WorldWideScience

Sample records for tetrachloromethane

  1. [Kinetics of nitrogenous metabolites in the kidney during chronic tetrachloromethane hepatitis].

    Science.gov (United States)

    Savilov, P N; Molchanov, D V

    2014-01-01

    The kinetics of ammonia, glutamine, and urea in the kidney has been studied in experiments on 203 white rats (females) at the end of chronic tetrachloromethane (CCl4) exposure (65 days) and within 14 days after cessation of CCl4. It was found that on the 65th day of CCl4 administration the arterial hyperammoniemia is formed, which lasts for 14 days after the abolition of the toxin. This is accompanied by an increased excretion of ammonia in the urine and an increase in its concentration in the blood of renal veins, which does not prevent its accumulation in renal tissue. In chronic CCl4-hepatitis model are the changes of glutamine concentration in arterial blood are developing by type of hypo- and hyperglutaminemia. CCl4 stimulates accumulation of glutamine by the kidneys at the end of exposure and at early stage of the recovery period. Toxin cessation activates processes which are stabilizing the normal concentration of glutamine in the kidney by changing glutamine incretion from kidney to renal blood flow. Long-lasting CCl4 exposure increases the concentration of urea in the arterial blood and its urinary excretion. Simultaneously urea reabsorption is activated in the kidneys, which contributes to an increase in its concentration in the blood of the renal veins.

  2. Determination of berberine by measuring the enhanced total internal reflected fluorescence at water/tetrachloromethane interface in the presence of sodium dodecyl benzene sulfonate.

    Science.gov (United States)

    Feng, Ping; Huang, Cheng Zhi; Li, Yuan Fang

    2003-07-01

    A highly sensitive method for determination of berberine is proposed based on the measurements of total internal reflected fluorescence (TIRF) at water/ tetrachloromethane (H(2)O/CCl(4)) interface. In the pH range of 2.6-5.7, the co-adsorption of the berberine with the anionic surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecylsulfonate (SDS), and sodium lauryl sulfate (SLS) occurs at the H(2)O/CCl(4 )interface, resulting in greatly enhanced TIRF signal characterized by the emission at 526 nm when excited with a 351 nm light beam. The enhanced TIRF intensity is in proportion to the berberine concentration in the range 0.2-10.0x10(-7) mol L(-1). The limit of detection is 1.7x10(-9) mol L(-1) (3sigma). It was found that ions such as Ca(II), Cu(II), Fe(III), Cd(II), Mg(II), Zn(II), Pb(II), and Al(III) can be allowed larger than 1.0x10(-4) mol L(-1). Meanwhile, the organic compounds such as vitamin B, saccharine, and amino acid do not display any effect for the present TIRF method even if they are larger than 1.0x10(-2) mol L(-1)in high concentration levels (larger than 1.0x10(-5) mol L(-1)). The results of determination for synthetic samples were agreement with the desired values, and the ones for tablets were identical with those obtained according to the method of Chinese Pharmacopoeia.

  3. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF₂-MgO Carriers.

    Science.gov (United States)

    Bonarowska, Magdalena; Wojciechowska, Maria; Zieliński, Maciej; Kiderys, Angelika; Zieliński, Michał; Winiarek, Piotr; Karpiński, Zbigniew

    2016-11-25

    Pd/MgO, Pd/MgF₂ and Pd/MgO-MgF₂ catalysts were investigated in the reaction of CCl₄ hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF₂-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C₂-C₅ hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF₂ is beneficial for shaping high activity of palladium catalysts. The MgO-MgF₂ support characterized by stronger Lewis acidity than MgF₂ contributes to very good catalytic activity for a relatively long reaction period (~5 h) but subsequent neutralization of stronger acid centers (by coking) eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO) are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  4. Carbon-mineral adsorbents prepared by pyrolysis of waste materials in the presence of tetrachloromethane.

    Science.gov (United States)

    Leboda, Roman; Charmas, Barbara; Skubiszewska-Zieba, Jadwiga; Chodorowski, Stanislaw; Oleszczuk, Patryk; Gun'ko, Vladimir M; Pokrovskiy, Valery A

    2005-04-01

    Natural bentonite spent in the process of plant oil bleaching was used as an initial material for preparation of carbon-mineral adsorbents. The spent bleaching earth was treated using four procedures: T (thermal treatment); H (hydrothermal treatment); C (thermal treatment with addition of CCl4 vapor); M (modification of porous structure). Raw bentonite, RB (raw bleaching earth), and carbon materials prepared using plant oil were compared. The physicochemical characteristics of the adsorbents were determined using different methods: nitrogen adsorption/desorption, XRD, TEM, and MS-TPD. Carbon-mineral adsorbents contain from 5.23 to 19.92% C (w/w) and carbon adsorbents include from 84.2 to 91.18% C (w/w). Parallel processes of organic substance carbonization, porous structure modification, sublimation or evaporation of metal chlorides, and removal of hydrogen chloride take place during pyrolysis of waste mineral materials in the CCl4 atmosphere.

