Cu clusters of spin 1/2. The mean-field model is able to account for the main properties of the incommensurable magnetic structure observed by Zaharko et al. [Phys. Rev. B 73......-dimensional fashion. Preliminary model calculations for the Cu2Te2O5Br2 system lead to the same conclusion. Udgivelsesdato: 7. Januar...
Bai, Chao-ying; He, Lei-yu; Li, Xing-wang; Sun, Jia-yu
2018-05-01
To conduct forward and simultaneous inversion in a complex geological model, including an irregular topography (or irregular reflector or velocity anomaly), we in this paper combined our previous multiphase arrival tracking method (referred as triangular shortest-path method, TSPM) in triangular (2D) or tetrahedral (3D) cell model and a linearized inversion solver (referred to as damped minimum norms and constrained least squares problem solved using the conjugate gradient method, DMNCLS-CG) to formulate a simultaneous travel time inversion method for updating both velocity and reflector geometry by using multiphase arrival times. In the triangular/tetrahedral cells, we deduced the partial derivative of velocity variation with respective to the depth change of reflector. The numerical simulation results show that the computational accuracy can be tuned to a high precision in forward modeling and the irregular velocity anomaly and reflector geometry can be accurately captured in the simultaneous inversion, because the triangular/tetrahedral cell can be easily used to stitch the irregular topography or subsurface interface.
Cartesian anisotropic mesh adaptation for compressible flow
International Nuclear Information System (INIS)
Keats, W.A.; Lien, F.-S.
2004-01-01
Simulating transient compressible flows involving shock waves presents challenges to the CFD practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented for compressible flow. This technique, developed for laminar flow by Ham, Lien and Strong, is efficient because it refines and coarsens cells using criteria that consider the solution in each of the cardinal directions separately. In this paper the method will be applied to compressible flow. The procedure shows promise in its ability to deliver good quality solutions while achieving computational savings. The convection scheme used is the Advective Upstream Splitting Method (Plus), and the refinement/ coarsening criteria are based on work done by Ham et al. Transient shock wave diffraction over a backward step and shock reflection over a forward step are considered as test cases because they demonstrate that the quality of the solution can be maintained as the mesh is refined and coarsened in time. The data structure is explained in relation to the computational mesh, and the object-oriented design and implementation of the code is presented. Refinement and coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches are shown to be significant. (author)
Mesh networks: an optimum solution for AMR
Energy Technology Data Exchange (ETDEWEB)
Mimno, G.
2003-12-01
Characteristics of mesh networks and the advantage of using them in automatic meter reading equipment (AMR) are discussed. Mesh networks are defined as being similar to a fishing net made of knots and links. In mesh networks the knots represent meter sites and the links are the radio paths between the meter sites and the neighbourhood concentrator. In mesh networks any knot in the communications chain can link to any other and the optimum path is calculated by the network by hopping from meter to meter until the radio message reaches a concentrator. This mesh communications architecture is said to be vastly superior to many older types of radio-based meter reading technologies; its main advantage is that it not only significantly improves the economics of fixed network deployment, but also supports time-of-use metering, remote disconnect services and advanced features, such as real-time pricing, demand response, and other efficiency measures, providing a better return on investment and reliability.
Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V
2016-01-01
Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh
Simple shearing flow of dry soap foams with tetrahedrally close-packed structure
Energy Technology Data Exchange (ETDEWEB)
Reinelt, Douglas A. [Department of Mathematics, Southern Methodist University, Dallas, Texas 75275-0156 (United States); Kraynik, Andrew M. [Engineering Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185-0834 (United States)
2000-05-01
The microrheology of dry soap foams subjected to quasistatic, simple shearing flow is analyzed. Two different monodisperse foams with tetrahedrally close-packed (TCP) structure are examined: Weaire-Phelan (A15) and Friauf-Laves (C15). The elastic-plastic response is evaluated by using the Surface Evolver to calculate foam structures that minimize total surface area at each value of strain. The foam geometry and macroscopic stress are piecewise continuous functions of strain. The stress scales as T/V{sup 1/3}, where T is surface tension and V is cell volume. Each discontinuity corresponds to large changes in foam geometry and topology that restore equilibrium to unstable configurations that violate Plateau's laws. The instabilities occur when the length of an edge on a polyhedral foam cell vanishes. The length can tend to zero smoothly or abruptly with strain. The abrupt case occurs when a small increase in strain changes the energy profile in the neighborhood of a foam structure from a local minimum to a saddle point, which can lead to symmetry-breaking bifurcations. In general, the new structure associated with each stable solution branch results from an avalanche of local topology changes called T1 transitions. Each T1 cascade produces different cell neighbors, reduces surface energy, and provides an irreversible, film-level mechanism for plastic yield behavior. Stress-strain curves and average stresses are evaluated by examining foam orientations that admit strain-periodic behavior. For some orientations, the deformation cycle includes Kelvin cells instead of the original TCP structure; but the foam does not remain perfectly ordered. Bifurcations during subsequent T1 cascades lead to disorder and can even cause strain localization. (c) 2000 Society of Rheology.
Peltola, Emilia; Wester, Niklas; Holt, Katherine B; Johansson, Leena-Sisko; Koskinen, Jari; Myllymäki, Vesa; Laurila, Tomi
2017-02-15
We hypothesize that by using integrated carbon nanostructures on tetrahedral amorphous carbon (ta-C), it is possible to take the performance and characteristics of these bioelectrodes to a completely new level. The integrated carbon electrodes were realized by combining nanodiamonds (NDs) with ta-C thin films coated on Ti-coated Si-substrates. NDs were functionalized with mixture of carboxyl and amine groups ND andante or amine ND amine , carboxyl ND vox or hydroxyl groups ND H and drop-casted or spray-coated onto substrate. By utilizing these novel structures we show that (i) the detection limit for dopamine can be improved by two orders of magnitude [from 10µM to 50nM] in comparison to ta-C thin film electrodes and (ii) the coating method significantly affects electrochemical properties of NDs and (iii) the ND coatings selectively promote cell viability. ND andante and ND H showed most promising electrochemical properties. The viability of human mesenchymal stem cells and osteoblastic SaOS-2 cells was increased on all ND surfaces, whereas the viability of mouse neural stem cells and rat neuroblastic cells was improved on ND andante and ND H and reduced on ND amine and ND vox. The viability of C6 cells remained unchanged, indicating that these surfaces will not cause excess gliosis. In summary, we demonstrated here that by using functionalized NDs on ta-C thin films we can significantly improve sensitivity towards dopamine as well as selectively promote cell viability. Thus, these novel carbon nanostructures provide an interesting concept for development of various in vivo targeted sensor solutions. Copyright © 2016 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Pointer, William David [ORNL
2017-08-01
The objective of this effort is to establish a strategy and process for generation of suitable computational mesh for computational fluid dynamics simulations of departure from nucleate boiling in a 5 by 5 fuel rod assembly held in place by PWR mixing vane spacer grids. This mesh generation process will support ongoing efforts to develop, demonstrate and validate advanced multi-phase computational fluid dynamics methods that enable more robust identification of dryout conditions and DNB occurrence.Building upon prior efforts and experience, multiple computational meshes were developed using the native mesh generation capabilities of the commercial CFD code STAR-CCM+. These meshes were used to simulate two test cases from the Westinghouse 5 by 5 rod bundle facility. The sensitivity of predicted quantities of interest to the mesh resolution was then established using two evaluation methods, the Grid Convergence Index method and the Least Squares method. This evaluation suggests that the Least Squares method can reliably establish the uncertainty associated with local parameters such as vector velocity components at a point in the domain or surface averaged quantities such as outlet velocity magnitude. However, neither method is suitable for characterization of uncertainty in global extrema such as peak fuel surface temperature, primarily because such parameters are not necessarily associated with a fixed point in space. This shortcoming is significant because the current generation algorithm for identification of DNB event conditions relies on identification of such global extrema. Ongoing efforts to identify DNB based on local surface conditions will address this challenge
Connectivity editing for quad-dominant meshes
Peng, Chihan
2013-08-01
We propose a connectivity editing framework for quad-dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non-quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad-dominant mesh design. © 2013 The Author(s) Computer Graphics Forum © 2013 The Eurographics Association and John Wiley & Sons Ltd.
Open preperitoneal groin hernia repair with mesh
DEFF Research Database (Denmark)
Andresen, Kristoffer; Rosenberg, Jacob
2017-01-01
Background For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. Data sources...... A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....
Open preperitoneal groin hernia repair with mesh
DEFF Research Database (Denmark)
Andresen, Kristoffer; Rosenberg, Jacob
2017-01-01
BACKGROUND: For the repair of inguinal hernias, several surgical methods have been presented where the purpose is to place a mesh in the preperitoneal plane through an open access. The aim of this systematic review was to describe preperitoneal repairs with emphasis on the technique. DATA SOURCES......: A systematic review was conducted and reported according to the PRISMA statement. PubMed, Cochrane library and Embase were searched systematically. Studies were included if they provided clinical data with more than 30 days follow up following repair of an inguinal hernia with an open preperitoneal mesh......-analysis. Open preperitoneal techniques with placement of a mesh through an open approach seem promising compared with the standard anterior techniques. This systematic review provides an overview of these techniques together with a description of surgical methods and clinical outcomes....
Combining 3d Volume and Mesh Models for Representing Complicated Heritage Buildings
Tsai, F.; Chang, H.; Lin, Y.-W.
2017-08-01
This study developed a simple but effective strategy to combine 3D volume and mesh models for representing complicated heritage buildings and structures. The idea is to seamlessly integrate 3D parametric or polyhedral models and mesh-based digital surfaces to generate a hybrid 3D model that can take advantages of both modeling methods. The proposed hybrid model generation framework is separated into three phases. Firstly, after acquiring or generating 3D point clouds of the target, these 3D points are partitioned into different groups. Secondly, a parametric or polyhedral model of each group is generated based on plane and surface fitting algorithms to represent the basic structure of that region. A "bare-bones" model of the target can subsequently be constructed by connecting all 3D volume element models. In the third phase, the constructed bare-bones model is used as a mask to remove points enclosed by the bare-bones model from the original point clouds. The remaining points are then connected to form 3D surface mesh patches. The boundary points of each surface patch are identified and these boundary points are projected onto the surfaces of the bare-bones model. Finally, new meshes are created to connect the projected points and original mesh boundaries to integrate the mesh surfaces with the 3D volume model. The proposed method was applied to an open-source point cloud data set and point clouds of a local historical structure. Preliminary results indicated that the reconstructed hybrid models using the proposed method can retain both fundamental 3D volume characteristics and accurate geometric appearance with fine details. The reconstructed hybrid models can also be used to represent targets in different levels of detail according to user and system requirements in different applications.
International Nuclear Information System (INIS)
Greene, Patrick T.; Schofield, Samuel P.; Nourgaliev, Robert
2017-01-01
A new mesh smoothing method designed to cluster cells near a dynamically evolving interface is presented. The method is based on weighted condition number mesh relaxation with the weight function computed from a level set representation of the interface. The weight function is expressed as a Taylor series based discontinuous Galerkin projection, which makes the computation of the derivatives of the weight function needed during the condition number optimization process a trivial matter. For cases when a level set is not available, a fast method for generating a low-order level set from discrete cell-centered fields, such as a volume fraction or index function, is provided. Results show that the low-order level set works equally well as the actual level set for mesh smoothing. Meshes generated for a number of interface geometries are presented, including cases with multiple level sets. Lastly, dynamic cases with moving interfaces show the new method is capable of maintaining a desired resolution near the interface with an acceptable number of relaxation iterations per time step, which demonstrates the method's potential to be used as a mesh relaxer for arbitrary Lagrangian Eulerian (ALE) methods.
Unstructured Adaptive Meshes: Bad for Your Memory?
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Local adaptive mesh refinement for shock hydrodynamics
International Nuclear Information System (INIS)
Berger, M.J.; Colella, P.; Lawrence Livermore Laboratory, Livermore, 94550 California)
1989-01-01
The aim of this work is the development of an automatic, adaptive mesh refinement strategy for solving hyperbolic conservation laws in two dimensions. There are two main difficulties in doing this. The first problem is due to the presence of discontinuities in the solution and the effect on them of discontinuities in the mesh. The second problem is how to organize the algorithm to minimize memory and CPU overhead. This is an important consideration and will continue to be important as more sophisticated algorithms that use data structures other than arrays are developed for use on vector and parallel computers. copyright 1989 Academic Press, Inc
Adaptive mesh refinement for storm surge
Mandli, Kyle T.; Dawson, Clint N.
