WorldWideScience

Sample records for tetraamine-derived bifunctional chelators

  1. Bifunctional chelates of Rh-105 and Au-199 as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    Troutner, D.E.; Schlemper, E.O.

    1990-01-01

    Since last year we have: continued the synthesis of pentadentate bifunctional chelating agents based on diethylene triamine; studied the chelation Rh-105, Au-198 (as model for Au-199) and Tc-99m with these agents as well as chelation of Pd-109, Cu-67, In-111, and Co-57 with some of them; synthesized a new class of potential bifunctional chelating agents based on phenylene diamine; investigated the behavior of Au-198 as a model for Au-199; begun synthesis of bifunctional chelating agents based on terpyridly and similar ligands; and continued attempts to produce tetradentate bifunctional chelates based on diaminopropane. Each of these will be addressed in this report

  2. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    International Nuclear Information System (INIS)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III)

  3. [Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  4. (Bifunctional chelates of Rh-105, Au-199, and other metallic radionuclides as potential radiotherapeutic agents)

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Progress during this period is reported under the following headings: Diethylenetriamine based and related bifunctional chelating agents and their complexation with Rh-105, Au-198, Pd-109, cu-67, In-111, and Co-57; studies of Pd-109, Rh-105 and Tc-99m with bifunctional chelates based on phenylenediamine; establishment of an appropriate protein assay method for conjugated proteins; studies of new bifunctional Bi, Tri and tetradentate amine oxime ligands with Rh-105; IgG and antibody B72.3 conjugation studies by HPLC Techniques with bifunctional metal chelates; and progress on ligand systems for Au(III).

  5. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  6. Comparison of bifunctional chelates for {sup 64}Cu antibody imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Cara L.; Crisp, Sarah; Bensimon, Corinne [MDS Nordion, Vancouver, BC (Canada); Yapp, Donald T.T.; Ng, Sylvia S.W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); University of British Columba, The Faculty of Pharmaceutical Sciences, Vancouver, BC (Canada); Sutherland, Brent W. [British Columbia Cancer Agency Research Centre, Vancouver, BC (Canada); Gleave, Martin [Prostate Centre at Vancouver General Hospital, Vancouver, BC (Canada); Jurek, Paul; Kiefer, Garry E. [Macrocyclics Inc., Dallas, TX (United States)

    2010-11-15

    Improved bifunctional chelates (BFCs) are needed to facilitate efficient {sup 64}Cu radiolabeling of monoclonal antibodies (mAbs) under mild conditions and to yield stable, target-specific agents. The utility of two novel BFCs, 1-Oxa-4,7,10-triazacyclododecane-5-S-(4-isothiocyanatobenzyl)-4,7,10-triacetic acid (p-SCN-Bn-Oxo-DO3A) and 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15),11,13-triene-4-S-(4-isothiocyanatobenzyl)-3,6,9-triacetic acid (p-SCN-Bn-PCTA), for mAb imaging with {sup 64}Cu were compared to the commonly used S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-tetraacetic acid (p-SCN-Bn-DOTA). The BFCs were conjugated to trastuzumab, which targets the HER2/neu receptor. {sup 64}Cu radiolabeling of the conjugates was optimized. Receptor binding was analyzed using flow cytometry and radioassays. Finally, PET imaging and biodistribution studies were done in mice bearing either HER2/neu-positive or HER2/neu-negative tumors. {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab were prepared at room temperature in >95% radiochemical yield (RCY) in <30 min, compared to only 88% RCY after 2 h for the preparation of {sup 64}Cu-DOTA-trastuzumab under the same conditions. Cell studies confirmed that the immunoreactivity of the mAb was retained for each of the bioconjugates. In vivo studies showed that {sup 64}Cu-Oxo-DO3A- and PCTA-trastuzumab had higher uptake than the {sup 64}Cu-DOTA-trastuzumab at 24 h in HER2/neu-positive tumors, resulting in higher tumor to background ratios and better tumor images. By 40 h all three of the {sup 64}Cu-BFC-trastuzumab conjugates allowed for clear visualization of the HER2/neu-positive tumors but not the negative control tumor. The antibody conjugates of PCTA and Oxo-DO3A were shown to have superior {sup 64}Cu radiolabeling efficiency and stability compared to the analogous DOTA conjugate. In addition, {sup 64}Cu-PCTA and Oxo-DO3A antibody conjugates may facilitate earlier imaging with greater target to background ratios than

  7. Synthesis of novel bifunctional chelators and their use in preparing monoclonal antibody conjugates for tumor targeting

    International Nuclear Information System (INIS)

    Westerberg, D.A.; Carney, P.L.; Rogers, P.E.; Kline, S.J.; Johnson, D.K.

    1989-01-01

    Bifunctional derivatives of the chelating agents ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid, in which a p-isothiocyanatobenzyl moiety is attached at the methylene carbon atom of one carboxymethyl arm, was synthesized by reductive alkylation of the relevant polyamine with (p-nitrophenyl)pyruvic acid followed by carboxymethylation, reduction of the nitro group, and reaction with thiophosgene. The resulting isothiocyanate derivatives reacted with monoclonal antibody B72.3 to give antibody-chelator conjugates containing 3 mol of chelator per mole of immunoglobulin, without significant loss of immunological activity. Such conjugates, labeled with the radioisotopic metal indium-111, selectively bound a human colorectal carcinoma implanted in nude mice when given intravenously. Uptake into normal tissues was comparable to or lower than that reported for analogous conjugates with known bifunctional chelators. It is concluded that substitution with a protein reactive group at this position in polyaminopolycarboxylate chelators does not alter the chelating properties of these molecules to a sufficient extent to adversely affect biodistribution and thus provides a general method for the synthesis of such chelators

  8. Benzimidazolyl methyliminodiacetic acids: new bifunctional chelators of technetium for hepatobiliary scintigraphy

    International Nuclear Information System (INIS)

    Hunt, F.C.; Wilson, J.G.; Maddalena, D.J.

    1979-01-01

    Dimethyl- and chloro- substituted benzimidazolyl methyliminodiacetic acids have been synthesized and evaluated as new bifunctional chelators of /sup 99m/Tc. Stannous chelates of these compounds were prepared as freeze-dried kits and labeled with /sup 99m/Tc. The radiopharmaceuticals thus prepared were rapidly excreted by the hepatobiliary system of rats and rabbits with little urinary excretion. The chloro- compound had a higher biliary and lesser urinary excretion than the dimethyl- however both technetium complexes provided good scintigraphic images of the hepatobiliary system in animals. The compounds behaved similarly to the /sup 99m/Tc-lidocaine iminodiacetic acid [HIDA] complexes with respect to their biliary elimination

  9. Synthesis of a novel bicyclic bifunctional chelating agent

    International Nuclear Information System (INIS)

    Sweet, M.P.; Mease, R.C.; Joshi, V.; Srivastava, S.C.

    1994-01-01

    Semi-rigid ligands such as cyclohexyl EDTA (CDTA) and 4-isothiocyanato-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (4-ICE) form chelates that are more stable in vivo compared to those of EDTA or DTPA. The authors have synthesized a new class of ligands in which the metal-binding polyaminocarboxylate groups are incorporated onto the rigid bicyclo[2.2.2]octane ring system. These ligands are expected to contribute to even higher in vivo stability of radiometal complexes. The synthesis of the first in this series of ligands (2.3-diaminobicyclo[2.2.2]octane-N,N,N',N'-tetraacetic acid, BODTA) began with a Diels-Alder reaction of 1,3-diacetylimidazolin-2-one and 1,3-cyclohexadiene. Base hydrolysis afforded the diamine. Following alkylation of the diamine with ethyl iodoacetate and hydrogenation of the double bond, hydrolysis of the esters gave BODTA. For initial conjugation with proteins, an average of one carboxylic acid of BODTA was converted into an NHS ester. In vivo testing of radioimmunoconjugates, prepared using this method, is in progress

  10. Preparation of Ga-67 labeled monoclonal antibodies using deferoxamine as a bifunctional chelating agent

    International Nuclear Information System (INIS)

    Endo, K.; Furukawa, T.; Ohmomo, Y.

    1984-01-01

    Ga-67 labeled monoclonal IgG or F(ab')/sub 2/ fragments against α-fetoprotein and β-subunit of human choriogonadotropin (HCG), were prepared using Deferoxamine (DFO) as a bifunctional chelating agent. DFO, a well-known iron chelating agent, was conjugated with monoclonal antibodies (Ab) by a glutaraldehyde two step method and the effect of conjugation on the Ab activities was examined by RIA and Scatchard plot analysis. In both monoclonal Ab preparations, the conjugation reaction was favored as the pH increased. However, Ab-binding activities decreased as the molecular ratios of DFO to Ab increased. Preserved Ab activities were observed when Ab contained DFO per Ab molecule less than 2.1. At a ratio of over 3.3 DFO molecules per Ab, the maximal binding capacity rather than the affinity constant decreased. The inter-molecular cross linkage seemed to be responsible for the deactivation of binding activities. The obtained DFO-Ab conjugates, were then easily labeled with high efficiency and reproducibility and Ga-67 DFO-Ab complexes were highly stable both in vitro and in vivo. Thus, biodistribution of Ga-67 labeled F(ab')/sub 2/ fragments of monoclonal Ab to HCG β-subunit was attempted in nude mice transplanted with HCG-producing human teratocarcinoma. Tumor could be visualized, in spite of relatively high background imaging of liver, kidney and spleen. The use of DFO as a bifunctional chelating agent provided good evidence for its applicability to labeling monoclonal Ab with almost full retention of Ab activities. Further, availability of Ga-68 will make Ga-68 DFO-monoclonal Ab a very useful tool for positron tomography imaging of various tumors

  11. Highly stable acyclic bifunctional chelator for {sup 64}Cu PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Abada, S.; Lecointre, A.; Christine, C.; Charbonniere, L. [CNRS/UDS, EPCM, Strasbourg (France). Lab. d' Ingenierie Appliquee a l' Analyse; Dechamps-Olivier, I. [Univ. de Reims Champagne Ardenne, Reims (France). Group Chimie de Coordination; Platas-Iglesias, C. [Univ. da Coruna (Spain). Dept. de Quimica Fundamental; Elhabiri, M. [CNRS/UDS, EPCM, Strasbourg (France). Lab. de Physico-Chimie Bioinorganique

    2011-07-01

    Ligand L{sup 1}, based on a pyridine scaffold, functionalized by two bis(methane phosphonate)aminomethyl groups, was shown to display a very high affinity towards Cu(II) (log K{sub CuL}=22.7) and selectivity over Ni(II), Co(II), Zn(II) and Ga(III) ({delta} log K{sub ML}>4) as shown by the values of the stability constants obtained from potentiometric measurements. Insights into the coordination mode of the ligand around Cu(II) cation were obtained by UV-Vis absorption and EPR spectroscopies as well as density functional theory (DFT) calculations (B3LYP model) performed in aqueous solution. The results point to a pentacoordination pattern of the metal ion in the fully deprotonated [CuL{sup 1}]{sup 6-} species. Considering the beneficial thermodynamic parameters of this ligand, kinetic experiments were run to follow the formation of the copper(II) complexes, indicating a very rapid formation of the complex, appropriate for {sup 64}Cu complexation. As L{sup 1} represents a particularly interesting target within the frame of {sup 64}Cu PET imaging, a synthetic protocol was developed to introduce a labeling function on the pyridyl moiety of L{sup 1}, thereby affording L{sup 2}, a potential bifunctional chelator (BFC) for PET imaging.

  12. Structure and potential applications of amido lanthanide complexes chelated by bifunctional b-diketiminate ligand

    Czech Academy of Sciences Publication Activity Database

    Olejník, R.; Padělková, Z.; Fridrichová, A.; Horáček, Michal; Merna, J.; Růžička, A.

    2014-01-01

    Roč. 759, JUN 2014 (2014), s. 1-10 ISSN 0022-328X R&D Projects: GA ČR GAP106/10/0924 Institutional support: RVO:61388955 Keywords : Bifunctional b-diketiminates * lanthanides * hydroamination Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.173, year: 2014

  13. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for {sup 89}Zr-immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vugts, Danielle J.; Klaver, Chris; Sewing, Claudia; Poot, Alex J.; Adamzek, Kevin; Visser, Gerard W.M.; Dongen, Guus A.M.S. van [VU University Medical Center, Department of Radiology and Nuclear Medicine, Amsterdam (Netherlands); Huegli, Seraina; Mari, Cristina; Gasser, Gilles [University of Zurich, Department of Chemistry, Zurich (Switzerland); Valverde, Ibai E. [University of Basel Hospital, Division of Radiopharmaceutical Chemistry, Basel (Switzerland); Mindt, Thomas L. [Institute of Pharmaceutical Sciences, ETH Zurich, Zurich (Switzerland); General Hospital of Vienna, Ludwig Boltzmann Institute for Applied Diagnostics, Vienna (Austria)

    2017-02-15

    All clinical {sup 89}Zr-immuno-PET studies are currently performed with the chelator desferrioxamine (DFO). This chelator provides hexadentate coordination to zirconium, leaving two coordination sites available for coordination with, e.g., water molecules, which are relatively labile ligands. The unsaturated coordination of DFO to zirconium has been suggested to result in impaired stability of the complex in vivo and consequently in unwanted bone uptake of {sup 89}Zr. Aiming at clinical improvements, we report here on a bifunctional isothiocyanate variant of the octadentate chelator DFO* and the in vitro and in vivo comparison of its {sup 89}Zr-DFO*-mAb complex with {sup 89}Zr-DFO-mAb. The bifunctional chelator DFO*-pPhe-NCS was prepared from previously reported DFO* and p-phenylenediisothiocyanate. Subsequently, trastuzumab was conjugated with either DFO*-pPhe-NCS or commercial DFO-pPhe-NCS and radiolabeled with Zr-89 according to published procedures. In vitro stability experiments were carried out in saline, a histidine/sucrose buffer, and blood serum. The in vivo performance of the chelators was compared in N87 tumor-bearing mice by biodistribution studies and PET imaging. In 0.9 % NaCl {sup 89}Zr-DFO*-trastuzumab was more stable than {sup 89}Zr-DFO-trastuzumab; after 72 h incubation at 2-8 C 95 % and 58 % intact tracer were left, respectively, while in a histidine-sucrose buffer no difference was observed, both products were ≥ 92 % intact. In vivo uptake at 144 h post injection (p.i.) in tumors, blood, and most normal organs was similar for both conjugates, except for skin, liver, spleen, ileum, and bone. Tumor uptake was 32.59 ± 11.95 and 29.06 ± 8.66 % ID/g for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, respectively. The bone uptake was significantly lower for {sup 89}Zr-DFO*-trastuzumab compared to {sup 89}Zr-DFO-trastuzumab. At 144 h p.i. for {sup 89}Zr-DFO*-trastuzumab and {sup 89}Zr-DFO-trastuzumab, the uptake in sternum was 0.92

  14. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid for radiolabeling proteins

    International Nuclear Information System (INIS)

    Chappell, L.L.; Ma, D.; Milenic, D.E.; Garmestani, K.; Venditto, V.; Beitzel, M.P.; Brechbiel, M.W.

