WorldWideScience

Sample records for tetragonal zirconia polycrystal

  1. [Effects of colorants on yttria stabilized tetragonal zirconia polycrystals powder].

    Science.gov (United States)

    Wang, Bo; Chen, Jianfeng; Zhang, Yanchun; Wang, Ru

    2015-10-01

    To evaluate the effect of Fe2O3 and CeO2 as colorants on yttria stabilized tetragonal zirconia poly-crystals (Y-TZP) powder. The spray granulation slurry of colored zirconia was prepared with different concentrations of Fe2O3 (0.15%) and CeO2 (4%), which were added in Y-TZP. Zirconia powder was made by spray granulation. The powder specimens were divided into three groups: uncolored zirconia, Fe2O3 (0.15%) zirconia, and CeO2 (4%) zirconia. The particle morphologies of the powder specimens were measured with a laser particle size analyzer and an optical microscope. The differences in D50 among the three groups were statistically significant (PCeO2 and uncolored zirconia (PCeO2 (P>0.05). Mostly spherical powder was observed in the three groups. Fe2O3 as a colorant can affect particles, whereas CeO2 has no effect.

  2. Condensation of tetragonal zirconia polycrystals by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, I-M. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Yeh, S.-W. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Chiou, S.-Y. [Department of Mold and Die Engineering, National Kaohsiung University of Applied Science, Kaohsiung, Taiwan (China); Gan Dershin [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)]. E-mail: dgan@mail.nsysu.edu.tw; Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)

    2005-11-22

    Reactive sputtering on metallic Zr target under various oxygen flow rates was employed to produce nanocrystalline zirconia condensates, which were collected on a carbon-coated collodion film for analytical electron microscopic observations. With an Ar flow rate of 28 sccm, the collected condensates are cubic and tetragonal (t-) zirconia less than 10 nm in size under 0-2 sccm oxygen flow rate and increased to 10-20 nm in size with partial t- to monoclinic (m-) zirconia transformation at 3 sccm. Between 4 and 4.5 sccm, t-zirconia polycrystals (TZP) about 20 nm in grain size were formed by coalescence of the t-zirconia condensates. Above 6 sccm, the (111) and {l_brace}100{r_brace} specific coalescence as well as random attachment prevailed to form larger (> 30 nm) individual condensates of m-zirconia as the critical size of martensitic t-m transformation is exceeded. The TZP formation can be accounted for by the small grain size, the presence of low-valence Zr cation and the lateral constraint of neighboring grains.

  3. Cavity growth simulation for superplastic deformation of tetragonal zirconia polycrystal, 3Y-TZP

    Energy Technology Data Exchange (ETDEWEB)

    Harjo, S. [Research Center for Superplasticity, Faculty of Engineering, Ibaraki University, Hitachi (Japan); Kojima, N. [Graduate School of Science and Engineering, Ibaraki University (Japan); Motohashi, Y.

    2008-04-15

    A simulation based on cavity number - radius distribution obtained from a scanning electron microscopy analysis was made to consider cavity growth rate and its mechanism during superplastic deformation of a tetragonal zirconia polycrystal (3Y-TZP). It is found that (1) newly formed cavities grow very rapidly in an early stage of their growth process and then the growth rate becomes gradually slow with the increase in cavity size, and (2) the cavity growth process in the 3Y-TZP is governed by the diffusion-controlled mechanism. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  4. Shape memory lifetime of CeO2-stabilized tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Zhe Xiaoli; Li Bo; Meng Man

    1993-01-01

    Lifetime of shape memory effect (SME) of CeO 2 -stabilized tetragonal zirconia polycrystals was studied by means of both tests of constraint stress and constraint strain mode during reverse martensite transformation. Up to 8th cycling of SME, the shape of sample entirely recovered except microcracks in the constraint stress mode and the accumulated strain reached 4.6% in the constraint strain mode. It was found that the yield stress decreased, however, the reverse transformation temperature of stress-induced martensite increased with times of the cycling. The reason of these phenomena are discussed in terms of microcracking and strain energy relaxation

  5. Effects of superplastic deformations on thermophysical properties of tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Motohashi, Y.; Wan, C.; Sakuma, T.; Harjo, S.; Shibata, T.; Ishihara, M.; Baba, S.; Hoshiya, T.

    2004-01-01

    Neutron irradiation studies on superplastic zirconia-based ceramics are now in progress as an innovative basic project using the High-temperature Engineering Test Reactor (HTTR) in Japan. The characteristics of the zirconia-based engineering components, made through the formation of superplastic, may be strongly affected by their response to transient or steady-state heat flow. Reliable thermophysical properties such as the coefficients of thermal expansion and thermal conductivity are, therefore, needed to estimate and predict the influence of a high-temperature environment. Accordingly, one of this project's targets is to study the thermophysical properties of superplastic zirconia-based ceramics. The first stage of the research addresses the effects of superplastic deformations on the thermophysical properties of a typical superplastic ceramic, 3 mol% yttria-stabilised tetragonal zirconia polycrystals (3Y-TZP), in its un-irradiated state. First, superplastic tensile deformations were conducted on 3Y-TZP specimens under different conditions in order to obtain specimens with different microstructural characteristics. Afterwards, the following actions were taken: - Specific heat measurements were conducted on the specimens at temperatures ranging from 473 K to 1273 K. - The thermal diffusivity was measured using a laser flash method. The thermal conductivity was then calculated from the measured thermal diffusivity, specific heat and density. - The linear thermal expansion was measured by a push-rod type dilatometer from 300 K to 1473 K. The coefficient of linear thermal expansion (CTE) was estimated from the thermal expansion data. The results obtained from the above measurements are discussed, as is the microstructural evolution caused by the superplastic deformations. It was found that the specific heat was almost independent of microstructural evolution, whereas the thermal diffusivity, thermal conductivity and thermal expansion were quite sensitive to

  6. Wear behavior of tetragonal zirconia polycrystal versus titanium and titanium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kanbara, Tsunemichi; Yajima, Yasutomo [Department of Oral Implantology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan); Yoshinari, Masao, E-mail: yosinari@tdc.ac.jp [Division of Oral Implant Research, Oral Health Science Center, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502 (Japan)

    2011-04-15

    The aim of this study was to clarify the influence of tetragonal zirconia polycrystal (TZP) on the two-body wear behavior of titanium (Ti). Two-body wear tests were performed using TZP, two grades of cp-Ti or Ti alloy in distilled water, and the cross-sectional area of worn surfaces was measured to evaluate the wear behavior. In addition, the surface hardness and coefficient of friction were determined and an electron probe microanalysis performed to investigate the underlying mechanism of wear. The hardness of TZP was much greater than that of Ti. The coefficient of friction between Ti and Ti showed a higher value than the Ti/TZP combination. Ti was more susceptible to wear by both TZP and Ti than TZP, indicating that the mechanism of wear between TZP and Ti was abrasive wear, whereas that between Ti and Ti was adhesive wear. No remarkable difference in the amount of wear in Ti was observed between TZP and Ti as the opposite material, despite the hardness value of Ti being much smaller than that of TZP. (communication)

  7. Changes in X-ray photoelectron spectra of yttria-tetragonal zirconia polycrystal by ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiko; Yoshinari, Masao [Tokyo Dental College, Oral Health Science Center, Tokyo, Chiyoda-ku (Japan)

    2016-04-15

    This paper reports changes in X-ray photoelectron spectroscopy spectra of yttria-tetragonal zirconia polycrystal (Y-TZP) brought about by Ar ion sputtering. The changes in the core-level spectra of Y-TZP suggest that preferential sputtering of oxygen occurred. A new peak was observed near 0 eV binding energy accompanied with changes in the core-level spectra by the sputtering. After 18 h in a high vacuum following the sputtering, the spectra changed by the sputtering were returned to their original shapes. In contrast, the color of Y-TZP was changed from white to pale brown by X-ray irradiation and was changed from pale brown to dark gray by ion sputtering. However, when the new peak near 0 eV decreased after 18 h, no color change was observed. Therefore, it is thought that the new peak was mainly derived from electrons trapped in various kinds of oxygen vacancies created by the sputtering in other than color centers. (orig.)

  8. Preparation and properties of yttria doped tetragonal zirconia polycrystal/Sr-doped barium hexaferrite ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shanshan; Zhang, Chao; Guo, Ruisong, E-mail: rsguo@tju.edu.cn; Liu, Lan; Yang, Yuexia; Li, Kehang

    2015-03-15

    Highlights: • The 3Y-TZP/Sr-doped barium ferrite composites were prepared. • The saturation magnetization was improved by 15% with Sr-doping. • The dispersion coefficient p could reflect the microscopic lattice variation. • The composite with x = 0.5 had the maximum fracture toughness of 8.3 MPa m{sup 1/2}. - Abstract: The effects of substitution of Ba{sup 2+} by Sr{sup 2+} on the magnetic property of barium ferrite and addition barium ferrite secondary phase to the 3 mol% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) matrix on the mechanical property of composites were investigated. The Sr-doped barium ferrite (Ba{sub 1−x}Sr{sub x}Fe{sub 12}O{sub 19}, x = 0, 0.25, 0.50 and 0.75) was synthesized by solid-state reaction in advance. Then 3Y-TZP/20 wt% Sr-doped barium ferrite composites were prepared by means of conventional ceramic method. It was found that a moderate amount of Sr added to barium ferrite could boost the saturation magnetization by 15% compared with the composites without Sr-doping. Besides, the composite with x = 0.50 possessed the best mechanical properties, such as 11.5 GPa for Vickers hardness and 8.3 MPa m{sup 1/2} for fracture toughness, respectively. It was demonstrated that magnetic and mechanical properties of the composites could be harmonized by the incorporation of barium ferrite secondary phase.

  9. Effects of whitening dentifrice on yttria-stabilized tetragonal zirconia polycrystal surfaces after simulating brushing.

    Science.gov (United States)

    Pinelli, Lígia Antunes Pereira; Gimenes Olbera, Amanda Caroline; Candido, Lucas Miguel; Miotto, Larissa Natiele; Antonio, Selma Gutierrez; Fais, Laiza Maria Grassi

    2017-01-01

    The changes that occur after brushing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) are unknown. These changes may favor the retention of microorganisms and chemisorption of water, impairing its longevity. The purpose of this in vitro study was to evaluate the effects of a whitening dentifrice on Y-TZP surfaces after simulating 10 years of brushing. Seventy-two bar-shaped specimens (20×4×1.2 mm) were divided into 4 groups: storage in distilled water (SW, control), brushing with distilled water (BW), brushing with dentifrice (BD), and brushing with whitening dentifrice (BWD). Brushing was conducted using a linear brushing machine (878400 cycles, 0.98 N, soft toothbrush). The mean roughness (Ra) was analyzed with a profilometer and the superficial topography with scanning electron microscopy (SEM) at baseline and after treatment. Crystalline phases were characterized using x-ray diffraction. Baseline and posttreatment Ra were analyzed using the 1-way ANOVA and Tukey HSD multiple comparison test; the paired t test was used for intragroup comparison (all α=.05). The Ra (μm) means (before/after treatment) were SW 0.28/0.28; BW 0.32/0.31; BD 0.28/0.36; BWD 0.30/0.20. No statistically significant difference was found for Ra at baseline (P=.108) than for posttreatment results (P<.001); the BD group had higher Ra values when compared with baseline (P=.019); the BWD group had the lowest values (P<.001). The BD surfaces showed pronounced scratches and detachment of the surface, while BWD showed smoother surfaces; similar crystallographic results among groups were observed. Brushing Y-TZP with conventional dentifrice increased roughness, while brushing with whitening dentifrice reduced roughness. Neither dentifrice changed the crystallographic phases after brushing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Effect of intermediate ceramics and firing temperature on bond strength between tetragonal zirconia polycrystal and veneering ceramics.

    Science.gov (United States)

    Matsumoto, Naoya; Yoshinari, Masao; Takemoto, Shinji; Hattori, Masayuki; Kawada, Eiji; Oda, Yutaka

    2013-01-01

    The purpose of the present study was to investigate the influence of the intermediate ceramics and firing temperature on bond strength between tetragonal zirconia polycrystal (TZP) and its intermediate ceramics. Two types of intermediate ceramics, defined as a ceramics placed between the TZP and its veneering ceramics, were used; one including high-strength lithium-disilicate (EP) or feldspathic liner porcelain (SB). The firing temperature of the intermediate ceramics was set at 930°C, 945°C or 960°C. Shear bond strength showed values of 35.8 MPa in SB and 54.9 MPa in EP at a firing temperature of 960°C. Electron probe microanalysis revealed that components of the intermediate ceramics remained on the TZP surface after debonding, indicating that fractures occurred in the intermediate ceramics near the TZP. These results indicate that the bond strength between and a TZP framework and its veneering ceramics could be improved by using a high-strength intermediate ceramics and a comparatively high firing temperature.

  11. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  12. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  13. [Effect of Al₂O₃ sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal zirconia framework and veneering porcelain].

    Science.gov (United States)

    Qiang, Zeng; Ning, Li; Yanan, Zhou; Jiazhen, Yan; Wenbo, Liu

    2015-12-01

    The effect of sandblasting on the bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal (3Y-TZP) zirconia framework and veneering porcelain was evaluated. A total of 21 specimens [(25 ± 1) mm x (3 ± 0.1) mmx (0.5 ± 0.05) mm] were prepared according to ISO 9693. The specimens were then randomly divided into 3 groups. Sandblasting was performed on 2 meshes of Al₂O₃ particles: group A with mesh 110 and group B with mesh 80. Group C, which was not sandblasted, was the control group. The surface roughness of the zirconia framework, as well as the bond strength between 3Y-TZP zirconia framework and veneering porcelain, was measured. The interface microstructure was observed by scanning electron microscope (SEM), and elemental distribution was detected by energy dispersive spectroscopy (EDS). Surface roughness values were (1.272 ± 0.149) μm for group A, (0.622 ± 0.113) μm for group B, and (0.221 ± 0.065) μm for group C. Statistical significance were found among groups (P 0.05). Interface adhesion failure was the primary performance. SEM images showed the close interface bonding, and EDS showed that the interface had no obvious element penetration. Al₂O₃ sandblasting can slightly enhance the bond strength between zirconia framework and veneering porcelain.

  14. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and a self-adhesive resin cement.

    Science.gov (United States)

    Yi, Y-A; Ahn, J-S; Park, Y-J; Jun, S-H; Lee, I-B; Cho, B-H; Son, H-H; Seo, D-G

    2015-01-01

    To evaluate the effect of zirconia primers, air-abrasion, and tribochemical surface treatment methods on the shear bond strength between yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic and self-adhesive resin cement. Y-TZP ceramic surfaces were ground flat with 600-grit silicon carbide paper and then divided into seven groups of 10 and treated as follows: untreated (control), Monobond Plus, Z-PRIME Plus, ESPE Sil with CoJet, air-abrasion, Monobond Plus with air-abrasion, and Z-PRIME Plus with air-abrasion. Self-adhesive resin cement was placed onto the treated Y-TZP specimens for each group. All specimens were thermocycled and subjected to a shear bond strength test. Scanning electron microscope images of the fractured areas and x-ray diffraction (XRD) analysis of the surface-treated Y-TZP specimens were performed. Data were statistically analyzed using one-way analysis of variance and the Student-Newman-Keuls multiple comparison test (pceramic and self-adhesive resin cement.

  15. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    OpenAIRE

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    Deyar Jallal Hadi Mahmood, Ewa H Linderoth, Ann Wennerberg, Per Vult Von Steyern Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden Aim: To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering ma...

  16. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature.

    Science.gov (United States)

    Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg

    2014-02-01

    We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers.

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1-7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8-11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. There was a significant difference (Pveneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass-ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures.

  18. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Science.gov (United States)

    Mahmood, Deyar Jallal Hadi; Linderoth, Ewa H; Wennerberg, Ann; Vult Von Steyern, Per

    2016-01-01

    Aim To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) fixed dental prostheses (FDPs) with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results There was a significant difference (Pveneering materials and techniques tested in the study, split-file, over-press, built-up porcelains, and glass–ceramics are, with a great safety margin, sufficient for clinical use both anteriorly and posteriorly. Analysis of the fracture pattern shows differences between the milled veneers and over-pressed or built-up veneers, where the milled ones show numerically more veneer cracks and the other groups only show complete connector fractures. PMID:26929667

  19. Stabilization of metastable tetragonal zirconia nanocrystallites by surface modification

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; Lelieveld, A. van

    2011-01-01

    Metastable tetragonal zirconia nanocrystallites were studied in humid air and in water at room temperature (RT). A stabilizing effect of different surfactants on the tetragonal phase was observed. Furthermore, the phase stability of silanized metastable tetragonal zirconia nanocrystallites...

  20. Thermal/mechanical simulation and laboratory fatigue testing of an alternative yttria tetragonal zirconia polycrystal core-veneer all-ceramic layered crown design.

    Science.gov (United States)

    Bonfante, Estevam A; Rafferty, Brian; Zavanelli, Ricardo A; Silva, Nelson R F A; Rekow, Elizabeth D; Thompson, Van P; Coelho, Paulo G

    2010-04-01

    This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.

  1. Influence of core design, production technique, and material selection on fracture behavior of yttria-stabilized tetragonal zirconia polycrystal fixed dental prostheses produced using different multilayer techniques: split-file, over-pressing, and manually built-up veneers

    Directory of Open Access Journals (Sweden)

    Mahmood DJH

    2016-02-01

    Full Text Available Deyar Jallal Hadi Mahmood, Ewa H Linderoth, Ann Wennerberg, Per Vult Von Steyern Department of Prosthetic Dentistry, Faculty of Odontology, Malmö University, Malmö, Sweden Aim: To investigate and compare the fracture strength and fracture mode in eleven groups of currently, the most commonly used multilayer three-unit all-ceramic yttria-stabilized tetragonal zirconia polycrystal (Y-TZP fixed dental prostheses (FDPs with respect to the choice of core material, veneering material area, manufacturing technique, design of connectors, and radii of curvature of FDP cores. Materials and methods: A total of 110 three-unit Y-TZP FDP cores with one intermediate pontic were made. The FDP cores in groups 1–7 were made with a split-file design, veneered with manually built-up porcelain, computer-aided design-on veneers, and over-pressed veneers. Groups 8–11 consisted of FDPs with a state-of-the-art design, veneered with manually built-up porcelain. All the FDP cores were subjected to simulated aging and finally loaded to fracture. Results: There was a significant difference (P<0.05 between the core designs, but not between the different types of Y-TZP materials. The split-file designs with VITABLOCS® (1,806±165 N and e.max® ZirPress (1,854±115 N and the state-of-the-art design with VITA VM® 9 (1,849±150 N demonstrated the highest mean fracture values. Conclusion: The shape of a split-file designed all-ceramic reconstruction calls for a different dimension protocol, compared to traditionally shaped ones, as the split-file design leads to sharp approximal indentations acting as fractural impressions, thus decreasing the overall strength. The design of a framework is a crucial factor for the load bearing capacity of an all-ceramic FDP. The state-of-the-art design is preferable since the split-file designed cores call for a cross-sectional connector area at least 42% larger, to have the same load bearing capacity as the state-of-the-art designed

  2. Thermodynamics of tetragonal zirconia formation in a nanolaminate film

    Science.gov (United States)

    Aita, C. R.; Wiggins, M. D.; Whig, R.; Scanlan, C. M.; Gajdardziska-Josifovska, M.

    1996-01-01

    Zirconia-alumina transformation-toughening nanolaminates were fabricated by reactive sputter deposition. The average crystallite size and volume fraction of each zirconia polymorph were determined by x-ray diffraction. The volume fraction of tetragonal zirconia, the phase necessary for transformation toughening, was found to strongly depend upon the zirconia layer thickness. An end-point thermodynamics model involving hemispherical cap zirconia crystallites was developed to explain this phenomenon. In excellent agreement with experimental results, the model predicts that unity volume fraction of tetragonal zirconia is produced in the nanolaminate when the zirconia layer thickness is less than the radius at which a growing zirconia crystallite spontaneously transforms to the monoclinic phase.

  3. Glass ceramic toughened with tetragonal zirconia

    Science.gov (United States)

    Keefer, Keith D.; Michalske, Terry A.

    1986-01-01

    A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.

  4. Making yttria-stabilized tetragonal zirconia translucent

    Science.gov (United States)

    Zhang, Yu

    2014-01-01

    Objective The aim of this study was to provide a design guideline for developing tetragonal yttria-stabilized zirconia with improved translucency. Methods The translucency, the in-line transmission in particular, of 3 mol.% yttria-stabilized tetragonal zirconia (3Y-TZP) has been examined using the Rayleigh scattering model. The theory predicts that the in-line transmission of 3Y-TZP can be related to its thickness with grain size and birefringence the governing parameters. To achieve a threshold value of translucency, the critical grain size of 3Y-TZP was predicted for various thicknesses (0.3 – 2.0 mm). The threshold value was defined by a measured average in-line transmission value of a suite of dental porcelains with a common thickness of 1 mm. Our theoretical predictions were calibrated with one of the very few experimental data available in the literature. Results For a dense, high-purity zirconia, its in-line transmission increased with decreasing grain size and thickness. To achieve a translucency similar to that of dental porcelains, a nanocyrstalline 3Y-TZP structure was necessitated, due primarily to its large birefringence and high refractive index. Such a grain size dependence became more pronounced as the 3Y-TZP thickness increased. For example, at a thickness of 1.3 mm, the mean grain size of a translucent 3Y-TZP should be 82 nm. At 1.5 mm and 2 mm thicknesses, the mean grain size needed to be 77 nm and 70 nm, respectively. Significance A promising future for zirconia restorations, with combined translucency and mechanical properties, can be realized by reducing its grain size. PMID:25193781

  5. Structure Characterization calculation of Tetragonal Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Feng, J; Wang, X Y; Ren, X R; Huang, Z C; Pan, W [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084 (China); Zhou, R, E-mail: fengj09@mails.tsinghua.edu.cn, E-mail: panw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials of Precious-Nonferrous Metals, Education Ministry of China, Kunming University of Science and Technology, Kunming 650093 (China)

    2011-10-29

    Structure characterization and elastic properties of tetragonal phase of zirconia have been investigated by density functional theory (DFT). The XRD spectrums and vibration properties of Raman active modes of T-ZrO{sub 2} were calculated and the results were compared with references. The calculated results have showed researchers may distinguish cubic and tetragonal phases used XRD spectrums in the 2 range of 72.5{sup 0}-75.5{sup 0}, 122{sup 0}-129{sup 0} and 138{sup 0}-148{sup 0}. The calculated vibrated properties of Raman active modes as follows: the modes of Zr-O stretching are 262.6, 486.2, and 641.6 cm{sup -1} the modes of Zr-O bending and O-O coupling are 344.4 and 606.9 cm{sup -1} and the modes of Zr-O-Zr or O-Zr-O bending is 141.2 cm{sup -1}.

  6. Light activated phase transformation of metastable tetragonal nanocrystalline zirconia

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; van Lelieveld, A

    2012-01-01

    This study searches for small molecules, which can be generated by photoacid generators (PAGs) capable of inducing the tetragonal-to-monoclinic transformation in zirconia nanocrystals. Metastable tetragonal zirconia nanocrystals were exposed in alcohol suspension. X-ray diffraction analysis showed...... that water, HCl, HF, and NH3, all initiate phase transformation of tetragonal zirconia at room temperature, whereas NBu4Cl and NBu4OH do not. 2-(4-Methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was the most efficient (monoclinic volume fraction reached 0.57) out of the four tested PAGs....... For dispersion in a dimethacrylate matrix together with zirconia crystals, a monoclinic volume fraction of 0.19 was observed after 2 min of exposure to light, increasing to 0.6 after 30 min....

  7. Inhibition of surface bound carbonate stabilization of tetragonal zirconia

    DEFF Research Database (Denmark)

    Nielsen, Mette Skovgaard; Almdal, Kristoffer; Lelieveld, A. van

    2011-01-01

    Water is known to initiate a tetragonal to monoclinic phase transformation in zirconia particles. Carbonates on the zirconia surface react with water molecules and hence reduce the transformation rate. This study investigates the possibility of inhibition of the reaction between surface carbonates...... and water in order to increase the transformation rate in the zirconia crystals. It was found possible to limit the reaction by reacting the surface carbonates with alcohols, a thiol and a primary amide prior to reaction with water. It was also concluded that di- and trialcohols are able to stabilize...

  8. superplastic deep drawing of tetragonal zirconia ceramics at 1160 C

    NARCIS (Netherlands)

    Winnubst, Aloysius J.A.; Boutz, M.M.R.; Boutz, M.M.R.

    1998-01-01

    Superplastic forming under biaxial tension of tetragonal zirconia (Y-TZP) is investigated by pushing a hemispherical punch (radius 6 mm) on Y-TZP which was placed on a ring with an inner diameter of 16·7 mm. Dense Y-TZP samples with a grain diameter of 125 nm could be elongated to a dome height of

  9. CeO2-stabilized tetragonal ZrO2 polycrystals (Ce-TZP ceramics)

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de.

    1990-12-01

    This work presents the development and the characterization of CeO 2 -stabilized tetragonal ZrO 2 polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics. Sintered ceramics were fabricated from mixtures of powders containing different CeO 2 content prepared by conventional and nonconventional techniques. These powders and their resultant sintered ceramics were specified by chemical and physical characterization, compactation state and mechanical properties. The chemical characteristics were determined by chemical analysis and the physical characteristics were evaluated by phase content, particle and agglomerate size and aspect, and powder porosity. (author)

  10. Variational method of determining effective moduli of polycrystals with tetragonal symmetry

    Science.gov (United States)

    Meister, R.; Peselnick, L.

    1966-01-01

    Variational principles have been applied to aggregates of randomly oriented pure-phase polycrystals having tetragonal symmetry. The bounds of the effective elastic moduli obtained in this way show a substantial improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be a good approximation in most cases when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1966 The American Institute of Physics.

  11. Beberapa Penggunaan Zirconia Dalam Bidang Kedokteran Gigi

    OpenAIRE

    Afifuddin

    2008-01-01

    Salah satu bentuk kemajuan dalam bidang kedokteran gigi adalah penggunaan zirconia sebagai dental material. Zirconia berasal dari unsur zirconium (Zr) yang memiliki nomor atom 40 dan berat atom 91,22. Zirconia merupakan keramik bioinert. Ada beberapa tipe dari zirconia, yaitu ; tetragonal zirconia polycrystals (TZP), fully stabilized zirconia (FSZ), partially stabilized zirconia (PSZ), zirconia toughened alumina (ZTA), dan transformation toughened zirconia (TTZ). Tetapi yang dipakai sebagai d...

  12. Transformations during grinding of ceria-stabilized tetragonal zirconia polycrystals

    International Nuclear Information System (INIS)

    Annamalai, V.E.; Gokularathnam, C.V.; Sornakuma, T.; Krishnamurthy, R.

    1992-01-01

    This paper reports that Ce-TZP is reported to exhibit cyclic transformation during machine grinding. Previous conclusions were based on the results obtained by grinding Ce-TZP at a single speed and depth of cut. In the present work, grinding parameters were carefully chosen to induce varied stresses. Results show that Ce-TZP exhibits cyclic transformation, not always, but only under certain favorable grinding conditions. Results are supported by XRD, optical microscopy, and dynamometric observations. Three stages of transformation, namely, a mechanical-stress-induced t to m, a frictional-heat-driven m to t, and a thermal-quenching-stress-induced t to m, in sequence, are clearly identified

  13. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  14. Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure

    Science.gov (United States)

    Sachtler, Wolfgang M. H.; Huang, Yin-Yan

    1998-01-01

    Methods for the preparation of new sulfated mesoporous zirconia materials/catalysts with crystalline pore walls of predominantly tetragonal crystal structure, characterized by nitrogen physisorption measurement, X-ray diffraction, transmission electron microscopy and catalytic tests using n-butane isomerization to iso-butane and alkylation of 1-naphthol with 4-tert-butylstyrene as probe reactions. Sulfate deposition is preferred for the transformation of a mesoporous precursor with amorphous pore walls into a material with crystalline pore walls maintaining the mesoporous characteristics.

  15. Formation of metastable tetragonal zirconia nanoparticles: Competitive influence of the dopants and surface state

    Energy Technology Data Exchange (ETDEWEB)

    Gorban, Oksana, E-mail: matscidep@aim.com [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Synyakina, Susanna; Volkova, Galina; Gorban, Sergey; Konstantiova, Tetyana [Donetsk Institute for Physics and Engineering named after A.A. Galkin of the NAS of Ukraine, Nauki av. 46, Kyiv 03680 (Ukraine); Lyubchik, Svetlana, E-mail: s_lyubchik@yahoo.com [REQUIMTE, Universida de Nova de Lisboa, 2829-516 Caparica (Portugal)

    2015-12-15

    The effect of the surface modification of the nanoparticles of amorphous and crystalline partially stabilized zirconia by fluoride ions on stability of the metastable tetragonal phase was investigated. Based on the DSC, titrimetry and FTIR spectroscopy data it was proven that surface modification of the xerogel resulted from an exchange of the fluoride ions with the basic OH groups. The effect of the powder pre-calcination temperature before modification on the formation of metastable tetragonal phase in partially stabilized zirconia was investigated. It was shown that the main factor of tetragonal zirconia stabilization is the state of nanoparticles surface at pre-crystallization temperatures.

  16. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol-gel protocol

    Science.gov (United States)

    Verma, Surbhi; Rani, Saruchi; Kumar, Sushil

    2018-05-01

    Tetragonal zirconia quantum dots (t-ZrO2 QDs) in silica matrix with different compositions ( x)ZrO2-(100 - x)SiO2 were fabricated by a modified sol-gel protocol. Acetylacetone was added as a chelating agent to zirconium propoxide to avoid precipitation. The powders as well as thin films were given thermal treatment at 650, 875 and 1100 °C for 4 h. The silica matrix remained amorphous after thermal treatment and acted as an inert support for zirconia quantum dots. The tetragonal zirconia embedded in silica matrix transformed into monoclinic form due to thermal treatment ≥ 1100 °C. The stability of tetragonal phase of zirconia is found to enhance with increase in silica content. A homogenous dispersion of t-ZrO2 QDs in silica matrix was indicated by the mapping of Zr, Si and O elements obtained from scanning electron microscope with energy dispersive X-ray analyser. The transmission electron images confirmed the formation of tetragonal zirconia quantum dots embedded in silica. The optical band gap of zirconia QDs (3.65-5.58 eV) was found to increase with increase in zirconia content in silica. The red shift of PL emission has been exhibited with increase in zirconia content in silica.

  17. Phase field modeling of tetragonal to monoclinic phase transformation in zirconia

    Science.gov (United States)

    Mamivand, Mahmood

    Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for

  18. Transformation of Yttrium-Doped Hydrated Zirconium into Tetragonal and Cubic Nanocrystalline Zirconia

    Science.gov (United States)

    Bokhimi, X.; Morales, A.; García-Ruiz, A.; Xiao, T. D.; Chen, H.; Strutt, P. R.

    1999-02-01

    Nanostructured yttrium-stabilized zirconia powders, with yttria concentrations between 0.0 and 10.0 mol%, were prepared via the hydrolysis of an aqueous solution of zirconyl and yttrium chloride, and ammonium hydroxide. Powder phases were characterized by using X-ray powder diffraction; their crystalline structures were refined with the Rietveld technique. When samples were annealed below 200°C, their diffraction patterns corresponded to an amorphous atom distribution and were independent of yttria concentration. The doped amorphous phases crystallized, at 400°C, into tetragonal or cubic nanocrystalline zirconia, which were stabilized by yttrium. These results suggest that yttrium atoms served as a substitute for zirconium atoms not only in the crystalline phases but also in the amorphous phases, which are determined by the fast condensation of zirconyl clusters. Nondoped samples contained a mixture of monoclinic and tetragonal nanocrystalline zirconia; those with 2.5 to 5.0 mol% yttria contained only the tetragonal zirconia nanophase, and those with 7.5 to 10.0 mol% had only the nanocrystalline cubic phase. The average crystallite size of the nanophases diminished when Y 2O 3concentration was increased.

  19. Effect of additives on densification and deformation of tetragonal zirconia

    NARCIS (Netherlands)

    Boutz, M.M.R.; Boutz, M.M.R.; Winnubst, Aloysius J.A.; Hartgers, F.; Burggraaf, A.J.; Burggraaf, Anthonie

    1994-01-01

    The effect of additives (Bi2O3, Fe2O3) on densification and creep rates of tetragonal ZrO2-Y2O3 has been investigated. In Bi2O3-doped Y-TZP, a reactive liquid forms at temperatures above 800–900DaggerC, which leads to a strong enhancement of densification for concentrations of 1–2 mol % Bi2O3.

  20. A NOVEL METHOD FOR SYNTHESIS OF METASTABLE TETRAGONAL ZIRCONIA NANOPOWDERS AT LOW TEMPERATURES

    Directory of Open Access Journals (Sweden)

    F. KAZEMI

    2011-03-01

    Full Text Available Zirconia (ZrO2 nanopowder was synthesized using sucrose and fructose as a chelating agent from zirconium hydroxide. The synthesized powders were characterized by X-ray diffraction (XRD, simultaneously thermal analysis (STA, BET surface area, scanning electron microscopy (SEM and transmission electron microscopy (TEM. The above-experimental results showed that the synthesized powders had particle sizes in the range 40-60 nm and mean crystallite sizes of 7-8 nm. Finally, in this research, chelating agents of sucrose and fructose were compared and the obtained results demonstrated that using fructose, nanopowder of zirconia with tetragonal phase was obtained.

  1. Shock Response and Structure Of Yttria-Doped Tetragonal Zirconia

    Science.gov (United States)

    Milyavskiy, Vladimir; Savinykh, Andrey; Akopov, Felix; Borovkova, Leonora; Valiano, Georgy; Borodina, Tatiana; Lukin, Evgeny; Popova, Nelia; Ziborov, Vadim

    2011-06-01

    A new technology of ceramics manufacturing is proposed. The technology is based on zirconium dioxide, partially stabilized by yttria, obtained by a heterophased chemical deposition method. The main properties of the manufactured ceramics have been characterized by us: density of 5.79 g * cm-3 , bending strength of ~800 MPa, crack resistance of ~8 MPa *m 0 . 5 , microhardness of ~15 GPa. The microstructure and phase composition have been also investigated. The average size of sintered ceramic grains was 0.6 micron. It was established that the ceramics consisted of 93 mass % tetragonal and 7 mass % monoclinic phase and had X-ray density of 6.18 g * cm-3 . We have obtained longitudinal and transversal sonic speed relation to the frequency range of 1.25 -- 10 MHz. The measurements have shown dispersion occurrence. At dynamic loading the PSZD ceramics had shown high efficiency in Hugoniot elastic limit and spall strength. The work was supported by the Ministry of education and science of the Russian Federation (Contract No. 02.740.11.0200).

  2. Internal stresses and stability of the tetragonal phase in zirconia thin layers deposited by OMCVD

    Science.gov (United States)

    Benali, B.; Huntz, A. M.; Andrieux, M.; Ignat, M.; Poissonnet, S.

    2008-07-01

    Zirconia thin films were deposited by OMCVD (organo-metallic chemical vapour deposition) at various temperatures and oxygen partial pressures on a AISI 301 stainless steel substrate with Zr(thd) 4 as precursor. The as deposited 250 nm thin zirconia films presented a structure consisting of two phases: the expected monoclinic one and also an unexpected tetragonal phase. According to the literature, the stabilization of the tetragonal phase (metastable in massive zirconia) can be related to the crystallite size and/or to the generated internal compressive stresses. To analyze the effect of internal and external stresses on the thin film behaviour, in-situ tensile experiments were performed at room temperature and at high temperature (500 °C). Depending on the process parameters, phase transformations and damage evolution of the films were observed. Our results, associated to XRD (X-ray diffraction) analyses, used to determine phase ratios and residual stresses within the films, before and after the mechanical experiments, are discussed with respect to their microstructural changes.

  3. Sol-gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain.

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol-gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia-porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and Pcoating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain.

  4. Tetragonal BiFeO3 on yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Liu, Heng-Jui; Du, Yu-Hao; Gao, Peng; Ikuhara, Yuichi; Huang, Yen-Chin; Chen, Yi-Chun; Chen, Hsiao-Wen; Liu, Hsiang-Lin; He, Qing; Chu, Ying-Hao

    2015-01-01

    High structural susceptibility of multiferroic BiFeO 3 (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO 3 substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications

  5. Tetragonal BiFeO{sub 3} on yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heng-Jui [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Du, Yu-Hao [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Gao, Peng; Ikuhara, Yuichi [Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Huang, Yen-Chin; Chen, Yi-Chun [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, Hsiao-Wen; Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2015-11-01

    High structural susceptibility of multiferroic BiFeO{sub 3} (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO{sub 3} substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications.

  6. Cavitation behaviors in a tetragonal zirconia polycrystal subjected to superplastic deformations measured by SANS method

    Czech Academy of Sciences Publication Activity Database

    Harjo, S.; Motohashi, Y.; Šaroun, Jan; Ryukhtin, Vasyl; Strunz, Pavel; Baron, M.; Loidl, R.

    Roč. 447, č. 4 ( 2004 ), s. 67-72 ISSN 0255-5476 Institutional research plan: CEZ:AV0Z1048901 Keywords : cavitation * small-angle neutron scattering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.498, year: 2004

  7. Characterization of cavities in superplastically deformed tetragonal zirconia polycrystals by means of small angle neutron scattering

    Czech Academy of Sciences Publication Activity Database

    Harjo, S.; Kojima, N.; Motohashi, Y.; Šaroun, Jan; Ryukhtin, Vasyl; Strunz, Pavel; Loidl, R.; Baron, M.

    2002-01-01

    Roč. 43, č. 10 (2002), s. 2480-2486 ISSN 1345-9678 R&D Projects: GA ČR GV202/97/K038 Institutional research plan: CEZ:AV0Z1048901 Keywords : SANS * superplasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.841, year: 2002

  8. Synthesis, microstructure and mechanical properties of ceria stabilized tetragonal zirconia prepared by spray drying technique

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gokhale, N.M.; Dayal, Rajiv; Lazl, Ramji

    2002-01-01

    Ceria stabilized zirconia powders with ceria concentration varying from 6 to 16 mol% were synthesized using spray drying technique. Powders were characterized for their particle size distribution and specific surface area. The dense sintered ceramics fabricated using these powders were characterized for their microstructure, crystallite size and phase composition. The flexural strength, fracture toughness and micro-hardness of sintered ceramics were measured. High fracture toughness and flexural strength were obtained for sintered bodies with 12 mol% of CeO 2 . Flexural strength and fracture toughness were dependent on CeO 2 concentration, crystallite size and phase composition of sintered bodies. Correlation of data has indicated that the transformable tetragonal phase is the key factor in controlling the fracture toughness and strength of ceramics. It has been demonstrated that the synthesis method is effective to prepare nanocrystalline tetragonal ceria stabilized zirconia powders with improved mechanical properties. Ce-ZrO 2 with 20 wt% alumina was also prepared with flexural strength, 1200 MPa and fracture toughness 9.2 MPa√m. (author)

  9. Effect of microscale shear stresses on the martensitic phase transformation of nanocrystalline tetragonal zirconia powders

    DEFF Research Database (Denmark)

    Skovgaard, Mette; Ahniyaz, Anwar; Sørensen, Bent F.

    2010-01-01

    For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders are extrem......For the first time, the effect of microscale shear stress induced by both mechanical compression and ball-milling on the phase stability of nanocrystalline tetragonal zirconia (t-ZrO2) powders was studied in water free, inert atmosphere. It was found that nanocrystalline t-ZrO2 powders...... was observed. Ball-milling induced microscale stress has a similar effect on the t → m phase transformation. Furthermore, it was found that even very mild milling condition, such as 120 rpm, 1 h (0.5 mm balls) was enough to induce phase transformation. Surfactant assisted ball-milling was found to be very...... effective in de-agglomeration of our nanocrystalline porous ZrO2 particles into discrete nanocrystals. However, the t → m phase transformation could not be avoided totally even at very mild milling condition. This suggests that the metastable t-ZrO2 is extreme sensitive to microscale shear stress induced...

  10. Zirconia dental implants : a clinical, radiographic, and microbiologic evaluation up to 3 years

    NARCIS (Netherlands)

    Brüll, Felix; van Winkelhoff, Arie Jan; Cune, Marco S.

    2014-01-01

    PURPOSE: To retrospectively evaluate the clinical performance of zirconia endosseous implants. MATERIALS AND METHODS: Partially edentulous patients with adequate bone volume to fit yttria tetragonal zirconia polycrystal (Y-TZP) implants at least 3.5 mm wide and 8.0 mm long were included. Full-mouth

  11. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    Science.gov (United States)

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  12. Sol–gel dip coating of yttria-stabilized tetragonal zirconia dental ceramic by aluminosilicate nanocomposite as a novel technique to improve the bonding of veneering porcelain

    Science.gov (United States)

    Madani, Azamsadat; Nakhaei, Mohammadreza; Karami, Parisa; Rajabzadeh, Ghadir; Salehi, Sahar; Bagheri, Hossein

    2016-01-01

    The aim of this in vitro study was to evaluate the effect of silica and aluminosilicate nanocomposite coating of zirconia-based dental ceramic by a sol–gel dip-coating technique on the bond strength of veneering porcelain to the yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) in vitro. Thirty Y-TZP blocks (10 mm ×10 mm ×3 mm) were prepared and were assigned to four experimental groups (n=10/group): C, without any further surface treatment as the control group; S, sandblasted using 110 μm alumina powder; Si, silica sol dip coating + calcination; and Si/Al, aluminosilicate sol dip coating + calcination. After preparing Y-TZP samples, a 3 mm thick layer of the recommended porcelain was fired on the coated Y-TZP surface. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis were used to characterize the coating and the nature of the bonding between the coating and zirconia. To examine the zirconia–porcelain bond strength, a microtensile bond strength (μTBS) approach was chosen. FT-IR study showed the formation of silica and aluminosilicate materials. XRD pattern showed the formation of new phases consisting of Si, Al, and Zr in coated samples. SEM showed the formation of a uniform coating on Y-TZP samples. Maximum μTBS values were obtained in aluminosilicate samples, which were significantly increased compared to control and sandblasted groups (P=0.013 and P<0.001, respectively). This study showed that aluminosilicate sol–gel dip coating can be considered as a convenient, less expensive reliable method for improving the bond strength between dental Y-TZP ceramics and veneering porcelain. PMID:27478376

  13. Densification of zirconia-hematite nanopowders

    NARCIS (Netherlands)

    Raming, T.P.; Winnubst, Aloysius J.A.; van Zyl, W.E.; Verweij, H.

    2003-01-01

    The densification of dual-phase yttria-doped tetragonal zirconia polycrystals (Y-TZP) and -Fe2O3 (hematite) composite powders is described. Different powder synthesis methods, different forms of dry compaction processes, and two sinter methods (pressureless sintering and sinterforging) were

  14. Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

    NARCIS (Netherlands)

    Tocha, E.; Pasaribu, H.R.; Schipper, Dirk J.; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low

  15. Transformation zone shape, size, and crack-growth-resistance (R-curve) behavior of ceria-partially-stabilized zirconia polycrystals

    International Nuclear Information System (INIS)

    Yu, C.S.; Shetty, D.K.

    1989-01-01

    This paper reports on transformation zone shape, size, and crack-growth-resistance behavior studied in precracked and annealed single-edge notch bend specimens of commercial-grade ceria-partially-stabilized zirconia polycrystals as a function of applied load. Well-defined transformation zones with a characteristic elongated shape in the plane of the crack were observed. It is shown that the observed zone shape is significantly different from the shape predicted by a combined shear/dilatation yield criterion and the stress field of the crack prior to the transformation. The length of the transformation zone directly ahead of the crack tip is in better agreement with the prediction of the Dugdale plastic strip zone mode. The fracture toughness increment showed the characteristic square root dependence on the transformation zone width, but the magnitude of the toughness increment was not consistent with the predictions of the theoretical models of transformation toughening

  16. Structural investigations on the tetragonal to cubic phase transformations in zirconia induced by progressive yttrium additions

    Science.gov (United States)

    Vasanthavel, S.; Kannan, S.

    2018-01-01

    Yttria stabilized zirconia (YSZ) is inevitable in many industrial applications. Yttrium additions in ZrO2 system induces either tetragonal (t-ZrO2) or cubic (c-ZrO2) phase stabilization that predominantly depends on the yttrium content. Here, the structural changes in ZrO2 system upon a wide range of yttrium additions are investigated. Powder synthesis is carried out through citrate-nitrate assisted sol-gel technique and analytical techniques involving XRD, Raman spectra and structural analysis through Rietveld refinement were utilized to investigate the structural changes in ZrO2 upon progressive yttrium additions. The critical limit of yttrium content to retain unique t-ZrO2, mixtures of t-ZrO2 and c-ZrO2 and discrete c-ZrO2 is determined.

  17. Mechanical and magnetic properties of nickel-dispersed tetragonal zirconia nanocomposites.

    Science.gov (United States)

    Kondo, H; Sekino, T; Choa, Y H; Kusunose, T; Nakayama, T; Wada, M; Adachi, T; Niihara, K

    2002-10-01

    Effects of Ni dispersions on microstructure and mechanical properties have been studied for Y2O3-stabilized tetragonal zirconia (Y-TZP)/Ni nanocomposites with Ni dispersion up to 10 vol%. Composites were successfully fabricated by reducing and hot-pressing Y-TZP/NiO powder mixtures. Fracture strength was significantly improved from 1.5 GPa for monolithic Y-TZP to 1.9 GPa for nanocomposites with a small addition of Ni (1-2 vol%). Magnetic properties of Y-TZP/Ni nanocomposites were also investigated. Magnetization curves of Y-TZP/Ni nanocomposites showed typical hysteresis loops of soft magnetic materials, whereas coercivity was much larger than that of pure Ni metal. A new function arising from magnetomechanical effects of metallic Ni is also discussed for the present nanocomposites.

  18. Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions

    International Nuclear Information System (INIS)

    Benyagoub, Abdenacer

    2005-01-01

    Recent results demonstrated that defect formation or amorphization are not the only structural changes induced by swift heavy ions in crystalline materials and that under certain circumstances crystalline-to-crystalline phase transitions can also occur. For instance, it was found that both zirconia and hafnia transform from the monoclinic to the tetragonal phase with a kinetics involving a double ion impact process. In order to understand the origin of this ion-beam induced phase transition, the behavior of these twin oxides was analyzed and compared. In fact, the likeness of these materials offered the unique opportunity to impose drastic constraints on the possible models proposed to explain the creation of atomic displacements in the wake of swift heavy ions. This comparison clearly suggests that the thermal spike is the most appropriate process which governs the transition from the monoclinic to the tetragonal phase in zirconia and hafnia

  19. Surface crystalline phases and nanoindentation hardness of explanted zirconia femoral heads.

    Science.gov (United States)

    Catledge, Shane A; Cook, Monique; Vohra, Yogesh K; Santos, Erick M; McClenny, Michelle D; David Moore, K

    2003-10-01

    One new and nine explanted zirconia femoral heads were studied using glancing angle X-ray diffraction, scanning electron microscopy, and nanoindentation hardness techniques. All starting zirconia implants consisted only of tetragonal zirconia polycrystals (TZP). For comparison, one explanted alumina femoral head was also studied. Evidence for a surface tetragonal-to-monoclinic zirconia phase transformation was observed in some implants, the extent of which was varied for different in-service conditions. A strong correlation was found between increasing transformation to the monoclinic phase and decreasing surface hardness. Microscopic investigations of some of the explanted femoral heads revealed ultra high molecular weight polyethylene and metallic transfer wear debris.

  20. Study of solid state kinetics using voltammetry of immobilized particles. Application to tetragonal to monoclinic transition in nanoparticulate zirconia and praseodymia-doped zirconia

    International Nuclear Information System (INIS)

    Doménech, Antonio; Montoya, Noemí; Alarcón, Javier

    2012-01-01

    Highlights: ► The voltammetry of immobilized particles methodology is applied to study solid state reaction kinetics using electrocatalysis. ► The kinetics of the formation of monoclinic zirconia and praseodymia-doped zirconia plus pyrochlore phase from tetragonal precursors is described. ► Competing and consecutive reaction pathways are discerned from electrocatalytic data on oxygen evolution reaction and dissolved oxygen reduction. - Abstract: The voltammetry of immobilized particles methodology is applied to study solid state reaction kinetics on the basis of the electrocatalytic ability of solids toward selected electrochemical processes. Measurement of the time variation of catalytic current for oxygen evolution reaction in aqueous alkaline media provides a direct estimate of fractional conversion of the reactant in the course of the reaction for testing different reaction kinetic models. This methodology is applied to analyze the formation of monoclinic zirconia and praseodymia-doped zirconia from tetragonal precursors. Discrimination between competing and successive reactions mechanisms is obtained for reactions involving specimens with high praseodymium loadings, where a secondary pyrochlore phase is formed, combining the above data with those for the electrochemical reduction of dissolved oxygen.

  1. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries

    Science.gov (United States)

    Watt, J.P.; Peselnick, L.

    1980-01-01

    Bounds on the effective elastic moduli of randomly oriented aggregates of hexagonal, trigonal, and tetragonal crystals are derived using the variational principles of Hashin and Shtrikman. The bounds are considerably narrower than the widely used Voigt and Reuss bounds. The Voigt-Reuss-Hill average lies within the Hashin-Shtrikman bounds in nearly all cases. Previous bounds of Peselnick and Meister are shown to be special cases of the present results.

  2. Effects of specimen size and yttria concentration on mechanical properties of single crystalline yttria-stabilized tetragonal zirconia nanopillars

    Science.gov (United States)

    Zhang, Ning; Asle Zaeem, Mohsen

    2017-07-01

    The nanoscale plastic deformation of yttria-stabilized tetragonal zirconia (YSTZ) is highly dependent on the crystallographic orientations, i.e., dislocation is induced when the loading direction is 45° tilted to {111} and {101} slip planes, while tetragonal to monoclinic phase transformation dominates the plastic deformation when loading direction is perpendicular to the slip planes. This study investigates the effects of specimen size and yttria concentration on the mechanical response of single crystalline YSTZ nanopillars. Through uniaxial compression test, the smaller-is-stronger phenomenon is revealed in nanopillars deformed through a dislocation motion mechanism. Serrated stacking faults are observed in the smallest nanopillar, while neat primary slip plane forms in the largest nanopillar. In contrast, the larger-is-stronger relation is observed in nanopillars in which deformation is mediated by tetragonal to monoclinic phase transformation. It is noted that the ratio of transformed monoclinic phase to the remaining tetragonal phase is the highest in the smallest nanopillar. The strength of nanopillars is identified to decrease by increasing the amount of yttria due to the creation of more oxygen vacancies that act as weak points to facilitate dislocation motion and accelerate phase transformation.

  3. Probing the effects of interfacial chemistry on the kinetics of phase transitions in amorphous and tetragonal zirconia nanocrystals.

    Science.gov (United States)

    Kirsch, Bradley L; Riley, Andrew E; Gross, Adam F; Tolbert, Sarah H

    2004-12-07

    In this work, we examine the phase stability of both uncoated and alumina-coated zirconia nanoparticles using in-situ X-ray diffraction. By tracking structural changes in these particles, we seek to understand how changing interfacial bonding affects the kinetics of amorphous zirconia crystallization and the kinetics of grain growth in both initially amorphous and initially crystalline zirconia nanocrystals. Activation energies associated with crystallization are calculated using nonisothermal kinetic methods. The crystallization of the uncoated amorphous zirconia colloids has an activation energy of 117 +/- 13 kJ/mol, while that for the alumina-coated amorphous colloids is 185 +/- 28 kJ/mol. This increase in activation energy is attributed to inhibition of atomic rearrangement imparted by the alumina coating. The kinetics of grain growth are also studied with nonisothermal kinetic methods. The alumina coating again dramatically affects the activation energies. For colloids that were coated with alumina when they were in an amorphous structure, the coating imparts a 5x increase in the activation energy for grain growth (33 +/- 8 versus 150 +/- 30 kJ/mol). This increase shows that the alumina coating inhibits zirconia cores from coarsening. When the colloids are synthesized in the tetragonal phase and then coated with alumina, the effect of surface coating on coarsening kinetics is even more dramatic. In this case, a 10x increase in activation energies, from 28 +/- 3 kJ/mol for the uncoated particles to 300 +/- 25 kJ/mol for the alumina-coated crystallites, is found. The results show that one can alter phase stability in colloidal systems by using surface coatings and interfacial energy to dramatically change the kinetic barriers to structural rearrangement.

  4. Influence of gadolinium content on the tetragonal to cubic phase transition in zirconia-silica binary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Behera, Pallavi Suhasinee; Vasanthavel, S.; Ponnilavan, V.; Kannan, S., E-mail: para_kanna@yahoo.com

    2015-05-15

    The present study reports the effect of gadolinium (Gd{sup 3+}) in zirconia-silica (ZrO{sub 2}-SiO{sub 2}) binary oxides. The pure ZrO{sub 2}-SiO{sub 2} synthesized at 1100 °C was tetragonal. The addition of Gd{sup 3+} in the concentration range of 5%–10% resulted in the formation of t-ZrO{sub 2}, whereas higher contents of Gd{sup 3+} led to the formation of cubic ZrO{sub 2} (c-ZrO{sub 2}). The presence of Gd{sup 3+} also affected the lattice parameters of both t-ZrO{sub 2} and c-ZrO{sub 2}. Magnetic studies confirmed a steady increase in the paramagnetic behaviour with increasing content of Gd{sup 3+}. - Graphical abstract: t-ZrO{sub 2} to c-ZrO{sub 2} phase transition influenced by Gd{sup 3+} content. - Highlights: • Sol-gel synthesis of Gd{sup 3+} added SiO{sub 2}-ZrO{sub 2} binary oxides. • Significant role of Gd{sup 3+} content in the tetragonal and cubic stabilization of ZrO{sub 2}. • Phase stability of either tetragonal or cubic stabilization till 1100 °C. • Gd{sup 3+} additions ensured additional paramagnetic behaviour in SiO{sub 2}-ZrO{sub 2} binary oxide.

  5. Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2013-06-15

    Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.

  6. Clinical Evaluation of Monolithic Zirconia Crowns: A Short-Term Pilot Report.

    Science.gov (United States)

    Kitaoka, Aki; Akatsuka, Ryo; Kato, Hiroaki; Yoda, Nobuhiro; Sasaki, Keiichi

    This study aimed to prospectively evaluate the clinical performance of monolithic zirconia crowns made of yttria-stabilized tetragonal zirconia polycrystal. A total of 26 crowns placed on premolar or molar teeth in 18 patients were evaluated at the time of crown placement and at 2 weeks, 6 months, 1 year, and 2 years after placement. Twenty-five crowns rated as satisfactory according to the California Dental Association quality evaluation system. Most of the abutment and antagonist teeth showed good periodontal condition. An enamel cracking occurred on one antagonist tooth 1 year after placement. Monolithic zirconia crowns can be a clinically acceptable prosthetic option.

  7. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    OpenAIRE

    Lameira, Deborah Pacheco; Silva, Wilkens Aur?lio Buarque e; Silva, Frederico Andrade e; De Souza, Grace M.

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed mo...

  8. Thermally activated charge transport in modified tetragonal zirconia thin films prepared by sol-gel method

    Science.gov (United States)

    Aboulkacem, Khiali; Abdelkader, Ammari; Bediaf, Benrabah; Amar, Bouaza; Abdelmalek, Kharoubi; Hadj, Benhebal

    2018-04-01

    Films of Sn-doped ZrO2 were prepared using the sol-gel based dip-coating technique. The X-ray diffraction patterns showed a tetragonal structure with a preferential orientation along the (111) plane. The average grain size of the samples varies from 9.53 to 12.64 nm. Thermal analysis revealed endothermic peaks in the range 84-90 °C and exothermic peaks appearing in the range 489-531 °C. Fourier transform infrared (FTIR) spectra depicted bands located at 612 and 736 cm-1, which are attributed to stretching mode and asymmetric vibrations of Zr-O and O-Zr-O bonds respectively. All films exhibited high transmittance in the visible range above 60% and the optical band gap (E g) decreases from 4.085 to 4.061 eV. The impedance measurements show that the equivalent circuit of the samples is an R p C p where C p is the capacitance of the layer and R p its resistance. The electrical conductivity was found to follows an Arrhenius law with two activation energies.

  9. Polycrystal Snowfakes

    Science.gov (United States)

    Clune, Tom; Kuo, Kwo-Sen; Pelissier, Craig

    2017-01-01

    Building on the previous success of a mono-crystal snowflake growth model, a team of NASA researchers has invented and implemented a poly-crystal variant of the model to simulate simultaneous crystalline growth along lattices of different orientations. Inferring snowfall intensity and amount using remote sensing relies on knowing the scattering properties of snowing particles. However, these scattering properties depend strongly on the geometric shapes of the snowing particles. Poly-crystal snow particles, such as bullet rosettes, appear frequently in nature. Simulating the growth of both mono-crystal and poly-crystal particles and obtaining accurate scattering properties are paramount for furthering accurate quantitative estimates of snowfalls.

  10. Cladding oxidation model development based on diffusion equations and a simulation of the monoclinic-tetragonal phase transformation of zirconia during transient oxidation

    Science.gov (United States)

    He, Xiaoqiang; Yu, Hongxing; Jiang, Guangming; Dang, Gaojian; Wu, Dan; Zhang, Yu

    2014-08-01

    Zircaloy cladding oxidation is mostly represented by parabolic rate correlation. But the correlation approach is not suitable for long-term isothermal oxidation [4] or oxidation occurs under steam starvation conditions [5] and cannot obtain the detailed oxygen distribution which impacts the detailed mechanical behavior. To obtain the detailed oxygen distribution, a multi-phase diffusion problem with moving boundaries was introduced to simulate the cladding oxidation [9,10]. However, the hysteresis phenomenon related to the coexistence of monoclinic-tetragonal phases of zirconia which are very important to model the cladding oxidation during a LOCA, is not analyzed. In this study, a cladding oxidation model based on diffusion equations in the temperature range from 923 K to 2098 K which contains β-Zr, α-Zr, monoclinic-ZrO2, tetragonal-ZrO2, and cubic-ZrO2 is developed and the detailed oxygen distribution in the cladding could be obtained. It showed that the simulations of short-term and long-term isothermal oxidation, transient oxidation, and oxidation under steam starvation conditions were reasonable through comparing with the experimental data. We found that our model can give a reasonable simulation of the hysteresis phenomenon of monoclinic-tetragonal phase transformation during transient oxidation as well as a much better simulation of the hypothetical LOCA transient oxidation experiments [11] in ORNL than that by the code based on the parabolic rate correlation. This indicates that the developed model can accurately simulate the cladding oxidation during a LOCA transient.

  11. Influence of zirconia surface treatment on veneering porcelain shear bond strength after cyclic loading.

    Science.gov (United States)

    Nishigori, Atsushi; Yoshida, Takamitsu; Bottino, Marco C; Platt, Jeffrey A

    2014-12-01

    The influence of yttria-stabilized tetragonal zirconia polycrystal surface treatment on veneering porcelain shear bond strength after cyclic loading is not fully understood. The purpose of this study was to investigate the influence of yttria-stabilized tetragonal zirconia polycrystal surface treatment on veneering porcelain shear bond strength and cyclic loading on the shear bond strength between the 2 materials. A total of 48 cylinder-shaped yttria-stabilized tetragonal zirconia polycrystal specimens were fabricated with computer-aided design and computer-aided manufacturing (CAD/CAM), sintered for 8 hours at 1500°C, ground with 320-grit diamond paper, and divided into 4 groups (n = 12) according to surface treatment as follows: no treatment/control; heat treatment of 650°C to 1000°C at 55°C/min; airborne-particle abrasion with 50-μm alumina at 0.4 MPa pressure for 10 seconds; or heat treatment after abrasion. A veneering porcelain cylinder was built and fired on the prepared yttria-stabilized tetragonal zirconia polycrystal specimens. The shear bond strength was tested with a universal testing machine. Six specimens from each group were subjected to cyclic loading (10000 cycles, 1.5 Hz, 10 N load) before testing. The mean ± SD ranged from 10.7 ± 15.4 to 34.1 ± 10.0. Three-way ANOVA found no statistically significant (P > .05) effect of surface treatment and cyclic loading on shear bond strength. The Sidak multiple comparisons procedure found that cyclic loading specimens had significantly lower shear bond strength than noncyclic loading specimens after airborne-particle abrasion without heat treatment (P = .013). Within the limitations of this study, the shear bond strength between yttria-stabilized tetragonal zirconia polycrystal and veneering porcelain was not significantly affected by surface treatment. Airborne-particle abrasion without subsequent heat treatment should be avoided as a surface treatment in fabrication methods. Copyright © 2014

  12. Interface-specific reorientation of embedded tetragonal ZrO{sub 2} particles in Ni{sub 1-x}O polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.-Y. [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)]. E-mail: pshen@mail.nsysu.edu.tw

    2005-05-25

    ZrO{sub 2}/Ni{sub 1-x}O (1:9 in molar ratio) composites were sintered and then annealed at 1650deg. C for 24 and 100h in air to study Ni{sub 1-x}O surface-controlled reorientation of the tetragonal (t-) ZrO{sub 2} particles, which transformed into monoclinic (m-) twin variants upon cooling. Transmission electron microscopy indicated that the ZrO{sub 2} particles fell into three topotaxial relationships with respect to the host Ni{sub 1-x}O grains: (1) parallel topotaxy (2) ''eutectic'' topotaxy, i.e. [100]{sub Z}//[111]{sub N}, [010]{sub Z}//[01-bar 1]{sub N} and (3) ''occasional'' topotaxy [100]{sub Z}//[111]{sub N}, [011-bar ]{sub Z}//[01-bar 1]{sub N}. The parallel topotaxy has a beneficial low energy for the family of {l_brace}100{r_brace}{sub Z,N} and {l_brace}111{r_brace}{sub Z,N} interfaces. The change from the occasional topotaxy to an energetically more favorable eutectic topotaxy was likely achieved by a rotation of the ZrO{sub 2} particles over a specific (100){sub Z}/(111){sub N} interface. Brownian-type rotation is probable for the embedded t-ZrO{sub 2} particles in terms of anchorage release at the interphase interface with the Ni{sub 1-x}O host. Detachment or bypassing of grain boundaries could also cause reorientation and shape change of intergranular ZrO{sub 2} particles.