2014-01-01
An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.
MUSIC: a mesh-unrestricted simulation code
International Nuclear Information System (INIS)
Bonalumi, R.A.; Rouben, B.; Dastur, A.R.; Dondale, C.S.; Li, H.Y.H.
1978-01-01
A general formalism to solve the G-group neutron diffusion equation is described. The G-group flux is represented by complementing an ''asymptotic'' mode with (G-1) ''transient'' modes. A particular reduction-to-one-group technique gives a high computational efficiency. MUSIC, a 2-group code using the above formalism, is presented. MUSIC is demonstrated on a fine-mesh calculation and on 2 coarse-mesh core calculations: a heavy-water reactor (HWR) problem and the 2-D lightwater reactor (LWR) IAEA benchmark. Comparison is made to finite-difference results
Adaptive mesh refinement for storm surge
Mandli, Kyle T.
2014-03-01
An approach to utilizing adaptive mesh refinement algorithms for storm surge modeling is proposed. Currently numerical models exist that can resolve the details of coastal regions but are often too costly to be run in an ensemble forecasting framework without significant computing resources. The application of adaptive mesh refinement algorithms substantially lowers the computational cost of a storm surge model run while retaining much of the desired coastal resolution. The approach presented is implemented in the GeoClaw framework and compared to ADCIRC for Hurricane Ike along with observed tide gauge data and the computational cost of each model run. © 2014 Elsevier Ltd.
Mesh removal following transvaginal mesh placement: a case series of 104 operations.
Marcus-Braun, Naama; von Theobald, Peter
2010-04-01
The objective of the study was to reveal the way we treat vaginal mesh complications in a trained referral center. This is a retrospective review of all patients who underwent surgical removal of transvaginal mesh for mesh-related complications during a 5-year period. Eighty-three patients underwent 104 operations including 61 complete mesh removal, 14 partial excision, 15 section of sub-urethral sling, and five laparoscopies. Main indications were erosion, infection, granuloma, incomplete voiding, and pain. Fifty-eight removals occurred more than 2 years after the primary mesh placement. Mean operation time was 21 min, and there were two intraoperative and ten minor postoperative complications. Stress urinary incontinence (SUI) recurred in 38% and cystocele in 19% of patients. In a trained center, mesh removal was found to be a quick and safe procedure. Mesh-related complications may frequently occur more than 2 years after the primary operation. Recurrence was mostly associated with SUI and less with genital prolapse.
International Nuclear Information System (INIS)
Ibrahim, Ahmad M.; Wilson, Paul P.; Sawan, Mohamed E.; Mosher, Scott W.; Peplow, Douglas E.; Grove, Robert E.
2014-01-01
Highlights: •Calculate the prompt dose rate everywhere throughout the entire fusion energy facility. •Utilize FW-CADIS to accurately perform difficult neutronics calculations for fusion energy systems. •Develop three mesh adaptivity algorithms to enhance FW-CADIS efficiency in fusion-neutronics calculations. -- Abstract: Three mesh adaptivity algorithms were developed to facilitate and expedite the use of the CADIS and FW-CADIS hybrid Monte Carlo/deterministic techniques in accurate full-scale neutronics simulations of fusion energy systems with immense sizes and complicated geometries. First, a macromaterial approach enhances the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm generates meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window coarsening algorithm decouples the weight window mesh and energy bins from the mesh and energy group structure of the deterministic calculations in order to remove the memory constraint of the weight window map from the deterministic mesh resolution. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility and resulted in a 23.3% increase in the number of mesh tally elements in which the dose rates were calculated in a 10-day Monte Carlo calculation. Additionally, because of the significant increase in the efficiency of FW-CADIS simulations, the three algorithms enabled this difficult calculation to be accurately solved on a regular computer cluster, eliminating the need for a world-class super computer
Pure transvaginal excision of mesh erosion involving the bladder.
Firoozi, Farzeen; Goldman, Howard B
2013-06-01
We present a pure transvaginal approach to the removal of eroded mesh involving the bladder secondary to placement of transvaginal mesh for management of pelvic organ prolapse (POP) using a mesh kit. Although technically challenging, we demonstrate the feasibility of a purely transvaginal approach, avoiding a potentially more morbid transabdominal approach. The video presents the surgical technique of pure transvaginal excision of mesh erosion involving the bladder after mesh placement using a prolapse kit was performed. This video shows that purely transvaginal removal of mesh erosion involving the bladder can be done safely and is feasible.
Seker, D; Oztuna, D; Kulacoglu, H; Genc, Y; Akcil, M
2013-04-01
Small mesh size has been recognized as one of the factors responsible for recurrence after Lichtenstein hernia repair due to insufficient coverage or mesh shrinkage. The Lichtenstein Hernia Institute recommends a 7 × 15 cm mesh that can be trimmed up to 2 cm from the lateral side. We performed a systematic review to determine surgeons' mesh size preference for the Lichtenstein hernia repair and made a meta-analysis to determine the effect of mesh size, mesh type, and length of follow-up time on recurrence. Two medical databases, PubMed and ISI Web of Science, were systematically searched using the key word "Lichtenstein repair." All full text papers were selected. Publications mentioning mesh size were brought for further analysis. A mesh surface area of 90 cm(2) was accepted as the threshold for defining the mesh as small or large. Also, a subgroup analysis for recurrence pooled proportion according to the mesh size, mesh type, and follow-up period was done. In total, 514 papers were obtained. There were no prospective or retrospective clinical studies comparing mesh size and clinical outcome. A total of 141 papers were duplicated in both databases. As a result, 373 papers were obtained. The full text was available in over 95 % of papers. Only 41 (11.2 %) papers discussed mesh size. In 29 studies, a mesh larger than 90 cm(2) was used. The most frequently preferred commercial mesh size was 7.5 × 15 cm. No papers mentioned the size of the mesh after trimming. There was no information about the relationship between mesh size and patient BMI. The pooled proportion in recurrence for small meshes was 0.0019 (95 % confidence interval: 0.007-0.0036), favoring large meshes to decrease the chance of recurrence. Recurrence becomes more marked when follow-up period is longer than 1 year (p < 0.001). Heavy meshes also decreased recurrence (p = 0.015). This systematic review demonstrates that the size of the mesh used in Lichtenstein hernia repair is rarely
Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.
Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T
2015-02-01
Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Implicit Geometry Meshing for the simulation of Rotary Friction Welding
Schmicker, D.; Persson, P.-O.; Strackeljan, J.
2014-08-01
The simulation of Rotary Friction Welding (RFW) is a challenging task, since it states a coupled problem of phenomena like large plastic deformations, heat flux, contact and friction. In particular the mesh generation and its restoration when using a Lagrangian description of motion is of significant severity. In this regard Implicit Geometry Meshing (IGM) algorithms are promising alternatives to the more conventional explicit methods. Because of the implicit description of the geometry during remeshing, the IGM procedure turns out to be highly robust and generates spatial discretizations of high quality regardless of the complexity of the flash shape and its inclusions. A model for efficient RFW simulation is presented, which is based on a Carreau fluid law, an Augmented Lagrange approach in mapping the incompressible deformations, a penalty contact approach, a fully regularized Coulomb-/fluid friction law and a hybrid time integration strategy. The implementation of the IGM algorithm using 6-node triangular finite elements is described in detail. The techniques are demonstrated on a fairly complex friction welding problem, demonstrating the performance and the potentials of the proposed method. The techniques are general and straight-forward to implement, and offer the potential of successful adoption to a wide range of other engineering problems.
Generation and Adaptive Modification of Anisotropic Meshes, Phase II
National Aeronautics and Space Administration — The ability to quickly and reliably simulate high-speed flows over a wide range of geometrically complex configurations is critical to many of NASA's missions....
Generation and Adaptive Modification of Anisotropic Meshes, Phase I
National Aeronautics and Space Administration — The ability to quickly and reliably simulate high-speed flows over a wide range of geometrically complex configurations is critical to many of NASA's missions....
Efficient unstructured mesh generation for marine renewable energy applications
Avdis, A.; Candy, A.S.; Hill, J.; Kramer, SC; Piggott, M.D.
2018-01-01
Renewable energy is the cornerstone of preventing dangerous climate change whilst main- taining a robust energy supply. Tidal energy will arguably play a critical role in the renewable energy portfolio as it is both predictable and reliable, and can be put in place across the globe. However,
Almost optimal distributed M2M multicasting in wireless mesh networks
DEFF Research Database (Denmark)
Xin, Qin; Manne, Fredrik; Zhang, Yan
2012-01-01
Wireless Mesh Networking (WMN) is an emerging communication paradigm to enable resilient, cost-efficient and reliable services for the future-generation wireless networks. In this paper, we study the problem of multipoint-to- multipoint (M2M) multicasting in a WMN which aims to use the minimum nu...
Energy optimization based path selection algorithm for IEEE 802.11s wireless mesh networks
CSIR Research Space (South Africa)
Mhlanga, MM
2011-09-01
Full Text Available It is everyone’s dream to have network connectivity anywhere at all times. This dream can only be realized provided there are feasible solutions that are put in place for the next generation of wireless works. Wireless Mesh Networks (WMNs...
International Nuclear Information System (INIS)
Palomäki, Tommi; Wester, Niklas; Caro, Miguel A.; Sainio, Sami; Protopopova, Vera; Koskinen, Jari; Laurila, Tomi
2017-01-01
Amorphous carbon based electrodes are very promising for electrochemical sensing applications. In order to better understand their structure-function relationship, the effect of film thickness on the electrochemical properties of tetrahedral amorphous carbon (ta-C) electrodes was investigated. ta-C thin films of 7, 15, 30, 50 and 100 nm were characterized in detail with Raman spectroscopy, transmission electron microscopy (TEM), conductive atomic force microscopy (c-AFM), scanning tunneling spectroscopy (STS) and X-ray absorption spectroscopy (XAS) to assess (i) the surface properties of the films, (ii) the effect of film thickness on their structure and electrical properties and (iii) the subsequent correlation with their electrochemistry. The electrochemical properties were investigated by cyclic voltammetry (CV) using two different outer-sphere redox probes, Ru(NH 3 ) 6 3+/2+ and FcMeOH, and by electrochemical impedance spectroscopy (EIS). Computational simulations using density functional theory (DFT) were carried out to rationalize the experimental findings. The characterization results showed that the sp 2 /sp 3 ratio increased with decreasing ta-C film thickness. This correlated with a decrease in mobility gap value and an increase in the average current through the films, which was also consistent with the computational results. XAS indicated that the surface of the ta-C films was always identical and composed of a sp 2 -rich layer. The CV measurements indicated reversible reaction kinetics for both outer-sphere redox probes at 7 and 15 nm ta-C films with a change to quasi-reversible behavior at a thickness of around 30 nm. The charge transfer resistance, obtained from EIS measurements, decreased with decreasing film thickness in accordance with the CV results. Based on the characterization and electrochemical results, we conclude that the reaction kinetics in the case of outer-sphere redox systems is determined mainly by the electron transport through the
Markov Random Fields on Triangle Meshes
DEFF Research Database (Denmark)
Andersen, Vedrana; Aanæs, Henrik; Bærentzen, Jakob Andreas
2010-01-01
In this paper we propose a novel anisotropic smoothing scheme based on Markov Random Fields (MRF). Our scheme is formulated as two coupled processes. A vertex process is used to smooth the mesh by displacing the vertices according to a MRF smoothness prior, while an independent edge process label...
Performance Evaluation of Coded Meshed Networks
DEFF Research Database (Denmark)
Krigslund, Jeppe; Hansen, Jonas; Pedersen, Morten Videbæk
2013-01-01
of the former to enhance the gains of the latter. We first motivate our work through measurements in WiFi mesh networks. Later, we compare state-of-the-art approaches, e.g., COPE, RLNC, to CORE. Our measurements show the higher reliability and throughput of CORE over other schemes, especially, for asymmetric...
An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory
Energy Technology Data Exchange (ETDEWEB)
Viertel, Ryan [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osting, Braxton [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics
2017-08-01
A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i) find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.