    2003-01-01

    Detailed synthesis of the bifunctional chelating agents 2-methyl-6-(p-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10 -tetraacetic acid (1B4M-DOTA) and 2-(p-isothiocyanatobenzyl)-5, 6-cyclohexano-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetate (CHX-DOTA) are reported. These chelating agents were compared to 2-(p-isothiocyanatobenzyl)-1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetraacetic acid (C-DOTA) and 1, 4, 7, 10-Tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N', N'', N'''-tris(acetic acid) cyclododecane (PA-DOTA) as their 177 Lu radiolabeled conjugates with Herceptin TM . In vitro stability of the immunoconjugates radiolabeled with 177 Lu was assessed by serum stability studies. The in vivo stability of the radiolabeled immunoconjugates and their targeting characteristics were determined by biodistribution studies in LS-174T xenograft tumor-bearing mice. Relative radiolabeling rates and efficiencies were determined for all four immunoconjugates. Insertion of the 1B4M moiety into the DOTA backbone increases radiometal chelation rate and provides complex stability comparable to C-DOTA and PA-DOTA while the CHX-DOTA appears to not form as stable a 177 Lu complex while exhibiting a substantial increase in formation rate. The 1B4M-DOTAmay have potential for radioimmunotherapy applications. Published by Elsevier Inc. All rights reserved

  15. Investigation on the influence of metal ion impurities on the complexation behavior of generator produced {sup 90}Y with bifunctional chelators

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Usha; Gamre, Naresh; Dash, Ashutosh [Isotope Applications and Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai (India)

    2014-05-01

    The {sup 90}Sr/ {sup 90}Y generator is the exclusive source of 'no carrier added' {sup 90}Y for targeted therapy. However, the concomitant presence of trace metals diminishes the complexation of {sup 90}Y with bifunctional chelators (BFCs). A systematic investigation was performed to evaluate the influence of trace metals on the complexation of {sup 90}Y (from an electrochemical generator) with BFCs such as p-SCN-Bn-PCTA, p-SCN-Bn-DTPA and p-SCN-Bn-DOTA. Our study indicates that while p-SCN-Bn-DTPA was least affected by most of the trace metals studied, p-SCN-Bn-PCTA was most sensitive to their presence and hence could be the ligand of choice for assessing the chemical purity of generator derived {sup 90}Y. (author)

  16. Investigation on the influence of metal ion impurities on the complexation behavior of generator produced {sup 90}Y with different bifunctional chelators

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Usha; Gamre, Naresh; Chakravarty, Rubel; Pillai, Maroor Raghavan Ambikalmajan; Dash, Ashutosh [Bhabha Atomic Research Centre, Trombay, Mumbai (India). Radiopharmaceuticals Div.

    2014-07-01

    While the {sup 90}Sr/{sup 90}Y generator is the exclusive source of obtaining 'no carrier added' {sup 90}Y for targeted therapy, the presence of trace metals in the radiolabeling solutions poses a serious challenge owing to their ability to diminish the {sup 90}Y complexation yields with bifunctional chelators (BFCs). p-SCN-Bn-PCTA is a novel ligand having faster complexation kinetics with a number of radiometals. In this work, a systematic investigation was performed to evaluate the chelating ability of p-SCN-Bn-PCTA for {sup 90}Y and the influence of trace metal ions on it's complexation with {sup 90}Y in comparison to p-SCN-Bn-DTPA and p-SCN-Bn-DOTA using {sup 90}YCl{sub 3} obtained from an electrochemical generator. Results from our study indicate that while p-SCN-Bn-PCTA gave very good radiolabeling yields with {sup 90}Y when the reaction was carried out by heating for few minutes, it was most sensitive to the presence of trace metals, especially Fe(III). An independent and useful observation is that p-SCN-Bn-PCTA could be considered as the ligand of choice for assessing the chemical purity of generator derived {sup 90}Y.

  17. Standardization of methodology to derivatization and radiolabeling of the anti-CD20 monoclonal antibody from bifunctional chelator DOTA-NHS-Ester

    International Nuclear Information System (INIS)

    Massicano, Adriana V.F.; Akanji, Akinkunmi G.; Santos, Josefina S.; Pujatti, Priscilla B.; Couto, Renata M.; Massicano, Felipe; Araujo, Elaine Bortoleti de

    2009-01-01

    Lymphomas are cancers of the lymphatic system, being the most common the non-Hodgkin lymphoma (NHL). The Radioimmunotherapy (RIT), that increase the cytotoxic effect of monoclonal antibodies (mAb), therefore labeling these Mab with different radioisotopes. RIT combines the specificity of the antibody and the toxicity of the radionuclides. The mAb anti-CD20 is used for treatment of relapse or refractory NHL. The labeling of anti- CD20 with 177 Lu, requires a bifunctional chelating agent that is designed to make a 'connect bridge' between the mAb and the radionuclide. The incorporation of the chelating group in mAb structure is called derivatization. The aim of this work is to study the derivatization of anti-CD20 antibody with DOTA-NHS-ester chelating group and labeling parameters to produce 177 Lu-DOTA-Anti CD20. Five milligrams of anti-CD20 were purified by dialysis against phosphate buffer pH 8.0 and derivatized with DOTA-NHS-ester in 1:250, 1:500 and 1:1000 molar ratios. The reaction was conducted for 1 hour in gently mixing at room temperature and remained under refrigeration for 48 hours. The reaction mixture was purified in gel column Sephadex G-50 ; the aliquots that presented greater protein concentration, were mixed and concentrated. The purified antibody conjugated was added to 111-185MBq (3-5mCi) of 177 LuCl3 diluted in 0.4 M acetate buffer pH 5.5. Radiochemical purity was less than 95% in all the molar ratios, indicating necessity of the purification after the labeling. The mAb derivatized showed stable when stored for to 1 month to 4 deg C and 4 days at -20 deg C. (author)

  18. Comparative studies of 111In-labeled monoclonal antibody using spacer-containing and non-spacer bifunctional chelates. 2

    International Nuclear Information System (INIS)

    Sun, Baofu

    1994-01-01

    Indium-111-labeled A7 monoclonal antibodies using two spacer-containing chelates, succinimido-EGS-DTPA (EGS-DTPA: diester spacer) and maleimido-C10-Bz-EDTA (C10-Bz-EDTA: hydrocarbon spacer) were investigated in human LS180 colon tumor bearing nude mice and were compared with two non-spacer chelates, cyclic DTPA dianhydride (cDTPAA) and isothiocyanatobenzyl-EDTA (SCN-Bz-EDTA). Compared with immunoconjugates using non-spacer chelates, immunoconjugates using spacer-containing chelates, especially C10-Bz-EDTA-A7 showed lower 111 In activity in normal organs. The radioactivity in the liver for C10-Bz-EDTA-A7 decreased continuously till 96 hrs postinjection, however, this liver radioactivity for EGS-DTPA-A7 showed little change after 24 hrs. Moreover, in liver subcellular distribution study, EGS-DTPA-A7 showed a higher activity retention in mitochondrial fraction which contained lysosome, a place for metabolizing and storing of 111 In labeled antibody, than that of C10-Bz-EDTA-A7. The C10-Bz-EDTA-A7 conjugate demonstrated more preferable tumor-to-non tumor contrast on the scintigrams than that found with other three immunoconjugates. Up to 96 hrs postinjection, tumor bearing nude mice injecting with immunoconjugates using spacer-containing chelates exreted twice radioactivity from whole body than that excreted by using non-spacer chelates. Interestingly, different from other three chelates, C10-Bz-EDTA-A7 were mainly excreted via feces. We conclude that the decrease of radioactivity in normal tissues in the case of EGS-DTPA-A7 was due to the rapid decrease of activity in the blood, while in the case of C10-Bz-EDTA-A7 it was due to the quickly excreted small metabolite through faces. 111 In labeled C10-Bz-EDTA conjugate is superior, at least when conjugated with A7, to other three chelate conjugates used in this study. (author)

  19. Synthesis and functionalization of bifunctional chelates for 64Cu complexation for their applications by positron emission tomography (PET) imaging and radiotherapy

    International Nuclear Information System (INIS)

    Roux, Amandine

    2014-01-01

    This work aimed to develop a new family of bis-pidine-type ligands for copper(II) complexation with applications in Positron Emission Tomography (PET). Indeed, copper 64 is a radioelement whose study in PET imaging is booming. Bis-pidines have the benefit of having a rigid and pre-organized structure for complexation of a large number of transition metals. In this work we present the synthesis and optimization of new ligands whose structural and physico-chemical properties have been studied. One ligand showed very good results because it possesses all of kinetic and thermodynamic parameters which are necessary for its application to PET imaging. Different strategies of functionalization have been studied to obtain bifunctional chelates. A lysine derivative has been coupled to a maleimide function (regio-selective of cysteines), to abiotine (which displays a strong affinity for streptavidin) or to a Bodipy pattern for obtaining a bimodal probe (UV-visible and PET). Finally, we present an extension of this bis-pidine family by increasing the number of coordination functions or by synthesizing tricyclic compounds to modulate the selectivity of these molecules. (author)

  20. Investigation of a potential macromolecular MRI contrast agent prepared from PPI (G = 2, polypropyleneimine, generation 2) dendrimer bifunctional chelates

    Science.gov (United States)

    Wang, Jianxin Steven

    The long-term objective is to develop magnetic resonance (MR) contrast agents that actively and passively target tumors for diagnosis and therapy. Many diagnostic imaging techniques for cancer lack specificity. A dendrimer based magnetic resonance imaging contrast agent has been developed with large proton relaxation enhancements and high molecular relaxivities. A new type of linear dendrimer based MRI contrast agent that is built from the polypropyleneimine and polyamidoamine dendrimers in which free amines have been conjugated to the chelate DTPA, which further formed the complex with Gadolinium (Gd) was studied. The specific research goals were to test the hypothesis that a linear chelate with macromolecular agents can be used in vitro and in vivo. This work successfully examined the adequacy and viability of the application for this agent in vitro and in vivo. A small animal whole body counter was designed and constructed to allow us to monitor biodistribution and kinetic mechanisms using a radioisotope labeled complex. The procedures of metal labeling, separation and purification have been established from this work. A biodistribution study has been performed using radioisotope induced organ/tissue counting and gamma camera imaging. The ratio of percentage of injected dose per gram organ/tissue for kidney and liver is 3.71 from whole body counter and 3.77 from the gamma camera. The results suggested that retention of Gd (III) is too high and a more kinetically stable chelate should be developed. The pharmacokinetic was evaluated in the whole animal model with the whole body clearance, and a kinetics model was developed. The pharmacokinetic results showed a bi-exponential decay in the animal model with two component excretion constants 1.43e(-5) and 0.0038511, which give half-lives of 3 hours and 33.6 days, respectively. Magnetic resonance imaging of this complex resulted in a 52% contrast enhancement in the rat kidney following the agents' administration in

  1. Facile labelling of an anti-epidermal growth factor receptor Nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET.

    Science.gov (United States)

    Vosjan, Maria J W D; Perk, Lars R; Roovers, Rob C; Visser, Gerard W M; Stigter-van Walsum, Marijke; van Bergen En Henegouwen, Paul M P; van Dongen, Guus A M S

    2011-04-01

    The ∼15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies®) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with (68)Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for (89)Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified (68)Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml(-1) gentisic acid, pH 5.5) at 4°C or in human serum at 37°C, a mixture of (67)Ga and (68)Ga was used. Biodistribution and immuno-PET studies of (68)Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using (89)Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall (68)Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. (68/67)Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate (89)Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  2. Facile labelling of an anti-epidermal growth factor receptor nanobody with {sup 68}Ga via a novel bifunctional desferal chelate for immuno-PET

    Energy Technology Data Exchange (ETDEWEB)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van [Utrecht University, Cellular Dynamics, Science Faculty, Utrecht (Netherlands); Visser, Gerard W.M. [VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands); Dongen, Guus A.M.S. van [VU University Medical Center, Department of Otolaryngology/Head and Neck Surgery, De Boelelaan 1117, P.O. Box 7057, Amsterdam (Netherlands); VU University Medical Center, Department of Nuclear Medicine and PET Research, Amsterdam (Netherlands)

    2011-04-15

    The {proportional_to}15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies {sup registered}) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with {sup 68}Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for {sup 89}Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified {sup 68}Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml{sup -1} gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of {sup 67}Ga and {sup 68}Ga was used. Biodistribution and immuno-PET studies of {sup 68}Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using {sup 89}Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall {sup 68}Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. {sup 68/67}Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period (<2% radioactivity loss). In biodistribution studies the {sup 68}Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 {+-} 1.3 to 7.2 {+-} 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was

  3. Facile labelling of an anti-epidermal growth factor receptor nanobody with 68Ga via a novel bifunctional desferal chelate for immuno-PET

    International Nuclear Information System (INIS)

    Vosjan, Maria J.W.D.; Perk, Lars R.; Stigter van Walsum, Marijke; Roovers, Rob C.; Bergen en Henegouwen, Paul M.P. van; Visser, Gerard W.M.; Dongen, Guus A.M.S. van

    2011-01-01

    The ∝15 kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies registered ) have the flexibility to be formatted as monovalent, monospecific, multivalent or multispecific single chain proteins with either fast or slow pharmacokinetics. We report the evaluation of the fast kinetic anti-epidermal growth factor receptor (EGFR) Nanobody 7D12, labelled with 68 Ga via the novel bifunctional chelate (BFC) p-isothiocyanatobenzyl-desferrioxamine (Df-Bz-NCS). Df-Bz-NCS has recently been introduced as the chelate of choice for 89 Zr immuno-positron emission tomography (PET). Nanobody 7D12 was premodified with Df-Bz-NCS at pH 9. Radiolabelling with purified 68 Ga was performed at pH 5.0-6.5 for 5 min at room temperature. For in vitro stability measurements in storage buffer (0.25 M NaOAc with 5 mg ml -1 gentisic acid, pH 5.5) at 4 C or in human serum at 37 C, a mixture of 67 Ga and 68 Ga was used. Biodistribution and immuno-PET studies of 68 Ga-Df-Bz-NCS-7D12 were performed in nude mice bearing A431 xenografts using 89 Zr-Df-Bz-NCS-7D12 as the reference conjugate. The Df-Bz-NCS chelate was conjugated to Nanobody 7D12 with a chelate to Nanobody molar substitution ratio of 0.2:1. The overall 68 Ga radiochemical yield was 55-70% (not corrected for decay); specific activity was 100-500 MBq/mg. Radiochemical purity of the conjugate was >96%, while the integrity and immunoreactivity were preserved. 68/67 Ga-Df-Bz-NCS-7D12 was stable in storage buffer as well as in human serum during a 5-h incubation period ( 68 Ga-labelled Nanobody 7D12 showed high uptake in A431 tumours (ranging from 6.1 ± 1.3 to 7.2 ± 1.5%ID/g at 1-3 h after injection) and high tumour to blood ratios, which increased from 8.2 to 14.4 and 25.7 at 1, 2 and 3 h after injection, respectively. High uptake was also observed in the kidneys. Biodistribution was similar to that of the reference conjugate 89 Zr-Df-Bz-NCS-7D12. Tumours were clearly visualized in a PET imaging study. Via a rapid

  4. Chemistry of bifunctional photoprobes. 3 -- Correlation between the efficiency of CH insertion by photolabile chelating agents and lifetimes of singlet nitrenes by flash photolysis: First example of photochemical attachment of 99mTc-complex with human serum albumin

    International Nuclear Information System (INIS)

    Pandurangi, R.S.; Lusiak, P.; Kuntz, R.R.; Volkert, W.A.; Rogowski, J.; Platz, M.S.