  13. Analysis of tetragonal to monoclinic phase transformation caused by accelerated artificial aging and the effects of microstructure in stabilized zirconia

    Science.gov (United States)

    Lucas, Thomas J.

    This investigation addresses the issue that yttria stabilized zirconia is being used as a dental biomaterial without substantial evidence of its long-term viability. Furthermore, stabilized zirconia (SZ) undergoes low temperature degradation (LTD), which can lead to roughening of the surface. A rougher exterior can lead to increased wear of the antagonist in the oral environment. Despite the LTD concerns, SZ is now widely used in restorative dentistry, including full contour crowns. A comparison of aging methods to determine the role of artificial aging on inducing the transformation has not been extensively studied. Therefore, simulations of the transformation process were investigated by comparing different methods of accelerated aging. The rejected null hypothesis is that the temperature of aging treatment will not affect the time required to cause measurable monoclinic transformation of yttria stabilized zirconia. The transformation of SZ starts at the surface and progresses inward; however, it is unclear whether the progression is constant for different aging conditions. This investigation analyzed the depth of transformation as a function of aging conditions for stabilized zirconia in the top 5-6 mum from the surface. The rejected null hypothesis is that the transformation amount is constant throughout the first six micrometers from the surface. The effects of grain size on the amount of monoclinic transformation were also investigated. This study aimed to determine if the grain size of partially stabilized zirconia affects the amount of monoclinic transformation, surface roughness, and property degradation due to aging. The rejected null hypothesis is that the grain size will not affect the amount of monoclinic transformation, thus have no effect on surface roughening or property degradation. The final part of this study addresses the wear of enamel when opposing zirconia by observing how grain size and aging affected the wear rate of an enamel antagonist

  14. Fixed Dental Prostheses and Single-Tooth Crowns Based on Ceria-Stabilized Tetragonal Zirconia/Alumina Nanocomposite Frameworks: Outcome After 2 Years in a Clinical Trial.

    Science.gov (United States)

    Hüttig, Fabian; Keitel, Jan P; Prutscher, Andreas; Spintzyk, Sebastian; Klink, Andrea

    This clinical trial tested bilayered restorations based on ceria-stabilized tetragonal zirconia/alumina frameworks veneered with feldspathic ceramic. A total of 67 crowns and 40 fixed dental prostheses (FDPs) were luted in 57 patients with self-etching/self-adhesive composite resin cement. Dental status and integrity of restorations were evaluated at 2 weeks, 6 months, and then annually. A total of 66 crowns and 36 FDPs (88% posterior) survived for success rates of 93.4% for crowns and 89% for FDPs at 2 years. In particular, 11 cohesive ceramic chippings were observed in 5 crowns and 6 FDPs. The material allows excellent marginal adaptation. Susceptibility to veneering failures might be due to framework design and the necessities of esthetics.

  15. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    OpenAIRE

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    Background and objective: The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the ...

  16. A comparative crystallographic analysis of the tetragonal-to-monoclinic transformation in the yttria-zirconia system

    Science.gov (United States)

    Navruz, N.

    2008-06-01

    The various requirements for effective transformation toughening cannot be predicted without a detailed understanding of the crystallography of the martensitic transformation. In this connection, a comparative crystallographic analysis for four pairs of lattice-correspondence variants in the yttria-zirconia system has been performed on the basis of infinitesimal-deformation (ID) approach and Wechsler-Lieberman-Read (WLR) crystallographic theory. A comparison of the crystallographic features obtained from these two theories was made. In order to verify the applicability of the two theories to this transformation, the calculated results were also compared with the experimental data available. The present study shows that the predictions of both the ID approach and the WLR crystallographic theory can provide data necessary for the model of transformation toughening and act as a guideline for the experimental work in the yttria-zirconia system.

  17. Mixed (oxigen ion and n-type) conductivity and structural characterization of stabilized tetragonal zirconia in the ZrO{sub 2}-CeO{sub 2}-TiO{sub 2} system

    Energy Technology Data Exchange (ETDEWEB)

    Capel, F.; Moure, C.; Duran, P. [Consejo Nacional de Investigaciones Cientificas, Madrid (Spain). Ist. de Ceramica y Vidrio

    2002-07-01

    By using X-ray diffraction lattice parameter measurements and Raman spectroscopy studies, the solid solubility limits of titania in ceria tetragonal zirconia solid solutions (Ce-TZP, 12 mol % CeO{sub 2}) have been established. Electrical properties of the mixed conductor TiO{sub 2}-CeTZP containing 5 and 10 mol % TiO{sub 2} were measured at the 300 C to 900 C temperature range in air and in reduced oxygen partial pressures. (orig.)

  18. Tetragonal zirconia ceramics in Zr O2-Ce O2 system (Ce-TZP): preparation, characterization and mechanical properties

    International Nuclear Information System (INIS)

    Andrade Nono, M.C. de.

    1992-01-01

    This paper describes and discusses the results achieved in a study about Ce-TZP ceramics prepared from conventional powder mixtures of Zr O 2 and Ce O 2 (with composition in the range of 8 to 16 mol% Ce O 2 ). Physical and chemical characteristics were related with the powder compaction behavior and with the sintering state. The sintered ceramics showed a level of high porosity (≅ 4%), mainly due to the fairly adequate powder characteristics and compaction. The crystalline phases were analysed from X-rays diffraction data and showed that these ceramics can present tetragonal-to-monoclinic stress induced transformation. The bending strength, fracture toughness and Vickers hardness results were influenced by Ce O 2 content microstructure and sintering temperature. These Ce-TZP ceramics showed mechanical strength results comparable to those published in the international literature. (author)

  19. In vitro assessment of cutting efficiency and durability of zirconia removal diamond rotary instruments.

    Science.gov (United States)

    Kim, Joon-Soo; Bae, Ji-Hyeon; Yun, Mi-Jung; Huh, Jung-Bo

    2017-06-01

    Recently, zirconia removal diamond rotary instruments have become commercially available for efficient cutting of zirconia. However, research of cutting efficiency and the cutting characteristics of zirconia removal diamond rotary instruments is limited. The purpose of this in vitro study was to assess and compare the cutting efficiency, durability, and diamond rotary instrument wear pattern of zirconia diamond removal rotary instruments with those of conventional diamond rotary instruments. In addition, the surface characteristics of the cut zirconia were assessed. Block specimens of 3 mol% yttrium cation-doped tetragonal zirconia polycrystal were machined 10 times for 1 minute each using a high-speed handpiece with 6 types of diamond rotary instrument from 2 manufacturers at a constant force of 2 N (n=5). An electronic scale was used to measure the lost weight after each cut in order to evaluate the cutting efficiency. Field emission scanning electron microscopy was used to evaluate diamond rotary instrument wear patterns and machined zirconia block surface characteristics. Data were statistically analyzed using the Kruskal-Wallis test, followed by the Mann-Whitney U test (α=.05). Zirconia removal fine grit diamond rotary instruments showed cutting efficiency that was reduced compared with conventional fine grit diamond rotary instruments. Diamond grit fracture was the most dominant diamond rotary instrument wear pattern in all groups. All machined zirconia surfaces were primarily subjected to plastic deformation, which is evidence of ductile cutting. Zirconia blocks machined with zirconia removal fine grit diamond rotary instruments showed the least incidence of surface flaws. Although zirconia removal diamond rotary instruments did not show improved cutting efficiency compared with conventional diamond rotary instruments, the machined zirconia surface showed smoother furrows of plastic deformation and fewer surface flaws. Copyright © 2016 Editorial Council

  20. Influence of Different Framework Designs on the Fracture Properties of Ceria-Stabilized Tetragonal Zirconia/Alumina-Based All-Ceramic Crowns

    Directory of Open Access Journals (Sweden)

    Tomofumi Sawada

    2016-05-01

    Full Text Available The aim of this study was to evaluate the fracture load and failure mode of all-ceramic crowns with different ceria-stabilized tetragonal zirconia/alumina nanocomposite (Ce-TZP/A framework designs. Four frameworks (anatomical shape: AS, with a buccal or lingual supporting structure: BS and LS, or buccal and lingual supporting structures: BLS were fabricated. All frameworks were veneered with porcelain to fabricate all-ceramic crowns followed by cementation to tooth analogs. The fracture load of each crown either without or with pre-loading (1.2 million cycles, 49 N was measured. The failure mode was classified into partial or complete fracture. Differences were tested for significance (p < 0.05 by a two-way Analysis of Variance (ANOVA, followed by Tukey’s test and by Fisher’s exact test, respectively. Without pre-loading, supporting structures did not influence the fracture load or failure mode. Partial fractures were the most common failure mode. Pre-loading promoted the severity of the failure mode, although the fracture load among the framework designs was not influenced. In the AS group, prefailures were observed during pre-loading, and complete fractures were significantly increased after pre-loading. In contrast, the failure mode of the BLS group remained unchanged, showing only partial fracture even after pre-loading. This Ce-TZP/A framework design, comprised of an anatomical shape with additional buccal and lingual structures, has the potential to reduce the chipping of the veneering porcelain.

  1. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns.

    Science.gov (United States)

    Lameira, Deborah Pacheco; Buarque e Silva, Wilkens Aurélio; Andrade e Silva, Frederico; De Souza, Grace M

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed monolithic zirconia crowns (GM); Bi-layer crowns (BL). Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37 °C), and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey's test (P = .05) indicated that monolithic zirconia crowns presented similar fracture strength (PM = 3476.2 N ± 791.7; GM = 3561.5 N ± 991.6), which was higher than bilayer crowns (2060.4 N ± 810.6). There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  2. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    OpenAIRE

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Abstract Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged bef...

  3. Development of a novel zirconia dental post resistant to hydrothermal degradation

    Science.gov (United States)

    Camposilvan, E.; Marro, F. G.; Mestra, A.; Anglada, M. J.

    2012-02-01

    Tetragonal Zirconia Polycrystals stabilized with 3% mol. content of yttria (3Y-TZP) has excellent properties in terms of strength and fracture toughness. These properties are mostly imputable to the transformation toughening mechanism, by which the doped metastable tetragonal phase of zirconia transforms to monoclinic under applied stress ahead of a crack. This phenomenon is accompanied by a volume expansion of 5%, and increases the resistance to crack growth, thus leading to higher toughness and strength. An important drawback of this material is represented by the Low Temperature Degradation (LTD or aging), which consists in the progressive tetragonal-to-monoclinic phase transformation by the influence of water. This work focuses on the improvement of 3Y-TZP aging behavior in order to develop a novel dental post, by means of the addition of ceria from the surface. This was achieved through the impregnation of the pre-sintered samples with a solution containing Cerium, followed by sintering. Various pre-sintering temperatures were studied in terms of microstructure, mechanical properties and aging resistance. The novel zirconia dental posts developed in this work are much more resistant to LTD as compared to the base material with no loss in mechanical properties.

  4. Development of a novel zirconia dental post resistant to hydrothermal degradation

    International Nuclear Information System (INIS)

    Camposilvan, E; Marro, F G; Mestra, A; Anglada, M J

    2012-01-01

    Tetragonal Zirconia Polycrystals stabilized with 3% mol. content of yttria (3Y-TZP) has excellent properties in terms of strength and fracture toughness. These properties are mostly imputable to the transformation toughening mechanism, by which the doped metastable tetragonal phase of zirconia transforms to monoclinic under applied stress ahead of a crack. This phenomenon is accompanied by a volume expansion of 5%, and increases the resistance to crack growth, thus leading to higher toughness and strength. An important drawback of this material is represented by the Low Temperature Degradation (LTD or aging), which consists in the progressive tetragonal-to-monoclinic phase transformation by the influence of water. This work focuses on the improvement of 3Y-TZP aging behavior in order to develop a novel dental post, by means of the addition of ceria from the surface. This was achieved through the impregnation of the pre-sintered samples with a solution containing Cerium, followed by sintering. Various pre-sintering temperatures were studied in terms of microstructure, mechanical properties and aging resistance. The novel zirconia dental posts developed in this work are much more resistant to LTD as compared to the base material with no loss in mechanical properties.

  5. The influence of colored zirconia on the optical properties of all-ceramic restorations.

    Science.gov (United States)

    Harada, Rino; Takemoto, Shinji; Hattori, Masayuki; Yoshinari, Masao; Oda, Yutaka; Kawada, Eiji

    2015-01-01

    This study investigated the effects of different colored tetragonal zirconia polycrystal (TZP) core on the optical properties of TZP framework restorations. Three various colors of TZP discs (Katana Zirconia) 14 mm in diameter and 0.5 mm thickness were layered with 2 shades of veneering ceramics (shade A1 and A4: Cerabian ZR). These specimens were polished to approximately 1.5 mm. CIE L*a*b* coordinates, translucency (TP), and opalescence (OP) on the TZP restorations were evaluated. Consequently, TZP core color affected CIE L*a*b* values of TZP restorations however TP and OP did not significantly differ among the 3 core colors. Translucency and opalescence for colored TZP framework restorations were not influenced by the underlying TZP core color when veneering ceramics were layered to thicknesses of 1.0±0.1 mm.

  6. Bonding Polycrystalline Zirconia With 10-MDP-containing Adhesives.

    Science.gov (United States)

    Llerena-Icochea, A E; Costa, R M; Borges, Afs; Bombonatti, Jfs; Furuse, A Y

    The objective of this study was to evaluate the influence of adhesives with different 10-MDP concentrations on the shear bond strength of a resin cement to zirconia. Six experimental adhesives were prepared with the following composition: camphorquinone, 1,2-diaminobenzene, butylhydroxytoluene, diphenyliodonium hexafluorophosphate, 2-hydroxyethyl methacrylate triethylene glycol dimethacrylate, ethoxylated bisphenol A glycol dimethacrylate, urethane dimethacrylate, bisphenol A diglycidyl methacrylate, and ethanol. The 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) monomer was added at 0wt%, 3wt%, 6wt%, 9wt%, 12wt%, or 15wt%. Three commercially available adhesives were evaluated: Single Bond Universal, Single Bond 2, and Signum Zirconia Bond. Resin cement cylinders made with RelyX Ultimate were bonded to yttria-stabilized tetragonal zirconia polycrystal with one of the evaluated adhesives and were subjected to the shear bond strength evaluation. Failure modes were analyzed with a stereoscopic loupe. Statistical analyses were performed with one-way analysis of variance and the Tukey's Honestly Significant Difference test (α=0.05). Pearson's was used to correlate the percentage of 10-MDP in the experimental adhesives and shear bond strength. There were significant differences between adhesives (pMDP in experimental adhesives (r=0.872). The commercially available adhesives indicated for bonding to zirconia showed the highest bonding values.

  7. Phase characterization of precipitated zirconia

    International Nuclear Information System (INIS)

    Gutzov, S.; Ponahlo, J.; Lengauer, C.L.; Beran, A.

    1994-01-01

    The phase compositions of undoped and europium-doped zirconia samples, obtained by precipitation and thermal treatment from 350 to 1,000 C, have been investigated by powder X-ray diffractometry, infrared spectroscopy, and cathodoluminescence spectroscopy. The low-temperature stabilization of tetragonal zirconia is mainly controlled by the presence of anion additives, such as ammonium chloride. The influences of the crystallite size is less important. Cathodoluminescence spectra show a structural similarity between tetragonal and amorphous zirconia

  8. Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces

    International Nuclear Information System (INIS)

    Pae, Ahran; Kim, Hyeong-Seob; Woo, Yi-Hyung; Lee, Heesu; Kwon, Yong-Dae

    2009-01-01

    The attachment, growth behaviour and the genetic effect of human gingival fibroblasts (HGF) cultured on titanium and different zirconia surfaces were investigated. HGF cells were cultured on (1) titanium discs with a machined surface, (2) yttrium-stabilized tetragonal zirconia polycrystals (Y-TZP) with a smooth surface and (3) Y-TZP with 100 μm grooves. The cell proliferation activity was evaluated through a MTT assay at 24 h and 48 h, and the cell morphology was examined by SEM. The mRNA expression of integrin-β1, type I and III collagen, laminin and fibronectin in HGF were evaluated by RT-PCR after 24 h. From the MTT assay, the mean optical density values for the titanium and grooved zirconia surfaces after 48 h of HGF adhesion were greater than the values obtained for the smooth zirconia surfaces. SEM images showed that more cells were attached to the grooves, and the cells appeared to follow the direction of the grooves. The results of RT-PCR suggest that all groups showed comparable fibroblast-specific gene expression. A zirconia ceramic surface with grooves showed biological responses that were comparable to those obtained with HGF on a titanium surface.

  9. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  10. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Science.gov (United States)

    Lameira, Deborah Pacheco; Silva, Wilkens Aurélio Buarque e; Silva, Frederico Andrade e; De Souza, Grace M.

    2015-01-01

    The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP) crowns in monolithic (1.5 mm thickness) and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer) configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n = 10): Polished monolithic zirconia crowns (PM); Glazed monolithic zirconia crowns (GM); Bi-layer crowns (BL). Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C), and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey's test (P = .05) indicated that monolithic zirconia crowns presented similar fracture strength (PM = 3476.2 N ± 791.7; GM = 3561.5 N ± 991.6), which was higher than bilayer crowns (2060.4 N ± 810.6). There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength. PMID:26576423

  11. Biomolecular modification of zirconia surfaces for enhanced biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Shih-Kuang; Hsu, Hsueh-Chuan [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China); Ho, Wen-Fu [Department of Chemical and Materials Engineering, National University of Kaohsiung, Taiwan, ROC (China); Yao, Chun-Hsu [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, ROC (China); Chang, Pai-Ling [Taoyuan General Hospital, Taoyuan 33004, Taiwan, ROC (China); Wu, Shih-Ching, E-mail: scwu@ctust.edu.tw [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC (China)

    2014-12-01

    Yttria-tetragonal zirconia polycrystal (Y-TZP) is a preferred biomaterial due to its good mechanical properties. In order to improve the biocompatibility of zirconia, RGD-peptide derived from extracellular matrix proteins was employed to modify the surface of Y-TZP to promote cell adhesion in this study. The surface of Y-TZP specimens was first modified using a hydrothermal method for different lengths of time. The topographies of modified Y-TZP specimens were analyzed by contact angle, XRD, FTIR, AFM, and FE-SEM. The mechanical properties were evaluated using Vickers hardness and three point bending strength. Then, the RGD-peptide was immobilized on the surface of the Y-TZP by chemical treatment. These RGD-peptide immobilized Y-TZP specimens were characterized by FTIR and AFM, and then were cocultured with MG-63 osteoblast cells for biocompatibility assay. The cell morphology and proliferation were evaluated by SEM, WST-1, and ALP activity assay. The XRD results indicated that the phase transition, from tetragonal phase to monoclinic phase, was increased with a longer incubation time of hydrothermal treatment. However, there were no significant differences in mechanical strengths after RGD-peptide was successfully grafted onto the Y-TZP surface. The SEM images showed that the MG-63 cells appeared polygonal, spindle-shaped, and attached on the RGD-peptide immobilized Y-TZP. The proliferation and cellular activities of MG-63 cells on the RGD-peptide immobilized Y-TZP were better than that on the unmodified Y-TZP. From the above results, the RGD-peptide can be successfully grafted onto the hydrothermal modified Y-TZP surface. The RGD-peptide immobilized Y-TZP can increase cell adhesion, and thus, improve the biocompatibility of Y-TZP. - Highlights: • Covalent bonding between peptide and Y-TZP was proposed. • Stable biomimetic structures produced on the surface of zirconia. • The biocompatibility was improved.

  12. Transformation-enabled cleaving and healing in zirconia dispersed Co{sub 1-x}O

    Energy Technology Data Exchange (ETDEWEB)

    Li Mingyen [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Shen Pouyan [Institute of Materials Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China)]. E-mail: pshen@mail.nsysu.edu.tw; Hwang Shyhlung [Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan (China)

    2004-11-25

    Zirconia-polymorphism-induced cleaving and spontaneous healing by precipitation was studied in Co{sub 1-x}O polycrystals containing a dispersion of ZrO{sub 2} particles. Conventional, analytical, and high-resolution transmission electron microscopy indicated that upon cooling the Co{sub 1-x}O matrix cleaves parallel to {l_brace}1 0 0{r_brace} and {l_brace}1 1 0{r_brace} planes and heals by itself by co-precipitation of parallel-topotaxial ZrO{sub 2}/Co{sub 3-{delta}}O{sub 4} particles upon cooling. Due to size effect and matrix constraint, nanometer-size ZrO{sub 2} precipitates at cleavages were able to retain tetragonality upon further cooling to room temperature.

  13. Influence of hydrophilic pre-treatment on resin bonding to zirconia ceramics.

    Science.gov (United States)

    Noro, Akio; Kameyama, Atsushi; Haruyama, Akiko; Takahashi, Toshiyuki

    2015-01-01

    Atmospheric plasma or ultraviolet (UV) treatment alters the surface characteristics of tetragonal zirconia polycrystal (TZP), increasing its hydrophilicity by reducing the contact angle against water to zero. This suggests that such treatment would increase the wettability of bonding resin. The purpose of this study was to determine how increasing the hydrophilicity of TZP through plasma irradiation, UV treatment, or application of ceramic primer affected initial bonding with resin composites. Here, the effect of each pre-treatment on the hydrophilicity of TZP surfaces was determined by evaluating change in shear bond strength. Plasma irradiation, UV, or ceramic primer pre-treatment showed no significant effect on bonding strength between TZP surfaces and resin composites. In addition, alumina blasting yielded no significant increase in bond strength. Plasma irradiation, UV treatment, or ceramic primer pre-treatment did not lead to significant increase in bond strength between TZP and resin composites.

  14. Influence of CAD/CAM systems and cement selection on marginal discrepancy of zirconia-based ceramic crowns.

    Science.gov (United States)

    Martínez-Rus, Francisco; Suárez, María J; Rivera, Begoña; Pradíes, Guillermo

    2012-04-01

    To analyze the effect of ceramic manufacturing technique and luting cement selection on the marginal adaptation of zirconium oxide-based all-ceramic crowns. An extracted mandibular first premolar was prepared for a complete coverage restoration and subsequently duplicated 40 times in a liquid crystal polymer (LCP). All-ceramic crowns (n = 10) were fabricated on LCP models using the following systems: glass-infiltrated zirconia-toughened alumina (In-Ceram Zirconia) and yttrium cation-doped tetragonal zirconia polycrystals (In-Ceram YZ, Cercon, and Procera Zirconia). The restorations (n = 5) were cemented on their respective dies with glass-ionomer cement (Ketac Cem Aplicap) and resin cement (Panavia 21). The absolute marginal discrepancy of the crowns was measured before and after cementation by scanning electronic microscopy at 160 points along the circumferential margin. The data were analyzed using one-way ANOVA for repeated measures and for independent samples, Scheffé's multiple range post hoc test, and Student's t-test (alpha = 0.05). There were statistical differences in the mean marginal openings among the four all-ceramic systems before and after luting (P cementation values (P cement resulted in larger marginal discrepancies than glass-ionomer cement (P < 0.0001).

  15. Fracture behaviour of zirconia FPDs substructures.

    Science.gov (United States)

    Kou, W; Sjögren, G

    2010-04-01

    The purpose of this study was to evaluate the occurrence of superficial flaws after machining and to identify fracture initiation and propagation in three-unit heat-treated machined fixed partial dentures (FPDs) substructures made of hot isostatic pressed (HIPed) yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) after loaded to fracture. Four three-unit HIPed Y-TZP-based FPDs substructures were examined. To evaluate the occurrence of superficial flaws after machining, the surfaces were studied utilizing a fluorescent penetrant method. After static loading to fracture, characteristic fracture features on both mating halves of the fractured specimens were studied using a stereomicroscope and a scanning electron microscope. Grinding grooves were clearly visible on the surfaces of the machined FPDs substructures, but no other flaws could be seen with the fluorescent penetrant method. After loading to fracture, the characteristic fracture features of arrest lines, compression curl, fracture mirror, fracture origin, hackle and twist hackle were detected. These findings indicated that the decisive fracture was initiated at the gingival embrasure of the pontic in association with a grinding groove. Thus, in three-unit heat-treated machined HIPed Y-TZP FPDs substructures, with the shape studied in this study, the gingival embrasure of the pontic seems to be a weak area providing a location for tensile stresses when they are occlusally loaded. In this area, fracture initiation may be located to a grinding groove.

  16. Comparison of resin bonding improvements to zirconia between one-bottle universal adhesives and tribochemical silica coating, which is better?

    Science.gov (United States)

    Xie, Haifeng; Li, Qiao; Zhang, Feimin; Lu, Yi; Tay, Franklin R; Qian, Mengke; Chen, Chen

    2016-03-01

    To evaluate the bonding of resin-cement to yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) via silica coating followed by silanization, and three one-bottle universal adhesives, with or without prior conditioning using a zirconia primer. Y-TZP specimens (n=160) were conditioned by tribochemical silica coating and silanization (CS), or alumina sandblasting with one of the following MDP containing adhesives or primers: Z-Prime Plus™ (zirconia primer, ZP), Single Bond Universal™ (SU), Clearfil Universal Bond™ (CU) or All-Bond Universal™ (AU). Additionally, some specimens (ZPSU, ZPCU and ZPAU) received Z-Prime Plus™ followed by one of the three adhesives. After 24h water storage and "aging" (20,000 thermocycles plus additional 40-day water storage), shear bond strength (SBS) was measured. Fourier-transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed for characterization of the chemical bonds between the primer/adhesives and the zirconia. Thermodynamic calculations were used to examine the hydrolytic stability between the MDP-zirconia chemical bonds and the SiO2-silane chemical bonds. The CS and ZPCU groups showed higher SBS than the other six groups. There were no significant pairwise differences amongst ZP, SU and ZPSU, or amongst ZP, AU and ZPAU. Aging led to significantly decreased SBS for all groups except CS and ZPCU. There was no statistically significant interaction between surface treatment and aging. XPS determined the chemical bonds between MDP and zirconia. FTIR showed similar shifts in characteristic phosphate peaks for all the primer and/or adhesive groups. Result of thermodynamic calculation showed that equilibrium constant of SiO2-silane system is much larger than the one of MDP-tetragonal phase zirconia system. The application of one-bottle universal adhesives after alumina sandblasting is an alternative to tribochemical silica coating with silanization for bonding to zirconia, while bonding

  17. Current status of zirconia restoration.

    Science.gov (United States)

    Miyazaki, Takashi; Nakamura, Takashi; Matsumura, Hideo; Ban, Seiji; Kobayashi, Taira

    2013-10-01

    During the past decade, zirconia-based ceramics have been successfully introduced into the clinic to fabricate fixed dental prostheses (FDPs), along with a dental computer-aided/computer-aided manufacturing (CAD/CAM) system. In this article (1) development of dental ceramics, (2) the current status of dental CAD/CAM systems, (3) CAD/CAM and zirconia restoration, (4) bond between zirconia and veneering ceramics, (5) bond of zirconia with resin-based luting agents, (6) surface finish of zirconia restoration and antagonist enamel wear, and (7) clinical evaluation of zirconia restoration are reviewed. Yttria partially stabilized tetragonal zirconia polycrystalline (Y-TZP) showed better mechanical properties and superior resistance to fracture than other conventional dental ceramics. Furthermore, ceria-stabilized tetragonal zirconia polycrystalline and alumina nanocomposites (Ce-TZP/A) had the highest fracture toughness and had resistance to low-temperature aging degradation. Both zirconia-based ceramics have been clinically available as an alternative to the metal framework for fixed dental prostheses (FDPs). Marginal adaptation of zirconia-based FDPs is acceptable for clinical application. The most frequent clinical complication with zirconia-based FDPs was chipping of the veneering porcelain that was affected by many factors. The mechanism for the bonding between zirconia and veneering ceramics remains unknown. There was no clear evidence of chemical bonding and the bond strength between zirconia and porcelain was lower than that between metal and porcelain. There were two alternatives proposed that might avoid chipping of veneering porcelains. One was hybrid-structured FDPs comprising CAD/CAM-fabricated porcelain parts adhering to a CAD/CAM fabricated zirconia framework. Another option was full-contour zirconia FDPs using high translucent zirconia. Combined application of silica coating and/or silane coupler, and 10-methacryloyloxydecyl dihydrogen phosphate is

  18. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Gabriela Freitas RAMOS

    2016-01-01

    Full Text Available Abstract The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15: a control group (labeled CG, untreated, and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80; 160 µm (G120, and 25 µm (G600, either untreated or heat-treated at 1200°C for 2 h (labeled A. Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  19. Effect of grinding and heat treatment on the mechanical behavior of zirconia ceramic.

    Science.gov (United States)

    Ramos, Gabriela Freitas; Pereira, Gabriel Kalil Rocha; Amaral, Marina; Valandro, Luiz Felipe; Bottino, Marco Antonio

    2016-01-01

    The present study investigated the effect of grinding on roughness, flexural strength, and reliability of a zirconia ceramic before and after heat treatment. Seven groups were tested (n = 15): a control group (labeled CG, untreated), and six groups of samples ground with diamond discs, simulating diamond burs, with grits of 200 µm (G80); 160 µm (G120), and 25 µm (G600), either untreated or heat-treated at 1200°C for 2 h (labeled A). Yttria tetragonal zirconia polycrystal discs were manufactured, ground, and submitted to roughness and crystalline phase analyses before the biaxial flexural strength test. There was no correlation between roughness (Ra and Rz) and flexural strength. The reliability of the materials was not affected by grinding or heat treatment, but the characteristic strength was higher after abrasion with diamond discs, irrespective of grit size. The X-ray diffraction data showed that grinding leads to a higher monoclinic (m) phase content, whereas heat treatment produces reverse transformation, leading to a fraction of m-phase in ground samples similar to that observed in the control group. However, after heat treatment, only the G80A samples presented strength similar to that of the control group, while the other groups showed higher strength values. When zirconia pieces must be adjusted for clinical use, a smoother surface can be obtained by employing finer-grit diamond burs. Moreover, when the amount of monoclinic phase is related to the degradation of zirconia, the laboratory heat treatment of ground pieces is indicated for the reverse transformation of zirconia crystals.

  20. Surface degradation of nanocrystalline zirconia dental implants

    NARCIS (Netherlands)

    Ocelík, Václav; Schepke, Ulf; Rasoul, Hamid Haji; Cune, Marco S.; De Hosson, Jeff Th M.

    2017-01-01

    Yttria-stabilized zirconia prepared by hot isostatic pressing represents attractive material for biomedical applications. In this work the degradation of yttria-stabilized zirconia dental implants abutments due to the tetragonal to monoclinic phase transformation after one year of clinical use was

  1. Dense and Cellular Zirconia Produced by Gel Casting with Agar: Preparation and High Temperature Characterization

    Directory of Open Access Journals (Sweden)

    Jean-Marc Tulliani

    2013-01-01

    Full Text Available A modified gel-casting process was developed to produce both dense and highly porous (40% volume yttria tetragonal zirconia polycrystal (Y-TZP using agar, a natural polysaccharide, as gelling agent. A fugitive phase, made of commercial polyethylene spheres, was added to the ceramic suspension before gelling to produce cellular ceramic structures. The characterization of the microstructural features of both dense and cellular ceramics was carried out by FEG SEM analysis of cross-sections produced by focused ion beam. The mechanical properties of the components were characterized at room temperature by nanoindentation tests in continuous stiffness measurement mode, by investigating the direct effect of the presence of residual microporosity. The presence of a diffuse residual microporosity from incomplete gel deaeration resulted in a decay of the bending strength and of the elastic modulus. The mechanical behavior of both dense and cellular zirconia (in terms of elastic modulus, flexural strength, and deformation at rupture was investigated by performing four-point bending tests at the temperature of 1500°C.

  2. Graphene nanosheet-induced toughening of yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jianan; Chen, Yao; Huang, Qiqi [Soochow University, School of Mechanical and Electric Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China)

    2017-01-15

    Graphene nanosheet (GNS)-reinforced yttria-stabilized tetragonal zirconia polycrystals (TZP) were synthesized using spark plasma sintering (SPS), and the influences of the added GNSs on microstructure evolution and the microscopic mechanical properties of the sintered composites were investigated. Raman spectroscopy and microstructure observation corroborated that these added GNSs, which can survive the harsh SPS processing condition, homogeneously distribute in the matrix of all composites to hinder significantly the grain growth. In comparison with the monolithic TZP, the indentation fracture toughness of a GNS/TZP composite reaches maximum value and increases by up to ∝36% (from ∝4.1 to ∝5.6 MPa m{sup 0.5}) even at 0.5% weight fraction, GNS pullout, crack bridging, crack deflection, and crack branching are responsible for the increased fracture toughness. The computed energy dissipation by GNS pullout decreases with increasing the number of graphene layers due to weak bonding between them, and therefore, graphene agglomeration would impair toughening effect. Moreover, scratch studies suggest that GNS/TZP composites exhibit improved scratch resistance due to the fact that GNSs are promising reinforcing and lubricating nanofillers in ceramic composites. (orig.)

  3. Translucent zirconia in the ceramic scenario for monolithic restorations: A flexural strength and translucency comparison test.

    Science.gov (United States)

    Carrabba, Michele; Keeling, Andrew J; Aziz, Aziz; Vichi, Alessandro; Fabian Fonzar, Riccardo; Wood, David; Ferrari, Marco

    2017-05-01

    To compare three different compositions of Yttria-Tetragonal Zirconia Polycrystal (Y-TZP) ceramic and a lithium disilicate ceramic in terms of flexural strength and translucency. Three zirconia materials of different composition and translucency, Aadva ST [ST], Aadva EI [EI] and Aadva NT [NT](GC Tech, Leuven, Belgium) were cut with a slow speed diamond saw into beams and tabs in order to obtain, after sintering, dimensions of 1.2×4.0×15.0mm and 15.0×15.0×1.0mm respectively. Blocks of IPS e.max CAD LT were cut and crystallized in the same shapes and dimensions and used as a reference group [LD]. Beams (n=15) were tested in a universal testing machine for three-point bending strength. Critical fracture load was recorded in N, flexural strength (σ in MPa), Weibull modulus (m) and Weibull characteristic strength (σ 0 in MPa) were then calculated. Tabs (n=10) were measured with a spectrophotometer equipped with an integrating sphere. Contrast Ratios were calculated as CR=Yb/Yw. SEM of thermally etched samples coupled with lineal line analysis (n=6) was used to measure the tested zirconia grain size. Data were statistically analyzed. Differences in translucency, flexural strength and grain size were found to be statistically significant. CR increased and flexural strength decreased in the following order ST(σ 1215±190MPa, CR 0.74±0.01)>EI(σ 983±182MPa, CR 0.69±0.01)>NT(σ 539±66MPa, CR 0.65±0.01)>LD (σ 377±39Mpa, CR 0.56±0.02). The average grain size was different for the three zirconia samples with NT(558±38nm)>ST(445±34nm)>EI(284±11nm). The zirconia composition heavily influenced both the flexural strength and the translucency. Different percentages of Yittria and Alumina result in new materials with intermediate properties in between the conventional zirconia and lithium disilicate. Clinical indications for Zirconia Aadva NT should be limited up to three-unit span bridges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Zirconia-fluorapatite materials produced by HIP.

    Science.gov (United States)

    Adolfsson, E; Hermansson, L

    1999-07-01

    Composites of tetragonal zirconia and fluorapatite were sealed in steel tubes and hot isostatically pressed at 1200 degrees C. The phases formed in the samples were evaluated by X-ray powder diffraction. When the composites contained larger amounts of fluorapatite, the tetragonal zirconia changed gradually into the cubic phase with decreasing zirconia content. These phase changes occurred due to a transfer of calcium from fluorapatite, which acted as an additional dopant in zirconia. Small amounts of monoclinic zirconia were also present in all samples. The cell dimension in fluorapatite was changed with the composition of the composite. However, decomposition of the fluorapatite was not possible to detect. Vickers hardness and fracture toughness were measured and ranged from 5.1 to 10.8 GPa and 0.9-5.5 MPam1/2, respectively. Microstructures in the composites were studied with scanning electron microscopy.

  5. [Evaluation of the effect of modified wet particle erosion on bond strength between 3Y-TZP zirconia framework and veneering porcelain].

    Science.gov (United States)

    Guo, Jing; Zhu, Jia; Liu, Hon-Guang; Zhu, Hong-Shui

    2017-02-01

    To evaluate the effect of bond strength between 3mol% yttrium-stabilized tetragonal zirconium polycrystal (3Y-TZP) zirconia framework after modified wet particle erosion and veneering porcelain. A total of 174 [8 mm× 8 mm× 3 mm (±0.02)] specimens were prepared and then randomly divided into different groups according to different particle size, sandblasting pressure, sandblasting time through conventional sandblasting (experimental groups); specimens in the control group were not sandblasted. The bond strength between 3Y-TZP zirconia framework and veneering porcelain was measured using a universal testing machine. Statistical analysis was performed using SPSS17.0 software package. The bond strength of specimens treated by two methods-conventional sandblasting and modified wet particle erosion under the same condition (150 μm, 0.6 MPa, 30 s) were acquired, while the surface was analyzed microscopically before the specimens were veneered with the veneering ceramic under scanning electronic microscope (SEM). The bond strength of conventional sandblasting group under the condition (110 μm, 0.4 MPa,30 s) was maximal, and significantly higher than the control group (Pveneering porcelain, modified wet particle erosion is recommended for 3Y-TZP zirconia framework surface treatment.

  6. Dilational Response of Voided Polycrystals

    Science.gov (United States)

    Savage, Daniel J.; Cazacu, Oana; Knezevic, Marko

    2017-05-01

    Finite-element (FE) cell model computations have been used to gain insights into the ductile response of porous polycrystals. Generally, the behavior of the matrix is described by a J 2-plasticity model. In this article, we present a new computational approach to FE cell models for porous polycrystals deforming by slip based on crystal plasticity. The cell provides the homogenized dilational response, where the constitutive response of every integration point is based on a single-crystal visco-plasticity law. The calculations are performed for a body-centered cubic polycrystal with random texture. Axisymmetric tensile and compressive loadings are imposed corresponding to the fixed values of the stress triaxiality and to two possible values of the Lode parameter. The resulting numerical yield points are compared with those obtained using a J 2-FE cell and an analytical model. The predictions confirm the combined effects of the mean stress and third-invariant on yielding recently revealed by the analytical model.

  7. Shear bond strengths between alumina-toughened zirconia cores and veneering ceramics and their susceptibility to aging.

    Science.gov (United States)

    Zhao, Yong-Qi; Li, Jiang; Zhang, Jing-Chao; Liao, Yun-Mao; Lu, Jun-Jun; Li, Wei

    2012-05-01

    To evaluate the shear bond strength (SBS) between alumina-toughened zirconia (ATZ) cores and veneering ceramics, investigate the effect of aging in artificial saliva on SBS and compare it with that of yttria-stabilized tetragonal zirconia polycrystals(Y-TZP). Bars of ATZ and Y-TZP were layered with veneering ceramics in accordance to the recommendation of the manufacturer. Half of each group (n = 10) was aged at 134 °C (under 2 bar pressure) in an autoclave for 48 h. Subsequently, all specimens were subjected to shear force in a universal testing machine. The interface and fractured surface of the specimens were evaluated using scanning electron microscopy and X-ray energy dispersive spectroscopy. The initial mean SBS values in MPa±SD were 28.9±8.0 for ATZ and 26.2±7.6 for Y-TZP. After aging, the mean SBS values for ATZ and Y-TZP were 22.9±4.9 MPa and 22.8±6.9 MPa, respectively. Neither the differences between the SBS values of the ATZ and Y-TZP groups nor the influence of aging on all groups were statistically significant. The SBS between the ATZ core and the veneering ceramics was not affected by aging. The SBS of ATZ to veneering ceramics was not significantly different compared with that of Y-TZP. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  8. Photoluminescence study on irradiated yttria stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Halder, R. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sengupta, Pranesh, E-mail: sengupta@barc.gov.in [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sudarsan, V. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ghosh, A. [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Ghosh, A.; Bhukta, A. [Institute of Physics, Bhubaneswar 751005 (India); Sharma, G. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Samajdar, I. [Dept. of Metall. Engg. and Materials Science, Indian Institute of Technology Bombay, Mumbai 400 076 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-01-15

    Highlights: • YSZ and management of nuclear wastes. • Exposure to radiation environment. • First Photoluminescence data on irradiated YSZ pellets. - Abstract: The structural variations within monoclinic, tetragonal and cubic zirconia pellets with different amounts of yttria doping and its subsequent exposure to various proton, silver ion and gamma irradiation fluxes were investigated using photoluminescence spectroscopy. Upon ion irradiation color centers were produced at doses >10{sup 15} ions/cm{sup 2} resulting in purple coloration. The decrease in photoluminescence intensity was observed for proton irradiated pellets except for tetragonal zirconia (6YSZ: 6 mol% Y{sub 2}O{sub 3} doped ZrO{sub 2}). The anomalous behaviour in case of tetragonal zirconia may result from short range ordering of oxygen vacancies around Zr ions occurring in order to relieve the stress/lattice distortions associated with proton impingement.

  9. The use of MDP-based materials for bonding to zirconia.

    Science.gov (United States)

    de Souza, Grace; Hennig, Diana; Aggarwal, Anuj; Tam, Laura E

    2014-10-01

    A strong and stable bond between the luting resin and overlying ceramic restoration is critical to longevity, but no technique has been established for how to provide such a bond when the core material is zirconia. The purpose of this study was to evaluate the effect of different materials containing 10-methacryloyloxydecyl dihydrogen phosphate (MDP) on the bond strength to yttria-tetragonal zirconia polycrystal (Y-TZP) ceramic. Forty Y-TZP slices (Lava) were cemented to substrates (8 groups; n=5 in each) with or without the previous application of an experimental primer (0.5% MDP) or an MDP-based adhesive (Clearfil S3 Bond Plus or Scotchbond Universal) with either an MDP (Clearfil SA) or a non-MDP (RelyX Ultimate) luting resin. Specimens were cut, stored in distilled water, and microtensile tested (5 beams per specimen) at 48 hours and again at 6 months after luting procedures. The data were analyzed by 4-way ANOVA (α=.05) and the Tukey test (α=.05). The mode of failure was classified with a stereomicroscope, and the treated surfaces were analyzed with energy-dispersive x-ray spectroscopy. Both adhesive (PMDP-containing adhesive and the shorter storage time were associated with higher bond strengths. At 48 hours, an overall incidence of 50.5% of Type 1 mode of failure (adhesive at ceramic/resin interface) occurred, as opposed to 68% after 6 months of water storage. Energy-dispersive x-ray spectroscopy results showed peaks of carbon and phosphorus when MDP-based materials were used. The application of an MDP-based adhesive may improve bond strength to zirconia. However, microtensile bond strength results for all groups did not remain stable over 6 months. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. In situ nucleophilic substitutional growth of methylammonium lead iodide polycrystals.

    Energy Technology Data Exchange (ETDEWEB)

    Acik, Muge [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Dept. of Organic Materials Science; Guo, Fangmin [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Ren, Yang [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Lee, Byeongdu [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Rosenberg, Richard A. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and X-ray Science Division; Mitchell, JF [Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; Kinaci, Alper [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Darling, Seth B. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials and Nanoscience and Technology Division; Univ. of Chicago, IL (United States). Inst. for Molecular Engineering

    2017-01-01

    Methylammonium lead iodide (MAPbIx) perovskites are organic-inorganic semiconductors that serve as the light-harvesting component of the photovoltaics, and are desirable with their long diffusion length yielding power conversion efficiencies of ≥22%. Conventional techniques grow perovskites by spin coating precursors on an oxide or a polymer substrate followed by annealing, however, use of high boiling point solvents and high temperatures hinder device stability and performance. Through a one-step, acid-catalyzed nucleophilic-substitutional crystal growth in polar protic solvents, we show evidence for the substrate- and annealing- free production of MAPbIx polycrystals that are metallic-lead-free with negligibly small amount of PbI2 precipitation (<10%). On the basis of this chemical composition, we have devised an in situ growth of highly air (upto ~1.5 months) and thermally-stable (≤300°C), tetragonal-phased, variable-sized polycrystals (~100 nm-10 μm) amendable for large-area deposition, and ultimately, large-scale manufacturing. This method is encouraging for stable optoelectronic devices, and leads to energy-efficient and low-cost processing.

  11. Peculiarities of structural transformations in zirconia nanocrystals

    Science.gov (United States)

    Vasilevskaya, A.; Almjasheva, O. V.; Gusarov, V. V.

    2016-07-01

    The transitions of metastable tetragonal phase as well as high-temperature tetragonal phase into the low-temperature monoclinic phase upon heating and cooling were thoroughly studied in zirconia nanoparticles. High-temperature X-ray diffraction, thermal analysis and Raman spectroscopy were used to provide the systematic approach to the investigation of zirconia nanoparticles thermal behavior. A phase transformation sequence in the ZrO2-H2O system was determined, and the mechanisms of tetragonal-to-monoclinic transition upon heating and cooling were suggested. Here, the phenomenon was found and described, which was determined as "self-powdering" of nanoparticles occurring during structural transition. This phenomenon was observed by in situ investigation of the evolution of crystalline nanoparticles from amorphous zirconium hydroxide during thermal treatment in air. The tetragonal-to-monoclinic phase transition, induced by cooling from the temperature of equilibrium of tetragonal zirconia (i.e., above 1170 °C), is accompanied by a significant crystallite size decrease (with corresponding 3-4 times decrease of crystallite volume). The experimental results facilitate applications of zirconia nanoparticles to obtain high-performance nanopowders for nanoceramics.

  12. Bacterial colonization of zirconia ceramic surfaces: an in vitro and in vivo study.

    Science.gov (United States)

    Rimondini, Lia; Cerroni, Loredana; Carrassi, Antonio; Torricelli, Paola

    2002-01-01

    The microbial colonization of new ceramic materials developed for abutment manufacturing was assessed. The materials used in these experiments were disks of 'as-fired' and 'rectified' ceramic material made of tetragonal zirconia polycrystals stabilized with yttrium (Y-TZP) and commercially pure grade 2 titanium (Ti) with corresponding eluates. They were tested in vitro with the following bacteria: Streptococcus mutans, S. sanguis, Actinomyces viscosus, A. naeslundii, and Porphyromonas gingivalis. Proliferation was evaluated on plates by inhibitory halos around pits, previously inoculated with eluates obtained from the materials. Bacterial adhesion on materials was quantified by spectrophotometric evaluation of the slime production by the same bacteria. Moreover, early bacterial adhesion was evaluated in human volunteers and observed with SEM. No inhibition of bacterial proliferation using eluates was observed. In vitro as-fired and rectified Y-TZP showed significantly more adherent S. mutans than did Ti disks, while S. sanguis seemed to adhere easily to Ti specimens. No differences were noted for Actinomyces spp and P. gingivalis. In vivo Y-TZP accumulated fewer bacteria than Ti in terms of the total number of bacteria and presence of potential putative pathogens such as rods. No differences were observed between rectified and as-fired Y-TZP. Overall, Y-TZP accumulates fewer bacteria than Ti. Y-TZP may be considered as a promising material for abutment manufacturing.

  13. Characterization of Human Gingival Fibroblasts on Zirconia Surfaces Containing Niobium Oxide

    Directory of Open Access Journals (Sweden)

    Young-Dan Cho

    2015-09-01

    Full Text Available It was indicated that tetragonal zirconia polycrystal (TZP containing yttria (Y2O3 and niobium oxide (Nb2O5 ((Y,Nb-TZP could be an adequate dental material to be used at esthetically important sites. The (Y,Nb-TZP was also proved to possess its osteogenic potential comparable with those conventional dental implant material, titanium (Ti. The objective of the current study was to characterize cellular response of human gingival fibroblasts (HGFs to smooth and rough surfaces of the (Y,Nb-TZP disc, which were obtained by polishing and sandblasting, respectively. Various microscopic, biochemical, and molecular techniques were used to investigate the disc surfaces and cellular responses for the experimental (Y,Nb-TZP and the comparing Ti groups. Sandblasted rough (Y,Nb-TZP (Zir-R discs had the highest surface roughness. HGFs cultured on polished (Y,Nb-TZP (Zir showed a rounded cell morphology and light spreading at 6 h after seeding and its proliferation rate significantly increased during seven days of culture compared to other surfaces. The mRNA expressions of type I collagen, integrin α2 and β1 were significantly stimulated for the Zir group at 24 h after seeding. The current findings, combined with the previous results, indicate that (Y,Nb-TZP provides appropriate surface condition for osseointegration at the fixture level and for peri-implant mucosal sealing at the abutment level producing a suitable candidate for dental implantation with an expected favorable clinical outcome.

  14. Marginal discrepancy of monolithic and veneered all-ceramic crowns on titanium and zirconia implant abutments before and after adhesive cementation: a scanning electron microscopy analysis.

    Science.gov (United States)

    Martinez-Rus, Francisco; Ferreiroa, Alberto; Ozcan, Mutlu; Pradies, Guillermo

    2013-01-01

    To evaluate the marginal discrepancy of monolithic and veneered all-ceramic crown systems cemented on titanium (Ti) and zirconia implant abutments. Sixty customized implant abutments for a maxillary right central incisor were fabricated of Ti and zirconia (n = 30 of each) for an internal-connection implant system. All-ceramic crowns were fabricated using the following systems (n = 10 per group): monolithic with computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate (MLD), pressed lithium disilicate (PLD), or CAD yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP). The frameworks of the PLD and Y-TZP systems were manually veneered with a fluorapatite-based ceramic. The crowns were cemented to their implant abutments, and the absolute marginal discrepancy of the gap was measured before and after cementation. Data were analyzed statistically. Marginal discrepancies were significantly influenced by the crown system and by cementation, but the material did not significantly affect the results. Interaction terms were not significant. Y-TZP crowns on both Ti and zirconia abutments presented the smallest mean marginal discrepancies before (52.1 ± 17 μm and 56.2 ± 11 μm, respectively) and after cementation (98.7 ± 17 μm and 101.8 ± 16 μm, respectively). Before cementation, MLD crowns showed significantly larger mean marginal openings than PLD crowns on both Ti and zirconia abutments (75.2 ± 12 and 77.5 ± 13 μm for MLD, 52.1 ± 17 μm and 69.7 ± 8 μm for PLD, respectively). After cementation, both Ti and zirconia abutments with MLD crowns (113.5 ± 12 μm and 118.3 ± 14 μm, respectively) showed significantly larger values than with PLD crowns (98.7 ± 17 μm and 109.4 ± 9 μm, respectively). Manually veneered Y-TZP crowns demonstrated more favorable marginal fit on both Ti and zirconia implant abutments before and after cementation compared to those of MLD and PLD.

  15. Calculations of single crystal elastic constants for yttria partially stabilised zirconia from powder diffraction data

    Science.gov (United States)

    Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.

    2014-08-01

    Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.

  16. Bounds and self-consistent estimates for elastic constants of polycrystals composed of orthorhombics or crystals with higher symmetries.

    Science.gov (United States)

    Berryman, James G

    2011-04-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  17. Bounds and self-consistent estimates for elastic constants of granular polycrystals composed of orthorhombics or crystal with higher symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2011-02-01

    Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.

  18. Viscoelasticity of colloidal polycrystals doped with impurities

    Science.gov (United States)

    Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence

    2015-09-01

    We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.

  19. Fracture resistance of crowns cemented on titanium and zirconia implant abutments: a comparison of monolithic versus manually veneered all-ceramic systems.

    Science.gov (United States)

    Martínez-Rus, Francisco; Ferreiroa, Alberto; Özcan, Mutlu; Bartolomé, José F; Pradíes, Guillermo

    2012-01-01

    To evaluate the fracture resistance of all-ceramic crowns cemented on titanium and zirconia implant abutments. Customized implant abutments for maxillary right central incisors made of titanium (Ti) and zirconia (Zr) (n=60, n=30 per group) were fabricated for an internal connection implant system. All-ceramic crowns were fabricated for their corresponding implant abutments using the following systems (n=10 per group): (1) monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate (MLD); (2) pressed lithium disilicate (PLD); (3) yttrium stabilized tetragonal zirconia polycrystal (YTZP). The frameworks of both PLD and YTZP systems were manually veneered with a fluorapatite-based ceramic. The crowns were adhesively cemented to their implant abutments and loaded to fracture in a universal testing machine (0.5 mm/minute). Data were analyzed using two-way analysis of variance (ANOVA) and Tukey's test (α=0.05). Both the abutment material (P=.0001) and the ceramic crown system (P=.028) significantly affected the results. Interaction terms were not significant (P=.598). Ti-MLD (558.5±35 N) showed the highest mean fracture resistance among all abutment-crown combinations (340.3±62-495.9±53 N) (Pcrown system showed significantly higher mean fracture resistance compared to manually veneered ones on both Ti and Zr abutments (Pcrown combinations failed only in the crowns without abutment fractures, Zr-YTZP combination failed exclusively in the abutment without crown fracture. Zr-MLD and Zr-PLD failed predominantly in both the abutment and the crown. Ti-YTZP showed only implant neck distortion. The highest fracture resistance was obtained with titanium abutments restored with MLD crowns, but the failure type was more favorable with Ti-YTZP combination.

  20. Evaluation of five primers and two opaque resins for bonding ceria-stabilized zirconia/alumina nanocomposite

    Directory of Open Access Journals (Sweden)

    Kohji Kamada

    2017-03-01

    Full Text Available The purpose of this study was to evaluate the effect of five primers [Super-Bond C&B Monomer (SB, Clearfil Ceramic Primer, Alloy Primer, M.L. Primer, and AZ Primer] and two undercoating opaque resins [Super-Bond C&B (S-opaque and Ceramage Pre-opaque (C-opaque] on the bonding of a resin composite veneering material to a ceria-stabilized tetragonal zirconia polycrystals/alumina nanocomposite (Ce-TZP/Al2O3. Disk-shaped specimens of Ce-TZP/Al2O3 were sandblasted with alumina and primed. The undercoating opaque resins and resin composites were subsequently applied to the specimen, and then light cured. After 5000 thermocycles at 4°C and 60°C, shear bond strengths were determined. Data were analyzed using analysis of variance, Tukey–Kramer honest significant difference test, and Student t test (n = 10, α = 0.05. With the exception of SB/S-opaque, all S-opaque groups exhibited significantly higher bond strengths than C-opaque groups. The use of S-opaque resin is recommended when veneering frameworks made of Ce-TZP/Al2O3.

  1. Raman spectroscopic characterization of ZrO2 and yttrium stabilized zirconias

    DEFF Research Database (Denmark)

    Kjerulf-Jensen, N.; Berg, Rolf W.; Poulsen, Finn Willy

    1996-01-01

    Current literature on the analysis of vibrational spectra of monoclinic, tetragonal and cubic zirconias is reviewed. The selection rules based on simple factor group analysis are not obeyed for the structurally disordered tetragonal and cubic materials. The interpretation is thus not straight...

  2. Structural and Morphological Evaluation of Presintered Zirconia following Different Surface Treatments.

    Science.gov (United States)

    Skienhe, Hasan; Habchi, Roland; Ounsi, Hani F; Ferrari, Marco; Salameh, Ziad

    2018-02-01

    The aim of this study was to evaluate the effect of different surface treatments on roughness, grain size, and phase transformation of presintered zirconia. Surface treatments included airborne particle abrasion (APA) before and after sintering with different particles shape, size, and pressure (50 μm Al 2 O 3 , 50 μm glass beads, and ceramic powder). Thirty-five square-shaped presin-tered yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramic slabs (Zenostar ZR bridge, Wieland) were prepared (4 mm height × 10 mm width × 10 mm length) and polished with silicon carbide grit papers #800, 1000, 1200, 1500, and 2000 to ensure identical initial roughness. Specimens were divided into five groups according to surface treatment: group I (control): no surface treatment; group II: APA 50 μm Al 2 O 3 after sintering; group III: APA 50 μm Al 2 O 3 particles before sintering; group IV: APA 50 μm glass bead particles before sintering; and group V: APA ceramic powder before sintering. Specimens were analyzed using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction (XRD) analyses, and tested for shear bond strength (SBS). Data were statistically analyzed using one-way analysis of variance (ANOVA) followed by post hoc tests for multiple comparisons Tukey's test (a > 0.05). Air abrasion before sintering significantly increased the surface roughness when compared with groups I and III. The highest tetragonal to monoclinic (t-m) phase transformation (0.07%) was observed in group III, and a reverse transformation was observed in presintered groups (0.01%). Regarding bond strength, there was a significant difference between APA procedures pre- and postsintering. Air abrasion before sintering is a valuable method for increasing surface roughness and SBS. The abrasive particles' size and type used before sintering had a little effect on phase transformation. Air abrasion before sintering could be supposed to be an alternative surface

  3. The effect of graded glass-zirconia structure on the bond between core and veneer in layered zirconia restorations.

    Science.gov (United States)

    Liu, Ruoyu; Sun, Ting; Zhang, Yanli; Zhang, Yaokun; Jiang, Danyu; Shao, Longquan

    2015-06-01

    The aim of this study was to test the hypothesis that a graded glass-zirconia structure can strengthen the core-veneer bond in layered zirconia materials. A graded glass-zirconia structure was fabricated by infiltrating glass compositions developed in our laboratory into a presintered yttria tetrahedral zirconia polycrystal (Y-TZP) substrate by the action of capillary forces. The wettability of the infiltrated glass and Y-TZP substrate was investigated by the sessile drop technique. The microstructures of the graded glass-zirconia structure were examined by scanning electron microscopy (SEM). The phase structure characterization in the graded glass-zirconia structure were identified by X-ray diffraction (XRD) analysis. The elastic modulus and hardness of the graded glass-zirconia structure were evaluated from nanoindentations. Further, the shear bond strength (SBS) of the graded glass-zirconia structure and veneering porcelain was also evaluated. SEM images confirmed the formation of the graded glass-zirconia structure. Glass frits wet the Y-TZP substrate at 1200 °C with a contact angle of 43.2°. Only a small amount of t-m transformation was observed in as-infiltrated Y-TZP specimens. Nanoindentation studies of the glass-zirconia graded structure showed that the elastic modulus and hardness of the surface glass layer were higher than those of the dense Y-TZP layer. The mean SBS values for the graded glass-zirconia structure and veneering porcelain (24.35 ± 0.40 MPa) were statistically higher than those of zirconia and veneering porcelain (9.22 ± 0.20 MPa) (Pzirconia structure can be fabricated by the glass infiltration/densification technique, and this structure exhibits a strong core-veneer bond. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Martensitic transformation in zirconia

    International Nuclear Information System (INIS)

    Deville, Sylvain; Guenin, Gerard; Chevalier, Jerome

    2004-01-01

    We investigate by atomic force microscopy (AFM) the surface relief resulting from martensitic tetragonal to monoclinic phase transformation induced by low temperature autoclave aging in ceria-stabilized zirconia. AFM appears as a very powerful tool to investigate martensite relief quantitatively and with a great precision. The crystallographic phenomenological theory is used to predict the expected relief induced by the transformation, for the particular case of lattice correspondence ABC1, where tetragonal c axis becomes the monoclinic c axis. A model for variants spatial arrangement for this lattice correspondence is proposed and validated by the experimental observations. An excellent agreement is found between the quantitative calculations outputs and the experimental measurements at nanometer scale yielded by AFM. All the observed features are explained fully quantitatively by the calculations, with discrepancies between calculations and quantitative experimental measurements within the measurements and calculations precision range. In particular, the crystallographic orientation of the transformed grains is determined from the local characteristics of transformation induced relief. It is finally demonstrated that the strain energy is the controlling factor of the surface transformation induced by low temperature autoclave treatments in this material

  5. Properties and rapid sintering of a nanostructured tetragonal zirconia composites

    Science.gov (United States)

    Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae

    2017-09-01

    4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.