Energy Technology Data Exchange (ETDEWEB)
Lipnikov, Konstantin [Los Alamos National Laboratory; Agouzal, Abdellatif [UNIV DE LYON; Vassilevski, Yuri [Los Alamos National Laboratory
2009-01-01
We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.
Vertex Normals and Face Curvatures of Triangle Meshes
Sun, Xiang; Jiang, Caigui; Wallner, Johannes; Pottmann, Helmut
2016-01-01
This study contributes to the discrete differential geometry of triangle meshes, in combination with discrete line congruences associated with such meshes. In particular we discuss when a congruence defined by linear interpolation of vertex normals
Recurrence and Pain after Mesh Repair of Inguinal Hernias
African Journals Online (AJOL)
Abstract. Background: Surgery for inguinal hernias has ... repair. Methods: The study was conducted on all inguinal hernia patients operated between 1st. October ... bilateral (1.6%). Only 101 .... Open Mesh Versus Laparoscopic Mesh. Repair ...
Surgical Management of Pelvic floor Prolapse in women using Mesh
African Journals Online (AJOL)
RAH
polytetrafluoroethylene) . This article reviews our experience with polypropylene mesh in pelvic floor repair at the. Southern General Hospital Glasgow. The objective was to determine the safety and effectiveness of the prolene mesh in the repair ...
VARIABLE MESH STIFFNESS OF SPUR GEAR TEETH USING ...
African Journals Online (AJOL)
gear engagement. A gear mesh kinematic simulation ... model is appropnate for VMS of a spur gear tooth. The assumptions for ... This process has been continued until one complete tooth meshing cycle is ..... Element Method. Using MATLAB,.
To mesh or not to mesh: a review of pelvic organ reconstructive surgery
Dällenbach, Patrick
2015-01-01
Pelvic organ prolapse (POP) is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to clarify the risks, benefits, and the recognized indications for its use. PMID:25848324
McCoy, Olugbemisola; Vaughan, Taylor; Nickles, S Walker; Ashley, Matt; MacLachlan, Lara S; Ginsberg, David; Rovner, Eric
2016-08-01
We reviewed the outcomes of the autologous fascial pubovaginal sling as a salvage procedure for recurrent stress incontinence after intervention for polypropylene mesh erosion/exposure and/or bladder outlet obstruction in patients treated with prior transvaginal synthetic mesh for stress urinary incontinence. In a review of surgical databases at 2 institutions between January 2007 and June 2013 we identified 46 patients who underwent autologous fascial pubovaginal sling following removal of transvaginal synthetic mesh in simultaneous or staged fashion. This cohort of patients was evaluated for outcomes, including subjective and objective success, change in quality of life and complications between those who underwent staged vs concomitant synthetic mesh removal with autologous fascial pubovaginal sling placement. All 46 patients had received at least 1 prior mesh sling for incontinence and 8 (17%) had received prior transvaginal polypropylene mesh for pelvic organ prolapse repair. A total of 30 patients underwent concomitant mesh incision with or without partial excision and autologous sling placement while 16 underwent staged autologous sling placement. Mean followup was 16 months. Of the patients 22% required a mean of 1.8 subsequent interventions an average of 6.5 months after autologous sling placement with no difference in median quality of life at final followup. At last followup 42 of 46 patients (91%) and 35 of 46 (76%) had achieved objective and subjective success, respectively. There was no difference in subjective success between patients treated with a staged vs a concomitant approach (69% vs 80%, p = 0.48). Autologous fascial pubovaginal sling placement after synthetic mesh removal can be performed successfully in patients with stress urinary incontinence as a single or staged procedure. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Persistent pelvic pain following transvaginal mesh surgery: a cause for mesh removal.
Marcus-Braun, Naama; Bourret, Antoine; von Theobald, Peter
2012-06-01
Persistent pelvic pain after vaginal mesh surgery is an uncommon but serious complication that greatly affects women's quality of life. Our aim was to evaluate various procedures for mesh removal performed at a tertiary referral center in cases of persistent pelvic pain, and to evaluate the ensuing complications and outcomes. A retrospective study was conducted at the University Hospital of Caen, France, including all patients treated for removal or section of vaginal mesh due to pelvic pain as a primary cause, between January 2004 and September 2009. Ten patients met the inclusion criteria. Patients were diagnosed between 10 months and 3 years after their primary operation. Eight cases followed suburethral sling procedures and two followed mesh surgery for pelvic organ prolapse. Patients presented with obturator neuralgia (6), pudendal neuralgia (2), dyspareunia (1), and non-specific pain (1). The surgical treatment to release the mesh included: three cases of extra-peritoneal laparoscopy, four cases of complete vaginal mesh removal, one case of partial mesh removal and two cases of section of the suburethral sling. In all patients with obturator neuralgia, symptoms were resolved or improved, whereas in both cases of pudendal neuralgia the symptoms continued. There were no intra-operative complications. Post-operative Retzius hematoma was observed in one patient after laparoscopy. Mesh removal in a tertiary center is a safe procedure, necessary in some cases of persistent pelvic pain. Obturator neuralgia seems to be easier to treat than pudendal neuralgia. Early diagnosis is the key to success in prevention of chronic disease. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Laparoscopic removal of mesh used in pelvic floor surgery.
Khong, Su-Yen; Lam, Alan
2009-01-01
Various meshes are being used widely in clinical practice for pelvic reconstructive surgery despite the lack of evidence of their long-term safety and efficacy. Management of complications such as mesh erosion and dyspareunia can be challenging. Most mesh-related complications can probably be managed successfully via the transvaginal route; however, this may be impossible if surgical access is poor. This case report demonstrates the successful laparoscopic removal of mesh after several failed attempts via the vaginal route.
On Reducing Delay in Mesh-Based P2P Streaming: A Mesh-Push Approach
Liu, Zheng; Xue, Kaiping; Hong, Peilin
The peer-assisted streaming paradigm has been widely employed to distribute live video data on the internet recently. In general, the mesh-based pull approach is more robust and efficient than the tree-based push approach. However, pull protocol brings about longer streaming delay, which is caused by the handshaking process of advertising buffer map message, sending request message and scheduling of the data block. In this paper, we propose a new approach, mesh-push, to address this issue. Different from the traditional pull approach, mesh-push implements block scheduling algorithm at sender side, where the block transmission is initiated by the sender rather than by the receiver. We first formulate the optimal upload bandwidth utilization problem, then present the mesh-push approach, in which a token protocol is designed to avoid block redundancy; a min-cost flow model is employed to derive the optimal scheduling for the push peer; and a push peer selection algorithm is introduced to reduce control overhead. Finally, we evaluate mesh-push through simulation, the results of which show mesh-push outperforms the pull scheduling in streaming delay, and achieves comparable delivery ratio at the same time.
A nonlinear equivalent circuit method for analysis of passive intermodulation of mesh reflectors
Directory of Open Access Journals (Sweden)
Jiang Jie
2014-08-01
Full Text Available Passive intermodulation (PIM has gradually become a serious electromagnetic interference due to the development of high-power and high-sensitivity RF/microwave communication systems, especially large deployable mesh reflector antennas. This paper proposes a field-circuit coupling method to analyze the PIM level of mesh reflectors. With the existence of many metal–metal (MM contacts in mesh reflectors, the contact nonlinearity becomes the main reason for PIM generation. To analyze these potential PIM sources, an equivalent circuit model including nonlinear components is constructed to model a single MM contact so that the transient current through the MM contact point induced by incident electromagnetic waves can be calculated. Taking the electric current as a new electromagnetic wave source, the far-field scattering can be obtained by the use of electromagnetic numerical methods or the communication link method. Finally, a comparison between simulation and experimental results is illustrated to verify the validity of the proposed method.
Higher-order meshing of implicit geometries, Part II: Approximations on manifolds
Fries, T. P.; Schöllhammer, D.
2017-11-01
A new concept for the higher-order accurate approximation of partial differential equations on manifolds is proposed where a surface mesh composed by higher-order elements is automatically generated based on level-set data. Thereby, it enables a completely automatic workflow from the geometric description to the numerical analysis without any user-intervention. A master level-set function defines the shape of the manifold through its zero-isosurface which is then restricted to a finite domain by additional level-set functions. It is ensured that the surface elements are sufficiently continuous and shape regular which is achieved by manipulating the background mesh. The numerical results show that optimal convergence rates are obtained with a moderate increase in the condition number compared to handcrafted surface meshes.
Larché, J-F; Seynaeve, J-M; Voyard, G; Bussière, P-O; Gardette, J-L
2011-04-21
The thermoporosimetry method was adapted to determine the mesh size distribution of an acrylate thermoset clearcoat. This goal was achieved by increasing the solvent rate transfer by increasing the pressure and temperature. A comparison of the results obtained using this approach with those obtained by DMA (dynamic mechanical analysis) underlined the accuracy of thermoporosimetry in characterizing the macromolecular architecture of thermosets. The thermoporosimetry method was also used to analyze the effects of photoaging on cross-linking, which result from the photodegradation of the acrylate thermoset. It was found that the formation of a three-dimensional network followed by densification generates a modification of the average mesh size that leads to a dramatic decrease of the meshes of the polymer.
Selective separation of oil and water with mesh membranes by capillarity
Yu, Yuanlie; Chen, Hua; Liu, Yun; Craig, Vincent S.J.; Lai, Zhiping
2016-01-01
The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.
A new anisotropic mesh adaptation method based upon hierarchical a posteriori error estimates
Huang, Weizhang; Kamenski, Lennard; Lang, Jens
2010-03-01
A new anisotropic mesh adaptation strategy for finite element solution of elliptic differential equations is presented. It generates anisotropic adaptive meshes as quasi-uniform ones in some metric space, with the metric tensor being computed based on hierarchical a posteriori error estimates. A global hierarchical error estimate is employed in this study to obtain reliable directional information of the solution. Instead of solving the global error problem exactly, which is costly in general, we solve it iteratively using the symmetric Gauß-Seidel method. Numerical results show that a few GS iterations are sufficient for obtaining a reasonably good approximation to the error for use in anisotropic mesh adaptation. The new method is compared with several strategies using local error estimators or recovered Hessians. Numerical results are presented for a selection of test examples and a mathematical model for heat conduction in a thermal battery with large orthotropic jumps in the material coefficients.
Selective separation of oil and water with mesh membranes by capillarity
Yu, Yuanlie
2016-05-29
The separation of oil and water from wastewater generated in the oil-production industries, as well as in frequent oil spillage events, is important in mitigating severe environmental and ecological damage. Additionally, a wide arrange of industrial processes require oils or fats to be removed from aqueous systems. The immiscibility of oil and water allows for the wettability of solid surfaces to be engineered to achieve the separation of oil and water through capillarity. Mesh membranes with extreme, selective wettability can efficiently remove oil or water from oil/water mixtures through a simple filtration process using gravity. A wide range of different types of mesh membranes have been successfully rendered with extreme wettability and applied to oil/water separation in the laboratory. These mesh materials have typically shown good durability, stability as well as reusability, which makes them promising candidates for an ever widening range of practical applications. © 2016 Elsevier B.V.
Wang, Tianyang; Chu, Fulei; Han, Qinkai
2017-03-01
Identifying the differences between the spectra or envelope spectra of a faulty signal and a healthy baseline signal is an efficient planetary gearbox local fault detection strategy. However, causes other than local faults can also generate the characteristic frequency of a ring gear fault; this may further affect the detection of a local fault. To address this issue, a new filtering algorithm based on the meshing resonance phenomenon is proposed. In detail, the raw signal is first decomposed into different frequency bands and levels. Then, a new meshing index and an MRgram are constructed to determine which bands belong to the meshing resonance frequency band. Furthermore, an optimal filter band is selected from this MRgram. Finally, the ring gear fault can be detected according to the envelope spectrum of the band-pass filtering result. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Zeilinger, Michael; van Wüllen, Leo; Benson, Daryn; Kranak, Verina F; Konar, Sumit; Fässler, Thomas F; Häussermann, Ulrich
2013-06-03
Silicon swallows up boron: The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi2 was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels (see picture). LiBSi2 is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts.