    1998-01-01

    Systematic functionalization of perfluoroaryl azides with chelating agents capable of complexing transition metals produces a new class of bifunctional photolabile chelating agents (BFPCAs). The strategy is shield the azide functionality from the electronic and steric influence of the electron-rich metal Pd through ester and amide bridges raised CH insertion efficiency to unprecedented levels (>92%) in a model solvent (cyclohexane). In contrast, perfluoroaryl azides attached to chelating agents via hydrazones show no significant CH insertion in cyclohexane upon photolysis. Measurements of the lifetimes of the singlet nitrenes derived from these agents by flash photolysis techniques correlate well with the efficiency of CH insertion by demonstrating longer lifetimes (10--50 times) for singlet nitrenes derived from azidotetrafluorinated esters and amides compared with the related hydrazones, which failed to yield significant CH insertion. A representative BFPCA 12 is chelated to diagnostic radionuclide 99m Tc and covalently attached to human serum albumin via photochemical activation extending the favorable bimolecular insertion characteristics of BFPCA to tracer level concentrations in buffer conditions. Flash photolysis experiments correlate singlet nitrene lifetimes with the efficiency of intermolecular insertion reactions. This work provides new photo-cross-linking technology, useful in radiodiagnostics and radiotherapy in nuclear medicine

  5. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-88 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, R.W.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Junghaus, R.; Gansow, O.A.; Waldmann, T.A. (Center for Biologics Evaluation and Research, FDA, Bethesda, MD (USA))

    1989-05-15

    One factor that is critical to the potential effectiveness of radioimmunotherapy is the design of radiometal-chelated antibodies that will be stable in vivo. Stability in vivo depends on the condition that both the chelate linkage and radiolabeling procedures not alter antibody specificity and biodistribution. In addition, synthesis and selection of the chelating agent is critical for each radiometal in order to prevent inappropriate release of the radiometal in vivo. In the present study, we compare the in vivo stability of seven radioimmunoconjugates that use different polyaminocarboxylate chelating agents to complex yttrium-88 to the mouse anti-human interleukin-2 receptor monoclonal antibody, anti-Tac. Chelate linkage and radiolabeling procedures did not alter the immunospecificity of anti-Tac. In order to assess whether yttrium was inappropriately released from the chelate-coupled antibody in vivo, iodine-131-labeled and yttrium-88 chelate-coupled antibodies were simultaneously administered to the same animals to correlate the decline in yttrium and radioiodinated antibody activity. The four stable yttrium-88 chelate-coupled antibodies studied displayed similar iodine-131 and yttrium-88 activity, indicating minimal elution of yttrium-88 from the complex. In contrast, the unstable yttrium-88 chelate-coupled antibodies had serum yttrium-88 activities that declined much more rapidly than their iodine-131 activities, suggesting loss of the radiolabel yttrium-88 from the chelate. Furthermore, high rates of yttrium-88 elution correlated with deposition in bone. Four chelating agents emerged as promising immunotherapeutic reagents: isothiocyanate benzyl DTPA and its derivatives 1B3M, MX, and 1M3B.

  6. Comparative Evaluation of Using NOTA and DOTA Derivatives as Bifunctional Chelating Agents in the Preparation of 68Ga-Labeled Porphyrin: Impact on Pharmacokinetics and Tumor Uptake in a Mouse Model.

    Science.gov (United States)

    Guleria, Mohini; Das, Tapas; Amirdhanayagam, Jeyachitra; Sarma, Haladhar D; Dash, Ashutosh

    2018-02-01

    Both NOTA (1,4,7-triazacyclononane-1,4,7-triacetic acid) and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) derivatives have been used as bifunctional chelating agents (BFCAs) for the preparation of 68 Ga-labeled target-specific agents having potential for positron emission tomography (PET) imaging of cancerous lesions. In the present work, the authors have attempted a comparative pharmacokinetic evaluation between 68 Ga-labeled porphyrins prepared using NOTA and DOTA derivatives as the BFCAs. A symmetrical porphyrin derivative, 5,10,15,20-tetrakis(p-carboxymethyleneoxyphenyl)porphyrin, was synthesized and coupled with two different BFCAs viz. p-NH 2 -benzyl-NOTA and p-NH 2 -benzyl-DOTA. Both the porphyrin-BFCA conjugates were radiolabeled with 68 Ga. A comparative bioevaluation involving pharmacokinetics and tumor affinity was performed in a tumor-bearing small animal model. Gallium-68-labeled porphyrin-amido-benzyl-NOTA and porphyrin-amido-benzyl-DOTA complexes were prepared with high radiochemical purity. Both radiolabeled complexes exhibited almost similar stability in human serum and near-identical tumor affinity and pharmacokinetic behavior in animal studies. The present study demonstrates that the pharmacokinetic behavior of 68 Ga-labeled porphyrin derivatives, prepared using either NOTA or DOTA derivatives as BFCAs, remains almost identical and hence both NOTA and DOTA derivatives could be considered equivalent for developing 68 Ga-based PET agents for imaging of tumorous lesions.

  7. Synthesis of a novel 'smart' bifunctional chelating agent 1-(2-[beta,D-galactopyranosyloxy]ethyl)-7-(1-carboxy-3-[4-aminophenyl]propyl)-4,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (Gal-PA-DO3A-NH2) and its Gd(III) complex.

    Science.gov (United States)

    Wardle, Nick J; Herlihy, Amy H; So, Po-Wah; Bell, Jimmy D; Bligh, S W Annie

    2007-07-15

    A new synthetic pathway to 1-(2-[beta,D-galactopyranosyloxy]ethyl)-7-(1-carboxy-3-[4-aminophenyl]propyl)-4,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododecane (Gal-PA-DO3A-NH2) and 1-(2-[beta,D-galactopyranosyloxy]ethyl)-4,7,10-tris(carboxymethyl)-1, 4,7,10-tetraazacyclododecane (Gal-DO3A) chelating agents was developed involving full hydroxyl- and carboxyl-group protection in precursors to product. Two sequences of cyclen-N-functionalisation were subsequently investigated, one successfully, towards synthesis of the novel 'smart' bifunctional Gal-PA-DO3A-NH2 chelate. The longitudinal proton relaxivities of the neutral [Gd-(Gal-PA-DO3A-NH2)] and [Gd-(Gal-DO3A)] complexes were increased by 28% and 37% in the presence of beta-galactosidase, respectively.

  8. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  9. 67Ga(NODASA): a new potential bifunctional radioligand for coupling to peptides

    International Nuclear Information System (INIS)

    Andre, J.P.; Maecke, H.R.; Zehnder, M.; Macko, L.; Kaspar, A.

    1998-01-01

    A new bifunctional chelator NODASA (1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) has been synthesised and its Ga(III) complex was crystallographically characterized by X-ray diffraction. The complex showed to be stable in serum and in acidic conditions and its stability constant was determined using a competition method with an auxiliary ligand. The conjugation of Ga(NODASA) to a model aminoacidamide proved the feasibility of a prelabelling approach. (author)

  10. Bifunctional redox flow battery

    International Nuclear Information System (INIS)

    Wen, Y.H.; Cheng, J.; Xun, Y.; Ma, P.H.; Yang, Y.S.

    2008-01-01

    A new bifunctional redox flow battery (BRFB) system, V(III)/V(II)-L-cystine(O 2 ), was systematically investigated by using different separators. It is shown that during charge, water transfer is significantly restricted with increasing the concentration of HBr when the Nafion 115 cation exchange membrane is employed. The same result can be obtained when the gas diffusion layer (GDL) hot-pressed separator is used. The organic electro-synthesis is directly correlated with the crossover of vanadium. When employing the anion exchange membrane, the electro-synthesis efficiency is over 96% due to a minimal crossover of vanadium. When the GDL hot-pressed separator is applied, the crossover of vanadium and water transfer are noticeably prevented and the electro-synthesis efficiency of over 99% is obtained. Those impurities such as vanadium ions and bromine can be eliminated through the purification of organic electro-synthesized products. The purified product is identified to be L-cysteic acid by IR spectrum. The BRFB shows a favorable discharge performance at a current density of 20 mA cm -2 . Best discharge performance is achieved by using the GDL hot-pressed separator. The coulombic efficiency of 87% and energy efficiency of about 58% can be obtained. The cause of major energy losses is mainly associated with the cross-contamination of anodic and cathodic active electrolytes

  11. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  12. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  13. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. Chelation in metal intoxication

    DEFF Research Database (Denmark)

    Aaseth, Jan; Skaug, Marit Aralt; Cao, yang

    2015-01-01

    The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due to the incon......The present review provides an update of the general principles for the investigation and use of chelating agents in the treatment of intoxications by metals. The clinical use of the old chelators EDTA (ethylenediamine tetraacetate) and BAL (2,3-dimercaptopropanol) is now limited due...... to the inconvenience of parenteral administration, their own toxicity and tendency to increase the neurotoxicity of several metals. The hydrophilic dithiol chelators DMSA (meso-2,3-dimercaptosuccinic acid) and DMPS (2,3-dimercapto-propanesulphonate) are less toxic and more efficient than BAL in the clinical treatment...... of heavy metal poisoning, and available as capsules for oral use. In copper overload, DMSA appears to be a potent antidote, although d-penicillamine is still widely used. In the chelation of iron, the thiols are inefficient, since iron has higher affinity for ligands with nitrogen and oxygen, but the new...

  16. Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  17. Comments on chelation therapy

    International Nuclear Information System (INIS)

    Wrenn, M.E.

    1981-01-01

    The primary purpose of actinide chelation is to decrease the risk from radiation-induced cancer. While occupational exposures in the past have mainly involved low specific activity 239 Pu, future exposures will increasingly involve high specific activity plutonium, americium, and curium - all of which clear more rapidly from the lung. This will tend to shift the cancer risk from lung to bone and liver. Although therapy with Ca- or Zn-DTPA rapidly removes 241 Am from the canine, the sub-human primate, and the human liver, improved methods for removal from bone and lung are needed. DTPA can remove 241 Am more easily from the growing skeleton of a child than from the mature skeleton of an adult. Investigators at Karlsruhe are developing chelation agents for oral administration and are investigating the reduction in local dose to bone resulting from chelation therapy

  18. Chelation Therapy for Mercury Poisoning

    OpenAIRE

    Rong Guan; Han Dai

    2009-01-01

    Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role o...

  19. Solvent extraction of uranium(VI), plutonium(VI) and americium(III) with HTTA/HPMBP using mono- and bi-functional neutral donors. Synergism and thermodynamics

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    2000-01-01

    Synergistic extraction of hexavalent uranium and plutonium as well as trivalent americium was studied in HNO 3 with thenoyl, trifluoro-acetone (HTTA)/1-phenyl, 3-methyl, 4-benzoyl pyrazolone-5 (HPMBP) in combination with neutral donors viz. DPSO, TBP, TOPO (mono-functional) and DBDECMP, DHDECMP, CMPO (bi-functional) with wide basicity range using benzene as diluent. A linear correlation was observed when the equilibrium constant log Ks for the organic phase synergistic reaction of both U(VI) and Pu(VI) with either of the chelating agents HTTA or HPMBP was plotted vs. the basicity (log Kh) of the donor (both mono- and bi-functional) indicating bi-functional donors also behave as mono-functional. This was supported by the thermodynamic data (ΔG 0 , ΔH 0 , ΔS 0 ) obtained for these systems. The organic phase adduct formation reactions were identified for the above systems from the thermodynamic data. In the Am(III) HTTA system log K s values of bi-functional donors were found to be very high and deviate from the linear plot (log K s vs. log K h ) obtained for mono-functional donors, indicating that they function as bi-functional for the Am(III)/HTTA) system studied. This was supported by high +ve ΔS 0 values obtained for this system. (author)

  20. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance

    Science.gov (United States)

    Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi

    2018-01-01

    This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity. PMID:29515875

  1. Preparation of novel polyamine-type chelating resin with hyperbranched structures and its adsorption performance

    Science.gov (United States)

    Chen, Youning; Zhao, Wei; Wang, Huan; Li, Yuhong; Li, Chenxi

    2018-02-01

    This paper explored the method of combining atom transfer radical polymerization (ATRP) technology and hyperbranched polymer principle to prepare the high capacity chelating resin. First, surface-initiated atom transfer radical polymerization (SI-ATRP) method was used to graft glycidyl methacrylate (GMA) on chloromethylated cross-linked styrene-divinylbenzene resin, and then the novel polyamine chelating resin with a kind of hyperbranched structure was prepared through the amination reaction between amino group of (2-aminoethyl) triamine and epoxy group in GMA. This resin had a selective effect on As(V) and Cr(VI) at a relatively low pH and can be used for the disposal of waste water containing As(V) and Cr(VI). It had a relatively strong adsorption effect on Cu(II), Pb(II), Cd(II) and Cr(III) and can be used for the disposal of heavy metal ion waste water. The finding was that, the adsorption capacity of resin on the studied heavy metal ions was higher than that of the chelating resin synthesized by traditional technology and also higher than that of the resin modified by ATRP technology and bifunctional chelator, indicating that the combination of ATRP and hyperbranched polymer concept is an effective method to prepare chelating resin with high capacity.