  5. [Studying of hepatoprotective properties of dry extract from apricot leaves on the model of liver lesion by tetrachloromethane].

    Science.gov (United States)

    Shtroblia, A L; Fira, L S; Likhatskiĭ, P G; Pyla, V P; Vashkeba, E M; Medvid', I I

    2013-01-01

    The results of the pharmacological investigation of the properties of apricot leaves dry extract are indicated in the article. It is proved that the extract belongs to the group of "relatively harmless" substances, exclusion of the ulcerogenic effect on the stomach, local irritating and allergenic effect on animals. It is found minimal reacting dose of the extract, which is 70 mg/kg of body weight. On the model of liver lesion by tetrachlormethane it is proved the antioxidant properties of the extract, which is manifested by the decreasing of the activity of oxidative processes and the resumption of the activity of the endogenous antioxidant system. At the studying of the bile formation and bile secretion functions in the conditions of the toxic tetrachlormethane lesion the hepatoprotective effect of the dosage form was confirmed, which was realized by the increasing of the speed of bile secretion and its volume. It is proved a positive effect of the extract on the detoxification function of the liver, that is confirmed by the reducing of the hexenal sleep in rats after toxicant exposure.

  6. Hydrodechlorination of Tetrachloromethane over Palladium Catalysts Supported on Mixed MgF2-MgO Carriers

    Directory of Open Access Journals (Sweden)

    Magdalena Bonarowska

    2016-11-01

    Full Text Available Pd/MgO, Pd/MgF2 and Pd/MgO-MgF2 catalysts were investigated in the reaction of CCl4 hydrodechlorination. All the catalysts deactivated in time on stream, but the degree of deactivation varied from catalyst to catalyst. The MgF2-supported palladium with relatively large metal particles appeared the best catalyst, characterized by good activity and selectivity to C2-C5 hydrocarbons. Investigation of post-reaction catalyst samples allowed to find several details associated with the working state of hydrodechlorination catalysts. The role of support acidity was quite complex. On the one hand, a definite, although not very high Lewis acidity of MgF2 is beneficial for shaping high activity of palladium catalysts. The MgO-MgF2 support characterized by stronger Lewis acidity than MgF2 contributes to very good catalytic activity for a relatively long reaction period (~5 h but subsequent neutralization of stronger acid centers (by coking eliminates them from the catalyst. On the other hand, the role of acidity evolution, which takes place when basic supports (like MgO are chlorided during HdCl reactions, is difficult to assess because different events associated with distribution of chlorided support species, leading to partial or even full blocking of the surface of palladium, which plays the role of active component in HdCl reactions.

  7. A Field Method For Determination of Groundwater and Groundwater-sediment Associated Potentials for Degradation of Xenobiotic Organic Compounds

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund; Holm, Peter Engelund

    1992-01-01

    Determination of the degradation potentials for a mixture of eight organic trace contaminants (benzene, toluene, o-xylene, naphthalene, tetrachloromethane, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene) has been made by specially developed in situ microcosms under aerobic and anaerobic...

  8. Formation of chloroform in soil. A year-round study at a Danish spruce forest site

    DEFF Research Database (Denmark)

    Haselmann, K.F.; Laturnus, F.; Grøn, C.

    2002-01-01

    Soil air from top soil of a Danish spruce forest was investigated monthly from December 1997 to December 1998 for the occurrence of chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethene and tetrachloroethene. Within the monitoring period, three different patterns of soil air...... concentrations were identified. For chloroform, concentrations peaked in spring and autumn while 1,1,1-trichloroethane and tetrachloromethane peaked during mid winter. Trichloroethene and tetrachloroethene, concentrations remained constant throughout the year. The relative ratios of soil air concentrations...... concentrations were found in the soil in warm and humid periods of the year (spring and autumn) with high microbial activity....

  9. dichloroethane by Pseudomonas aeruginosa OK1 isolated from a ...

    African Journals Online (AJOL)

    Administrator

    chlorinated organics such as monochloroacetic acid, trichloroacetic acid, dichloromethane, trichloromethane and tetrachloromethane at pH 7.5 and 9.0. Optimum temperature for dehalogenase activity against 1, 2 – DCE was 35oC. Key words: Dechlorination, 16S rDNA, bioremediation, Pseudomonas aeruginosa OK1.

  10. Page 1 THE INFRARED SPECTRA OF A QUATERNARY ...

    African Journals Online (AJOL)

    presence of at least, a trans and a gauche rotamer in trichloromethane solution and a gauche rotamer in the tetrachloromethane is suggested. Also, the enormous enhancement of the cyanide band intensity in the SCD, derivative was recorded. For the trans is(); , the intensity enhancement is attributed to resonance coupling ...

  11. Vibrational Spectroscopy of the CCl[subscript 4] v[subscript 1] Mode: Theoretical Prediction of Isotopic Effects

    Science.gov (United States)

    Gaynor, James D.; Wetterer, Anna M.; Cochran, Rea M.; Valente, Edward J.; Mayer, Steven G.