Energy Technology Data Exchange (ETDEWEB)
Zeilinger, Michael; Faessler, Thomas F. [Department of Chemistry, Technische Universitaet Muenchen, Garching (Germany); Wuellen, Leo van [Department of Physics, University of Augsburg (Germany); Benson, Daryn [Department of Physics, Arizona State University, Tempe, AZ (United States); Kranak, Verina F.; Konar, Sumit; Haeussermann, Ulrich [Department of Materials and Environmental Chemistry, Stockholm University (Sweden)
2013-06-03
Silicon swallows up boron. The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi{sub 2} was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels. LiBSi{sub 2} is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Shah, Ketul; Nikolavsky, Dmitriy; Gilsdorf, Daniel; Flynn, Brian J
2013-12-01
We present our management of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling using a novel combination of surgical techniques including total or near total mesh excision, urinary tract reconstruction, and concomitant pubovaginal sling with autologous rectus fascia in a single operation. We retrospectively reviewed the medical records of 189 patients undergoing transvaginal removal of polypropylene mesh from the lower urinary tract or vagina. The focus of this study is 21 patients with LUT mesh perforation after mid-urethral polypropylene mesh sling. We excluded patients with LUT mesh perforation from prolapse kits (n = 4) or sutures (n = 11), or mesh that was removed because of isolated vaginal wall exposure without concomitant LUT perforation (n = 164). Twenty-one patients underwent surgical removal of mesh through a transvaginal approach or combined transvaginal/abdominal approaches. The location of the perforation was the urethra in 14 and the bladder in 7. The mean follow-up was 22 months. There were no major intraoperative complications. All patients had complete resolution of the mesh complication and the primary symptom. Of the patients with urethral perforation, continence was achieved in 10 out of 14 (71.5 %). Of the patients with bladder perforation, continence was achieved in all 7. Total or near total removal of lower urinary tract (LUT) mesh perforation after mid-urethral polypropylene mesh sling can completely resolve LUT mesh perforation in a single operation. A concomitant pubovaginal sling can be safely performed in efforts to treat existing SUI or avoid future surgery for SUI.
21 CFR 870.3650 - Pacemaker polymeric mesh bag.
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Pacemaker polymeric mesh bag. 870.3650 Section 870...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Prosthetic Devices § 870.3650 Pacemaker polymeric mesh bag. (a) Identification. A pacemaker polymeric mesh bag is an implanted device used to hold a...
Papoutsakis, Andreas; Sazhin, Sergei S.; Begg, Steven; Danaila, Ionut; Luddens, Francky
2018-06-01
We present an Adaptive Mesh Refinement (AMR) method suitable for hybrid unstructured meshes that allows for local refinement and de-refinement of the computational grid during the evolution of the flow. The adaptive implementation of the Discontinuous Galerkin (DG) method introduced in this work (ForestDG) is based on a topological representation of the computational mesh by a hierarchical structure consisting of oct- quad- and binary trees. Adaptive mesh refinement (h-refinement) enables us to increase the spatial resolution of the computational mesh in the vicinity of the points of interest such as interfaces, geometrical features, or flow discontinuities. The local increase in the expansion order (p-refinement) at areas of high strain rates or vorticity magnitude results in an increase of the order of accuracy in the region of shear layers and vortices. A graph of unitarian-trees, representing hexahedral, prismatic and tetrahedral elements is used for the representation of the initial domain. The ancestral elements of the mesh can be split into self-similar elements allowing each tree to grow branches to an arbitrary level of refinement. The connectivity of the elements, their genealogy and their partitioning are described by linked lists of pointers. An explicit calculation of these relations, presented in this paper, facilitates the on-the-fly splitting, merging and repartitioning of the computational mesh by rearranging the links of each node of the tree with a minimal computational overhead. The modal basis used in the DG implementation facilitates the mapping of the fluxes across the non conformal faces. The AMR methodology is presented and assessed using a series of inviscid and viscous test cases. Also, the AMR methodology is used for the modelling of the interaction between droplets and the carrier phase in a two-phase flow. This approach is applied to the analysis of a spray injected into a chamber of quiescent air, using the Eulerian
Prosthetic Mesh Repair for Incarcerated Inguinal Hernia
Directory of Open Access Journals (Sweden)
Cihad Tatar
2016-08-01
Full Text Available Background: Incarcerated inguinal hernia is a commonly encountered urgent surgical condition, and tension-free repair is a well-established method for the treatment of noncomplicated cases. However, due to the risk of prosthetic material-related infections, the use of mesh in the repair of strangulated or incarcerated hernia has often been subject to debate. Recent studies have demonstrated that biomaterials represent suitable materials for performing urgent hernia repair. Certain studies recommend mesh repair only for cases where no bowel resection is required; other studies, however, recommend mesh repair for patients requiring bowel resection as well. Aim: The aim of this study was to compare the outcomes of different surgical techniques performed for strangulated hernia, and to evaluate the effect of mesh use on postoperative complications. Study Design: Retrospective cross-sectional study. Methods: This retrospective study was performed with 151 patients who had been admitted to our hospital’s emergency department to undergo surgery for a diagnosis of incarcerated inguinal hernia. The patients were divided into two groups based on the applied surgical technique. Group 1 consisted of 112 patients treated with mesh-based repair techniques, while Group 2 consisted of 39 patients treated with tissue repair techniques. Patients in Group 1 were further divided into two sub-groups: one consisting of patients undergoing bowel resection (Group 3, and the other consisting of patients not undergoing bowel resection (Group 4. Results: In Group 1, it was observed that eight (7.14% of the patients had wound infections, while two (1.78% had hematomas, four (3.57% had seromas, and one (0.89% had relapse. In Group 2, one (2.56% of the patients had a wound infection, while three (7.69% had hematomas, one (2.56% had seroma, and none had relapses. There were no statistically significant differences between the two groups with respect to wound infection
To mesh or not to mesh: a review of pelvic organ reconstructive surgery
Directory of Open Access Journals (Sweden)
Dällenbach P
2015-04-01
Full Text Available Patrick Dällenbach Department of Gynecology and Obstetrics, Division of Gynecology, Urogynecology Unit, Geneva University Hospitals, Geneva, Switzerland Abstract: Pelvic organ prolapse (POP is a major health issue with a lifetime risk of undergoing at least one surgical intervention estimated at close to 10%. In the 1990s, the risk of reoperation after primary standard vaginal procedure was estimated to be as high as 30% to 50%. In order to reduce the risk of relapse, gynecological surgeons started to use mesh implants in pelvic organ reconstructive surgery with the emergence of new complications. Recent studies have nevertheless shown that the risk of POP recurrence requiring reoperation is lower than previously estimated, being closer to 10% rather than 30%. The development of mesh surgery – actively promoted by the marketing industry – was tremendous during the past decade, and preceded any studies supporting its benefit for our patients. Randomized trials comparing the use of mesh to native tissue repair in POP surgery have now shown better anatomical but similar functional outcomes, and meshes are associated with more complications, in particular for transvaginal mesh implants. POP is not a life-threatening condition, but a functional problem that impairs quality of life for women. The old adage “primum non nocere” is particularly appropriate when dealing with this condition which requires no treatment when asymptomatic. It is currently admitted that a certain degree of POP is physiological with aging when situated above the landmark of the hymen. Treatment should be individualized and the use of mesh needs to be selective and appropriate. Mesh implants are probably an important tool in pelvic reconstructive surgery, but the ideal implant has yet to be found. The indications for its use still require caution and discernment. This review explores the reasons behind the introduction of mesh augmentation in POP surgery, and aims to
Partitioning of unstructured meshes for load balancing
International Nuclear Information System (INIS)
Martin, O.C.; Otto, S.W.
1994-01-01
Many large-scale engineering and scientific calculations involve repeated updating of variables on an unstructured mesh. To do these types of computations on distributed memory parallel computers, it is necessary to partition the mesh among the processors so that the load balance is maximized and inter-processor communication time is minimized. This can be approximated by the problem, of partitioning a graph so as to obtain a minimum cut, a well-studied combinatorial optimization problem. Graph partitioning algorithms are discussed that give good but not necessarily optimum solutions. These algorithms include local search methods recursive spectral bisection, and more general purpose methods such as simulated annealing. It is shown that a general procedure enables to combine simulated annealing with Kernighan-Lin. The resulting algorithm is both very fast and extremely effective. (authors) 23 refs., 3 figs., 1 tab
Adaptive upscaling with the dual mesh method
Energy Technology Data Exchange (ETDEWEB)
Guerillot, D.; Verdiere, S.
1997-08-01
The objective of this paper is to demonstrate that upscaling should be calculated during the flow simulation instead of trying to enhance the a priori upscaling methods. Hence, counter-examples are given to motivate our approach, the so-called Dual Mesh Method. The main steps of this numerical algorithm are recalled. Applications illustrate the necessity to consider different average relative permeability values depending on the direction in space. Moreover, these values could be different for the same average saturation. This proves that an a priori upscaling cannot be the answer even in homogeneous cases because of the {open_quotes}dynamical heterogeneity{close_quotes} created by the saturation profile. Other examples show the efficiency of the Dual Mesh Method applied to heterogeneous medium and to an actual field case in South America.
Variational mesh segmentation via quadric surface fitting
Yan, Dongming
2012-11-01
We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.
Variational mesh segmentation via quadric surface fitting
Yan, Dongming; Wang, Wen Ping; Liu, Yang; Yang, Zhouwang
2012-01-01
We present a new variational method for mesh segmentation by fitting quadric surfaces. Each component of the resulting segmentation is represented by a general quadric surface (including plane as a special case). A novel energy function is defined to evaluate the quality of the segmentation, which combines both L2 and L2 ,1 metrics from a triangle to a quadric surface. The Lloyd iteration is used to minimize the energy function, which repeatedly interleaves between mesh partition and quadric surface fitting. We also integrate feature-based and simplification-based techniques in the segmentation framework, which greatly improve the performance. The advantages of our algorithm are demonstrated by comparing with the state-of-the-art methods. © 2012 Elsevier Ltd. All rights reserved.
Meshed split skin graft for extensive vitiligo
Directory of Open Access Journals (Sweden)
Srinivas C
2004-05-01
Full Text Available A 30 year old female presented with generalized stable vitiligo involving large areas of the body. Since large areas were to be treated it was decided to do meshed split skin graft. A phototoxic blister over recipient site was induced by applying 8 MOP solution followed by exposure to UVA. The split skin graft was harvested from donor area by Padgett dermatome which was meshed by an ampligreffe to increase the size of the graft by 4 times. Significant pigmentation of the depigmented skin was seen after 5 months. This procedure helps to cover large recipient areas, when pigmented donor skin is limited with minimal risk of scarring. Phototoxic blister enables easy separation of epidermis thus saving time required for dermabrasion from recipient site.
Directory of Open Access Journals (Sweden)
Klaus Oehr
2014-11-01
Full Text Available We hypothesize a mechanistic model of how negatively-charged exclusion zones (EZs are created. While the growth of EZs is known to be associated with the absorption of ambient photonic energy, the molecular dynamics giving rise to this process need greater elucidation. We believe they arise due to the formation of oxy-subhydride structures (OH−(H2O4 with a tetrahedral (sp3 (OH−(H2O3 core. Five experimental data sets derived by previous researchers were assessed in this regard: (1 water-derived EZ light absorbance at specific infrared wavelengths, (2 EZ negative potential in water and ethanol, (3 maximum EZ light absorbance at 270 nm ultraviolet wavelength, (4 ability of dimethyl sulphoxide but not ether to form an EZ, and (5 transitory nature of melting ice derived EZs. The proposed tetrahedral oxy-subhydride structures (TOSH appear to adequately account for all of the experimental evidence derived from water or other polar solvents.
Energy-efficient wireless mesh infrastructures
Al-Hazmi, Y.; de Meer, Hermann; Hummel, Karin Anna; Meyer, Harald; Meo, Michela; Remondo Bueno, David
2011-01-01
The Internet comprises access segments with wired and wireless technologies. In the future, we can expect wireless mesh infrastructures (WMIs) to proliferate in this context. Due to the relatively low energy efficiency of wireless transmission, as compared to wired transmission, energy consumption of WMIs can represent a significant part of the energy consumption of the Internet as a whole. We explore different approaches to reduce energy consumption in WMIs, taking into accoun...