  2. Fluoride ion recognition by chelating and cationic boranes.

    Science.gov (United States)

    Hudnall, Todd W; Chiu, Ching-Wen; Gabbaï, François P

    2009-02-17

    Because of the ubiquity of fluoride ions and their potential toxicity at high doses, researchers would like to design receptors that selectively detect this anion. Fluoride is found in drinking water, toothpaste, and osteoporosis drugs. In addition, fluoride ions also can be detected as an indicator of uranium enrichment (via hydrolysis of UF(6)) or of the chemical warfare agent sarin, which releases the ion upon hydrolysis. However, because of its high hydration enthalpy, the fluoride anion is one of the most challenging targets for anion recognition. Among the various recognition strategies that are available, researchers have focused a great deal of attention on Lewis acidic boron compounds. These molecules typically interact with fluoride anions to form the corresponding fluoroborate species. In the case of simple triarylboranes, the fluoroborates are formed in organic solvents but not in water. To overcome this limitation, this Account examines various methods we have pursued to increase the fluoride-binding properties of boron-based receptors. We first considered the use of bifunctional boranes, which chelate the fluoride anion, such as 1,8-diborylnaphthalenes or heteronuclear 1-boryl-8-mercurio-naphthalenes. In these molecules, the neighboring Lewis acidic atoms can cooperatively interact with the anionic guest. Although the fluoride binding constants of the bifunctional compounds exceed those of neutral monofunctional boranes by several orders of magnitude, the incompatibility of these systems with aqueous media limits their utility. More recently, we have examined simple triarylboranes whose ligands are decorated by cationic ammonium or phosphonium groups. These cationic groups increase the electrophilic character of these boranes, and unlike their neutral analogs, they are able to complex fluoride in aqueous media. We have also considered cationic boranes, which form chelate complexes with fluoride anions. Our work demonstrates that Coulombic and chelate

  3. The attachment of metal-chelating groups to proteins: tagging of albumin by diazonium coupling and use of the products as radiopharmaceuticals

    International Nuclear Information System (INIS)

    Leung, C.S.H.; Meares, C.F.; Goodwin, D.A.

    1978-01-01

    The ability to attach firmly chelated metal ions or powerful chelating agents to sites on biological molecules can enhance the utility of a number of physical techniques now used in the study of biological systems. A 'bifunctional' chelating agent, containing both an EDTA group and a diazonium group, has been prepared and coupled to human serum albumin. The extent of labeling under various conditions and the amino-acid sidechains labeled have been investigated. The reaction of protein-bound chelating groups with added metal ions has been studied, with the finding that only about 40-50% of these groups are available to bind metal ions. Proteolysis of the products leads to recovery of full metal-binding capacity. Properties of the products in vivo are discussed. (author)

  4. In-111 BLEDTA: a conjugate of bleomycin with a bifunctional chelating agent for tumor localization

    International Nuclear Information System (INIS)

    Goodwin, D.A.; Meares, C.F.; DeRiemer, L.H.; Diamanti, C.I.; Goode, R.L.

    1979-01-01

    BLEDTA, a bleomycin A 2 analog containing an EDTA group was labeled in the EDTA group to a specific activity of 70 mCi/mg and used for animal and human studies. KHJJ mouse tumor uptake was higher than the orange Co-57 bleomycin isomer and the tumor/organ ratios were >1 for all organs except the kidney. In 29 biopsy proven cancer patients the scan done 24 hours post I.V. with 1-2 mCi of In-111 BLEDTA was positive in all clinically known sites in 18, and in some clinically known sites in 11. The In-111 BLEDTA clinical results are similar to reported Co-57 bleomycin clinical studies, and the method is proposed as an alternate way to produce a stable biologically active bleomycin labeled with In-111

  5. Development of a Tetrathioether (S4) Bifunctional Chelate System for Rh-105

    Science.gov (United States)

    2013-07-01

    olt s...500 0 500 1000 1500 mV olt s -500 0 500 1000 1500 (B) Free Rhodium Chloride Minutes 0 2 4 6 8 10 12 mV olt s 0 2000 4000 mV olt s 0 2000 4000 (C) Rh-S4...Diol prepared in water Minutes 0 2 4 6 8 10 12 mV olts 0 2000 4000 mV olts 0 2000 4000 (D) 105 Rh-S4Diol with cold [Rh-S4(OH)2-Diol] +

  6. Fat & fabulous: bifunctional lipids in the spotlight.

    Science.gov (United States)

    Haberkant, Per; Holthuis, Joost C M

    2014-08-01

    Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  8. Bifunctional organocatalysts for the asymmetric synthesis of axially chiral benzamides

    Directory of Open Access Journals (Sweden)

    Ryota Miyaji

    2017-08-01

    Full Text Available Bifunctional organocatalysts bearing amino and urea functional groups in a chiral molecular skeleton were applied to the enantioselective synthesis of axially chiral benzamides via aromatic electrophilic bromination. The results demonstrate the versatility of bifunctional organocatalysts for the enantioselective construction of axially chiral compounds. Moderate to good enantioselectivities were afforded with a range of benzamide substrates. Mechanistic investigations were also carried out.

  9. Article Commentary: Chelation Therapy for Mercury Poisoning

    Directory of Open Access Journals (Sweden)

    Rong Guan

    2009-01-01

    Full Text Available Chelation therapy has been the major treatment for heavy metal poisoning. Various chelating agents have been developed and tested for treatment of heavy metal intoxications, including mercury poisoning. It has been clearly shown that chelating agents could rescue the toxicity caused by heavy metal intoxication, but the potential preventive role of chelating agents against heavy metal poisoning has not been explored much. Recent paper by Siddiqi and colleagues has suggested a protective role of chelating agents against mercury poisoning, which provides a promising research direction for broader application of chelation therapy in prevention and treatment of mercury poisoning.

  10. Astaxanthin diferulate as a bifunctional antioxidant

    DEFF Research Database (Denmark)

    Papa, T.B.R.; Pinho, V.D.; Nascimento, E.P. do

    2015-01-01

    Abstract Astaxanthin when esterified with ferulic acid is better singlet oxygen quencher with k2 = (1.58 ± 0.1) 10(10) L mol(- 1)s(- 1) in ethanol at 25°C compared with astaxanthin with k2 = (1.12 ± 0.01) 10(9) L mol(- 1)s(- 1). The ferulate moiety in the astaxanthin diester is a better radical....... The mutual enhancement of antioxidant activity for the newly synthetized astaxanthin diferulate becoming a bifunctional antioxidant is rationalized according to a two-dimensional classification plot for electron donation and electron acceptance capability....

  11. Overview of current chelation practices

    Directory of Open Access Journals (Sweden)

    Y. Aydinok

    2011-12-01

    Full Text Available Deferoxamine (DFO is reference standard therapy for transfusional iron overload since the 1980s. Although it is a highly effective iron chelator, the compliance problem to subcutaneous administration of DFO remains as the major problem. The oral chelator Deferiprone (DFP has no marketing licence in North America, however, it has been licensed in India since 1994 and the European Union (EU granted marketing approval for DFP in 1999, specifically for patients with thalassemia major when DFO is inadequate, intolerable or unacceptable. There are still limited data available on the use of DFP in children between 6 and 10 years of age, and no data on DFP use in children under 6 years of age. Subsequently the oral chelator Deferasirox (DFX was approved by FDA and EMA for the treatment of patients with transfusional iron overload -older than 2 years of age- as first line therapy, in 2005 and 2006 respectively. The primary objective of iron chelation is to maintain body iron at safe levels at all times but once iron is accumulated, the objective of iron chelation is to reduce tissue iron to safe levels which is a slow process. The chelation regimen, dose and frequency of administration, of the chelator(s are mainly determined based on body iron burden, presence of myocardial iron and the transfusional iron loading rate. A proper monitoring of chelation is of importance for measuring the response rate to a particular regimen and providing dose adjustments to enhance chelation efficacy and to avoid toxicity. Efficacy of a chelation regimen may exhibit individual variability resulting from factors such as absorbtion and metabolism of the chelator. Tolerability and compliance are also individual variables effecting the response to chelation. Understanding of advantages and limitations of chelators, accurately determining chelation needs of patients with iron overload and designing individualized chelation regimens with less toxicity but optimum efficacy

  12. Manganese(II) chelate contrast media

    International Nuclear Information System (INIS)

    Rocklage, S.M.; Quay, S.C.

    1994-01-01

    New chelate forming compounds for use as contrast media in NMR imaging are described. Especially mentioned are manganese(II) ion chelates of N,N' dipyridoxaldiamine, N,N' diacetic acid, and salts and esters thereof. 1 fig

  13. Bifunctional electrodes for unitised regenerative fuel cells

    International Nuclear Information System (INIS)

    Altmann, Sebastian; Kaz, Till; Friedrich, Kaspar Andreas

    2011-01-01

    Research highlights: → Different oxygen electrode configurations for the operation in a unitised reversible fuel cell were tested. → Polarisation curves and EIS measurements were recorded. → The mixture of catalysts performs best for the present stage of electrode development. → Potential improvements for the different compositions are discussed. - Abstract: The effects of different configurations and compositions of platinum and iridium oxide electrodes for the oxygen reaction of unitised regenerative fuel cells (URFC) are reported. Bifunctional oxygen electrodes are important for URFC development because favourable properties for the fuel cell and the electrolysis modes must be combined into a single electrode. The bifunctional electrodes were studied under different combinations of catalyst mixtures, multilayer arrangements and segmented configurations with single catalyst areas. Distinct electrochemical behaviour was observed for both modes and can be explained on the basis of impedance spectroscopy. The mixture of both catalysts performs best for the present stage of electrode development. Also, the multilayer electrodes yielded good results with the potential for optimisation. The influence of ionic and electronic resistances on the relative performance is demonstrated. However, penalties due to cross currents in the heterogeneous electrodes were identified and explained by comparing the performance curves with electrodes composed of a single catalyst. Potential improvements for the different compositions are discussed.

  14. Chelators for investigating zinc metalloneurochemistry

    OpenAIRE

    Radford, Robert John; Lippard, Stephen J.

    2013-01-01

    The physiology and pathology of mobile zinc signaling has become an important topic in metalloneurochemistry. To study the action of mobile zinc effectively, specialized tools are required that probe the temporal and positional changes of zinc ions within live tissue and cells. In the present article we describe the design and implementation of selective zinc chelators as antagonists to interrogate the function of mobile zinc, with an emphasis on the pools of vesicular zinc in the terminals o...

  15. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology

    Directory of Open Access Journals (Sweden)

    Anna Lucia Tornesello

    2017-08-01

    Full Text Available Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc., produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.

  16. Phosphinic acid functionalized polyazacycloalkane chelators for radiodiagnostics and radiotherapeutics: unique characteristics and applications.

    Science.gov (United States)

    Notni, Johannes; Šimeček, Jakub; Wester, Hans-Jürgen

    2014-06-01

    Given the wide application of positron emission tomography (PET), positron-emitting metal radionuclides have received much attention recently. Of these, gallium-68 has become particularly popular, as it is the only PET nuclide commercially available from radionuclide generators, therefore allowing local production of PET radiotracers independent of an on-site cyclotron. Hence, interest in optimized bifunctional chelators for the elaboration of (68) Ga-labeled bioconjugates has been rekindled as well, resulting in the development of improved triazacyclononane-triphosphinate (TRAP) ligand structures. The most remarkable features of these ligands are unparalleled selectivity for Ga(III) , rapid Ga(III) complexation kinetics, extraordinarily high thermodynamic stability, and kinetic inertness of the respective Ga(III) chelates. As a result, TRAP chelators exhibit very favorable (68) Ga-labeling properties. Based on the scaffolds NOPO (1,4,7-triazacyclononane-1,4-bis[methylene(hydroxymethyl)phosphinic acid]-7-[methylene(2-carboxyethyl)phosphinic acid]) and TRAP-Pr, tailored for convenient preparation of (68) Ga-labeled monomeric and multimeric bioconjugates, a variety of novel (68) Ga radiopharmaceuticals have been synthesized. These include bisphosphonates, somatostatin receptor ligands, prostate-specific membrane antigen (PSMA)-targeting peptides, and cyclic RGD pentapeptides, for in vivo PET imaging of bone, neuroendocrine tumors, prostate cancer, and integrin expression, respectively. Furthermore, TRAP-based (68) Ga-labeled gadolinium(III) complexes have been proposed as bimodal probes for PET/MRI, and a cyclen-based analogue of TRAP-Pr has been suggested for the elaboration of targeted radiotherapeutics comprising radiolanthanide ions. Thus, polyazacycloalkane-based polyphosphinic acid chelators are a powerful toolbox for pharmaceutical research, particularly for the development of (68) Ga radiopharmaceuticals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Bifunctional Phosphorus Dendrimers and Their Properties.

    Science.gov (United States)

    Caminade, Anne-Marie; Majoral, Jean-Pierre

    2016-04-23

    Dendrimers are hyperbranched and monodisperse macromolecules, generally considered as a special class of polymers, but synthesized step-by-step. Most dendrimers have a uniform structure, with a single type of terminal function. However, it is often desirable to have at least two different functional groups. This review will discuss the case of bifunctional phosphorus-containing dendrimers, and the consequences for their properties. Besides the terminal functions, dendritic structures may have also a function at the core, or linked off-center to the core, or at the core of dendrons (dendritic wedges). Association of two dendrons having different terminal functions leads to Janus dendrimers (two faces). The internal structure can also possess functional groups on one layer, or linked to one layer, or on several layers. Finally, there are several ways to have two types of terminal functions, besides the case of Janus dendrimers: either each terminal function bears two functions sequentially, or two different functions are linked to each terminal branching point. Examples of each type of structure will be given in this review, as well as practical uses of such sophisticated structures in the fields of fluorescence, catalysis, nanomaterials and biology.

  18. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K. (Abbott Laboratories, Department 90M, Abbott Park, IL (United States))

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates.

  19. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    International Nuclear Information System (INIS)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K.

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates

  20. Beliefs about chelation among thalassemia patients

    Directory of Open Access Journals (Sweden)

    Trachtenberg Felicia L

    2012-12-01

    Full Text Available Abstract Background Understanding patients’ views about medication is crucial to maximize adherence. Thalassemia is a congenital blood disorder requiring chronic blood transfusions and daily iron chelation therapy. Methods The Beliefs in Medicine Questionnaire (BMQ was used to assess beliefs in chelation in thalassemia patients from North America and London in the Thalassemia Longitudinal Cohort (TLC of the Thalassemia Clinical Research Network (TCRN. Chelation adherence was based on patient report of doses administered out of those prescribed in the last four weeks. Results Of 371 patients (ages 5-58y, mean 24y, 93% were transfused and 92% receiving chelation (26% deferoxamine (DFO; a slow subcutaneous infusion via portable pump, 63% oral, 11% combination. Patients expressed high “necessity” for transfusion (96%, DFO chelation (92% and oral chelation (89%, with lower “concern” about treatment (48%, 39%, 19% respectively. Concern about oral chelation was significantly lower than that of DFO (p Conclusions Despite their requirement for multimodal therapy, thalassemia patients have positive views about medicine, more so than in other disease populations. Patients may benefit from education about the tolerability of chelation and strategies to effectively cope with side effects, both of which might be beneficial in lowering body iron burden. Clinicaltrials.gov identifier NCT00661804

  1. Carbon in bifunctional air electrodes in alkaline solution

    International Nuclear Information System (INIS)

    Tryk, D.; Aldred, W.; Yeager, E.