    2015-01-01

    Raman spectroscopy is a powerful experimental technique, yet it is often missing from the undergraduate physical chemistry laboratory curriculum. Tetrachloromethane (CCl[subscript 4]) is the ideal molecule for an introductory vibrational spectroscopy experiment and the symmetric stretch vibration contains fine structure due to isotopic variations…

  12. Protective effect of rhamnopyranosyl vanilloyl isolated from ...

    African Journals Online (AJOL)

    Purpose: To investigate the protective effect of rhamnopyranosyl vanilloyl (RV) from Scrophularia ningpoensis root against tetrachloromethane (CCl4)-induced acute liver injury (ALI) in mice. Methods: RV was isolated from S. ningpoensis by column chromatography. ALI model of mice was established by intraperitoneal ...

  13. HEPATOPROTECTIVE ACTION OF THYMALINUM AND SUSPENSION OF RED BONE MARROW IN TREATING EXPERIMENTAL TOXIC HEPATITIS OF RATS

    Directory of Open Access Journals (Sweden)

    E. F. Kulbekov

    2014-01-01

    Full Text Available Hepatic decompensation problems make it timely to search for the methods of its treatment. Stem cells usage in attempt to restore structures of organs and tissues is a promising direction of researches. However the problem of possible blast-cell transformation slows down studies in this direction. Attempt of thymalinum use as an antitumoral immune system's modulator may be successful and may widen the possibilities of stem cells use in hepatology. On the basis of toxical affection of rats' lever by tetrachloromethane and paracetamol we have studied hepatoprotective activity of thymalinum and suspension of rats' red bone marrow (RBM and a thymalinum + suspension of RBM complex. Hepatoprotective action was estimated by the volume of discharged bile of control group rats which received paracetamol comparing with intact animals. This confirms the absence of reliable hepatotoxical action of paracetamol following the methodology applied. Significant reduction of discharged bile volume of control group rats which received tetrachloromethane comparing with intact animals confirms the successfulness of the formation method of hepatitis model in animals which received tetrachloromethane. The animals which were given tetrachloromethane and thymalinum + suspension of RBM combination had bigger volume of bile discharged than control group animals. Hepatoprotective action tendency of thymalinum + suspension of RBM combination shown before on mice is also true for rats. 

  14. A comparative study of singlet-oxygen generation by C60 and C70 fullerenes

    Science.gov (United States)

    Kiselev, V. M.; Kislyakov, I. M.; Bagrov, I. V.

    2017-02-01

    The results of comparative investigations of singlet-oxygen generation by C60 and C70 fullerenes in tetrachloromethane solutions, aqueous suspensions, and solid-phase powders of fullerenes optically excited by cw diode arrays with different wavelengths and by pulsed xenon lamps with a band filter are presented. The measurements were performed by recording singlet-oxygen phosphorescence at the O2(1Δg)-O2(3Σg) transition (λ = 1270 nm).

  15. 相模川の有機塩素化合物による水質汚染調査 : トリクロロエチレンの高濃度汚染

    OpenAIRE

    花井, 義道; 加藤, 龍夫; 川嶋, 庸子

    1995-01-01

    Sagami River is a representational river of Kanagawa Prefecture and the important source of drinking water. To survey the water pollution of Sagami River, 95 samples were collected by many citizens every 500 m right and left side alternately from Sagami Lake to Sagami Bay at Dec-1991 and Dec-1992. Chlorinated organic pollutants such as freon 113, Chloroform, 1,1,1-trichloroethane, tetrachloromethane, trichloroethylene and tetrachloroethylenein water were analyzed by GC-ECD using a head-space ...

  16. Biodegradation of chlorinated solvents in a water unsaturated topsoil

    DEFF Research Database (Denmark)

    Borch, T.; Ambus, P.; Laturnus, F.

    2003-01-01

    In order to investigate topsoils as potential sinks for chlorinated solvents from the atmosphere, the degradation of trichloromethane (CHCl3), 1,1,1-trichloroethane (CH3CCl3), tetrachloromethane (CCl4), trichloroethene (C2HCl3) and tetrachloroethene (C2Cl4) was studied in anoxic laboratory...... experiments designed to simulate denitrifying conditions in water unsanstrated by measuring the release of N-15 in N-2 to the headspace from added N-15 labeled nitrate. The degradation of chlorinated aliphatic compounds was followed by measuring their concentrations in the headspace above the soil....... The headspace concentrations of all the chlorinated solvents except CH3CCl3 were significantly (P less than or equal to 0.05) lower after 41 days in biologically active batches as compared to sterile batches. For the compounds with significantly decreasing headspace concentrations, the decline was the least...

  17. Ultra-sensitive determination of cadmium in rice and water by UV-vis spectrophotometry after single drop microextraction.