MESHREF, Finite Elements Mesh Combination with Renumbering
International Nuclear Information System (INIS)
1973-01-01
1 - Nature of physical problem solved: The program can assemble different meshes stored on tape or cards. Renumbering is performed in order to keep band width low. Voids and/ or local refinement are possible. 2 - Method of solution: Topology and geometry are read according to input specifications. Abundant nodes and elements are eliminated. The new topology and geometry are stored on tape. 3 - Restrictions on the complexity of the problem: Maximum number of nodes = 2000. Maximum number of elements = 1500
Symmetries and the coarse-mesh method
International Nuclear Information System (INIS)
Makai, M.
1980-10-01
This report approaches the basic problem of the coarse-mesh method from a new side. Group theory is used for the determination of the space dependency of the flux. The result is a method called ANANAS after the analytic-analytic solution. This method was tested on two benchmark problems: one given by Melice and the IAEA benchmark. The ANANAS program is an experimental one. The method was intended for use in hexagonal geometry. (Auth.)
Wireless experiments on a Motorola mesh testbed.
Energy Technology Data Exchange (ETDEWEB)
Riblett, Loren E., Jr.; Wiseman, James M.; Witzke, Edward L.
2010-06-01
Motomesh is a Motorola product that performs mesh networking at both the client and access point levels and allows broadband mobile data connections with or between clients moving at vehicular speeds. Sandia National aboratories has extensive experience with this product and its predecessors in infrastructure-less mobile environments. This report documents experiments, which characterize certain aspects of how the Motomesh network performs when obile units are added to a fixed network infrastructure.
Current situation of transvaginal mesh repair for pelvic organ prolapse.
Zhu, Lan; Zhang, Lei
2014-09-01
Surgical mesh is a metallic or polymeric screen intended to be implanted to reinforce soft tissue or bone where weakness exists. Surgical mesh has been used since the 1950s to repair abdominal hernias. In the 1970s, gynecologists began using surgical mesh products to indicate the repair of pelvic organ prolapse (POP), and in the 1990s, gynecologists began using surgical mesh for POP. Then the U.S. Food and Drug Administration (FDA) approved the first surgical mesh product specifically for use in POP. Surgical mesh materials can be divided into several categories. Most surgical mesh devices cleared for POP procedures are composed of non-absorbable synthetic polypropylene. Mesh can be placed in the anterior vaginal wall to aid in the correction of cystocele (anterior repair), in the posterior vaginal wall to aid in correction of rectocele (posterior repair), or attached to the top of the vagina to correct uterine prolapse or vaginal apical prolapse (apical repair). Over the past decades, surgical mesh products for transvaginal POP repair became incorporated into "kits" that included tools to aid in the delivery and insertion of the mesh. Surgical mesh kits continue to evolve, adding new insertion tools, tissue fixation anchors, surgical techniques, and ab- sorbable and biological materials. This procedure has been performed popularly. It was also performed increased in China. But this new technique met some trouble recently and let shake in urogynecology.
Predicting mesh density for adaptive modelling of the global atmosphere.
Weller, Hilary
2009-11-28
The shallow water equations are solved using a mesh of polygons on the sphere, which adapts infrequently to the predicted future solution. Infrequent mesh adaptation reduces the cost of adaptation and load-balancing and will thus allow for more accurate mapping on adaptation. We simulate the growth of a barotropically unstable jet adapting the mesh every 12 h. Using an adaptation criterion based largely on the gradient of the vorticity leads to a mesh with around 20 per cent of the cells of a uniform mesh that gives equivalent results. This is a similar proportion to previous studies of the same test case with mesh adaptation every 1-20 min. The prediction of the mesh density involves solving the shallow water equations on a coarse mesh in advance of the locally refined mesh in order to estimate where features requiring higher resolution will grow, decay or move to. The adaptation criterion consists of two parts: that resolved on the coarse mesh, and that which is not resolved and so is passively advected on the coarse mesh. This combination leads to a balance between resolving features controlled by the large-scale dynamics and maintaining fine-scale features.
Cu mesh for flexible transparent conductive electrodes.
Kim, Won-Kyung; Lee, Seunghun; Hee Lee, Duck; Hee Park, In; Seong Bae, Jong; Woo Lee, Tae; Kim, Ji-Young; Hun Park, Ji; Chan Cho, Yong; Ryong Cho, Chae; Jeong, Se-Young
2015-06-03
Copper electrodes with a micromesh/nanomesh structure were fabricated on a polyimide substrate using UV lithography and wet etching to produce flexible transparent conducting electrodes (TCEs). Well-defined mesh electrodes were realized through the use of high-quality Cu thin films. The films were fabricated using radio-frequency (RF) sputtering with a single-crystal Cu target--a simple but innovative approach that overcame the low oxidation resistance of ordinary Cu. Hybrid Cu mesh electrodes were fabricated by adding a capping layer of either ZnO or Al-doped ZnO. The sheet resistance and the transmittance of the electrode with an Al-doped ZnO capping layer were 6.197 ohm/sq and 90.657%, respectively, and the figure of merit was 60.502 × 10(-3)/ohm, which remained relatively unchanged after thermal annealing at 200 °C and 1,000 cycles of bending. This fabrication technique enables the mass production of large-area flexible TCEs, and the stability and high performance of Cu mesh hybrid electrodes in harsh environments suggests they have strong potential for application in smart displays and solar cells.
Numerical Investigation of Corrugated Wire Mesh Laminate
Directory of Open Access Journals (Sweden)
Jeongho Choi
2013-01-01
Full Text Available The aim of this work is to develop a numerical model of Corrugated Wire Mesh Laminate (CWML capturing all its complexities such as nonlinear material properties, nonlinear geometry and large deformation behaviour, and frictional behaviour. Development of such a model will facilitate numerical simulation of the mechanical behaviour of the wire mesh structure under various types of loading as well as the variation of the CWML configuration parameters to tailor its mechanical properties to suit the intended application. Starting with a single strand truss model consisting of four waves with a bilinear stress-strain model to represent the plastic behaviour of stainless steel, the finite element model is gradually built up to study single-layer structures with 18 strands of corrugated wire meshes consistency and double- and quadruple-layered laminates with alternating crossply orientations. The compressive behaviour of the CWML model is simulated using contact elements to model friction and is compared to the load-deflection behaviour determined experimentally in uniaxial compression tests. The numerical model of the CWML is then employed to conduct the aim of establishing the upper and lower bounds of stiffness and load capacity achievable by such structures.
Data-Parallel Mesh Connected Components Labeling and Analysis
Energy Technology Data Exchange (ETDEWEB)
Harrison, Cyrus; Childs, Hank; Gaither, Kelly
2011-04-10
We present a data-parallel algorithm for identifying and labeling the connected sub-meshes within a domain-decomposed 3D mesh. The identification task is challenging in a distributed-memory parallel setting because connectivity is transitive and the cells composing each sub-mesh may span many or all processors. Our algorithm employs a multi-stage application of the Union-find algorithm and a spatial partitioning scheme to efficiently merge information across processors and produce a global labeling of connected sub-meshes. Marking each vertex with its corresponding sub-mesh label allows us to isolate mesh features based on topology, enabling new analysis capabilities. We briefly discuss two specific applications of the algorithm and present results from a weak scaling study. We demonstrate the algorithm at concurrency levels up to 2197 cores and analyze meshes containing up to 68 billion cells.
Global Time Tomography of Finite Frequency Waves with Optimized Tetrahedral Grids.
Montelli, R.; Montelli, R.; Nolet, G.; Dahlen, F. A.; Masters, G.; Hung, S.
2001-12-01
Besides true velocity heterogeneities, tomographic images reflect the effect of data errors, model parametrization, linearization, uncertainties involved with the solution of the forward problem and the greatly inadequate sampling of the earth by seismic rays. These influences cannot be easily separated and often produce artefacts in the final image with amplitudes comparable to those of the velocity heterogeneities. In practice, the tomographer uses some form of damping of the ill-resolved aspects of the model to get a unique solution and reduce the influence of the errors. However damping is not fully adequate, and may reveal a strong influence of the ray path coverage in tomographic images. If some cells are ill determinated regularization techniques may lead to heterogeneity because these cells are damped towards zero. Thus we want a uniform resolution of the parameters in our model. This can be obtained by using an irregular grid with variable length scales. We have introduced an irregular parametrization of the velocity structure by using a Delaunay triangulation. Extensively work on error analysis of tomographic images together with mesh optimization has shown that both resolution and ray density can provide the critical informations needed to re-design grids. However, criteria based on resolution are preferred in the presence of narrow ray beams coming from the same direction. This can be understood if we realise that resolution is not only determined by the number of rays crossing a region, but also by their azimutal coverage. We shall discuss various strategies for grid optimization. In general the computation of the travel times is restricted to ray theory, the infinite frequency approximation of the elastodynamic equation of motion. This simplifies the mathematic and is therefore widely applied in seismic tomography. But ray theory does not account for scattering, wavefront healing and other diffraction effects that render the traveltime of a finite
Oral, intestinal, and skin bacteria in ventral hernia mesh implants
Directory of Open Access Journals (Sweden)
Odd Langbach
2016-07-01
Full Text Available Background: In ventral hernia surgery, mesh implants are used to reduce recurrence. Infection after mesh implantation can be a problem and rates around 6–10% have been reported. Bacterial colonization of mesh implants in patients without clinical signs of infection has not been thoroughly investigated. Molecular techniques have proven effective in demonstrating bacterial diversity in various environments and are able to identify bacteria on a gene-specific level. Objective: The purpose of this study was to detect bacterial biofilm in mesh implants, analyze its bacterial diversity, and look for possible resemblance with bacterial biofilm from the periodontal pocket. Methods: Thirty patients referred to our hospital for recurrence after former ventral hernia mesh repair, were examined for periodontitis in advance of new surgical hernia repair. Oral examination included periapical radiographs, periodontal probing, and subgingival plaque collection. A piece of mesh (1×1 cm from the abdominal wall was harvested during the new surgical hernia repair and analyzed for bacteria by PCR and 16S rRNA gene sequencing. From patients with positive PCR mesh samples, subgingival plaque samples were analyzed with the same techniques. Results: A great variety of taxa were detected in 20 (66.7% mesh samples, including typical oral commensals and periodontopathogens, enterics, and skin bacteria. Mesh and periodontal bacteria were further analyzed for similarity in 16S rRNA gene sequences. In 17 sequences, the level of resemblance between mesh and subgingival bacterial colonization was 98–100% suggesting, but not proving, a transfer of oral bacteria to the mesh. Conclusion: The results show great bacterial diversity on mesh implants from the anterior abdominal wall including oral commensals and periodontopathogens. Mesh can be reached by bacteria in several ways including hematogenous spread from an oral site. However, other sites such as gut and skin may also
ABC triblock copolymer vesicles with mesh-like morphology.
Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P
2011-01-25
Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.
Carvalho, Sílvia C. P.; de Lima, João L. M. P.; de Lima, M. Isabel P.
2013-04-01
Rainfall simulators can be a powerful tool to increase our understanding of hydrological and geomorphological processes. Nevertheless, rainfall simulators' design and operation might be rather demanding, for achieving specific rainfall intensity distributions and drop characteristics. The pressurized simulators have some advantages over the non-pressurized simulators: drops do not rely on gravity to reach terminal velocity, but are sprayed out under pressure; pressurized simulators also yield a broad range of drop sizes in comparison with drop-formers simulators. The main purpose of this study was to explore in the laboratory the potential of combining spray nozzle simulators with meshes in order to change rainfall characteristics (rainfall intensity and diameters and fall speed of drops). Different types of spray nozzles were tested, such as single full-cone and multiple full-cone nozzles. The impact of the meshes on the simulated rain was studied by testing different materials (i.e. plastic and steel meshes), square apertures and wire thicknesses, and different vertical distances between the nozzle and the meshes underneath. The diameter and fall speed of the rain drops were measured using a Laser Precipitation Monitor (Thies Clima). The rainfall intensity range and coefficients of uniformity of the sprays and the drop size distribution, fall speed and kinetic energy were analysed. Results show that when meshes intercept drop trajectories the spatial distribution of rainfall intensity and the drop size distribution are affected. As the spray nozzles generate typically small drop sizes and narrow drop size distributions, meshes can be used to promote the formation of bigger drops and random their landing positions.