  6. Influence of porosity on mechanical properties of tetragonal stabilized zirconia

    DEFF Research Database (Denmark)

    Boccaccini, Dino; Frandsen, Henrik Lund; Soprani, Stefano

    2018-01-01

    to characterize Young's modulus and Weibull strength. The variation of fracture toughness with porosity was investigated and modelled using the results from fracture mechanical testing. A distinct R-curve behaviour was observed in dense 3YSZ specimens, in samples with a porosity around 15% and in some...

  7. Ce O2-Zr O2 tetragonal ceramics (Ce-TZP): mechanical properties

    International Nuclear Information System (INIS)

    Nono, Maria do Carmo de Andrade

    1994-01-01

    This work presents the development and the characterization of Ce O 2 -stabilized tetragonal Zr O 2 polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics, an as substitute of some metallic materials. Ce-TZP ceramics attain remarkable increasing in strength and fracture toughness. Sintered ceramics were fabricated from mixtures of powders containing different Ce O 2 content prepared by conventional mechanical technique. It were adopted the bending strength, Vickers hardness and fracture toughness techniques to the determination of the mechanical parameters. These results were discussed and compared to those published in international literature. (author)

  8. Contemporary Diffraction Methods in Study of Polycrystals

    Directory of Open Access Journals (Sweden)

    Stanko Popović

    2015-12-01

    Full Text Available Diffraction in the polycrystal/crystalline powder is one of the most powerful techniques in study of microstructure and crystal structure of solids. This technique enables, in synergy with microscopic, spectroscopic and other physical techniques, a complete analysis of one-phase and multi-phase substances, that are important in scientific and technological fields. Information on microstructure and crystal structure of a substance is stored in its diffraction pattern; in order to reveal this information, the diffraction pattern should be decoded by application of adequate mathematical and physical procedures which may often be rather complex. During the last decades, diffraction techniques in the polycrystal are developing rapidly due to the introduction of sophisticated instrumentation, powerful computers and by application of synchrotron radiation. This advance enables the collection and interpretation of diffraction data in a short real time as well as the study of time-resolved dynamic processes in the crystalline substance. Possibilities of diffraction techniques in the polycrystal are concisely described and illustrated by examples of authors’ scientific studies.

  9. Interaction of NiO with yttria-stabilized zirconia

    DEFF Research Database (Denmark)

    Kuzjukevics, A.; Linderoth, Søren

    1997-01-01

    As-prepared and heat treated plasma-produced 8 and 10 mol% yttria-stabilized zirconia (YSZ) powders doped with 0, 5, 10 and 75 mol% NiO have been investigated by XRD. The as-prepared powders are mixtures of metastable tetragonal and cubic phases but they transform to a single YSZ phase upon heat ...

  10. HRTEM investigation of phase stability in alumina–zirconia ...

    Indian Academy of Sciences (India)

    stabilized in tetragonal and cubic phases, is a technologically important material and is used for most high tempera- ... zirconia thin-film multilayers in the as deposited state and annealed up to 1473 K at 2 × 10−5 mbar. Conventional techniques .... On the basis of the above equations it can be clearly stated that in the nm ...

  11. HRTEM investigation of phase stability in alumina–zirconia ...

    Indian Academy of Sciences (India)

    Phase stability of nanostructured thin films can be significantly different from the stability of the same materials in bulk form because of the increased contribution from surface and interface effects. Zirconia (ZrO2), stabilized in tetragonal and cubic phases, is a technologically important material and is used for most high ...

  12. Synthesis and characterization of mullite–zirconia composites by ...

    Indian Academy of Sciences (India)

    2015-10-28

    Oct 28, 2015 ... be 1.04, 1.11 and 0.98 GPa, respectively. The addition of ZrO2 up to 20 wt% increases the hardness, flexural strength and fracture toughness. Further addition of ZrO2 increases the fracture toughness, but hardness and flexural strength decreases. Transformation of tetragonal to monoclinic zirconia creates ...

  13. Effect of hydrothermal treatment on light transmission of translucent zirconias.

    Science.gov (United States)

    Putra, Armand; Chung, Kwok-Hung; Flinn, Brian D; Kuykendall, Tuesday; Zheng, Cheng; Harada, Kosuke; Raigrodski, Ariel J

    2017-09-01

    Studies of the light transmission of translucent zirconias after hydrothermal treatment are limited. The purpose of this in vitro study was to evaluate the effect of hydrothermal treatment on the light transmission of translucent zirconias for monolithic restorations. Four commercially available zirconia products, BruxZir Anterior Solid Zirconia (BruxAnt, BA), Lava Plus High Translucency (LPHT), Katana Zirconia Super Translucent (KST), and Katana Zirconia Ultra Translucent (KUT) were assessed and 1 type of lithium disilicate, e.max Press LT (LDLT) was used as a control. Plate specimens, 20×20×1 mm (n=80) for the translucency assessment were sectioned from postsintered zirconia bulk materials and ground with a #400-grit diamond wheel and coolant. The specimens were placed under hydrothermal conditions of 134°C at 0.2 MPa (n=5 per group at 0, 5, 50, and 100 hours). Percentage of total transmittance of light (T t %) of each specimen was measured using a spectrophotometer with an integrating sphere. X-ray diffraction analyses were used to measure tetragonal-monoclinic phase transformation. Surfaces were examined by scanning electron microscopy and energy dispersive spectrometry. Data were analyzed using 2-way ANOVA followed by the Tukey test (α=.05). The T t % ranged from 6.5% to 28.3%. Group LDLT obtained significantly higher transmittance than other tested groups, whereas groups KST and KUT had significantly higher T t % than groups BA and LPHT (Phydrothermal treatment for all tested translucent zirconias and a lithium disilicate glass-ceramic control. Hydrothermal treatment had minimal effects on the translucency of translucent zirconias. The tetragonal-monoclinic phase transformation rate of translucent zirconias was found to be low, except in group LPHT. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment.

    Science.gov (United States)

    Prasad, Hari A; Pasha, Naveed; Hilal, Mohammed; Amarnath, G S; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-06-01

    The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the core of ceramic crowns and fixed dental prosthesis. In spite of improved mechanical properties, acceptable marginal adaptation and biocompatibility the whitish opacity of zirconia is an obvious esthetic disadvantage. The zirconia framework is often veneered with conventional feldspathic porcelain to achieve a natural appearance. However it is difficult to achieve sufficient bond strength between zirconia and the veneering material. Achieving sufficient bond strength between the veneering ceramic and the zirconia core is a major challenge in the long term clinical success of veneered zirconia restorations. The main objective of this study is to evaluate the effect of different surface treatments on the fracture strength of the two commercially available Zirconia namely Ceramill and ZR-White (AMANNGIRRBACH and UPCERA) respectively. Two commercially available pre-sinteredyttrium stabilized Zirconia blanks (ZR-White and Ceramill) from AMANNGIRRBACH and UPCERA respectively are used to produce the disc shaped specimens of size (15.2 ± 0.03 mm in diameter and 1.2 ± 0.03 mm thick) from each Zirconia blank. All disc shaped specimens are heated at 1200°C in a furnace for 2 hours to form homogenous tetragonal ZrO 2 . The dimensions of the specimens are measured with a digital caliper (aerospace). The thickness and diameter of each specimen are calculated as the means of 3 measurements made at random sites. 80 discs from each Zirconia blank are divided into ten groups of 8 specimens each. Heat treatment after

  15. Aging resistance of surface-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Vanmeensel, Kim; Zhang, Fei; De Munck, Jan; Eliades, George; Minakuchi, Shunsuke; Naert, Ignace; Van Meerbeek, Bart; Vleugels, Jozef

    2015-02-01

    The influence of surface treatment on the low-temperature degradation (LTD) of tetragonal zirconia polycrystalline (TZP) is still unclear. The effect of surface treatments on the LTD behavior of zirconia was investigated. Fully-sintered specimens of seven commercial dental zirconia (Aadva, GC; In-CeramYZ, VITA; IPS e.max ZirCAD, Ivoclar Vivadent; LAVA Frame and LAVA Plus, 3M ESPE; NANOZR, Panasonic; ZirTough, Kuraray Noritake) were provided by the manufacturers with specimen dimensions of approximately 10mm×5mm×3mm. For each zirconia grade, samples were kept 'as sintered' (untreated) or were subjected to one of the three surface treatments: rough polished, sandblasted with Al2O3, tribochemical silica sandblasted (n=3/group). The tetragonal to monoclinic transformation was evaluated by X-ray diffraction at several intervals during LTD testing up to 40h in steam in an autoclave (134°C, 2bar). The five yttria-stabilized TZP (Y-TZP: Aadva, In-CeramYZ, IPS e.max ZirCAD, LAVA Frame, LAVA Plus) zirconia showed a similar trend in LTD behavior. The Al2O3 sandblasted zirconia showed the highest monoclinic volume fraction. The as sintered (untreated) zirconia degraded faster than the surface-treated zirconia. Although the surface-treated ceria-stabilized TZP/alumina (Ce-TZP/Al2O3: NANOZR) zirconia had a higher initial monoclinic volume fraction compared to the Y-TZP zirconia, it showed a stronger aging resistance. The as sintered (untreated) Y-TZP/alumina (Y-TZP/Al2O3: ZirTough) zirconia showed a strong aging resistance, whereas the surface-treated Y-TZP/Al2O3 zirconia degraded slightly. Surface treatment improved the aging resistance of Y-TZP zirconia. Surface treatment did not affect the LTD behavior of Ce-TZP/Al2O3 zirconia, while surface treatment decreased the aging resistance of Y-TZP/Al2O3 zirconia. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effect of adhesive luting on the fracture resistance of zirconia compared to that of composite resin and lithium disilicate glass ceramic

    Directory of Open Access Journals (Sweden)

    Myung-Jin Lim

    2017-02-01

    Full Text Available Objectives The purpose of this study was to evaluate the effect of adhesive luting on the fracture resistance of zirconia compared to that of a composite resin and a lithium disilicate glass ceramic. Materials and Methods The specimens (dimension: 2 mm × 2 mm × 25 mm of the composite resin, lithium disilicate glass ceramic, and yttria-stabilized tetragonal zirconia polycrystal (Y-TZP were prepared. These were then divided into nine groups: three non-luting groups, three non-adhesive luting groups, and three adhesive luting groups, for each restorative material. In the non-luting groups, specimens were placed on the bovine tooth without any luting agents. In the non-adhesive luting groups, only zinc phosphate cement was used for luting the specimen to the bovine tooth. In the adhesive luting groups, specimens were pretreated, and the adhesive luting procedure was performed using a self-adhesive resin cement. For all the groups, a flexural test was performed using universal testing machine, in which the fracture resistance was measured by recording the force at which the specimen was fractured. Results The fracture resistance after adhesive luting increased by approximately 29% in the case of the composite resin, 26% in the case of the lithium disilicate glass ceramic, and only 2% in the case of Y-TZP as compared to non-adhesive luting. Conclusions The fracture resistance of Y-TZP did not increased significantly after adhesive luting as compared to that of the composite resin and the lithium disilicate glass ceramic.

  17. Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals

    Science.gov (United States)

    2013-05-01

    occurs in ballistic impact, and accompanies amorphization in diamond anvil cell (DAC) experiments (Yan et al., 2009). Fracture in boron carbide ...Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals by J. D. Clayton ARL-RP-440 May 2013...Ground, MD 21005-5069 ARL-RP-440 May 2013 Mesoscale Modeling of Dynamic Compression of Boron Carbide Polycrystals J. D. Clayton

  18. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    Science.gov (United States)

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    Background and objective: The popularity of ceramic restorations can be attributed to its life-like appearance, durability and biocompatibility and therefore ceramic restorations have been widely used for anterior and posterior teeth. Ceramic restorations have esthetic and biocompatible advantages but low fracture resistance. Since it has high flexural strength and fracture resistance, yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) is the dental material most commonly used for the core of ceramic crowns and fixed dental prosthesis. In spite of improved mechanical properties, acceptable marginal adaptation and biocompatibility the whitish opacity of zirconia is an obvious esthetic disadvantage. The zirconia framework is often veneered with conventional feldspathic porcelain to achieve a natural appearance. However it is difficult to achieve sufficient bond strength between zirconia and the veneering material. Achieving sufficient bond strength between the veneering ceramic and the zirconia core is a major challenge in the long term clinical success of veneered zirconia restorations. The main objective of this study is to evaluate the effect of different surface treatments on the fracture strength of the two commercially available Zirconia namely Ceramill and ZR-White (AMANNGIRRBACH and UPCERA) respectively. Method: Two commercially available pre-sinteredyttrium stabilized Zirconia blanks (ZR-White and Ceramill) from AMANNGIRRBACH and UPCERA respectively are used to produce the disc shaped specimens of size (15.2 ± 0.03 mm in diameter and 1.2 ± 0.03 mm thick) from each Zirconia blank. All disc shaped specimens are heated at 1200°C in a furnace for 2 hours to form homogenous tetragonal ZrO2. The dimensions of the specimens are measured with a digital caliper (aerospace). The thickness and diameter of each specimen are calculated as the means of 3 measurements made at random sites. 80 discs from each Zirconia blank are divided into ten groups of 8

  19. Toughening of dental porcelain by tetragonal ZrO2 additions

    International Nuclear Information System (INIS)

    Morena, R.; Lockwood, P.E.; Evans, A.L.; Fairhurst, C.W.

    1986-01-01

    The effect of mechanical behavior of ZrO 2 additions to a dental porcelain was investigated. The ZrO 2 was introduced into the glassy matrix phase of the porcelain by refritting the all-glass porcelain constituent. X-ray diffraction indicated that a sizeable fraction of the ZrO 2 was retained in the tetragonal from after the porcelain was fired. Zirconia additions to the porcelain produced substantial improvements in fracture toughness, strength, and thermal shock resistance

  20. Eco friendly nitration of toluene using modified zirconia

    Directory of Open Access Journals (Sweden)

    K.R. Sunaja Devi

    2013-03-01

    Full Text Available Nitration of toluene has been studied in the liquid phase over a series of modified zirconia catalysts.  Zirconia, zirconia- ceria (Zr0.98Ce0.02O2, sulfated zirconia and sulfated zirconia- ceria were synthesised by co precipitation method and were characterised by X-ray diffraction, BET surface area, Infra red spectroscopy analysis (FTIR, Thermogravimetric analysis (TGA, Scanning Electron Microscopy (SEM and Energy Dispersive X ray analysis (EDAX. The acidity of the prepared catalysts was determined by FTIR pyridine adsorption study. X-ray diffraction studies reveal that the catalysts prepared mainly consist of tetragonal phase with the crystallite size in the nano range and the tetragonal phase of zirconia is stabilized by the addition of ceria. The modified zirconia samples have higher surface area and exhibits uniform pore size distribution aggregated by zirconia nanoparticles. The onset of sulfate decomposition was observed around 723 K for sulfated samples. The catalytic performance was determined for the liquid phase nitration of toluene to ortho-, meta- and para- nitro toluene. The effect of reaction temperature, concentration of nitric acid, catalyst reusability and reaction time was also investigated. © 2013 BCREC UNDIP. All rights reservedReceived: 20th November 2012; Revised: 8th December 2012; Accepted: 7th January 2013[How to Cite: K. R. S. Devi, S. Jayashree, (2013. Eco friendly nitration of toluene using modified zirconia. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 205-214. (doi:10.9767/bcrec.7.3.4154.205-214][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4154.205-214 ] View in  |

  1. Structural and Chemical Analysis of the Zirconia-Veneering Ceramic Interface.

    Science.gov (United States)

    Inokoshi, M; Yoshihara, K; Nagaoka, N; Nakanishi, M; De Munck, J; Minakuchi, S; Vanmeensel, K; Zhang, F; Yoshida, Y; Vleugels, J; Naert, I; Van Meerbeek, B

    2016-01-01

    The interfacial interaction of veneering ceramic with zirconia is still not fully understood. This study aimed to characterize morphologically and chemically the zirconia-veneering ceramic interface. Three zirconia-veneering conditions were investigated: 1) zirconia-veneering ceramic fired on sandblasted zirconia, 2) zirconia-veneering ceramic on as-sintered zirconia, and 3) alumina-veneering ceramic (lower coefficient of thermal expansion [CTE]) on as-sintered zirconia. Polished cross-sectioned ceramic-veneered zirconia specimens were examined using field emission gun scanning electron microscopy (Feg-SEM). In addition, argon-ion thinned zirconia-veneering ceramic interface cross sections were examined using scanning transmission electron microscopy (STEM)-energy dispersive X-ray spectrometry (EDS) at high resolution. Finally, the zirconia-veneering ceramic interface was quantitatively analyzed for tetragonal-to-monoclinic phase transformation and residual stress using micro-Raman spectroscopy (µRaman). Feg-SEM revealed tight interfaces for all 3 veneering conditions. High-resolution transmission electron microscopy (HRTEM) disclosed an approximately 1.0-µm transformed zone at sandblasted zirconia, in which distinct zirconia grains were no longer observable. Straight grain boundaries and angular grain corners were detected up to the interface of zirconia- and alumina-veneering ceramic with as-sintered zirconia. EDS mapping disclosed within the zirconia-veneering ceramic a few nanometers thick calcium/aluminum-rich layer, touching the as-sintered zirconia base, with an equally thick silicon-rich/aluminum-poor layer on top. µRaman revealed t-ZrO2-to-m-ZrO2 phase transformation and residual compressive stress at the sandblasted zirconia surface. The difference in CTE between zirconia- and the alumina-veneering ceramic resulted in residual tensile stress within the zirconia immediately adjacent to its interface with the veneering ceramic. The rather minor chemical

  2. Fabrication and properties of yttria, ceria doped zirconia-aluminia ceramic composites

    International Nuclear Information System (INIS)

    Lyubushkin, R.A.; Ivanov, O.N.; Chuev, V.P.; Buzov, A.A.

    2011-01-01

    At present, zirconia-based ceramics are gaining popularity in dentistry, particularly in fixed prosthodontics. clinically, it is important that ceramic restorations reproduce the translucency and color of natural teeth. Zirconia based ceramics is a high performance material with excellent biocompatibility and mechanical properties, which suggest its suitability for posterior fixed partial dentures. Y 2 O 3 -stabilized tetragonal zirconia polycrystalline (YTZ/Al 2 O 3 ) and CeO 2 -stabilized tetragonal zirconia polycrystalline (CZA) ceramics with high-performance were prepared for dental application by use the wet chemical route, consolidated by cold isostatic pressing, and two-step sintering method. Physical and mechanical properties test results show that the bending strength, fracture toughness, and the density of full sintered ceramics suggest that the material is relatively suitable for dental restoration.

  3. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up.

    Science.gov (United States)

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Objective : The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo , i.e. fractures of the veneering material rather than complete fractures. Materials and methods : 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results : The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly ( p > 0.001) higher loads (mean 2155 N) than Y-TZP (mean 1505 N) crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions : The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns.

  4. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    Directory of Open Access Journals (Sweden)

    Christel Larsson

    2015-01-01

    Full Text Available Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP and metal-ceramic (MC molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results: The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly (p > 0.001 higher loads (mean 2155 N than Y-TZP (mean 1505 N crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions: The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns.

  5. Fracture of porcelain-veneered gold-alloy and zirconia molar crowns using a modified test set-up

    Science.gov (United States)

    Larsson, Christel; Drazic, Marko; Nilsson, Eddie; Vult von Steyern, Per

    2015-01-01

    Abstract Objective: The main aim of this study was to compare fracture load and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and metal-ceramic (MC) molar crowns using a modified test set-up to produce fractures similar to those seen in vivo, i.e. fractures of the veneering material rather than complete fractures. Materials and methods: 13 high-noble-alloy MC and 13 Y-TZP molar crowns veneered with porcelain were manufactured. The crowns were artificially aged before final load to fracture. Load was applied using a 7 mm diameter steel ball exerting force on the cusps with stresses directed toward the core-veneer interface. Fracture surface analysis was performed using light- and scanning electron microscopy. Results: The test design produced fractures of the veneering material rather than complete fractures. MC crowns withstood significantly (p > 0.001) higher loads (mean 2155 N) than Y-TZP (mean 1505 N) crowns, yet both endure loads sufficient for predictable clinical use. Fracture mode differed between MC and Y-TZP. MC crowns exhibited fractures involving the core-veneer interface but without core exposure. One Y-TZP crown suffered a complete fracture, all others except one displayed fractures of the veneering material involving the core-veneer interface with core exposure. Conclusions: The test set-up produces fractures similar to those found in vivo and may be useful to evaluate the core-veneer interface of different material systems, both metals and ceramics. The study confirms suggestions from previous studies of a weaker core-veneer bond for Y-TZP compared to MC crowns. PMID:28642899

  6. Influence of thermal expansion mismatch on residual stress profile in veneering ceramic layered on zirconia: Measurement by hole-drilling.

    Science.gov (United States)

    Mainjot, Amélie K; Najjar, Achref; Jakubowicz-Kohen, Boris D; Sadoun, Michaël J

    2015-09-01

    Mismatch in thermal expansion coefficient between core and veneering ceramic (Δα=αcore-αveneer, ppm/°C) is reported as a crucial parameter influencing veneer fractures with Yttria-tetragonal-zirconia-polycrystal (Y-TZP) prostheses, which still constitutes a misunderstood problem. However, the common positive Δα concept remains empirical. The objective of this study is to investigate the Δα dependence of residual stress profiles in veneering ceramic layered on Y-TZP frameworks. The stress profile was measured with the hole-drilling method in bilayered disc samples of 20mm diameter with a 0.7mm thick Y-TZP framework and a 1.5mm thick veneer layer. 3 commercial and 4 experimental veneering ceramics (n=3 per group) were used to obtain different Δα varying from -1.3ppm/°C to +3.2ppm/°C, which were determined by dilatometric analyses. Veneer fractures were observed in samples with Δα≥+2.3 or ≤-0.3ppm/°C. Residual stress profiles measured in other groups showed compressive stresses in the surface, these stresses decreasing with depth and then becoming more compressive again near the interface. Small Δα variations were shown to induce significant changes in residual stress profiles. Compressive stress near the framework was found to decrease inversely to Δα. Veneer CTE close to Y-TZP (+0.2ppm/°C Δα) gived the most favorable stress profile. Yet, near the framework, Δα-induced residual stress varied inversely to predictions. This could be explained by the hypothesis of structural changes occurrence within the Y-TZP surface. Consequently, the optimum Δα value cannot be determined before understanding Y-TZP's particular behavior when veneered. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Characterization of yttria-doped zirconia powders produced by plasma-chemical method

    DEFF Research Database (Denmark)

    Kuzjukevics, A.; Linderoth, Søren; Grabis, J.

    1996-01-01

    Ultrafine non-doped and yttria-doped zirconia (ZY) powders have been produced by a single-step plasma synthesis method. The amount of yttria doping was varied between 0 and about 10 mol%. The phase composition, structural parameters and morphology of the as-prepared powders have been examined by X...... transmission electron microscopy. The ZY ultrafine powders were mixtures of a cubic and a non-transformable tetragonal zirconia phases. The amount of the tetragonal phase decreased with the overall yttria content but with a composition that remained almost the same. Neutron diffraction revealed diffuse...

  8. The radiation response of mesoporous nanocrystalline zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Ayelén M.; Alurralde, Martin A. [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Giménez, Gustavo [Instituto Nacional de Tecnología Industrial - CMNB, Av. General Paz 5445, 1650 San Martín, Provincia de Buenos Aires (Argentina); Luca, Vittorio, E-mail: vluca@cnea.gov.ar [Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Av. General Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2016-12-15

    The next generation of nuclear systems will require materials capable of withstanding hostile chemical, physical and radiation environments over long time-frames. Aside from its chemical and physical stability, crystalline zirconia is one of the most radiation tolerant materials known. Here we report the first ever study of the radiation response of nanocrystalline and mesoporous zirconia and Ce{sup 3+}-stabilized nanocrystalline zirconia (Ce{sub 0.1}Zr{sub 0.9}O{sub 2}) thin films supported on silicon wafers. Zirconia films prepared using the block copolymer Brij-58 as the template had a thickness of around 60–80 nm. In the absence of a stabilizing trivalent cation they consisted of monoclinic and tetragonal zirconia nanocrystals with diameters in the range 8–10 nm. Films stabilized with Ce{sup 3+} contained only the tetragonal phase. The thin films were irradiated with iodine ions of energies of 70 MeV and 132 keV at low fluences (10{sup 13} - 10{sup 14} cm{sup −2}) corresponding to doses of 0.002 and 1.73 dpa respectively, and at 180 keV and high fluences (2 × 10{sup 16} cm{sup −2}) corresponding to 82.4 dpa. The influence of heavy ion irradiation on the nanocrystalline structure was monitored through Rietveld analysis of grazing incidence X-ray diffraction (GIXRD) patterns recorded at angles close to the critical angle to ensure minimum contribution to the diffraction pattern from the substrate. Irradiation of the mesoporous nanocrystalline zirconia thin films with 70 MeV iodine ions, for which electronic energy loss is dominant, resulted in slight changes in phase composition and virtually no change in crystallographic parameters as determined by Rietveld analysis. Iodine ion bombardment in the nuclear energy loss regime (132–180 keV) at low fluences did not provoke significant changes in phase composition or crystallographic parameters. However, at 180 keV and high fluences the monoclinic phase was totally eliminated from the GIXRD

  9. Zirconia coating for enhanced thermal stability of gold nanoparticles

    Science.gov (United States)

    Pastre, A.; Cristini-Robbe, O.; Bois, L.; Chassagneux, F.; Branzea, D.; Boé, A.; Kinowski, C.; Raulin, K.; Rolland, N.; Bernard, R.

    2016-01-01

    This paper describes a rapid, simple and one-step method for the preparation of 2-4 nm diameter zirconia-coated gold nanoparticles at room temperature. These nanoparticles were synthesized by two simultaneous processes: the chemical reduction of tetrachloroauric acid with sodium borohydride and the formation of zirconia sol-gel matrices. All the gold nanoparticle sols were characterized by UV-visible absorption and transmission electron microscopy to determine the nanoparticle size and shape. The synthesis method is a combination of a polymeric structure of the amorphous zirconia and the use of a strong reducing agent, and it yields to very small quasi-spherical gold nanoparticles at room temperature. The thermal stability up to 1200 °C of the coated nanoparticles was studied by x-ray diffraction. The metastable tetragonal phase of the zirconia coating was obtained at 400 °C, and a progressive transformation from tetragonal to monoclinic phases of the zirconia coating was observed up to 1100 °C. After the heat treatment at 400 °C, the crystallite size of the gold nanoparticles was about 29 nm, and it remained unchanged from 400 °C to 1200 °C. These results are promising for the development of such materials as doping elements for optical fiber applications.

  10. Theoretical and Experimental Investigations on the Mechanism of Carbothermal Reduction of Zirconia (Preprint)

    Science.gov (United States)

    2012-08-01

    exhibited specific area of 15.2 m2/g and crystallite size of ~26 nm. The graphite powder (300 mesh size ) was produced by Alfa Aesar. The motivation behind...XRD determined that the 3 mol% YSZ raw powder consisted of tetragonal and monoclinic zirconia phases shown in Fig. 5. The basic aim behind designing...AFRL-RX-WP-TP-2012-0374 THEORETICAL AND EXPERIMENTAL INVESTIGATIONS ON THE MECHANISM OF CARBOTHERMAL REDUCTION OF ZIRCONIA (PREPRINT

  11. Surface stability and small-scale testing of zirconia

    OpenAIRE

    Camposilvan, Erik

    2015-01-01

    Tesi per compendi de publicacions. La consulta íntegra de la tesi, inclosos els articles no comunicats públicament per drets d'autor, es pot realitzar prèvia petició a l'Arxiu UPC Tetragonal polycrystalline zirconia stabilized with 3 mol% of yttria (3Y-TZP) is a biocompatible ceramic showing superior mechanical properties, which are partly the consequence of phase transformation: the tetragonal metastable phase can transform, with a net volume increase, to the stable monoclinic phase by a ...

  12. Effect of accelerated aging on the fracture toughness of zirconias.

    Science.gov (United States)

    Harada, Kosuke; Shinya, Akikazu; Gomi, Harunori; Hatano, Yasuo; Shinya, Akiyoshi; Raigrodski, Ariel J

    2016-02-01

    Low temperature degradation (LTD) of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) is of concern. The purpose of this in vitro study was to assess the effect of accelerated aging on the Vickers hardness and fracture toughness of a newly developed Y-TZP and 2 primary Y-TZPs. Two primary 3 mol% Y-TZP, Lava (LA), Everest Zirconium Soft (EV), and a new 3 mol% Y-TZP, ZirTough (NZ) were assessed. Specimens (n=30 each brand) of 10 × 10 × 3 mm were hydrothermally treated for accelerated aging to examine LTD. Five conditions were used (n = 5 per condition) as follows: control group (no aging); 5 hours at 134°C/0.2 MPa (5h-134°C); 100 hours at 134°C/0.2 MPa (100 h-134°C); 5 hours at 180°C/1.0 MPa (5 h-180°C); and 20 hours at 180°C/1.0 MPa (20 h-180°C). Fracture toughness was measured by using the indentation fracture (IF) method under a loading of 294 N and calculated from the obtained measurements. To observe differences in particle composition and fracture patterns, mirror-polished test specimens (n=5 each brand) were re-sintered at 1200°C for 1 hour as a thermal etching process, and a Vickers indenter was pressed into the test specimens according to the IF method. Test piece surfaces and cracks were observed with scanning electron microscopy (SEM). One-way ANOVA and the post- hoc (Scheffé test were used to examine) interlevel significant differences (α=.05). The Vickers hardness and fracture toughness were as follows: 1319 HV and 7.36 MPa · m(1/2) for LA, and 1371 HV and 6.76 MPa · m(1/2) for EV in no aging; 1334 HV and 7.02 MPa · m(1/2) for LA, and 1346 HV and 6.07 MPa · m(1/2) for EV in 5h-134°C. No significant differences were found between no aging and 5h-134°C for LA and EV for Vickers hardness and fracture toughness. Measurements could not be made for LA and EV for 100 h-134°C, 5h-180°C, or 20 h-180°C because of fractures in the surface layer. For NZ, Vickers hardness and fracture toughness were as follows: 1261 HV and 15.60 MPa

  13. Characterization of nanocrystalline zirconia powders by electron optical techniques

    International Nuclear Information System (INIS)

    Bursill, L.A.

    1989-01-01

    Electron optical techniques are described for the characterization of the size distribution of agglomerates, aggregates and primary micro- and nanocrystallites of as-processed zirconia powders. These techniques allow for direct identification of individual crystallites as tetragonal or monoclinic, by optical transform of high-resolution electron micrographs. The latter also permit surface morphology to be examined with atomic resolution. Applications to a range of pure and doped zirconia powders, of recent commercial interest, are presented, which enable the results of concurrent studies by sedimentation, surface specific area measurements, porosity and sinterability to be correctly interpreted. 18 figs

  14. Silicon carbide whisker-zirconia reinforced mullite and alumina ceramics

    Science.gov (United States)

    Becher, Paul F.; Tiegs, Terry N.

    1987-01-01

    The flexural strength and/or fracture toughness of SiC whisker-reinforced composites utilizing mullite or alumina as the matrix material for the composite are increased by the addition of zirconia in a monoclinic or tetragonal phase to the matrix. The zirconia addition also provides for a lower hot-pressing temperature and increases the flexural strength and/or fracture toughness of the SiC whisker-reinforced composites over SiC whisker-reinforced composites of the similar matrix materials reinforced with similar concentrations of SiC whiskers.

  15. Microstructural aspects of zirconia thermal barrier coatings

    Science.gov (United States)

    Mitchell, T. E.; Suhr, D. S.; Keller, R. J.; Lanteri, V.; Heuer, A. H.

    1985-01-01

    Various combination of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 C and cyclic thermal exposure to 1000 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO2-Y2O3 compositions, of which the optimum was found to be ZrO2-8.9 wt percent Y2O3. Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes. Zones depleted of Al formed at the bond coat/ceramic coat interface due to oxidation and at the bond coat/substrate interface due to interdiffusion, leading eventually to breakdown of the bond coat. The 8.9 percent Y2O3 coating performed best because the as-sprayed metastable tetragonal phase converted slowly into the low-Y2O3 tetragonal plus high-Y2O3 cubic-phase mixture, so that the deleterious monoclinic phase was inhibited from forming. Failure appeared to start with the formation of circumferential cracks in the zirconia, probably due to compressive stresses during cooling, followed by the formation of radial cracks due to tensile stresses during heating. Cracks appeared to initiate at the Al2O3 scale/bond coat interface and propagate through the zirconia coating. Comparisons were made with the behavior of bulk ZrO2-Y2O3 and the relationship between the microstructure of the tetragonal phase and the phase diagram. A separate investigation was also made of the ZrO2-Al2O3 interface.

  16. Phase distributions in plasma-sprayed zirconia-yttria

    Science.gov (United States)

    Miller, R. A.; Garlick, R. G.; Smialek, J. L.

    1983-01-01

    The distribution of phases in plasma-sprayed zirconia-yttria has been determined over a range of yttria levels from 0 to 26.1 molpct YO(1.5) using room temperature X-ray diffractometry. Pure, plasma-sprayed zirconia is composed almost entirely of the monoclinic phase. At levels of yttria between 4 and 10 percent, a quenched-in tetragonal phase predominates, and at higher levels the cubic phase predominates. The phase distributions are compared with previously reported test lives of thermal barrier coatings formed from these materials. Regions of optimal lives were found to correlate with regions having high amounts of the tetragonal phase, small but nonzero amounts of the monoclinic phase, and little or none of the cubic phase. Possible relationships between phase composition and coating performance are discussed.

  17. Effect of microstructure and microhardness on the wear resistance of zirconia-alumina, zirconia-yttria and zirconia-ceria coatings manufactured by atmospheric plasma spraying; fecto de la microestructura y de la microdureza sobre la resistencia al desgaste de recubrimientos elaborados por proyeccion termica por plasma atmosferico a partir de circona-alumina, circona-itria y circona-ceria

    Energy Technology Data Exchange (ETDEWEB)

    Giovanni Gonzalez, A.; Ageorges, H.; Rojas, O.; Lopez, E.; Milena Hurtado, F.; Vargas, F.

    2015-10-01

    The effect of the structure and microhardness on the wear resistance of zirconia-alumina (ATZ), zirconia-yttria (YSZ) and zirconia-ceria (CSZ) coatings manufactured by atmospheric plasma spraying was studied. The microstructure and the fracture on the cross section of the coatings were analyzed using Scanning Electron Microscopy, the phases were identified using X-Ray Diffraction, the microhardness was measured by Vickers indentation and the wear resistance was evaluated by ball on disc test. The results showed that zirconia-alumina coating exhibits the best performance in the wear test. This behavior is closely related to their microstructure and higher microhardness, despite of its significant quantity of the monoclinic zirconia phase, which has lower mechanical properties than tetragonal zirconia phase. Tetragonal zirconia phase was predominant in the zirconia-yttria and zirconia-ceria coatings and despite this behavior; they did not have a good performance in the wear tests. This low wear resistance was mainly influenced by the columnar structure within their lamellae, which caused a greater detachment of particles in the contact surface during the ball-disc tests, increasing its wear. (Author)

  18. Effects of multiple firings on the microstructure of zirconia and veneering ceramics.

    Science.gov (United States)

    Alkurt, Murat; Yeşil Duymus, Zeynep; Gundogdu, Mustafa

    2016-01-01

    The aim of study was to evaluate the effects of multiple firings on the microstructures of zirconia and two ceramics. Vita VM9 (VMZ) and Cerabien ZR (C-Z) ceramics on a zirconia framework and zirconia without veneering ceramic (WO-Z) were evaluated. Firing methods included firing two, five, and ten times (n=10). The effects of multiple firings on the surface hardness of the materials were evaluated using a Vickers hardness (HV) tester. Data were analyzed by two-way ANOVA and Tukey's test (α=0.05). After firing five and ten times, the hardness of VM-Z and C-Z increased significantly (pveneering ceramics were similar (p>0.05). In the XRD analysis, zirconia had similar tetragonal (t)-monoclinic (m) phase transformations of Y-TZP after the different firing times. Clinically, multiple firings did not affect the microstructure of zirconia, but the structures of the two ceramics were affected.

  19. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Science.gov (United States)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  20. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sherly, K. B.; Rakesh, K. [Mahatma Gandhi University Regional Research Center in Chemistry, Department of Chemistry, Mar Athanasius College, Kothamangalam-686666, Kerala (India)

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  1. Shrinkage reduction of dental composites by addition of expandable zirconia filler

    DEFF Research Database (Denmark)

    Skovgaard, M.; Almdal, Kristoffer; Sørensen, Bent F.

    2011-01-01

    A problem with dental resin composites is the polymerization shrinkage, which makes the filling loosen from the tooth or induces crack formation. We have developed an expandable metastable tetragonal zirconia filler, which upon reaction with water, is able to counter the polymer shrinkage...

  2. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  3. [Establishment and mechanisms of chemical interaction between phosphate monomer and zirconia model].

    Science.gov (United States)

    Zhicen, Lu; Haifeng, Xie; Feimin, Zhang; Huaiqin, Zhang; Chen, Chen

    2017-04-01

    To analyze chemical mechanism of bonding improvement of zirconia via 10-methacryloyloxydecyl dihydrogen phosphate (MDP) conditioning. Various models were created for tetragonal zirconia crystals, molecular MDP, and MDP complex, and tetragonal zirconia crystal. Thermodynamic methods were used to analyze configuration between MDP and tetragonal zirconia crystal through calculation of their Gibbs free energy values and equilibrium constants. Two potential configurations (double- and single-coordinate) may occur between MDP and ZrO2 crystal clusters. Thermodynamic calculations showed that -147.761 and -158.073 kJ·mol⁻¹ Gibbs free energy were required to form single- and double-coordinate configurations; their negative signs indicate that reactions for both configurations can occur. Equilibrium constant for single-coordinate configuration was 7.72×10²⁵, which was less than that of double-coordinate configuration (4.95×10²⁷), suggesting that the latter was more stable. MDP can spontaneously establish a double-coordinate configuration with zirconia.
.

  4. Structure and thermal stability of nanostructured iron-doped zirconia prepared by high-energy ball milling

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Poulsen, Finn Willy; Mørup, Steen

    1999-01-01

    Fury stability cubic zirconia doped with iron oxide has been synthesized by high-energy ball milling from powder mixtures of monoclinic zirconia and hematite. It is found that the iron ions dissolved in cubic ZrO2 are in substitutional positions with a maximum solubility of approximately 18.5 mol......% alpha-Fe2O3. The unit-cell volume of the cubic ZrO2 phase decreases with increasing iron content. During heating hte cubic-to-tetragonal transition occurs at approximately 827 degrees C and the tetragonal-to-monoclinic transition seems to be absent at temperatures below 950 degrees C. During cooling...

  5. Aqueous solubility of zirconia

    International Nuclear Information System (INIS)

    Sunder, S.; Wren, S.

    2008-01-01

    Zirconia (zirconium dioxide) is being considered as a host matrix for the disposal of actinides in a geologic disposal vault, for the 'burning of actinides' in nuclear reactors and for the use of lanthanides as burnable-neutron absorbers to control the neutron flux in the reactors. These applications require knowledge of the stability of the zirconia in aqueous environment. Therefore, a literature review of the aqueous solubility of zirconia was carried out. The literature review was complemented by experiments on the dissolution of zirconia in aqueous solutions. The paper presents the results of the literature review and our experiments on the dissolution of zirconia in solutions of pH between 5.7 and 10.3. The low solubility of zirconia in the solutions investigated here supports the selection of zirconia for the above applications. (author)

  6. Evaluation of translucency of monolithic zirconia and framework zirconia materials

    OpenAIRE

    Tuncel, ?lkin; Turp, I??l; ???mez, Asl?han

    2016-01-01

    PURPOSE The opacity of zirconia is an esthetic disadvantage that hinders achieving natural and shade-matched restorations. The aim of this study was to evaluate the translucency of non-colored and colored framework zirconia and monolithic zirconia. MATERIALS AND METHODS The three groups tested were: non-colored framework zirconia, colored framework zirconia with the A3 shade according to Vita Classic Scale, and monolithic zirconia (n=5). The specimens were fabricated in the dimensions of 15?1...

  7. Thermal effects on zirconia substrate after Er,Cr:YSGG irradiation

    Directory of Open Access Journals (Sweden)

    Alessandra Cassoni

    Full Text Available OBJECTIVE: The objective of the present study was to investigate the thermal effects of Er,Cr:YSGG laser irradiation (1.5W/20Hz on yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP. MATERIAL AND METHOD: Fifteen disks of Y-TZP (AS Technology TitaniumFIX, São José dos Campos, Brazil with 5 mm diameter and 3 mm high standardized with CAD-CAM were used. The Y-TZP disks were randomized in three groups (n=5: Y-TZP-G1 = control (no laser treatment; Y-TZP-G2 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/25%; Y-TZP-G3 = Y-TZP + Er,Cr:YSGG laser (air-water cooling proportion 80%/0%. A thermopar (SmartMether, Novus, Porto Alegre, RS, Brazil was attached to a digital thermometer (SmartMether, Novus, Porto Alegre, RS, Brazil fixed to the opposite irradiated surface. The temperature gradients (ΔT were calculated (ΔT = Final Temperature - Initial Temperature for each group. Values were statistically analyzed by one-way ANOVA at the 95% confidence level and compared by Tukey post-hoc test (α=0.05 for each material. One sample of each group was analyzed by confocal white light microscopy. RESULT: The ANOVA test showed significant differences for the factor "laser" (p<.001. The temperature gradients (ΔT value showed the following results: Y-TZP-G1 = 0 ºC; Y-TZP-G2 = -1.4 ºC and Y-TZP-G3 = 21.4 ºC. The ΔT values (ºC of the non-refrigerated group were higher than the refrigerated group. The roughness value (Ra ranged from 4.50 to -33.65 µm. CONCLUSION: The water refrigeration for Er,Cr:YSGG irradiation is essential to avoid thermal increase in the Y-TZP.

  8. Direct silanization of zirconia for increased biointegration.

    Science.gov (United States)

    Caravaca, Carlos; Shi, Liu; Balvay, Sandra; Rivory, Pascaline; Laurenceau, Emmanuelle; Chevolot, Yann; Hartmann, Daniel; Gremillard, Laurent; Chevalier, Jérôme

    2016-12-01

    High-performance bioinert ceramics such as zirconia have been used for biomedical devices since the early seventies. In order to promote osseointegration, the historical solution has been to increase the specific surface of the implant through roughness. Nevertheless these treatments on ceramics may create defects at the surface, exposing the material to higher chances of early failure. In zirconia, such treatments may also affect the stability of the surface. More recently, the interest of improving osseointegration of implants has moved the research focus towards the actual chemistry of the surface. Inspired by this, we have adapted the current knowledge and techniques of silica functionalization and applied it to successfully introduce 3-aminopropyldimethylethoxy silane (APDMES) directly on the surface of zirconia (3Y-TZP). We used plasma of oxygen to clean the surface and promote hydroxylation of the surface to increase silane density. The samples were extensively characterized by means of X-ray photoelectron spectroscopy (XPS) and contact angle, mechanically tested and its cytotoxicity was evaluated through cell adhesion and proliferation tests. Additionally, aging was studied to discard negative effects of the treatment on the stability of the tetragonal phase. No adverse effect was found on the mechanical response of treated samples. In addition, plasma-treated samples exhibited an unexpectedly higher resistance to aging. Finally, silane density was 35% lower than the one reported in literature for silica. However cells displayed a qualitatively higher spreading in opposition to the rounder appearance of cells on untreated zirconia. These results lay the foundations for the next generation of zirconia implants with biologically friendlier surfaces. The use of zirconia-based ceramics in biomedical devices is broad and well accepted, especially in dental implants. However, they do not bond naturally to bone, therefore to ensure fixation surgeons typically rely

  9. Fatique of Copper Polycrystals at Low Plastic Strain Amplitudes

    DEFF Research Database (Denmark)

    Rasmussen, K. V.; Pedersen, Ole Bøcker

    1980-01-01

    Single crystals and polycrystals of pure copper were fatigued in tension-compression at constant low amplitudes of plastic strain and low cycling frequencies at room temperature in air. Surface patterns of persistent slip bands were quantitatively examined by optical microscopy. Bulk dislocation...

  10. STABILISED ZIRCONIA

    Directory of Open Access Journals (Sweden)

    LUZ STELLA ARIAS-MAYA

    2014-01-01

    Full Text Available La densificación y la contracción de cerámicos u otros materiales en polvo pueden ser predichos de una manera sencilla usando la curva maestra de sinterizado. En este trabajo se han obtenido los datos de densificación requeridos para construir la curva maestra de sinterizado de zirconia en polvo estabilizada con 3-mol% itria. Se sinterizaron muestras compactadas en frío, así como películas gruesas hechas del mismo polvo y aplicadas a un sustrato rígido. Las pruebas de sinterizado libre y con restricción fueron realizadas aplicando tres velocidades de calentamiento, incluyendo o no una etapa isotérmica a la máxima temperatura de ~1450 °C. La contracción de las muestras se midió durante la densificación usando un dilatómetro de varilla de presión. También se usó un horno convencional, aplicando la misma curva de calentamiento para comparar resultados. El análisis microestructural fue logrado mediante microscopía de barrido electrónico, microscopía de barrido electrónico ambiental y microscopía óptica. Se obtuvo una concordancia aceptable entre muestras similares sinterizadas en el dilatómetro y en el horno convencional, indicando que los datos del dilatómetro pueden ser usados para ambos ambientes. Las muestras que se sinterizaron sin restricción alcanzaron menores densidades que las películas, probablemente debido a que sus densidades iniciales eran menores. Para las muestras libres de restricción, se obtuvo una curva maestra de sinterizado con una energía de activación de 550 kJ mol-1. Para las películas sinterizadas con restricción, algunos problemas asociados con el sustrato y con las incertidumbres de las mediciones impidieron la caracterización de la película, es decir, la obtención de una curva maestra de sinterizado con un solo valor de energía de activación.

  11. The detailed orbital-decomposed electronic structures of tetragonal ZrO2

    International Nuclear Information System (INIS)

    Zhang, Yan; Ji, Vincent; Xu, Ke-Wei

    2013-01-01

    The detailed orbital-decomposed electronic structures of the tetragonal zirconia have been investigated by using the first-principles projector augmented wave (PAW) potential within the generalized gradient approximation (GGA) as well as taking into account the on-site Coulomb repulsive interaction (GGA+U). The deviation of the minimization energy from d z =0 to d z =±0.032 for experimental lattice constants (a=3.605 Å and c=5.180 Å) confirms the alternating displacement of the oxygen atoms, which causes half of the Zr---O bonds stronger and the other half weaker compared with the bonds in symmetric (d z =0) zirconia. The distorted tetragonal environment of the eight oxygen anions around Zr site splits the five-fold degenerate d states of a free Zr atom into triply degenerate t 2g (d xy , d yz and d zx ) states and doubly degenerate e g (d z 2 and d x 2 -y 2 ) states. The additional covalent character upon Zr-O ionic bonds are resulted from the hybridization between the O(2s), O(2p) and Zr(5s), triply degenerate t 2g (d xy , d yz and d zx ) states of Zr(4d). The O(2s) and O(2p) states are clearly separated and no hybrid bonding states are formed

  12. Control of the nanocrystalline zirconia structure through a colloidal sol-gel process

    Science.gov (United States)

    Gossard, A.; Grasland, F.; Le Goff, X.; Grandjean, A.; Toquer, G.

    2016-05-01

    A simple method to synthesize tetragonal zirconia stabilized at ambient temperature is developed and allows the monitoring of the tetragonal-monoclinic transition via a colloidal sol-gel process. By increasing the pH of an aqueous solution consisted of a zirconium precursor and a complexing agent (acetylacetone), a colloidal sol and then a gel can be formed under slightly acidic condition. After a drying step, tetragonal zirconia is easily obtained with an adequate thermal treatment at low temperature. The tetragonal-monoclinic transition occurs when the calcination temperature is increased. The relationship between the crystallite size, the crystallographic structure and the thermal treatment has been investigated by X-Ray Diffraction and the behaviour of the system from the gel state to the final powder has been studied by using Small Angle X-Ray Scattering and thermal analysis techniques. We demonstrate that compared to a chemical precipitation route, this colloidal sol-gel process allows the nanostructure of the material to be controlled due to the formation of primary nanoparticles. The presence of these nanoparticles makes possible the specific determination of the zirconia crystallographic phase through an accurate control of the nanostructure during the thermal treatment.

  13. Two stochastic mean-field polycrystal plasticity methods

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael [Los Alamos National Laboratory

    2008-01-01

    In this work, we develop two mean-field polycrystal plasticity models in which the L{sup c} are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the L{sup c} tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the STM and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates D{sup c} are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the FCM, and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM.

  14. Micro-mechanics of polycrystals subjected to small strains

    International Nuclear Information System (INIS)

    Sauzay, M.

    2009-04-01

    The author proposes an overview of the different research works he performed during several years. His aim is the understanding and the modelling of plasticity and damage mechanisms in metal polycrystals subjected to small strains, mainly under long duration creep and fatigue. Three topics are more particularly developed: the distribution of mechanical fields in polycrystals subjected to small strains, the strain localisation at the grain scale, and the softening of martensitic steels under creep or fatigue loadings. For each of these topics, the author reports the investigation of microstructure and of damage and strain mechanisms (mechanical tests, microstructure observations), the modelling of these mechanisms (based on continuum mechanics, crystalline elasto-plasticity, finite elements calculations, theory of dislocations and diffusion), and the validation of these predictions at a microscopic and macroscopic scale by comparison with experimental measurements and observations

  15. Density of phonon states on NiO polycrystal

    International Nuclear Information System (INIS)

    Bulat, I.A.; Makovetskij, G.I.; Pashkovskij, Yu.L.; Semencheva, O.P.; Smolik, Ch.K.

    1984-01-01

    The density of phonon states g(epsilon) of nickel monoxide polycrystal was investigated by the method of inelastic scattering of cold neutrons with E 0 =4.43 MeV initial energy E 0 =4.43 MeV on the time-of-flight spectrometer at T=293 K. The obtained data are compared with existing results of calculations on the base of the simple shell model and the model, taking into account the deformation of bond angles

  16. In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gosset, D., E-mail: dominique.gosset@cea.fr; Le Saux, M.

    2015-03-15

    In the case of a hypothetical loss of primary coolant accident (LOCA) in a light water reactor, the zirconium alloys fuel cladding would be oxidized in steam at high temperature, typically in the range 800–1200 °C. The monoclinic to tetragonal phase martensitic transition of zirconia occurs within this temperature range and complex phenomena possibly having an impact on the oxidation kinetics are then to be expected. In order to provide an accurate description of the structure and microstructure of the oxide layers, systematic X-ray diffraction analyses have been performed in-situ under oxidizing atmosphere at high temperature (between 800 and 1100 °C) on Zircaloy-4 and M5™ sheet samples. It was confirmed that the volume fraction of the tetragonal and monoclinic zirconia phases formed during oxide growth drastically depends on the oxidation temperature. For example, the few outer microns of the oxide are fully tetragonal above 1050 °C and contain only 20% of tetragonal phase at 800 °C. It was also shown that cooling after oxidation induces irreversible phase transitions within the oxide. As a consequence, both the structure and the microstructure of the growing oxide cannot be observed post-facto, neither at room temperature nor after reheating at the prior oxidation temperature. It has been deduced from microstructural analyses that the grain size of the tetragonal zirconia phase is nanometric, about 100 nm during oxidation at 1100 °C down to 20 nm after cooling down to room temperature. This small grain size allows the stabilization of the tetragonal phase. The lattice parameters of the monoclinic and tetragonal zirconia phases have been analyzed, during both high temperature oxidation and cooling. In both cases, it appears the ‘a’ and ‘b’ cell parameters of the monoclinic phase are strongly constrained by the tetragonal ‘a’ one. The structural characteristics of the oxide formed at high temperature on Zircaloy-4 and M5™ are quite similar

  17. Ce O{sub 2}-Zr O{sub 2} tetragonal ceramics (Ce-TZP): mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Nono, Maria do Carmo de Andrade [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Laboratorio Associado de Sensores e Materiais

    1994-12-31

    This work presents the development and the characterization of Ce O{sub 2}-stabilized tetragonal Zr O{sub 2} polycrystals (Ce-TZP ceramics), since it is considered candidate material for applications as structural high performance ceramics, an as substitute of some metallic materials. Ce-TZP ceramics attain remarkable increasing in strength and fracture toughness. Sintered ceramics were fabricated from mixtures of powders containing different Ce O{sub 2} content prepared by conventional mechanical technique. It were adopted the bending strength, Vickers hardness and fracture toughness techniques to the determination of the mechanical parameters. These results were discussed and compared to those published in international literature. (author) 11 refs., 10 figs.

  18. Zirconia in biomedical applications.

    Science.gov (United States)

    Chen, Yen-Wei; Moussi, Joelle; Drury, Jeanie L; Wataha, John C

    2016-10-01

    The use of zirconia in medicine and dentistry has rapidly expanded over the past decade, driven by its advantageous physical, biological, esthetic, and corrosion properties. Zirconia orthopedic hip replacements have shown superior wear-resistance over other systems; however, risk of catastrophic fracture remains a concern. In dentistry, zirconia has been widely adopted for endosseous implants, implant abutments, and all-ceramic crowns. Because of an increasing demand for esthetically pleasing dental restorations, zirconia-based ceramic restorations have become one of the dominant restorative choices. Areas covered: This review provides an updated overview of the applications of zirconia in medicine and dentistry with a focus on dental applications. The MEDLINE electronic database (via PubMed) was searched, and relevant original and review articles from 2010 to 2016 were included. Expert commentary: Recent data suggest that zirconia performs favorably in both orthopedic and dental applications, but quality long-term clinical data remain scarce. Concerns about the effects of wear, crystalline degradation, crack propagation, and catastrophic fracture are still debated. The future of zirconia in biomedical applications will depend on the generation of these data to resolve concerns.

  19. Effect of SiO2 addition in the zirconia stabilization

    International Nuclear Information System (INIS)

    Pessoa, R.C.; Lima, U.R.; Nasar, M.C.; Nasar, R.S.; Yoshida, I.V.P.; Acchar, W.

    2006-01-01

    The aims of this work was investigated the zirconia stabilization with a mixture of resins based on silico nas promoting the Zr O 2 /Si O 2 formation. The powder was heated and characterized by TGA, DTA, FTIR, XRD and SEM/EDS. The results indicated the tetragonal and cubic phase formation stabilized at 1000 deg C/2 h. The increase of calcing temperature promoted decrease of stabilization. The amorphous silica calcined at 1000 deg C induced defects into the zirconia structure and favour the formation of more stable phases. The decrease of stabilization at high temperatures are related to growth of crystallite above of critical value. (author)

  20. Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers

    Science.gov (United States)

    Mess, Derek

    2003-01-01

    yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced

  1. Phase transformations of (Ca, Ti)-partially stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Hon Yungshon; Shen Pouyan (Inst. of Materials Science and Engineering, Nation Sun Yat-Sen Univ., Kaohsiung (Taiwan))

    1991-01-20

    The results of phase transformation and microstructural investigation of the ZrO{sub 2}-rich corner of the CaO-TiO{sub 2}-ZrO{sub 2} system are reported. Samples of Ca-PSZ powder (where PSZ is partially stabilized zirconia) containing 10.8 mol.% CaO, had added to them 0-14 mol.% TiO{sub 2} (designated specimens 0T to 14T). The samples were sintered at 1600deg C for 6 h and studied by X-ray diffraction and electron microscopy. Saturation of TiO{sub 2} in the cubic (c) zirconia was reached at a total TiO{sub 2} addition of about 4 mol.% at 1600deg C, whereas the solubility limit in tetragonal (t) zirconia was not reached in the composition range studied. The t-zirconia precipitates remained tweed in the cubic matrix for specimens 2T and 4T, but became lenticular with the (101) habit plane for specimens having a larger TiO{sub 2} content (e.g. 8T). The amount of t-zirconia increased with increasing TiO{sub 2} content at 1600deg C. The addition of TiO{sub 2} also enhanced the eutectoid decomposition of Ca-PSZ to form the PHI{sub 1}-phase (CaZr{sub 4}O{sub 9}). Calzirtite (Ca{sub 2}Zr{sub 5}Ti{sub 2}O{sub 16}) was precipitated from the shell of the zirconia grains in specimen 8T. (orig.).

  2. Phase analysis of plasma-sprayed zirconia-yttria coatings

    Science.gov (United States)

    Shankar, N. R.; Berndt, C. C.; Herman, H.

    1983-01-01

    Phase analysis of plasma-sprayed 8 wt pct-yttria-stabilized zirconia (YSZ) thermal barrier coatings and powders was carried out by X-ray diffraction. Step scanning was used for increased peak resolution. Plasma spraying of the YSZ powder into water or onto a steel substrate to form a coating reduced the cubic and monoclinic phases with a simultaneous increase in the tetragonal phase. Heat treatment of the coating at 1150 C for 10 h in an Ar atmosphere increased the amount of cubic and monoclinic phases. The implications of these transformations on coating performance and integrity are discussed.

  3. What Is in Your Zirconia?

    Science.gov (United States)

    Helvey, Gregg A

    2017-04-01

    The immense popularity of zirconia as an indirect restorative material in dentistry has led to seemingly countless numbers of companies selling zirconia discs and blocks. The reliability of zirconia, however, is subject to specific manufacturing and processing protocols. Thus, it is of paramount importance for any dental professional utilizing zirconia to be aware of the source of the material and the various factors that can affect the success or failure of a final restoration. This article discusses the journey of zirconia, from being found among the elements of the earth to being placed in the patient's mouth. It also touches on drawbacks, such as translucency, associated with zirconia.

  4. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia.

    Science.gov (United States)

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH) 2 , nano-MgO, and nano-Zr(OH) 4 . A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were -583.892 (NaOH), -569.048 [Ca(OH) 2 ], -547.393 (MgO), and -530.279 kJ/mol [Zr(OH) 4 ]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH) 2 > MgO > Zr(OH) 4 . Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH) 4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH) 4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic.

  5. Alkaline nanoparticle coatings improve resin bonding of 10-methacryloyloxydecyldihydrogenphosphate-conditioned zirconia

    Science.gov (United States)

    Qian, Mengke; Lu, Zhicen; Chen, Chen; Zhang, Huaiqin; Xie, Haifeng

    2016-01-01

    Creating an alkaline environment prior to 10-methacryloyloxydecyldihydrogenphosphate (MDP) conditioning improves the resin bonding of zirconia. The present study evaluated the effects of four alkaline coatings with different water solubilities and pH values on resin bonding of MDP-conditioned zirconia. Two alkaline nanoparticle coatings were studied in particular. Thermodynamics calculations were performed to evaluate the strengths of MDP-tetragonal phase zirconia chemical bonds at different pH values. Zirconia surfaces with and without alkaline coatings were characterized by scanning electron microscope (SEM)/energy dispersive spectrometer and Fourier transform infrared spectroscopy; alkaline coatings included NaOH, Ca(OH)2, nano-MgO, and nano-Zr(OH)4. A shear bond strength (SBS) test was performed to evaluate the effects of the four alkaline coatings on bonding; the alkaline coatings were applied to the surfaces prior to conditioning the zirconia with MDP-containing primers. Gibbs free energies of the MDP-tetragonal zirconia crystal model coordination reaction in different pH environments were −583.892 (NaOH), −569.048 [Ca(OH)2], −547.393 (MgO), and −530.279 kJ/mol [Zr(OH)4]. Thermodynamic calculations indicated that the alkaline coatings improved bonding in the following order: NaOH > Ca(OH)2 > MgO > Zr(OH)4. Statistical analysis of SBS tests showed a different result. SBSs were significantly different in groups that had different alkaline coatings, but it was not influenced by different primers. All four alkaline coatings increased SBS compared to control groups. Of the four coatings, nano-Zr(OH)4 and -MgO showed higher SBS. Therefore, preparing nano-Zr(OH)4 or -MgO coatings prior to conditioning with MDP-containing primers may potentially improve resin bonding of zirconia in the clinic. PMID:27785013

  6. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    Science.gov (United States)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.