    Science.gov (United States)

    Wen, Xiaodong; Deng, Qingwen; Guo, Jie; Yang, Shengchun

    2011-08-01

    In this work, a new method based on single drop microextraction (SDME) preconcentration using tetrachloromethane (CCl(4)) as extraction solvent was proposed for the spectrophotometric determination of cadmium in rice and water samples. The influence factors relevant to SDME, such as type and volume of extractant, stirring rate and time, dithizone concentration, pH, drop volume and instrumental conditions were studied systematically. Under the optimal conditions, the limit of detection (LOD) was 0.5 ng L(-1), with sensitivity enhancement factor (EF) of 128. The different maximum absorption wavelength caused by the different extraction acidity compared with some conventional works and the enhancement effect of acetone (dilution solvent) for the spectrophotometric determination were the two key factors of the high EF and sensitivity. The proposed method was applied to the determination of rice and water samples with satisfactory analytical results. The proposed method was simple, rapid, cost-efficient and sensitive. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. High selective conversion of methane to carbon monoxide and the effects of chlorine additives in the gas and solid phases on the oxidation of methane on strontium hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Shigeru; Minami, Toshimitsu; Higaki, Tomonori; Hayashi, Hiromu [Univ. of Tokushima (Japan). Dept. of Chemical Science and Technology; Moffat, J.B. [Univ. of Waterloo, Ontario (Canada)

    1997-02-01

    Selectivities to carbon monoxide higher than 90% for conversions of methane greater than 10% were obtained from the partial oxidation of methane on stoichiometric strontium hydroxyapatite (SrHAp1.67) at 873 K during 6 h on stream. However, the activities decreased gradually with increasing the time-on-stream to 78 h due to the transformation of the apatite to Sr{sub 3}(PO{sub 4}){sub 2}. With small quantities of tetrachloromethane (TCM) added to the feedstream, the high selectivity to CO was retained while the conversion suffered a marked decrease with increasing the times-on-stream. In the presence of TCM the catalytic solid consists of a complex mixture of hydroxyapatite, chlorapatite, phosphate and chloride, each of which contributes dissimilarly to the catalytic process.

  19. Surface and bulk properties of stoichiometric and nonstoichiometric strontium hydroxyapatite and the oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Shigeru; Minami, Toshimitsu; Hayashi, Hiromu [Univ. of Tokushima (Japan)] [and others

    1996-11-01

    The oxidation of methane on near-stoichiometric strontium hydroxyapatites pretreated at 873, 1048 and 1123 K in O{sub 2} has been examined in the presence and absence of tetrachloromethane (TCM) as a gas-phase additive at 973 K. Under these conditions, strontium hydroxyapatite, regardless of its stoichiometry, is converted, at least in part, to Sr{sub 3}(PO{sub 4}){sub 2}. On introduction of TCM to the feedstream, the selectivities to carbon monoxide, ethane, and ethylene are increased while the conversion of methane is decreased. Qualitatively similar effects of TCM on the oxidation were observed on Sr{sub 3}(PO{sub 4}){sub 2} prepared by an independent procedure. Strontium chlorapatite, formed from the apatites and phosphate during the oxidation in the presence of TCM, as shown from XRD, contributes to the increased selectivity to CO and decreased conversion of methane.

  20. Bioassays for the detection of chemicals that can form bioactivation-dependent reactive free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, J.T.; Commandeur, J.N.M.; Wezel, A. van; Vermeulen, N.P.E. (Free Univ. of Amsterdam (Netherlands). Div. of Molecular Toxicology National Inst. for Coastal and Marine Management, Den Haag (Netherlands))

    1999-06-01

    In vitro bioassays were developed for the detection of chemicals that can be bioactivated to reactive free radical species in microsomal fractions. Two methods were deployed, a down-scaled spectrophotometric method for the detection of chemicals that can cause lipid peroxidation using the measurement of thiobarbituric acid-reactive substances (TBARS) and a fluorometric method for the detection of chemicals that can undergo redox cycling to generate superoxide radicals based on the detection of hydrogen peroxide. The response of these systems to prototypical and environmentally relevant chemicals, including tetrachloromethane and paraquat, was examined. The detection limit of the lipid peroxidation bioassay, based on the formation of TBARS, was about 1 [micro]M for tetrachloromethane; that of the bioassay for redox cyclers, based on the production of hydrogen peroxide, was about 2 [micro]M for paraquat and about 100-fold lower for the potent redox cycler 2,3,5,6-tetramethylbenzoquinone (TMBQ). Several binary mixtures of chemicals were tested for potential nonadditive effects in both in vitro systems. Some antagonistic effects among halogenated methanes were observed in the lipid peroxidation assay. In the hydrogen peroxide production assay, greater than additive effects were seen between small concentrations of paraquat and TMBQ. A number of surface water concentrates from several locations in The Netherlands, with various levels of chemical contamination, exhibited a weak response in the hydrogen peroxide production assay. Acetone was found to interfere with the response of the bioassay to redox cyclers and, therefore, the water concentrates (originally in acetone) were transferred to ethanol prior to testing. A good correlation was observed between the response of the water concentrates in the hydrogen peroxide production assay and their acute toxicity in Daphnia magna. No correlation was observed between this bioassay response and toxicity in the Microtox

  1. Threats to water resources from hexachlorobenzene waste at Kalush City (Ukraine)--a review of the risks and the remediation options.