Directory of Open Access Journals (Sweden)
Marijan Lužnik
2018-02-01
Full Text Available Background. Use of alloplastic mesh implantates allow a new urogynecologycal surgical techniques achieve a marked improvement in pelvic organ static and pelvic floor function with minimally invasive needle transvaginal intervention like an anterior transobturator mesh (ATOM and a posterior ischiorectal mesh (PIRM procedures. Methods. In three years, between April 2006 and May 2009, we performed one hundred and eightyfour operative corrections of female pelvic organ prolapse (POP and pelvic floor dysfunction (PFD with mesh implantates. The eighty-three patients with surgical procedure TVT-O or Monarc as solo intervention indicated by stress urinary incontinence without POP, are not included in this number. In 97 % of mesh operations, Gynemesh 10 × 15 cm was used. For correction of anterior vaginal prolapse with ATOM procedure, Gynemesh was individually trimmed in mesh with 6 free arms for tension-free transobturator application and tension-free apical collar. IVS (Intravaginal sling 04 Tunneller (Tyco needle system was used for transobturator application of 6 arms through 4 dermal incisions (2 on right and 2 on left. Minimal anterior median colpotomy was made in two separate parts. For correction of posterior vaginal prolapse with PIRM procedure Gynemesh was trimmed in mesh with 4 free arms and tension-free collar. Two ischiorectal long arms for tension-free application through fossa ischiorectale – right and left, and two short arms for perineal body also on both sides. IVS 02 Tunneller (Tyco needle system was used for tension-free application of 4 arms through 4 dermal incisions (2 on right and 2 on left in PIRM. Results. All 184 procedures were performed relatively safely. In 9 cases of ATOM we had perforation of bladder, in 5 by application of anterior needle, in 3 by application of posterior needle and in one case with pincette when collar was inserted in lateral vesico – vaginal space. In 2 cases of PIRM we had perforation of rectum
Texturing of continuous LOD meshes with the hierarchical texture atlas
Birkholz, Hermann
2006-02-01
For the rendering of detailed virtual environments, trade-offs have to be made between image quality and rendering time. An immersive experience of virtual reality always demands high frame-rates with the best reachable image qual-ity. Continuous Level of Detail (cLoD) triangle-meshes provide an continuous spectrum of detail for a triangle mesh that can be used to create view-dependent approximations of the environment in real-time. This enables the rendering with a constant number of triangles and thus with constant frame-rates. Normally the construction of such cLoD mesh representations leads to the loss of all texture information of the original mesh. To overcome this problem, a parameter domain can be created, in order to map the surface properties (colour, texture, normal) to it. This parameter domain can be used to map the surface properties back to arbitrary approximations of the original mesh. The parameter domain is often a simplified version of the mesh to be parameterised. This limits the reachable simplification to the domain mesh which has to map the surface of the original mesh with the least possible stretch. In this paper, a hierarchical domain mesh is presented, that scales between very coarse domain meshes and good property-mapping.
International Nuclear Information System (INIS)
Zhogolev, D.A.; Bunyatyan, B.Kh.; Yatsimirskij, K.B.
1975-01-01
Aquacomplexes formation energies of bi- and trivalent ions of 3d transition metals from Sc to Ni in the tetrahedral and octahedral coordinations have been calculated to compare their energetic advantages. Unlike ions of alkali metals and halogens, a tendency for higher or at least equal energetic effect of the formation of a tetrahedral complex, compared to octahedral, is characteristic of the ions under study. This can be explained by an increase in the covalency degree of the bond ion-ligand and by a considerable charge transfer from ligands to the central ion in the case of transition elements
Performance of the hybrid wireless mesh protocol for wireless mesh networks
DEFF Research Database (Denmark)
Boye, Magnus; Staalhagen, Lars
2010-01-01
Wireless mesh networks offer a new way of providing end-user access and deploying network infrastructure. Though mesh networks offer a price competitive solution to wired networks, they also come with a set of new challenges such as optimal path selection, channel utilization, and load balancing....... and proactive. Two scenarios of different node density are considered for both path selection modes. The results presented in this paper are based on a simulation model of the HWMP specification in the IEEE 802.11s draft 4.0 implemented in OPNET Modeler....
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Performance of FACTS equipment in Meshed systems
Energy Technology Data Exchange (ETDEWEB)
Lerch, E; Povh, D [Siemens AG, Berlin (Germany)
1994-12-31
Modern power electronic devices such as thyristors and GTOs have made it possible to design controllable network elements, which will play a considerable role in ensuring reliable economic operation of transmission systems as a result of their capability to rapidly change active and reactive power. A number of FACTS elements for high-speed active and reactive power control will be described. Control of power system fluctuations in meshed systems by modulation of active and reactive power will be demonstrated using a number of examples. (author) 7 refs., 11 figs.
Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis
2015-10-14
The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.
International Nuclear Information System (INIS)
Reich, A.; Falicov, L.M.
1986-01-01
An exact solution of a four-site tetrahedral-crystal model, the smallest face-centered-cubic crystal, is presented in the case of an intermediate-valence system. The model consists of the following: (a) one extended orbital and one localized orbital per atom, (b) an interatomic transfer term between extended orbitals, (c) an interatomic hybridization between the localized and extended orbitals, (d) strong intra-atomic Coulomb repulsion between opposite-spin localized states, and (e) intermediate-strength intra-atomic Coulomb repulsion between the localized and extended states. These competing effects are examined as they manifest themselves in the intermediate-valence, photoemission, inverse-photoemission, and thermodynamic properties
A moving mesh method with variable relaxation time
Soheili, Ali Reza; Stockie, John M.
2006-01-01
We propose a moving mesh adaptive approach for solving time-dependent partial differential equations. The motion of spatial grid points is governed by a moving mesh PDE (MMPDE) in which a mesh relaxation time \\tau is employed as a regularization parameter. Previously reported results on MMPDEs have invariably employed a constant value of the parameter \\tau. We extend this standard approach by incorporating a variable relaxation time that is calculated adaptively alongside the solution in orde...
Bilateral Laparoscopic Totally Extraperitoneal Repair Without Mesh Fixation
Dehal, Ahmed; Woodward, Brandon; Johna, Samir; Yamanishi, Frank
2014-01-01
Background and Objectives: Mesh fixation during laparoscopic totally extraperitoneal repair is thought to be necessary to prevent recurrence. However, mesh fixation may increase postoperative chronic pain. This study aimed to describe the experience of a single surgeon at our institution performing this operation. Methods: We performed a retrospective review of the medical records of all patients who underwent bilateral laparoscopic totally extraperitoneal repair without mesh fixation for ing...
An Agent Based Collaborative Simplification of 3D Mesh Model
Wang, Li-Rong; Yu, Bo; Hagiwara, Ichiro
Large-volume mesh model faces the challenge in fast rendering and transmission by Internet. The current mesh models obtained by using three-dimensional (3D) scanning technology are usually very large in data volume. This paper develops a mobile agent based collaborative environment on the development platform of mobile-C. Communication among distributed agents includes grasping image of visualized mesh model, annotation to grasped image and instant message. Remote and collaborative simplification can be efficiently conducted by Internet.
Robotic removal of eroded vaginal mesh into the bladder.
Macedo, Francisco Igor B; O'Connor, Jeffrey; Mittal, Vijay K; Hurley, Patrick
2013-11-01
Vaginal mesh erosion into the bladder after midurethral sling procedure or cystocele repair is uncommon, with only a few cases having been reported in the literature. The ideal surgical management is still controversial. Current options for removal of eroded mesh include: endoscopic, transvaginal or abdominal (either open or laparoscopic) approaches. We, herein, present the first case of robotic removal of a large eroded vaginal mesh into the bladder and discuss potential benefits and limitations of the technique. © 2013 The Japanese Urological Association.
Adaptive-mesh zoning by the equipotential method
Energy Technology Data Exchange (ETDEWEB)
Winslow, A.M.
1981-04-01
An adaptive mesh method is proposed for the numerical solution of differential equations which causes the mesh lines to move closer together in regions where higher resolution in some physical quantity T is desired. A coefficient D > 0 is introduced into the equipotential zoning equations, where D depends on the gradient of T . The equations are inverted, leading to nonlinear elliptic equations for the mesh coordinates with source terms which depend on the gradient of D. A functional form of D is proposed.
Monitoring and evaluation of wire mesh forming life
Enemuoh, Emmanuel U.; Zhao, Ping; Kadlec, Alec
2018-03-01
Forming tables are used with stainless steel wire mesh conveyor belts to produce variety of products. The forming tables will typically run continuously for several days, with some hours of scheduled downtime for maintenance, cleaning and part replacement after several weeks of operation. The wire mesh conveyor belts show large variation in their remaining life due to associated variations in their nominal thicknesses. Currently the industry is dependent on seasoned operators to determine the replacement time for the wire mesh formers. The drawback of this approach is inconsistency in judgements made by different operators and lack of data knowledge that can be used to develop decision making system that will be more consistent with wire mesh life prediction and replacement time. In this study, diagnostic measurements about the health of wire mesh former is investigated and developed. The wire mesh quality characteristics considered are thermal measurement, tension property, gage thickness, and wire mesh wear. The results show that real time thermal sensor and wear measurements would provide suitable data for the estimation of wire mesh failure, therefore, can be used as a diagnostic parameter for developing structural health monitoring (SHM) system for stainless steel wire mesh formers.
An Algorithm for Parallel Sn Sweeps on Unstructured Meshes
International Nuclear Information System (INIS)
Pautz, Shawn D.
2002-01-01
A new algorithm for performing parallel S n sweeps on unstructured meshes is developed. The algorithm uses a low-complexity list ordering heuristic to determine a sweep ordering on any partitioned mesh. For typical problems and with 'normal' mesh partitionings, nearly linear speedups on up to 126 processors are observed. This is an important and desirable result, since although analyses of structured meshes indicate that parallel sweeps will not scale with normal partitioning approaches, no severe asymptotic degradation in the parallel efficiency is observed with modest (≤100) levels of parallelism. This result is a fundamental step in the development of efficient parallel S n methods
Reconfigurable lattice mesh designs for programmable photonic processors.
Pérez, Daniel; Gasulla, Ivana; Capmany, José; Soref, Richard A
2016-05-30
We propose and analyse two novel mesh design geometries for the implementation of tunable optical cores in programmable photonic processors. These geometries are the hexagonal and the triangular lattice. They are compared here to a previously proposed square mesh topology in terms of a series of figures of merit that account for metrics that are relevant to on-chip integration of the mesh. We find that that the hexagonal mesh is the most suitable option of the three considered for the implementation of the reconfigurable optical core in the programmable processor.
Symptom resolution after operative management of complications from transvaginal mesh.
Crosby, Erin C; Abernethy, Melinda; Berger, Mitchell B; DeLancey, John O; Fenner, Dee E; Morgan, Daniel M
2014-01-01
Complications from transvaginal mesh placed for prolapse often require operative management. The aim of this study is to describe the outcomes of vaginal mesh removal. A retrospective review of all patients having surgery by the urogynecology group in the department of obstetrics and gynecology at our institution for a complication of transvaginal mesh placed for prolapse was performed. Demographics, presenting symptoms, surgical procedures, and postoperative symptoms were abstracted. Comparative statistics were performed using the χ or Fisher's exact test with significance at Pmesh and 84 had follow-up data. The most common presenting signs and symptoms were: mesh exposure, 62% (n=56); pain, 64% (n=58); and dyspareunia, 48% (n=43). During operative management, mesh erosion was encountered unexpectedly in a second area of the vagina in 5% (n=4), in the bladder in 1% (n=1), and in the bowel in 2% (n=2). After vaginal mesh removal, 51% (n=43) had resolution of all presenting symptoms. Mesh exposure was treated successfully in 95% of patients, whereas pain was only successfully treated in 51% of patients. Removal of vaginal mesh is helpful in relieving symptoms of presentation. Patients can be reassured that exposed mesh can almost always be successfully managed surgically, but pain and dyspareunia are only resolved completely in half of patients. III.