    1983-01-01

    Bifunctional O 2 electrodes can be used both to reduce and to generate O 2 in rechargeable metal-air batteries and fuel cells. The factors controlling the O 2 reduction and generation reactions in gas-diffusional bifunctional O 2 electrodes are discussed. The resistance of such electrodes, as established from voltammetry curves, has been found to increase markedly during anodic polarization and to be dependent upon the electrode fabrication technique. Carbon blacks with more graphitic structure than Shawinigan black have been found to be more resistant to electro-oxidation. The further extension of cycle life of bifunctional electrodes using carbon is critically dependent on finding more oxidation-resistant carbons that at the same time have other surface properties meeting the requirements for catalyzed gas-diffusion electrodes

  2. Main regularities of radiolytic transformations of bifunctional organic compounds

    International Nuclear Information System (INIS)

    Petryaev, E.P.; Shadyro, O.I.

    1985-01-01

    General regularities of the radiolysis of bifunctional organic compounds (α-diols, ethers of α-diols, amino alcohols, hydroxy aldehydes and hydroxy asids) in aqueous solutions from the early stages of the process to formation of finite products are traced. It is pointed out that the most characteristic course of radiation-chemical, transformation of bifunctional compounds in agueous solutions in the fragmentation process with monomolecular decomposition of primary radicals of initial substrances and simultaneous scission of two vicinal in respect to radical centre bonds via five-membered cyclic transient state. The data obtained are of importance for molecular radiobiology

  3. Engineering an antibody with picomolar affinity to DOTA chelates of multiple radionuclides for pretargeted radioimmunotherapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Orcutt, Kelly Davis; Slusarczyk, Adrian L. [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Cieslewicz, Maryelise [Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ruiz-Yi, Benjamin [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bhushan, Kumar R. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Frangioni, John V. [Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA 02215 (United States); Wittrup, K. Dane, E-mail: wittrup@mit.ed [Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2011-02-15

    Introduction: In pretargeted radioimmunotherapy (PRIT), a bifunctional antibody is administered and allowed to pre-localize to tumor cells. Subsequently, a chelated radionuclide is administered and captured by cell-bound antibody while unbound hapten clears rapidly from the body. We aim to engineer high-affinity binders to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelates for use in PRIT applications. Methods: We mathematically modeled antibody and hapten pharmacokinetics to analyze hapten tumor retention as a function of hapten binding affinity. Motivated by model predictions, we used directed evolution and yeast surface display to affinity mature the 2D12.5 antibody to DOTA, reformatted as a single chain variable fragment (scFv). Results: Modeling predicts that for high antigen density and saturating bsAb dose, a hapten-binding affinity of 100 pM is needed for near-maximal hapten retention. We affinity matured 2D12.5 with an initial binding constant of about 10 nM to DOTA-yttrium chelates. Affinity maturation resulted in a 1000-fold affinity improvement to biotinylated DOTA-yttrium, yielding an 8.2{+-}1.9 picomolar binder. The high-affinity scFv binds DOTA complexes of lutetium and gadolinium with similar picomolar affinity and indium chelates with low nanomolar affinity. When engineered into a bispecific antibody construct targeting carcinoembryonic antigen, pretargeted high-affinity scFv results in significantly higher tumor retention of a {sup 111}In-DOTA hapten compared to pretargeted wild-type scFv in a xenograft mouse model. Conclusions: We have engineered a versatile, high-affinity, DOTA-chelate-binding scFv. We anticipate it will prove useful in developing pretargeted imaging and therapy protocols to exploit the potential of a variety of radiometals.

  4. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    1988-01-01

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63 Ni, 109 Cd, 203 Hg, 144 Ce, 95 Nb and the excretion of 210 Po, 63 Ni, 48 V, 239 Pu, 241 Am, 54 Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  5. Crystallization of bi-functional ligand protein complexes.

    Science.gov (United States)

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Environmentally Benign Bifunctional Solid Acid and Base Catalysts

    NARCIS (Netherlands)

    Elmekawy, A.; Shiju, N.R.; Rothenberg, G.; Brown, D.R.

    2014-01-01

    Solid bifunctional acid-​base catalysts were prepd. in two ways on an amorphous silica support: (1) by grafting mercaptopropyl units (followed by oxidn. to propylsulfonic acid) and aminopropyl groups to the silica surface (NH2-​SiO2-​SO3H)​, and (2) by grafting only aminopropyl groups and then

  7. Bifunctional xylanases and their potential use in biotechnology

    Digital Repository Service at National Institute of Oceanography (India)

    Khandeparker, R.; Numan, M.Th.

    . J Chromatography 919:389–394 33. Hong SY, Lee JS, Cho KM, Math RK, Kim YH, Hong SJ, Cho YU, Kim H, Yun HD (2006) Assembling a novel bifunctional cel- lulase–xylanase from Thermotoga maritima by end-to-end fusion. Biotechnol Lett 28:1857–1862 34...

  8. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    International Nuclear Information System (INIS)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia

    2016-01-01

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe 3 O 4 /PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe 3 O 4 nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10 -3 S·cm -1 . The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe 3 O 4 NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  9. Single flexible nanofiber to simultaneously realize electricity-magnetism bifunctionality

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Sheng, Shujuan; Ma, Qianli; Lv, Nan; Yu, Wensheng; Wang, Jinxian; Dong, Xiangting; Liu, Guixia, E-mail: wenshengyu2009@sina.com, E-mail: dongxiangting888@163.com [Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun (China)

    2016-03-15

    In order to develop new-typed multifunctional composite nanofibers, PANI/Fe{sub 3}O{sub 4}/PVP flexible bifunctional composite nanofibers with simultaneous electrical conduction and magnetism have been successfully fabricated via a facile electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of polyaniline (PANI) and Fe{sub 3}O{sub 4} nanoparticles (NPs). The bifunctional composite nanofibers simultaneously possess excellent electrical conductivity and magnetic properties. The electrical conductivity reaches up to the order of 10{sup -3} S·cm{sup -1}. The electrical conductivity and saturation magnetization of the composite nanofibers can be respectively tuned by adding various amounts of PANI and Fe{sub 3}O{sub 4} NPs. The obtained electricity-magnetism bifunctional composite nanofibers are expected to possess many potential applications in areas such as electromagnetic interference shielding, special coating, microwave absorption, molecular electronics and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other bifunctional one-dimensional nanostructures. (author)

  10. Chelation in root canal therapy reconsidered.

    Science.gov (United States)

    Zehnder, Matthias; Schmidlin, Patrick; Sener, Beatrice; Waltimo, Tuomas

    2005-11-01

    The aim of this study was to assess interactions of EDTA and citric acid (CA) with sodium hypochlorite (NaOCl), the indispensable endodontic irrigant. Other chelators were simultaneously evaluated as possible alternatives: sodium triphosphate (STP), amino tris methylenephosphonic acid (ATMA), and 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP). Available chlorine was titrated in chelator-NaOCl solutions. All chelators other than HEBP and STP caused an almost complete, immediate loss of available chlorine in solution. Atomic absorbtion spectrometry and SEM evaluation of root canal walls of instrumented teeth indicated that NaOCl had no negative effect on calcium-complexing ability of chelators. STP was too weak a complexing agent to warrant further studies. Finally, CA-, EDTA-, and HEBP-NaOCl mixtures were evaluated for their antimicrobial capacity. Again, EDTA and CA negatively interfered with NaOCl, while HEBP did not.

  11. Chelates for Micronutrient Nutrition among Crops

    Indian Academy of Sciences (India)

    years, it has been recognised that compounds containing che- lated metals could .... when using small amounts and no build up of harmful levels. ... degradation of iron chelates. .... down by soil microorganisms into much smaller units for ab-.

  12. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    1976-01-01

    The preparation of the following chemicals is described: chelates of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The compounds described are suitable for intravenous injection, have an excellent in vivo stability and are good organ seekers. Tin(II) choride or other tin(II) compounds are used as chelating agents

  13. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    Science.gov (United States)

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  14. Biological behaviour of some 67Ga and 64Cu chelates

    International Nuclear Information System (INIS)

    Leonovicova, T.; Angelis, B.; Cifka, J.; Cifkova, I.

    1984-01-01

    Chelates of 67 Ga and 64 Cu with iminodiacetic acid (IDA) and its two phenyl derivatives as well as with nitrilotriacetic acid (NTA) and benzylnitrilotriacetic acid (BNTA) were prepared. All the chelates were found to be negatively charged. A study of the biological distribution of these chelates in rats during time intervals of 3 to 180 min showed that the chelate of 67 Ga with IDA substituted at a phenyl by a hydrophobic substituent is excreted by the kidneys into the urine at a much higher rate than the IDA chelate of 67 Ga. The excretion of NTA and BNTA chelates of 67 Ga is the opposite. Blood clearance of 64 Cu chelates is more rapid than that of 67 Ga chelates. Chelates of 64 Cu accumulate in the liver and with the bile are slowly excreted into the intestines, urinary excretion is negligible. (author)

  15. The aminoindanol core as a key scaffold in bifunctional organocatalysts

    Directory of Open Access Journals (Sweden)

    Isaac G. Sonsona

    2016-03-01

    Full Text Available The 1,2-aminoindanol scaffold has been found to be very efficient, enhancing the enantioselectivity when present in organocatalysts. This may be explained by its ability to induce a bifunctional activation of the substrates involved in the reaction. Thus, it is easy to find hydrogen-bonding organocatalysts ((thioureas, squaramides, quinolinium thioamide, etc. in the literature containing this favored structural core. They have been successfully employed in reactions such as Friedel–Crafts alkylation, Michael addition, Diels–Alder and aza-Henry reactions. However, the 1,2-aminoindanol core incorporated into proline derivatives has been scarcely explored. Herein, the most representative and illustrative examples are compiled and this review will be mainly focused on the cases where the aminoindanol moiety confers bifunctionality to the organocatalysts.

  16. Why Does Alkylation of the N–H Functionality within M/NH Bifunctional Noyori-Type Catalysts Lead to Turnover?

    International Nuclear Information System (INIS)

    Dub, Pavel; Gordon, John Cameron; Scott, Brian Lindley

    2017-01-01

    Molecular metal/NH bifunctional Noyori-type catalysts are remarkable in that they are among the most efficient artificial catalysts developed to date for the hydrogenation of carbonyl functionalities (loadings up to ~10 –5 mol %). In addition, these catalysts typically exhibit high C=O/C=C chemo- and enantioselectivities. This unique set of properties is traditionally associated with the operation of an unconventional mechanism for homogeneous catalysts in which the chelating ligand plays a key role in facilitating the catalytic reaction and enabling the aforementioned selectivities by delivering/accepting a proton (H + ) via its N–H bond cleavage/formation. A recently revised mechanism of the Noyori hydrogenation reaction (Dub, P. A. et al. J. Am. Chem. Soc. 2014, 136, 3505) suggests that the N–H bond is not cleaved but serves to stabilize the turnover-determining transition states (TDTSs) via strong N–H···O hydrogen-bonding interactions (HBIs). Here, the present paper shows that this is consistent with the largely ignored experimental fact that alkylation of the N–H functionality within M/NH bifunctional Noyori-type catalysts leads to detrimental catalytic activity. Finally, the purpose of this work is to demonstrate that decreasing the strength of this HBI, ultimately to the limit of its complete absence, are conditions under which the same alkylation may lead to beneficial catalytic activity.

  17. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  18. Decomposition rates of radiopharmaceutical indium chelates in serum

    International Nuclear Information System (INIS)

    Yeh, S.M.; Meares, C.F.; Goodwin, D.A.

    1979-01-01

    The rates at which six small aminopolycarboxylate chelates of trivalent 111 In and three protein-bound chelates of 111 In deliver indium to the serum protein transferrin have been studied in sterile human serum at pH 7.3, 37 deg C. Sterically hindered chelates containing a substituent on an ethylene carbon of EDTA decompose with rates in the range 0.03 to 0.11% per day - one to two orders of magnitude slower than other chelates. Only small differences are observed between rates of decomposition for low-molecular-weight chelates and for protein-bound chelates having analogous structures. (author)

  19. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  20. Labelling of bacteria with indium chelates

    International Nuclear Information System (INIS)

    Kleinert, P.; Pfister, W.; Endert, G.; Sproessig, M.

    1985-01-01

    The indium chelates were prepared by reaction of radioactive indiumchloride with 10 μg oxine, 15 μg tropolone and 3 mg acetylacetone, resp. The formed chelates have been incubated with 10 9 germs/ml for 5 minutes, with labelling outputs from 90 to 95%. Both gram-positive (Streptococcus, Staphylococcus) and gram-negative bacteria (Escherichia coli) can be labelled. The reproductive capacity of the bacteria was not impaired. The application of indium labelled bacteria allows to show the distribution of microorganisms within the living organism and to investigate problems of bacterial adherence. (author)

  1. A new approach in the preparation of dendrimer-based bifunctional diethylenetriaminepentaacetic acid MR contrast agent derivatives.

    Science.gov (United States)

    Nwe, Kido; Xu, Heng; Regino, Celeste Aida S; Bernardo, Marcelino; Ileva, Lilia; Riffle, Lisa; Wong, Karen J; Brechbiel, Martin W

    2009-07-01

    In this paper, we report a new method to prepare and characterize a contrast agent based on a fourth-generation (G4) polyamidoamine (PAMAM) dendrimer conjugated to the gadolinium complex of the bifunctional diethylenetriamine pentaacetic acid derivative (1B4M-DTPA). The method involves preforming the metal-ligand chelate in alcohol prior to conjugation to the dendrimer. The dendrimer-based agent was purified by a Sephadex G-25 column and characterized by elemental analysis. The analysis and SE-HPLC data gave a chelate to dendrimer ratio of 30:1 suggesting conjugation at approximately every other amine terminal on the dendrimer. Molar relaxivity of the agent measured at pH 7.4 displayed a higher value than that of the analogous G4 dendrimer based agent prepared by the postmetal incorporation method (r(1) = 26.9 vs 13.9 mM(-1) s(-1) at 3 T and 22 degrees C). This is hypothesized to be due to the higher hydrophobicity of this conjugate and the lack of available charged carboxylate groups from noncomplexed free ligands that might coordinate to the metal and thus also reduce water exchange sites. Additionally, the distribution populations of compounds that result from the postmetal incorporation route are eliminated from the current product simplifying characterization as quality control issues pertaining to the production of such agents for clinical use as MR contrast agents. In vivo imaging in mice showed a reasonably fast clearance (t(1/2) = 24 min) suggesting a viable agent for use in clinical application.

  2. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    chelatable iron is present and is excreted in the urine of children with kwashiorkor ... venous blood sample was drawn for routine biochemical and haematological .... storage.l.1:m In response to chelation, the kwashiorkor children excrete large ...

  3. Radiopharmaceutical chelates and method of external imaging

    International Nuclear Information System (INIS)

    Loberg, M.D.; Callery, P.S.; Cooper, M.