  7. Production of mullite-zirconia ceramics composites by 'In situ' reaction

    International Nuclear Information System (INIS)

    Melo, F.C.L. de; Cairo, C.A.A.; Piorino Neto, F.; Devezas, T.C.

    1987-01-01

    Mullita-zirconia ceramic composites were produced by 'In situ' reaction of alumina and brazilian zircon. The ideal curve of thermal treatment (reaction + sinterization) was determined for the obtention of composites of maximum mechanical resistence. The retained fraction of tetragonal fase was evaluated by X-ray difraction and correlated with the values of mechanical resistence obtained by different treatment curves. The performance of the developed composites under corrosion and thermal shock was evaluated by glass casting. (Author) [pt

  8. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study

    International Nuclear Information System (INIS)

    Gibert, C.

    1999-01-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr n+- , Ar n+ ) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  9. Zirconia-reinforced dental restorations

    NARCIS (Netherlands)

    Chen, C.

    2013-01-01

    The series of studies conducted in this thesis showed that there are several ways to enhance the performance of fixed restorations regarding the application of zirconia. One possible way is to change the sintering procedure of zirconia, so that the physical properties of zirconia such BFS, density

  10. Brasagem da zircônia metalizada com titânio à liga Ti-6Al-4V Brazing of metalized zirconia with titanium to Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    J. S. Pimenta

    2012-06-01

    Full Text Available Zircônia tetragonal estabilizada com ítria foi mecanicamente metalizada com titânio e a condição de molhamento avaliada com as ligas convencionais Ag-28Cu e Au-18Ni. Estas dissolveram o revestimento de titânio para uma completa distribuição deste metal ativo na superfície cerâmica, gerando uma liga ativa in situ e possibilitando adequadas ligações químicas ao metal base na temperatura de união. Os melhores resultados de molhamento foram selecionados para brasagem indireta em forno de alto-vácuo nas juntas ZrO2/Ti-6Al-4V. Testes de detecção de vazamento de gás hélio foram realizados na interface de união das juntas; amostras removidas na seção transversal de juntas estanques foram examinadas por técnicas de análise microestrutural. Formou-se uma camada escura adjacente à cerâmica metalizada, responsável pelo molhamento ocasionado pela liga Ag-28Cu. Entretanto, o uso da liga Au-18Ni resultou em precipitação de intermetálicos e microtrincamento interfacial. Perfis de microdureza através da interface resultante até onde a zircônia mostrou típico escurecimento não indicaram alternância significativa entre medições consecutivas; os resultados dos ensaios de resistência mecânica à flexão-3p foram considerados satisfatórios.Yttria tetragonal zirconia polycrystal was mechanically metallized with titanium and the wetting behavior on the ceramic surface was analyzed using the conventional fillers Ag-28Cu and Au-18Ni. These alloys had dissolved the active metal coating, which acts to zirconia reduction on its surface and promoting suitable chemical bonding to the metallic member. Better wetting results were selected for indirect brazing in a high-vacuum furnace for ZrO2/Ti-6Al-4V simple butt joints. Helium gas leak detection was made at the joints interface; samples were removed from the tight joints cross-section and examined by microstructural analysis techniques and EDX analysis. There was formation of a dark

  11. Optical and structural properties of colloidal zirconia nanoparticles prepared by arc discharge in liquid

    Science.gov (United States)

    Peymani forooshani, Reza; Poursalehi, Reza; Yourdkhani, Amin

    2018-01-01

    Zirconia is one of the important ceramic materials with unique properties such as high melting point, high ionic conductivity, high mechanical properties and low thermal conductivity. Therefore, zirconia is one of the useful materials in refractories, thermal barriers, cutting tools, oxygen sensors electrolytes, catalysis, catalyst supports and solid oxide fuel cells. Recently, direct current (DC) arc discharge is extensively employed to synthesis of metal oxide nanostructures in liquid environments. The aim of this work is the synthesis of colloidal zirconia nanoparticles by DC arc discharge method in water as a medium. Arc discharge was ignited between two pure zirconium electrodes in water. Optical and structural properties of prepared colloidal nanoparticles were investigated. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and UV-visible spectroscopy, were employed for characterization of particle size, morphology, crystal structure and optical properties, respectively. SEM images demonstrate that the nanoparticles are spherical in shape with an average size lower than 38 nm. The XRD patterns of the nanoparticles were consistent with tetragonal and monoclinic zirconia crystal structures. The optical transmission spectra of the colloidal solution show optical characteristic of zirconia nanoparticles as a wide band gap semiconductor with no absorption peak in visible wavelength with the considerable amount of oxygen deficiency. Oxidation of colloidal nanoparticles in water could be explained via reaction with either dissociated oxygen from water in hot plasma region or with dissolved oxygen in water. The results provide a simple and flexible method for preparation of zirconia nanoparticles with a capability of mass production without environmental footprints.

  12. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R., E-mail: kvrchary@iict.res.in

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO{sub 3}) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH{sub 3} TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  13. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    Science.gov (United States)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan N., Pethan; Kumar Balla, Putra; Chary Komandur, V. R.

    2014-08-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol-gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO3) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV-vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  14. Vapour phase dehydration of glycerol to acrolein over tungstated zirconia catalysts

    International Nuclear Information System (INIS)

    Rao Ginjupalli, Srinivasa; Mugawar, Sowmya; Rajan, Pethan N.; Kumar Balla, Putra; Chary Komandur, V.R.

    2014-01-01

    Tetragonal (TZ) and monoclinic (MZ) polymorphs of zirconia supports were synthesised by sol–gel method followed by variation of the calcination temperature. Tungstated (10 wt% WO 3 ) supported on the zirconia polymorphs were prepared by impregnation method by using ammonium metatungstate precursor. The physico-chemical properties of the calcined catalysts were characterised by X-ray diffraction, UV–vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), surface area and pore size distribution measurements to gain insight into the effect of morphology of the catalyst textural properties, and structure. The surface acidic properties have been determined by NH 3 TPD method and also with FT-IR spectra of pyridine adsorption. Vapour phase dehydration of glycerol to acrolein was employed to investigate the catalytic functionalities. Glycerol conversion and acrolein selectivity was mainly dependent on the fraction of moderate acid sites with majority of them are due to Brønsted acidic sites. Monoclinic zirconia based catalysts have shown the highest activity and acrolein selectivity compared to the corresponding tetragonal zirconia catalysts.

  15. Analysis on volume fraction and crystal orientation relationship of monoclinic and tetragonal oxide grown on Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Jianlong [Department of Metallurgical Engineering, McGill University, Montreal, H3A 2B2 (Canada)]. E-mail: jianlong.lin@mail.mcgill.ca; Li Hualong [Department of Metallurgical Engineering, McGill University, Montreal, H3A 2B2 (Canada); Nam, Cheol [Department of Metallurgical Engineering, McGill University, Montreal, H3A 2B2 (Canada); Szpunar, Jerzy A. [Department of Metallurgical Engineering, McGill University, Montreal, H3A 2B2 (Canada)

    2004-09-01

    Texture and phase volume fraction of the oxide grown on Zr-2.5Nb, in static autoclaves, at 623 K, with lithiated heavy water were investigated. It is found that both monoclinic and tetragonal zirconia are highly textured with {l_brace}100{r_brace}<100> preferred crystal orientation for the tetragonal phase, and (103-bar )[01-bar 0] and (104-bar)[401] texture for the monoclinic phase. No change in the texture for both phases was observed with the increase of thickness of the oxide layer. The crystal orientation relationship of both the monoclinic and tetragonal phases was found to be (103-bar )m-bar (100)t or (103-bar )m-bar (101)t and [100]t-bar [010]m. The integrated intensity over pole figures was used to calculate the volume fraction of the tetragonal phase in the oxide layer. The volume fraction of the tetragonal phase in the dense oxide layer near the metal-oxide interface was found to be about 8% and gradually decreases with an increase of the oxide thickness.

  16. Influence of surface treatments on the surface properties of different zirconia cores and adhesion of zirconia-veneering ceramic systems.

    Science.gov (United States)

    Elsaka, Shaymaa E

    2013-10-01

    The aim of this study was to assess the influence of surface treatments on the surface characteristics of different zirconia cores and the adhesion of the zirconia-veneering ceramic systems by means of strain energy release rate (G-value, J/m(2)). Three types of zirconia cores (NANOZR (NZ), Vita In-Ceram YZ (VZ), and IPS e.max ZirCAD (IZ)) were used. The specimens were divided into four groups in each test according to the surface treatment used; Gr 1 (control; no treatment), Gr 2 (sandblasted), Gr 3 (CH2Cl2 for 60min), and Gr 4 (experimental hot etching solution for 60min). AFM, SEM, EDS, and XRD were carried out. Two types of veneering ceramics (Vita VM9 (V9) and IPS e.max Ceram (IC)) were used for testing the adhesion. The G-value (J/m(2)) was measured with a four-point bending configuration. Following fracture testing specimens were examined with SEM. Data were analyzed using ANOVA and Tukey's test. NZ treated with the experimental hot etching solution showed the highest Ra values (206.06±9.98nm) compared with the other groups (Pveneering ceramic systems. The experimental hot etching solution could be considered as alternative treatment modality to sandblasting for zirconia cores to avoid phase transition at the surface from tetragonal to monoclinic that may be detrimental for the longevity of the zirconia-veneering ceramic restoration. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  18. Effects of some chemical surface modifications on resin zirconia adhesion.

    Science.gov (United States)

    Liu, Dan; Tsoi, James Kit-Hon; Matinlinna, Jukka Pekka; Wong, Hai Ming

    2015-06-01

    To evaluate the effects of various chemical surface modifications on adhesion between zirconia and resin adhesive. Pre-sintered zirconia discs were sectioned from commercial cylindrical blocks and polished with abrasive papers under running tap water. All the discs were randomly divided into five study groups according to the methods of surface treatment, including: the control group (fully sintered, without any modification), group S (fully sintered and sandblasted with silica coated alumina particles), group HN (fully sintered and etched with a blend of mineral acid solution at 100 °C for 25 min), group HF (fully sintered and etched with 48% hydrofluoric acid solution at 100 °C for 25 min), and group Si (coated with silica particles and then fully sintered). The mean value of surface roughness was evaluated before further treatment. Resin stubs (3.6mm in diameter and 3mm in height) were adhered and light cured on each zirconia disc after the application of a silane coupling agent. In each group, all the samples were further divided into three subgroups with each n=12, one for the measurement of initial adhesion strength (shear bond) value and the other two were tested after thermal cycling for 10,000 and 20,000 cycles, respectively. The results were analyzed with two-way ANOVA and Turkey HSD (pzirconia surface crystallinity. The morphological appearance of zirconia surface after surface treatment was observed with SEM. The control group showed the lowest initial shear bond strength (SBS) value (16.8 ± 2.4 MPa) and did not survive the aging treatments. All the investigated surface treatments improved resin zirconia bond strength significantly, the group S displaying the highest initial value of 25.1 ± 2.7 MPa. However, the highest resistance to the aging effects of thermal cycling was found in group Si. It was further shown in the XRD examination that only the grit-blasting caused the crystalline transformation from tetragonal phase to monoclinic phase (T

  19. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.

    2001-01-01

    The relation between the polycrystal deformation and single crystal deformation has been studied for pure polycrystalline copper deformed in tension. The dislocation microstructure has been analyzed for grains of different orientation by transmission electron microscopy (TEM) and three types...

  20. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics; Avaliacao de tratamentos quimicos e recobrimento biomimetico em ceramicas de alumina-zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Amanda Abati

    2007-07-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation

  1. Experimental evaluation of a polycrystal deformation modeling scheme using neutron diffraction measurements

    DEFF Research Database (Denmark)

    Clausen, Bjørn; Lorentzen, Torben

    1997-01-01

    The uniaxial behavior of aluminum polycrystals is simulated using a rate-independent incremental self-consistent elastic-plastic polycrystal deformation model, and the results are evaluated by neutron diffraction measurements. The elastic strains deduced from the model show good agreement...... with the experimental results for the 111 and 220 reflections, whereas the predicted elastic strain level for the 200 reflection is, in general, approximately 10 pct too low in the plastic regime....

  2. Zirconia as a Dental Biomaterial

    Directory of Open Access Journals (Sweden)

    Alvaro Della Bona

    2015-08-01

    Full Text Available Ceramics are very important in the science of dental biomaterials. Among all dental ceramics, zirconia is in evidence as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia has been applied as structural material for dental bridges, crowns, inserts, and implants, mostly because of its biocompatibility, high fracture toughness, and radiopacity. However, the clinical success of restorative dentistry has to consider the adhesion to different substrates, which has offered a great challenge to dental zirconia research and development. This study characterizes zirconia as a dental biomaterial, presenting the current consensus and challenges to its dental applications.

  3. Zirconia toughened mica glass ceramics for dental restorations.

    Science.gov (United States)

    Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit

    2018-03-01

    The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging.

    Science.gov (United States)

    Mota, Yasmine A; Cotes, Caroline; Carvalho, Rodrigo F; Machado, João P B; Leite, Fabíola P P; Souza, Rodrigo O A; Özcan, Mutlu

    2017-10-01

    This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 10 6 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUT ZT (936.4 ± 120.9 b ) and AUT + M ZE (867.2 ± 49.3 b ) groups presented significantly higher values (p autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017. © 2016 Wiley Periodicals, Inc.

  5. Fracture resistance and reliability of new zirconia posts.

    Science.gov (United States)

    Oblak, Cedomir; Jevnikar, Peter; Kosmac, Tomaz; Funduk, Nenad; Marion, Ljubo

    2004-04-01

    The radicular portion of zirconia endodontic posts often need to be reshaped to achieve a definitive form and may be airborne-particle abraded to improve adhesion during luting. Therefore, the surface of the tetragonal zirconia ceramics may be transformed and damaged, influencing the mechanical properties of the material. This study compared the fracture resistance of prefabricated zirconia posts with a new retentive post-head after different surface treatments. Experimental zirconia posts of 2 different diameters, 1.3 mm and 1.5 mm, were produced from commercially available zirconia powder. A cylindro-conical outline form was used for the root portion of the system and a post-head with 3 retentive rings was designed. Sixty posts of each diameter were divided into 3 groups (n=20). Group 1 was ground with a coarse grit diamond bur; Group 2 was airborne-particle abraded with 110-microm fused alumina particles, and Group 3 was left as-received (controls). Posts were luted into the root-shaped artificial canals with the Clearfil adhesive system and Panavia 21 adhesive resin luting agent. The posts were loaded in a universal testing machine at an inclination of 45 degrees with the constant cross-head speed of 1 mm/min. The fracture load (N) necessary to cause post fracture was recorded, and the statistical significance of differences among groups was analyzed with 1-way ANOVA followed by the Fischer LSD test (alpha=.05). The variability was analyzed using Weibull statistics. Load to fracture values of all zirconia posts depended primarily on post diameter. Mean fracture loads (SD) in Newtons were 518.4 (+/-101.3), 993.6 (+/-224.1), and 622.7 (+/-110.3) for Groups 1 through 3, respectively, for thicker posts, and 385.9 (+/-110.3), 627.0 (+/-115.1), and 451.2 (+/-81.4) for Groups 1 through 3, respectively, for thinner posts. Airborne-particle-abraded posts exhibited significantly higher resistance to fracture (Pzirconia posts, whereas airborne-particle abrasion increased

  6. Sintering additives for zirconia ceramics

    International Nuclear Information System (INIS)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification

  7. Sintering additives for zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.

    1986-01-01

    This book is an overview of sintering science and its application to zirconia materials including CaO, MgO, and Y/sub 2/O/sub 3/-CeO/sub 2/ doped materials. This book is a reference for first-time exposure to zirconia materials technology, particularly densification.

  8. Chemical treatment and biomimetic coating evaluating in zirconia-alumina ceramics

    International Nuclear Information System (INIS)

    Aguiar, Amanda Abati

    2007-01-01

    Ceramic materials, as alumina and zirconia have been explored along the years as biomaterials application. The bio inert nature has been stimulating the development of new alternatives, as chemical treatments to improve the biological application of these ceramics. The biomimetic process of bio inert ceramics for coating apatite is based on soaking the implant in a simulated body fluid, SBF, with ion concentrations nearly equal to those of human blood plasma. The bioactivity of the material is related with the formation of a layer constituted of hydroxyapatite low crystalline, similar to the biological apatite. The biocompatibility associated to the structural properties of the alumina and zirconia has been stimulating the clinical use of these materials, mainly in areas of larger mechanical requests, places not recommended for bioactive hydroxyapatite, for instance. In this work samples of alumina, zirconia doped with Yttria (3% mol) and composites of alumina and zirconia doped with Yttria (3% mol) were prepared by co-precipitation method, calcinate, sintered, chemically treated with solutions of acid phosphoric and sodium hydroxide and them immersed in 1.0 M and 1.5 M SBF. The calcinate powders were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), gas adsorption (BET) and laser diffraction. The XRD results indicate that the samples are low crystalline. It was observed for BET that the samples present high specific surface area. The results of laser diffraction and SEM showed that the powders are agglomerates. The sintered samples were analyzed by XRD, SEM and X-ray fluorescence (XRF). The phases quantified by Rietveld method were: cubic, tetragonal and monoclinic of the zirconia, besides the phase alpha of the alumina. The chemical treatment with phosphoric acid didn't present a tendency of larger apatite formation in relation to the samples no chemically treated. The treatment with sodium hydroxide provoked accentuated transformation of

  9. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs.

    Science.gov (United States)

    Osman, Reham B; van der Veen, Albert J; Huiberts, Dennis; Wismeijer, Daniel; Alharbi, Nawal

    2017-11-01

    The aim of this study was to evaluate the dimensional accuracy, surface topography of a custom designed, 3D-printed zirconia dental implant and the mechanical properties of printed zirconia discs. A custom designed implant was 3D-printed in zirconia using digital light processing technique (DLP). The dimensional accuracy was assessed using the digital-subtraction technique. The mechanical properties were evaluated using biaxial flexure strength test. Three different build angles were adopted to print the specimens for the mechanical test; 0°(Vertical), 45° (Oblique) and 90°(Horizontal) angles. The surface topography, crystallographic phase structure and surface roughness were evaluated using scanning electron microscopy analysis (SEM), X-ray diffractometer and confocal microscopy respectively. The printed implant was dimensionally accurate with a root mean square (RMSE) value of 0.1mm. The Weibull analysis revealed a statistically significant higher characteristic strength (1006.6MPa) of 0° printed specimens compared to the other two groups and no significant difference between 45° (892.2MPa) and 90° (866.7MPa) build angles. SEM analysis revealed cracks, micro-porosities and interconnected pores ranging in size from 196nm to 3.3µm. The mean Ra (arithmetic mean roughness) value of 1.59µm (±0.41) and Rq (root mean squared roughness) value of 1.94µm (±0.47) was found. A crystallographic phase of primarily tetragonal zirconia typical of sintered Yttria tetragonal stabilized zirconia (Y-TZP) was detected. DLP prove to be efficient for printing customized zirconia dental implants with sufficient dimensional accuracy. The mechanical properties showed flexure strength close to those of conventionally produced ceramics. Optimization of the 3D-printing process parameters is still needed to improve the microstructure of the printed objects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Short range investigation of sub-micron zirconia particles

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, M C; Martinez, J A [Departamento de Fisica, IFLP, Facultad de Ciencias Exactas, CICPBA, Universidad Nacional de La Plata (Argentina); Rivas, P C [IFLP-CONICET, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (Argentina); Bondioli, F; Cannillo, V [Dipartimento di Ingegniria dei Materiali e dell' Ambiente, Facolta di Ingegneria, Universita di Modena e Reggio Emilia (Italy); Ferrari, A M, E-mail: cristina@fisica.unlp.edu.a [Dipartimento di Scienza a Metodi dell' Ingegneria, Universita di Modena e Reggio Emilia (Italy)

    2009-05-01

    The Perturbed Angular Correlations technique was used to determine the configurations around Zirconium ions and their thermal behavior in non-aggregated sub-micron zirconia spherical particles. Three residues containing- Zr surroundings were determined for the non-crystalline starting particles, which were identified under the assumption of a certain chemical reactions sequence during synthesis. While the one made up mainly by hydroxyl groups was common to both samples, the two involving mainly organic residues were particle size dependent. Upon crystallization, both samples stabilized in the t'- and t- tetragonal forms and the Xc-cubic form but their amounts and temperatures of appearance were different. On heating, the structure of the smaller particles became gradually monoclinic achieving total degradation upon the subsequent cooling to RT.

  11. Hydrothermal crystallization of zirconia and zirconia solid solutions

    International Nuclear Information System (INIS)

    Pyda, W.; Haberko, K.; Bucko, M.M.

    1991-01-01

    Zirconia as well as yttria-zirconia and calcia-zirconia solid-solution powders were crystallized under hydrothermal conditions from (co)precipitated hydroxides. The morphology of the power particles is strongly dependent on the crystallization conditions. The powders crystallized in a water solution of Na, K, and Li hydroxides show elongated particles of much larger sizes than those which result from the process carried out in pure water or a water solution of Na, K, or Li chlorides. The shapes of the latter particles are isometric. In this paper the growth mechanism of the elongated particles is suggested

  12. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1989-05-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scients, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electroeletronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  13. Zirconia based ceramics

    International Nuclear Information System (INIS)

    Bressiani, J.C.; Bressiani, A.H.A.

    1988-01-01

    Within the new generation of ceramic materials, zirconia continues to attract ever increasing attention of scientists, technologists and users by virtue of its singular combination of properties and being able to perform thermo-mechanical, electro-electronic, chemico-biological functions. Nevertheless, in order to obtain these properties, a through understanding of the phase transformation mechanisms and microstructural changes is necessary. This paper discusses the main parameters that require control during fabrication of these materials to obtain desired properties for a specific application. (author) [pt

  14. Analysis of intergranular crack propagation in brittle polycrystals with a generalized finite element method and network algorithm

    NARCIS (Netherlands)

    Shabir, Z.; Van der Giessen, E.; Duarte, C.A.; Simone, A.

    2009-01-01

    Two different approaches to intergranular crack propagation in brittle polycrystals are contrasted. Crack paths resulting from a method that allows a detailed description of the stress field within a polycrystal are compared to cracks dictated by topological considerations. In the first approach, a

  15. Vibrational and thermal study of l-methionine nitrate polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Victor, F.M.S.; Ribeiro, L.H.L.; Facanha Filho, P.F.; Santos, C.A.S.; Soares, R.A.; Abreu, D.C.; Sousa, J.C.F.; Carvalho, J.O.; Santos, A.O. dos [Universidade Federal do Maranhao (UFMA), MA (Brazil)

    2016-07-01

    Full text: Intensified in studies of nonlinear optical materials has been observed over the past two decades for its wide application in telecommunications, optical modulation and optical signal processing. The goal of this work is the thermal and vibrational study of L-methionine nitrate polycrystalline. The polycrystals were obtained by the method of slow evaporation of solvent at ambient temperature of 25 ° C. The X-ray diffraction was performed to confirm the structure of the material, which has monoclinic structure (space group P21) with four molecules per unit cell structure. Refinement by Rietveld method has been optimized and good quality parameters Rwp = 7.97% , Rp = 5.74 and S = 1.92%. The thermal stability of the material was verified from Thermogravimetric analysis (TGA), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The measures showed a possible phase transition event at about 107°C before the melting point of the material, which took place at about 127°C. Thermogravimetric analysis showed two mass loss events of 61.5% and 30.4%. The vibrational modes of the L-methionine nitrate molecule were identified by Raman spectroscopy in the spectral range between 35cm-1 and 3500 cm-1, the scattering measurements were made from room temperature up to the melting temperature of the material (140 ° C ) in which the disappearance of bands was found in the region of normal modes at 130 ° C, thus demonstrating a irreversible structural phase transition, because the spectrum obtained after returning the sample to ambient temperature is typical of amorphous material. (author)

  16. Surface Characterization and Human Stem Cell Behaviors of Zirconia Implant Disks Biomimetic-Treated in Simulated Body Fluid.

    Science.gov (United States)

    Quan, Hongxuan; Park, Yoon-Kyung; Kim, Seong-Kyun; Heo, Seong-Joo; Koak, Jai-Young; Han, Jung-Suk; Lee, Joo-Hee

    2016-01-01

    This study investigated the effects of biomimetic deposition on a zirconia surface in simulated body fluid (SBF) and assessed the proliferation and differentiation of human bone marrow mesenchymal stem cells on the SBF-treated zirconia disks. Corrected SBF was prepared according to Kokubo's recipe. Eighty yttrium oxide-stabilized tetragonal zirconia polycrystalline disks were prepared and divided into two groups: (1) the test group with SBF-treated disks and (2) the control group with nontreated disks. Zirconia disks were soaked in SBF for 1, 4, 7, and 14 days at 36.5°C, and the hydroxyapatite (HA) precipitation was verified by analyzing the surface morphology. For more in-depth validation of HA formation, the surface roughness, composition, and crystallization of the 7-day treated disks were analyzed. Human bone marrow mesenchymal stem cells were used to further evaluate cell proliferation, alkaline phosphatase activity, and osteoblast gene expression on the 7-day treated zirconia disks. Disks showed different surface morphologies after soaking for different time periods. As the SBF soaking time increased, the amount of HA coverage increased gradually, uniformly covering the disks by day 7. There was no difference in surface roughness between the two groups (P > .05). Cell proliferation was higher on the SBF-treated disks (P .05). This study demonstrated that biomimetic deposition has an effect on the formation of HA on zirconia disks. The cell attachment, proliferation, and differentiation of SBF-treated zirconia disks was superior to that of nontreated disks, which indicates that SBF-treated zirconia implants have long-term clinical value.

  17. Stabilization and the two way shape memory effect (TWME) in Cu-Zn-Al polycrystals

    International Nuclear Information System (INIS)

    Arneodo Larochette, P.; Cingolani, E.; Ahlers, M.

    1999-01-01

    The influence of diffusion on the two way shape memory effect (TWME) in Cu-Zn-Al polycrystals has been studied. The excess vacancy concentration which controls the diffusion velocity has been monitored by different heat treatments: (a) a slow air cooling and aging in the austenite prior to the transformation, leading to a low vacancy concentration; (b) a quench from 800 C; and (c) a quench from 300 C with an increase in the excess vacancies. The TWME has also been studied at low temperatures where diffusion is absent. All these results show that in Cu-Zn-Al polycrystals, diffusion has little or no influence on the TWME, and that instead a spectrum of martensite plate configurations is created by the stress, which then serve as nuclei for the subsequent transformation without an applied stress. The TWME obtained in the polycrystals is in all cases lower than that in single crystals after the stabilization of the stress induced martensite variant. (orig.)

  18. Zirconia dispersion as a toughening agent in alumina - Influence of the cerium oxide

    International Nuclear Information System (INIS)

    Gritti, Olivier

    1987-01-01

    The improvement of mechanical properties of alumina can be obtained by fine dispersion of zirconia particles. The addition of cerium oxide as a stabilizer of the tetragonal phase has been examined. Different powder preparations, based on impregnation of the alumina powder by zirconium and cerium precursor salts, have been studied. Parameters, such as properties of alumina powder and cerium oxide content, for the production of reactive powders have been determined by two laboratory processes. The sintering of these powders in air at 1600 deg. C has resulted in dense materials with homogeneous microstructure. The mechanical properties, in particular the biaxial flexure strength and the toughness, have been determined in the temperature range 20 deg. C-900 deg. C. A reinforcement of about 80 pc in comparison with alumina is achieved. The optimal composition is (Al 2 O 3 ) 0.8 (ZrO 2 ) 0.18 (CeO 2 ) 0.02 . In the other hand, powder preparation by spray drying has been chosen for an approach to a larger scale process. The sintered ceramics made with these powders present a double microstructure which does not affect the mechanical properties. The presence of cerium oxide produces the following improvements: - increased mobility of the intergranular zirconia inclusions which results in a faster densification; - stabilization of a tetragonal phase without prohibiting the stress induced transformation; - increase of the critical sizes of the tetragonal → monoclinic transformation; - a large decrease in the transformation kinetic in water at 300 deg. C in comparison with that observed for alumina-zirconia doped with yttrium oxide. (author) [fr

  19. Origin of the Tetragonal Ground State of Heusler Compounds

    Science.gov (United States)

    Faleev, Sergey V.; Ferrante, Yari; Jeong, Jaewoo; Samant, Mahesh G.; Jones, Barbara; Parkin, Stuart S. P.

    2017-03-01

    We describe the general mechanism of tetragonal distortion in Heusler compounds X2Y Z . From 286 compounds studied using density-functional theory, 62% are found to be tetragonal at zero temperature. Such a large share of compounds with tetragonal distortions can be explained by the peak-and-valley character of the density of states (DOS) of these compounds in the cubic phase (arising from localized d bands and van Hove singularities) in conjunction with a smooth shift of peaky DOS structure relative to the Fermi energy, EF, when valence electrons are added to the system. A shift of the DOS in the Y or Z series leads to an alternation of stable and nonstable cubic phases that depends on the value of the DOS at EF in the cubic phase. Groups of compounds with a large share of tetragonal distortions are identified and explained.

  20. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  1. Preparation of stabilized zirconia (Zr O2) with Yttria (Y2 O3) by simultaneous precipitation

    International Nuclear Information System (INIS)

    Campos, M. de.

    1993-01-01

    The preparation of cubic or tetragonal partially stabilized zirconia with Yttria by simultaneous precipitation was studied. The metals Zr and Y, in nitric acid and hydrogen peroxide medium, were precipitated with ammonia solution. The variables studied were: the pH of the aqueous medium (8, 9 e 10) and yttrium molar concentration (2, 3 and 5 mol %) in the final product. The resulting oxide samples were divided and calcined at 500, 700 and 900 0 C, separately. After that, all samples were sintered at 1500 0 C for one hour. For physico-chemical characterization were used techniques such as: ICP-AES, XRF, XRD, SEM etc. The results have showed that using this approach predominant cubic and/or tetragonal phases can be reached with theoretical density over 92% and grain size lower than 1 μm. (author)

  2. Translucency of IPS e.max and cubic zirconia monolithic crowns.

    Science.gov (United States)

    Baldissara, Paolo; Wandscher, Vinícius Felipe; Marchionatti, Ana Maria Estivalete; Parisi, Candida; Monaco, Carlo; Ciocca, Leonardo

    2018-02-21

    Although several monolithic zirconia ceramics have recently been introduced, the need for improved optical properties remains. The newest cubic-zirconia has been claimed to have optimal translucency characteristics for esthetic restorations. This in vitro study evaluated the optical properties of novel cubic ultratranslucent (UT) and supertranslucent (ST) zirconia by comparing them with lithium disilicate (L-DIS) glass-ceramic for the manufacture of monolithic computer-aided design and computer-aided manufacturing (CAD-CAM) molar crowns. The UT and ST multilayered zirconia and the low-translucency grade L-DIS were milled. Eighty monolithic crowns were made from 2 CAD files, corresponding to thicknesses of 1.0 and 1.5 mm, and subdivided (n=20) into 4 groups: UT1.0, UT1.5, ST1.0, and L-DIS1.5. All groups were shaded using A2 color standard. Translucency of the crowns was measured by total transmission, using a photoradiometer in a dark chamber; furthermore, the contrast ratio was analyzed using a dental spectrophotometer applied to the buccal surface of the crowns. Data were analyzed using the Kruskal-Wallis and post hoc multiple Mann-Whitney U tests with Bonferroni correction (α=.05 divided by the number of tests performed in each set). When the ceramic types were analyzed, using total transmission and contrast methods, they showed significantly different translucency levels: UT1.0>ST1.0>UT1.5>L-DIS1.5 (total transmission Pcrowns, even at the maximum thickness tested (UT1.5), showed significantly higher translucency than L-DIS. Zirconia translucency was improved by eliminating the tetragonal phase, which is responsible for the toughening effect; thus, further studies are advocated to investigate the mechanical resistance of cubic zirconia. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  3. Surface properties of monolithic zirconia after dental adjustment treatments and in vitro wear simulation.

    Science.gov (United States)

    Preis, Verena; Schmalzbauer, Michael; Bougeard, Dominique; Schneider-Feyrer, Sibylle; Rosentritt, Martin

    2015-01-01

    To investigate the surface properties (roughness, composition, phase transformation) of monolithic zirconia specimens after dental adjustment procedures (grinding, polishing) and wear simulation. Zirconia specimens (Cercon base, Cercon ht, DeguDent, G; n=10/material) were successively sintered, ground, and polished with an intraoral polishing kit in a three-step procedure. Sintered zirconia specimens with high surface roughness served as a reference. For each treatment step, wear simulations with steatite plates (d=10 mm) as antagonists were conducted as well as surface roughness tests (Ra), EDX analysis, and X-ray diffraction (XRD) measurements. SEM pictures were taken, and data were statistically analyzed (one-way ANOVA, post hoc Bonferroni, α=0.05). Grinding significantly (p=0.000) increased the roughness of sintered zirconia up to values of 1.36±0.11 μm (Ra). Polishing significantly (p=0.000) reduced Ra. The lowest roughness value after the final polishing step was 0.20±0.03 μm. Wear testing resulted in a further slight decrease of Ra. After the grinding procedure, SEM pictures showed deep grooves that were progressively smoothed by polishing. The EDX spectra showed that magnesium was transferred from steatite antagonists to zirconia by wear. In the XRD-patterns, monoclinic (m) peaks were observed after grinding and polishing. The maximum intensity ratio between the m (11-1) peak and the tetragonal t (111) peak decreased after the completion of all polishing steps. Wear did not induce phase transformation. Adequate polishing reduced the roughness of ground zirconia. Wear had little influence on roughness and no influence on phase transformation. Careful polishing is recommended to keep surface roughness and phase transformation low. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Clinical and laboratory surface finishing procedures for zirconia on opposing human enamel wear: A laboratory study.

    Science.gov (United States)

    Chong, Bevan J; Thangavel, Arun K; Rolton, Shane B; Guazzato, Massimiliano; Klineberg, Iven J

    2015-10-01

    To investigate the effect of laboratory and clinical finishing procedures for zirconia on antagonistic enamel wear. Forty-eight yttria-tetragonal partially stabilised zirconia (Y-TZP) specimens were prepared and divided into four groups according to their surface preparation: laboratory polished (LP); laboratory polished and glazed (G); clinically adjusted (CA); and clinically adjusted and repolished (CAR). Enamel opposing enamel was used as a control. Pre-testing surface roughness for each group was determined using contact profilometry. Two-body wear resistance tests were conducted using a masticatory simulator. Enamel specimens were subjected to 120,000 cycles in distilled water (frequency 1.6 Hz, loading force of 49 N). Volumetric and vertical enamel losses were measured by superimposition of pre- and post-testing images using a three-dimensional laser scanner and software analysis. Scanning electron microscopy was used for qualitative surface analysis of pre- and post-testing zirconia and enamel surfaces. One-way ANOVA and multiple comparisons with Bonferroni corrections were used for statistical analysis at a significance level of α=0.05. There was no statistical difference in volumetric and vertical enamel loss between CAR, G and LP. CAR produced statistically significantly less volumetric enamel loss compared with CA and control, and statistically significantly less vertical enamel loss compared with CA. Volumetric and vertical enamel loss were highly correlated in all groups. Enamel wear by clinically ground zirconia is comparable to that of opposing enamel surfaces and greater than clinically repolished zirconia. Repolishing of zirconia restorations following clinical adjustment with diamond burs is effective in reducing antagonistic enamel wear. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Preparation and Characterization of Mesoporous Zirconia Made by Using a Poly (methyl methacrylate Template

    Directory of Open Access Journals (Sweden)

    Zhang Chunxiang

    2008-01-01

    Full Text Available AbstractSuperfine powders of poly (methyl methacrylate (PMMA have been prepared by means of an emulsion polymerization method. These have been used as templates in the synthesis of tetragonal phase mesoporous zirconia by the sol–gel method, using zirconium oxychloride and oxalic acid as raw materials. The products have been characterized by infrared spectroscopy, X-ray diffraction analysis, transmission electron microscopy, N2adsorption-desorption isotherms, and pore size distribution. The results indicate that the average pore size was found to be 3.7 nm.

  6. Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics

    International Nuclear Information System (INIS)

    Li, Q.; Xia, T.; Liu, X.D.; Ma, X.F.; Meng, J.; Cao, X.Q.

    2007-01-01

    Nanocrystalline 8YSZ (8 mol% yttria stabilized zirconia) bulk samples with grain sizes of 20-30 nm were synthesized by Sol-Gel method and then densified under a high pressure of 4.5 GPa at 1273 K for 10 min. The method led to the densification of 8YSZ to a relative density higher than 92% without grain growth. Fourier transmission Raman spectroscopy suggested that 8YSZ underwent a phase transition from the cubic phase to a phase mixture (tetragonal plus a trace of monoclinic) after the densification, which decreased the electrical conductivity to a certain degree as concluded from the impedance spectroscopy

  7. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic

    Directory of Open Access Journals (Sweden)

    Zeinab R. El-Shrkawy

    2016-06-01

    Conclusions: (1 Surface treatments of Y-TZP ceramic together with MDP primer and silane-coupling agent application improve the bond strength to resin cement. (2 Plasma-Silica coating and plasma-oxygen treatment, both are valuable methods that improve the bond strength of resin cement to Y-TZP ceramic. (3 Silica coating by plasma technology provides durable bond strength and can be a promising alternative pretreatment before silane application to enhance bonding with zirconia ceramic. (4 Tetragonal-monoclinic phase transformation had occurred in Y-TZP samples received both types of plasma treatment.

  8. Dielectric properties of alumina/zirconia composites at millimeter wavelengths

    International Nuclear Information System (INIS)

    Molla, J.; Heidinger, R.; Ibarra, A.; Link, G.

    1994-01-01

    Alumina-zirconia composites with ZrO 2 contents up to 20% and negligible porosity were investigated at millimeter (mm) wavelengths to determine the changes appearing in the dielectric properties of pure alumina ceramics when unstabilized or partially stabilized ZrO 2 is added to improve the mechanical strength. It is demonstrated that it essential to distinguish between the contributions of the monoclinic and the tetragonal phase of zirconia (m-ZrO 2 , t-ZrO 2 ). Permittivity is raised with increasing content of either phases; the effective permittivity can be assessed by the rule of mixtures (Maxwell-Garnett formulation of the generalized Clasussius-Mossotti relation) using permittivity values of 10 for Al 2 O 3 , 14-21 for m-ZrO 2 and 40-45 for t-ZrO 2 . The permittivity data show only a small variation in the investigated range of 9-145 GHz. For the dielectric loss, there is evidence of a predominant contribution of m-ZrO 2 ; in addition, the marked increase in loss with frequency becomes sharper. The t-ZrO 2 , which is responsible for strengthening, does not show any significant influence on losses. It is therefore concluded, that ZrO 2 strengthening of alumina is feasible without affecting mm-wave losses at room temperature as long as the presence of m-ZrO 2 is avoided

  9. Effect of different laser surface treatment on microshear bond strength between zirconia ceramic and resin cement.

    Science.gov (United States)

    Akhavan Zanjani, Vagharaldin; Ahmadi, Hadi; Nateghifard, Afshin; Ghasemi, Amir; Torabzadeh, Hassan; Abdoh Tabrizi, Maryam; Alikhani, Farnaz; Razi, Reza; Nateghifard, Ardalan

    2015-11-01

    The purpose of this study was to evaluate the effect of sandblasting, carbon dioxide (CO₂), and erbium,chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) lasers on the microshear bond strength of zirconia to resin cement. Sixty-one sintered yttria stabilized tetragonal zirconia blocks (10 × 5 × 2 mm) were prepared and divided into four experimental groups (n = 15); one sample was retained as a control. The samples were treated by aluminium oxide air abrasion, CO₂4W, Er,Cr:YSGG 3W, and Er,Cr:YSGG 2W, respectively. One sample from each group and the control sample were analyzed by scanning electron microscope. Panavia F2.0 resin microcylinders were prepared and placed on treated surfaces, light cured, and incubated for 48 h. Microshear bond strength testing was done by a microtensile tester machine, and the type of bond failures were determined by stereomicroscope. Data were analyzed by one-way anova and Tukey's test at a significance level of P ceramic surfaces to enhance the bonding strength of resin cement to zirconia. CO₂laser at 4W and Er,Cr:YSGG laser at only 3-W output power can be regarded as surface treatment options for roughening the zirconia surface to establish better bond strength with resin cements. © 2014 Wiley Publishing Asia Pty Ltd.

  10. Microstructure and mechanical properties of bulk and plasma-sprayed y2O3-partially stabilized zirconia

    Science.gov (United States)

    Valentine, P. G.; Maier, R. D.

    1980-01-01

    Bulk 8.0 weight percent yttria partially stabilied zirconia (PSZ) was studied by light microscopy, transmission electron microscopy, X-ray analysis, microhardness testing, and fracture toughness testing. The as received PSZ contained spheroidal and grain boundary precipitates up to 4 micrometers in size. Spheroids up to 1.26 micrometers were metastable tetragonal; large spheroids were monoclinic. Grinding the PSZ into powder did not cause a significant amount of tetragonal to transform to monoclinic. This indicates that transformation toughness is not a significant mechanism in PSZ. Aging the PSZ at 1500 C caused the fine tetragonal precipitates to grow from 0.06 to 0.12 micrometers, in 250 minutes. A peak hardness of 1400 kg/sq mm was attained after 50 minutes. Solution annealing and quenching the as received PSZ eliminated the large precipitates, but fine tetragonal precipitates reformed on quenching. Aging at 1500 C caused the fine 0.02 micrometers tetragonal precipitates to grow into plates about 0.10 by 0.50 micrometers. A peak hardness of 1517 kg/sq mm was obtained after 250 minutes. On further aging, monoclinic percipitates formed along grain boundaries. The fracture toughness of the aged and unaged solution annealed and quenched PSZ was found to be between 2 and 3 MN /square root of m cubed. This range of fracture toughness is consistent with PSZ's that do not undergo transformation toughening.

  11. Reaction sintering of a zirconia-containing barium feldspar ceramic

    International Nuclear Information System (INIS)

    Nordmann, A.; Cheng, Y-B.; Muddle, B. C.

    1996-01-01

    Zircon (ZrSiO 4 ) is a natural mineral resource known to react with certain oxides to produce a dispersion of zirconia particles within ceramic or glass-ceramic matrices. Barium aluminosilicates, particularly the celsian polymorphs of BaO- Al 2 O 3 2SiO 2 display oxidation resistance and refractory characteristics commensurate with the properties required of high temperature materials. Such properties, coupled with the high melting point of ZrO 2 (2680 deg C), suggest that barium aluminosilicates and zirconia are an ideal combination from which to fabricate high temperature materials. A recent study has indicated that a barium aluminosilicate containing up to 40mol% ZrO 2 can be prepared via a sol-gel process. However, the desire to utilise a natural resource in the form of zircon in the present work has led to the choice of reaction sintering as an alternative processing route. The current work was undertaken to investigate the possibility of forming a zirconia-containing barium feldspar composite material using the reaction sintering of zircon and assuming the following stoichiometric reaction: 2ZrSiO 4 + BaCO 3 + Al 2 O 3 → 2ZrO 2 + BaO-Al 2 O 3 -2SiO 2 + CO 2 ↑. The reaction sintering of zircon with alumina and barium carbonate produces a composite material comprising distributed ZrO 2 in a continous barium feldspar matrix. Yttria added during processing allows a significant fraction of the ZrO 2 to be retained as tetragonal phase to room temperature and thus the potential for a measure of transformation toughening

  12. Zirconia as a Dental Biomaterial

    OpenAIRE

    Alvaro Della Bona; Oscar E. Pecho; Rodrigo Alessandretti

    2015-01-01

    Ceramics are very important in the science of dental biomaterials. Among all dental ceramics, zirconia is in evidence as a dental biomaterial and it is the material of choice in contemporary restorative dentistry. Zirconia has been applied as structural material for dental bridges, crowns, inserts, and implants, mostly because of its biocompatibility, high fracture toughness, and radiopacity. However, the clinical success of restorative dentistry has to consider the adhesion to different subs...

  13. Properties and clinical application of zirconia bioceramics in medicine

    Directory of Open Access Journals (Sweden)

    Čedomir Oblak

    2014-01-01

    Full Text Available Background: A group of inorganic non-metal biomaterials, that are commonly used in clinical medicine to replace or repair tissues, can be classified as a bioceramics. This group includes bioactive glasses, glass-ceramics, hydroxy-apatite and some other calcium phosphates. In addition, some bio-inert engineering ceramics materials have become increasingly utilised, aluminum oxide, zirconium oxide and their composites being the most popular. With the developement of yttria stabilized tetragonal zirconium oxide ceramics (Y-TZP medical community received a high strength biomaterial that is currently a material of choice for the manufacturing of medical devices. Y-TZP ceramics is becoming also increasingly used in dental medicine, where frameworks are manufactured by the use of computer-assisted technology.Conclusions: The article describes the basic properties of zirconia oxide ceramics important for the use in clinical medicine; high strength and fracture toughness, biocompatibility and negligible radiation. The ageing issue of this particular material, which is attributable to the thermo-dynamical instability of tetragonal zirconium oxide in hydrothermal conditions, is also discussed. When exposed to an aqueous environment over long periods of time, the surface of the Y-TZP ceramic will start transforming spontaneously into the monoclinic structure. The mechanism leading to the t-m transformation is temperature-dependent and is accompanied by extensive micro-cracking, which ultimately leads to strength degradation. The degradation might influence the clinical success rate of medical devices and therefore Y-TZP femoral heads are no longer made of pure zirconium oxide. Composites of zirconium and aluminium oxides are used instead, that are currently the strongest ceramic materials used in clinical medicine. In this work the clinical application of zirconia oxide ceramics in dental medicine is also presented. Conventional porcelain fused to metal

  14. A Generalized Finite Element Method for polycrystals with discontinuous grain boundaries

    NARCIS (Netherlands)

    Simone, A.; Duarte, C. A.; Van der Giessen, E.

    2006-01-01

    We present a Generalized Finite Element Method for the analysis of polycrystals with explicit treatment of grain boundaries. Grain boundaries and junctions, understood as loci of possible displacement discontinuity, are inserted into finite elements by exploiting the partition of unity property of

  15. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data

    DEFF Research Database (Denmark)

    Kulshreshth, Arun Kumar; Alpers, Andreas; Herman, Gabor T.

    2009-01-01

    An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which the ...

  16. Defect distribution in deformed grains of Cu-based alloy polycrystals

    Science.gov (United States)

    Koneva, N. A.; Trishkina, L. I.; Cherkasova, T. V.

    2017-12-01

    The paper presents transmission electron microscopy data on the grain defect structure formed in deformed Cu-Al polycrystals. The data show that the parameters of dislocation substructures vary with distance from grain boundaries and that a hardened zone arises near the grain boundaries and its size depends on the grain size.

  17. Shear bond strength of veneering porcelain to porous zirconia.

    Science.gov (United States)

    Nakamura, Takashi; Sugano, Tsuyoshi; Usami, Hirofumi; Wakabayashi, Kazumichi; Ohnishi, Hiroshi; Sekino, Tohru; Yatani, Hirofumi

    2014-01-01

    In this study, two types of porous zirconia and dense zirconia were used. The flexural strength of non-layered zirconia specimens and those of the layered zirconia specimens with veneering porcelain were examined. Furthermore, the shear bond strength of veneering porcelain to zirconia was examined. The flexural strength of the non-layered specimens was 1,220 MPa for dense zirconia and 220 to 306 MPa for porous zirconia. The flexural strength of the layered specimens was 360 MPa for dense zirconia and 132 to 156 MPa for porous zirconia, when a load was applied to the porcelain side. The shear bond strength of porcelain veneered to dense zirconia was 27.4 MPa and that of porcelain veneered to porous zirconia was 33.6 to 35.1 MPa. This suggests that the veneering porcelain bonded strongly to porous zirconia although porous zirconia has a lower flexural strength than dense zirconia.

  18. Irradiation and lithium presence influence on the crystallographic nature of zirconia in the framework of PWR zircaloy 4 fuel cladding corrosion study; Influence de l'irradiation et de la presence du lithium sur la nature cristallographique de la zircone dans le cadre de l'etude de la corrosion du zircaloy 4 en milieu reacteur a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Gibert, C

    1999-07-01

    The-increasing deterioration of the initially protective zirconia layer is one of the hypotheses which can explain the impairment with time of PWR fuel cladding corrosion. This deterioration could be worsened by irradiation or lithium presence in the oxidizing medium. The aim of this thesis was to underline the influence of those two parameters on zirconia crystallographic nature. We first studied the impact of ionic irradiation on pure, powdery, monoclinic zirconia and oxidation formed zirconia, mainly with X-ray diffraction and Raman microscopy. The high or low energy particles used (Kr{sup n+-}, Ar{sup n+}) respectively favored electronic or atomic defaults production. The crystallographic analyses showed that these irradiation have a significant effect on zirconia by inducing nucleation or growth of tetragonal phase. The extent depends on sample nature and particles energy. In all cases, phase transformation is correlated with crystalline parameters, grain size and especially micro-stress changes. The results are consistent with those obtained with 1 to 5 cycles PWR claddings. Therefore, the corrosion acceleration observed in reactor can partly be explained by the stress fields appearance under irradiation, which is particularly detrimental to zirconia layer cohesion. Last, we have underlined that the presence of considerable amounts of lithium in the oxidizing medium ((> 700 ppm) induces the disappearance of the tetragonal zirconia located at the metal/oxide interface and the appearance of a porosity of the dense under layer, which looses its protectiveness. (author)

  19. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics.

    Science.gov (United States)

    Guazzato, Massimiliano; Albakry, Mohammad; Ringer, Simon P; Swain, Michael V

    2004-06-01

    The present study is the second part of an investigation of strength, fracture toughness and microstructure of nine all-ceramic materials. In the present study, DC Zirkon, an experimental yttria partially stabilized zirconia, In-Ceram Zirconia slip and In-Ceram Zirconia dry-pressed were compared. Strength was appraised on ten bar-shaped specimens for each material (20 x 4 x 1.2 mm) with the three-point bending method. The fracture toughness (Indentation Strength) was measured on twenty specimens (20 x 4 x 2 mm) for each ceramic. The volume fraction of each phase, the dimensions and shapes of the grains and the crack pattern were investigated with SEM. Phase transformation was investigated with X-ray diffraction. Data were compared with an ANOVA and Sheffé post hoc test (p = 0.05). Means of strength (MPa) and fracture toughness (MPa m(1/2)) values and their standard deviation were: In-Ceram Zirconia dry-pressed 476 (50)1, 4.9 (0.36)1; In-Ceram Zirconia slip 630 (58)2, 4.8 (0.50)1; the experimental yttria partially stabilized zirconia 680 (130)2, 5.5 (0.34)2; DC-Zirkon 840 (140)3, 7.4 (0.62)3. Values with the same superscript number showed no significant statistical difference. Microscope investigation and X-ray diffraction revealed the important role played by the tetragonal to monoclinic phase transformation and by the relationship between the glassy matrix and the crystalline phase in the strengthening and toughening mechanisms of these ceramics. the zirconia-based dental ceramics are stronger and tougher materials than the conventional glass-ceramics. Better properties can have positive influence on the clinical performance of all-ceramic restorations. Copyright 2003 Academy of Dental Materials

  20. Influence of Flat Cavity Formation on Stress vs. Strain and Strain-Rate Relations of Superplastic Deformation in 3Y-TZP

    Czech Academy of Sciences Publication Activity Database

    Motohashi, Y.; Ryukhtin, Vasyl; Sakuma, T.; Šaroun, Jan

    2010-01-01

    Roč. 51, č. 3 (2010), s. 567-573 ISSN 1345-9678 Institutional research plan: CEZ:AV0Z10480505 Keywords : superplasticity * tetragonal zirconia polycrystals * flow stress Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.779, year: 2010

  1. Ceramic Composites of 3Y-TZP Doped with CuO: Processing, Microstructure and Tribology

    NARCIS (Netherlands)

    Ran, S.

    2006-01-01

    The work described in this thesis is about processing, microstructure and tribology of CuO doped 3Y-TZP (3 mol% yttria stabilised tetragonal zirconia polycrystals) composite ceramics. This group of materials has shown attractive properties such as superplastic behaviour at elevated temperature and a

  2. The effect of ceria co-doping on chemical stability and fracture toughness of Y-TZP

    NARCIS (Netherlands)

    Boutz, M.M.R.; Boutz, M.M.R.; Winnubst, Aloysius J.A.; van Langerak, B.; olde Scholtenhuis, R.J.M.; Kreuwel, K.; Burggraaf, A.J.

    1995-01-01

    The fracture toughness and ageing resistance of yttria, ceria-stabilized tetragonal zirconia polycrystals (Y, Ce-TZP) were evaluated as a function of grain size and ceria content. Very fine grained, fully dense materials could be produced by sinter forging at relatively low temperatures (1150–1200

  3. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    Science.gov (United States)

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (pautoclave cycles lowered the strain energy release rate significantly (pautoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia.

    Science.gov (United States)

    Guazzato, Massimiliano; Albakry, Mohammad; Swain, Michael Vincent; Ironside, Jim

    2002-01-01

    This study compared the mechanical properties of In-Ceram Zirconia and In-Ceram Alumina. Ninety-four disks and six bars were prepared with the slip-casting technique. The disks were used to assess biaxial flexural strength (piston on three ball), Weibull modulus, hardness, and fracture toughness with two methods: indentation fracture and indentation strength. The bars were used to measure elastic moduli (Young's modulus and Poisson's ratio). X-ray diffraction analysis of the specimens was carried out upon every step of the specimen preparation and of the fractured surfaces. Mean biaxial flexure strengths of In-Ceram Alumina and In-Ceram Zirconia were 600 MPa (SD 60) and 620 MPa (SD 61), respectively. Mean fracture toughness measured according to indentation strength was 3.2 MPa.m1/2 (SD 0.34) for in-Ceram Alumina and 4.0 MPa.m1/2 (SD 0.43) for In-Ceram Zirconia. Mean fracture toughnesses of In-Ceram Alumina and In-Ceram Zirconia measured according to indentation fracture were 2.7 MPa.m1/2 (SD 0.34) and 3.0 MPa.m1/2 (SD 0.48), respectively. X-ray diffraction analysis showed that little phase transformation from tetragonal to monoclinic occurred when the specimens were fractured, supporting the existence of a modest difference of fracture toughness between the two ceramics. No statistically significant difference was found in strength. In-Ceram Zirconia was tougher (P < .01) than In-Ceram Alumina when tested according to indentation strength. However, no significant difference was found in the fracture toughness when tested with the indentation fracture technique.

  5. Effect of Three Different Core Materials on Masking Ability of a Zirconia Ceramic

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2016-12-01

    Full Text Available Objectives: Masking ability of a restorative material plays a role in hiding colored substructures; however, the masking ability of zirconia ceramic (ZRC has not yet been clearly understood in zirconia-based restorations. This study evaluated the effect of three different core materials on masking ability of a ZRC.Materials and Methods: Ten zirconia disc samples, 0.5mm in thickness and 10mm in diameter, were fabricated. A white (W substrate (control and three substrates of nickel-chromium alloy (NCA, non-precious gold alloy (NPGA, and ZRC were prepared. The zirconia discs were placed on the four types of substrates for spectrophotometry. The L*, a*, and b* values of the specimens were measured by a spectrophotometer and color change (ΔE values were calculated to determine color differences between the test and control groups and were then compared with the perceptual threshold. Randomized block ANOVA and Bonferroni test analyzed the data. A significance level of 0.05 was considered.Results: The mean and standard deviation values of ΔE for NCA, NPGA, and ZRC groups were 10.26±2.43, 9.45±1.74, and 6.70±1.91 units, respectively. Significant differences were found in the ΔE values between ZRC and the other two experimental groups (NCA and NPGA; P<0.0001 and P=0.001, respectively. The ΔE values for the groups were more than the predetermined perceptual threshold.Conclusions: Within the limitations of this study, it was concluded that the tested ZRC could not well mask the examined core materials.Keywords: Color; Spectrophotometry; Visual Perception; Yttria Stabilized Tetragonal Zirconia

  6. Ceramic wear maps: Zirconia

    International Nuclear Information System (INIS)

    Lee, S.W.; Hsu, S.M.; Shen, M.C.

    1993-01-01

    The wear characteristics of an yttria-stabilized zirconia (Y-TZP) are represented by a set of three-dimensional wear maps under dry and lubricated conditions. Water, paraffin oil, and a formulated oil were used as lubricants. Different wear regions were identified as a function of load, speed, and lubrication environment. Sudden increases in wear, identified as ear transitions, were found at certain loads and speeds. The onset of wear transitions was moderated by the presence of a lubricant. Below the wear transitions, the wear was mild and the wear mechanism was predominantly plastic deformation and microfracture. Above the wear transitions, the wear was severe, dominated by brittle fracture and third-body abrasion. Different fluids had different effects on wear. Water had a deleterious effect on wear for this material. The presence of oil lubricants effectively reduced friction and moderated wear. Under high load and high speed, additional stress induced by a thermal gradient within a small area contributed significantly to wear. A critical velocity model was found to describe the locations of the wear transition zones successfully

  7. How to Bond Zirconia: The APC Concept.

    Science.gov (United States)

    Blatz, Markus B; Alvarez, Marcela; Sawyer, Kimiyo; Brindis, Marco

    2016-10-01

    Zirconia has become one of the most popular materials in dentistry. New high-translucent zirconia ceramics have favorable optical properties and can be applied as monolithic full-contour restorations in various clinical indications for posterior and anterior teeth. However, having reliable cementation protocols is fundamental for clinical success of indirect ceramic dental restorations, including those made from zirconia materials. Resin bonding supports ceramic restorations and is necessary for onlays, laminate veneers, and resinbonded fixed dental prostheses. The APC zirconia-bonding concept is based on decades of research on how to achieve high and long-term durable bond strengths to high-strength ceramics. It includes three practical steps: (A) airparticle abrasion, (P) zirconia primer, and (C) adhesive composite resin. This article discusses the history and development of high-translucent zirconia and explains the necessity for proper cementation. The rationale and science behind a simplified zirconia-bonding concept is explained and illustrated with a clinical case presentation.

  8. A genus six cyclic tetragonal reduction of the Benney equations

    International Nuclear Information System (INIS)

    England, M; Gibbons, J

    2009-01-01

    A reduction of Benney's equations is constructed corresponding to Schwartz-Christoffel maps associated with a family of genus six cyclic tetragonal curves. The mapping function, a second kind Abelian integral on the associated Riemann surface, is constructed explicitly as a rational expression in derivatives of the Kleinian σ-function of the curve.

  9. The epitaxial Bain path of antiferromagnetic tetragonal Mn

    Science.gov (United States)

    Qiu, S. L.; Marcus, P. M.; Ma, Hong

    2000-03-01

    The epitaxial Bain path (EBP) of antiferromagnetic (AF) tetragonal Mn has been found by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave (FLAPW) method with two different potentials: (1) the local-spin-density-approximation without relativistic corrections (LSDA-NREL) and (2) the Perdew-Burke-Ernzerhof exchange-correlation potential in a generalized-gradient-approximation with relativistic corrections (GGA-REL). The EBP curve of AF Mn from the LSDA-NREL calculations shows a metastable tetragonal state at c/a = 0.68 (fct notation) and a stable tetragonal state at c/a = 0.99. The EBP curve from the GGA-REL calculations shows that these two states are at c/a = 0.60 and 0.96 respectively. Alloy measurements[1] find the stable tetragonal state at c/a = 0.95. The bcc state at c/a = 0.707 is inherently unstable from both LSDA and GGA calculations. The volume vs c/a curve shows that when grown epitaxially[2] on V and Pd, the AF Mn films are strained δ-Mn and γ-Mn respectively. [1] Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn., 30 1614 (1971). [2] Y. Tian, F. Jona, and P. M. Marcus, Phys. Rev. B59, 12647 (1999).

  10. In situ observation of the tetragonal-cubic phase transition in the CeZrO4 solid solution--a high-temperature neutron diffraction study.