The mesh controversy [version 1; referees: 2 approved
Directory of Open Access Journals (Sweden)
Joshua A. Cohn
2016-09-01
Full Text Available Pelvic organ prolapse and stress urinary incontinence are common conditions for which approximately 11% of women will undergo surgical intervention in their lifetime. The use of vaginal mesh for pelvic organ prolapse and stress urinary incontinence rose rapidly in the early 2000s as over 100 mesh products were introduced into the clinical armamentarium with little regulatory oversight for their use. US Food and Drug Administration Public Health Notifications in 2008 and 2011, as well as reclassification of transvaginal mesh for prolapse to class III in early 2016, were a response to debilitating complications associated with transvaginal mesh placement in many women. The midurethral sling has not been subject to the same reclassification and continues to be endorsed as the “gold standard” for surgical management of stress urinary incontinence by subspecialty societies. However, litigators have not differentiated between mesh for prolapse and mesh for incontinence. As such, all mesh, including that placed for stress urinary incontinence, faces continued controversy amidst an uncertain future. In this article, we review the background of the mesh controversy, recent developments, and the anticipated role of mesh in surgery for prolapse and stress urinary incontinence going forward.
Mesh-based parallel code coupling interface
Energy Technology Data Exchange (ETDEWEB)
Wolf, K.; Steckel, B. (eds.) [GMD - Forschungszentrum Informationstechnik GmbH, St. Augustin (DE). Inst. fuer Algorithmen und Wissenschaftliches Rechnen (SCAI)
2001-04-01
MpCCI (mesh-based parallel code coupling interface) is an interface for multidisciplinary simulations. It provides industrial end-users as well as commercial code-owners with the facility to combine different simulation tools in one environment. Thereby new solutions for multidisciplinary problems will be created. This opens new application dimensions for existent simulation tools. This Book of Abstracts gives a short overview about ongoing activities in industry and research - all presented at the 2{sup nd} MpCCI User Forum in February 2001 at GMD Sankt Augustin. (orig.) [German] MpCCI (mesh-based parallel code coupling interface) definiert eine Schnittstelle fuer multidisziplinaere Simulationsanwendungen. Sowohl industriellen Anwender als auch kommerziellen Softwarehersteller wird mit MpCCI die Moeglichkeit gegeben, Simulationswerkzeuge unterschiedlicher Disziplinen miteinander zu koppeln. Dadurch entstehen neue Loesungen fuer multidisziplinaere Problemstellungen und fuer etablierte Simulationswerkzeuge ergeben sich neue Anwendungsfelder. Dieses Book of Abstracts bietet einen Ueberblick ueber zur Zeit laufende Arbeiten in der Industrie und in der Forschung, praesentiert auf dem 2{sup nd} MpCCI User Forum im Februar 2001 an der GMD Sankt Augustin. (orig.)
Basic Algorithms for the Asynchronous Reconfigurable Mesh
Directory of Open Access Journals (Sweden)
Yosi Ben-Asher
2002-01-01
Full Text Available Many constant time algorithms for various problems have been developed for the reconfigurable mesh (RM in the past decade. All these algorithms are designed to work with synchronous execution, with no regard for the fact that large size RMs will probably be asynchronous. A similar observation about the PRAM model motivated many researchers to develop algorithms and complexity measures for the asynchronous PRAM (APRAM. In this work, we show how to define the asynchronous reconfigurable mesh (ARM and how to measure the complexity of asynchronous algorithms executed on it. We show that connecting all processors in a row of an n×n ARM (the analog of barrier synchronization in the APRAM model can be solved with complexity Θ(nlogn. Intuitively, this is average work time for solving such a problem. Next, we describe general a technique for simulating T -step synchronous RM algorithms on the ARM with complexity of Θ(T⋅n2logn. Finally, we consider the simulation of the classical synchronous algorithm for counting the number of non-zero bits in an n bits vector using (k
DEFF Research Database (Denmark)
Du, Yaxing; Mak, Cheuk Ming; Ai, Zhengtao
2018-01-01
Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method and then p......Quality and efficiency of computational fluid dynamics (CFD) simulation of pedestrian level wind environment in a complex urban area are often compromised by many influencing factors, particularly mesh quality. This paper first proposes a systematic and efficient mesh generation method...... and then performs detailed sensitivity analysis of some important computational parameters. The geometrically complex Hong Kong Polytechnic University (HKPolyU) campus is taken as a case study. Based on the high-quality mesh system, the influences of three important computational parameters, namely, turbulence...... model, near-wall mesh density and computational domain size, on the CFD predicted results of pedestrian level wind environment are quantitatively evaluated. Validation of CFD models is conducted against wind tunnel experimental data, where a good agreement is achieved. It is found that the proposed mesh...
Okeyo, Kennedy Omondi; Kurosawa, Osamu; Yamazaki, Satoshi; Oana, Hidehiro; Kotera, Hidetoshi; Nakauchi, Hiromitsu; Washizu, Masao
2015-10-01
Mechanical methods for inducing differentiation and directing lineage specification will be instrumental in the application of pluripotent stem cells. Here, we demonstrate that minimization of cell-substrate adhesion can initiate and direct the differentiation of human pluripotent stem cells (hiPSCs) into cyst-forming trophoblast lineage cells (TLCs) without stimulation with cytokines or small molecules. To precisely control cell-substrate adhesion area, we developed a novel culture method where cells are cultured on microstructured mesh sheets suspended in a culture medium such that cells on mesh are completely out of contact with the culture dish. We used microfabricated mesh sheets that consisted of open meshes (100∼200 μm in pitch) with narrow mesh strands (3-5 μm in width) to provide support for initial cell attachment and growth. We demonstrate that minimization of cell adhesion area achieved by this culture method can trigger a sequence of morphogenetic transformations that begin with individual hiPSCs attached on the mesh strands proliferating to form cell sheets by self-assembly organization and ultimately differentiating after 10-15 days of mesh culture to generate spherical cysts that secreted human chorionic gonadotropin (hCG) hormone and expressed caudal-related homeobox 2 factor (CDX2), a specific marker of trophoblast lineage. Thus, this study demonstrates a simple and direct mechanical approach to induce trophoblast differentiation and generate cysts for application in the study of early human embryogenesis and drug development and screening.
Baiges Aznar, Joan; Bayona Roa, Camilo Andrés
2017-01-01
No separate or additional fees are collected for access to or distribution of the work. In this paper we present a novel algorithm for adaptive mesh refinement in computational physics meshes in a distributed memory parallel setting. The proposed method is developed for nodally based parallel domain partitions where the nodes of the mesh belong to a single processor, whereas the elements can belong to multiple processors. Some of the main features of the algorithm presented in this paper a...
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
Energy Technology Data Exchange (ETDEWEB)
Jayakumar, J S; Kumar, Inder [Bhabha Atomic Research Center, Mumbai (India); Eswaran, V, E-mail: jsjayan@gmail.com, E-mail: inderk@barc.gov.in, E-mail: eswar@iitk.ac.in [Indian Institute of Technology, Kanpur (India)
2010-12-15
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-{omega}. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
International Nuclear Information System (INIS)
Jayakumar, J S; Kumar, Inder; Eswaran, V
2010-01-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Liang, Ching-Chung; Lo, Tsia-Shu; Tseng, Ling-Hong; Lin, Yi-Hao; Lin, Yu-Jr; Chang, Shuenn-Dhy
2012-10-01
Synthetic mesh kits recently adopted in pelvic reconstructive surgeries have achieved great surgical efficacy, but the effects of transvaginal synthetic mesh procedures on women's sexual function are still controversial. This study was conducted to demonstrate sexual function in women before and after surgery with transvaginal mesh (TVM) repair for pelvic organ prolapse (POP). A total of 93 sexually active women scheduled for correcting POP with synthetic mesh kits were recruited. In addition to urogynecological history, pelvic examination by the Pelvic Organ Prolapse Quantification system, and urodynamic testing, consenting participants were asked to complete the Pelvic Organ Prolapse/Urinary Incontinence Sexual Questionnaire (PISQ-12) to evaluate sexual function before and after surgery. At the 3-month urodynamic studies, among the 25 patients with coexistent urodynamic stress incontinence (USI) who had undergone a concomitant transobturator suburethral tape procedure (TOT), 1 (4 %) had persistent USI; 8 of 68 (11.8 %) patients with a negative pessary test developed postoperative USI. Six-month prolapse recurrence rates following TVM alone and TVM with concomitant TOT were 9 and 12 %, respectively. The total PISQ-12 score after surgery showed worse results in the TVM alone group but not in the TVM with concomitant TOT group. The individual scores of PISQ-12 after surgery demonstrated prolapse-related items improved in both TVM groups; sexual function worsened in dyspareunia and behavior domains. Our data revealed that transvaginal synthetic mesh procedures for the treatment of POP generated favorable clinical outcomes, but situations might worsen in dyspareunia and behavior domains, thereby invoking a negative emotional reaction during intercourse after surgery.
The application of TINA in the MESH project
van Sinderen, Marten J.; Ferreira Pires, Luis; Pires, L.F.; Plagemann, Thomas; Goebel, Vera
1998-01-01
This paper discusses the application of TINA concepts, architectures and related design paradigms in the MESH project. MESH adopted TINA as a means to facilitate the design and implementation of a flexible platform for developing and providing interactive multimedia services. This paper reports on
Capacity analysis of wireless mesh networks | Gumel | Nigerian ...
African Journals Online (AJOL)
... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...
Micro-mesh fabric pollination bags for switchgrass
Pollination bags for making controlled crosses between switchgrass plants were made from a polyester micro-mesh fabric with a mesh size of 41 µm which is smaller than the mean reported 43 µm diameter of switchgrass pollen. When used in paired plant crosses between switchgrass plants, the mean amoun...
Lagrangian fluid dynamics using the Voronoi-Delauanay mesh
International Nuclear Information System (INIS)
Dukowicz, J.K.
1981-01-01
A Lagrangian technique for numerical fluid dynamics is described. This technique makes use of the Voronoi mesh to efficiently locate new neighbors, and it uses the dual (Delaunay) triangulation to define computational cells. This removes all topological restrictions and facilitates the solution of problems containing interfaces and multiple materials. To improve computational accuracy a mesh smoothing procedure is employed
CAPAClTYANALYSIS OF WIRELESS MESH NET\\VORKS
African Journals Online (AJOL)
The limited available bandwidth makes capacity analysis of the network very essential. ... Wireless mesh networks can also be employed for wide variety ofapplications such ... wireless mesh networks using OPNET (Optimized Network Engineering Tool) Modeller 1-J..5. The .... /bps using I I Mbps data rate and 12000 bits.
Sending policies in dynamic wireless mesh using network coding
DEFF Research Database (Denmark)
Pandi, Sreekrishna; Fitzek, Frank; Pihl, Jeppe
2015-01-01
This paper demonstrates the quick prototyping capabilities of the Python-Kodo library for network coding based performance evaluation and investigates the problem of data redundancy in a network coded wireless mesh with opportunistic overhearing. By means of several wireless meshed architectures ...
Plated nickel wire mesh makes superior catalyst bed
Sill, M.
1965-01-01
Porous nickel mesh screen catalyst bed produces gas evolution in hydrogen peroxide thrust chambers used for attitude control of space vehicles. The nickel wire mesh disks in the catalyst bed are plated in rugose form with a silver-gold coating.
Mesh Processing in Medical-Image Analysis-a Tutorial
DEFF Research Database (Denmark)
Levine, Joshua A.; Paulsen, Rasmus Reinhold; Zhang, Yongjie
2012-01-01
Medical-image analysis requires an understanding of sophisticated scanning modalities, constructing geometric models, building meshes to represent domains, and downstream biological applications. These four steps form an image-to-mesh pipeline. For research in this field to progress, the imaging...
Scalable Video Streaming in Wireless Mesh Networks for Education
Liu, Yan; Wang, Xinheng; Zhao, Liqiang
2011-01-01
In this paper, a video streaming system for education based on a wireless mesh network is proposed. A wireless mesh network is a self-organizing, self-managing and reliable intelligent network, which allows educators to deploy a network quickly. Video streaming plays an important role in this system for multimedia data transmission. This new…
Staged Closure of Giant Omphalocele using Synthetic Mesh
Parida, Lalit; Pal, Kamalesh; Al Buainain, Hussah; Elshafei, Hossam
2014-01-01
Giant omphalocele is difficult to manage and is associated with a poor outcome. A male newborn presented to our hospital with a giant omphalocele. We performed a staged closure of giant omphalocele using synthetic mesh to construct a silo and then mesh abdominoplasty in the neonatal period that led to a successful outcome within a reasonable period of hospital stay.
Laparoscopic sacrocolpopexy versus transvaginal mesh for recurrent pelvic organ prolapse.