    1977-01-01

    A chelate of technetium-99m, cobalt-57, gallium-67, gallium-68, indium-111 or indium-113m and a substituted iminodiacetic acid or an 8-hydroxyquinoline useful as a radiopharmaceutical external imaging agent. The invention also includes preparative methods therefor

  4. Imaging Tumor Vasculature Noninvasively with Positron Emission Tomography and RGD Peptides Labeled with Copper 64 Using the Bifunctonal Chelates DOTA, Oxo-DO3A. and PCTA

    Directory of Open Access Journals (Sweden)

    Donald T.T. Yapp

    2013-06-01

    Full Text Available Two novel bifunctional chelates, 3,6,9,15-tetraazabicyclo[9.3.1]pentadeca-1(15,11,13-triene-3,6,9-triacetic acid (PCTA and 1-oxa-4,7,10-triazacyclododecane-4,7,10-triacetic acid (Oxo-DO3A, were found to radiolabel antibodies with copper 64 (64Cu well for positron emission tomography (PET. In this study, the same chelators were used to radiolabel peptides with 64Cu for PET imaging of angiogenesis. PCTA, Oxo-DO3A, and 1,4,7,10-tetraazacyclododecane-N,N‘,N“,N”’-tetraacetic acid (DOTA were conjugated to cyclic-(RGDyK, and their binding affinities were confirmed. Conditions for 64Cu radiolabeling were optimized for maximum yield and specific activity. The in vitro stability of the radiolabeled compounds was challenged with serum incubation. PET studies were carried out in a non-αvβ3-expressing tumor model to evaluate the compounds' specificity for proliferating tumor vasculature and their in vivo pharmacokinetics. The PCTA and Oxo-DO3A bioconjugates were labeled with 64Cu at higher effective specific activity and radiochemical yield than the DOTA bioconjugate. In the imaging studies, all the 64Cu bioconjugates could be used to visualize the tumor and the radiotracer uptake was blocked with cyclic-(RGDyK. Target uptake of each bioconjugate was similar, but differences in other tissues were observed. 64Cu-PCTA-RGD showed the best clearance from nontarget tissue and the highest tumor to nontarget ratios. PCTA was the most promising bifunctional chelate for 64Cu peptide imaging and warrants further investigation.

  5. Use of chelating agents as immovable phase in extraction chromatography

    International Nuclear Information System (INIS)

    Sebesta, F.

    1978-01-01

    Extraction chromatography using chelating agents is reviewed. The theory of element extraction by chelating agents and factors influencing this process (pH, extracting agent concentration in organic phase, masking agent concentration in aqueous phase) are briefly considered. The effect of kinetic factors on the extraction chromatography process is discussed. Ways of preparing columns are emphasized. Examples of using chelating reagents in various extraction chromatography systems are given. β-Diketones, oximes, hydroxamic acids, dithizon, diethyl dithiocarbamic acid are chosen as chelating agents

  6. Chelating agents as stationary phase in extraction chromatography, ch. 11

    International Nuclear Information System (INIS)

    Sebesta, F.

    1975-01-01

    Chelating agents have been used largely in extraction chromatography for separations related to activation analysis, for concentration of metals from dilute solutions, and for preparation of radiochemically pure or carrier-free radionuclides. This review deals with the theory of extraction by chelating agents, the experimental technique, and the chelating agents and systems used (β-diketones, oximes, hydroxamic acid, dithizone and diethyldithiocarbamic acid)

  7. Chelation therapy after the Trial to Assess Chelation Therapy: results of a unique trial

    Science.gov (United States)

    Avila, Maria D.; Escolar, Esteban; Lamas, Gervasio A.

    2014-01-01

    Purpose of review EDTA chelation therapy has been in off-label use for the treatment of atherosclerosis. We review the results of the first large-scale randomized trial of this treatment. Recent findings The trial to assess chelation therapy was a $30 million National Institutes of Health-funded study of the safety and efficacy of EDTA-based chelation infusions in 1708 post-myocardial infarction (MI) patients. The trial to assess chelation therapy demonstrated a significant (P = 0.035) 18% reduction in a combined primary endpoint of death, MI, stroke, coronary revascularization, or hospitalization for angina. In diabetic patients the benefit was more extreme, with a 41% relative reduction in risk (P = 0.0002) and a 43% reduction in total mortality (P = 0.011). Safety data were favorable. A reduction of oxidative stress by chelation of toxic metals has been proposed as a possible mechanism of action. Summary Recent research suggests that EDTA chelation may be a well-tolerated and effective treatment for post-MI patients. Future replication and mechanistic studies are important prior to implementation in all post-MI patients. PMID:25023079

  8. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    International Nuclear Information System (INIS)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-01-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter 68 Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab') 2 fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10 7 M -1 ) while the binding capacity of cells was high (8.4 x 10 6 BS-MAbs per cell). Tumor uptake of the 67 Ga labeled chelate in pretargeted animals was to 5.8 ± 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with 125 I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the 68 Ga and 67 Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the 68 Ga chelate, clearly visualized all tumors

  9. Pretargeting of human mammary carcinoma xenografts with bispecific anti-MUC1/anti-Ga chelate antibodies and immunoscintigraphy with PET

    Energy Technology Data Exchange (ETDEWEB)

    Schuhmacher, Jochen; Klivenyi, Gabor; Kaul, Sepp; Henze, Marcus; Matys, Ronald; Hauser, Harald; Clorius, John

    2001-10-01

    We recently demonstrated the feasibility of combining enhanced tumor-to-tissue contrast and PET imaging for immunoscintigraphic tumor localization in pancreas and colon carcinoma bearing nude mice. Contrast enhancement was obtained with a multistep targeting technique that consists of the sequential administration of an antitumor/antihapten bispecific antibody (BS-MAb), a blocker to saturate the antihapten binding sites of the BS-MAb that remains in circulation, and a low molecular weight Ga chelate, labeled with the positron emitter {sup 68}Ga, which serves as the hapten. To evaluate the efficacy of this pretargeting technique for breast cancer localization, we synthesized a BS-MAb from the F(ab'){sub 2} fragments of the anti-MUC1 MAb 12H12 which reacts with the vast majority of human breast carcinomas, and the F(ab') fragment of an anti-Ga chelate MAb using a bifunctional chemical linker. The BS-MAb was tested for its affinity and its biokinetics in nude mice bearing a human mammary carcinoma. Equilibrium binding of the BS-MAb for mammary carcinoma cells was low (1.2 x 10{sup 7} M{sup -1}) while the binding capacity of cells was high (8.4 x 10{sup 6} BS-MAbs per cell). Tumor uptake of the {sup 67}Ga labeled chelate in pretargeted animals was to 5.8 {+-} 0.8% iD/g resulting in a tumor-to-blood ratio of 2.6 at 1h postinjection. This compares with a ratio of 0.65 and 0.85 obtained with {sup 125}I-labeled native 12H12 at 24h and 48h postinjection. No difference in the tumor uptake of both the {sup 68}Ga and {sup 67}Ga labeled chelate was observed. PET imaging of mice, started 1h postinjection of the {sup 68}Ga chelate, clearly visualized all tumors.

  10. [Susceptibility of enterococci to natural and synthetic iron chelators].

    Science.gov (United States)

    Lisiecki, Paweł; Mikucki, Jerzy

    2002-01-01

    A total of 79 strains of enterococci belonging to 10 species were tested for susceptibility to natural and synthetic iron chelators. All strains produced siderophores. These enterococci were susceptible to three synthetic iron chelators only: 8-hydroxyquinoline, disodium versenate (EDTA) and o-phenanthroline. They were resistant to all other synthetic chelators: ethylenediamine-di(o-hydroxyphenylacetic acid) (EDDHA), nitrilotriacetate, 2,2'-bipiridyl, salicylic acid, 8-hydroxy-5-sulphonic acid and to all natural chelators: ovotransferrine, human apotransferrine, horse apoferritine, desferrioxamine B, ferrichrome and rhodotorulic acid. The relations between susceptibility/resistance, iron assimilation and structure and stability constants of iron chelators were discussed.

  11. Achieving bifunctional cloak via combination of passive and active schemes

    Science.gov (United States)

    Lan, Chuwen; Bi, Ke; Gao, Zehua; Li, Bo; Zhou, Ji

    2016-11-01

    In this study, a simple and delicate approach to realizing manipulation of multi-physics field simultaneously through combination of passive and active schemes is proposed. In the design, one physical field is manipulated with passive scheme while the other with active scheme. As a proof of this concept, a bifunctional device is designed and fabricated to behave as electric and thermal invisibility cloak simultaneously. It is found that the experimental results are consistent with the simulated ones well, confirming the feasibility of our method. Furthermore, the proposed method could also be extended to other multi-physics fields, which might lead to potential applications in thermal, electric, and acoustic areas.

  12. In vivo stability and inertness of various direct labelled and chelate-tagged protein

    International Nuclear Information System (INIS)

    Janoki, A.; Korosi, L.; Klivenyi, G.; Spett, B.

    1987-01-01

    There were looking for methods giving precise information about composition and activity distribution of protein components, both in the initial samples and serum samples after intravenous administration. It was tested the applicability of electroimmunoassay, polyacrilamide gel electrophoresis and high performance liquid chromatography for the assessment of in vivo stability and labelled proteins. The model compound was human serum albumin (HSA) labelled with 99m Tc and 125 I, respectively. Bifunctional chelate labelling was done with desferrioxamine, in this case protein was labelled with 67 Ga. Biodistribution of the labelled compounds and their elimination from the blood were studied in rabbits. Experience with various labelling proteins, especially with Tc-Sn-HSA system indicate that in vivo stability of this compounds are generally low. Following intravenous injection of proteins labelled with metal isotopes, due to dilution and to the presence of considerable amount of compatitive protein in the serum, part of the label is being detached from the carrier protein. Distribution of the detached metal is different from the original distribution of the protein. This problem arises also with radiopharmaceuticals based on monoclonal antibodies. (M.E.L.) [es

  13. Biomolecule conjugation strategy using novel water-soluble phosphine-based chelating agents

    Science.gov (United States)

    Katti, Kattesh V.; Gali, Hariprasad; Volkert, Wynn A.

    2004-08-24

    This invention describes a novel strategy to produce phosphine-functionalized biomolecules (e.g. peptides or proteins) for potential use in the design and development of site-specific radiopharmaceuticals for diagnosis or therapy of specific cancers. Hydrophilic alkyl phosphines, in general, tend to be oxidatively unstable. Therefore, incorporation of such phosphine functionalities on peptide (and other biomolecule) backbones, without oxidizing the P.sup.III centers, is difficult. In this context this discovery reports on a new technology by which phosphines, in the form of bifunctional chelating agents, can be directly incorporated on biomolecular backbones using manual synthetic or solid phase peptide synthesis methodologies. The superior ligating abilities of phosphine ligands, with various diagnostically (e.g. TC-99m) or therapeutically (e.g. Re186/188, Rh-105, Au-199) useful radiometals, coupled with the findings that the resulting complexes demonstrate high in vivo stability makes this approach useful in the development of radiolabeled biomolecules for applications in the design of tumor-specific radiopharmaceuticals.

  14. In vivo evaluation of a radiogallium-labeled bifunctional radiopharmaceutical, Ga-DOTA-MN2, for hypoxic tumor imaging.

    Science.gov (United States)

    Sano, Kohei; Okada, Mayumi; Hisada, Hayato; Shimokawa, Kenta; Saji, Hideo; Maeda, Minoru; Mukai, Takahiro

    2013-01-01

    On the basis of the findings obtained by X-ray crystallography of Ga-DOTA chelates and the drug design concept of bifunctional radiopharmaceuticals, we previously designed and synthesized a radiogallium-labeled DOTA chelate containing two metronidazole moieties, (67)Ga-DOTA-MN2, for hypoxic tumor imaging. As expected, (67)Ga-DOTA-MN2 exhibited high in vivo stability, although two carboxyl groups in the DOTA skeleton were conjugated with metronidazole moieties. In this study, we evaluated (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors. (67)Ga-labeling of DOTA-MN2 with (67)GaCl(3) was achieved with high radiochemical yield (>85%) by 1-min of microwave irradiation (50 W). The pharmacokinetics of (67)Ga-DOTA-MN2 were examined in FM3A tumor-bearing mice, and compared with those of (67)Ga-DOTA-MN1 containing one metronidazole unit and (67)Ga-DOTA. Upon administration, (67)Ga-DOTA-MN2 exhibited higher accumulation in the implanted tumors than (67)Ga-DOTA. Tumor-to-blood ratios of (67)Ga-DOTA-MN2 were about two-fold higher than those of (67)Ga-DOTA-MN1. Autoradiographic analysis showed the heterogeneous localization of (67)Ga-DOTA-MN2 in the tumors, which corresponds to hypoxic regions suggested by well-established hypoxia marker drug, pimonidazole. Furthermore, in positron emission tomography (PET) study, the tumors of mice administered (68)Ga-labeled DOTA-MN2 were clearly imaged by small-animal PET at 1 h after administration. This study demonstrates the potential usefulness of (67/68)Ga-DOTA-MN2 as a nuclear imaging agent for hypoxic tumors and suggests that two functional moieties, such as metronidazole, can be conjugated to radiogallium-DOTA chelate without reducing the complex stability. The present findings provide useful information about the chemical design of radiogallium-labeled radiopharmaceuticals for PET and single photon emission computed tomography (SPECT) studies.

  15. Obligatory reduction of ferric chelates in iron uptake by soybeans.

    Science.gov (United States)

    Chaney, R L; Brown, J C; Tiffin, L O

    1972-08-01

    The contrasting Fe(2+) and Fe(3+) chelating properties of the synthetic chelators ethylenediaminedi (o-hydroxyphenylacetate) (EDDHA) and 4,7-di(4-phenylsulfonate)-1, 10-phenanthroline (bathophenanthrolinedisulfonate) (BPDS) were used to determine the valence form of Fe absorbed by soybean roots supplied with Fe(3+)-chelates. EDDHA binds Fe(3+) strongly, but Fe(2+) weakly; BPDS binds Fe(2+) strongly but Fe(3+) weakly. Addition of an excess of BPDS to nutrient solutions containing Fe(3+)-chelates inhibited soybean Fe uptake-translocation by 99+%; [Fe(II) (BPDS)(3)](4-) accumulated in the nutrient solution. The addition of EDDHA caused little or no inhibition. These results were observed with topped and intact soybeans. Thus, separation and absorption of Fe from Fe(3+)-chelates appear to require reduction of Fe(3+)-chelate to Fe(2+)-chelate at the root, with Fe(2+) being the principal form of Fe absorbed by soybean.

  16. Decorporation of metal ions by chelating agents

    International Nuclear Information System (INIS)

    Koenig, T.