    Science.gov (United States)

    Lysychenko, Georgii; Weber, Roland; Kovach, Valeria; Gertsiuk, Modest; Watson, Alan; Krasnova, Iryna

    2015-10-01

    The production of chlorinated solvents such as tetrachloroethylene and tetrachloromethane has resulted in large stockpiles of unintentionally produced persistent organic pollutants (POPs) including high content of hexachlorobenzene (HCB waste). HCB waste of 15,000 t arising from the production of chlorinated solvents at the Kalush factory in Ukraine was landfilled. In 2008, it was discovered that HCB and other pollutants were escaping from the landfill into local environment including the Sapogi-Limnytsia Rivers, tributaries of the Dniester River. This showed that the HCB waste was not appropriately contained and represented a threat to the Dniester River basin. A Presidential Decree of Ukraine was therefore issued requiring remediation of the site and excavation of the waste. Between 2010 and 2013, approximately 29,445 t of HCB waste and associated contaminated soil was excavated and exported to various EU countries for incineration. This excavation revealed that these wastes can corrode through their drums within a few decades with release of pollutants. Other sites at which chlorinated solvents were produced should therefore be assessed for possible similar pollution. Despite the remediation efforts and the excavation of the landfill, the Kalush area remains a POP-contaminated site requiring further assessment. A part of the waste was exported to Poland and is stored close to the Baltic Sea and is treated in an incinerator with small capacity over a time frame of years. This case and recent similar cases reveal that the control of POP waste for destruction even in EU countries needs to be improved.

  2. HEMATOLOGICAL INDICES OF RAT ORGANISMS UNDER CONDITIONS OF OXIDATIVE STRESS AND LIPOSOMAL PREPARATION ACTION

    Directory of Open Access Journals (Sweden)

    M. Khariv

    2016-04-01

    Full Text Available The article deals with the results of search of the influence of developed complex liposomal drug on dynamics of hematological parameters of rat organisms under conditions of simulated oxidative stress caused by the use of carbon tetrachloride. Intramuscular injection of 50% tetrachloromethane to rats at a dose of 0.25 ml per 100 g of body weight causes antigenic load on the body and leads to disruption of physiologic level of hematological indices of experimental animal organisms. This indicates the number reduce of red blood cells, hemoglobin content, hemoglobin concentration in erythrocyte, increasing the number of leukocytes, mass of hemoglobin in erythrocyte and increased of color index. To normalize the hematological indices of rat organisms for the development of oxidative stress it is advisable to apply the liposomal drug that incorporates contains butafosfan, interferon, milk thistle and vitamins. When using liposomal drug to rats, under conditions of oxidative stress, the normalization of hematological indices comes in blood, namely on 14th day within physiological variables were indicators of the number of erythrocytes of hemoglobin content, white blood cell count and indices of red blood cells compared to controls, indicating a recovery of hematopoietic function of marrow.

  3. Evaluation of an in situ, on-line purging system for the cone penetrometer

    Energy Technology Data Exchange (ETDEWEB)

    Doskey, P.V.; Aldstadt, J.H.; Kuo, J.M.; Costanza, M.S. [Argonne National Lab., IL (United States)

    1996-11-01

    Materials that will be used to construct an in situ, on-line purging system for the cone penetrometer were evaluated. Transfer efficiencies for volatile organic compounds (VOCs) through stainless steel, nickel, aluminum, and Teflon tubings were determined using a gas-phase mixture of VOCs containing trichloromethane, tetrachloromethane, 1,1,1-trichloroethene, tetrachloroethene, hexane, benzene, toluene, and 1,2-dimethylbenzene. The water content of the gas stream had an insignificant effect on the quantitative transfer of VOCs through Teflon tubing but was critical to efficiently transfer the compounds through metal tubing, particularly nickel. Transfer efficiencies for all eight analytes in moist gas streams through stainless steel were greater than 95%. Toluene, tetrachloroethene, and 1,2-dimethybenzene were transferred with 93%, 81%, and 80% efficiency, respectively, when they were drawn through Teflon PFA (perfluoroalkoxy) tubing. In general, the retention of the VOCs by Teflon increases with decreasing aqueous solubility of the analyte. The efficiencies at which VOCs were purged from aqueous standards in Teflon PFA, Type 304 stainless steel, and glass vessels were similar. Stainless steel was superior to nickel, aluminum, and the Teflon polymers as a material for an in situ, on-line purging system for the cone penetrometer. 12 refs., 2 tabs.

  4. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.).

    Science.gov (United States)

    Yang, Xin; Zhang, Di; Song, Li-Min; Xu, Qian; Li, Hong; Xu, Hui

    2017-01-01

    Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.