Iglesia, Cheryl B; Hale, Douglass S; Lucente, Vincent R
2013-03-01
Both expert surgeons agree with the following: (1) Surgical mesh, whether placed laparoscopically or transvaginally, is indicated for pelvic floor reconstruction in cases involving recurrent advanced pelvic organ prolapse. (2) Procedural expertise and experience gained from performing a high volume of cases is fundamentally necessary. Knowledge of outcomes and complications from an individual surgeon's audit of cases is also needed when discussing the risks and benefits of procedures and alternatives. Yet controversy still exists on how best to teach new surgical techniques and optimal ways to efficiently track outcomes, including subjective and objective cure of prolapse as well as perioperative complications. A mesh registry will be useful in providing data needed for surgeons. Cost factors are also a consideration since laparoscopic and especially robotic surgical mesh procedures are generally more costly than transvaginal mesh kits when operative time, extra instrumentation and length of stay are included. Long-term outcomes, particularly for transvaginal mesh procedures, are lacking. In conclusion, all surgery poses risks; however, patients should be made aware of the pros and cons of various routes of surgery as well as the potential risks and benefits of using mesh. Surgeons should provide patients with honest information about their own experience implanting mesh and also their experience dealing with mesh-related complications.
Water Penetration through a Superhydrophobic Mesh During a Drop Impact
Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop
2017-01-01
When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.
COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO
International Nuclear Information System (INIS)
Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai
2010-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.
Parallel-In-Time For Moving Meshes
Energy Technology Data Exchange (ETDEWEB)
Falgout, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Manteuffel, T. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Southworth, B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Schroder, J. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-02-04
With steadily growing computational resources available, scientists must develop e ective ways to utilize the increased resources. High performance, highly parallel software has be- come a standard. However until recent years parallelism has focused primarily on the spatial domain. When solving a space-time partial di erential equation (PDE), this leads to a sequential bottleneck in the temporal dimension, particularly when taking a large number of time steps. The XBraid parallel-in-time library was developed as a practical way to add temporal parallelism to existing se- quential codes with only minor modi cations. In this work, a rezoning-type moving mesh is applied to a di usion problem and formulated in a parallel-in-time framework. Tests and scaling studies are run using XBraid and demonstrate excellent results for the simple model problem considered herein.
Directory of Open Access Journals (Sweden)
Gemma Pascual
Full Text Available INTRODUCTION: Composite biomaterials designed for the repair of abdominal wall defects are composed of a mesh component and a laminar barrier in contact with the visceral peritoneum. This study assesses the behaviour of a new composite mesh by comparing it with two latest-generation composites currently used in clinical practice. METHODS: Defects (7x5cm created in the anterior abdominal wall of New Zealand White rabbits were repaired using a polypropylene mesh and the composites: Physiomesh(TM; Ventralight(TM and a new composite mesh with a three-dimensional macroporous polyester structure and an oxidized collagen/chitosan barrier. Animals were sacrificed on days 14 and 90 postimplant. Specimens were processed to determine host tissue incorporation, gene/protein expression of neo-collagens (RT-PCR/immunofluorescence, macrophage response (RAM-11-immunolabelling and biomechanical resistance. On postoperative days 7/14, each animal was examined laparoscopically to quantify adhesions between the visceral peritoneum and implant. RESULTS: The new composite mesh showed the lowest incidence of seroma in the short term. At each time point, the mesh surface covered with adhesions was greater in controls than composites. By day 14, the implants were fully infiltrated by a loose connective tissue that became denser over time. At 90 days, the peritoneal mesh surface was lined with a stable mesothelium. The new composite mesh induced more rapid tissue maturation than Physiomesh(TM, giving rise to a neoformed tissue containing more type I collagen. In Ventralight(TM the macrophage reaction was intense and significantly greater than the other composites at both follow-up times. Tensile strengths were similar for each biomaterial. CONCLUSIONS: All composites showed optimal peritoneal behaviour, inducing good peritoneal regeneration and scarce postoperative adhesion formation. A greater foreign body reaction was observed for Ventralight(TM. All composites induced
Current role of mesh in vaginal prolapse surgery.
Richter, Lee A; Carter, Charelle; Gutman, Robert E
2014-10-01
This report summarizes the latest literature on transvaginal mesh (TVM) for the treatment of pelvic organ prolapse, with a focus on indications for use and management of complications. We describe trends in TVM by reviewing the recent literature and summarizing national meeting presentations. Vaginal mesh complications are most often managed surgically, and the majority of patients experiencing mesh-related pain have symptom improvement after intervention. New efforts will focus on identifying variables associated with success after intervention for mesh-related complications, to aid reconstructive pelvic surgeons in outcome prediction and patient counselling. Although the use of TVM has plateaued in recent years, we are seeing an exponential rise in synthetic mesh implant removal. Reconstructive pelvic surgeons advising patients with TVM complications should report that surgical intervention is often necessary, improvement rates of pain-related symptoms after surgery are high, and up to a third may require multiple interventions.
To, Valérie; Hengrasmee, Pattaya; Lam, Alan; Luscombe, Georgina; Lawless, Anna; Lam, Justin
2017-12-01
To determine if laparoscopic sacral colpopexy (LSC) offers better apical support with a lower exposure rate than transvaginal mesh surgery with Elevate™. This was a retrospective cohort study comparing patients with apical prolapse (POP-Q point C ≥ -1) who underwent Elevate™ mesh repair (n = 146) with patients who underwent laparoscopic sacral colpopexy (n = 267). The sacral colpopexy group had a mean age of 59 years and a BMI of 25.7. Patients in the Elevate™ group were older, with a mean age of 63 and a BMI of 26.3. Most of the patients of both groups presented with pelvic organ prolapse stage III (LSC 73.8% and Elevate™ 87.0%) and their mean POP-Q point C were not significantly different (LSC 1.4 vs Elevate™ 1.2 cm). Operative time was longer in the LSC group (113 vs 91 min, p < 0.001), but estimated blood loss was lower (75 cm 3 vs 137 cm 3 , p < 0.001). No difference in mesh exposure rate could be found between the two groups at one year (Elevate™ 0.7% vs LSC 2.6%, OR 0.26, 95% CI 0.03 to 2.10, p = 0.21). One-year objective cure rate, defined as no descent beyond the hymen, was 97.0% in the LSC group and 96.6% in the Elevate™ group (p = .81). The overall recurrence (objective, subjective recurrence or reoperation) was also not different between the groups (LSC 4.5% vs Elevate 4.8%, p = 0.89). Transvaginal Elevate™ mesh delivers comparable apical support with a low exposure rate similar to that of laparoscopic sacral colpopexy.
Averkin, Sergey N.; Gatsonis, Nikolaos A.
2018-06-01
An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization
A coarse-mesh nodal method-diffusive-mesh finite difference method
International Nuclear Information System (INIS)
Joo, H.; Nichols, W.R.
1994-01-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper
Electron doping through lithium intercalation to interstitial channels in tetrahedrally bonded SiC
Energy Technology Data Exchange (ETDEWEB)
Sakai, Yuki [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Center for Computational Materials, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712 (United States); Oshiyama, Atsushi [Department of Applied Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2015-11-07
We report on first-principles calculations that clarify the effect of lithium atom intercalation into zinc blende 3C-silicon carbide (3C-SiC) on electronic and structural properties. Lithium atoms inside 3C-SiC are found to donate electrons to 3C-SiC that is an indication of a new way of electron doping through the intercalation. The electrons doped into the conduction band interact with lithium cations and reduce the band spacing between the original valence and conduction bands. We have also found that a silicon monovacancy in 3C-SiC promotes the lithium intercalation, showing that the vacancy generation makes SiC as a possible anode material for lithium-ion battery.
Robust, multidimensional mesh motion based on Monge-Kantorovich equidistribution
Energy Technology Data Exchange (ETDEWEB)
Delzanno, G L [Los Alamos National Laboratory; Finn, J M [Los Alamos National Laboratory
2009-01-01
Mesh-motion (r-refinement) grid adaptivity schemes are attractive due to their potential to minimize the numerical error for a prescribed number of degrees of freedom. However, a key roadblock to a widespread deployment of the technique has been the formulation of robust, reliable mesh motion governing principles, which (1) guarantee a solution in multiple dimensions (2D and 3D), (2) avoid grid tangling (or folding of the mesh, whereby edges of a grid cell cross somewhere in the domain), and (3) can be solved effectively and efficiently. In this study, we formulate such a mesh-motion governing principle, based on volume equidistribution via Monge-Kantorovich optimization (MK). In earlier publications [1, 2], the advantages of this approach in regards to these points have been demonstrated for the time-independent case. In this study, demonstrate that Monge-Kantorovich equidistribution can in fact be used effectively in a time stepping context, and delivers an elegant solution to the otherwise pervasive problem of grid tangling in mesh motion approaches, without resorting to ad-hoc time-dependent terms (as in moving-mesh PDEs, or MMPDEs [3, 4]). We explore two distinct r-refinement implementations of MK: direct, where the current mesh relates to an initial, unchanging mesh, and sequential, where the current mesh is related to the previous one in time. We demonstrate that the direct approach is superior in regards to mesh distortion and robustness. The properties of the approach are illustrated with a paradigmatic hyperbolic PDE, the advection of a passive scalar. Imposed velocity flow fields or varying vorticity levels and flow shears are considered.
Obturator foramen dissection for excision of symptomatic transobturator mesh.
Reynolds, W Stuart; Kit, Laura Chang; Kaufman, Melissa R; Karram, Mickey; Bales, Gregory T; Dmochowski, Roger R
2012-05-01
Groin pain after transobturator synthetic mesh placement can be recalcitrant to conservative therapy and ultimately requires surgical excision. We describe our experiences with and technique of obturator foramen dissection for mesh excision. The records of 8 patients treated from 2005 to 2010, were reviewed. Obturator dissection was performed via a lateral groin incision over the inferior pubic ramus at the level of the obturator foramen, typically in conjunction with orthopedic surgery. Five patients had transobturator mid urethral sling surgery for stress urinary incontinence, 2 had mid urethral sling and trocar based anterior vaginal wall mesh kits with transobturator passage of mesh arms for stress urinary incontinence and pelvic organ prolapse, and 1 had an anterior vaginal wall mesh kit for pelvic organ prolapse. Patients had 0 to 2 prior transvaginal mesh excisions before obturator surgery. All patients presented with intractable pain in the area of the obturator foramen and/or medial groin for which conservative treatment measures had failed. Six patients underwent concurrent vaginal and obturator dissection and 2 underwent obturator dissection alone. In all cases residual mesh (3 to 11 cm) was identified and excised from the obturator foramen. Mesh was closely associated to or traversing the adductor longus muscle and tendon with significant fibrous reaction in all cases. Postoperatively 5 patients were cured of pain and/or infection, and 3 reported no or some improvement at a mean followup of 6 months (range 1 to 12). Our experience suggests that surgical excision of residual mesh can alleviate many of the symptoms in many patients. In all cases mesh remnants were identified and removed, and typically involved neuromuscular structures adjacent to the obturator foramen. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Liseikin, Vladimir D
2017-01-01
This new edition provides a description of current developments relating to grid methods, grid codes, and their applications to actual problems. Grid generation methods are indispensable for the numerical solution of differential equations. Adaptive grid-mapping techniques, in particular, are the main focus and represent a promising tool to deal with systems with singularities. This 3rd edition includes three new chapters on numerical implementations (10), control of grid properties (11), and applications to mechanical, fluid, and plasma related problems (13). Also the other chapters have been updated including new topics, such as curvatures of discrete surfaces (3). Concise descriptions of hybrid mesh generation, drag and sweeping methods, parallel algorithms for mesh generation have been included too. This new edition addresses a broad range of readers: students, researchers, and practitioners in applied mathematics, mechanics, engineering, physics and other areas of applications.
Delgado, Carlos; Cátedra, Manuel Felipe
2018-05-01
This work presents a technique that allows a very noticeable relaxation of the computational requirements for full-wave electromagnetic simulations based on the Method of Moments. A ray-tracing analysis of the geometry is performed in order to extract the critical points with significant contributions. These points are then used to generate a reduced mesh, considering the regions of the geometry that surround each critical point and taking into account the electrical path followed from the source. The electromagnetic analysis of the reduced mesh produces very accurate results, requiring a fraction of the resources that the conventional analysis would utilize.