    Science.gov (United States)

    Wakita, Takahiro; Yashima, Masatomo

    2007-06-01

    The crystal structure of the compositionally homogeneous ceria-zirconia solid solution CeZrO(4) is refined by Rietveld analysis of neutron diffraction data measured in situ over the temperature range 296-1831 K. The CeZrO(4) exhibits a tetragonal structure with the space group P4(2)/nmc at temperatures from 296 to 1542 K (Z = 1), and a cubic fluorite-type form with the space group Fm\\overline 3 m at 1831 K (Z = 2). The isotropic atomic displacement parameters of Ce and Zr atoms B(Ce,Zr) and O atoms B(O) are found to increase with temperature, with B(O) being larger than B(Ce,Zr), suggesting the higher diffusivity of oxygen ions. The ratio of the c axial length to the a length of the pseudo-fluorite lattice (c/a(F) axial ratio) for the tetragonal CeZrO(4) phase increased from 296 to 1034 K and decreased from 1291 to 1542 K, reaching unity between 1542 and 1831 K. The displacement of O atoms along the c axis in the tetragonal CeZrO(4) phase increased from 296 to 1034 K and decreased from 1291 to 1542 K, reaching 0.0 A between 1542 and 1831 K. These results indicate that the cubic-to-tetragonal phase transition between 1542 and 1831 K is accompanied by oxygen displacement along the c axis and the increase of the c/a(F) axial ratio from unity.

  11. Fracture strength of monolithic and bi-layer zirconia-based crowns = : Resistência à fratura de coroas monolíticas e bicamada a base de zircônia

    OpenAIRE

    Deborah Pacheco Lameira

    2014-01-01

    Resumo: O objetivo deste estudo foi avaliar a resistência à fratura de coroas monolíticas e bicamada a base de zircônia, após envelhecimento artificial. Para este estudo, foram utilizados 32 incisivos bovinos onde foram feitos preparos de coroa total. Estes foram escaneados para a confecção de coroas a base de a zircônia tetragonal parcialmente estabilizada por ítrio (yttrium partially stabilized tetragonal zirconia polycrystalline Y-TZP), por um sistema CAD/CAM (computer-aided design and com...

  12. Simulation of micromechanical behavior of polycrystals: finite elements vs. fast Fourier transforms

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Prakash, Arun [IWM FREIBURG

    2009-01-01

    In this work, we compare finite element and fast Fourier transform approaches for the prediction of micromechanical behavior of polycrystals. Both approaches are full-field approaches and use the same visco-plastic single crystal constitutive law. We investigate the texture and the heterogeneity of the inter- and intragranular, stress and strain fields obtained from the two models. Additionally, we also look into their computational performance. Two cases - rolling of aluminium and wire drawing of tungsten - are used to evaluate the predictions of the two mode1s. Results from both the models are similar, when large grain distortions do not occur in the polycrystal. The finite element simulations were found to be highly computationally intensive, in comparison to the fast Fourier transform simulations.

  13. Microstructure and mechanical properties of bulk yttria-partially-stabilized zirconia

    Science.gov (United States)

    Valentine, P. G.; Maier, R. D.; Mitchell, T. E.

    1981-01-01

    A commercially available bulk 4.5 mole percent yttria-Y2O3)-partially-stabilized zirconia (PSZ) was studied by light microscopy, X-ray analysis, microhardness measurement, and fracture toughness testing. The growth of the precipitates and the phase transformations were studied as a function of aging in air at 1500 C. Aging cuves were constructed for both the as-received and the solution-annealed-and-quenched materials; the curves showed hardness peaks at 1397 and 1517 kg/sq mm, respectively. A total of twelve different types of tetragonal precipitates were found. The rectangular plate-shaped tetragonal precipitates were found to have a (110) habit plane. Grinding of the Y2O3 PSZ into powder did not cause a significant amount of metastable tetragonal precipitates to transform into the monoclinic phase, thus indicating that transformation toughening is not a significant mechanism for the material. The fracture toughness of the aged and of the unaged solution-annealed-and-quenched PSZ was found to be between 2 and 3 MN/cu m/2.

  14. From zirconia to yttria: Sampling the YSZ phase diagram using sputter-deposited thin films

    Directory of Open Access Journals (Sweden)

    Thomas Götsch

    2016-02-01

    Full Text Available Yttria-stabilized zirconia (YSZ thin films with varying composition between 3 mol% and 40 mol% have been prepared by direct-current ion beam sputtering at a substrate temperature of 300 °C, with ideal transfer of the stoichiometry from the target to the thin film and a high degree of homogeneity, as determined by X-ray photoelectron and energy-dispersive X-ray spectroscopy. The films were analyzed using transmission electron microscopy, revealing that, while the films with 8 mol% and 20 mol% yttria retain their crystal structure from the bulk compound (tetragonal and cubic, respectively, those with 3 mol% and 40 mol% Y2O3 undergo a phase transition upon sputtering (from a tetragonal/monoclinic mixture to purely tetragonal YSZ, and from a rhombohedral structure to a cubic one, respectively. Selected area electron diffraction shows a strong texturing for the three samples with lower yttria-content, while the one with 40 mol% Y2O3 is fully disordered, owing to the phase transition. Additionally, AFM topology images show somewhat similar structures up to 20 mol% yttria, while the specimen with the highest amount of dopant features a lower roughness. In order to facilitate the discussion of the phases present for each sample, a thorough review of previously published phase diagrams is presented.

  15. Comparative evaluation of shear bond strength of zirconia restorations cleansed various cleansing protocols bonded with two different resin cements: An In vitro study

    Directory of Open Access Journals (Sweden)

    Sriram Sankar

    2017-01-01

    Full Text Available Context: Yttria partially stabilized tetragonal zirconia polycrystalline restorations have gained widespread use because of its enhanced strength and esthetics. During the try-in process, zirconia is likely to be contaminated with saliva. This contamination leads to a clear weakening of the bond between restorative material and cement. For this reason, zirconia surface should be cleaned before cementation. Hence, the purpose of this study is to compare the shear bond strength of zirconia restorations cleansed with various surface cleansing protocols bonded with two different resin cements. Materials and Methods: Eighty samples of zirconia discs were prepared in the dimensions 2.5 mm diameter and 4.5 mm thickness. They were divided into two groups of each forty samples based on luting cement used. Each group was further subdivided into four subgroups of each (n = 10: Group 1: uncontaminated zirconia blocks, Group 2: saliva-contaminated zirconia blocks and cleaned only with distilled water, Group 3: saliva-contaminated zirconia blocks treated with Ivoclean, and Group 4: saliva-contaminated zirconia blocks were air abraded. Eighty human maxillary premolars were then sectioned to expose dentin and were mounted on an acrylic block. A jig was fabricated to bond zirconia with the tooth using two self-adhesive resin cements. The samples were subjected to shear bond strength testing. The data were analyzed using one-way analysis of variance and Tukey's honest significance difference test with a level of significance set at p < 0.05. Results: The mean shear bond strength values of Group 1 and 2 - subgroup B are 10.3 ± 0.4 and 9.80 ± 0.7 (saliva-contaminated zirconia, cleansed with distilled water only, respectively, were lowest among all test subgroups and were significantly less than mean values of subgroup C, Group 1 - 20.45 ± 0.6 and Group 2 - 20.75 ± 0.4 (Ivoclean group and subgroup D, Group 1 - 20.90 ± 0.3 and Group 2 - 20.60 ± 0.5 (air

  16. Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns.

    Science.gov (United States)

    Alsadon, Omar; Patrick, David; Johnson, Anthony; Pollington, Sarah; Wood, Duncan

    2017-05-31

    The objectives were to evaluate the fracture resistance and stress concentration in zirconia/composite veneered crowns in comparison to zirconia/porcelain crowns using occlusal fracture resistance and by stress analysis using finite element analysis method. Zirconia substructures were divided into two groups based on the veneering material. A static load was applied occlusally using a ball indenter and the load to fracture was recorded in Newtons (N). The same crown design was used to create 3D crown models and evaluated using FEA. The zirconia/composite crowns subjected to static occlusal load showed comparable results to the zirconia/porcelain crowns. Zirconia/composite crowns showed higher stress on the zirconia substructure at 63.6 and 50.9 MPa on the zirconia substructure veneered with porcelain. In conclusion, zirconia/composite crowns withstood high occlusal loads similar to zirconia/porcelain crowns with no significant difference. However, the zirconia/composite crowns showed higher stress values than the zirconia/porcelain crowns at the zirconia substructure.

  17. Clausius–Duhem inequality description of superelasticity in Ni–Ti polycrystal as a dissipative process

    International Nuclear Information System (INIS)

    Yasuda, Yohei; Kato, Hiroyuki; Sasaki, Kazuaki

    2012-01-01

    Superelasticity in Ni–Ti polycrystal is examined in terms of the second law of thermodynamics. As a consequence of the law, both the phase equilibrium and the dissipation of mechanical energy during the stress-induced martensitic transformation have been formulated simultaneously by means of the Clausius–Duhem inequality. The flow stress of superelasticity has been derived as the function of temperature. The energy dissipated in the shape memory effect is briefly discussed.

  18. Cubic zirconia as a high-quality facet coating for semiconductor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Chin, A.K.; Satyanarayan, A.; Zarrabi, J.H.; Vetterling, W.

    1988-08-01

    In this paper we describe the properties of high-quality, semiconductor laser facet coatings based on yttria-stabilizied cubic zirconia (90-m% ZrO/sub 2//10-m% Y/sub 2/O/sub 3/). We have found that cubic zirconia films can be reproducibly deposited by electron-beam evaporation with an index of refraction of 1.98 at 6328 A, almost ideal for use as a single-layer antireflection coating for GaAs/GaAlAs-based lasers. ZrO/sub 2/ has a monoclinic crystal structure at room temperature, but changes to tetragonal, hexagonal, and cubic phases upon heating to higher temperatures. However, the addition of the Y/sub 2/O/sub 3/ stabilizes ZrO/sub 2/ in the cubic form, thus allowing electron-beam deposition of thin films of this material to be more controllable and reproducible without the usual addition of oxygen into the vacuum chamber during deposition. Preliminary aging tests of high-power GaAs/GaAlAs lasers show that cubic zirconia films suppress the photo-enhanced oxidation of laser facets that degrades device performance.

  19. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  20. Molecular Dynamics Simulations of Transverse Effects in Shock-Compressed Fibre-Textured Tantalum Polycrystals

    Science.gov (United States)

    Heighway, Patrick; Higginbotham, Andrew; McGonegle, David; Wark, Justin

    2017-06-01

    Whilst uniaxially shock-compressed crystas have zero total strain transverse to the shock propagation direction, this is a global, rather than local constraint. For individual grains, expansion or contraction can occur via the Poisson effect, or via plasticity. Neighbouring grains in a polycrystal may therefore 'push' one another transverse to the shock, causing transverse strain anisotropy. Here we discuss the results of multi-million atom molecular dynamics simulations of elementary fibre-textured tantalum polycrystals shock-compressed along the [110] direction. Below the elastic limit, we observe transverse stress waves driven by the Poisson effect that cause bending of the grain boundaries. In our quadcrystal geometry, the average transverse strains were 15% of the longitudinal strain, while the stress difference across the grain boundaries was of 2.5% of the peak pressure, representing a small deviation from the Reuss limit. Transverse motion of the boundaries is also visible in the plastic regime, but analysis of the stress-strain state of the bulk material is complicated by twin and dislocation nucleation. Work is currently being undertaken to quantify the transverse strain anisotropy of plastically deformed polycrystals at pressures in excess of 40 GPa.

  1. Micromechanical local approach to brittle failure in bainite high resolution polycrystals: A short presentation

    International Nuclear Information System (INIS)

    N'Guyen, C.N.; Osipov, N.; Cailletaud, G.; Barbe, F.; Marini, B.; Petry, C.

    2012-01-01

    The problem of determining the probability of failure in a brittle material from a micromechanical local approach has recently been addressed in few works, all related to bainite polycrystals at different temperatures and states of irradiation. They have separately paved the ground for a full-field modelling with high realism in terms of constitutive modelling and microstructural morphology. This work first contributes to enhance this realism by assembling the most pertinent/valuable characteristics (dislocation density based model, large deformation framework, fully controlled triaxiality conditions, explicit microstructure representation of grains and sub-grains,... ) and by accounting for a statistically representative Volume Element; this condition indeed must be fulfilled in order to capture rare events like brittle micro-fractures which, in the stress analysis, correspond to the tails of distribution curves. The second original contribution of this work concerns the methodology for determining fracture probabilities: rather than classically - and abruptly - considering a polycrystal as broken as soon as an elementary link (grain or sub-grain) has failed, the possibility of microcrack arrest at microstructural barriers is introduced, which enables to determine the probability of polycrystal failure according to different scenarios of multiple micro-fractures. (authors)

  2. Effect of accelerated aging on translucency of monolithic zirconia

    Directory of Open Access Journals (Sweden)

    O. Abdelbary

    2016-12-01

    Conclusion: Thickness of zirconia has significant effect on translucency. Aging has significant effect on thinner sections of zirconia. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

  3. Crystallization behavior of tetragonal ZrO{sub 2} prepared in a silica bath

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Huang, Hung-Jui [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-09-10

    Highlights: ► The activation energy of t-ZrO{sub 2} crystallization calculated by the JMA equation is 643.0 ± 13.9 kJ·mol{sup −1}. ► The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0. ► Bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and has a spherical-like morphology. ► The TEM microstructure reveals that the t-ZrO{sub 2} crystallites have a spherical-like morphology. - Abstract: The synthesis of zirconia (ZrO{sub 2}) precursor powders by a co-precipitation process is studied in this work, using a silica bath prepared at 348 K and pH = 7, with 10 min mixing using zirconium (IV) nitrate and tetraethylorthosilicate (TEOS, Si(OC{sub 2}H{sub 5}){sub 4}) as the starting materials. The XRD result show that only a single phase of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) appears when the freeze dried precursor powders are calcined between 1173 and 1473 K for 120 min. The activation energy of t-ZrO{sub 2} crystallization, as calculated by the Johnson–Mehl–Avrami (JMA) equation, is 643.0 ± 13.9 kJ/mol. The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0, which indicates that bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and that the material has a plate-like morphology.

  4. Investigation of phase stability in the scandia-zirconia

    International Nuclear Information System (INIS)

    Grosso, Robson Lopes

    2016-01-01

    In this work, the phase stability of scandia-zirconia (ScSZ) system was investigated by the thermodynamic study of nanoparticles, within the range of 0 to 20 mol% Sc 2 O 3 , and by codoping of ZrO 2 -10 mol% Sc 2 O 3 (10ScSZ) with Dy 2 O 3 and Nb 2 O 5 . The phase stability of ScSZ was evaluated based on thermodynamic data collected by water adsorption microcalorimetry and high temperature oxide melt solution. Nanostructured zirconia-scandia solid solutions were synthesized by coprecipitation method. Thermodynamic data were determined for ScSZ polymorph (monoclinic, tetragonal, cubic, rhombohedral β and γ) found by X-ray diffraction. This systemic work resulted in an unprecedented phase diagram at the nanoscale of particle size-composition. The effects of additives on 10ScSZ were investigated aiming to stabilize the cubic (c) structure at room temperature and to suppress the characteristic cubic-rhombohedral β phase transformation. Compositions were prepared by coprecipitation and solid state reaction. Materials were sintered by conventional and spark plasma sintering. Full stabilization of the cubic phase was attained by 1 mol% Dy 2 O 3 and 0.5 mol% Nb 2 O 5 additions. The smallest Nb 2 O 5 content required for cubic phase stabilization was attributed to liquid phase formation during sintering and to small ionic radius of Nb 5+ . Results of high temperature X-ray diffraction and thermal analysis show suppression of the c-β transformation. Samples containing 0.5 mol% Nb 2 O 5 show total ionic conductivity similar to 10ScSZ without additives within a broad temperature range with high stability during 170 h at 600 °C. (author)

  5. Twin wall of proper cubic-tetragonal ferroelastics

    Science.gov (United States)

    Curnoe, S. H.; Jacobs, A. E.

    2000-11-01

    We derive solutions for the twin wall linking two tetragonal variants of proper cubic-tetragonal ferroelastics, including the dilatational and shear energies and strains. Our solutions satisfy the compatibility relations exactly and are obtained at all temperatures. They require four nonvanishing strains except at the Barsch-Krumhansl temperature TBK (where only the two deviatoric strains are needed). Between the critical temperature and TBK, material in the wall region is dilated, while below TBK it is compressed; we estimate a compression of ~1% for Fe-Pd alloys. In agreement with experiment and more general theory, the twin wall lies in a cubic 110-type plane. We obtain the wall energy numerically as a function of temperature and we derive a simple estimate which agrees well with these values.

  6. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  7. Chemically ordered face-centred tetragonal Fe–Pt nanoparticles ...

    Indian Academy of Sciences (India)

    2012-02-21

    Feb 21, 2012 ... Chemically ordered face-centred tetragonal (fct) Fe–Pt alloy nanoparticles (NPs) embedded SiO2 films were synthesized on ... Heat treatment of Fe/Pt co-doped films in air caused generation of Pt NPs first. At this stage, Fe ..... NPs (a small Fe metal peak is observed in figure 3a, curve 2) and most of the iron ...

  8. Dilemmas in zirconia bonding: A review

    Directory of Open Access Journals (Sweden)

    Obradović-Đuričić Kosovka

    2013-01-01

    Full Text Available This article presents a literature review on the resin bond to zirconia ceramic. Modern esthetic dentistry has highly recognized zirconia, among other ceramic materials. Biocompatibility of zirconia, chemical and dimensional stability, excellent mechanical properties, all together could guarantee optimal therapeutical results in complex prosthodontic reconstruction. On the other hand, low thermal degradation, aging of zirconia as well as problematic bonding of zirconia framework to dental luting cements and tooth structures, opened the room for discussion concerning their clinical durability. The well known methods of mechanical and chemical bonding used on glass-ceramics are not applicable for use with zirconia. Therefore, under critical clinical situations, selection of the bonding mechanism should be focused on two important points: high initial bond strength value and long term bond strength between zirconia-resin interface. Also, this paper emphases the use of phosphate monomer luting cements on freshly air-abraded zirconia as the simplest and most effective way for zirconia cementation procedure today.

  9. Flexural strength and the probability of failure of cold isostatic pressed zirconia core ceramics.

    Science.gov (United States)

    Siarampi, Eleni; Kontonasaki, Eleana; Papadopoulou, Lambrini; Kantiranis, Nikolaos; Zorba, Triantafillia; Paraskevopoulos, Konstantinos M; Koidis, Petros

    2012-08-01

    The flexural strength of zirconia core ceramics must predictably withstand the high stresses developed during oral function. The in-depth interpretation of strength parameters and the probability of failure during clinical performance could assist the clinician in selecting the optimum materials while planning treatment. The purpose of this study was to evaluate the flexural strength based on survival probability and Weibull statistical analysis of 2 zirconia cores for ceramic restorations. Twenty bar-shaped specimens were milled from 2 core ceramics, IPS e.max ZirCAD and Wieland ZENO Zr, and were loaded until fracture according to ISO 6872 (3-point bending test). An independent samples t test was used to assess significant differences of fracture strength (α=.05). Weibull statistical analysis of the flexural strength data provided 2 parameter estimates: Weibull modulus (m) and characteristic strength (σ(0)). The fractured surfaces of the specimens were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The investigation of the crystallographic state of the materials was performed with x-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectroscopy. Higher mean flexural strength (Plines zones). Both groups primarily sustained the tetragonal phase of zirconia and a negligible amount of the monoclinic phase. Although both zirconia ceramics presented similar fractographic and crystallographic properties, the higher flexural strength of WZ ceramics was associated with a lower m and more voids in their microstructure. These findings suggest a greater scattering of strength values and a flaw distribution that are expected to increase failure probability. Copyright © 2012 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  10. Effects of Laser Treatment on the Bond Strength of Differently Sintered Zirconia Ceramics.

    Science.gov (United States)

    Dede, Doğu Ömür; Yenisey, Murat; Rona, Nergiz; Öngöz Dede, Figen

    2016-07-01

    The purpose of this study was to investigate the effects of carbon dioxide (CO2) and Erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiations on the shear bond strength (SBS) of differently sintered zirconia ceramics to resin cement. Eighty zirconia specimens were prepared, sintered in two different periods (short = Ss, long = Ls), and divided into four treatment groups (n = 10 each). These groups were (a) untreated (control), (b) Er:YAG laser irradiated with 6 W power for 5 sec, (c) CO2 laser with 2 W power for 10 sec, (d) CO2 laser with 4 W power for 10 sec. Scanning electron microscope (SEM) images were recorded for each of the eight groups. Eighty composite resin discs (3 × 3 mm) were fabricated and cemented with an adhesive resin cement to ceramic specimens. The SBS test was performed after specimens were stored in water for 24 h by an universal testing machine at a crosshead speed of 1 mm/min. Data were statistically analyzed with two way analysis of variance (ANOVA) and Tukey honest significant difference (HSD) test (α = 0.05). According to the ANOVA, the sintering time, surface treatments and their interaction were statistically significant (p  0.05). Variation in sintering time from 2.5 to 5.0 h may have influenced the SBS of Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics. Although CO2 and Er:YAG laser irradiation techniques may increase the SBS values of both tested zirconia ceramics, they are recommended for clinicians as an alternative pretreatment method.

  11. Effects of different lasers and particle abrasion on surface characteristics of zirconia ceramics.

    Directory of Open Access Journals (Sweden)

    Sakineh Arami

    2014-04-01

    Full Text Available The aim of this study was to assess the surface of yttrium-stabilized tetragonal zirconia (Y-TZP after surface treatment with lasers and airborne-particle abrasion.First, 77 samples of presintered zirconia blocks measuring 10 × 10 × 2 mm were made, sintered and polished. Then, they were randomly divided into 11 groups (n=7 and received surface treatments namely, Er:YAG laser irradiation with output power of 1.5, 2 and 2.5 W, Nd:YAG laser with output power of 1.5, 2 and 2.5 W, CO2 laser with output power of 3, 4 and 5 W, AL2O3 airborne-particle abrasion (50μ and no treatment (controls. Following treatment, the parameters of surface roughness such as Ra, Rku and Rsk were evaluated using a digital profilometer and surface examination was done by SEM.According to ANOVA and Tukey's test, the mean surface roughness (Ra after Nd:YAG laser irradiation at 2 and 2.5 W was significantly higher than other groups. Roughness increased with increasing output power of Nd:YAG and CO2 lasers. Treated surfaces by Er:YAG laser and air abrasion showed similar surface roughness. SEM micrographs showed small microcracks in specimens irradiated with Nd:YAG and CO2 lasers.Nd:YAG laser created a rough surface on the zirconia ceramic with many microcracks; therefore, its use is not recommended. Air abrasion method can be used with Er:YAG laser irradiation for the treatment of zirconia ceramic.

  12. Lava zirconia crowns and bridges.

    Science.gov (United States)

    Suttor, D

    2004-01-01

    Ceramic restorations--suitable for the anterior as well as the posterior region, simultaneously satisfying the demand for high strength, longevity, and esthetics--are an increasingly important field for the dental professional. Because of its outstanding mechanical properties and esthetics with a proven track record in other industrial areas, zirconium oxide (zirconia) is emerging in the dental industry. As the manufacturing method of choice, CAD/CAM is important for the dental laboratory; however, in the final analysis, the primary focus will be on the material properties and the clinical performance of the result of the CAD/CAM process--in this case, zirconia crowns and bridges. This is especially true since some concepts do not require the acquisition of a CAD/CAM system at all.

  13. Alumina-Reinforced Zirconia Composites

    Science.gov (United States)

    Choi, Sung R.; Bansal, Narottam P.

    2003-01-01

    Alumina-reinforced zirconia composites, used as electrolyte materials for solid oxide fuel cells, were fabricated by hot pressing 10 mol percent yttria-stabilized zirconia (10-YSZ) reinforced with two different forms of alumina particulates and platelets each containing 0 to 30 mol percent alumina. Major mechanical and physical properties of both particulate and platelet composites including flexure strength, fracture toughness, slow crack growth, elastic modulus, density, Vickers microhardness, thermal conductivity, and microstructures were determined as a function of alumina content either at 25 C or at both 25 and 1000 C. Flexure strength and fracture toughness at 1000 C were maximized with 30 particulate and 30 mol percent platelet composites, respectively, while resistance to slow crack growth at 1000 C in air was greater for 30 mol percent platelet composite than for 30 mol percent particulate composites.

  14. Zirconia-molybdenum disilicide composites

    Science.gov (United States)

    Petrovic, John J.; Honnell, Richard E.

    1991-01-01

    Compositions of matter comprised of molybdenum disilicide and zirconium oxide in one of three forms: pure, partially stabilized, or fully stabilized and methods of making the compositions. The stabilized zirconia is crystallographically stabilized by mixing it with yttrium oxide, calcium oxide, cerium oxide, or magnesium oxide and it may be partially stabilized or fully stabilized depending on the amount of stabilizing agent in the mixture.

  15. Determination of residual zirconia in the reaction product of zircon formation from zirconia and silica

    International Nuclear Information System (INIS)

    Hashiba, Minoru; Miura, Eiji; Nurishi, Yukio; Hibino, Taizo

    1978-01-01

    A new chemical method for the determination of zirconia in the reaction product of zircon formation from zirconia and silica is presented in this paper. The reaction product was fused in the temperature range between 400 0 C, and 450 0 C by ammonium sulfate (zirconia/ammonium sulfate = 1/10, weight). Zirconia was extracted by 4N H 2 SO 4 aqueous solution. After the residue was separated by filter paper containing filter pulp, it was washed by hot water thoroughly. By adding aqueous ammonia water to the combined filtrate, zirconium hydroxide was precipitated gelatinously. The precipitate was ignited in platinum crucible at 1000 0 C and the zirconia obtained was weighed. It was confirmed by the following experiments that the present method is very reliable for quantitative determination of residual zirconia. Firstly, in both zirconia and various mixtures of zircon and silica, the recovery of zirconia is about (99.6 +- 0.2)%. Secondly, the reaction for equimolar mixture of zirconia and silica was conducted at several temperatures between 1350 0 C and 1500 0 C. The quantity of residual zirconia on the way of the reaction was reasonably determined by the present method. In conclusion, the present method can be applicable for the study on the reaction mechanism of zircon formation from zirconia and silica. (auth.)

  16. Clinical trials in zirconia: a systematic review.

    Science.gov (United States)

    Al-Amleh, B; Lyons, K; Swain, M

    2010-08-01

    Zirconia is unique in its polymorphic crystalline makeup, reported to be sensitive to manufacturing and handling processes, and there is debate about which processing method is least harmful to the final product. Currently, zirconia restorations are manufactured by either soft or hard-milling processes, with the manufacturer of each claiming advantages over the other. Chipping of the veneering porcelain is reported as a common problem and has been labelled as its main clinical setback. The objective of this systematic review is to report on the clinical success of zirconia-based restorations fabricated by both milling processes, in regard to framework fractures and veneering porcelain chipping. A comprehensive review of the literature was completed for in vivo trials on zirconia restorations in MEDLINE and PubMed between 1950 and 2009. A manual hand search of relevant dental journals was also completed. Seventeen clinical trials involving zirconia-based restorations were found, 13 were conducted on fixed partial dentures, two on single crowns and two on zirconia implant abutments, of which 11 were based on soft-milled zirconia and six on hard-milled zirconia. Chipping of the veneering porcelain was a common occurrence, and framework fracture was only observed in soft-milled zirconia. Based on the limited number of short-term in vivo studies, zirconia appears to be suitable for the fabrication of single crowns, and fixed partial dentures and implant abutments providing strict protocols during the manufacturing and delivery process are adhered to. Further long-term prospective studies are necessary to establish the best manufacturing process for zirconia-based restorations.

  17. A wear-resistant zirconia ceramic for low friction application

    International Nuclear Information System (INIS)

    Winnubst, A.J.A.; Ran, S.; Wiratha, K.W.; Blank, D.H.A.; Pasaribu, H.R.; Sloetjes, J.W.; Schipper, D.J.

    2004-01-01

    A high wear-resistant ceramic/ceramic couple is described associated with low friction. By adding a small amount CuO to yttria-doped tetragonal zirconia (Y-TZP) the (dry) coefficient of friction against alumina is only 0.2 during a sliding distance of 3-5 km after which the coefficient drastically increases and a transition from mild to sever wear occurs. Pure Y-TZP exhibits a coefficient of friction of 0.7 under the same experimental conditions but wear remains mild during the test (upto 10 km of sliding distance). These small amounts of CuO also strongly influence the densification behaviour. Sintering of this system occurs in several steps where among other things dissolution of CuO in the Y-TZP matrix as well as liquid phase sintering takes place. Non-uniform shrinkage of the CuO-doped system resulting in relative large microcracks in the ceramic can explain its sudden drastic increase in coefficient of friction and wear rate after 3-5 km of operation. (orig.)

  18. Microstructure and high-temperature mechanical behavior of alumina/alumina-yttria-stabilized tetragonal zirconia multilayer composites

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez-Melendo, M.; Clauss, C.; Dominguez-Rodriguez, A. [Dept. de Fisica de la Materia Condensada, Sevilla (Spain); Sanchez-Herencia, A.J.; Moya, J.S. [CSIC, Madrid (Spain). Inst. de Ciencias de Materiales

    1997-08-01

    Layered composites of alternate layers of pure Al{sub 2}O{sub 3} (thickness of 125 {micro}m) and 85 vol% Al{sub 2}O{sub 3}-15 vol% ZrO{sub 2} that was stabilized with 3 mol% Y{sub 2}O{sub 3} (thickness of 400 {micro}m) were obtained by sequential slip casting and then fired at either 1,550 or 1,700 C. Constant-strain-rate tests were conducted on these materials in air at 1,400 C at an initial strain rate of 2 {times} 10{sup {minus}5} s{sup {minus}1}. The load axis was applied both parallel and perpendicular to the layer interfaces. Catastrophic failure occurred for the composite that was fired at 1,700 C, because of the coalescence of cavities that had developed in grain boundaries of the Al{sub 2}O{sub 3} layers. In comparison, the composite that was fired at 1,550 C demonstrated the ductility of the Al{sub 2}O{sub 3} + YTZP layer, but at a flow stress level that was determined by the Al{sub 2}O{sub 3} layer.

  19. A universal T{sup 2} behavior of low temperature thermal conductivity of some simple molecular polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Romanova, T., E-mail: t.romanova@int.pan.wroc.pl [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PN 1410, Okolna 2, 50-950 Wroclaw (Poland); Stachowiak, P.; Jeżowski, A. [Institute for Low Temperature and Structure Research, Polish Academy of Sciences, PN 1410, Okolna 2, 50-950 Wroclaw (Poland); Krivchikov, A.I.; Vdovychenko, G.A. [B. Verkin Institute for Low Temperature Physics and Engineering of NAS Ukraine, 47 Lenin Avenue, Kharkov 61103 (Ukraine)

    2015-02-15

    The low-temperature dependence of thermal conductivity coefficient of dielectric crystals on temperature spreads over a vast region, both in terms of the absolute value of the coefficient as well as its functional dependence on the temperature. However, we were able to notice a group of simple molecular polycrystals which show their thermal conductivity very close to each other. What is more, the similarity of the thermal conductivity of the polycrystals for many reasons resembles known and studied for over 30 years the universality observed for low-temperature thermal conductivity of amorphous solids. Here, utilizing already developed thermal conductivity models, we try to understand what phenomena could result in the similarity of the thermal conductivity of the polycrystals and therefore explain the finding. Provided that some other conditions are met at least each of three different phonon scattering mechanisms could lead to the similarity.

  20. Influence of Ar-ion implantation on the structural and mechanical properties of zirconia as studied by Raman spectroscopy and nanoindentation techniques

    Science.gov (United States)

    Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.

    2018-04-01

    In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.

  1. Spectroscopic properties of Sm-containing yttrium-aluminoborate glasses and analogous huntite-like polycrystals

    International Nuclear Information System (INIS)

    Malashkevich, G.E.; Sigaev, V.N.; Golubev, N.V.; Mamadzhanova, E.Kh.; Sukhodola, A.A.; Paleari, A.; Sarkisov, P.D.; Shimko, A.N.

    2012-01-01

    Sm x Y 1–x Al 3 (BO 3 ) 4 polycrystals with huntite structure and glasses of system (mol %) 12.5 (Sm x Y 1–x ) 2 O 3 –37.5Al 2 O 3 –50B 2 O 3 with identical composition have been synthesized by solid state reaction and by melting process, respectively in order to compare light-emission and nonradiative energy transfer mechanisms in the two systems. The data have been analyzed to determine the concentration-dependent quantum yield of the Sm 3+ luminescence as well as multipolarity and macro- and microparameters of the Sm–Sm interaction. The results show that the structure of the huntite cation lattice is preserved by passing from polycrystals to glasses, with an increase in the Sm–Sm minimum distance from 0.59 to 0.67 nm. At activator concentration ≤1 × 10 20 cm −3 , the luminescence quantum yield in glass is higher than in polycrystals. The result turns out to be related to the partial substitution in glass by BO 4 groups of the trigonal BO 3 groups, which are responsible in crystalline Sm x Y 1–x Al 3 (BO 3 ) 4 for efficient intracenter non-radiative energy exchange from the metastable excited 4 G 5/2 state to phonon excitations. -- Highlights: ► Microparameters of the Sm–Sm interaction in aluminoborate glass were determined. ► The minimum possible distance between Sm 3+ ions in the glasses is about 0.67 nm. ► At low Sm content luminescence efficiency in the glass is higher than in crystal.

  2. Enamel wear opposing polished and aged zirconia.

    Science.gov (United States)

    Burgess, J O; Janyavula, S; Lawson, N C; Lucas, T J; Cakir, D

    2014-01-01

    Aging of dental zirconia roughens its surface through low temperature degradation. We hypothesized that age-related roughening of zirconia crowns may cause detrimental wear to the enamel of an opposing tooth. To test our hypothesis, we subjected artificially aged zirconia and reference specimens to simulated mastication in a wear device and measured the wear of an opposing enamel cusp. Additionally, the roughness of the pretest surfaces was measured. The zirconia specimens, artificially aged by autoclave, showed no significant increase in roughness compared to the nonaged specimens. Furthermore, no significant difference in material or opposing enamel wear between the aged and nonaged zirconia was seen. All zirconia specimens showed less material and opposing enamel wear than the enamel to enamel control or veneering porcelain specimens. Scanning electron micrographs showed relatively smooth surfaces of aged and nonaged zirconia following wear testing. The micrographs of the veneering ceramic showed sharp fractured edges and fragments of wear debris. Zirconia may be considered a wear-friendly material for restorations opposing enamel, even after simulated aging.

  3. Sintering of zirconia in high-pressure

    International Nuclear Information System (INIS)

    Kunrath, A.O.; Strohaecker, T.R.; Pereira, A.S.; Jornada, J.A.H. da; Piermarini, G.J.

    1989-01-01

    A systematic study about the sintering of zirconia hyperfines powders in high-pressure is presented. The differents conditions effect of sintering in microstructure and in hardness and tenacity properties of zirconia samples with a very fine grain is also studied. (C.G.C.) [pt

  4. Crystallographic fatigue crack growth in a polycrystal: simulations based on FEM and discrete dislocation dynamics

    International Nuclear Information System (INIS)

    Bertolino, G.; Sauzay, M.; Bertolino, G.; Doquet, V.

    2003-01-01

    An attempt to model the variability of short cracks development in high-cycle fatigue is made by coupling finite element calculations of the stresses ahead of a microcrack in a polycrystal with simulations of crack growth along slip planes based on discrete dislocations dynamics. The model predicts a large scatter in growth rates related to the roughness of the crack path. It also describes the influence of the mean grain size and the fact that overloads may suppress the endurance limit by allowing arrested cracks to cross the grain boundaries. (authors)

  5. Variational method of determining effective moduli of polycrystals: (A) hexagonal symmetry, (B) trigonal symmetry

    Science.gov (United States)

    Peselnick, L.; Meister, R.

    1965-01-01

    Variational principles of anisotropic elasticity have been applied to aggregates of randomly oriented pure-phase polycrystals having hexagonal symmetry and trigonal symmetry. The bounds of the effective elastic moduli obtained in this way show a considerable improvement over the bounds obtained by means of the Voigt and Reuss assumptions. The Hill average is found to be in most cases a good approximation when compared to the bounds found from the variational method. The new bounds reduce in their limits to the Voigt and Reuss values. ?? 1965 The American Institute of Physics.

  6. Introduction of polycrystal constitutive laws in a finite element code with applications to zirconium forming

    International Nuclear Information System (INIS)

    Maudlin, P.J.; Tome, C.N.; Kaschner, G.C.; Gray, G.T. III

    1998-01-01

    In this work the authors simulate the compressive deformation of heavily textured zirconium sheet using a finite element code with the constitutive response given by a polycrystal self-consistent model. They show that the strong anisotropy of the response can be explained in terms of the texture and the relative activity of prismatic (easy) and pyramidal (hard) slip modes. The simulations capture the yield anisotropy observed for so-called through-thickness and in-plane compression tests in terMs of the loading curves and final specimen geometries

  7. Modeling the growth rates of tetragonal lysozyme crystals

    Science.gov (United States)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1995-11-01

    Although the faceted growth of tetragonal lysozyme crystals is known to occur by 2D nucleation and dislocation-led growth, the measured growth rates do not follow model predictions based on these mechanisms. One possible reason for this deviation is that these models ignore the highly aggregated state of lysozyme in supersaturated solutions. In this study a growth mechanism for tetragonal lysozyme crystals involving aggregation reactions leading to the formation of the growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is proposed. The distribution of aggregates in lysozyme nutrient solutions were determined from the equilibrium aggregation reactions and comparisons were made with growth rates calculated from the model based on the proposed mechanism and the measured growth rate data. The results indicated than an octamer corresponding to the tetragonal crystal unit cell was the most likely growth unit for the process. Remarkably good fits were obtained with this model to the measured growth rate data for three sets of pH and salt concentrations, suggesting the validity of the proposed mechanism. The values of the kinetic coefficient for the step velocity was in the range for small molecule crystal growth and the heats of reaction compared well with that obtained from lysozyme solubility data. The results presented here suggest that the inorganic and protein crystal growth processes are quite similar in many ways. Lysozyme crystal growth differs primarily due to growth by an aggregate growth unit and in the effect of nutrient solution conditions on the protein aggregation process.

  8. Evaluation of Effect of Zirconia Surface Treatment, Using Plasma of Argon and Silane, on the Shear Bond Strength of Two Composite Resin Cements.

    Science.gov (United States)

    Kaimal, Aswathy; Ramdev, Poojya; Shruthi, C S

    2017-08-01

    Yttria stabilised tetragonal zirconia opens new vistas for all ceramic restoration by the mechanism of transformation toughening, making it much stronger compared to all other ceramic materials. Currently, it is the most recent core material for all ceramic fixed partial dentures due to its ability to withstand high simulated masticatory loads. Problems which have been reported with zirconia restorations involve the core cement interface leading to loss of retention of the prosthesis. Different reasons which have been reported for the same include the lack of adhesion between zirconia and commonly used cements due to absence of silica phase which makes zirconia not etchable. In addition, the hydrophobic nature of zirconia causes low wettability of zirconia surface by the adhesive cements which are commonly used. The purpose of this in vitro study was to compare and evaluate the effect of two pre-treatments of zirconia, using plasma of argon and silane, on the shear bond strength values of two composite resin cements to zirconia and to evaluate the failure pattern of the debonded areas using stereomicroscopic analysis. Sixty zirconia discs (10 mm×2 mm) were randomly divided into three groups (n=20), following surface treatment, with airborne particle abrasion, using 110 µm Al2O3: Group I (control), Group II (plasma of argon cleaning), and Group III (application of silane primer). Each group had two subgroups based on the type of resin cement used for bonding: subgroup A; Rely X Ultimate (3M ESPE) and subgroup B; Panavia F (Kuraray). In subgroup A, Rely X universal silane primer and in subgroup B Clearfil ceramic primer was used. Shear bond strengths were determined after water storage for one day and thermocycling for 5000 cycles. Data (megapascal) were analyzed using ANOVA and Bonferroni test. Specimens were subjected to stereomicroscopic analysis, for evaluation of failure pattern. Group III produced the highest shear bond strength followed by Group II and Group

  9. Dielectric Relaxation of La-Doped Zirconia Caused by Annealing Ambient

    Directory of Open Access Journals (Sweden)

    Werner M

    2011-01-01

    Full Text Available Abstract La-doped zirconia films, deposited by ALD at 300°C, were found to be amorphous with dielectric constants (k-values up to 19. A tetragonal or cubic phase was induced by post-deposition annealing (PDA at 900°C in both nitrogen and air. Higher k-values (~32 were measured following PDA in air, but not after PDA in nitrogen. However, a significant dielectric relaxation was observed in the air-annealed film, and this is attributed to the formation of nano-crystallites. The relaxation behavior was modeled using the Curie–von Schweidler (CS and Havriliak–Negami (HN relationships. The k-value of the as-deposited films clearly shows a mixed CS and HN dependence on frequency. The CS dependence vanished after annealing in air, while the HN dependence disappeared after annealing in nitrogen.

  10. Strain-induced phase transformation behavior of stabilized zirconia ceramics studied via nanoindentation.

    Science.gov (United States)

    Liu, Erqiang; Xiao, Gesheng; Jia, Wufei; Shu, Xuefeng; Yang, Xuexia; Wang, Yulei

    2017-11-01

    To study the tetragonal-to-monoclinic (T-M) phase transformation behavior under different strain rates and indentation depths, nanoindentation tests were performed on stabilized zirconia ceramics with Continuous Stiffness Measurements. The results indicate decreased phase transformation velocities at both lower and higher strain rates, but increased velocity under medium strain rate during loading. The phase transformation process is sensitive to Ṗ/P but the final volume fractions are almost identical (45%). Furthermore, most of the phase transformation is completed during a short initial time followed by slight linear increase of the M-phase volume fraction with holding time. The phase transformation continuously slowed with increasing indentation depth when indented with a constant strain rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Preparation of spherical zirconia powder in microemulsion system and its densification behavior

    Energy Technology Data Exchange (ETDEWEB)

    Ma Tian; Huang Yong; Yang Jinlong; He Jintao; Zhao Lei

    2004-09-15

    The water droplets in the microemulsion system of cyclohexane/water/TritonX-100/hexyl alcohol can act as the nano-reactors which solubilize zirconium oxychloride and ammonia separately. The precipitation reactions will take place in the confined spaces determined by the droplets size. The minute original reactors help us obtain nano-size spherical zirconia amorphous powder with uniform diameter distribution and weak aggregate. Such powder begins to crystallize at the temperature about 475 deg. C, and its shrinkage of densification will be elementarily finished from 1080 to 1280 deg. C. The powder is formed by dry pressing process. The 99% relative density and 100% tetragonal phase can be obtained when the green body is sintered at 1400 deg. C for 2 h.

  12. Precursor type affecting surface properties and catalytic activity of sulfated zirconia

    Directory of Open Access Journals (Sweden)

    Zarubica Aleksandra R.

    2007-01-01

    Full Text Available Zirconium-hydroxide precursor samples are synthesized from Zr-hydroxide, Zr-nitrate, and Zr-alkoxide, by precipitation/impregnation, as well as by a modified sol-gel method. Precursor samples are further sulphated for the intended SO4 2- content of 4 wt.%, and calcined at 500-700oC. Differences in precursors’ origin and calcination temperature induce the incorporation of SO4 2- groups into ZrO2 matrices by various mechanisms. As a result, different amounts of residual sulphates are coupled with other structural, as well as surface properties, resulting in various catalytic activities of sulphated zirconia samples. Catalyst activity and selectivity are a complex synergistic function of tetragonal phase fraction, sulphates contents, textural and surface characteristics. Superior activity of SZ of alkoxide origin can be explained by a beneficial effect of meso-pores owing to a better accommodation of coke deposits.

  13. Fitting accuracy and fracture resistance of crowns using a hybrid zirconia frame made of both porous and dense zirconia.

    Science.gov (United States)

    Nakamura, Takashi; Sugano, Tsuyoshi; Usami, Hirofumi; Wakabayashi, Kazumichi; Ohnishi, Hiroshi; Sekino, Tohru; Yatani, Hirofumi

    2015-01-01

    The purpose of this study is to evaluate the fitting accuracy and fracture resistance of crowns using a hybrid zirconia frame made of both porous and dense zirconia. Commercial semi-sintered zirconia, sintered dense zirconia and sintered hybrid zirconia were used. Sintered zirconia was milled using the CAD/CAM system, and semi-sintered zirconia was milled and sintered to fabricate molar crown frames. Completed frames were veneered with tooth-colored porcelain. The marginal and internal gaps between frames/crowns and abutments were measured. Each crown specimen was subjected to a fracture test. There were no significant differences in marginal and internal gap among all the frames and crowns. The crown with the hybrid zirconia frame had a 31-35% greater fracture load than that with the commercial or dense zirconia frame (pcrowns with a hybrid zirconia frame have a high fracture resistance.

  14. Evaluating Bounds and Estimators for Constants of Random Polycrystals Composed of Orthotropic Elastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J. G.

    2012-03-01

    While the well-known Voigt and Reuss (VR) bounds, and the Voigt-Reuss-Hill (VRH) elastic constant estimators for random polycrystals are all straightforwardly calculated once the elastic constants of anisotropic crystals are known, the Hashin-Shtrikman (HS) bounds and related self-consistent (SC) estimators for the same constants are, by comparison, more difficult to compute. Recent work has shown how to simplify (to some extent) these harder to compute HS bounds and SC estimators. An overview and analysis of a subsampling of these results is presented here with the main point being to show whether or not this extra work (i.e., in calculating both the HS bounds and the SC estimates) does provide added value since, in particular, the VRH estimators often do not fall within the HS bounds, while the SC estimators (for good reasons) have always been found to do so. The quantitative differences between the SC and the VRH estimators in the eight cases considered are often quite small however, being on the order of ±1%. These quantitative results hold true even though these polycrystal Voigt-Reuss-Hill estimators more typically (but not always) fall outside the Hashin-Shtrikman bounds, while the self-consistent estimators always fall inside (or on the boundaries of) these same bounds.

  15. Three-dimensional digital approximations of grain boundary networks in polycrystals

    International Nuclear Information System (INIS)

    Lee, S-B; Rohrer, G S; Rollett, A D

    2014-01-01

    In this work, we offer a set of algorithms that convert a voxellated image to a conformal surface mesh that is targeted for polycrystalline materials containing grains with a wide range of sizes and complex shapes. More specifically, we propose a simple but effective algorithm for approximating the grain boundary networks that are implicit in three-dimensional digital images of polycrystals. The algorithm segments a three-dimensional digital image of a polycrystalline microstructure and then smoothes an interpolated conformal surface mesh of the grain boundary network while maintaining certain characteristic features of the microstructure. It is found that the proposed algorithm successfully approximates the grain boundary network based only on the digital, voxellated images of the polycrystal. Simulated microstructures are used to verify that the resulting mesh qualitatively and quantitatively approximates the true structure, in terms of the displacement of the nodes, the grain volume change and the dihedral angle distribution along triple junctions after smoothing. The effect of the use of the cubic grid for mapping digital microstructures on the grain boundary approximation is also discussed. (paper)

  16. Modeling bending of α-titanium with embedded polycrystal plasticity in implicit finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Knezevic, Marko, E-mail: knezevic@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lebensohn, Ricardo A. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Cazacu, Oana; Revil-Baudard, Benoit [Department of Mechanical and Aerospace Engineering, University of Florida, REEF, 1350 N Poquito Road, Shalimar, FL 32539 (United States); Proust, Gwénaëlle [School of Civil Engineering, University of Sydney, NSW 2006 (Australia); Vogel, Sven C. [Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM (United States); Nixon, Michael E. [Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL 32542 (United States)

    2013-03-01

    An accurate description of the mechanical response of α-titanium requires consideration of mechanical anisotropy. In this work we adapt a polycrystal self-consistent model embedded in finite elements to simulate deformation of textured α-titanium under quasi-static conditions at room temperature. Monotonic tensile and compressive macroscopic stress–strain curves, electron backscattered diffraction and neutron diffraction data are used to calibrate and validate the model. We show that the model captures with great accuracy the anisotropic strain hardening and texture evolution in the material. Comparisons between predictions and experimental data allow us to elucidate the role that the different plastic deformation mechanisms play in determining microstructure and texture evolution. The polycrystal model, embedded in an implicit finite element code, is then used to simulate geometrical changes in bending experiments of α-titanium bars. These predictions, together with results of a macroscopic orthotropic elasto-plastic model that accounts for evolving anisotropy, are compared with the experiments. Both models accurately capture the experimentally observed upward shift of the neutral axis as well as the rigidity of the material response along hard-to-deform crystallographic direction.

  17. Deconvolution of experimental data of aggregates using self-consistent polycrystal models

    International Nuclear Information System (INIS)

    Tome, C.N.; Christodoulou, N.; Holt, R.; Woo, C.H.; Lebensohn, R.A.; Turner, P.A.

    1994-01-01

    We present in this work an overview of self-consistent polycrystal models, together with a comprehensive body of work where those models are used to characterize the response of zirconium alloy aggregates under several deformation regimes. In particular, we address here: evolution of internal stresses associated with heat treatments (thermo-elastic regime) and small deformations (elasto-plastic regime); dimensional changes induced by creep and growth during neutron irradiation (visco-elastic regime); texture development associated with forming operations (visco-plastic regime). In each case we emphasize the effect of texture and internal stresses in the observed response of the aggregate, and from the comparison of the predictions with experimental evidence we determine the single crystal properties from the macroscopic response of the polycrystal. The latter approach is particularly useful in the case of zirconium alloys, a material for which it is not possible to grow single crystals and thus directly measure their single crystal properties. Specifically, we infer information concerning: the stress-free lattice parameters and thermal coefficients of the hexagonal crystals; the irradiation creep compliances and growth coefficients; the crystallographic deformation modes and their associated critical stresses. (au) (38 refs.)

  18. Phase field modelling of precipitate morphologies in systems with tetragonal interfacial free energy anisotropy

    OpenAIRE

    Roy, Arijit; Gururajan, M P

    2017-01-01

    A wide variety of morphologies arise due to the tetragonal anisotropy in interfacial free energy. In this paper, we report on a family of Extended Cahn-Hilliard (ECH) models for incorporating tetragonal anisotropy in interfacial free energy. We list the non-zero and independent parameters that are introduced in our model and list the constraints on them. For appropriate choice of these parameters, our model can produce a many of the morphologies seen in tetragonal systems such as di-pyramids,...

  19. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  20. Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors

    International Nuclear Information System (INIS)

    Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.

    2013-01-01

    Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10–15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr 1−x A x O 2−x/2 (A=Y, Sc; 0≤x≤0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: ► Zr 1−x A x O 2−x/2 (A=Y, Sc; 0≤x≤0.12) solid solutions have been prepared as nanostructured powders. ► The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. ► The temperature of the thermal treatment controls particle sizes. ► The preparation procedure has been scaled up to the 100 g scale. ► This method is appropriate for the large-scale industrial preparation of multimetallic systems.

  1. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses.

    Science.gov (United States)

    De Aza, A H; Chevalier, J; Fantozzi, G; Schehl, M; Torrecillas, R

    2002-02-01

    Mono-phase bio-ceramics (alumina and zirconia) are widely used as femoral heads in total hip replacements (THR) as an alternative to metal devices. Unfortunately, the orthopaedic community reports significant in-vivo failures. Material scientists are already familiar with composites like alumina zirconia. Since both are biocompatible, this could prove to be a new approach to implants. This paper deals with a new generation of alumina-zirconia nano-composites having a high resistance to crack propagation, and as a consequence may offer the option to improve lifetime and reliability of ceramic joint prostheses. The reliability of the above mentioned three bio-ceramics (alumina, zirconia and zirconia toughened alumina) for THR components is analysed based on the study of their slow crack-growth behaviour. The influence of the processing conditions on the microstructure development, of the zirconia toughened alumina composites and the effect of these microstructures, on its mechanical properties, are discussed.

  2. Structural study on cubic-tetragonal transition of CH3NH3PbI3

    International Nuclear Information System (INIS)

    Kawamura, Yukihiko; Mashiyama, Hiroyuki; Hasebe, Katsuhiko

    2002-01-01

    The cubic-tetragonal phase transition of CH 3 NH 3 PbI 3 was investigated by single crystal X-ray diffractometry. The crystal structure was refined at five temperatures in the tetragonal phase. The PbI 6 octahedron rotates around the c-axis alternatively to construct the SrTiO 3 -type tetragonal structure. A methylammonium ion is partially ordered; 24 disordered states in the cubic phase are reduced to 8. With decreasing temperature, the rotation angle of the octahedron increases monotonically, which indicates it is an order parameter of the cubic-tetragonal transition. (author)

  3. Catastrophic failure of a monolithic zirconia prosthesis.

    Science.gov (United States)

    Chang, Jae-Seung; Ji, Woon; Choi, Chang-Hoon; Kim, Sunjai

    2015-02-01

    Recently, monolithic zirconia restorations have received attention as an alternative to zirconia veneered with feldspathic porcelain to eliminate chipping failures of veneer ceramics. In this clinical report, a patient with mandibular edentulism received 4 dental implants in the interforaminal area, and a screw-retained monolithic zirconia prosthesis was fabricated. The patient also received a maxillary complete removable dental prosthesis over 4 anterior roots. At the 18-month follow-up, all of the zirconia cylinders were seen to be fractured, and the contacting abutment surfaces had lost structural integrity. The damaged abutments were replaced with new abutments, and a new prosthesis was delivered with a computer-assisted design and computer-assisted manufacturing fabricated titanium framework with denture teeth and denture base resins. At the 6-month recall, the patient did not have any problems. Dental zirconia has excellent physical properties; however, care should be taken to prevent excessive stresses on the zirconia cylinders when a screw-retained zirconia restoration is planned as a definitive prosthesis. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns.

    OpenAIRE

    Alsadon, O.; Patrick, D.; Johnson, A.; Pollington, S.; Wood, D.

    2017-01-01

    The objectives were to evaluate the fracture resistance and stress concentration in zirconia/composite veneered crowns in comparison to zirconia/porcelain crowns using occlusal fracture resistance and by stress analysis using finite element analysis method. Zirconia substructures were divided into two groups based on the veneering material. A static load was applied occlusally using a ball indenter and the load to fracture was recorded in Newtons (N). The same crown design was used to create ...

  5. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Effect of Novolac and Graphite Polycrystal on the Acetone Penetration and Thermal Resistance of Nanocomposites Based on Nitrile Rubber

    Directory of Open Access Journals (Sweden)

    Rasool Mahboudi

    2015-03-01

    Full Text Available Developments of high diffusive environments in coincidence with emerging fluids with strong ability to destroy polymeric systems have resulted in rapid deformation and destruction of polymeric parts when in contact with such aggressive environments. Therefore, nowadays, there is a great need to develop highly resistant materials towards aggressive chemicals and harsh conditions. In this paper the effect of graphite polycrystal powders and novolac type phenolic resin has been experimentally studied towards acetone diffusion and thermal stability of polyacrylonitrile butadiene rubber/novolac/graphite polycrystal nanocomposites. The results obtained from dynamic mechanical thermal analysis (DMTA and swelling in acetone showed that after 32 h samples reached to 94.2% of final swelling state. By using Avrami equation and swelling experimental data, the functionality of Ln(m/m0 to novolac and graphite polycrystal weight fraction and test duration time were evaluated. This theoretical equation evaluated and predicted the amount of Ln(m/m0 with 5.92% error after 32 h. Increases in graphite polycrystal content were followed by decreases in diffusion of acetone and modulus, before glass transition temperature, and increased thermal stability and thermal resistance of the nanocomposites. Increases in novolac content by 35 wt%, decreased glass transition temperature, thermal stability and thermal resistance of the nanocomposites. In nanocomposite, containing 45 wt% of novolac, dynamic mechanical thermal analysis (DMTA data and scanning electron microscope (SEM images showed phase separation of thermoset and elastomer in the nanocomposite blend.

  7. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials

    Science.gov (United States)

    Nayak, Ajaya K.; Kumar, Vivek; Ma, Tianping; Werner, Peter; Pippel, Eckhard; Sahoo, Roshnee; Damay, Franoise; Rößler, Ulrich K.; Felser, Claudia; Parkin, Stuart S. P.

    2017-08-01

    Magnetic skyrmions are topologically stable, vortex-like objects surrounded by chiral boundaries that separate a region of reversed magnetization from the surrounding magnetized material. They are closely related to nanoscopic chiral magnetic domain walls, which could be used as memory and logic elements for conventional and neuromorphic computing applications that go beyond Moore’s law. Of particular interest is ‘racetrack memory’, which is composed of vertical magnetic nanowires, each accommodating of the order of 100 domain walls, and that shows promise as a solid state, non-volatile memory with exceptional capacity and performance. Its performance is derived from the very high speeds (up to one kilometre per second) at which chiral domain walls can be moved with nanosecond current pulses in synthetic antiferromagnet racetracks. Because skyrmions are essentially composed of a pair of chiral domain walls closed in on themselves, but are, in principle, more stable to perturbations than the component domain walls themselves, they are attractive for use in spintronic applications, notably racetrack memory. Stabilization of skyrmions has generally been achieved in systems with broken inversion symmetry, in which the asymmetric Dzyaloshinskii-Moriya interaction modifies the uniform magnetic state to a swirling state. Depending on the crystal symmetry, two distinct types of skyrmions have been observed experimentally, namely, Bloch and Néel skyrmions. Here we present the experimental manifestation of another type of skyrmion—the magnetic antiskyrmion—in acentric tetragonal Heusler compounds with D2d crystal symmetry. Antiskyrmions are characterized by boundary walls that have alternating Bloch and Néel type as one traces around the boundary. A spiral magnetic ground-state, which propagates in the tetragonal basal plane, is transformed into an antiskyrmion lattice state under magnetic fields applied along the tetragonal axis over a wide range of temperatures

  8. Preliminary studies on the effects of in situ synthesized polycrystalline particulates on the bonding strength of resin to zirconia ceramic surface

    Science.gov (United States)

    Tian, Yueming; Zhang, Lingling; Zhang, Zutai; Ding, Ning; Liu, Yan; Tian, Guozhong

    2015-12-01

    To develop a novel zirconia surface modification method to improve the shear bond strength of resin cement. Yttrium-stabilized tetragonal zirconia (Y-TZP) discs were cut from prefabricated ceramic blocks and polished through 1200-grit SiC abrasive. Based on the immersion time of zirconia disc in HF solution, zirconia samples were divided into four groups. Then, put samples to CaCl2 solution, dipped in NaOH solution from 20 °C to 80 °C in a water bath, kept at 80 °C for 2 h. After final sintering, surface appearance and chemical components were characterized with scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and X-ray diffraction (XRD), respectively. The surface roughness of discs was measured as well. Shear bond strength of zirconia to resin cement was tested and the failure mode was analyzed. Three point bending tests were done to determine the flexural strength of samples. The statistical analysis was also done for all above data. ZrO2 polycrystalline particulates were in situ synthesized on the surface of zirconia substrates. The Ra values of the four groups were 0.27 ± 0.05 μm, 0.89 ± 0.34 μm, 1.04 ± 0.41 μm and 1.41 ± 0.38 μm, respectively. The treated group was statistically significant different from the control group (p 0.05). In the conclusion, in situ synthesized polycrystalline particulates on zirconium ceramic surface can effectively improve the bonding strength of resin, avoid micro cracks and maintain the mechanical strength of ceramics.

  9. Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings

    Science.gov (United States)

    Shankar, N. R.; Herman, H.; Singhal, S. P.; Berndt, C. C.

    1984-01-01

    ZrO2-7.8mol. pct. YO1.5, a fused powder, and ZrO2-8.7mol. pct. YO1.5, a prereacted powder, were plasma-sprayed onto steel substrates. Neutron diffraction and X-ray diffraction of the as-received powder, the powder plasma sprayed into water, as-sprayed coatings, and coatings heat-treated for 10 and 100 h were carried out to study phase transformations and ordering of the oxygen ions on the oxygen sublattice. The as-received fused powder has a much lower monoclinic percentage than does the pre-reacted powder, this resulting in a much lower monoclinic percentage in the coating. Heat treatment increases the percentages of the cubic and monoclinic phases, while decreasing the tetragonal content. An ordered tetragonal phase is detected by the presence of extra neutron diffraction peaks. These phase transformations and ordering will result in volume changes. The implications of these transformations on the performance of partially stabilized zirconia thermal barrier coatings is discussed.