  5. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  6. Can the chemistry save the crisis of the mankind in the twenty-first century? To the gentle chemistry in environment from the ozone layer depletion; Kagaku wa 21 seiki no jinrui no kiki wo sukueruka? Ozonso kahai kara kankyo ni yasashii kagaku e

    Energy Technology Data Exchange (ETDEWEB)

    Tominaga, T. [The Univ. of Tokyo, Tokyo (Japan)

    2000-01-01

    The representative result as the global environmental problems caused by chemical substance is the ozone layer depletion of the stratosphere by chlorofluorocarbon (CFC). The regulation of the CFC began in 1989 based on 'Vienna Convention for the Ozone layer protection' (1985) and 'Montreal Protocol on Substances that Deplete the Ozone Layer' (1987). Production and consumption of CFC, tetrachloromethane, methylchloroform and halon have already been aborted, and the regulation of HCFC and bromomethane were also began to turn to the abolition. The increase of atmosphere average concentration such as CFC and methylchloroform has already blunted in such the international regulation. The chloride concentration of stratosphere from substance of the ozone layer depletion would reach a peak soon, and was prospected to be reduced after then. It is expected to drop to previous level before the South Pole ozone hole appeared after the middle in the twenty-first century. Finally, the future prospect of the gentle chemistry in the environment is described. (NEDO)

  7. Chloride - a precursor in the formation of volatile organochlorines by forest plants?

    Energy Technology Data Exchange (ETDEWEB)

    Laturnus, Frank [Centre for Climate Science and Policy Research, Linkoeping University, 60174 Norrkoeping (Sweden)], E-mail: frank.laturnus@tema.liu.se; Matucha, Miroslav [Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague (Czech Republic)], E-mail: matucha@biomed.cas.cz

    2008-01-15

    Two plants, a fern (Athyrium filix-femina) and a moss (Polytrichum commune Hedw.), both commonly occurring in Northern Temperate forests, were exposed in a laboratory study to a solution of {sup 36}Cl-chloride. The uptake of {sup 36}Cl-chloride by the plants was investigated and the emission of volatile chlorine 36 by the plants was determined. Furthermore, speciation of the emitted volatile organochlorine compounds (VOCls) was investigated. For the fern and the moss a rapid uptake of {sup 36}Cl-chloride was observed within a 1-h exposure period. The uptake rates for the fern and the moss, respectively, were 16 {mu}g {sup 36}Cl-chloride g{sup -1} fresh weight (FW) h{sup -1} and 3.0 {mu}g {sup 36}Cl-chloride g{sup -1} FW h{sup -1}, respectively. The study also suggested that after uptake by the plants {sup 36}Cl-chloride is incorporated into VOCls, which were emitted by the plants into the atmosphere. Speciation analysis of the VOCls revealed the emission of chloroform, tetrachloromethane and 1,1,1-trichloroethane.

  8. Chloride - a precursor in the formation of volatile organochlorines by forest plants?

    Science.gov (United States)

    Laturnus, Frank; Matucha, Miroslav

    2008-01-01

    Two plants, a fern (Athyrium filix-femina) and a moss (Polytrichum commune Hedw.), both commonly occurring in Northern Temperate forests, were exposed in a laboratory study to a solution of (36)Cl-chloride. The uptake of (36)Cl-chloride by the plants was investigated and the emission of volatile chlorine 36 by the plants was determined. Furthermore, speciation of the emitted volatile organochlorine compounds (VOCls) was investigated. For the fern and the moss a rapid uptake of (36)Cl-chloride was observed within a 1-h exposure period. The uptake rates for the fern and the moss, respectively, were 16 microg (36)Cl-chloride g(-1) fresh weight (FW) h(-1) and 3.0 microg (36)Cl-chloride g(-1) FW h(-1), respectively. The study also suggested that after uptake by the plants (36)Cl-chloride is incorporated into VOCls, which were emitted by the plants into the atmosphere. Speciation analysis of the VOCls revealed the emission of chloroform, tetrachloromethane and 1,1,1-trichloroethane.

  9. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, Flynn William [Univ. of Arizona, Tucson, AZ (United States)

    1992-01-01

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using 14C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  10. Chemical Profile and Antioxidant Activity of the Oil from Peony Seeds (Paeonia suffruticosa Andr.

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2017-01-01

    Full Text Available Peony seed oil (PSO is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%, fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69, and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.

  11. LEVEL OF LIPID PEROXIDATION PRODUCTS IN THE BLOOD OF RATS UNDER THE INFLUENCE OF OXIDATIVE STRESS AND UNDER THE ACTION OF LIPOSOMAL PREPARATION OF "BUTASELMEVIT"

    Directory of Open Access Journals (Sweden)