    1978-01-01

    Simple model designs to simulate the effect of therapeutical chelating agents on the behaviour of metals in mammal organisms with and without excretion have been derived and analytical solutions given for the corresponding differential equations. The possibilities of these models in the short-term description of plasma kinetics of various metals, the competition of the therapeutical ligands with proteins for the metal and of the metabolism of chelating agents were tested and the properties applying extreme conceivable parameters were analyzed. The simple models were successsively expanded in logical sequence, so that it was possible to qualitatively well describe over a long period of time, the metallic kinetics in plasma, organs and urine, the retention of the ligands and their effect on the metal excretion. Two suggestions were given to describe the so-called after-effect, an increased excretion of the metal at times when the ligand is almost completely excreted and their different behaviour after injecting the metal chelate is given. Calculations on the therapy with several ligand data as well as on dose fractionation are described resting on the ratios in the plutonium-239 chosen model parameters and the determining mechanisms analyzed. (orig./MG) [de

  17. IRON CHELATION THERAPY IN THALASSEMIA SYNDROMES

    Directory of Open Access Journals (Sweden)

    Paolo Cianciulli

    2009-06-01

    Full Text Available Transfusional hemosiderosis is a frequent complication in patients with transfusion dependent chronic diseases such as  thalassemias and severe type of sickle cell diseases. As there are no physiological mechanisms to excrete the iron contained in transfused red cells (1 unit of blood contains approximately 200 mg of iron the excess of iron is stored in various organs. Cardiomyopathy is the most severe complication covering more than 70% of the causes of death of thalassemic patients. Although the current reference standard iron chelator deferoxamine (DFO has been used clinically for over four decades, its effectiveness is limited by a demanding therapeutic regimen that leads to poor compliance. Despite poor compliance, because of the inconvenience of subcutaneous infusion, DFO improved considerably the survival and quality of life of patients with thalassemia. Deferiprone since 1998 and Deferasirox since 2005 were licensed for clinical use. The oral chelators have a better compliance because of oral use, a comparable efficacy to DFO in iron excretion and probably a better penetration to myocardial cells. Considerable increase in iron excretion was documented with combination therapy of DFO and Deferiprone. The proper use of the three chelators will improve the prevention and treatment of iron overload, it will reduce  complications, and improve survival and quality of life of transfused patients

  18. Perspectives in the development of hybrid bifunctional antitumour agents.

    Science.gov (United States)

    Musso, Loana; Dallavalle, Sabrina; Zunino, Franco

    2015-08-15

    In spite of the development of a large number of novel target-specific antitumour agents, the single-agent therapy is in general not able to provide an effective durable control of the malignant process. The limited efficacy of the available agents (both conventional cytotoxic and novel target-specific) reflects not only the expression of defence mechanisms, but also the complexity of tumour cell alterations and the redundancy of survival pathways, thus resulting in tumour cell ability to survive under stress conditions. A well-established strategy to improve the efficacy of antitumour therapy is the rational design of drug combinations aimed at achieving synergistic effects and overcoming drug resistance. An alternative strategy could be the use of agents designed to inhibit simultaneously multiple cellular targets relevant to tumour growth/survival. Among these novel agents are hybrid bifunctional drugs, i.e. compounds resulting by conjugation of different drugs or containing the pharmocophores of different drugs. This strategy has been pursued using various conventional or target-specific agents (with DNA damaging agents and histone deacetylase inhibitors as the most exploited compounds). A critical overview of the most representative compounds is provided with emphasis on the HDAC inhibitor-based hybrid agents. In spite of some promising results, the actual pharmacological advantages of the hybrid agents remain to be defined. This commentary summarizes the recent advances in this field and highlights the pharmacological basis for a rational design of hybrid bifunctional agents. Copyright © 2015. Published by Elsevier Inc.

  19. Mixed ligand chelates of rare earths in aqueous solution

    International Nuclear Information System (INIS)

    Lakhani, S.U.; Thakur, G.S.; Sangal, S.P.

    1981-01-01

    Mixed ligand chelates of the 1:1 trivalent lanthanoids-EDTA, HEDTA and NTA chelates-1, 2-Dihydroxybenzene (Pyrocatechol) have been investigated at 35degC and 0.2 M ionic strength maintained by NaC10 4 . The formation of mixed ligand chelates has been found in all cases. The formation of mixed ligand chelates with EDTA shows the coordination number of lanthanoids to be eight, while the mixed ligand chelates with HEDTA and NTA shows the coordination number to be seven and six respectively. The stability constants of mixed ligand chelates are smaller than the binary complexes. The order of stability constants with respect to primary ligands follows the order NTA>HEDTA>EDTA. With respect to metal ions the stability constants increases with the decrease in ionic radii such as Gd< Er< Yb. (author)

  20. Role of chelates in magnetic resonance imaging studies

    Directory of Open Access Journals (Sweden)

    Tripathi Laxmi

    2009-01-01

    Full Text Available Imaging studies are tests performed with a variety of techniques that produce pictures of the inside of a patient′s body. Magnetic resonance imaging (MRI is an imaging technique based on the principles of nuclear magnetic resonance. MRI uses a powerful magnetic field, radio waves, and a computer to produce detailed pictures of organs, soft tissues, bone, and virtually all other internal body structures. Chelates have a wide application in such imaging techniques. Chelates in imaging studies are used alone as radioactive agents or conjugated to monoclonal antibodies or to DNA as radioactive agents. Technetium chelates and gadolinium chelates are being widely used as magnetic resonance contrast media.

  1. Metal regeneration of iron chelates in nitric oxide scrubbing

    Science.gov (United States)

    Chang, S.G.; Littlejohn, D.; Shi, Y.

    1997-08-19

    The present invention relates to a process of using metal particles to reduce NO to NH{sub 3}. More specifically, the invention concerns an improved process to regenerate iron (II) (CHELATE) by reduction of iron (II) (CHELATE) (NO) complex, which process comprises: (a) contacting an aqueous solution containing iron (II) (CHELATE) (NO) with metal particles at between about 20 and 90 C to reduce NO present, produce ammonia or an ammonium ion, and produce free iron (II) (CHELATE) at a pH of between about 3 and 8. The process is useful to remove NO from flue gas and reduce pollution. 34 figs.

  2. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  3. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L; Stockwell, Brent R

    2007-01-01

    Our proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  4. Design and Testing of Bi-Functional, P-Loop-Targeted MDM2 Inhibitors

    National Research Council Canada - National Science Library

    Prives, Carol L

    2006-01-01

    This proposal is to design and evaluate a novel class of bifunctional MDM2 inhibitors, based on the discovery that nucleotides can bind to the P-loop of MDM2 and cause its relocalization to the nucleolus...

  5. Relationship among chelator adherence, change in chelators, and quality of life in thalassemia.

    Science.gov (United States)

    Trachtenberg, Felicia L; Gerstenberger, Eric; Xu, Yan; Mednick, Lauren; Sobota, Amy; Ware, Hannah; Thompson, Alexis A; Neufeld, Ellis J; Yamashita, Robert

    2014-10-01

    Thalassemia, a chronic blood disease, necessitates life-long adherence to blood transfusions and chelation therapy to reduce iron overload. We examine stability of health-related quality of life (HRQOL) in thalassemia and adherence to chelation therapy over time, especially after changes in chelator choice. Thalassemia Longitudinal Cohort participants in the USA, UK, and Canada completed the SF-36v2 (ages 14+) and the PF-28 CHQ (parents of children health status) at baseline who made a single change in chelator, but declined among participants with multiple changes and/or high iron burden (worse health status). Mental health improved among participants with lower iron burden, but iron overload was negatively associated with social functioning. Adherence did not significantly change over follow-up except for an increase after a change from deferoxamine (DFO) infusion to oral deferasirox (p = 0.03). Predictors of lower adherence for adults/adolescents at follow-up included side effects, smoking, younger age, problems preparing DFO, increased number of days per week DFO prescribed, and lower physical quality of life . Strategies to balance medical needs with family, work, and personal life may assist in adherence.

  6. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    Science.gov (United States)

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal

    OpenAIRE

    Arora, Jasbir S.; Oe, Tomoyuki; Blair, Ian A.

    2011-01-01

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and w...

  8. Chelate-assisted phytoextraction of lead from contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, E.M.; Sims, J.T.; Cunningham, S.D.; Huang, J.W.; Berti, W.R.

    1999-12-01

    Phytoextraction, a remediation strategy for lead (Pb)-contaminated soils that removes soil Pb through plant uptake and harvest, may be enhanced by use of synthetic chelates. The authors evaluated Pb desorption from four contaminated soils by seven chelates (CDTA, DTPA, EDDHA, EFTA, HEDTA, HEIDA, and NTA) at three rates. The three most effective chelates (CDTA, DTPA, and HEDTA) were used in greenhouse studies with an uncontaminated soil and a Pb-contaminated soil to determine the effect of chelate type and rate on growth, Pb uptake, and plant elemental composition. Lead desorption varied with chelate and soil and increased with chelate rate, averaging 948 mg Pb kg{sup {minus}1} at the 20 mmol kg{sup {minus}1} rate vs. 28 mg Pb kg{sup {minus}1} by the control. The general ranking of chelate effectiveness, based on total Pb desorbed, was HEDTA > CDTA > DTPA > EGTA > HEIDA > EDDHA {approximately} NTA. Plant uptake of Pb from the contaminated soil was enhanced by CDTA, DTPA, and HEDTA, but with even the most effective treatment (corn, high CDTA rate), the amount of Pb extracted by plants was rather low. Lead extractable by the Toxicity Characteristic Leaching Procedure (TCLP) was increased from 9 mg L{sup {minus}1} in the control to from 47 to 174 mg L{sup {minus}1} in soils treated with 20 mmol kg{sup {minus}1} CDTA or DTPA and chelates generally caused a shift in Pb from resistant to more soluble chemical fractions.

  9. Potentials and drawbacks of chelate-enhanced phytoremediation of soils

    NARCIS (Netherlands)

    Römkens, P.F.A.M.; Bouwman, L.A.; Japenga, J.; Draaisma, C.

    2002-01-01

    Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from soils by plants. However, side-effects related to the addition of chelates, e.g. metal leaching and effects on soil micro-organisms, were usually neglected. Therefore, greenhouse and

  10. Chelation Treatment for Autism Spectrum Disorders: A Systematic Review

    Science.gov (United States)

    Davis, Tonya N.; O'Reilly, Mark; Kang, Soyeon; Lang, Russell; Rispoli, Mandy; Sigafoos, Jeff; Lancioni, Giulio; Copeland, Daelynn; Attai, Shanna; Mulloy, Austin

    2013-01-01

    Chelation treatment is used to eliminate specific metals from the body, such as mercury. It has been hypothesized that mercury poisoning may be a factor in autism and data suggest that perhaps 7% of individuals with autism spectrum disorder (ASD) have received chelation treatment. It would therefore seem timely to review studies investigating the…

  11. Mechanish of dTTP Inhibition of the Bifunctional dCTP Deaminase:dUTPase Encoded by Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Helt, Signe Smedegaard; Thymark, Majbritt; Harris, Pernille

    2008-01-01

    Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme to be cha......Recombinant deoxycytidine triphosphate (dCTP) deaminase from Mycobacterium tuberculosis was produced in Escherichia coli and purified. The enzyme proved to be a bifunctional dCTP deaminase:deoxyuridine triphosphatase. As such, the M. tuberculosis enzyme is the second bifunctional enzyme...

  12. Development of iron chelators for Cooley's anemia. Final report

    International Nuclear Information System (INIS)

    Crosby, W.H.; Green, R.

    1982-01-01

    Iron chelators were screened in an iron-loaded rat model using selective radioiron probes. In all experiments, chelators D and F, in that order, induced significant loss of radioiron compared with controls. However, use of chelator D was associated with side effects, and resulted in the death of some animals. There was some evidence that chelator A also caused iron loss significantly greater than controls. Chelators B, C and E were without apparent enhancing effect on radioiron excretion. This was a blind study and the compounds used were A - 2,3-Dihydroxybenzoic acid; B - N,N1-Dimethyladipohydroxamic acid; C - DL-Phenylalanine hydroxamic acid; D - Ethylenediamine-N,N1-bis(2-hydroxphenylacetic acid); E - Propionohydroxamic acid; and F - Deferrioxamine B

  13. Treating Lead Toxicity: Possibilities beyond Synthetic Chelation

    Directory of Open Access Journals (Sweden)

    Shambhavi Tannir

    2013-01-01

    Full Text Available Lead, a ubiquitous metal, is one of the most abundant elements present on earth. Its easy availability and cost effectiveness made it an extremely popular component in the industrial revolution. However, its hazardous health effects were not considered at the time. Over the last few decades, with the adverse effects of lead coming to the forefront, nations across the world have started to recognize and treat lead toxicity. The most reliable and used method until now has been chelation therapy. Recent research has suggested the use of natural products and sources to treat lead poisoning with minimal or no side effects. This review has tried to summarize a few of the natural products/sources being investigated by various groups.

  14. Comparison of DOTA and NODAGA as chelators for (64)Cu-labeled immunoconjugates.

    Science.gov (United States)

    Ghosh, Sukhen C; Pinkston, Kenneth L; Robinson, Holly; Harvey, Barrett R; Wilganowski, Nathaniel; Gore, Karen; Sevick-Muraca, Eva M; Azhdarinia, Ali

    2015-02-01

    Bifunctional chelators have been shown to impact the biodistribution of monoclonal antibody (mAb)-based imaging agents. Recently, radiolabeled 1,4,7-triazacyclononane,1-glutaric acid-4,7-acetic acid (NODAGA)-peptide complexes have demonstrated improved in vivo stability and performance compared to their 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) counterparts. Here, we investigated if similar utility could be achieved with mAbs and compared (64)Cu-labeled DOTA and NODAGA-immunoconjugates for the detection of epithelial cell adhesion molecule (EpCAM) in a prostate cancer model. DOTA and NODAGA-immunoconjugates of an EpCAM targeting mAb (mAb7) were synthesized and radiolabeled with (64)Cu (DOTA: 40°C for 1hr; NODAGA: 25°C for 1hr). The average number of chelators per mAb was quantified by isotopic dilution, and the biological activity of the immunoconjugates was evaluated by flow cytometry and ELISA. Radioligand assays were performed to compare cellular uptake and determine the dissociation constant (Kd) and maximum number of binding sites (Bmax) for the immunoconjugates using DsRed-transfected PC3-cells. A PC3-DsRed xenograft tumor model was established in nude mice and used to perform biodistribution studies to compare organ uptake and pharmacokinetics. (64)Cu-DOTA-mAb7 and (64)Cu-NODAGA-mAb7 were prepared with chelator/protein ratios of 2-3 and obtained in comparable radiochemical yields ranging from 59 to 71%. Similar immunoreactivity was observed with both agents, and mock labeling studies indicated that incubation at room temperature or 40°C did not affect potency. (64)Cu-NODAGA-mAb7 demonstrated higher in vitro cellular uptake while (64)Cu-DOTA-mAb7 had higher Kd and Bmax values. From the biodistribution data, we found similar tumor uptake (13.44±1.21%ID/g and 13.24±4.86%ID/g for (64)Cu-DOTA-mAb7 and (64)Cu-NODAGA-mAb7, respectively) for both agents at 24hr, although normal prostate tissue was significantly lower for (64)Cu-NODAGA-mAb7

  15. Chelating impact assessment of biological ad chemical chelates on metal extraction from contaminated soils

    International Nuclear Information System (INIS)

    Manwar, S.; Iram, S.