  10. PAC characterization of Gd and Y doped nanostructured zirconia solid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Caracoche, Maria C. [Facultad de Ciencias Exactas UNLP-IFLP and CICPBA (Argentina)]. E-mail: cristina@fisica.unlp.edu.ar; Martinez, Jorge A. [Facultad de Ciencias Exactas UNLP-IFLP and CICPBA (Argentina); Pasquevich, Alberto F. [Facultad de Ciencias Exactas UNLP-IFLP and CICPBA (Argentina); Rivas, Patricia C. [Facultad de Ciencias Agronomicas y Forestales UNLP-IFLP and CONICET (Argentina); Djurado, Elizabeth [INPG/CNRS, Cedex (France); Boulc' h, Florence [INPG/CNRS, Cedex (France)

    2007-02-01

    A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y{sub 2}O{sub 3}-ZrO{sub 2} and 2 mol% Gd{sub 2}O{sub 3}-ZrO{sub 2} nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t'- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t'-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.

  11. Nucleation and growth characteristics of cavities during the early stages of tensile creep deformation in a superplastic zirconia-20 wt% alumina composite

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.; Nutt, S.R.

    1997-01-01

    Constant-stress tensile creep experiments on a superplastic 3-mol%-yttria-stabilized tetragonal zirconia composite with 20 wt% alumina revealed that cavities nucleate relatively early during tensile deformation. The number of cavities nucleated increases with increasing imposed stress. The cavities nucleate at triple points associated largely with an alumina grain, and then grow rapidly in a cracklike manner to attain dimensions on the order of the grain facet size. It is suggested that coarser-grained superplastic ceramics exhibit lower ductility due to the ease in formation of such grain boundary facet-cracks and their interlinkage to form a macroscopic crack of critical dimensions

  12. Shear bond strength of veneering ceramic to zirconia core after different surface treatments.

    Science.gov (United States)

    Kirmali, Omer; Akin, Hakan; Ozdemir, Ali Kemal

    2013-06-01

    The aim of this study was to evaluate the effect of different surface treatments: sandblasting, liners, and different laser irradiations on shear bond strength (SBS) of pre-sintered zirconia to veneer ceramic. The SBS between veneering porcelain and zirconium oxide (ZrO2) substructure was weak. Various surface treatment methods have been suggested for zirconia to obtain high bond strength to veneering porcelain. There is no study that evaluated the bond strength between veneering porcelain and the different surface treatments on pre-sintered ZrO2 substructure. Two hundred specimens with 7 mm diameter and 3 mm height pre-sintered zirconia blocks were fabricated. Specimens were randomly divided into 10 groups (n=20) according to surface treatments applied. Group C, untreated (Control); Group E, erbium:yttrium-aluminum-garnet (Er:YAG) laser irradiated; Group N, neodymium:yttrium-aluminum-garnet (Nd:YAG) laser irradiated; Group SB, sandblasted; Group L, liner applied; Group NL, Nd:YAG laser irradiated+liner applied; Group EL, Er:YAG laser irradiated+liner applied; Group SN, sandblasted+Nd:YAG laser irradiated; Group SE, sandblasted+Er:YAG laser irradiated; and Group SL, sandblasted+liner applied. The disks were then veneered with veneering porcelain. Before the experiment, specimens were steeped in 37°C distilled water for 24 h. All specimens were thermocycled for 5000 cycles between 5°C and 55°C with a 30 sec dwell time. Shear bond strength test was performed at a crosshead speed of 1 mm/min. The fractured specimens were examined under a stereomicroscope to evaluate the fracture pattern. Surface treatments significantly changing the topography of the yttrium-stabilized tetragonal zirconia (Y-TZP) ceramic according to scanning electron microscopic (SEM) images. The highest mean bond strength value was obtained in Group SE, and the lowest bond strength value was observed in NL group. Bond strength values of the other groups were similar to each other. This

  13. Synthesis of mesh-shaped calcia partially stabilized zirconia using eggshell membrane template as filler composite

    Directory of Open Access Journals (Sweden)

    Gema Gempita

    2017-08-01

    Full Text Available This experiment was conducted experimentally to synthesize Calcia Partially Stabilized Zirconia (Ca-PSZ by sol-gel method using eggshell membrane template as a composite filler. The eggshell membrane was used to produce a mesh shaped structure, which hopefully can improve the mechanical properties of the composite. Ca-PSZ filler was synthesized from ZrOCl2 precursor and Ca(NO32 stabilizer with a 24 hours immersion time. Ca-PSZ of synthesis then mixed with the resin matrix to test its composite hardness. The EDS characterization results suggested that the sample contained elements of zirconia, calcium, and oxygen. Whereas, the XRD characterization identified that crystal structures that formed in the sample were nano scale tetragonal. Characterization of SEM showed Ca-PSZ with mesh structured. The average composite hardness value was 15.79 VHN. The composites with Ca-PSZ-synthesized filler could be prepared and its hardness value was higher than the composite with Ca-PSZ filler in spherical particles, but the hardness was still below the composite on the market.

  14. Brazing of zirconia to titanium using Ag-Cu and Au-Ni filler alloys

    Directory of Open Access Journals (Sweden)

    Jean S. Pimenta

    2013-12-01

    Full Text Available Advanced ceramic is usually joined to metal by the well-known direct brazing process, where costly active filler alloys can be considered a limitation. Brazing using active-metal-free filler alloy as insert between the joint components is an attempt to overcome it. The active metal diffusion from the titanium member through the bulk of molten filler to the ceramic was responsible to produce an active filler alloy in loco and promote reduction of the zirconium oxide to improve wetting on the ceramic surface. Unalloyed titanium was joined in a high-vacuum furnace (<3x10-5 mbar to yttria-tetragonal zirconia polycristals (Y-TZP and zirconia partially stabilized with magnesia (Mg-PSZ, where commercial fillers Ag-28Cu and Au-18Ni with respective thermal cycles were evaluated. Helium gas leak detection test was performed at the ceramic/metal interface at room temperature; samples from reliable vacuum tight joints were examined by microstructural analysis techniques and energy dispersive X-ray analysis at the joint cross-section. Tight joints were produced with eutectic Ag-Cu filler, revealing an intermetallic layer and a dark reaction layer near the ceramic surface; titanium diffusion was efficient for superficial chemical interactions between individual components. Brazing joints were also tested using three-point flexure testing.

  15. Electronic structure and electron energy-loss spectroscopy of ZrO2 zirconia

    Science.gov (United States)

    Dash, L. K.; Vast, Nathalie; Baranek, Philippe; Cheynet, Marie-Claude; Reining, Lucia

    2004-12-01

    The atomic and electronic structures of zirconia are calculated within density functional theory, and their evolution is analyzed as the crystal-field symmetry changes from tetrahedral [cubic (c-ZrO2) and tetragonal (t-ZrO2) phases] to octahedral (hypothetical rutile ZrO2 ), to a mixing of these symmetries (monoclinic phase, m-ZrO2 ). We find that the theoretical bulk modulus in c-ZrO2 is 30% larger than the experimental value, showing that the introduction of yttria in zirconia has a significant effect. Electronic structure fingerprints which characterize each phase from their electronic spectra are identified. We have carried out electron energy-loss spectroscopy experiments at low momentum transfer and compared these results to the theoretical spectra calculated within the random phase approximation. We show a dependence of the valence and 4p ( N2,3 edge) plasmons on the crystal structure, the dependence of the latter being brought into the spectra by local-field effects. Last, we attribute low energy excitations observed in EELS of m-ZrO2 to defect states 2eV above the top of the intrinsic valence band, and the EELS fundamental band gap value is reconciled with the 5.2 or 5.8eV gaps determined by vacuum ultraviolet spectroscopy.

  16. Effect of the energy deposition modes on the structural stability of pure zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Simeone, D. [Materiaux fonctionnels pour l' energie, CEA-CNRS-Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France)], E-mail: david.simeone@cea.fr; Baldinozzi, G.; Gosset, D. [Materiaux fonctionnels pour l' energie, CEA-CNRS-Ecole Centrale Paris, CEA/DEN/SRMA 91191 Gif-sur-Yvette and SPMS, 92295 Chatenay-Malabry (France); LeCaer, S. [DSM/DRECAM/SCM/URA 331 CNRS, CEA Saclay, 91191 Gif sur Yvette (France); Mazerolles, L. [CECM, UPR CNRS 2801, 94407 Vitry sur Seine (France); Monnet, I.; Bouffard, S. [CIRIL, CEA-CNRS-ENSICAEN, 14070 Caen Cedex 5 (France)

    2008-06-15

    One of the most important goals in materials science is to be able to design materials with specific properties. Irradiation seems to be a powerful tool for the design of advanced materials because of its ability to modify over different scales the microstructure of solids. Nowadays, it is clearly proved that irradiation induces order-disorder phase transitions in metallic alloys and in some ceramics. Recent investigations on pure monoclinic zirconia have clearly shown that a displacive phase transition can be induced by irradiation. In this work, the impact of the energy deposition modes on the structural stability of pure monoclinic ZrO{sub 2} is discussed in detail. Based on experimental evidences, a microscopic model is proposed to explain the displacive phase transition observed in this material after irradiation by low and high energy ions within the Landau theory framework. Even if defects generated by low and high energy ions are quite different, these defects are able to quench the same tetragonal phase in pure zirconia.

  17. CeO2-ZrO2 ceramic compounds

    International Nuclear Information System (INIS)

    Melo, F.C.L.; Cairo, C.A.C.; Devezas, T.C.; Nono, M.C.A.

    1988-01-01

    In order to study the mechanical properties of tetragonal polycrystal zirconia stabilized with ceria various powder compositions with different CeO 2 content were made. Modulus of rupture for those compounds was measured. Tetragonal retained phase was determined for samples of CeO 2 -ZrO 2 ceramics with and without superficial mechanical treatment. The experimental results allowed us to evaluate the effects of CeO 2 content and sintering temperature in the mechanical properties and tetragonal transformed phase (t→ m) in ceramics of CeO 2 -ZrO 2 systems. (author) [pt

  18. Inelastic neutron scattering in tetragonal KNbO3

    International Nuclear Information System (INIS)

    Fontana, M.D.; Dolling, G.; Kugel, G.E.; Carabatos, C.

    1979-01-01

    Inelastic neutron scattering experiments in tetragonal KNbO 3 show a high anisotropy in some regions of the phonon dispersion relation and the existence of strong one-dimensional intercell correlations between atomic motions along the [100] and [010] directions, in agreement with x-ray diffuse-scattering measurements in the same phase. The transverse phonon modes propagating normally to these directions of strong correlations, that is, with polarization vectors parallel to them, are relatively soft, not only near the zone center but all the way to the zone boundary. Comparison of these results with the Raman, neutron, and x-ray data obtained in the other phases suggests a description of the ferroelectric phase transition mechanism in KNbO 3 in terms of soft modes and dynamic correlations in each phase. (author)

  19. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    Science.gov (United States)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  20. Two-body wear comparison of zirconia crown, gold crown, and enamel against zirconia.

    Science.gov (United States)

    Kwon, Min-Seok; Oh, Sang-Yeob; Cho, Sung-Am

    2015-07-01

    Full zirconia crowns have recently been used for dental restorations because of their mechanical properties. However, there is little information about their wear characteristics against enamel, gold, and full zirconia crowns. The purpose of this study was to compare the wear rate of enamel, gold crowns, and zirconia crowns against zirconia blocks using an in vitro wear test. Upper specimens were divided into three groups: 10 enamels (group 1), 10 gold crowns (group 2, Type III gold), and 10 zirconia crowns (group 3, Prettau(®)Zirkon 9H, Zirkonzahn, Italy). Each of these specimens was wear tested against a zirconia block (40×30×3mm(3)) as a lower specimen (30 total zirconia blocks). Each specimen of the groups was abraded against the zirconia block for 600 cycles at 1Hz with 15mm front-to-back movement on an abrading machine. Moreover, the load applied during the abrading test was 50N, and the test was performed in a normal saline emulsion for 10min. Three-dimensional images were taken before and after the test, and the statistical analysis was performed using the Krushal-Wallis test and Mann-Whitney test (p=0.05). The mean volume loss of group 1 was 0.47mm(3), while that of group 2 and group 3 was 0.01mm(3). The wear volume loss of enamels against zirconia was higher than that of gold and zirconia crowns. Moreover, according to this result, zirconia crowns are not recommended for heavy bruxers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. On the interfacial fracture resistance of resin-bonded zirconia and glass-infiltrated graded zirconia

    Science.gov (United States)

    Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu

    2015-01-01

    Objective A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. Methods The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37 °C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55 °C followed by 2-month aging at 37 °C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. Results The baseline and long-term GC for graded zirconia was 2–3 and 8 times that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. Significance The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. PMID:26365987

  2. On the interfacial fracture resistance of resin-bonded zirconia and glass-infiltrated graded zirconia.

    Science.gov (United States)

    Chai, Herzl; Kaizer, Marina; Chughtai, Asima; Tong, Hui; Tanaka, Carina; Zhang, Yu

    2015-11-01

    A major limiting factor for the widespread use of zirconia in prosthetic dentistry is its poor resin-cement bonding capabilities. We show that this deficiency can be overcome by infiltrating the zirconia cementation surface with glass. Current methods for assessing the fracture resistance of resin-ceramic bonds are marred by uneven stress distribution at the interface, which may result in erroneous interfacial fracture resistance values. We have applied a wedge-loaded double-cantilever-beam testing approach to accurately measure the interfacial fracture resistance of adhesively bonded zirconia-based restorative materials. The interfacial fracture energy GC was determined for adhesively bonded zirconia, graded zirconia and feldspathic ceramic bars. The bonding surfaces were subjected to sandblasting or acid etching treatments. Baseline GC was measured for bonded specimens subjected to 7 days hydration at 37°C. Long-term GC was determined for specimens exposed to 20,000 thermal cycles between 5 and 55°C followed by 2-month aging at 37°C in water. The test data were interpreted with the aid of a 2D finite element fracture analysis. The baseline and long-term GC for graded zirconia was 2-3 and 8 times greater than that for zirconia, respectively. More significantly, both the baseline and long-term GC of graded zirconia were similar to those for feldspathic ceramic. The interfacial fracture energy of feldspathic ceramic and graded zirconia was controlled by the fracture energy of the resin cement while that of zirconia by the interface. GC for the graded zirconia was as large as for feldspathic ceramic, making it an attractive material for use in dentistry. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Milling properties of low temperature sintered zirconia blocks for dental use.

    Science.gov (United States)

    Lan, Ting-Hsun; Wang, Chau-Hsiang; Chen, Ker-Kong; Wang, Moo-Chin; Lee, Huey-Er

    2017-04-01

    To investigate the milling properties of different yttria-tetragonal zirconia polycrystalline (Y-TZP) block materials by applying a dental computer numerical control (CNC) milling center. Low temperature sintering zirconia block denoted by KMUZ (experimental) with two commercial zirconia blocks for T block made in Taiwan and a G block made in Germany were compared for the milling properties. Seventy-two specimens were milled using the same CNC milling center, and properties were evaluated by measuring the weight loss (g), milling time (s), margin integrity (%) and broken diameter (μm). The crystalline phases contents were identified by X-ray diffraction and the microstructures of the sintering specimens were observed by scanning electron microscopy and transmission electron microscopy. The mean milling time of G and KMUZ were significantly shorter than T (P<0.05). The KMUZ samples exhibited the least weight loss among the three kinds of blocks (P<0.05). The percentages of marginal integrity after milling were high in G and KMUZ but low in T (P<0.05). The mean broken diameters were from 90μm to 120μm. The phase transformation of t-ZrO 2 (KMUZ: 7.4%, G: 5.9%, T: 3.2%) to m-ZrO 2 when facing the milling pressure in ZrO 2 blocks was observed by XRD. The result of TEM microstructure of KMUZ revealed that Y and Si were soluble in grain boundaries. The results show that the milling properties of KMUZ were better than one commercial T and near the G. The hindered grain growth, as a result of the Y 3+ content in the grain boundaries, also plays a role in promoting the abnormal grain growth of 3Y-TZP. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Retrieved Magnesia-Stabilized Zirconia Femoral Heads Exhibit Minimal Roughening and Abrasive Potential.

    Science.gov (United States)

    Roy, Marie E; Whiteside, Leo A; Sebastian, Arun M

    2017-12-01

    The degradation of ceramic femoral heads made of yttria-stabilized zirconia (Y-TZP) because of tetragonal-to-monoclinic phase transformation in vivo is well-described, whereas magnesia-stabilized zirconia (Mg-PSZ) ceramics resist phase transformation in a warm aqueous environment. The purpose of this study was to evaluate phase transformation, changes in surface topography, and roughness parameters, including changes in surface polarity and abrasiveness, among retrieved zirconia femoral heads. A total of 69 Y-TZP and 86 Mg-PSZ-retrieved femoral heads were examined, with 5 never-implanted heads of each type as controls. Selected heads were scanned by x-ray diffraction, to measure % monoclinic phase. All heads were scanned by optical profilometry to find visual evidence of degradation and to measure surface roughness, surface polarity, and the functional roughness parameters. Monoclinic phase % and roughness data were plotted vs time in vivo. Visual evidence of phase transformation was observed among Y-TZP femoral heads, and some exhibited pitting. Y-TZP femoral heads roughened and become more abrasive in vivo, although those made by CeramTec exhibited less degradation than those by Morgan and Saint Gobain. In contrast, Mg-PSZ heads did not exhibit pitting, undergo phase transformation, or roughen in vivo, and retained a negative surface polarity. All Y-TZP femoral heads exhibited increased phase transformation with time in vivo, although not all Y-TZP heads exhibited catastrophic roughening. No phase transformation was observed on Mg-PSZ femoral heads after up to 19.2 years in vivo. The lack of degradation among Mg-PSZ retrievals suggests a lower wear potential in joint replacement. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating.

    Science.gov (United States)

    Hübsch, C; Dellinger, P; Maier, H J; Stemme, F; Bruns, M; Stiesch, M; Borchers, L

    2015-01-01

    In this study, the application of transparent physical vapor deposition (PVD) coatings on zirconia ceramics was examined as an approach to retard the low-temperature degradation of zirconia for dental applications. Transparent monolayers of titanium oxide (TixOy) and multilayers consisting of titanium oxide-alumina-titanium oxide (TixOy-AlxOy-TixOy) were deposited onto standardized discs of 3Y-TZP using magnetron sputtering. Using X-ray photospectroscopy and time-of-flight secondary-ion mass spectrometry, the compositions of the coatings were verified, and an approximate thickness of 50 nm for each type of coating was ascertained. After aging the coated and uncoated samples in water vapor at 134°C and 3 bar for 4, 8, 16, 32, 64 and 128 h, the monoclinic phase content was determined using X-ray diffraction, and its impact on mechanical properties was assessed in biaxial flexural strength tests. In addition, the depth of the transformation zone was measured from scanning electron microscopy images of the fracture surfaces of hydrothermally aged samples. The results revealed that the tetragonal-to-monoclinic phase transformation of the zirconia ceramic was retarded by the application of PVD coatings. During the first stages of aging, the coated samples exhibited a significantly lower monoclinic phase content than the uncoated samples and, after 128 h of aging, showed a transformation zone which was only ∼12-15 μm thick compared to ∼30 μm in the control group. Biaxial flexural strength decreased by ∼10% during aging and was not influenced by the application of a PVD coating. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Investigating Zirconia Catalysts = Handling Sensitive Materials

    OpenAIRE

    Klose, Barbara S.; Jentoft, Rolf E.; Hahn, Alexander H. P.; Ressler, Thorsten; Yang, Xiaobo; Jentoft, Friederike C.

    2003-01-01

    Investigating Zirconia Catalysts = Handling Sensitive Materials B.S. Klose, R.E. Jentoft, A. Hahn, T. Ressler, X. Yang, F.C. Jentoft Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society Faradayweg 4-6, D-14195 Berlin, Germany Introduction Sulfated zirconia (SZ) based catalysts are active for n-butane isomerization at 373 K [1]. Despite intense research, no convincing structure-activity relationship for these materials has evolved. Still in question...

  7. The Development of Directional Decohesion Finite Elements for Multiscale Failure Analysis of Metallic Polycrystals

    Science.gov (United States)

    Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.

  8. Constitutive modeling of strain rate effects in nanocrystalline and ultrafine grained polycrystals

    KAUST Repository

    Gurses, Ercan

    2011-05-01

    We present a variational two-phase constitutive model capable of capturing the enhanced rate sensitivity in nanocrystalline (nc) and ultrafine-grained (ufg) fcc metals. The nc/ufg-material consists of a grain interior phase and a grain boundary affected zone (GBAZ). The behavior of the GBAZ is described by a rate-dependent isotropic porous plasticity model, whereas a rate-independent crystal-plasticity model which accounts for the transition from partial dislocation to full dislocation mediated plasticity is employed for the grain interior. The scale bridging from a single grain to a polycrystal is done by a Taylor-type homogenization. It is shown that the enhanced rate sensitivity caused by the grain size refinement is successfully captured by the proposed model. © 2011 Elsevier Ltd. All rights reserved.

  9. A self-consistent model for polycrystal deformation. Description and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B.; Lorentzen, T.

    1997-04-01

    This report is a manual for the ANSI C implementation of an incremental elastic-plastic rate-insensitive self-consistent polycrystal deformation model based on (Hutchinson 1970). The model is furthermore described in the Ph.D. thesis by Clausen (Clausen 1997). The structure of the main program, sc{sub m}odel.c, and its subroutines are described with flow-charts. Likewise the pre-processor, sc{sub i}ni.c, is described with a flowchart. Default values of all the input parameters are given in the pre-processor, but the user is able to select from other pre-defined values or enter new values. A sample calculation is made and the results are presented as plots and examples of the output files are shown. (au) 4 tabs., 28 ills., 17 refs.

  10. Modelling the viscoplastic behavior and the heterogeneous intracrystalline deformation of columnar ice polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    Lebensohn, Ricardo A [Los Alamos National Laboratory; Montagnat, Maurine [LGGE (FRANCE); Mansuy, Philippe [MICHELIN (FRANCE); Duval, Paul [LGGE (FRANCE); Philip, A [LGGE (FRANCE)

    2008-01-01

    A full-field formulation based on Fast Fourier Transforms (FFT) has been adapted and used to predict the micromechanical fields that develop in columnar Ih ice polycrystals deforming in compression by dislocation creep. The predicted intragranular mechanical fields are in qualitative good agreement with experimental observations, in particular those involving the formation of shear and kink bands. These localization bands are associated with the large internal stresses that develop during creep in such anisotropic material, and their location, intensity, morphology and extension are found to depend strongly on the crystallographic orientation of the grains and on their interaction with neighbor crystals. The predictions of the model are also discussed in relation with the deformation of columnar sea and lake ice, and with the mechanical behavior of granular ice of glaciers and polar ice sheets, as well.

  11. Coatings on zirconia for medical applications.

    Science.gov (United States)

    Ferraris, M; Verné, E; Appendino, P; Moisescu, C; Krajewski, A; Ravaglioli, A; Piancastelli, A

    2000-04-01

    In order to combine the mechanical properties of a high-strength inert ceramic (yttria-stabilised zirconia, ZrO2-3%Y2O3, defined as zirconia in the text) with the specific properties of bioactive materials, some zirconia samples were coated by two bioactive phosphosilicate glasses and glass-ceramics: RKKP and AP40. Coatings of about 200-300 microm thickness were prepared by a simple and low-cost firing method. They were characterised by optical and scanning electron microscopy (SEM) and compositional analysis (EDS). The adhesion of the coatings on zirconia was tested by shear tests. Vickers indentations at the coating/zirconia interface were performed in order to observe the crack propagation path. The reactivity of glasses and glass-ceramics coatings towards a simulated body fluid (SBF), having the same ion concentration as that of human plasma, was evaluated and compared to that of the bulk glass and glass-ceramics, by examining the morphology of the reaction layer formed on the surface of the coated zirconia after one month of soaking in the SBF at 37 degrees C.

  12. An overview of monolithic zirconia in dentistry

    Directory of Open Access Journals (Sweden)

    Özlem Malkondu

    2016-07-01

    Full Text Available Zirconia restorations have been used successfully for years in dentistry owing to their biocompatibility and good mechanical properties. Because of their lack of translucency, zirconia cores are generally veneered with porcelain, which makes restorations weaker due to failure of the adhesion between the two materials. In recent years, all-ceramic zirconia restorations have been introduced in the dental sector with the intent to solve this problem. Besides the elimination of chipping, the reduced occlusal space requirement seems to be a clear advantage of monolithic zirconia restorations. However, scientific evidence is needed to recommend this relatively new application for clinical use. This mini-review discusses the current scientific literature on monolithic zirconia restorations. The results of in vitro studies suggested that monolithic zirconia may be the best choice for posterior fixed partial dentures in the presence of high occlusal loads and minimal occlusal restoration space. The results should be supported with much more in vitro and particularly in vivo studies to obtain a final conclusion.

  13. The osseointegration of zirconia dental implants.

    Science.gov (United States)

    Assal, Patrick A

    2013-01-01

    Zirconia is currently extensively used in medicine, especially in orthopedic surgery for various joint replacement appliances. Its outstanding mechanical and chemical properties have made it the "material of choice" for various types of prostheses. Its color in particular makes it a favored material to manufacture dental implants. A literature search through Medline enables one to see zirconia's potential but also to point out and identify its weaknesses. The search shows that zirconia is a biocompatible, osteoconductive material that has the ability to osseointegrate. Its strength of bonding to bone depends on the surface structure of the implant. Although interesting, the studies do not allow for the recommendation of the use of zirconia implants in daily practice. The lack of studies examining the chemical and structural composition of zirconia implants does not allow for a "gold standard" to be established in the implant manufacturing process. Randomized clinical trials (RCT) are urgently needed on surface treatments of zirconia implants intended to achieve the best possible osseointegration.

  14. Thermal characteristics of yttria stabilized zirconia nanolubricants

    Directory of Open Access Journals (Sweden)

    Sakthinathan Ganapathy

    2012-01-01

    Full Text Available The transition from microparticles to nanoparticles can lead to a number of changes in its properties. The objective of this work is to analyze the thermal, tribological properties of yttria stabilized zirconia nanoparticles. Nanosized yttria stabilized zir conia particles were prepared by milling the yttria stabilized zirconia (10 ftm in a planetary ball mill equipped with vials using tungsten carbide balls. After 40 hours milled the yttria stabilized zirconia nanoparticles of sizes ranging from 70-90 nm were obtained. The phase composition and morphologies of the assynthesized particles were characterized by energy dispersive X-ray analysis, scanning electron microscope, transmission electron microscope, thermogravimetric analysis and differential scanning calorimeter, and the images of the same were obtained. From TG-DSC analysis it was confirmed that, the yttria stabilized zirconia nanoparticles were heat stable under different thermal conditions which is due to the addition of yttria to pure zirconia. Due to this property of yttria stabilized zirconia nanoparticles, it can be widely used in high transfer application such as lubricant additives. The heat transfer properties of automotive engine lubricants were determined by utilization of measured thermal conductivity, viscosity index, density, flash point, fire point and pour point revealed that lubricants with additive constituents have a significant effect on the resultant heat transfer characteristics of the lubricants.

  15. The Effect of Zirconia in Hydroxyapatite on Staphylococcus epidermidis Growth

    Directory of Open Access Journals (Sweden)

    Widowati Siswomihardjo

    2012-01-01

    . Conclusion. The addition of zirconia into hydroxyapatite affected the growth of S. epidermidis. Hydroxyapatite with 20% zirconia proved to be an effective concentration to inhibit the growth of S. epidermidis colony.

  16. A review of engineered zirconia surfaces in biomedical applications

    OpenAIRE

    Yin, Ling; Nakanishi, Yoshitaka; Alao, Abdur-Rasheed; Song, Xiao-Fei; Abduo, Jaafar; Zhang, Yu

    2017-01-01

    Zirconia is widely used for load-bearing functional structures in medicine and dentistry. The quality of engineered zirconia surfaces determines not only the fracture and fatigue behaviour but also the low temperature degradation (ageing sensitivity), bacterial colonization and bonding strength of zirconia devices. This paper reviews the current manufacturing techniques for fabrication of zirconia surfaces in biomedical applications, particularly, in tooth and joint replacements, and influenc...

  17. Modeling ferroelectric film properties and size effects from tetragonal interlayer in Hf1-xZrxO2 grains

    Science.gov (United States)

    Künneth, Christopher; Materlik, Robin; Kersch, Alfred

    2017-05-01

    Size effects from surface or interface energy play a pivotal role in stabilizing the ferroelectric phase in recently discovered thin film Zirconia-Hafnia. However, sufficient quantitative understanding has been lacking due to the interference with the stabilizing effect from dopants. For the important class of undoped Hf1-xZrxO2, a phase stability model based on free energy from Density functional theory (DFT) and surface energy values adapted to the sparse experimental and theoretical data has been successful to describe key properties of the available thin film data. Since surfaces and interfaces are prone to interference, the predictive capability of the model is surprising and directs to a hitherto undetected, underlying reason. New experimental data hint on the existence of an interlayer on the grain surface fixed in the tetragonal phase possibly shielding from external influence. To explore the consequences of such a mechanism, we develop an interface free energy model to include the fixed interlayer, generalize the grain model to include a grain radius distribution, calculate average polarization and permittivity, and compare the model with available experimental data. Since values for interface energies are sparse or uncertain, we obtain its values from minimizing the least square difference between predicted key parameters to experimental data in a global optimization. Since the detailed values for DFT energies depend on the chosen method, we repeat the search for different computed data sets and come out with quantitatively different but qualitatively consistent values for interface energies. The resulting values are physically very reasonable and the model is able to give qualitative prediction. On the other hand, the optimization reveals that the model is not able to fully capture the experimental data. We discuss possible physical effects and directions of research to possibly close this gap.

  18. Characterization of combustion synthesized zirconia powder by UV ...

    Indian Academy of Sciences (India)

    Unknown

    Recently, the surface areas of zirconia and sulfated zirconia have been expanded employing surfac- tant template methods (Sudhakar Reddy and Sayari 1996;. Kim et al 1997). The present study describes synthesis of nanocrystalline zirconia using combustion method and its bulk and surface characterization employing ...

  19. Partial-retainer design considerations for zirconia restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.; Salameh, Z.

    2010-01-01

    Objective: Bond strength limitations of adhesive zirconia restorations have stood as a barrier against their widespread use. Selective infiltration etching is a new surface treatment that enhances bonding to zirconia-based materials. Beside bond strength, the performance of adhesive zirconia

  20. The two way shape memory effect: influence of stabilization in single and polycrystals of Cu-based alloys

    International Nuclear Information System (INIS)

    Cingolani, E.; Arneodo Larochette, P.; Ahlers, M.

    2000-01-01

    The possibility to obtain a two way shape memory effect (TWME) by stabilizing the martensite through diffusion controlled processes has been analysed in single and polycrystals of Cu-Zn-Al and in single crystals of Cu-Al-Be and Cu-Al-Ni. It is shown that the four systems behave very differently: Whereas in the Cu-Zn-Al single crystals sufficient vacancies remain available during extended times to obtain a perfect TWME, in Cu-Al-Be they anneal out fast, leading to a perfect TWME only right after quenching, and in Cu-Al-Ni they remain immobile below about 200 C. In polycrystals of Cu-Zn-Al the stabilization has only a negligible effect on the TWME, due to the formation of stable martensite configurations at the grain boundaries. (orig.)

  1. Thermal stability of simple tetragonal and hexagonal diamond germanium

    Science.gov (United States)

    Huston, L. Q.; Johnson, B. C.; Haberl, B.; Wong, S.; Williams, J. S.; Bradby, J. E.

    2017-11-01

    Exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursor materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.

  2. Lattice vibrations and cubic to tetragonal phase transition in ZrO2

    International Nuclear Information System (INIS)

    Negita, K.

    1989-01-01

    On the basis of analyses of phonon modes in ZrO 2 , it is suggested that condensation of a phonon X 2 - at the cubic Brillouin zone boundary X point, (0, 0, 2 π/a), is associated with the cubic to tetragonal phase transition in ZrO 2 . Free energy consideration shows that spontaneous volume and shear strains, e Alg = (e 1 +e 2 +e 3 ) and e Eg = (2e 3 - e 1 - e 2 )/ Λ3, are induced in the tetragonal phase as a result of indirect couplings of the X 2 - mode to homogeneous elastic strains; the tetragonal phase is improper ferroelastic

  3. Phase transformations in air plasma-sprayed yttria-stabilized zirconia thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Julián D. Osorio

    2014-01-01

    Full Text Available En este trabajo, las transformaciones de fase en Recubrimientos de Barrera Térmica (TBC constituidos por ZrO 2 – 8 wt.% Y2O3 (zirconia - 8 wt.% ytrria fueron estudiados a través de Difracción de Rayos X (XRD y refinamiento Rietveld. Las muestras de TBC fueron depositadas mediante aspersión por plasma atmosférico sobre un sustrato tipo Inconel 625 y fueron tratadas térmicamente con dos condiciones diferentes: en la primera se utilizó una temperatura de 1100oC con tiempos de exposición entre 1 hora y 1000 horas; en la segunda las muestras fueron sometidas a temperaturas entre 700oC y 1100o durante 50 horas. De acuerdo a los resultados obtenidos mediante refinamiento Rietveld el contenido de fase cúbica en el recubrimiento (TC se incrementa con el tiempo y la temperatura, desde 7.3 wt.% hasta 15.7 wt.% después de 1000 horas a 1100oC. La fase cúbica en grandes cantidades es indeseable debido a que presenta inferiores propiedades mecánicas cuando se compara con la fase tetragonal. Después de 800 horas de exposición a alta temperatura, el contenido de Y2O3 en la fase tetragonal se reduce hasta 6.6 wt.% y una fracción de la fase tetragonal transforma a monoclínica durante el enfriamiento. La fase monoclínica alcanza 18.0 wt.% después de 1000 horas. Esta fase es también indeseable porque además de tener una mayor conductividad térmica, la transformación de tetragonal a monoclínica viene acompañada de un cambio volumétrico de alrededor de 5% que promueve la formación y propagación de grietas, las cuales comprometen la integridad del recubrimiento.

  4. Evolution of the characteristics of Parametric X-ray Radiation from textured polycrystals under different observation angles

    Science.gov (United States)

    Alekseev, V. I.; Eliseyev, A. N.; Irribarra, E.; Kishin, I. A.; Klyuev, A. S.; Kubankin, A. S.; Nazhmudinov, R. M.; Zhukova, P. N.

    2018-02-01

    The Parametric X-Ray radiation (PXR) spectra and yield dependencies on the orientation angle are measured during the interaction of 7 MeV electrons with a tungsten textured polycrystalline foil for different observation angles. The effects of PXR spectral density increase and PXR yield orientation dependence broadening in the backward direction is shown experimentally for the first time. The experimental results are compared with PXR kinematical theories for both mosaic crystals and polycrystals.

  5. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions

    NARCIS (Netherlands)

    Chen, C.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives This study aimed to evaluate the adhesive properties of a MDP-containing resin cement to a colored zirconia ceramic, using an experimental zirconia-silica coating technique with different priming conditions. Methods 18 zirconia ceramic discs (Cercon base colored) were divided into two

  6. Assessment and comparison of retention of zirconia copings luted with different cements onto zirconia and titanium abutments: An in vitro study

    OpenAIRE

    Neelima Sreekumar Menon; G P Surendra Kumar; K R Jnanadev; C L Satish Babu; Shilpa Shetty

    2016-01-01

    Aim: The purpose of this in vitro study was to assess and compare the retention of zirconia copings luted with different luting agents onto zirconia and titanium abutments. Materials and Methods: Titanium and zirconia abutments were torqued at 35 N/cm onto implant analogs. The samples were divided into two groups: Group A consisted of four titanium abutments and 32 zirconia copings and Group B consisted of four zirconia abutments and 32 zirconia copings and four luting agents were used. T...

  7. Zirconia doped silicon nitride ceramics

    International Nuclear Information System (INIS)

    Ekstroem, T.; Falk, L.K.L.; Knutson-Wedel, E.M.

    1992-01-01

    This presentation is concerned with the value added to silicon nitride ceramics by doping with smaller amounts of zirconia. The effects which the different sintering additives ZrO 2 , Y 2 O 3 stabilized ZrO 2 , Y 2 O 3 , Al 2 O 3 and AIN have upon densification, α- to β-Si 3 N 4 phase transformation and final microstructure are discussed. Silicon nitride ceramics containing these additives have been formed either by pressureless sintering or by hot isostatic pressing (HIP) at temperatures in the range 1550 to 1775 deg C. The fine scale microstructures of the densified materials, characterized by analytical electron microscopy and X-ray diffractometry, have been related to mechanical properties viz. strength, hardness and indentation fracture toughness. The most pronounced value added by ZrO 2 doping is that a properly adjusted combination of sintering aids makes it possible to substantially reduce the volume fraction of residual intergranular glass through formation of crystalline ZrO 2 (Y 2 O 3 ) solid solutions. This behaviours opens the possibility of developing new silicon nitride ceramics for high temperature applications. 25 refs., 4 figs

  8. Creep of plasma sprayed zirconia

    Science.gov (United States)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  9. On the lateral response of zirconia

    Science.gov (United States)

    Appleby-Thomas, Gareth; Wood, David; Goff, Michael; Millett, Jeremy; Painter, Jonathan

    2017-06-01

    Zirconia-based (partially stabilised zirconia oxide, PSZ) ceramics have high strengths and densities; they have consequently found an extensive niche as wear-resistant materials. Their high impedance can also be of particular use in shock loading applications where high pressures are required in cases where non-metallic impactors are needed (for example, to avoid magnetic effects on diagnostics). However, despite their prevalence, there is a relative paucity of data on these materials in the literature. In particular, there is a lack of significant information available on the evolution of shear strength under shock. Consequently in this study, the lateral response of a series of zirconia targets is investigated under a variety of impact conditions. A member of the Institute of Physics (Reciprocal Membership - no. 1136154).

  10. Microstructural evolution of alumina-zirconia nanocomposites

    International Nuclear Information System (INIS)

    Ojaimi, C.L.; Chinelatto, A.S.A.; Chinelatto, A.L.; Pallone, E.M.J.A.

    2012-01-01

    Ceramic materials have limited use due to their brittleness. The inclusion of nanosized particles in a ceramic matrix, which are called nanocomposites, and ceramic processing control by controlling the grain size and densification can aid in obtaining ceramic products of greater strength and toughness. Studies showed that the zirconia nano inclusions in the matrix of alumina favors an increase in mechanical properties by inhibiting the grain growth of the matrix and not by the mechanism of the transformation toughening phase of zirconia. In this work, the microstructural evolution of alumina nanocomposites containing 15% by volume of nanometric zirconia was studied. From the results it was possible to understand the sintering process of these nanocomposites. (author)

  11. Processing of Alumina-Toughened Zirconia Composites

    Science.gov (United States)

    Bansal, Narottam P.; Choi, Sung R.

    2003-01-01

    Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.

  12. Anelasticity and strength in zirconia ceramics

    International Nuclear Information System (INIS)

    Matsuzawa, M.; Horibe, S.; Sakai, J.

    2005-01-01

    Non-elastic strain behavior was investigated for several different zirconia ceramics and a possible mechanism for anelasticity was discussed. Anelastic strain was detected in zirconia ceramics irrespective of the crystallographic phase and its productivity depended on the particular kind of dopant additive. It was found that the anelastic properties could be significantly influenced by the level of oxygen vacancy in the matrix, and that the anelastic strain might be produced by a light shift of ionic species. In order to investigate the effect of anelasticity on mechanical properties on zirconia ceramics, the tensile strength was investigated for a wide range of strain rates. The obviously unique strain rate dependence was observed only in the materials having anelastic properties. It was assumed that anelasticity could be efficient at improving the tensile strength. (orig.)

  13. Chipping Resistance of Graded Zirconia Ceramics for Dental Crowns

    Science.gov (United States)

    Zhang, Y.; Chai, H.; Lee, J.J.-W.; Lawn, B.R.

    2012-01-01

    A serious drawback of veneering porcelains is a pronounced susceptibility to chipping. Glass-infiltrated dense zirconia structures can now be produced with esthetic quality, making them an attractive alternative. In this study, we examined the hypothesis that such infiltrated structures are much more chip-resistant than conventional porcelains, and at least as chip-resistant as non-infiltrated zirconia. A sharp indenter was used to produce chips in flat and anatomically correct glass-infiltrated zirconia crown materials, and critical loads were measured as a function of distance from the specimen edge (flat) or side wall (crown). Control data were obtained on zirconia specimens without infiltration and on crowns veneered with porcelains. The results confirmed that the resistance to chipping in graded zirconia is more than 4 times higher than that of porcelain-veneered zirconia and is at least as high as that of non-veneered zirconia. PMID:22232142

  14. Zirconia femoral head fractures: a clinical and retrieval analysis.

    Science.gov (United States)

    Masonis, John L; Bourne, Robert B; Ries, Michael D; McCalden, Richard W; Salehi, Abraham; Kelman, David C

    2004-10-01

    Zirconia femoral heads provide increased fracture strength, but 343 zirconia head failures have been documented since 2000. Retrieval analysis of 6 fractured heads, 4 suspect heads, 4 control zirconia heads, and 2 failed alumina heads was performed. Zirconia failures have been isolated to heads sintered in a "tunnel" furnace introduced in 1998. The monoclinic composition at the taper surface of fractured and nonfractured heads was significantly elevated (21% to 68%) compared to that of control zirconia heads (less than 5%). Electron microscopy identified circular fracture footprints unique to the zirconia heads produced in the tunnel furnace. Cobalt chrome heads were used in the urgent revision setting due to Morse taper damage. Partial capsulectomy was performed in an effort to reduce future third body wear. Monoclinic phase transformation following implantation remains a potential mechanism of ceramic head failure. We recommend that patients with recalled zirconia heads be advised of a potential fracture risk.

  15. The wear of polished and glazed zirconia against enamel.

    Science.gov (United States)

    Janyavula, Sridhar; Lawson, Nathaniel; Lawson, Nathaniel; Cakir, Deniz; Beck, Preston; Ramp, Lance C; Burgess, John O

    2013-01-01

    The wear of tooth structure opposing anatomically contoured zirconia crowns requires further investigation. The purpose of this in vitro study was to measure the roughness and wear of polished, glazed, and polished then reglazed zirconia against human enamel antagonists and compare the measurements to those of veneering porcelain and natural enamel. Zirconia specimens were divided into polished, glazed, and polished then reglazed groups (n=8). A veneering porcelain (Ceramco3) and enamel were used as controls. The surface roughness of all pretest specimens was measured. Wear testing was performed in the newly designed Alabama wear testing device. The mesiobuccal cusps of extracted molars were standardized and used as antagonists. Three-dimensional (3D) scans of the specimens and antagonists were obtained at baseline and after 200 000 and 400 000 cycles with a profilometer. The baseline scans were superimposed on the posttesting scans to determine volumetric wear. Data were analyzed with a 1-way ANOVA and Tukey Honestly Significant Difference (HSD) post hoc tests (α=.05) Surface roughness ranked in order of least rough to roughest was: polished zirconia, glazed zirconia, polished then reglazed zirconia, veneering porcelain, and enamel. For ceramic, there was no measureable loss on polished zirconia, moderate loss on the surface of enamel, and significant loss on glazed and polished then reglazed zirconia. The highest ceramic wear was exhibited by the veneering ceramic. For enamel antagonists, polished zirconia caused the least wear, and enamel caused moderate wear. Glazed and polished then reglazed zirconia showed significant opposing enamel wear, and veneering porcelain demonstrated the most. Within the limitations of the study, polished zirconia is wear-friendly to the opposing tooth. Glazed zirconia causes more material and antagonist wear than polished zirconia. The surface roughness of the zirconia aided in predicting the wear of the opposing dentition

  16. Biomineralizing synthesis of mesoporous hydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin as biosurfactant

    International Nuclear Information System (INIS)

    Zhao Hongshi; He Wen; Wang Yingjun; Yue Yuanzheng; Gao Xingguo; Li Zhengmao; Yan Shunpu; Zhou Weijia; Zhang Xudong

    2008-01-01

    Mesoporous polycrystals of hydroxyapatite-calcium pyrophosphate (HA-CPP) are synthesized via a biomineralizing route using ovalbumin as natural biosurfactant. The mesoporous structure of HA-CPP is characterized by means of X-ray diffraction (XRD), N 2 adsorption-desorption isotherms (NADI), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), atom force microscopy (AFM), polarization microscopy (PLM) and stereomicroscopy. The results show that the crystalline grains with an average diameter of 13.2 nm are uniformly distributed along the protein molecule chains, and this results in microsphere-like particles with diameters of 200-300 nm. The highly ordered pores involved in microspheres are found to be approximately 6.6 nm by small-angle XRD. The formation of lyotropic calcium liquid crystal (CLC) plays a key role in the formation and stabilization of the mesoporous structure. A schematic illustration is used to reveal the mechanism of protein-medicated HA-CPP biomineralization, which employs the protein tertiary structure to explain the formation of the porous particles

  17. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  18. Spectral database constitutive representation within a spectral micromechanical solver for computationally efficient polycrystal plasticity modelling

    Science.gov (United States)

    Eghtesad, Adnan; Zecevic, Miroslav; Lebensohn, Ricardo A.; McCabe, Rodney J.; Knezevic, Marko

    2018-02-01

    We present the first successful implementation of a spectral crystal plasticity (SCP) model into a spectral visco-plastic fast Fourier transform (VPFFT) full-field solver. The SCP database allows for non-iterative retrieval of constitutive solutions for a crystal of any orientation subjected to any state of deformation at every voxel representing an FFT point of the overall voxel-based polycrystalline microstructure. Details of this approach are described and validated through example case studies involving a rigid-visco-plastic response and microstructure evolution of polycrystalline copper. It is observed that the novel implementation is able to speed up the overall VPFFT calculations because the conventional Newton-Raphson iterative solution procedure for single crystals in VPFFT is replaced by the more efficient SCP constitutive representation of the solution. As a result, the implementation facilitates efficient simulations of large voxel-based microstructures. Additionally, it provides an incentive for conceiving a multi-level SCP-VPFFT computational scheme. Here, every FFT point of the model is a polycrystal whose response is calculated using a Taylor-type homogenization.

  19. Modeling grain boundaries in polycrystals using cohesive elements: Qualitative and quantitative analysis

    International Nuclear Information System (INIS)

    El Shawish, Samir; Cizelj, Leon; Simonovski, Igor

    2013-01-01

    Highlights: ► We estimate the performance of cohesive elements for modeling grain boundaries. ► We compare the computed stresses in ABAQUS finite element solver. ► Tests are performed in analytical and realistic models of polycrystals. ► Most severe issue is found within the plastic grain response. ► Other identified issues are related to topological constraints in modeling space. -- Abstract: We propose and demonstrate several tests to estimate the performance of the cohesive elements in ABAQUS for modeling grain boundaries in complex spatial structures such as polycrystalline aggregates. The performance of the cohesive elements is checked by comparing the computed stresses with the theoretically predicted values for a homogeneous material under uniaxial tensile loading. Statistical analyses are performed under different loading conditions for two elasto-plastic models of the grains: isotropic elasticity with isotropic hardening plasticity and anisotropic elasticity with crystal plasticity. Tests are conducted on an analytical finite element model generated from Voronoi tessellation as well as on a realistic finite element model of a stainless steel wire. The results of the analyses highlight several issues related to the computation of normal and shear stresses. The most severe issue is found within the plastic grain response where the computed normal stresses on a particularly oriented cohesive elements are significantly underestimated. Other issues are found to be related to topological constraints in the modeling space and result in the increased scatter of the computed stresses

  20. On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue.

    Science.gov (United States)

    Zhang, Zhen; Cuddihy, M A; Dunne, F P E

    2015-09-08

    A temperature and rate-dependent crystal plasticity framework has been used to examine the temperature sensitivity of stress relaxation, creep and load shedding in model Ti-6Al polycrystal behaviour under dwell fatigue conditions. A temperature close to 120°C is found to lead to the strongest stress redistribution and load shedding, resulting from the coupling between crystallographic slip rate and slip system dislocation hardening. For temperatures in excess of about 230°C, grain-level load shedding from soft to hard grains diminishes because of the more rapid stress relaxation, leading ultimately to the diminution of the load shedding and hence, it is argued, the elimination of the dwell debit. Under conditions of cyclic stress dwell, at temperatures between 20°C and 230°C for which load shedding occurs, the rate-dependent accumulation of local slip by ratcheting is shown to lead to the progressive cycle-by-cycle redistribution of stress from soft to hard grains. This phenomenon is termed cyclic load shedding since it also depends on the material's creep response, but develops over and above the well-known dwell load shedding, thus providing an additional rationale for the incubation of facet nucleation.

  1. Study of the microstructure of the tetragonal phase of the ZrO2 for its use like support of active catalysts for the dry reforming reaction of methane

    International Nuclear Information System (INIS)

    Mosimann, C. B; Cornaglia, L. M

    2005-01-01

    Zirconium oxide is widely employed as support in catalysts for methane reforming with carbon dioxide. Zirconia can be found in three crystalline phases: monoclinic ZrO 2 (m), tetragonal ZrO 2 (t), and cubic.Studies of zirconia crystallization in the ZrO 2 -SiO 2 sol-gel system have reported that the tetragonal phase was the first phase to crystallize, between 300 and 500 degrees C, and that the transformation from tetragonal to monoclinic zirconia occurs at 1000 degrees C, being observed in rich compositions only (> 80%).The application of new methods of preparation and the use of dopants such as La, Si or sulfate has lately allowed the obtention of zirconia with high surface areas, even after calcination at 700 degrees C.The aqueous method which produces zirconium hydroxide as intermediate, followed by calcination, is one of the most widely used methods due to its great flexibility to allow the preparation of doped zirconia.On the other hand, La 2 O 3 used as support in methane dry reforming is known for its capacity to form lanthanum oxi carbonate phases which would participate in the catalytic cycle, providing active sites which react with the deposited carbon.The aim of this work was twofold: study the effect of the lanthanum doping performed by impregnation of zirconium hydroxide upon the stability of the tetragonal phase, and develop an active catalyst for the methane dry reforming reaction.Zr(OH) 4 (Mel Chemicals) was employed performing different thermal treatments: calcination at 400 and 510 degrees C for 8 hs; at 550, 600 and 800 degrees C for 12 hs, and at 1100 degrees C for 15 hs.The preparation of the ZrO 2 support doped with La was performed by means of the humid impregnation method, starting from Zr(OH) 4 and the La(NO 3 ) 3 .6H 2 O salt (Anedra).The concentration was 5 and 8% in weight of La 2 O 3 .The solids obtained were calcined at 400 and 600 degrees C.The Rh(0.6%)/La 2 O 3 (5%)-ZrO 2 was prepared by the same method.A solution of the RhCl 3 .3H

  2. Synthesis and Characterization of Nanostructured Sulfated Zirconias

    Czech Academy of Sciences Publication Activity Database

    Lutecki, M.; Šolcová, Olga; Werner, S.; Breitkopf, C.

    2010-01-01

    Roč. 53, č. 1 (2010), s. 13-20 ISSN 0928-0707 Grant - others:DFG(DE) BR2068/2-1; DFG(DE) BR2068/2-2 Institutional research plan: CEZ:AV0Z40720504 Keywords : sulfated zirconia * template assisted synthesis * porous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 1.525, year: 2010

  3. Mechanical Characterization of Zirconia Ceramic Composite

    Directory of Open Access Journals (Sweden)

    Jin Kelvin Chew Wai

    2018-01-01

    Full Text Available In this day and age, zirconia ceramics are used widely in the medical field as biomaterials for the replacement of damaged body parts. This is because zirconia is one of the closest replacements for bone tissue. However, there were a few cases regarding the failure of zirconia ceramic hip transplants. To overcome this issue, composite materials are being studied as they are able to combine different properties which are not present in a material. This study of Y-TZP/stainless steel 316 composite is carried out with the idea of providing a solution for failure of zirconia implants and also an improvement in biomaterials which will benefit the biomedical world. The study aims to determine the effects on how the increasing of stainless-steel content in the composite will affect the relative density, Vickers hardness, fracture toughness and ageing resistance of the Y-TZP/stainless steel 316 composite. To carry out the research, the composite samples were prepared by mixing the powder of each samples according to their determined content with ethanol. After the powders were mixed, the powders were then pressed, followed by undergoing a Cold Isostatic Press process (CIP and then it underwent sintering at its determined temperature. After sintering, the samples underwent grinding and polishing before being ready for testing. The outcomes of the research showed that as the sintering temperature and the content of stainless-steel increase in the composite, the fracture toughness and ageing resistance improved while the Vickers hardness and relative density decreased.

  4. Zirconia-based colors for ceramic glazes

    International Nuclear Information System (INIS)

    Eppler, R.A.

    1977-01-01

    The history of color development for use in ceramic glazes is outlined. The most significant modern development is based on zirconia and zircon. These materials have gained increasing acceptance in the industry since their introduction in the late 1950's and early 1960's, due to their superior stability during firing of the glaze

  5. Improved Zirconia Oxygen-Separation Cell

    Science.gov (United States)

    Walsh, John V.; Zwissler, James G.

    1988-01-01

    Cell structure distributes feed gas more evenly for more efficent oxygen production. Multilayer cell structure containing passages, channels, tubes, and pores help distribute pressure evenly over zirconia electrolytic membrane. Resulting more uniform pressure distribution expected to improve efficiency of oxygen production.

  6. Development of a nano structured system based on zirconia and Co nanoparticles for thermoluminescent applications: sensor of gamma and UV radiation

    International Nuclear Information System (INIS)

    Villa S, G.

    2014-01-01

    Powders of zirconium IV oxide as well as systems composed of zirconia nano crystals and cobalt nanoparticles (ZrO 2 :NPCo) with dimensions of nanometers were synthesized by the sol-gel method. Zirconia and ZrO 2 :NPCo systems have crystalline structure tetragonal or monoclinic is the heat treatment was to 500 and 1000 degrees Celsius respectively. The characterization of the synthesized materials consisted of a morphological and structural analysis, the information obtained was correlated to its thermoluminescent response induced by gamma and ultraviolet radiation. Thermoluminescent behavior was analyzed on different concentrations of cobalt nanoparticles incorporated during the synthesis process of the zirconium oxide. The monoclinic structure has the highest sensitivity thermoluminescent induced by ultraviolet and gamma radiation. Moreover, the thermoluminescence intensity decreased considerably in ZrO 2 :NPCo systems and was induced the growth of a glow peak at 280 degrees Celsius. In most of the materials analyzed the relation of the thermoluminescence intensity depending the time of irradiation with ultraviolet light showed the saturation of the traps in the material after 60 s of irradiation. Using gamma radiation is observed a behavior linear in the applied dose range between 0.25 Gy and 450 Gy. The growth of a glow peak at 280 degrees Celsius is the most important change in the thermoluminescence characteristics of zirconia. The ZrO 2 :NPCo systems can be used in the development of thermoluminescent dosimeters for detecting gamma radiation fields mainly. (Author)

  7. Bone tissue response to experimental zirconia implants.

    Science.gov (United States)

    Mihatovic, Ilja; Golubovic, Vladimir; Becker, Jürgen; Schwarz, Frank

    2017-03-01

    This study seeks to assess the bone tissue response at experimental zirconia implants in comparison with titanium implants by means of descriptive histology and histomorphometry in a dog model. Experimental zirconia implants with three different surface roughnesses (Z1  Z2 30.1 % > Z3 28.9 % > Z1 25.1 %, p > 0.05, unpaired t test, respectively). A provisional matrix was evident at all implant surfaces. At 14 days, percentages of BIC increased in all groups (tBIC: Ti 62.1 % > Z3 69.2 %  Z1 42.3 %; nBIC: Z3 58.9 % > Ti 52.2 % > Z2 35.1 % > Z1 32.5 %). Two implants, one of group Z1 and one of group Z2, were lost. At 10 weeks, 13 of 18 zirconia implants were lost, equally distributed between all three surface modifications. The remaining implants revealed increased BIC values (tBIC: Z3 69.5 % > Ti 58.5 % > Z1 49.7 % > Z2 37.1 %; nBIC: Z3 57.2 % > Ti 46.5 % > Z1 32.3 % > Z2 29.3 %). Histomorphometrical analysis showed comparable mean BIC values in all groups at all healing periods without showing statistical differences (p > 0.05, unpaired t test, respectively). The bone tissue response throughout the healing periods was characterized by a constant bone remodeling accompanied by resorption of old bone in favor of new bone formation at both titanium and zirconia implants. Surface roughness had a positive effect on BIC, although not showing statistical significance. Due to the poor survival rate, the experimental zirconia implants investigated may not be suitable for clinical use. Zirconia has been introduced as an alternative biomaterial for dental implants. A profound knowledge about the bone tissue response at zirconia implant surfaces is necessary as it plays an important role for proper osseointegration and long-term stability.

  8. Bulk and Interface Thermodynamics of Calcia-, and Yttria-doped Zirconia Ceramics: Nanograined Phase Stability

    Science.gov (United States)

    Drazin, John Walter

    Calcia-, and yttria- doped zirconia powders and samples are essential systems in academia and industry due to their observed bulk polymorphism. Pure zirconia manifests as Baddeleyite, a monoclinic structured mineral with 7-fold coordination. This bulk form of zirconia has little application due to its asymmetry. Therefore dopants are added to the grain in-order to induce phase transitions to either a tetragonal or cubic polymorph with the incorporation of oxygen vacancies due to the dopant charge mis-match with the zirconia matrix. The cubic polymorph has cubic symmetry such that these samples see applications in solid oxide fuel cells (SOFCs) due to the high oxygen vacancy concentrations and high ionic mobility at elevated temperatures. The tetragonal polymorph has slight asymmetry in the c-axis compared to the a-axis such that the tetragonal samples have increased fracture toughness due to an impact induced phase transformation to a cubic structure. These ceramic systems have been extensively studied in academia and used in various industries, but with the advent of nanotechnology one can wonder whether smaller grain samples will see improved characteristics similar to their bulk grain counterparts. However, there is a lack of data and knowledge of these systems in the nano grained region which provides us with an opportunity to advance the theory in these systems. The polymorphism seen in the bulk grains samples is also seen in the nano-grained samples, but at slightly distinct dopant concentrations. The current theory hypothesizes that a surface excess, gamma (J/m 2), can be added to the Gibbs Free energy equation to account for the additional free energy of the nano-grain atoms. However, these surface energies have been difficult to measure and therefore thermodynamic data on these nano-grained samples have been sparse. Therefore, in this work, I will use a well established water adsorption microcalorimetry apparatus to measure the water coverage isotherms

  9. Phase transition of tetragonal copper sulfide Cu2S at low temperatures

    Science.gov (United States)

    Zimmer, D.; Ruiz-Fuertes, J.; Bayarjargal, L.; Haussühl, E.; Winkler, B.; Zhang, J.; Jin, C. Q.; Milman, V.; Alig, E.; Fink, L.

    2017-08-01

    The low-temperature behavior of tetragonal copper sulfide, Cu2S , was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal Cu2S undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of ±21 K, an enthalpy of reaction of 1.3(2) kJ mol-1 , and an entropy of reaction of 6.5(2) J mol-1K-1 . The temperature dependence of the heat capacity at the transition temperature indicates that the transition from the tetragonal to the low-temperature polymorph is not a single process. The structure of the low-temperature polymorph at 100 K was solved in space group P n a 21 . The structure is based on a slightly distorted cubic close packing of sulfur with copper in threefold coordination similar to the structure of tetragonal copper sulfide. The electrical resistance changes several orders of magnitude at the transition following the temperature hysteresis. The activation energy of the conductivity for the tetragonal phase and the low-temperature polymorph are 0.15(2) and 0.22(1) eV, respectively. The direct band gap of the tetragonal polymorph is found to be 1.04(2) eV with the absorption spectrum following Urbach's law. The activation energies and the band gaps of both phases are discussed with respect to the results of the calculated electronic band structures.

  10. Hot Corrosion of Yttrium Stabilized Zirconia Coatings Deposited by Air Plasma Spray on a Nickel-Based Superalloy

    Science.gov (United States)

    Vallejo, N. Diaz; Sanchez, O.; Caicedo, J. C.; Aperador, W.; Zambrano, G.

    In this research, the electrochemical impedance spectroscopy (EIS) and Tafel analysis were utilized to study the hot corrosion performance at 700∘C of air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) coatings with a NiCrAlY bond coat grown by high velocity oxygen fuel spraying (HVOF), deposited on an INCONEL 625 substrate, in contact with corrosive solids salts as vanadium pentoxide V2O5 and sodium sulfate Na2SO4. The EIS data were interpreted based on proposed equivalent electrical circuits using a suitable fitting procedure performed with Echem AnalystTM Software. Phase transformations and microstructural development were examined using X-ray diffraction (XRD), with Rietveld refinement for quantitative phase analysis, scanning electron microscopy (SEM) was used to determinate the coating morphology and corrosion products. The XRD analysis indicated that the reaction between sodium vanadate (NaVO3) and yttrium oxide (Y2O3) produces yttrium vanadate (YVO4) and leads to the transformation from tetragonal to monoclinic zirconia phase.