    T. V. Martyshuk

    2016-05-01

    Full Text Available The article presents the results of investigation of the impact of stress on oxidative intensity of lipid per oxidation. It was proved that intramuscular injection of 50% solution of tetrachloromethane at a dose of 0.25 mL per 100 g of rat body causes the activation of free radical lipid oxidation with excessive accumulation of intermediate and final products of lipid peroxidation. Our results indicate that the development of oxidative stress leads to the significant acceleration of the formation and accumulation of lipid hydroperoxides and malondialdehyde (MDA in plasma of rats. We registered the highest level of lipid hydroperoxides in rat blood plasma under oxidative stress on the second day of the experiment; it was 0.843 un/mL, whereas this index was 0.245 un/mL in the control group. We also revealed that the content of malondialdehyde was the highest in the experimental group on the fifth day of the experiment; it was almost 2 times higher than in control group. We could recommend to apply the liposomal drug "Butaselmevit" which contains butafosfan, selenium, methionine, milk thistle, and vitamins for the inhibition of lipid peroxidation under the development of oxidative stress. It was proved that the parenteral injection of liposomal drug "Butaselmevit" to the rats for the development of oxidative stress leads to a reduction of peroxidation products level in their plasma. We revealed that the level of intermediate and final products of lipid peroxidation in the blood of rats that were used liposomal drug reached normal physiological values on the 14 day of the experiment. Our results suggested that the new liposomal drug "Butaselmevit" has definite antioxidant properties

  12. Nitrobenzene anti-parallel dimer formation in non-polar solvents

    Directory of Open Access Journals (Sweden)

    Toshiyuki Shikata

    2014-06-01

    Full Text Available We investigated the dielectric and depolarized Rayleigh scattering behaviors of nitrobenzene (NO2-Bz, which is a benzene mono-substituted with a planar molecular frame bearing the large electric dipole moment 4.0 D, in non-polar solvents solutions, such as tetrachloromethane and benzene, at up to 3 THz for the dielectric measurements and 8 THz for the scattering experiments at 20 °C. The dielectric relaxation strength of the system was substantially smaller than the proportionality to the concentration in a concentrated regime and showed a Kirkwood correlation factor markedly lower than unity; gK ∼ 0.65. This observation revealed that NO2-Bz has a tendency to form dimers, (NO2-Bz2, in anti-parallel configurations for the dipole moment with increasing concentration of the two solvents. Both the dielectric and scattering data exhibited fast and slow Debye-type relaxation modes with the characteristic time constants ∼7 and ∼50 ps in a concentrated regime (∼15 and ∼30 ps in a dilute regime, respectively. The fast mode was simply attributed to the rotational motion of the (monomeric NO2-Bz. However, the magnitude of the slow mode was proportional to the square of the concentration in the dilute regime; thus, the mode was assigned to the anti-parallel dimer, (NO2-Bz2, dissociation process, and the slow relaxation time was attributed to the anti-parallel dimer lifetime. The concentration dependencies of both the dielectric and scattering data show that the NO2-Bz molecular processes are controlled through a chemical equilibrium between monomers and anti-parallel dimers, 2NO2-Bz ↔ (NO2-Bz2, due to a strong dipole-dipole interaction between nitro groups.

  13. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  14. Determining the Liquid Light Scattering Cross Section and Depolarization Spectra Using Polarized Resonance Synchronous Spectroscopy.

    Science.gov (United States)

    Athukorale, Sumudu A; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2017-11-20

    Rayleigh scattering is a universal material property because all materials have nonzero polarizability. Reliable quantification of the material light scattering cross section in the liquid phase and its depolarization spectra is, however, challenging due to a host of sample and instrument issues. Using the recently developed polarized resonance synchronous spectroscopic method, we reported the light scattering cross section and depolarization spectra measured for a total of 29 liquids including water, methanol, ethanol, 1-propanol, 1-butanol, dimethylformamide, carbon disulfide, dimethyl sulfoxide, hexane and two hexane isomers (3-methylpentane and 2,3-dimethylbutane), tetrahydrofuran, cyclohexane, acetonitrile, pyridine, chloromethanes including di-, tri, tetrachloromethane, acetone, benzene and eight benzene derivatives (toluene, fluorobenzene, 1,2-, 1,3-, and 1,4-difluorobenzene, chlorobenzene, 1,2- and 1,3-dichlorobenzene, and nitrobenzene). The solvent light scattering depolarization is wavelength-independent for the model solvents, and it varies from 0.023 ± 0.011 for CCl4 to 0.619 ± 0.022 for nitrobenzene. The light scattering cross-section spectra can be approximated with the function of σ(λ) = αλ(-4) with the α value varying from 7.2 ± 0.2 × 10(-45) cm(6) for water to a maximum of 8.5 ± 0.6 × 10(-43) cm(6) for nitrobenzene. Structural isomerization has no significant effect on either the depolarization or the scattering cross sections for both hexanes and difluorobenzene isomers. This work represents the most comprehensive experimental study on liquid light scattering features. The insight from this work should be important for understanding the correlation between the material structure and optical properties. The described method can be readily implemented by researchers with access to conventional spectrofluorometers equipped with excitation and detection polarizers.

  15. Catalytic Oxidation of Chlorobenzene over MnxCe1-xO2/HZSM-5 Catalysts: A Study with Practical Implications.

    Science.gov (United States)

    Weng, Xiaole; Sun, Pengfei; Long, Yu; Meng, Qingjie; Wu, Zhongbiao

    2017-07-18

    Industrial-use catalysts usually encounter severe deactivation after long-term operation for catalytic oxidation of chlorinate volatile organic compounds (CVOCs), which becomes a "bottleneck" for large-scale application of catalytic combustion technology. In this work, typical acidic solid-supported catalysts of MnxCe1-xO2/HZSM-5 were investigated for the catalytic oxidation of chlorobenzene (CB). The activation energy (Ea), Brønsted and Lewis acidities, CB adsorption and activation behaviors, long-term stabilities, and surficial accumulation compounds (after aging) were studied using a range of analytical techniques, including XPS, H2-TPR, pyridine-IR, DRIFT, and O2-TP-Ms. Experimental results revealed that the Brønsted/Lewis (B/L) ratio of MnxCe1-xO2/HZSM-5 catalysts could be adjusted by ion exchange of H• (in HZSM-5) with Mnn+ (where the exchange with Ce4+ did not distinctly affect the acidity); the long-term aged catalysts could accumulate ca. 14 organic compounds at surface, including highly toxic tetrachloromethane, trichloroethylene, tetrachloroethylene, o-dichlorobenzene, etc.; high humid operational environment could ensure a stable performance for MnxCe1-xO2/HZSM-5 catalysts; this was due to the effective removal of Cl• and coke accumulations by H2O washing, and the distinct increase of Lewis acidity by the interaction of H2O with HZSM-5. This work gives an in-depth view into the CB oxidation over acidic solid-supported catalysts and could provide practical guidelines for the rational design of reliable catalysts for industrial applications.

  16. The study of potable water treatment process in Algeria (boudouaou station) -by the application of life cycle assessment (LCA).

    Science.gov (United States)

    Mohamed-Zine, Messaoud-Boureghda; Hamouche, Aksas; Krim, Louhab

    2013-12-19

    Environmental impact assessment will soon become a compulsory phase in future potable water production projects, in algeria, especially, when alternative treatment processes such sedimentation ,coagulation sand filtration and Desinfection are considered. An impact assessment tool is therefore developed for the environmental evaluation of potable water production. in our study The evaluation method used is the life cycle assessment (LCA) for the determination and evaluation of potential impact of a drink water station ,near algiers (SEAL-Boudouaoua).LCA requires both the identification and quantification of materials and energy used in all stages of the product's life, when the inventory information is acquired, it will then be interpreted into the form of potential impact " eco-indicators 99" towards study areas covered by LCA, using the simapro6 soft ware for water treatment process is necessary to discover the weaknesses in the water treatment process in order for it to be further improved ensuring quality life. The main source shown that for the studied water treatment process, the highest environmental burdens are coagulant preparation (30% for all impacts), mineral resource and ozone layer depletion the repartition of the impacts among the different processes varies in comparison with the other impacts. Mineral resources are mainly consumed during alumine sulfate solution preparation; Ozone layer depletion originates mostly from tetrachloromethane emissions during alumine sulfate production. It should also be noted that, despite the small doses needed, ozone and active Carbone treatment generate significant impacts with a contribution of 10% for most of the impacts.Moreover impacts of energy are used in producing pumps (20-25 GHC) for plant operation and the unitary processes (coagulation, sand filtration decantation) and the most important impacts are localized in the same equipment (40-75 GHC) and we can conclude that:- Pre-treatment, pumping and EDR (EDR: 0

  17. Ground-Water Quality Data in the San Fernando-San Gabriel Study Unit, 2005 - Results from the California GAMA Program

    Science.gov (United States)

    Land, Michael; Belitz, Kenneth

    2008-01-01

    samples were used to evaluate the quality of the data for the ground-water samples. Assessment of the quality-control results showed that the data had very little bias or variability and resulted in censoring of less than 0.7 percent (32 of 4,484 measurements) of the data collected for ground-water samples. This study did not attempt to evaluate the quality of water delivered to consumers; after withdrawal from the ground, water typically is treated, disinfected, or blended with other waters to maintain acceptable water quality. Regulatory thresholds apply to treated water that is served to the consumer, not to raw ground water. However, to provide some context for the results, concentrations of constituents measured in the raw ground water were compared with health-based thresholds established by the U.S. Environmental Protection Agency (USEPA) and California Department of Public Health (CDPH) and thresholds established for aesthetic concerns (secondary maximum contaminant levels, SMCL-CA) by CDPH. VOCs were detected in more than 90 percent (33 of 35) of grid wells. For all wells sampled for SFSG, nearly all VOC detections were below health-based thresholds, and most were less than one-tenth of the threshold values. Samples from seven wells had at least one detection of PCE, TCE, tetrachloromethane, NDMA, or 1,2,3-TCP at or above a health-based threshold. Pesticides were detected in about 90 percent (31 of 35) grid wells and all detections in samples from SFSG wells were below health-based thresholds. Major ions, trace elements, and nutrients in samples from 17 SFSG wells were all below health-based thresholds, with the exception of one detection of nitrate that was above the USEPA maximum contaminant level (MCL-US). With the exception of 14 samples having radon-222 above the proposed MCL-US, radioactive constituents were below health-based thresholds for 16 of the SFSG wells sampled. Total dissolved solids in 6 of the 24 SFSG wells that were sampled ha