  11. Spectroscopic investigation of the electronic structure of yttria-stabilized zirconia

    Science.gov (United States)

    Götsch, Thomas; Bertel, Erminald; Menzel, Alexander; Stöger-Pollach, Michael; Penner, Simon

    2018-03-01

    The electronic structure and optical properties of yttria-stabilized zirconia are investigated as a function of the yttria content using multiple experimental and theoretical methods, including electron energy-loss spectroscopy, Kramers-Kronig analysis to obtain the optical parameters, photoelectron spectroscopy, and density functional theory. It is shown that many properties, including the band gaps, the crystal field splitting, the so-called defect gap between acceptor (YZr') and donor (VO••) states, as well as the index of refraction in the visible range exhibit the same "zig-zag-like" trend as the unit cell height does, showing the influence of an increased yttria content as well as of the tetragonal-cubic phase transition between 8 mol % and 20 mol %Y2O3 . Also, with Čerenkov spectroscopy (CS), a new technique is presented, providing information complementary to electron energy-loss spectroscopy. In CS, the Čerenkov radiation emitted inside the TEM is used to measure the onset of optical absorption. The apparent absorption edges in the Čerenkov spectra correspond to the energetic difference between the disorder states close to the valence band and the oxygen-vacancy-related electronic states within the band gap. Theoretical computations corroborate this assignment: they find both, the acceptor states and the donor states, at the expected energies in the band structures for diverse yttria concentrations. In the end, a schematic electronic structure diagram of the area around the band gap is constructed, including the chemical potential of the electrons obtained from photoelectron spectroscopy. The latter reveal that tetragonal YSZ corresponds to a p -type semiconductor, whereas the cubic samples exhibit n -type semiconductor properties.

  12. Stress corrosion mechanisms of alloy-600 polycrystals and monocrystals in primary water: effect of hydrogen

    International Nuclear Information System (INIS)

    Foct, F.

    1999-01-01

    The aim of this study is to identify the mechanisms involved in Alloy 600 primary water stress corrosion cracking. Therefore, this work is mainly focussed on the two following points. The first one is to understand the influence of hydrogen on SCC of industrial Alloy 600 and the second one is to study the crack initiation and propagation on polycrystals and single crystals. A cathodic potential applied during slow strain rate tests does not affect crack initiation but increases the slow crack growth rate by a factor 2 to 5. Cathodic polarisation, cold work and 25 cm 3 STP/kg hydrogen content increase the slow CGR so that the K ISCC (and therefore fast CGR) is reached. The influence of hydrogenated primary water has been studied for the first time on Alloy 600 single crystals. Cracks cannot initiate on tensile specimens but they can propagate on pre-cracked specimens. Transgranular cracks present a precise crystallographic aspect which is similar to that of 316 alloy in MgCl 2 solutions. Moreover, the following results improve the description of the cracking conditions. Firstly, the higher the hydrogen partial pressure, the lower the Alloy 600 passivation current transients. Since this result is not correlated with the effect of hydrogen on SCC, cracking is not caused by a direct effect of dissolved hydrogen on dissolution. Secondly, hydrogen embrittlement of Alloy 600 disappears at temperatures above 200 deg.C. Thirdly, grain boundary sliding (GBS) does not directly act on SCC but shows the mechanical weakness of grain boundaries. Regarding the proposed models for Alloy 600 SCC, it is possible to draw the following conclusions. Internal oxidation or absorbed hydrogen effects are the most probable mechanisms for initiation. Dissolution, internal oxidation and global hydrogen embrittlement models cannot explain crack propagation. On the other hand, the Corrosion Enhanced Plasticity Model gives a good description of the SCC propagation. (author)

  13. Effect of zirconia morphology on sulfur-resistant methanation performance of MoO3/ZrO2 catalyst

    Science.gov (United States)

    Liu, Chen; Wang, Weihan; Xu, Yan; Li, Zhenhua; Wang, Baowei; Ma, Xinbin

    2018-05-01

    Two kinds of ZrO2 support with different morphologies were prepared by facile solvothermal method in different solvents. The obtained two supports showed monoclinic zirconia (m-ZrO2) and tetragonal zirconia (t-ZrO2) phase with similar crystalline size. Their supported Mo-based catalysts were prepared by impregnation method and the effect of zirconia morphology on the performance of sulfur-resistant methanation was examined. The results indicated that the MoO3/m-ZrO2 has higher CO conversion than the MoO3/t-ZrO2 catalyst. Characterizations by XRD, Raman, H2-TPR and IR confirmed that the m-ZrO2 is superior to t-ZrO2 for dispersing molybdenum species. In addition, the MoO3/m-ZrO2 catalyst has weaker interaction between support and active Mo speices than the MoO3/t-ZrO2 catalyst, which facilitates to forming active species of nanocrystalline MoS2 layers for sulfur-resistant methanation. The weaker interaction of molybdenum species with m-ZrO2 is related with the more covalent character of the Zrsbnd O bond and more oxygen defective structure of m-ZrO2. A larger number of Lewis acid centers appear on the surface of m-ZrO2, which verified the substantial vacancies on m-ZrO2 exposing coordinately unsaturated Zr3+ and Zr4+ cations. Meanwhile, the less Lewis acid of t-ZrO2 result in stronger interaction between support and molybdenum species and trigger crystalline phase MoO3 and Mosbnd Osbnd Zr linkages.

  14. Soliton twin boundaries of the cubic-tetragonal martensitic transformations in ferroelastic materials

    Science.gov (United States)

    Mazor, A.; Bishop, A. R.

    Described here is one set of results from a comprehensive study of the cubic-tetragonal Martensitic transformations in ferroelastic materials. The model being used is the soliton model of Barsch and Krumhansl which exhibits a first-order cubic-tetragonal martensitic phase transition. This is a nonlinear and nonlocal three-dimensional continuum model, with a two-component strain order parameter. The structure and the energy of the static (or traveling) soliton strain boundaries, associated with the minimal total free energy, is calculated at all temperatures. Insight is also gained of the corresponding type of trajectories in the order parameter space. Approaching the first-order transition temperature from below, the tetragonal-tetragonal soliton wall splits gradually into two cubic-tetragonal solitons of finite width. Their separation, however, diverges at the transition temperature. This temperature is the border point between two topologically different classes of domain walls, which apparently have also different time-dependence. Below the transition point the kink-like solutions are of traveling type, but above the transition temperature the pulse-like walls are not.

  15. Soliton twin boundaries of the cubic-tetragonal martensitic transformations in ferroelastic materials

    Energy Technology Data Exchange (ETDEWEB)

    Mazor, A.; Bishop, A.R.

    1987-01-01

    Described here is one set of results from a comprehensive study of the cubic-tetragonal Martensitic transformations in ferroelastic materials. The model being used is the soliton model of Barsch and Krumhansl which exhibits a first-order cubic-tetragonal martensitic phase transition. This is a nonlinear and nonlocal three-dimensional continuum model, with a two-component strain order parameter. The structure and the energy of the static (or traveling) soliton strain boundaries, associated with the minimal total free energy, is calculated at all temperatures. Insight is also gained of the corresponding type of trajectories in the order parameter space. Approaching the first-order transition temperature from below, the tetragonal-tetragonal soliton wall splits gradually into two cubic-tetragonal solitons of finite width. Their separation, however, diverges at the transition temperature. This temperature is the border point between two topologically different classes of domain walls, which apparently have also different time-dependence. Below the transition point the kink-like solutions are of traveling type, but above the transition temperature the pulse-like walls are not.

  16. Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS.

    Science.gov (United States)

    Lai, Xiaofang; Liu, Ying; Lü, Xujie; Zhang, Sijia; Bu, Kejun; Jin, Changqing; Zhang, Hui; Lin, Jianhua; Huang, Fuqiang

    2016-08-08

    Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change of anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Finally, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.

  17. Discrete tomographic reconstruction of 2D polycrystal orientation maps from X-ray diffraction projections using Gibbs priors

    DEFF Research Database (Denmark)

    Rodek, L.; Knudsen, E.; Poulsen, H.F.

    2005-01-01

    The determination of crystalline structures is a demanding and fundamental task of crystallography. This paper offers a new approach for rendering a 2D grain map of a polycrystal based on an orientation map reconstructed from X-ray diffraction patterns. The orientation map is produced by a Bayesian...... discrete tomographic algorithm, applying image-modelling Gibbs priors and a homogeneity condition. The optimization of the objective function is accomplished via the Gibbs Sampler in conjunction with simulated annealing. In order to express the structure of the orientation map, the similarity...... of orientations is defined by means of quaternions....

  18. Effects of cementation surface modifications on fracture resistance of zirconia

    Science.gov (United States)

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  19. Effects of cementation surface modifications on fracture resistance of zirconia.

    Science.gov (United States)

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Zirconia based ceramics, some clinical and biological aspects: Review

    Directory of Open Access Journals (Sweden)

    Ossama Saleh Abd El-Ghany

    2016-12-01

    Full Text Available Improved material strength, enhanced esthethic and high biocompatibility give Zirconia ceramic a great possibility to be used for a wide range of promising clinical applications. This review presents the different types of zirconia materials available for dental application, the effect of machining procedures on these materials, the esthetic of zirconia ceramics and bonding of the veneering ceramics in addition to the biologic properties of these new materials.

  1. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    Science.gov (United States)

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  2. An in vitro evaluation of the zirconia surface treatment by mesoporous zirconia coating on its bonding to resin cement.

    Science.gov (United States)

    Zhang, Yanli; Sun, Ting; Liu, Ruoyu; Feng, Xiaoli; Chen, Aijie; Shao, Longquan

    2014-01-01

    The effect of zirconia surface treatment by mesoporous zirconia coating on the microtensile bond strength (MTBS) between zirconia and resin cement was investigated in this work. 160 zirconia specimens were prepared and divided into four groups according to surface treatments: (1) airborne-particle-abrasion treatment (APA); (2) glass infiltration and hydrofluoric acid treatment (GI+HF); (3) mesoporous zirconia coating (MZ); and (4) no treatment (C). The as-prepared zirconia specimens were bonded using Panavia F2.0 and RelyX Unicem. The MTBS values were tested using a universal testing machine, and data were analyzed using ANOVA and SNK methods (a=0.05). The MTBS values obtained after GI+HF and MZ treatments were significantly higher than those obtained after APA and C treatments (Psurface treatments using GI+HF and MZ yield higher bond strength than those using APA or C, regardless of the resin cements.

  3. Overview of zirconia with respect to gas turbine applications

    Science.gov (United States)

    Cawley, J. D.

    1984-01-01

    Phase relationships and the mechanical properties of zirconia are examined as well as the thermal conductivity, deformation, diffusion, and chemical reactivity of this refractory material. Observations from the literature particular to plasma-sprayed material and implications for gas turbine engine applications are discussed. The literature review indicates that Mg-PSZ (partially stabilized zirconia) and Ca-PSZ are unsuitable for advanced gas turbine applications; a thorough characterization of the microstructure of plasma-sprayed zirconia is needed. Transformation-toughened zirconia may be suitable for use in monolithic components.

  4. Thermal conductivity of ytterbia-stabilized zirconia

    International Nuclear Information System (INIS)

    Feng, Jing; Ren, Xiaorui; Wang, Xiaoyan; Zhou, Rong; Pan, Wei

    2012-01-01

    The 3–10 mol.% Yb 2 O 3 –ZrO 2 (YbSZ) ceramics were synthesized by solid reaction methods and sintered at 1600 °C. The phases were identified by high-resolution X-ray diffraction with a K α1 monochromator, and it was found that the tetragonal-prime phases exist in 3–6 mol.% YbSZ. The thermal conductivity of the sintered YbSZ ceramics were measured using a laser flash method and it was demonstrated that the values of the thermal conductivities of the 5 and 10 mol.% YbSZ ceramics are the lowest at high and room temperature, respectively, and much lower than that of 7YSZ. The lower thermal conductivity of YbSZ ceramics may be due to the heavier dopant of ytterbium and the tetragonal-prime ZrO 2 phase.

  5. Development of a nano structured system based on zirconia and Co nanoparticles for thermoluminescent applications: sensor of gamma and UV radiation; Desarrollo de un sistema nanoestructurado a base de zirconia y nanoparticulas de Co para aplicaciones termoluminiscentes: sensor de radiacion gamma y UV

    Energy Technology Data Exchange (ETDEWEB)

    Villa S, G.

    2014-07-01

    Powders of zirconium IV oxide as well as systems composed of zirconia nano crystals and cobalt nanoparticles (ZrO{sub 2}:NPCo) with dimensions of nanometers were synthesized by the sol-gel method. Zirconia and ZrO{sub 2}:NPCo systems have crystalline structure tetragonal or monoclinic is the heat treatment was to 500 and 1000 degrees Celsius respectively. The characterization of the synthesized materials consisted of a morphological and structural analysis, the information obtained was correlated to its thermoluminescent response induced by gamma and ultraviolet radiation. Thermoluminescent behavior was analyzed on different concentrations of cobalt nanoparticles incorporated during the synthesis process of the zirconium oxide. The monoclinic structure has the highest sensitivity thermoluminescent induced by ultraviolet and gamma radiation. Moreover, the thermoluminescence intensity decreased considerably in ZrO{sub 2}:NPCo systems and was induced the growth of a glow peak at 280 degrees Celsius. In most of the materials analyzed the relation of the thermoluminescence intensity depending the time of irradiation with ultraviolet light showed the saturation of the traps in the material after 60 s of irradiation. Using gamma radiation is observed a behavior linear in the applied dose range between 0.25 Gy and 450 Gy. The growth of a glow peak at 280 degrees Celsius is the most important change in the thermoluminescence characteristics of zirconia. The ZrO{sub 2}:NPCo systems can be used in the development of thermoluminescent dosimeters for detecting gamma radiation fields mainly. (Author)

  6. Transformation Toughening of Ceramics

    Science.gov (United States)

    1992-03-01

    irilugal Coimoi’datiio of Ai:0, and Al.O,/ZrO1 Compositte Slurries vit December 1991 Enhanced Fracture Toughness in Layered Microcomposites of Ce-ZrOz and...34 Nature (London), 258, 703-705 (1975). 2. K.E. Tsukuma and M. Shimada, *Strength, Fracture Toughness, and Vickers Hardness of CeO2 -Stabilized Tetragonal...Transformation Plasticity of CeO2 -stabllized Tetragonal Zirconia Polycrystals and I Stress Assistance and Autocatalysis," 3. Am. Ceram. Soc. 72(5] 343-53

  7. Interaction of oxygen with zirconia surface

    International Nuclear Information System (INIS)

    Ivankiv, L.I.; Ketsman, I.V.

    1999-01-01

    The influence of surface heat treatment, electron (50-800) eV irradiation and UV (180-300) nM illumination of adsorption system on the state of oxygen adsorbed on zirconia surface have been investigated. On the basis of experimental results obtained by investigation of photon emission accompanying oxygen adsorption (AL) and TPD data existence of adsorption sites on the surface is suggested on which irreversible dissociative adsorption of oxygen occurs. These very sites are associated with emission processes Conclusion is made that the only type of adsorption sites connected with anion vacancy is present on zirconia surface and this is its charge state that determines the state of adsorbed oxygen. One of the important mechanisms by which the electron and UV photon excitation affects the adsorption interaction is the change of the charge state of the adsorption site

  8. Evaluation of zirconia bonding to veneering porcelain

    OpenAIRE

    Aneta Mijoska; Mirjana Popovska

    2014-01-01

    Zirconium dioxide as core ceramic material for dental crowns and bridges, possess high strength, chemical stability and superior aesthetics after veneering. Veneering ceramic is considered to be the weakest part of all-ceramic restorations. The adhesion between the core and veneering porcelain is based on the manner in which the connection occurs in metal-ceramic structures. Standard procedures for connecting zirconia to hard dental tissues and veneering materials do not achieve the requir...

  9. Nanostructured tetragonal barium titanate produced by the polyol and spark plasma sintering (SPS) route

    Science.gov (United States)

    Acevedo-Salas, Ulises; Breitwieser, Romain; Gaudisson, Thomas; Nowak, Sophie; Ammar, Souad; Valenzuela, Raúl

    2017-10-01

    There is a great interest to synthesize ferroelectric ceramics both with fine grain size and significant electric properties. Here, we report the preparation of nanostructured tetragonal barium titanate by combining forced hydrolysis of metallic salts in polyol, soft annealing and 650 °C spark plasma sintering under uniaxial pressure of 120 MPa for 5 min. The stabilization of highly dense (density of 90%), nanostructured (grains about 50 nm) tetragonal barium titanate ceramic was achieved. The produced ceramic exhibited ferroelectric behavior and a dielectric permittivity of 3600 at 1 kHz and room temperature.

  10. Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature

    Directory of Open Access Journals (Sweden)

    Hu Yong

    2011-01-01

    Full Text Available Abstract A large quantity of ultrafine tetragonal barium titanate (BaTiO3 nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature.

  11. Effect of zirconia surface treatment on zirconia/veneer interfacial toughness evaluated by fracture mechanics method.

    Science.gov (United States)

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-07-01

    The aim of this study was to evaluate the effect of the airborne-particle abrasion and liner application on the interfacial toughness between veneering porcelain and zirconia core by means of a fracture mechanics test. Beam-shaped zirconia specimens were sectioned and divided into 4 groups according to different surface treatments as follows: Group C (control): no treatment; Group L: application of liner; Group A: airborne-particle abrasion with Al2O3 (sandblasting); and Group AL: airborne-particle abrasion and application of liner. The zirconia surfaces before and after sandblasting were observed and analyzed by SEM and white light interferometer. Specimens of each pretreated group were veneered with 3 core/veneer thickness ratios of 2:3, 1:1, and 3:2, corresponding to 3 phase angles respectively. Fracture mechanics test was performed on each specimen, the energy release rate G and phase angle ψ were calculated to characterize interfacial toughness. The experimental data were analyzed statistically using three-way ANOVA and the Tukey's HSD test. The surfaces of fractured specimens were examined by SEM and EDX. At each phase angle, the interfaces with no treatment had higher mean G values than that of other groups. All the specimens showed mixed failure mode with residual veneer or liner on the zirconia surfaces. The toughness of zirconia/veneer interface with no treatment is significantly higher than that of interfaces subjected to liner application and airborne-particle abrasion. Liner application and airborne-particle abrasion seem to reduce zirconia/veneer interfacial toughness. Therefore, the two surface treatment methods should be applied with caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Evaluation of zirconia bonding to veneering porcelain

    Directory of Open Access Journals (Sweden)

    Aneta Mijoska

    2014-10-01

    Full Text Available Zirconium dioxide as core ceramic material for dental crowns and bridges, possess high strength, chemical stability and superior aesthetics after veneering. Veneering ceramic is considered to be the weakest part of all-ceramic restorations. The adhesion between the core and veneering porcelain is based on the manner in which the connection occurs in metal-ceramic structures. Standard procedures for connecting zirconia to hard dental tissues and veneering materials do not achieve the required strength of bonding. The aim of the paper is to investigate different surface treatments of the zirconium dioxide ceramic core and find the best, for achieving highest adhesive bonding values to veneering porcelain. The study was primarily designed to investigate the bonding strength of the veneering porcelain to zirconia with in vitro Macro shear bond strength test. The specimens with different surface treatment of the zirconia were divided in five groups of twelve according to the treatment of zirconium surface and results showed highest bonding values for specimens treated with Rocatec system.

  13. Electrical characterization of zirconia-niobium and zirconia-titanium composites

    International Nuclear Information System (INIS)

    Reis, S.T. dos.

    1993-01-01

    Zirconia-niobium and zirconia-titanium composites were made by powder mixing, cold pressing, and vacuum sintering at 1600 0 C. The metallic particles were added in the proportion of 0-50% by volume. Electrical resistivity measurements were performed by the two probes and the four probes d.c. method as a function of metallic particle concentration. Electrical resistivity of these composites decreased sharply in the region of 30-40 vol% Nb or Ti, in agreement with the percolation theory. Tests in an induction furnace were performed to check the self-heating response of these composites. (author). 33 refs, 40 figs, 11 tabs

  14. Evaluation of crystallinity and film stress in yttria-stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Piascik, Jeffrey R.; Thompson, Jeffrey Y.; Bower, Christopher A.; Stoner, Brian R.

    2005-01-01

    Yttria (3 mol %)-stabilized zirconia (YSZ) thin films were deposited using radio frequency (rf) magnetron sputtering. The YSZ thin films were deposited over a range of temperatures (22-300 deg. C), pressures (5-25 mTorr), and gas compositions (Ar/O ratio). Initial studies characterized a select set of properties in relation to deposition parameters including: refractive index, structure, and film stress. X-ray diffraction (XRD) showed that the films are comprised of mainly monoclinic and tetragonal crystal phases. The film refractive index determined by prism coupling, depends strongly on deposition conditions and ranged from 1.959 to 2.223. Wafer bow measurements indicate that the sputtered YSZ films can have initial stress ranging from 86 MPa tensile to 192 MPa compressive, depending on the deposition parameters. Exposure to ambient conditions (25 deg. C, 75% relative humidity) led to large increase (∼100 MPa) in the compressive stress of the films. Environmental aging suggests the change in compressive stress was related to water vapor absorption. These effects were then evaluated for films formed under different deposition parameters with varying density (calculated packing density) and crystal structure (XRD)

  15. Electromigration and charge carrier density versus free lattice volume effects in doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    M' Peko, Jean-Claude; Paz, Fernando Y.; Mir, Mirta; De Souza, Milton F. [Institute of Physics at Sao Carlos (IFSC), University of Sao Paulo (USP), P.O. Box 369, CEP 13560-970 Sao Carlos/SP (Brazil)

    2004-11-01

    Ion conducting yttria-stabilized tetragonal zirconia (3YTZ) and Er{sup 3+}-, Nd{sup 3+}- and Hf{sup 4+}-doped 3YTZ ceramics were prepared and studied in this work. It is noted that dopant-induced structural effects, associated with free lattice volume for bulk conduction, may still be dominant over charge carrier density effects, even for variations of these latter by up to about 30%. In that way, dopant ion size-modified charge (oxygen vacancy) mobility varied to about +25% in Er{sup 3+}-doped 3YTZ and about -45% in Nd{sup 3+}-doped 3YTZ, with respect to original 3YTZ. Meanwhile, the behavior of grain-boundary electrical properties appeared to adapt well with Frenkel's space-charge model. In both bulk and grain-boundary cases, the electrical response of Hf{sup 4+}-doped 3YTZ remained close to that from 3YTZ, a fact which is also discussed in this report. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.J. (Lawrence Berkeley Lab., CA (United States) Sydney Univ., NSW (Australia). Dept. of Mechanical Engineering); Dauskardt, R.H.; Ritchie, R.O. (Lawrence Berkeley Lab., CA (United States)); Mai, Y.W. (Sydney Univ., NSW (Australia). Dept. of Mechanical Engineering)

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, long'' (> 2 mm), through-thickness cracks and naturally-occurring, small'' (1 to 100 [mu]m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  17. Mechanics and mechanisms of cyclic fatigue-crack propagation in transformation-toughened zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, M.J. [Lawrence Berkeley Lab., CA (United States)]|[Sydney Univ., NSW (Australia). Dept. of Mechanical Engineering; Dauskardt, R.H.; Ritchie, R.O. [Lawrence Berkeley Lab., CA (United States); Mai, Y.W. [Sydney Univ., NSW (Australia). Dept. of Mechanical Engineering

    1992-05-01

    Damage and cyclic fatigue failure under alternating loading in transformation-toughened zirconia ceramics is reviewed and compared to corresponding behavior under quasi-static loading (static fatigue). Current understanding of the role of transformation toughening in influencing cyclic fatigue-crack propagation behavior is examined based on studies which altered the extent of the tetragonal-to-monoclinic phase transformation in MG-PSZ through subeutectoid aging. These studies suggest that near-tip computations of the crack-driving force (in terms of the local stress intensity) can be used to predict crack-growth behavior under constant amplitude and variable-amplitude (spectrum) loading, using spatially resolved Raman spectroscopy to measure the extent of the transformation zones. In addition, results are reviewed which rationalize distinctions between the crack-growth behavior of preexisting, ``long`` (> 2 mm), through-thickness cracks and naturally-occurring, ``small`` (1 to 100 {mu}m), surface cracks in terms of variations in crack-tip shielding with crack size. In the present study, the effect of grain size variations on crack-growth behavior under both monotonic (R-curve) and cyclic fatigue loading are examined. Such observations are used to speculate on the mechanisms associated with cyclic crack advance, involving such processes as alternating shear via transformation-band formation, cyclic modification of the degree of transformation toughening, and uncracked-ligament (or grain) bridging.

  18. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    Science.gov (United States)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  19. Understanding the High Ionic Conductivity in Nanostructured Ytterbium Stabilized Zirconia Thin Films

    Directory of Open Access Journals (Sweden)

    A. Benítez-Rico

    2015-01-01

    Full Text Available Recently, high ionic conduction has been reported in nanostructured materials. This increase in conductivity can be important in technological applications, including micro-Solid Oxide Fuel Cells, so the understanding of this phenomenon is essential. In this work, XRD, Raman spectroscopy, SEM, EDS maps, and UV-Visible spectroscopy measurements are used to have an insight into the relationship between structural and electrical properties in nanostructured ytterbium stabilized zirconia (YbSZ thin films prepared by ultrasonic spray pyrolysis. Raman measurements allowed the identification of a mixture of tetragonal and cubic phases at 4% of Yb doping, which cannot be detected by XRD, while the compositional maps suggest that Yb can be located preferentially in the grain boundaries. Changes in the activation energy values in bulk and grain boundaries are related to the small grain sizes (≤10 nm. UV measurements support the ionic nature of the charge transport. These results indicate that the high conductivity is a consequence of different physical parameters in the films such as stress in the materials, different crystalline phases, impurities diffusion to the grain boundaries, and the presence or absence of electronic conduction. A model that explains the increase of conductivity in nanostructured materials must include all these aspects.

  20. Tetragonal-to-Tetragonal Phase Transition in Lead-Free (KxNa1−xNbO3 (x = 0.11 and 0.17 Crystals

    Directory of Open Access Journals (Sweden)

    Dabin Lin

    2014-06-01

    Full Text Available Lead free piezoelectric crystals of (KxNa1−xNbO3 (x = 0.11 and 0.17 have been grown by the modified Bridgman method. The structure and chemical composition of the obtained crystals were determined by X-ray diffraction (XRD and electron probe microanalysis (EPMA. The domain structure evolution with increasing temperature for (KxNa1−xNbO3 (x = 0.11 and 0.17 crystals was observed using polarized light microscopy (PLM, where distinguished changes of the domain structures were found to occur at 400 °C and 412 °C respectively, corresponding to the tetragonal to tetragonal phase transition temperatures. Dielectric measurements performed on (K0.11Na0.89NbO3 crystals exhibited tetragonal to tetragonal and tetragonal to cubic phase transitions temperatures at 405 °C and 496 °C, respectively.

  1. Bonding to zirconia using a new surface treatment

    NARCIS (Netherlands)

    Aboushelib, M.N.; Feilzer, A.J.; Kleverlaan, C.J.

    2010-01-01

    Purpose: Selective infiltration etching (SIE) is a newly developed surface treatment used to modify the surface of zirconia-based materials, rendering them ready for bonding to resin cements. The aim of this study was to evaluate the zirconia/resin bond strength and durability using the proposed

  2. Synthesis and characterization of mullite–zirconia composites by ...

    Indian Academy of Sciences (India)

    Mullite–zirconia composites containing 10–30 wt% zirconia were prepared by reaction sintering of zircon flour, sillimanite beach sand and calcined alumina. Raw materials were attrition milled, shaped into pellets and bars and sintered in the temperature range of 1450–1600°C with 2 h soaking at peak temperature.

  3. Dynamic simulation of carbochlorination of zirconia in a pilot plant ...

    African Journals Online (AJOL)

    Zirconium tetrachloride was produced via the chlorination of zirconia in a fluidized bed reactor in the presence of carbon. The fluidized bed zirconia carbochlorination reactor was modeled dynamically via a three-phase hydrodynamic flow assumption. The operating temperature (800-1200 °C), reaction time (30-120 min) ...

  4. Characterization of combustion synthesized zirconia powder by UV ...

    Indian Academy of Sciences (India)

    Unknown

    The modified versions of zirconium dioxide, viz. the sulfated ZrO2, zirconia substituted mixed oxides such as CexZr1–xO2 solid solutions (0 ≤ x ≤ 1), various transition metal stabilized zirconia and hydrous zirconium oxide have been reported to be effective for several organic reactions, combustion and gas phase reactions.

  5. Osseointegration of a Zirconia Implant : A Histologic Assessment

    NARCIS (Netherlands)

    Schepke, Ulf; Meijer, Gert J; Meijer, Henny Ja; Walboomers, X Frank; Cune, Marco

    2017-01-01

    PURPOSE: The aim of this study was to describe the histologic and histomorphometric features of a retrieved, functional endosseous zirconia implant in a human subject. MATERIALS AND METHODS: A maxillary zirconia implant (ZV3) placed in a 52-year-old man was retrieved after 2 years of uncompromised

  6. Zero-field splitting of 4T2 term for 3d3 ions in tetragonal symmetry

    Indian Academy of Sciences (India)

    orbit interactions, in addition to spin-orbit interaction, the zero-field splitting of 4T2 state for 3d3 ions at tetragonal symmetry has been studied. The convergence of the approximation perturbation formula of 4T2 state for 3d3 ions at tetragonal ...

  7. Evidence of tetragonal distortion as the origin of the ferromagnetic ground state in γ -Fe nanoparticles

    Science.gov (United States)

    Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.

    2017-11-01

    γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.

  8. Tetragonal CuO: End member of the 3d transition metal monoxides

    NARCIS (Netherlands)

    Siemons, W.; Koster, Gertjan; Blank, David H.A.; Hammond, Robert H.; Geballe, Theodore H.; Beasley, Malcolm R.

    2009-01-01

    Monoclinic CuO is anomalous both structurally as well as electronically in the 3d transition metal oxide series. All the others have the cubic rocksalt structure. Here we report the synthesis and electronic property determination of a tetragonal (elongated rocksalt) form of CuO created using an

  9. Linear electro-optical properties of tetragonal BaTiO 3

    Indian Academy of Sciences (India)

    Linear optical susceptibility and clamped linear electro-optical tensor coefficients of tetragonal BaTiO3 are calculated using a formalism based on bond charge theory. Calculated values are in close agreement with experimental data. The covalent Ti–O bonds constituting distorted TiO6 octahedral groups are found to be ...

  10. Damage Maps of Veneered Zirconia under Simulated Mastication

    Science.gov (United States)

    Kim, Jae-Won; Kim, Joo-Hyung; Janal, Malvin N.; Zhang, Yu

    2016-01-01

    Zirconia based restorations often fracture from chipping and/or delamination of the porcelain veneers. We hypothesize that veneer chipping/delamination is a result of the propagation of near-contact induced partial cone cracks on the occlusal surface under mastication. Masticatory loading involves the opposing tooth sliding along the cuspal inner incline surface with an applied biting force. To test this hypothesis, flat porcelain veneered zirconia plates were cemented to dental composites and cyclically loaded (contact–slide–liftoff) at an inclination angle as a simplified model of zirconia based restorations under occlusion. In the light of in-situ observation of damage evolution in a transparent glass/zirconia/polycarbonate trilayer, postmortem damage evaluation of porcelain/zirconia/composite trilayers using a sectioning technique revealed that deep penetrating occlusal surface partial cone fracture is the predominant fracture mode of porcelain veneers. Clinical relevance is discussed. PMID:19029080

  11. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  12. Zirconia as a sliding material: histologic, laboratory, and clinical data.

    Science.gov (United States)

    Cales, B

    2000-10-01

    Zirconia ceramics have been introduced in orthopaedic surgery as prosthetic femoral heads to solve the critical issue of femoral head fractures sometimes observed with alumina ceramics. In addition to outstanding mechanical properties, zirconia ceramics have, similar to other surgical grade ceramics, a high biocompatibility and a high resistance to scratching. The radioactivity of zirconia ceramic, which has been the subject of contradictory data, now is well understood and managed with appropriate standards. The long-term stability of zirconia ceramics recently has been studied extensively and precise models allow a good prediction of their long-term behavior. In vitro wear tests against polyethylene and clinical data confirm the low wear rate associated with the use of ceramic femoral heads. The use of zirconia femoral heads in ceramic-on-ceramic total hip prostheses also has been investigated and now is clinically effective.

  13. Fracture Strength After Fatigue Loading of Lithium Disilicate Pressed Zirconia Crowns.

    Science.gov (United States)

    Kim, So-Yeun; Choi, Jae-Won; Ju, Sung-Won; Ahn, Jin-Soo; Yoon, Mi-Jung; Huh, Jung-Bo

    2016-01-01

    The aim of this study was to evaluate the fracture resistance of fatigued lithium disilicate pressed zirconia crowns versus other ceramic crowns. Lithium disilicate pressed zirconia, fluorapatite pressed zirconia, monolithic lithium disilicate, and monolithic zirconia crowns were fabricated. Cyclic and static loadings were applied to the mesiobuccal cusp tip after thermocycling and fracture strengths were recorded. Fatigued lithium disilicate pressed zirconia crowns were found to have a fracture resistance of 9,117.81 ± 727.04 N, compared with 9,240.61 ± 887.21 N for monolithic zirconia crowns, 3,030.18 ± 1,505.83 N for fluorapatite pressed zirconia crowns, and 4,173.94 ± 877.46 N for monolithic lithium disilicate crowns (P = .001). This in vitro study shows that fatigued lithium disilicate pressed zirconia and monolithic zirconia crowns have better fracture resistance than fluorapatite pressed zirconia and monolithic lithium disilicate crowns.

  14. Clinical assessment of enamel wear caused by monolithic zirconia crowns.

    Science.gov (United States)

    Stober, T; Bermejo, J L; Schwindling, F S; Schmitter, M

    2016-08-01

    The purpose of this study was to measure enamel wear caused by antagonistic monolithic zirconia crowns and to compare this with enamel wear caused by contralateral natural antagonists. Twenty monolithic zirconia full molar crowns were placed in 20 patients. Patients with high activity of the masseter muscle at night (bruxism) were excluded. For analysis of wear, vinylpolysiloxane impressions were prepared after crown incorporation and at 6-, 12-, and 24-month follow-up. Wear of the occlusal contact areas of the crowns, of their natural antagonists, and of two contralateral natural antagonists (control teeth) was measured by use of plaster replicas and a 3D laser-scanning device. Differences of wear between the zirconia crown antagonists and the control teeth were investigated by means of two-sided paired Student's t-tests and linear regression analysis. After 2 years, mean vertical loss was 46 μm for enamel opposed to zirconia, 19-26 μm for contralateral control teeth and 14 μm for zirconia crowns. Maximum vertical loss was 151 μm for enamel opposed to zirconia, 75-115 μm for control teeth and 60 μm for zirconia crowns. Statistical analysis revealed significant differences between wear of enamel by zirconia-opposed teeth and by control teeth. Gender, which significantly affected wear, was identified as a possible confounder. Monolithic zirconia crowns generated more wear of opposed enamel than did natural teeth. Because of the greater wear caused by other dental ceramics, the use of monolithic zirconia crowns may be justified. © 2016 John Wiley & Sons Ltd.

  15. In vitro performance of full-contour zirconia single crowns.

    Science.gov (United States)

    Beuer, Florian; Stimmelmayr, Michael; Gueth, Jan-Frederik; Edelhoff, Daniel; Naumann, Michael

    2012-04-01

    Zirconia based restorations exhibited high failure rates due to veneering-porcelain fractures. Milling to full-contour might be an alternative approach for zirconia restorations. The aim of this study was to evaluate full-contour zirconia crowns in terms of light-transmission, contact wear (restoration and antagonist) and load-bearing capacity. Powder build-up veneered zirconia substructures and CAD/CAM-veneered zirconia substructures served as controls. Four different kinds of crowns were fabricated on 12 metal dies: zirconia substructure with powder build-up porcelain (veneering technique), zirconia substructure with CAD/CAM generated veneering (sintering technique), full-contour zirconia glazed (glazed full-contour) and full-contour zirconia polished (polished full-contour). All crowns had the same dimensions. After light-transmission was measured the crowns were cemented on the corresponding metal dies. The specimens were loaded according to a special wear method in the chewing simulator (120,000 mechanical cycles, 5 kg load, 0.7 mm sliding movement, 320 thermocycles). Wear of the restoration and the antagonist were measured. All specimens were loaded until failure. One-way ANOVA and a LSD post-hoc test were used to compare data at a level of 5%. Polished full-contour showed significantly higher light transmission than the other groups (p=0.003; ANOVA). Polished full-contour exhibited significantly less contact wear at the restoration (p=0.01; ANOVA) and higher contact wear at the antagonist (p=0.016; ANOVA) compared to the other groups. Glazed full-contour zirconia showed similar contact wear at the antagonist compared to veneering technique (p=0.513, post-hoc LSD). Crowns with conventional veneering showed significantly lower load-bearing capacity (pzirconia to full-contour with glazed surface might be an alternative to traditionally veneered restorations. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair.

    Science.gov (United States)

    Seabra, Bruno; Arantes-Oliveira, Sofia; Portugal, Jaime

    2014-08-01

    More information is needed on the efficacy of the new universal adhesives and on the best 10-methacryloyloxydecyl dihydrogen phosphate- (MDP)-containing primer protocol to promote adhesion to zirconia. The aim of this study was to evaluate the influence of 2 new multimode MDP-containing adhesives and several application protocols of a zirconia primer on the shear bond strength (SBS) of composite resin to zirconia. Sixty zirconia (3Y-TZP) blocks were abraded (50 μm Al2O3) and divided into 6 experimental groups (n=10): one Z-Prime Plus coat without light polymerization; one Z-Prime Plus light-polymerized coat; two Z-Prime Plus coats without light polymerization; two Z-Prime Plus light-polymerized coats; All-Bond Universal; and ScotchBond Universal Adhesive. Multimode adhesives were applied according to the manufacturers' recommendations. After composite resin (Filtek Z250) light polymerization, the specimens were stored in distilled water (37°C/48 hours) and tested in shear (1 mm/min). Failure mode was classified as adhesive or mixed. Statistical analysis of the SBS data was performed with 1-way ANOVA followed by the Student-Newman-Keuls post hoc tests. Nonparametric tests (Kruskal-Wallis) were used to analyze the failure mode data (α=.05). The ScotchBond Universal Adhesive, All-Bond Universal, and two Z-Prime Plus light-polymerized coats groups showed a higher mean SBS than the other experimental groups (Padhesive failures. The new multimode adhesives tested were effective in promoting adhesion between composite resin and zirconia. Z-Prime Plus should be applied in 2 light-polymerized coats to promote SBS values similar to those of the new multimode adhesives. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  17. Effect of a zirconia primer on the push-out bond strength of zirconia ceramic posts to root canal dentin.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Giti, Rashin; Taghva, Masume; Javanmardi, Samane

    2015-09-01

    The retention of zirconia ceramic posts to root canal dentin with resin-based luting cements is relatively poor. The purpose of this in vitro study was to evaluate the effect of a new zirconia primer, a mixture of organophosphate and carboxylic acid monomers, on the push-out bond strength of zirconia posts to root canal dentin. The root canals of 40 extracted human maxillary central incisors were endodontically treated and the post spaces were prepared. Zirconia posts were luted with 2 different resin luting agents (Panavia F and Clearfil SA luting cements) with and without the zirconia primer (Z-Prime Plus; Bisco). Three segments, each 2 mm high, were cut perpendicular to the post from each root. Bond strength was determined by pushing out the post with a universal testing machine. Three-way ANOVA and the Tukey HSD test was used to assess the effects of the zirconia primer, the 2 different resin luting cements, and different thirds of the root canal (α=.05). The zirconia primer significantly increased the push-out bond strength of zirconia posts to root canal dentin. Clearfil SA luting cement provided significantly higher bond strength than did Panavia F. For all experimental groups combined, bond strength decreased from the coronal to the apical section. A zirconia primer based on organophosphate/carboxylic acid monomers increased the bond strength of zirconia posts to root canal dentin bonded with both resin luting cements. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Sem analysis zirconia-ceramic adhesion interface

    Science.gov (United States)

    CARDELLI, P.; VERTUCCI, V.; MONTANI, M.; ARCURI, C.

    2015-01-01

    SUMMARY Objectives Modern dentistry increasingly tends to use materials aesthetically acceptable and biomimetic. Among these are zirconia and ceramics for several years, a combination that now has becoming synonym of aesthetic; however, what could be the real link between these two materials and especially its nature, remains a controversial topic debated in the literature. The aim of our study was to “underline” the type of bonding that could exist between these materials. Materials and methods To investigate the nature of this bond we used a SEM microscopy (Zeiss SUPRA 25). Different bilaminar specimens: “white” zirconia Zircodent® and ceramic “Noritake®”, after being tested with loading test in bending (three-point-bending) and FEM analysis, were analyzed by SEM. Fragments’ analysis in closeness of the fracture’s point has allowed us to be able to “see” if at large magnifications between these two materials, and without the use of linear, could exist a lasting bond and the possible type of failure that could incur. Results From our analysis of the specimens’ fragments analyzed after test Equipment, it is difficult to highlight a clear margin and no-adhesion zones between the two materials, although the analysis involving fragments adjacent to the fracture that has taken place at the time of Mechanical test Equipment. Conclusions According to our analysis and with all the clarification of the case, we can assume that you can obtain a long and lasting bond between the zirconia and ceramics. Agree to the data present in the literature, we can say that the type of bond varies according to the type of specimens and of course also the type of failure. In samples where the superstructure envelops the ceramic framework Zirconium we are in the presence of a cohesive failure, otherwise in a presence of adhesive failure. PMID:27555905

  19. Thermal conductivity of zirconia thermal barrier coatings

    Science.gov (United States)

    Dinwiddie, R. B.; Beecher, S. C.; Nagaraj, B. A.; Moore, C. S.

    1995-01-01

    Thermal barrier coatings (TBC's) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBC's is of primary importance. Physical vapor deposition (PVD) and plasma spraying (PS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The PS coatings were applied with either standard powder or hollow sphere particles. The hollow sphere particles yielded a lower density and lower thermal conductivity coating. The thermal conductivity of both fully and partially stabilized zirconia, before and after thermal aging, will be compared. The thermal conductivity of the coatings permanently increases upon exposed to high temperatures. These increases are attributed to microstructural changes within the coatings. Sintering of the as-fabricated plasma sprayed lamellar structure is observed by scanning electron microscopy of coatings isothermally heat treated at temperatures greater than 1100 C. During this sintering process the planar porosity between lamella is converted to a series of small spherical pores. The change in pore morphology is the primary reason for the observed increase in thermal conductivity. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the PVD coatings are less susceptible to thermal aging effects, preliminary results suggest that they have a higher thermal conductivity than PS coatings, both before and after thermal aging. The increases in thermal conductivity due to thermal aging for partially stabilized plasma sprayed zirconia have been found to be less than for fully stabilized plasma sprayed zirconia coatings. The high temperature thermal diffusivity data indicate that if these coatings reach a temperature above 1100 C

  20. Studies of alumina additions in zirconia - magnesia

    International Nuclear Information System (INIS)

    Muccillo, R.

    1987-01-01

    Ionic conductivity measurements have been carried out in the 500 0 C - 1000 0 C temperature range in Mg - PSZ (Partially Stabilized Zirconia) with 0.5 to 10 mol % alumina additions. All specimens were prepared by pressing followed by pre - and sintering at 1000 0 C/2h and1450 0 C/4h, respectively. Thermal histerysis of the ionic conductivity have been detected, probably due to phase changes in the Mg-PSZ samples. The results show that alumina additions up to 2.1% enhances densification with no major variations in electrical resistivity values. (Author) [pt

  1. Densification of zirconia films by coevaporation with silica

    International Nuclear Information System (INIS)

    Feldman, A.; Farabaugh, E.N.

    1985-04-01

    Optical films of zirconia have been receiving considerable attention because of their potential use as the high-index layer in multilayer optical coatings for the ultraviolet portion of the spectrum. Several problems are associated with electron-beam deposited zirconia films, including index instability and index inhomogeneity. The index instability is caused by the adsorption and the desorption of water in the porous columnar structure of the zirconia films. Index inhomogeneity is due to the inhomogeneous structure in the films. Recent work has shown that the first several tens of nanometers of a film possess a cubic structure, whereas the outmost layers possess a monoclinic structure. One approach for producing bulk-like zirzonia films that is receiving considerable attention at present is ion-assisted electron-beam deposition. This is because the method has successfully produced zirconia films having bulk-like densities and refractive indices that show insignificant sensitivity to water adsorption. In this paper a similar effect is demonstrated when mixed zirconia:silica films are produced by coevaporation from independent electron-beam sources, and, in particular, it is shown that the admixture of a small amount of silica with the zirconia produces a film possessing a higher refractive index than a pure zirconia film

  2. Fracture resistance of monolithic zirconia molar crowns with reduced thickness.

    Science.gov (United States)

    Nakamura, Keisuke; Harada, Akio; Inagaki, Ryoichi; Kanno, Taro; Niwano, Yoshimi; Milleding, Percy; Örtengren, Ulf

    2015-01-01

    The purpose of the present study was to analyze the relationship between fracture load of monolithic zirconia crowns and axial/occlusal thickness and to evaluate the fracture resistance of monolithic zirconia crowns with reduced thickness in comparison with that of monolithic lithium disilicate crowns with regular thickness. Monolithic zirconia crowns (Lava Plus Zirconia, 3M/ESPE) with specified axial/occlusal thicknesses and lithium disilicate crowns (IPS e.max press, Ivoclar/Vivadent) with regular thickness were fabricated using a dental CAD/CAM system and a press technique, respectively. The crowns cemented onto dies were loaded until fracture. Based on measurements of the crown thickness made by micro-CT and the fracture load, multiple regression analysis was performed. It was revealed that the occlusal thickness significantly affected the fracture load (p zirconia crowns, the fracture load of the zirconia crowns with the occlusal thickness of 0.5 mm (5558 ± 522 N) was significantly higher than that of lithium disilicate crowns with an occlusal thickness of 1.5 mm (3147 ± 409 N). Within the limitations of the present study, it is suggested that monolithic zirconia crown with chamfer width of 0.5 mm and occlusal thickness of 0.5 mm can be used in the molar region in terms of fracture resistance.

  3. Lithium and sodium incorporation in zirconia: a spectroscopic study

    International Nuclear Information System (INIS)

    Bender, Alexandra

    2001-01-01

    Zircaloy is used as fuel cladding material. Lithium dissolved in the cooling water enhances its corrosion and incorporates into the oxide layer. It could substitute for zirconium atoms forming a solid solution or modify crystallographic structure of zirconia. The aim of this work is to determine the crystallographic structure and the local environment of dopant in Li and Na doped zirconia samples obtained by ionic implantation and coprecipitation route, and then to discuss their interest in term of 'lithium effect study'. Implanted zirconia samples are constituted by metallic aggregates oxidised at their surface. A third 'Na 2 ZrO 3 ' local environment has been detected probably due to Na dissolved in zirconia. An experimental procedure has been developed allowing Li and Na doping by a coprecipitation route. Lithium and sodium hydroxide helps the stabilisation of metastable zirconia. Stabilisation doesn't seem to be due to alkaline substitution for zirconium but it must be connected to the effect of both alkaline hydroxides on the first precipitation steps. Similarities between Li doped zirconia by coprecipitation route and zirconia obtained by oxidation of zirconium in the presence of LiOH should help to understand the so-called 'lithium effect'. Finally sodium seems to be relevant to simulate lithium when samples are elaborated and studied at room temperature. It is not the case for annealed samples. (author) [fr

  4. Zirconia powders production by precipitation: state-of-art review

    International Nuclear Information System (INIS)

    Oliveira, Ana Paula Almeida de; Torem, Mauricio Leonardo

    1994-01-01

    The important role played by zirconia in advanced ceramics can be attributed to its excellent wear and corrosion resistance and refractory character. The polymorphic nature of zirconia made the controlled addition of stabilizing oxides or the constraining effect of a dense ceramics matrix necessary to maintain high parameters had a significant influence on powder properties and on compacted powder behaviour in sintering. Particle shape and size, purity and crystalline structure were specially influenced by precipitation parameters. Therefore, this work presented a review of the state of the art in zirconia powder production and in the recent research on precipitation of that powder. (author)

  5. Human fetal osteoblast behavior on zirconia dental implants and zirconia disks with microstructured surfaces. An experimental in vitro study.

    Science.gov (United States)

    Delgado-Ruíz, Rafael Arcesio; Gomez Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Markovic, Aleksa; Mate-Sánchez, Jose Eduardo; Calvo-Guirado, José Luis

    2016-11-01

    To measure the lateral surface area of microgrooved zirconia implants, to evaluate the cell geometry and cell density of human fetal osteoblasts seeded on zirconia microgrooved implants, to describe the surface roughness and chemistry, and to evaluate the activity of human fetal osteoblasts seeded on zirconia microgrooved disks. This experimental in vitro study used 62 zirconia implants and 130 zirconia disks. Two experimental groups were created for the implants: 31 non-microgrooved implants (Control) and 31 microgrooved implants (Test); two experimental groups were created for the disks: 65 non-microgrooved disks (Control) and 65 microgrooved disks (Test). The following evaluations of the implants were made: lateral surface area (LSA), cell morphology, and density of human fetal osteoblasts seeded on implant surfaces. On the disks, surface parameters (roughness and chemistry) and cell activity (alkaline phosphatase - ALP and alizarin red - ALZ) were evaluated at 7 and 15 days. LSA was lower for control implants (62.8 mm) compared with test implants (128.74 mm) (P zirconia implants with microgrooves. (ii) The LSA of microgrooved zirconia implants is greater and provides more available surface compared with implants of the same dimensions without microgrooves. (iii) Microgrooves on zirconia implants modify the morphology and guide the size and alignment of human fetal osteoblasts. (iv) Zirconia surfaces with microgrooves of 30 μm width and 70 μm separation between grooves enhance ALP and ALZ expression by human fetal osteoblasts. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Observation of two superconducting domes under pressure in tetragonal FeS

    Science.gov (United States)

    Zhang, Jun; Liu, Feng-Liang; Ying, Tian-Ping; Li, Na-Na; Xu, Yang; He, Lan-Po; Hong, Xiao-Chen; Yu, Yun-Jie; Wang, Ming-Xiang; Shen, Jian; Yang, Wen-Ge; Li, Shi-Yan

    2017-09-01

    We investigate the evolution of superconductivity and structure with pressure for the new superconductor FeS (Tc ≈ 4.5 K), a sulfide counterpart of FeSe. A rapid suppression of Tc and vanishing of superconductivity at 4.0 GPa are observed, followed by a second superconducting dome from 5.0 to 22.3 GPa with a 30% enhancement in maximum Tc. An onsite tetragonal to hexagonal phase transition occurs around 7.0 GPa, followed by a broad pressure range of phase coexistence. The residual deformed tetragonal phase is considered as the source of second superconducting dome. The observation of two superconducting domes in iron-based superconductors poses great challenges for understanding their pairing mechanism.

  7. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  8. Preparation and characterization of sulfated zirconia acid catalysts for application in the esterification of cottonseed oil; Preparacao e caracterizacao de catalisadores acidos de zirconia sulfatada para aplicacao na esterificacao do oleo de algodao

    Energy Technology Data Exchange (ETDEWEB)

    Silva, F. N.; Moura, T. F. B.; Silva, A.S.; Costa, A.C.F.M., E-mail: fnilson.s@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Pos-graduacao em Engenharia de Materiais; Pallone, E.M.J.A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Dept. de Ciencias Basicas

    2017-07-15

    This work aimed to produce zirconia by combustion synthesis, to analyze the structure and morphology comparatively with a commercial monoclinic ZrO{sub 2} , as well as, to investigate the sulfation, aiming to obtain acid catalysts for its use in the esterification of cotton oil for biodiesel. The samples were characterized by X-ray diffraction, scanning electron microscopy (SEM), specific surface area by BET method, infrared spectroscopy (FTIR), thermal analysis (TG/DrTG/DTA), granulometric distribution, pH and chromatography. The synthesized sample evidenced the formation of the monoclinic phase with traces of the orthorhombic phase, while in the commercial sample only the monoclinic phase was observed. In the sulfation process, traces of the tetragonal phase, typical of sulfated zirconia, were observed with the presence of the monoclinic phase in the two samples. With the impregnation of the sulfate ion on the surface of the samples, an increase in the particle size was observed, as seen in the characterization of BET, granulometric distribution and SEM, which also indicated a homogeneous morphology consisting of fine particles of approximately spherical shape for both samples. The chromatography indicated conversion of 65.5 and 91.8% in methyl esters to the synthesized and commercial SO{sub 4} {sup 2-}/ZrO{sub 2} , respectively. The results indicated that the sulfation increased the acidity, which was evidenced by the decrease in the pH, ranging from 5.12 to 2.65, which contributed significantly to the increase of the conversion, indicating that the SO{sub 4} {sup 2-}/ZrO{sub 2} is a promising catalyst in the esterification. (author)

  9. On the interfacial fracture of porcelain/zirconia and graded zirconia dental structures

    Science.gov (United States)

    Chai, Herzl; Lee, James J.-W; Mieleszko, Adam J.; Chu, Stephen J.; Zhang, Yu

    2014-01-01

    Porcelain fused to zirconia (PFZ) restorations are widely used in prosthetic dentistry. However, their susceptibility to fracture remains a practical problem. The failure of PFZ prostheses often involves crack initiation and growth in the porcelain, which may be followed by fracture along the porcelain/zirconia (P/Z) interface. In this work, we characterized the process of fracture in two PFZ systems, as well as a newly developed graded glass-zirconia structure with emphases placed on resistance to interfacial cracking. Thin porcelain layers were fused onto Y-TZP plates with or without the presence of a glass binder. The specimens were loaded in a four-point-bend fixture with the thin porcelain veneer in tension, simulating the lower portion of the connectors and marginal areas of a fixed dental prosthesis (FDP) during occlusal loading. The evolution of damage was observed by a video camera. The fracture was characterized by unstable growth of cracks perpendicular to the P/Z interface (channel cracks) in the porcelain layer, which was followed by stable cracking along the P/Z interface. The interfacial fracture energy GC was determined by a FEA taking into account stress shielding effects due to the presence of adjacent channel cracks. The resulting GC was well less than commonly reported values for similar systems. Fracture in the graded Y-TZP samples occurred by a single channel crack at a much greater stress than for PFZ. No delamination between the residual glass layer and graded zirconia occurred in any of the tests. Combined with its enhanced resistance to edge chipping and good esthetic quality, graded Y-TZP emerges as a viable material concept for dental restorations. PMID:24769152

  10. Applications of yttria stabilized zirconia (YSZ) in catalysis

    NARCIS (Netherlands)

    Tsampas, M. N.; Sapountzi, F. M.; Vernoux, P.

    2015-01-01

    This article describes recent advances in the use of yttria stabilized zirconia (YSZ), an oxygen ion conductor, for catalytic applications. This ceramic material combines different functionalities such as good thermal stability, selective bulk oxygen mobility and high surface oxygen vacancy

  11. Characterization of combustion synthesized zirconia powder by UV

    Indian Academy of Sciences (India)

    . The surface acidbase properties of these samples were also investigated by indicator titration method. The catalytic activity was probed with transfer hydrogenation reaction in liquid phase. It was found that combustion synthesized zirconia did ...

  12. Zirconia crowns - the new standard for single-visit dentistry?

    Science.gov (United States)

    Wiedhahn, Klaus; Fritzsche, Günter; Wiedhahn, Claudine; Schenk, Olaf

    2016-01-01

    Zirconia crowns combine the advantages of metal restorations, such as minimally invasive tooth preparation and ease of cementation, with those of full ceramic crowns, such as low thermal conductivity and tooth color. With the introduction of a high-speed sintering procedure, it is possible to produce and cement zirconia crowns and small monolithic bridges in a Cerec Single Visit procedure. This new procedure is compared to established chairside methods.

  13. Fracture resistance of monolithic zirconia molar crowns with reduced thickness

    OpenAIRE

    Nakamura, Keisuke; Harada, A.; Inagaki, R.; Kanno, Taro; Niwano, Y.; Milleding, Percy; Ørtengren, Ulf Thore

    2015-01-01

    This is the accepted manuscript version. Published version is available at Acta Odontologica Scandinavica Objectives. The purpose of the present study was to analyze the relationship between fracture load of monolithic zirconia crowns and axial/occlusal thickness, and to evaluate the fracture resistance of monolithic zirconia crowns with reduced thickness in comparison with that of monolithic lithium disilicate crowns with regular thickness. Materials and methods. Monolithic zi...

  14. Bonding effectiveness to different chemically pre-treated dental zirconia.

    Science.gov (United States)

    Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart

    2014-09-01

    The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.

  15. Synthesis of zirconia colloidal dispersions by forced hydrolysis

    Directory of Open Access Journals (Sweden)

    JELENA P. MARKOVIC

    2006-06-01

    Full Text Available Different zirconia colloidal dispersions (sols were prepared from zirconyl oxynitrate and zirconyl oxychloride solutions by forced hydrolysis. Vigorously stirred acidic solutions of these salts were refluxed at 102 oC for 24 h. Characterization of the obtained sols (pH, solid phase content, crystal structure was performed by potentiometric, XRD, TGA/DTA and SEM measurements. The prepared sols contained almost spherical monoclinic hydrated zirconia particles 7–10 nm in diameter.

  16. A systematic review of the clinical survival of zirconia implants.

    Science.gov (United States)

    Hashim, Dena; Cionca, Norbert; Courvoisier, Delphine S; Mombelli, Andrea

    2016-09-01

    The aim of this review was to evaluate the clinical success and survival rates of zirconia ceramic implants after at least 1 year of function and to assess if there is sufficient evidence to justify using them as alternatives to titanium implants. An electronic search in MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Clinical Trials (CENTRAL) databases was performed in April 2015 by two independent examiners to retrieve clinical studies focusing on the survival rate of zirconia implants after at least 1 year of function. Implant survival was estimated using the overall proportion reported in the studies with a Clopper-Pearson 95 % confidence interval (random effect model with a Der-Simonian Laird estimate). Fourteen articles were selected out of the 1519 titles initially screened. The overall survival rate of zirconia one- and two-piece implants was calculated at 92 % (95 % CI 87-95) after 1 year of function. The survival of implants at 1 year for the selected studies revealed considerable heterogeneity. In spite of the unavailability of sufficient long-term evidence to justify using zirconia oral implants, zirconia ceramics could potentially be the alternative to titanium for a non-metallic implant solution. However, further clinical studies are required to establish long-term results, and to determine the risk of technical and biological complications. Additional randomized controlled clinical trials examining two-piece zirconia implant systems are also required to assess their survival and success rates in comparison with titanium as well as one-piece zirconia implants. Zirconia implants provide a potential alternative to titanium ones. However, clinicians must be aware of the lack of knowledge regarding long-term outcomes and specific reasons for failure.

  17. Biaxial flexural strength of bilayered zirconia using various veneering ceramics.

    Science.gov (United States)

    Chantranikul, Natravee; Salimee, Prarom

    2015-10-01

    The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:2008 into five groups according to veneering ceramics as follows; Katana zirconia veneering with CZR (K/CZR), Katana zirconia veneering with LV (K/LV), Katana zirconia veneering with CC (K/CC), Katana zirconia veneering with EM (K/EM) and Katana zirconia veneering with VT (K/VT). After 20,000 thermocycling, load tests were conducted using a universal testing machine (Instron). The BFS were calculated and analyzed with one-way ANOVA and Tukey HSD (α=0.05). The Weibull analysis was performed for reliability of strength. The mode of fracture and fractured surface were observed by SEM. It showed that K/CC had significantly the highest BFS, followed by K/LV. BFS of K/CZR, K/EM and K/VT were not significantly different from each other, but were significantly lower than the other two groups. Weibull distribution reported the same trend of reliability as the BFS results. From the result of this study, the BFS of the bilayered zirconia/veneer composite did not only depend on the Young's modulus value of the materials. Further studies regarding interfacial strength and sintering factors are necessary to achieve the optimal strength.

  18. Strčess-induced martensitic transformation in Cu-Al-Zn-Mn polycrystal investigated by two in -situ neutron diffraction techniques

    Czech Academy of Sciences Publication Activity Database

    Šittner, Petr; Lukáš, Petr; Neov, Dimitar; Daymond, M. R.; Novák, Václav; Swallowe, G. M.

    2002-01-01

    Roč. 324, - (2002), s. 225-234 ISSN 0921-5093 R&D Projects: GA MŠk ME 186; GA ČR GV202/97/K038; GA AV ČR IAA1010909 Institutional research plan: CEZ:AV0Z1010914 Keywords : Stress-induced martensitic transformation * Cu-Al-Zn-Mn polycrystal * neutron diffraction technique Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002

  19. Low Energy Surface Activation of Zirconia Based Restorations.

    Science.gov (United States)

    Aboushelib, Moustafa N

    2016-03-01

    To evaluate the influence of low energy surface activation technique on the biaxial flexure strength of zirconia frameworks. Zirconia discs were prepared by cutting CAD/CAM zirconia blocks. Sintered discs were airborne particle abraded using one of the following particles: 30 μm alumina particles, 50 μm alumina particles, or modified round edges 30 μm alumina particles at low pressure. Scanning electron microscopy, x-ray diffraction analysis, surface roughness, and biaxial flexure strength tests were performed (n = 20). Fractured specimens were fractographically analyzed (α = 0.05). Low energy surface activation resulted in 7% monoclinic crystallographic transformation, increasing surface roughness from 0.05 to 0.3 μm and in significant increase in biaxial flexure strength (1718 MPa) compared 30 μm (1064 MPa), 50 μm (1210 MPa), and as-sintered specimens (1150 MPa). Low energy surface activation of zirconia specimens improved the biaxial flexure strength of zirconia frameworks without creation of surface damage. Clinical implications: by controlling particle size and shape of alumina, the flexure strength of zirconia restorations could be increased usinglow pressure particle abrasion.

  20. Chemical interaction mechanism of 10-MDP with zirconia.

    Science.gov (United States)

    Nagaoka, Noriyuki; Yoshihara, Kumiko; Feitosa, Victor Pinheiro; Tamada, Yoshiyuki; Irie, Masao; Yoshida, Yasuhiro; Van Meerbeek, Bart; Hayakawa, Satoshi

    2017-03-30

    Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using 1 H and 31 P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) 1 H →  31 P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. 31 P-NMR revealed that one P-OH non-deprotonated of the PO 3 H 2 group from 10-MDP chemically bonded strongly to zirconia. 1 H- 31 P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O - ). The combination of 1 H NMR and 2D 1 H- 31 P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia.

  1. Guided tooth preparation for a pediatric zirconia crown.

    Science.gov (United States)

    Lee, Ju-Hyoung

    2018-03-01

    Unesthetic primary incisors can produce negative self-perceptions in preschool-aged children. In recent years, because of increased esthetic demands, prefabricated zirconia crowns have become increasingly popular. However, zirconia crowns cannot be crimped, and the clinician must prepare the teeth to fit the zirconia crowns. Therefore, extended preparation and fitting times are necessary, especially for inexperienced practitioners. A 1- to 2-millimeter subgingival feather margin also is required. Gingival hemorrhage after subgingival preparation compromises the retention of zirconia crowns. In this clinical report, the author presents a step-by-step description of the clinical and laboratory procedures for restoring a discolored traumatized incisor with a zirconia crown. The author used a polyvinyl siloxane occlusal registration material as an impression material and made 2 identical casts. The author fabricated 3 reduction guides after prospective tooth preparation on the casts. The author rapidly prepared the discolored incisor with the reduction guides and ultrasonic burs. A zirconia crown provided an optimal esthetic result and gingival health. Because the reduction guides provided a visibility intraorally, fast tooth reduction, less trial placement, and passive adaptation of the crown were successful. Because the ultrasonic burs prevented gingival injuries, hemorrhage control was not necessary. The presented technique reduced the patient's discomfort and total chair time. Therefore, this alternative technique is helpful for inexperienced practitioners. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  2. Chemical interaction mechanism of 10-MDP with zirconia

    Science.gov (United States)

    Nagaoka, Noriyuki; Yoshihara, Kumiko; Feitosa, Victor Pinheiro; Tamada, Yoshiyuki; Irie, Masao; Yoshida, Yasuhiro; van Meerbeek, Bart; Hayakawa, Satoshi

    2017-03-01

    Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using 1H and 31P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) 1H → 31P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. 31P-NMR revealed that one P-OH non-deprotonated of the PO3H2 group from 10-MDP chemically bonded strongly to zirconia. 1H-31P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O-). The combination of 1H NMR and 2D 1H-31P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia.

  3. Sliding Contact Fatigue of Graded Zirconia with External Esthetic Glass

    Science.gov (United States)

    Ren, L.; Janal, M.N.; Zhang, Y.

    2011-01-01

    Veneer chipping and fracture are common failure modes for porcelain-veneered zirconia dental restorations. We hypothesized that the graded glass/zirconia/glass with external esthetic glass (e-GZG) can increase the lifetime and improve resistance to veneer chipping and fracture relative to porcelain-veneered zirconia, while providing necessary esthetics. Previously, we have demonstrated that a graded glass-zirconia surface possesses excellent resistance to occlusal-like sliding contact fatigue. Here, we investigated the sliding contact fatigue response of this graded glass-zirconia surface with external esthetic glass. This external glass is essential for shade options, for preventing excessive wear of opposing dentition, and for protecting Y-TZP from hydrothermal degradation. e-GZG plates were bonded to composite blocks and subjected to prolonged sliding contact up to 10 million cycles at 200 N in water. The resistance to sliding contact fatigue of e-GZG matches that of monolithic Y-TZP, and both of these materials demonstrated lifetimes that were orders of magnitude longer than that of porcelain-veneered zirconia. Graded e-GZG is a promising restorative material. PMID:21666105

  4. Natural radioactivity in zirconia-based dental ceramics

    International Nuclear Information System (INIS)

    Giussani, Augusto; Gerstmann, Udo; La Porta, Caterina; Cantone, Marie C.; Veronese, Ivan

    2008-01-01

    Zirconia-based ceramics are being increasingly used in dental prosthetics in substitution of metal cores, which are known to induce local toxic reactions and delayed allergic responses in the oral tissues. Some concerns have been however raised about the use of zirconia, since it is known that unpurified zirconia materials may contain non negligible levels of natural radionuclides of the U/Th series. Combined measurements of alpha and gamma spectrometry as well as beta dosimetry were conducted on zirconia samples used for dental applications. Samples were available in form of powder and/or solid blocks. The results showed that the beta dose rate in zirconia ceramics was on average only slightly higher than the levels measured in natural teeth, and generally lower than the values measured in feldspatic and glass ceramics. These materials are indeed known to deliver a beta dose significantly higher than that measured from natural teeth, due to the relatively high levels of 40 K (between 2 and 3 kBq·kg -1 ). The content of radionuclides of the U/Th series in the zirconia sample was estimated to be lower than 15 Bq·kg -1 , i.e. doubtlessly below the exclusion level of 1 kBq·kg -1 recommended by IAEA in the Safety Standard Series. Beta dosimetry measurements, however, gave indications of possible inhomogeneous clusters of radioactivity, which might give rise to local doses above the background. (author)

  5. A novel urea biosensor based on zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sumana, G. [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics and Engineering Division, National Physical Laboratory(Council of Scientific and Industrial Research), Dr.K.S.Krishnan Marg, New Delhi 110012 (India); Das, Maumita [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics and Engineering Division, National Physical Laboratory(Council of Scientific and Industrial Research), Dr.K.S.Krishnan Marg, New Delhi 110012 (India); Department of Chemistry, University of Delhi, Delhi-110007 (India); Srivastava, Saurabh [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics and Engineering Division, National Physical Laboratory(Council of Scientific and Industrial Research), Dr.K.S.Krishnan Marg, New Delhi 110012 (India); Malhotra, B.D., E-mail: bansi.malhotra@gmail.co [Department of Science and Technology Centre on Biomolecular Electronics, Biomedical Instrumentation Section, Materials Physics and Engineering Division, National Physical Laboratory(Council of Scientific and Industrial Research), Dr.K.S.Krishnan Marg, New Delhi 110012 (India)

    2010-11-30

    Electrochemically deposited biocompatible zirconia (ZrO{sub 2}) film on gold coated glass electrodes has been utilized for the fabrication of urea biosensor. The prepared ZrO{sub 2} films and bioelectrodes have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and electrochemical techniques, respectively. The urea biosensor, fabricated by immobilizing mixed enzyme [urease (Urs) and glutamate dehydrogenase (GLDH)] on this nanobiomaterial, shows linearity up to 40 mg dL{sup -1} of analyte (urea) and sensitivity of 0.071 {mu}A/(mM cm{sup -2}) with stability up to 4 months when stored at 4 {sup o}C. The low value of Michaelis-Menten constant (K{sub m}) estimated using Hans plot as 0.5 mM indicates enhancement in the affinity and/or activity of enzyme attached to this nanostructured biocompatible matrix.

  6. Properties of zirconia after plasma treatment

    Science.gov (United States)

    Alekseenko, V. P.; Kulkov, S. N.

    2017-09-01

    The influence of high-frequency plasma treatment on the properties of zirconia powder is shown in the work. The powder was produced by a plasma-chemical method. The powders had a foamy form with the size of agglomerates of 5-10 μm and crystallites of 20-50 nm. The powders were treated by the pulse plasma unit with dielectric barrier discharge generator. It was shown that the plasma processing changes the acidity of water-powder suspensions from 8.1 to 4.3 pH, which signifies the powders' wettability improvement. It was revealed that more intensive mixing using ultrasound influences the acidity level, reducing it in comparison with mixing by paddle-type agitator. It was shown that these changes of surface properties have relaxation by 4% per day and extrapolation of this dependence shows that the powder will have initial properties after 400 hours storage at room conditions.

  7. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    Science.gov (United States)

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  8. Antagonist wear by polished zirconia crowns.

    Science.gov (United States)

    Hartkamp, Oliver; Lohbauer, Ulrich; Reich, Sven

    The aim of this in vivo study was to measure antagonist wear caused by polished monolithic posterior zirconia crowns over a 24-month period using the intraoral digital impression (IDI) technique. Thirteen zirconia crowns were placed in nine patients. The crowns and adjacent teeth were captured using an intraoral scanner (Lava C.O.S.). The corresponding antagonist teeth and the respective neighboring teeth were also scanned. Scanning was performed immediately after the restoration (baseline) as well as 12 and 24 months after crown placement. Geomagic Qualify software was used to superimpose the follow-up data sets onto the corresponding baseline data set, identify wear sites, and measure maximum vertical height loss in each individual wear site. Overall antagonist wear was then determined as the mean of wear rates measured in all of the individual antagonist units. In addition, wear rates in enamel and ceramic antagonists were analyzed as part of the scope of this study. The maximum mean wear with standard deviation (SD) in the overall sample with a total of nine patients, 13 antagonist units, and 98 evaluable wear sites was 86 ± 23 µm at 12 months, and 103 ± 39 µm at 24 months. The maximum mean wear in the enamel antagonist subgroup was 87 ± 41 µm at 12 months, and 115 ± 71 µm at 24 months; and in the ceramic antagonist subgroup 107 ± 22 µm at 12 months, and 120 ± 27 µm at 24 months. The wear rates determined in this study are comparable to those of existing studies. The IDI technique of wear analysis can be carried out in a practical manner and produces useful results.

  9. Biological reactivity of zirconia-hydroxyapatite composites.

    Science.gov (United States)

    Silva, Viviane V; Lameiras, Fernando S; Lobato, Zélia I P

    2002-01-01

    Materials and devices intended for end-use applications as implants and medical devices must be evaluated to determine their biocompatibility potential in contact with physiological systems. The use of standard practices of biological testing provides a reasonable level of confidence concerning the response of a living organism to a given material or device, as well as guidance in selecting the proper procedures to be carried out for the screening of new or modified materials. This article presents results from cytotoxicity assays of cell culture, skin irritation, and acute toxicity by systemic and intracutaneous injections for powders, ceramic bodies, and extract liquids of hydroxyapatite (HA), calcia partially stabilized zirconia (ZO), and two types of zirconia-hydroxyapatite composites (Z4H6 and Z6H4) with potential for future use as orthopedic and dental implants. They indicate that these materials present potential for this type of application because they meet the requirements of the standard practices recommended for evaluating the biological reactivity of ATCC cell cultures (CCL1 NCTC clone 929 of mouse connective tissue and CCL 81 of monkey connective tissue) and animals (rabbit and mouse) with direct or indirect patient contact, or by the injection of specific extracts prepared from the material under test. In addition, studies involving short-term intramuscular and long-term implantation assays to estimate the reaction of living tissue to the composites studied, and investigations on long-term effects that these materials can cause on the cellular metabolism, are already in progress. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 583-590, 2002

  10. Load at fracture of monolithic and bilayered zirconia crowns with and without a cervical zirconia collar.

    Science.gov (United States)

    Øilo, Marit; Kvam, Ketil; Gjerdet, Nils Roar

    2016-05-01

    The effect of anatomic contour design in all or parts of zirconia crowns is uncertain regarding clinical reliability and survival rates. The purpose of this in vitro study was to compare the load at fracture of monolithic, anatomic contour zirconia crowns with bilayered crowns with and without a cervical zirconia collar. Thirty zirconia crowns were fabricated for a shallow chamfer molar preparation, 10 with a normal core-veneer design, 10 with a core-veneer design with an additional cervical collar of zirconia, and 10 with a monolithic, anatomic contour design. Veneering ceramic was applied to the first 20 specimens to create an anatomic form. All crowns were cemented to epoxy abutments and loaded until complete fracture with a clinically relevant test method. The fracture modes and load at fracture were recorded. Statistically significant differences were found in the load at fracture and fracture modes among the test groups (Pcrown margin, mostly in the proximal region. The mean load at fracture was 4091 N for the normal core-veneer design, 4712 N for the collar design, and 6517 N for the monolithic, anatomic contour design. Monolithic, anatomical contour design gave higher loads at fracture than traditional core-veneer design. Crowns with a cervical zirconia collar had higher load at fracture than the core-veneer design, but lower than the monolithic crowns. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Masking ability of a zirconia ceramic on composite resin substrate shades

    Directory of Open Access Journals (Sweden)

    Farhad Tabatabaian

    2017-01-01

    Conclusion: Within the limitations of this study, it can be concluded that the tested zirconia ceramic could not thoroughly mask different shades of the composite resin substrates. Moreover, color masking of zirconia depends on the shade of substrate.

  12. 40 CFR 1065.284 - Zirconia (ZrO2) analyzer.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Zirconia (ZrO2) analyzer. 1065.284... Zirconia (ZrO2) analyzer. (a) Application. You may use a zirconia (ZrO2) analyzer to measure air-to-fuel...O2-based system must meet the linearity verification in § 1065.307. You may use a Zirconia analyzer...

  13. Application of Monolithic Zirconia Ceramics in Dental Practice: A Case History Report.

    Science.gov (United States)

    Kim, Hee-Kyung; Kim, Sung-Hun; Lee, Jai-Bong; Han, Jung-Suk; Yeo, In-Sung

    2016-01-01

    Monolithic zirconia restorations increasingly have been used in dental practice in recent years and demonstrate superior mechanical performance compared with porcelain-veneered zirconia restorations. Recent advances in manufacturing technology have made possible the fabrication of translucent monolithic zirconia ceramics. This case report describes three clinical examples of monolithic zirconia fixed dental prostheses being used in the anterior and posterior regions and exhibiting acceptable esthetic results.

  14. Bioactive and Thermally Compatible Glass Coating on Zirconia Dental Implants

    Science.gov (United States)

    Kirsten, A.; Hausmann, A.; Weber, M.; Fischer, J.

    2015-01-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58·10–6 K–1) than that of the zirconia (11.67·10–6 K–1). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. PMID:25421839

  15. Bioactive and thermally compatible glass coating on zirconia dental implants.

    Science.gov (United States)

    Kirsten, A; Hausmann, A; Weber, M; Fischer, J; Fischer, H

    2015-02-01

    The healing time of zirconia implants may be reduced by the use of bioactive glass coatings. Unfortunately, existing glasses are either bioactive like Bioglass 45S5 but thermally incompatible with the zirconia substrate, or they are thermally compatible but exhibit only a very low level of bioactivity. In this study, we hypothesized that a tailored substitution of alkaline earth metals and alkaline metals in 45S5 can lead to a glass composition that is both bioactive and thermally compatible with zirconia implants. A novel glass composition was analyzed using x-ray fluorescence spectroscopy, dilatometry, differential scanning calorimetry, and heating microscopy to investigate its chemical, physical, and thermal properties. Bioactivity was tested in vitro using simulated body fluid (SBF). Smooth and microstructured glass coatings were applied using a tailored spray technique with subsequent thermal treatment. Coating adhesion was tested on implants that were inserted in bovine ribs. The cytocompatibility of the coating was analyzed using L929 mouse fibroblasts. The coefficient of thermal expansion of the novel glass was shown to be slightly lower (11.58 · 10(-6) K(-1)) than that of the zirconia (11.67 · 10(-6) K(-1)). After storage in SBF, the glass showed reaction layers almost identical to the bioactive glass gold standard, 45S5. A process window between 800 °C and 910 °C was found to result in densely sintered and amorphous coatings. Microstructured glass coatings on zirconia implants survived a minimum insertion torque of 60 Ncm in the in vitro experiment on bovine ribs. Proliferation and cytotoxicity of the glass coatings was comparable with the controls. The novel glass composition showed a strong adhesion to the zirconia substrate and a significant bioactive behavior in the SBF in vitro experiments. Therefore, it holds great potential to significantly reduce the healing time of zirconia dental implants. © International & American Associations for Dental

  16. Residual Stresses in Porcelain-veneered Zirconia Prostheses

    Science.gov (United States)

    Baldassarri, Marta; Stappert, Christian F. J.; Wolff, Mark S.; Thompson, Van P.; Zhang, Yu

    2012-01-01

    Objectives Compressive stress has been intentionally introduced into the overlay porcelain of zirconia-ceramic prostheses to prevent veneer fracture. However, recent theoretical analysis has predicted that the residual stresses in the porcelain may be also tensile in nature. This study aims to determine the type and magnitude of the residual stresses in the porcelain veneers of full-contour fixed-dental prostheses (FDPs) with an anatomic zirconia coping design and in control porcelain with the zirconia removed using a well-established Vickers indentation method. Methods Six 3-unit zirconia FDPs were manufactured (NobelBiocare, Gothenburg, Sweden). Porcelain was hand-veneered using a slow cooling rate. Each FDP was sectioned parallel to the occlusal plane for Vickers indentations (n = 143; load = 9.8 N; dwell time = 5 s). Tests were performed in the veneer of porcelain-zirconia specimens (bilayers, n = 4) and porcelain specimens without zirconia cores (monolayers, n = 2). Results The average crack lengths and standard deviation, in the transverse and radial directions (i.e. parallel and perpendicular to the veneer/core interface, respectively), were 67 ± 12 μm and 52 ± 8 μm for the bilayers and 64 ± 8 μm and 64 ± 7 μm for the monolayers. These results indicated a major hoop compressive stress (~40 to 50 MPa) and a moderate radial tensile stress (~10 MPa) in the bulk of the porcelain veneer. Significance Vickers indentation is a powerful method to determine the residual stresses in veneered zirconia systems. Our findings revealed the presence of a radial tensile stress in the overlay porcelain, which may contributed to the large clinical chip fractures observed in these prostheses. PMID:22578663

  17. Orthodontic bracket bonding to glazed full-contour zirconia

    Directory of Open Access Journals (Sweden)

    Ji-Young Kwak

    2016-05-01

    Full Text Available Objectives This study evaluated the effects of different surface conditioning methods on the bond strength of orthodontic brackets to glazed full-zirconia surfaces. Materials and Methods Glazed zirconia (except for the control, Zirkonzahn Prettau disc surfaces were pre-treated: PO (control, polishing; BR, bur roughening; PP, cleaning with a prophy cup and pumice; HF, hydrofluoric acid etching; AA, air abrasion with aluminum oxide; CJ, CoJet-Sand. The surfaces were examined using profilometry, scanning electron microscopy, and electron dispersive spectroscopy. A zirconia primer (Z-Prime Plus, Z or a silane primer (Monobond-S, S was then applied to the surfaces, yielding 7 groups (PO-Z, BR-Z, PP-S, HF-S, AA-S, AA-Z, and CJ-S. Metal bracket-bonded specimens were stored in water for 24 hr at 37℃, and thermocycled for 1,000 cycles. Their bond strengths were measured using the wire loop method (n = 10. Results Except for BR, the surface pre-treatments failed to expose the zirconia substructure. A significant difference in bond strengths was found between AA-Z (4.60 ± 1.08 MPa and all other groups (13.38 ± 2.57 - 15.78 ± 2.39 MPa, p < 0.05. For AA-Z, most of the adhesive remained on the bracket. Conclusions For bracket bonding to glazed zirconia, a simple application of silane to the cleaned surface is recommended. A zirconia primer should be used only when the zirconia substructure is definitely exposed.

  18. Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties

    Science.gov (United States)

    Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.

    2018-02-01

    We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

  19. Kinetics of phase transformation and optical property of pink coral zirconia powders

    International Nuclear Information System (INIS)

    Chu, Hsueh-Liang; Wang, Cheng-Li; Hwang, Weng-Sing; Lee, Kuen-Chan; Zhou, Xuedong; Wang, Moo-Chin

    2014-01-01

    Highlights: • The single phase of tetragonal ZrO 2 formed when calcined at 1223 K for 1 h. • The tetragonal ZrO 2 fully converted to ZrSiO 4 when calcined at 1323–1473 K for 1 h. • The activation energy of t-ZrO 2 formed is 399.9 kJ/mol when 5 mol% Fe 2 O 3 added. • The activation energy of the Fe/ZrSiO 4 formed is 257.7 kJ/mol when 5 mol% Fe 2 O 3 added. • The growth morphology parameter and crystallization index are about 2.0 and 1.0. - Abstract: The kinetics of phase transformation and optical property of pink coral zircon powders have been studied. The ZrO 2 –SiO 2 –Fe 2 O 3 precursor powders were synthesized using Zr(NO 3 ) 4 ⋅4H 2 O, Si(C 2 H 5 O) 4 and Fe(NO 3 ) 3 ⋅9H 2 O as initial materials via the hot–wet routes. The kinetics of phase transformation of the ZrO 2 –SiO 2 –Fe 2 O 3 precursor powders was characterized by thermo-gravimetric (TG)/differential scanning calorimeter (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), nano-beam electron diffraction (NBED), and spectrophotometry. The crystallization temperatures of tetragonal zirconia (t-ZrO 2 ) and zircon (ZrSiO 4 ) of ZrO 2 –SiO 2 precursor powders with 1 mol% Fe 2 O 3 were estimated to be approximately 1204 K and 1496 K, respectively, based on a DSC analysis conducted at a heating rate of 20 K/min. The activation energies of t-ZrO 2 formulation are 428.2, 403.2, and 399.9 kJ/mol, respectively, for ZrO 2 –SiO 2 precursor powders containing 1, 3, and 5 mol% Fe 2 O 3 , respectively, whereas the activation energies of the Fe/ZrSiO 4 formulation are 271.9, 261.9, and 257.7 kJ/mol, respectively. The parameter of growth morphology (n) and index of crystallization (m) were approximated as 2.0 and 1.0, respectively, meaning that two-dimensional growth with plate-like morphology was the primary mechanism of ZrO 2 crystallization from ZrO 2 –SiO 2 –Fe 2 O 3 precursor powders. The XRD results show that when the precursor powders of ZrO 2 –SiO 2 –1 mol

  20. Influence of calcination temperature on the zirconia microstructure synthesized by complex polymerization method (CPM): a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.L.P.; Mota, F.V.; Nascimento, R.M.; Henriques, B.P.; Silva, F.S.; Assis, R. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2016-07-01

    Full text: The aim of this study was to accomplish a previous characterization of the zirconia synthesized by Complex Polymerization Method (CPM) using yttria as stabilizing agent and different calcination temperatures. The powders were crystallized at 800, 900 and 1000 °C for 2h. The structural evolution Y-TZP powders were characterized by X-Ray Diffraction (XRD) and Micro-Raman Spectroscopy. The thermal properties of the calcined pre-pyrolyzed (350 °C for 4 h), samples were investigated by simultaneous thermo analysis (TGA/DTA). After heat treatment the phase Y-TZP was obtained of a single-phase, with absence of the deleterious phases. The results show that average crystallite size of the powder synthesized with 3% of Yttria dopant, increased from 11.5 to 27.9 nm when the calcination temperature increased from 800 to 1000 °C. This behavior was observed for all specimens independent of the Yttria content. The micro-Raman indicate the presence of the tetragonal phase for all samples independent of the calcination temperature employed. (author)

  1. Influence of framework color and layering technique on the final color of zirconia veneered restorations

    NARCIS (Netherlands)

    Aboushelib, M.N.; Dozic, A.; Liem, J.K.

    2010-01-01

    Objective: To investigate the influence of colored zirconia frameworks on the overall color match of zirconia- veneered restorations. Method and Materials: Identical natural and colored zirconia frameworks (Cercon Base, Degudent) were layered using a veneer ceramic (IPS e.max Ceram Dentin, Ivoclar

  2. Combined novel bonding method of resin to zirconia ceramic in dentistry: a pilot study

    NARCIS (Netherlands)

    Aboushelib, M.N.; Matinlinna, J.P.

    2011-01-01

    Zirconia is a promising metal-free framework material that can be used to construct all-ceramic resin-bonded restorations in modern minimally invasive dentistry. The lack of a durable bond to zirconia is the major limitation against its widespread use. A technique to promote adhesion to the zirconia

  3. First-principles comparison of the cubic and tetragonal phases of Mo3Sb7

    KAUST Repository

    Nazir, Safdar

    2011-03-01

    Using ab initio density functional based methods, we study the normal metal state properties of the ∼3 K Mo3Sb7 superconductor, in its high temperature cubic and low temperature tetragonal structures. Although the density of states at the Fermi energy is reasonably high in both structures, our calculations unequivocally show that there exists no long range magnetic ordering in this system. We also address the optical properties of the compound. The magnetism in Mo3Sb7 is studied by fixed spin moment calculations, which yield a shallow non-magnetic minimum, thus inferring propensity to a magnetic instability. © 2011 Elsevier B.V. All rights reserved.

  4. High-pressure high-temperature synthesis and structure of α-tetragonal boron

    Directory of Open Access Journals (Sweden)

    Evgeny A Ekimov and Igor P Zibrov

    2011-01-01

    Full Text Available Microcrystals of α-tetragonal (α-t boron with unit cell parameters a=9.05077(6 and c=5.13409(6 Å and measured density 2.16–2.22 g cm−3 were obtained by pyrolysis of decaborane B10H14 at pressures of 8–9 GPa and temperatures of 1100–1600 C. The crystal structure is in good agreement with the model proposed by Hoard et al (1958 J. Am. Chem. Soc. 80 4507. However, compared to the original model, we found small deformations of icosahedra and changes in the interatomic

  5. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial

    Directory of Open Access Journals (Sweden)

    Murat Cavit Çehreli

    2009-02-01

    Full Text Available The aim of this randomized controlled clinical trial was to compare the early clinical outcome of slip-cast glass-infiltrated Alumina/Zirconia and CAD/CAM Zirconia all-ceramic crowns. A total of 30 InCeram® Zirconia and Cercon® Zirconia crowns were fabricated and cemented with a glass ionomer cement in 20 patients. At baseline, 6-month, 1-year, and 2-year recall appointments, Californian Dental Association (CDA quality evaluation system was used to evaluate the prosthetic replacements, and plaque and gingival index scores were used to explore the periodontal outcome of the treatments. No clinical sign of marginal discoloration, persistent pain and secondary caries was detected in any of the restorations. All InCeram® Zirconia crowns survived during the 2-year period, although one nonvital tooth experienced root fracture coupled with the fracture of the veneering porcelain of the restoration. One Cercon® Zirconia restoration fractured and was replaced. According to the CDA criteria, marginal integrity was rated excellent for InCeram® Zirconia (73% and Cercon® Zirconia (80% restorations, respectively. Slight color mismatch rate was higher for InCeram® Zirconia restorations (66% than Cercon® Zirconia (26% restorations. Plaque and gingival index scores were mostly zero and almost constant over time. Time-dependent changes in plaque and gingival index scores within and between groups were statistically similar (p>0.05. This clinical study demonstrates that single-tooth InCeram® Zirconia and Cercon® Zirconia crowns have comparable early clinical outcome, both seem as acceptable treatment modalities, and most importantly, all-ceramic alumina crowns strengthened by 25% zirconia can sufficiently withstand functional load in the posterior zone.

  6. One-piece zirconia oral implants: one-year results from a prospective case series. 2. Three-unit fixed dental prosthesis (FDP) reconstruction.

    Science.gov (United States)

    Kohal, Ralf-Joachim; Patzelt, Sebastian B M; Butz, Frank; Sahlin, Herman

    2013-05-01

    To evaluate the clinical and radiological outcome of one-piece zirconia oral implants for three-unit fixed dental prosthesis (FDP) replacement after 1 year. Twenty eight patients were recruited for the investigation and signed an informed consent. All patients were treated with a one-stage implant surgery and a three-unit immediate temporary restoration on two one-piece zirconia implants. The implants were fabricated of yttria-stabilized tetragonal zirconia (y-TZP). The endosseous part of the implants was tapered with a porous surface. A total of 56 implants were inserted in the 28 patients. A total of 12 implants were placed in the upper jaws (six in the anterior area and six in the posterior area) and 44 in mandibles (all in the posterior area). At implant insertion and after 1 year, standardized radiographs were taken to evaluate the peri-implant bone loss. To evaluate any influences from different baseline parameters on the marginal bone loss a univariate analysis was performed. Clinical soft tissue parameters probing depth (PD), clinical attachment level (CAL), modified bleeding index (mBI) and modified plaque index (mPI) were recorded. Implant cumulative survival rates were calculated using actuarial life table analysis. Changes in the clinical variables were assessed using the Wilcoxon Signed Ranks test (PD, CAL) and the Sign test (mBl, mPl). All significance tests were conducted at a 5% level of significance. After 1 year, one implant was lost resulting in a survival rate of 98.2%. The patient was excluded from further analysis. The marginal bone loss after 1 year amounted to 1.95 mm. In 40% of the patients a bone loss of at least 2 mm and in 28% of the patients a loss of more than 3 mm were observed. The PD decreased for implant and tooth sites over time, the values being significantly higher for implants than for teeth. Over 1 year, the CAL increased slightly around the implants and decreased around the teeth. At the 1-year follow-up, the CAL at

  7. Gloss and Surface Roughness of Anterior Pediatric Zirconia Crowns.

    Science.gov (United States)

    Theriot, Adrien L; Frey, Gary N; Ontiveros, Joe C; Badger, Gary

    2017-09-15

    The purpose of this study was to determine gloss and surface roughness (Ra) of pediatric anterior zirconia crowns. Gloss of labial and lingual surfaces of pediatric anterior zirconia crowns from three manufacturers was measured on 20 specimens using a small area gloss meter on each. Ra (μm) was measured using a contact-type surface profilometer. Data were evaluated by analysis of variance and pair-wise comparison at the 0.05 level of significance. There were statistically significant interactions between surface location and crown type for both gloss and Ra scores. NuSmile had higher mean gloss scores and lower mean Ra scores than both Kinder Krowns and EZCrowns. Kinder Krowns showed lower mean gloss scores and higher Ra scores than other crown groups. Among all crowns, there was a trend of higher mean gloss paired with lower mean surface roughness, and lower mean gloss paired with higher mean Ra. Hand smoothed followed by mechanically polished zirconia crowns (NuSmile) displayed the highest mean gloss and lowest mean Ra compared to hybrid polishedglazed zirconia crowns (Kinder Krowns, EZCrowns). Of the hybrid polished-glazed zirconia crowns, Kinder Krowns displayed the lowest mean gloss and highest mean Ra.

  8. Corrosion behavior of zirconia in acidulated phosphate fluoride

    Directory of Open Access Journals (Sweden)

    Anie Thomas

    2016-02-01

    Full Text Available ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM. Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study.

  9. Corrosion behavior of zirconia in acidulated phosphate fluoride

    Science.gov (United States)

    Thomas, Anie; Sridhar, Sathyanarayanan; Aghyarian, Shant; Watkins-curry, Pilanda; Chan, Julia Y.; Pozzi, Alessandro; Rodrigues, Danieli C.

    2016-01-01

    ABSTRACT Objective The corrosion behavior of zirconia in acidulated phosphate fluoride (APF) representing acidic environments and fluoride treatments was studied. Material and Methods Zirconia rods were immersed in 1.23% and 0.123% APF solutions and maintained at 37°C for determined periods of time. Surfaces of all specimens were imaged using digital microscopy and scanning electron microscopy (SEM). Sample mass and dimensions were measured for mass loss determination. Samples were characterized by powder X-ray diffraction (XRD) to detect changes in crystallinity. A biosensor based on electrochemical impedance spectroscopy (EIS) was used to detect ion dissolution of material into the immersion media. Results Digital microscopy revealed diminishing luster of the materials and SEM showed increased superficial corrosion of zirconia submerged in 1.23% APF. Although no structural change was found, the absorption of salts (sodium phosphate) onto the surface of the materials bathed in 0.123% APF was significant. EIS indicated a greater change of impedance for the immersion solutions with increasing bathing time. Conclusion Immersion of zirconia in APF solutions showed deterioration limited to the surface, not extending to the bulk of the material. Inferences on zirconia performance in acidic oral environment can be elucidated from the study. PMID:27008257

  10. Magnetic resonance imaging in zirconia-based dental implantology.

    Science.gov (United States)

    Duttenhoefer, Fabian; Mertens, Marianne E; Vizkelety, Josef; Gremse, Felix; Stadelmann, Vincent A; Sauerbier, Sebastian

    2015-10-01

    X-ray-based planning and post-implantation assessment of titanium implants is the commonly accepted standard to date. However, new implant materials such as zirconia (ZrO2 ) have become available, and magnetic resonance imaging may be a valuable alternative with these implants. The present in vitro study investigated artifacts produced by titanium and zirconia implants in magnetic resonance imaging (MRI) and assessed the accuracy of pre-implant planning and post-implantation assessment comparing MRI to standard X-ray-based imaging modalities: Orthopantomogram (OPT), cone beam (CBCT), and computed tomography (CT). Twelve porcine mandibles were prepared and scanned (MRI, OPT, CBCT, μCT), and bone height above the nerve canal was measured. Specimens were implanted with either two titanium or zirconia implants and rescanned to investigate the influence of implant materials on post-implantation assessment. MRI and μCT artifacts were quantified with implants embedded in gelatin phantoms and porcine specimens. Compared with CBCT set as standard, μCT, OPT, and MRI showed similar accuracy in pre-op bone height measurements. Post-implantation, while titanium implants induced a strong B0 -field distortion resulting in extensive signal voids, zirconia implants were clearly depictable with only minor distortions. Excellent contrast, limited artifacts, radiation-free and accurate implant assessment may indicate that MRI is a valuable imaging alternative for zirconia-based implant dentistry. © 2014 The Authors. Clinical Oral Implants Research Published by John Wiley & Sons Ltd.

  11. Off-center Jahn-Teller ion: coupled polar and tetragonal deformations

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Sochava, L.S.

    1979-01-01

    Models of the off-center Jahn-Teller ions are considered, i.e. Ni + in SrO and Cu 27 in SrO studied earlier. Models of the off-center Jahn-Teller ion are proposed, in which mutual effect of dipole-active deformations conditioning off-centering and the Jahn-Teller tetragonal deformations takes place. Manifestations of a new type of multipit potential XY 24 of an off-center ion are considered. The Jahn-Teller effect (JTE) is studied for a duplicate in cubic environment, unharmonism of the fourth order being taken into account. In such a model of Exe of JTE, the position and quantity of minima of adiabatic potential are changed as compared with Exe of JTE taking account of unharmonism of the third order or the square Jahn-Teller interaction. While using models of the off-center Jahn-Teller ion which take account of the effect of two tetragonal Jahn-Teller deformations occurring in the Exe problem considering unharmonism of the fourth order produced on dipole-active deformations, it becomes possible to explain the experiment for SrO:Ni +

  12. Is there an ordered tetragonal phase in the Ti3Al-Nb system?

    International Nuclear Information System (INIS)

    Banerjee, D.

    1994-01-01

    In a recent series of papers, describing aging transformations in plasma sprayed Ti-24Al-11Nb, Hsiung and co-workers proposed a new ordered tetragonal structure as the first metastable phase to form in a series of transformations from quenched-in B2 to the equilibrium phase. They describe this new phase as a ''DO 3 like tetragonal structure'' with a composition Ti 5 Al 2 Nb, and lattice parameters, a = 0.65 nm and c/a ≅ 1.02. Their unit cell is constituted by 8 bcc unit cells, and the atomic coordinates of their structure are given in Table 1 on this basis. The symmetry of this structure is P4/mm. Though it is not the smallest possible unit cell for the structure, comparison with other bcc binary derivative structures is easily possible on this basis. The atomic coordinates for the latter, for a ternary composition Ti 2 AlNb, are also given. They note that the site occupation for the Hsiung et al. structure is quite distinct from that for a ternary DO 3 phase or any of the other possible bcc derivative structures (neglecting 2 possibilities with 128 or 432 atoms per unit cell(8) and interstitial ordering)

  13. High-pressure synthesis of fully occupied tetragonal and cubic tungsten bronze oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ikeuchi, Yuya; Takatsu, Hiroshi; Tassel, Cedric; Goto, Yoshihiro; Murakami, Taito; Kageyama, Hiroshi [Graduate School of Engineering, Kyoto University (Japan)

    2017-05-15

    A high-pressure reaction yielded the fully occupied tetragonal tungsten bronze K{sub 3}W{sub 5}O{sub 15} (K{sub 0.6}WO{sub 3}). The terminal phase shows an unusual transport property featuring slightly negative temperature-dependence in resistivity (dρ/dT<0) and a large Wilson ratio of R{sub W}=3.2. Such anomalous metallic behavior possibly arises from the low-dimensional electronic structure with a van Hove singularity at the Fermi level and/or from enhanced magnetic fluctuations by geometrical frustration of the tungsten sublattice. The asymmetric nature of the tetragonal tungsten bronze K{sub x}WO{sub 3}-K{sub 0.6-y}Ba{sub y}WO{sub 3} phase diagram implies that superconductivity for x≤0.45 originates from the lattice instability because of potassium deficiency. A cubic perovskite KWO{sub 3} phase was also identified as a line phase - in marked contrast to Na{sub x}WO{sub 3} and Li{sub x}WO{sub 3} with varying quantities of x (<1). This study presents a versatile method by which the solubility limit of tungsten bronze oxides can be extended. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.

    Science.gov (United States)

    Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza

    2015-11-11

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  15. Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions

    Science.gov (United States)

    Snamina, Mateusz; Oleś, Andrzej M.

    2018-03-01

    The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.

  16. Zr O2 TETRAGONAL OBTENIDO POR EL MÉTODO DE PRECIPITACIÓN CONTROLADA

    Directory of Open Access Journals (Sweden)

    DIEGO A. CAMPO CEBALLOS

    2011-01-01

    Full Text Available En este trabajo se utilizó el método de precipitación controlada para sintetizar ZrO2 tetragonal estabilizado con óxido de calcio, CaO. Los sólidos obtenidos se caracterizaron utilizando análisis térmico diferencial y gravimétrico (ATD/TG, Espectroscopia Infrarroja con transformada rápida de Fourier (FTIR, Difracción de Rayos X (DRX, y microscopia electrónica de transmisión (MET. Los resultados indican que al tratar el polvo cerámico a una temperatura de 600 ºC se obtiene ZrO2 con fase cristalina tetragonal; además las partículas de ZrO2 presentaron tamaño nanométrico (< 100 nm. Se prestó especial atención a los posibles mecanismos de formación de las partículas.

  17. Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO 2 Nanowires

    KAUST Repository

    Asayesh-Ardakani, Hasti

    2015-10-12

    There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WVO nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122¯) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.

  18. Critical behavior in tetragonal antiperovskite GeNFe3with a frustrated ferromagnetic state.

    Science.gov (United States)

    Kan, X C; Wang, B S; Zhang, L; Zu, L; Lin, S; Lin, J C; Tong, P; Song, W H; Sun, Y P

    2017-05-31

    Tetragonal GeNFe 3 has a second-order ferromagnetic (FM) to paramagnetic transition at 76 K. Our integrated investigations indicate that the ground FM state is frustrated and the tetragonal symmetry is retained below 550 K based on the results of variable temperature X-ray diffraction. Critical behavior was analyzed by a systematic bulk magnetization study. The estimated critical exponents by three different methods (modified Arrott plot, the Kouvel-Fisher method, and critical isotherm analysis) conformably suggest that long-range magnetic coupling described by mean-field (MF) theoretical model is dominant in GeNFe 3 . The experimental M-T-H data collapse into two independent branches according to the scaling equations m = f ± (h) with the renormalized magnetization m = ε -β M(H, ε) and the magnetic field h = Hε -(β+γ) . The exchange distance is estimated as J(r) ∼ r -4.8 on the basis of the β and γ values, which lies between the long-range MF model (r -4.5 ) and the short-range 3D Heisenberg (3DH) model (r -5 ). Our results indicate that the competition between local magnetic moments of iron 3d electronic state and itinerant covalent interactions of N-Fe bonds should be responsible for critical behavior in this system.

  19. Long-term studies on tetragonal lysozyme crystals grown in quiescent and forced convection environments

    Science.gov (United States)

    Grant, M. L.; Saville, D. A.

    The growth of tetragonal hen lysozyme crystals in the size range 150-300 μm was studied using digital microscopy; the size and orientation of the growing crystals were estimated from the geometry of the ideal tetragonal lysozyme crystal. At a confidence level above 99%, statistical analyses indicate the (110) face growth rates of crystals grown in quiescent conditions are not inhibited by weak buoyancy-driven natural convection. Yet similar analyses of crystals subjected to a weak forced flow of the same magnitude indicate a statistically significant decrease in growth rate with time. This apparent paradox probably results from mass transport limitations within the crystal growth cell. Mathematical models of fluid mixing inside the growth chamber suggest that crystal growth is limited by the rate at which protein molecules are transported to crystals growing on the walls of the chamber. Our experiments also reveal a large variation in the growth rates of crystals within a nominally homogeneous population. The local environment of the crystal may account for some of the variation, but the mechanisms are not understood.

  20. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  1. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    Science.gov (United States)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  2. The Metal-Zirconia Implant Fixed Hybrid Full-Arch Prosthesis: An Alternative Technique for Fabrication.

    Science.gov (United States)

    Stumpel, Lambert J; Haechler, Walter

    2018-03-01

    The metal-resin hybrid full-arch prosthesis has been a traditionally used type of restoration for full-arch implant fixed dentures. A newer development has centered around the use of monolithic zirconia or zirconia veneered with porcelain. Being a ceramic, zirconia has the potential for fracture. This article describes a technique that utilizes a metal substructure to support a chemically and mechanically resinbonded shell of zirconia. The workflow is discussed, ranging from in-office master cast fabrication to the CAD/ CAM production of the provisional and the definitive metal-zirconia prosthesis. The article also highlights the advantages and disadvantages of various materials used for hybrid prostheses.

  3. Mechanical behavior of mullite-zirconia composites

    Directory of Open Access Journals (Sweden)

    Sahnoune F.

    2010-06-01

    Full Text Available In this work, mechanical properties of mullite–zirconia composites synthesised through reaction sintering of Algerian kaolin, α-Al2O3, and ZrO2 were characterized. Phases present and their transformations were characterized using x-ray diffraction. Hardness H and fracture toughness KIC were measured by Vickers indentation using a Zwick microhardness tester. The flexural strength was measured through three point bending test using an Instron Universal Testing Machine. It was found that the increase of ZrO2 content (from 0 to 32wt.% decreased the microhardness of the composites from 14 to 10.8 GPa. However, the increase of ZrO2 content (from 0 to 24wt.% increased the flexural strength of the composites from 142 to 390 MPa then decreased it with further increase of ZrO2 content. Also, the fracture toughness increased from 1.8 to 2.9 MPa.m1/2 with the increase of ZrO2 content from 0 to 32 wt.%; and the rate of the increase decreased at higher fractions of ZrO2 content. The average linear coefficient of thermal expansion (within the range 50 to 1450°C for samples containing 0 and 16 wt.% ZrO2 sintered at 1600°C for 2 hours was 4.7 x10-6 K-1 and 5.2 x 10-6 K-1 respectively.

  4. Fracture toughness measurements on zirconia toughened ceramics

    International Nuclear Information System (INIS)

    El Sayed Ali, M.; Toft Soerensen, O.

    1986-12-01

    Three techniques for fracture toughness measurements on zirconia toughened ceramics were evaluated: the notched beam (NB) technique, the indentation fracture (IF) technique and the indentation strength in bending (ISB) technique. Using these techniques comparative measurements were performed on samples prepared by pressing (uniaxial) and sintering of four commercially available powder types. These were: Toya Soda (Japan) powders with the designations TZ3Y (2.86 mole% Y 2 O 3 ), TZ3YA (2.77 mole% Y 2 O 3 , 0.1 wt% Al 2 O 3 ) and TZ3Y20A (2.88 mole% Y 2 O 3 , 20 wt.% Al 2 O 3 ) and a powder supplied by Viking Chemicals (Denmark) designated as YP5Z-2.5 (2.5 mole% Y 2 O 3 ). The measurements showed that similar K Ic values were obtained with the IF- and ISB-techniques, which therefore are recommended for K Ic measurements. Too high values were, however, obtained with the NB-technique which therefore cannot be recommended. Finally, the measurements showed that a high temperature annealing is recommended prior to testing for the IF-technique. (author)

  5. Ultrasonic characterization of zirconia-toughened alumina ceramics

    International Nuclear Information System (INIS)

    Phani, K.K.; Mukherjee, S.; Basu, D.

    1996-01-01

    Ultrasonic pulse-echo technique was used for the characterization of sintered zirconia-toughened alumina (ZTA) ceramics. The variation of the ultrasonic velocity and elastic constants with the volume fraction of zirconia in the alumina matrix was studied. The ultrasonic velocity variation in these materials also was modeled using a mean-value approach. The zirconia grains in ZTA were modeled by oblate spheroids, whose aspect ratio was estimated from the two-dimensional microstructure of the material using stereological relations. The aspect ratio was then used as a parameter to estimate the ultrasonic velocity variation in the material using self-consistent spheroidal inclusion theory, and the model was validated by comparing the estimated data with the measured velocity values, which showed very good agreement

  6. [Clinical evaluation of zirconia crowns for single posterior teeth].

    Science.gov (United States)

    Chen, Yuanhua; Meng, Xiangfeng; Yu, Qing

    2014-06-01

    To observe and evaluate the clinical performance of zirconia crowns made by CEREC inLab computer aided design/computer aided manufacturing(CAD/CAM) for posterior teeth. A total of 242 patients were implanted with zirconia crowns fabricated by CEREC inLab CAD/CAM. The crowns were evaluated by Modified US Public Health Service criteria at baseline, 6, 12, 24, and 36 months. The chi-square test was used to analyze the survival rate. All but five crowns were evaluated by an independent evaluator at baseline, 6, 12, 24, and 36 months. The survival rate declined with time. The A score percentage was above 85% at 36 months. The single zirconia crowns fabricated by CEREC inLab CAD/CAM demonstrate satisfactory clinical performance during a short period.

  7. Thermodynamic properties of some metal oxide-zirconia systems

    Science.gov (United States)

    Jacobson, Nathan S.

    1989-01-01

    Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.

  8. Tribological properties of toughened zirconia-based ceramics

    International Nuclear Information System (INIS)

    Stachowiak, G.W.; Stachowiak, G.B.

    1991-01-01

    The physical and mechanical properties of toughened zirconia ceramics are briefly characterized and described with a special emphasis on their tribological behaviour. The wear and friction properties of PSZ and TZP ceramics at room and elevated temperatures are described. The influence of the environment on the tribological characteristics of zirconia ceramics is discussed. Both lubricated and unlubricated conditions for ceramic/ceramic and metal/ceramic sliding contacts are analysed. One of the main, and as yet unresolved problems, lubrication of ceramic at elevated temperatures and/or space environment, is addressed and the possible solutions to the problem are suggested. The critical needs in the research and development area of improving the tribological properties of zirconia ceramics are defined and its future market potentials stated. 30 refs., 2 tabs., 4 figs

  9. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    Science.gov (United States)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  10. Effects of aqueous and acid-based coloring liquids on the hardness of zirconia restorations.

    Science.gov (United States)

    Nam, Ji-Young; Park, Mi-Gyoung

    2017-05-01

    The effects of the application of aqueous coloring liquids on the mechanical properties of zirconia have not yet been investigated. The purpose of this in vitro study was to evaluate the effects of 3 different coloring techniques and the number of coloring liquid applications on the hardness of zirconia. Eighty specimens were divided into 8 groups (n=10); nonshaded zirconia, preshaded zirconia, acid-based coloring liquid zirconia, and aqueous coloring liquid zirconia (1, 3, 6). Vickers hardness was measured. Data were analyzed via 1-way and 2-way ANOVAs. Multiple comparisons were performed using a Scheffé test (α=.05). Statistically significant differences in hardness were found between acid-based coloring liquid zirconia and aqueous coloring liquid zirconia (Pzirconia (Pzirconia (P>.05). Within the limitations of this study, the hardness of zirconia was influenced to differing degrees depending on coloring technique. The number of coloring liquid applications affected the hardness of zirconia colored with the acid-based coloring liquid but not the hardness of zirconia colored with the aqueous coloring liquid. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Evaluation of Acid Etching on Surface Characteristics, Strength and Biological Response of Glass-Infiltrated Zirconia.

    Science.gov (United States)

    Vu, Van Thi; Oh, Gye-Jeong; Lim, Hyun-Pil; Yun, Kwi-Dug; Kim, Ji-Won; Park, Sang-Won

    2018-03-01

    This study evaluated the effect of acid etching on surface characteristics, flexural strength and osteoblast cell response of glass-infiltrated zirconia. Zirconia specimens were divided into six groups: untreated zirconia (Z); glass-infiltrated zirconia (ZG); glass-infiltrated and sandblasted zirconia (ZGS); glass-infiltrated, sandblasted and 5 min acid-etched zirconia (ZGS-E5); glassinfiltrated, sandblasted and 15 min acid-etched zirconia (ZGS-E15); glass-infiltrated, sandblasted and 25 min acid-etched zirconia (ZGS-E25). Surface roughness, biaxial flexural strength and MC3T3-E1 cell proliferation were evaluated. When increasing etching time, surface roughness significantly increased while flexural strength decreased. Cell proliferation rate at day 3 on group ZGS-E15 and ZGS-E25 was significantly higher than that of other groups. Surface roughness and flexural strength of glass-infiltrated zirconia can be controlled by adjusting etching time. Rough surface made by acid etching following glass infiltration significantly enhanced osteoblast cell response. Glass infiltration improved strength of zirconia but severe acid etching slightly reduced strength of zirconia.

  12. Use of spray-dried zirconia microspheres in the separation of immunoglobulins from cell culture supernatant.

    Science.gov (United States)

    Subramanian, A; Carr, P W; McNeff, C V

    2000-08-18

    A method suitable for the isolation of monoclonal antibodies (MAbs) on novel zirconia microspheres (20-30 microm) is described. Zirconia microspheres were generated by spray drying colloidal zirconia. Spray-dried zirconia microspheres were further classified and characterized by X-ray diffraction, BET porosimetry and scanning electron microscopy. Spray-dried zirconia microspheres were modified with ethylenediamine-N,N'-tetra(methylenephosphonic) acid (EDTPA) to create a cation-exchange chromatographic support. The chromatographic behavior of a semi-preparative column packed with EDTPA-modified zirconia microspheres was evaluated and implications for scale-up are provided. EDTPA-modified zirconia microspheres were further used to purify MAbs from cell culture supernatant. Analysis by enzyme linked immunosorbent assay and gel electrophoresis demonstrate that MAbs can be recovered from a cell culture supernatant at high yield (92-98%) and high purity (>95%) in a single chromatographic step.

  13. The effective design of zirconia coping on titanium base in dental implant superstructure.

    Science.gov (United States)

    Mieda, Maiko; Atsuta, Ikiru; Matsushita, Yasuyuki; Morita, Takehiro; Ayukawa, Yasunori; Tsukiyama, Yoshihiro; Sawae, Yoshinori; Koyano, Kiyoshi

    2018-03-30

    Zirconia exhibits good tissue compatibility and nontoxicity, making it a widely used esthetic replacement material for implant abutments. To avoid abutment-fracture, the parts composed of zirconia with a bonded metal component connected to the implant can be used. The purpose of this study was to design titanium and zirconia components with high fracture resistance at the zirconia component's edge line. Three edge line designs of the titanium base and zirconia sleeve were made: chamfer, shoulder, and back-taper. To assess the strength of the abutment design, static loads were applied vertically and 30 degrees from the vertical axis. A test of tensile strength was also performed after chewing simulation. Conventional zirconia components mounted on a chamfer-type titanium base showed significantly lower fracture resistance than shoulder and back-taper types. This study suggests that to improve the durability of zirconia abutments with a titanium base, a back-tapered edge design is recommended.

  14. Streaming current measurements in zirconia-coated capillaries.

    Science.gov (United States)

    Crosnier de Bellaistre, Myriam; Renaud, Louis; Kleimann, Pascal; Morin, Pierre; Randon, Jérôme; Rocca, Jean-Luis

    2004-10-01

    The electroosmotic flow created in zirconia-modified capillaries has been previously investigated. In this paper, we compared the electroosmotic data set with streaming current measurements and we related all these data through zeta-potential. Streaming current measurements give an excellent indication on the direction and the value of the electroosmotic mobility of an electrolyte/capillary system for a large set of experimental conditions: 2 zirconia-coated capillaries the zeta-potential can be tuned from -50 to +100 mV depending on the composition of the electrolyte. Copyright 2004 WILEY-VCH Verlag GmbH & Co.

  15. Phase composition of yttrium-doped zirconia ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik

    2017-06-01

    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  16. Biaxial flexural strength of bilayered zirconia using various veneering ceramics

    OpenAIRE

    Chantranikul, Natravee; Salimee, Prarom

    2015-01-01

    PURPOSE The aim of this study was to evaluate the biaxial flexural strength (BFS) of one zirconia-based ceramic used with various veneering ceramics. MATERIALS AND METHODS Zirconia core material (Katana) and five veneering ceramics (Cerabien ZR; CZR, Lava Ceram; LV, Cercon Ceram Kiss; CC, IPS e.max Ceram; EM and VITA VM9; VT) were selected. Using the powder/liquid layering technique, bilayered disk specimens (diameter: 12.50 mm, thickness: 1.50 mm) were prepared to follow ISO standard 6872:20...

  17. Mechanical behaviour of new zirconia-hydroxyapatite ceramic materials

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J.A.; Morejon, L. [La Habana Univ. (Cuba). Centro de Biomateriales; Martinez, S. [Barcelona Univ. (Spain). Dept. Cristallografia, Mineralogia; Ginebra, M.P.; Carlsson, N.; Fernandez, E.; Planell, J.A. [Universidad Politecnica de Cataluna, Barcelona (Spain). CREB; Clavaguera-Mora, M.T.; Rodriguez-Viejo, J. [Universitat Autonoma de Barcelona (Spain). Dept. de Fisica

    2001-07-01

    In this work a new zirconia-hydroxyapatite ceramic material was obtained by uniaxial pressing and sintering in humid environment. The powder X-ray diffraction (XRD) patterns and infrared spectra (FT-IR) showed that the hydroxyapatite (HA) is the only calcium phosphate phase present. The fracture toughness for HA with 20 wt.% of magnesia partially stabilised zirconia (Mg-PSZ) was around 2.5 times higher than those obtained for HA pure, also the highest value of bending strength (160 MPa) was obtained for material reinforced with Mg-PSZ. For the MgPSZ-HA (20%) the fracture mechanism seems to be less transgranular. (orig.)

  18. The energy and spectral characteristics of a room-temperature pulsed laser on a ZnS:Fe2+ polycrystal

    Science.gov (United States)

    Firsov, K. N.; Gavrishchuk, E. M.; Ikonnikov, V. B.; Kazantsev, S. Yu; Kononov, I. G.; Kotereva, T. V.; Savin, D. V.; Timofeeva, N. A.

    2016-04-01

    The energy and spectral characteristics of a laser on a ZnS:Fe2+ polycrystal operating at room temperature have been studied. The laser was pumped by a non-chain electro-discharge HF laser with a full-width at half-maximum pulse duration of ~140 ns. The diameter of the pumping radiation spot on the crystal surface was 3.8& mm. The two-sided diffuse doping of a polycrystalline CVD-ZnS sample with the surfaces preliminarily coated by high-purity iron films was performed in the process of hot isostatic pressing (HIP) in an argon atmosphere at a pressure of 100 MPa and temperature of 1290 °C. Increasing the duration of the HIP treatment from 54 h to 72 h made it possible to obtain twice the doping depth, and correspondingly, twice the length of active medium. As a result, the slope laser efficiency with respect to the absorbed energy was raised by a factor of 1.75 as compared to the value obtained in our earlier work with a polycrystalline sample. The generation energy was 25 mJ at a slope efficiency of ηslope = 35%. It was established that the generation spectra of the laser with a non-selective resonator have a linear structure with intervals between the neighboring lines of δλ 6 ÷ 8 nm, which is spurious for solid-state lasers. The spectral structure observed is not related to the elements inside the resonator, which might form Fabry-Perot interferometers.

  19. Stress corrosion of austenitic steels mono and polycrystals in Mg Cl2 medium: micro fractography and study of behaviour improvements

    International Nuclear Information System (INIS)

    Chambreuil-Paret, A.

    1997-01-01

    The austenitic steels in a hot chlorinated medium present a rupture which is macroscopically fragile, discontinuous and formed with crystallographic facets. The interpretation of these facies crystallographic character is a key for the understanding of the stress corrosion damages. The first aim of this work is then to study into details the micro fractography of 316 L steels mono and polycrystals. Two types of rupture are observed: a very fragile rupture which stresses on the possibility of the interatomic bonds weakening by the corrosive medium Mg Cl 2 and a discontinuous rupture (at the micron scale) on the sliding planes which is in good agreement with the corrosion enhanced plasticity model. The second aim of this work is to search for controlling the stress corrosion by the mean of a pre-strain hardening. Two types of pre-strain hardening have been tested. A pre-strain hardening with a monotonic strain is negative. Indeed, the first cracks starts very early and the cracks propagation velocity is increased. This is explained by the corrosion enhanced plasticity model through the intensifying of the local corrosion-deformation interactions. On the other hand, a cyclic pre-strain hardening is particularly favourable. The first micro strains starts later and the strain on breaking point levels are increased. The delay of the starting of the first strains is explained by a surface distortion structure which is very homogeneous. At last, the dislocations structure created in fatigue at saturation is a planar structure of low energy which reduces the corrosion-deformation interactions, source of micro strains. (O.M.)

  20. Elevated Temperature Effects on the Plastic Anisotropy of an Extruded Mg-4 Wt Pct Li Alloy: Experiments and Polycrystal Modeling

    Science.gov (United States)

    Risse, Marcel; Lentz, Martin; Fahrenson, Christoph; Reimers, Walter; Knezevic, Marko; Beyerlein, Irene J.

    2017-01-01

    In this work, we study the deformation behavior of Mg-4 wt pct Li in uniaxial tension as a function of temperature and loading direction. Standard tensile tests were performed at temperatures in the range of 293 K (20 °C) ≤ T ≤ 473 K (200 °C) and in two in-plane directions: the extrusion and the transverse. We find that while the in-plane plastic anisotropy (PA) decreases with temperature, the anisotropy in failure strain and texture development increases. To uncover the temperature dependence in the critical stresses for slip and in the amounts of slip and twinning systems mediating deformation, we employ the elastic-plastic self-consistent polycrystal plasticity model with a thermally activated dislocation density based hardening law for activating slip with individual crystals. We demonstrate that the model, with a single set of intrinsic material parameters, achieves good agreement with the stress-strain curves, deformation textures, and intragranular misorientation axis analysis for all test directions and temperatures. With the model, we show that at all temperatures the in-plane tensile behavior is driven primarily by < a rangle slip and both < {c + a} rangle slip and twinning play a minor role. The analysis explains that the in-plane PA decreases and failure strains increase with temperature as a result of a significant reduction in the activation stress for pyramidal < {c + a} rangle slip, which effectively promotes strain accommodation from multiple types of < a rangle and < {c + a} rangle slip. The results also show that because of the strong initial texture, in-plane texture development is anisotropic since prismatic slip dominates the deformation in one test, although it is not the easiest slip mode, and basal slip in the other. These findings reveal the relationship between the temperature-sensitive thresholds needed to activate crystallographic slip and the development of texture and macroscopic PA.