    2014-01-01

    Soil contamination is the result of uncontrolled waste dumping and poor practices by humans. Of all the pollutants heavy metals are of particular concern due to their atmospheric deposition, leaching capacity and non-biodegradability. Heavy metal containing effluent is discharged into the agricultural fields and water bodies. This results in the accumulation of heavy metals in soil and the crops grown on that soil. Studies have revealed detrimental impacts on soil fertility and the poor health of animals and humans. Phytoextraction is widely researched for remediation of heavy metal contaminated soil. To enhance the effect of phytoextraction heavy metals have to be available to the plants in soluble form. In this study the potential of different chelating agents was assessed in solubilizing the heavy metals making easy for plants to uptake them. For this purpose efficient chemical and biological chelating agent had to be identified. Along with that an optimum dose and application time for chemical chelating agent was determined. Ethylenediamine tetraacetic acid (EDTA), Diethylene triamine pentaacetic acid (DTPA), Nitriloacetic acid (NTA) were applied to the soil, containing Pb, Cr, Cu and Cd, at different concentrations and application time. Aspergillus niger and Aspergillus flavus were incubated in soil for different time periods. In correspondence with findings of the study, Pb and Cr were best solubilized by 5mM EDTA. For Cd and Cu 5mM DTPA carried out efficient chelation. NTA showed relatively inadequate solubilisation, although for Cr it performed equal to EDTA. A. niger and A. flavus instead of solubilizing adsorbed the metals in their biomass. Adsorption was mainly carried out by A. niger. (author)

  16. Glyphosate, a chelating agent-relevant for ecological risk assessment?

    Science.gov (United States)

    Mertens, Martha; Höss, Sebastian; Neumann, Günter; Afzal, Joshua; Reichenbecher, Wolfram

    2018-02-01

    Glyphosate-based herbicides (GBHs), consisting of glyphosate and formulants, are the most frequently applied herbicides worldwide. The declared active ingredient glyphosate does not only inhibit the EPSPS but is also a chelating agent that binds macro- and micronutrients, essential for many plant processes and pathogen resistance. GBH treatment may thus impede uptake and availability of macro- and micronutrients in plants. The present study investigated whether this characteristic of glyphosate could contribute to adverse effects of GBH application in the environment and to human health. According to the results, it has not been fully elucidated whether the chelating activity of glyphosate contributes to the toxic effects on plants and potentially on plant-microorganism interactions, e.g., nitrogen fixation of leguminous plants. It is also still open whether the chelating property of glyphosate is involved in the toxic effects on organisms other than plants, described in many papers. By changing the availability of essential as well as toxic metals that are bound to soil particles, the herbicide might also impact soil life, although the occurrence of natural chelators with considerably higher chelating potentials makes an additional impact of glyphosate for most metals less likely. Further research should elucidate the role of glyphosate (and GBH) as a chelator, in particular, as this is a non-specific property potentially affecting many organisms and processes. In the process of reevaluation of glyphosate its chelating activity has hardly been discussed.

  17. Chelation: Harnessing and Enhancing Heavy Metal Detoxification—A Review

    Directory of Open Access Journals (Sweden)

    Margaret E. Sears

    2013-01-01

    Full Text Available Toxic metals such as arsenic, cadmium, lead, and mercury are ubiquitous, have no beneficial role in human homeostasis, and contribute to noncommunicable chronic diseases. While novel drug targets for chronic disease are eagerly sought, potentially helpful agents that aid in detoxification of toxic elements, chelators, have largely been restricted to overt acute poisoning. Chelation, that is multiple coordination bonds between organic molecules and metals, is very common in the body and at the heart of enzymes with a metal cofactor such as copper or zinc. Peptides glutathione and metallothionein chelate both essential and toxic elements as they are sequestered, transported, and excreted. Enhancing natural chelation detoxification pathways, as well as use of pharmaceutical chelators against heavy metals are reviewed. Historical adverse outcomes with chelators, lessons learned in the art of using them, and successes using chelation to ameliorate renal, cardiovascular, and neurological conditions highlight the need for renewed attention to simple, safe, inexpensive interventions that offer potential to stem the tide of debilitating, expensive chronic disease.

  18. Bifunctional avidin with covalently modifiable ligand binding site.

    Directory of Open Access Journals (Sweden)

    Jenni Leppiniemi

    Full Text Available The extensive use of avidin and streptavidin in life sciences originates from the extraordinary tight biotin-binding affinity of these tetrameric proteins. Numerous studies have been performed to modify the biotin-binding affinity of (streptavidin to improve the existing applications. Even so, (streptavidin greatly favours its natural ligand, biotin. Here we engineered the biotin-binding pocket of avidin with a single point mutation S16C and thus introduced a chemically active thiol group, which could be covalently coupled with thiol-reactive molecules. This approach was applied to the previously reported bivalent dual chain avidin by modifying one binding site while preserving the other one intact. Maleimide was then coupled to the modified binding site resulting in a decrease in biotin affinity. Furthermore, we showed that this thiol could be covalently coupled to other maleimide derivatives, for instance fluorescent labels, allowing intratetrameric FRET. The bifunctional avidins described here provide improved and novel tools for applications such as the biofunctionalization of surfaces.

  19. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  20. Plutonium and americium extraction studies with bifunctional organophosphorus extractants

    International Nuclear Information System (INIS)

    Navratil, J.D.

    1985-01-01

    Neutral bifunctional organophosphorus extractants, such as octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) and dihexyl-N,N-diethylcarbamoylmethylphosphonate (CMP), are under study at the Rocky Flats Plant (RFP) to remove plutonium and americium from the 7M nitric acid waste. These compounds extract trivalent actinides from strong nitric acid, a property which distinguishes them from monofunctional organiphosphorus reagents. Furthermore, the reagents extract hydroytic plutonium (IV) polymer which is present in the acid waste stream. The compounds extract trivalent actinides with a 3:1 stoichiometry, whereas tetra- and hexavalent actinides extract with a stoichiometry of 2:1. Preliminary studies indicate that the extracted plutonium polymer complex contains one to two molecules of CMP per plutonium ion and the plutonium(IV) maintains a polymeric structure. Recent studies by Horwitz and co-workers conclude that the CMPO and CMP reagents behave as monodentate ligands. At RFP, three techniques are being tested for using CMP and CMPO to remove plutonium and americium from nitric acid waste streams. The different techniques are liquid-liquid extraction, extraction chromatography, and solid-supported liquid membranes. Recent tests of the last two techniques will be briefly described. In all the experiments, CMP was an 84% pure material from Bray Oil Co. and CMPO was 98% pure from M and T Chemicals

  1. A conserved regulatory mechanism in bifunctional biotin protein ligases.

    Science.gov (United States)

    Wang, Jingheng; Beckett, Dorothy

    2017-08-01

    Class II bifunctional biotin protein ligases (BirA), which catalyze post-translational biotinylation and repress transcription initiation, are broadly distributed in eubacteria and archaea. However, it is unclear if these proteins all share the same molecular mechanism of transcription regulation. In Escherichia coli the corepressor biotinoyl-5'-AMP (bio-5'-AMP), which is also the intermediate in biotin transfer, promotes operator binding and resulting transcription repression by enhancing BirA dimerization. Like E. coli BirA (EcBirA), Staphylococcus aureus, and Bacillus subtilis BirA (Sa and BsBirA) repress transcription in vivo in a biotin-dependent manner. In this work, sedimentation equilibrium measurements were performed to investigate the molecular basis of this biotin-responsive transcription regulation. The results reveal that, as observed for EcBirA, Sa, and BsBirA dimerization reactions are significantly enhanced by bio-5'-AMP binding. Thus, the molecular mechanism of the Biotin Regulatory System is conserved in the biotin repressors from these three organisms. © 2017 The Protein Society.

  2. Single flexible nanofiber to achieve simultaneous photoluminescence-electrical conductivity bifunctionality.

    Science.gov (United States)

    Sheng, Shujuan; Ma, Qianli; Dong, Xiangting; Lv, Nan; Wang, Jinxian; Yu, Wensheng; Liu, Guixia

    2015-02-01

    In order to develop new-type multifunctional composite nanofibers, Eu(BA)3 phen/PANI/PVP bifunctional composite nanofibers with simultaneous photoluminescence and electrical conductivity have been successfully fabricated via electrospinning technology. Polyvinyl pyrrolidone (PVP) is used as a matrix to construct composite nanofibers containing different amounts of Eu(BA)3 phen and polyaniline (PANI). X-Ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), fluorescence spectroscopy and a Hall effect measurement system are used to characterize the morphology and properties of the composite nanofibers. The results indicate that the bifunctional composite nanofibers simultaneously possess excellent photoluminescence and electrical conductivity. Fluorescence emission peaks of Eu(3+) ions are observed in the Eu(BA)3 phen/PANI/PVP photoluminescence-electrical conductivity bifunctional composite nanofibers. The electrical conductivity reaches up to the order of 10(-3)  S/cm. The luminescent intensity and electrical conductivity of the composite nanofibers can be tuned by adjusting the amounts of Eu(BA)3 phen and PANI. The obtained photoluminescence-electrical conductivity bifunctional composite nanofibers are expected to possess many potential applications in areas such as microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construction technique are of universal significance to fabricate other bifunctional one-dimensional naonomaterials. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Selectivity in extraction of copper and indium with chelate extractants

    International Nuclear Information System (INIS)

    Zivkovic, D.

    2003-01-01

    Simultaneous extraction of copper and indium with chelate extractants (LIX84 and D2E11PA) was described. Stechiometry of metal-organic complexes examined using the method of equimolar ratios resulted in CuR 2 and InR 3 forms of hydrophobic extracting species. A linear correlation was obtained between logarithm of distribution coefficients and chelate agents and pH, respectively. Selectivity is generally higher with higher concentrations of chelate agents in the organic phase, and is decreased with increase of concentration of hydrogen ions in feeding phase. (Original)

  4. Mixed and chelated waste test programs with bitumen solidification

    International Nuclear Information System (INIS)

    Simpson, S.I.; Morris, M.; Vidal, H.

    1988-01-01

    This paper presents the results of bitumen solidification tests on mixed wastes and chelated wastes. The French Atomic Energy Commission (CEA) performed demonstration tests on radioactive wastes contaminated with chelating agents for Associated Technologies, Inc. (ATI). The chelated wastes were produced and concentrated by Commonwealth Edison Co. as a result of reactor decontamination at Dresden Nuclear Station, Unit 1. Law Engineering in Charlotte, N. C. produced samples and performed tests on simulated heavy metal laden radioactive waste (mixed) to demonstrate the quality of the bituminous product. The simulation is intended to represent waste produced at Oak Ridge National Labs operated by Martin-Marietta

  5. A comparative study of thermodynamics in synergistic extraction of hexavalent plutonium by HTTA and HPMBP using mono- and bi-functional neutral donors

    International Nuclear Information System (INIS)

    Lohithakshan, K.V.; Mithapara, P.D.; Pai, S.A.; Aggarwal, S.K.

    1996-01-01

    Synergistic extraction of hexavalent plutonium was studied from HNO 3 medium (0.05 M) with HTTA and various neutral donors viz. DPSO, TBP, TOPO (monofunctional) and DBDECMP, DHDECMP, CMPO (bifunctional) using benzene as a diluent. Thermodynamic parameters (Δ G, Δ H, Δ S) were evaluated at 298 K from the experiments performed at four fixed temperatures in 288 to 318 K range. These were compared with the corresponding values reported earlier for Pu(VI) + HPMBP + neutral donor system. The net negative enthalpy changes with HTTA were observed to be low as compared to those with HPMBP. The net entropy changes were found to be either negligibly small (in cases of DPSO, TBP, DBDECMP, DHDECMP) or positive (in cases of CMPO, TOPO) with HTTA in comparison to large negative values with HPMBP. These results were interpreted in terms of different organic phase adduct formation reaction mechanisms i.e. substitution in HTTA vs. addition in HPMBP. Further, the lower net enthalpy changes with HTTA were explained due to a part of the energy used in release of water molecules bonded to plutonium in the plutonium chelate. (orig.)

  6. Chapter 19. Design and evaluation of potential 99mTc radiopharmaceuticals based on the Tc-Carbonyl, 4 + 1 mixed ligand chelate system and Tc-nitrido approaches

    International Nuclear Information System (INIS)

    Giglio, J.; Muslera, A.; Leon, E.; Paolino, A.; Leon, A.; Rey, A.; Incerti, M.; Fernandez, R.; Manta, E.; Brugnini, A.; Chabalgoity, A.

    2007-01-01

    The aim of the work was to explore the possibilities of the novel labelling strategies in the development of 99m Tc labelled small biomolecules. Different steps required to fulfil this objective were undertaken: organic synthesis of glucose derivatives, optimization of labelling and in vitro and in vivo evaluation of Rd peptides and anne xin 13 derivatives using either the Hyonic bifunctional ligand, the Tc-tricarbonyl, the 4 + 1 mixed ligand or the Tc(V)-nitri do approaches. Glucose-O-hexyl bromide, glucose- O-butylbromide and glucose-O-butylamine were successfully synthesized, opening the possibility of introducing different chelators according to the desired labelling procedure. c(RGDyK) derivatives bearing different chelators were labelled with 99m Tc using novel approaches and evaluated both in vitro and in vivo in order to compare the effect of the chelator and labelling method on the physicochemical and biological behaviour. Annexin 13 peptides were also labelled using the HYNIC and Tc(I)-tricarbonyl approaches. A primary evaluation in normal animals and in a model of cardiac apoptosis is also presented. Cooperation with other participants was crucial to develop this work. (author)

  7. 3-hydroxy-2(1H)-pyridinone chelating agents

    Science.gov (United States)

    Raymond, K.; Xu, J.

    1999-04-06

    Disclosed is a series of improved chelating agents and the chelates formed from these agents, which are highly effective upon both injection and oral administration. Several of the most effective are of low toxicity. These chelating agents incorporate within their structure 3-hydroxy-2-pyridinone (3,2-HOPO) moieties with a substituted carbamoyl group ortho to the hydroxy group of the hydroxypyridinone ring. The electron-withdrawing carbamoyl group increases the acidity, as well as the chemical stability towards oxidation and reduction, of the hydroxypyridinones. In the metal complexes of the chelating agents, the amide protons form very strong hydrogen bonds with the adjacent HOPO oxygen donor, making these complexes very stable at physiological conditions. The terminal N-substituents provide a certain degree of lipophilicity to the 3,2-HOPO, increasing oral activity. 2 figs.

  8. Chelation of di- and trivalent iron with some polyaminopolycarboxylic acids

    International Nuclear Information System (INIS)

    Hafez, M.B.; Sharabi, Nahid; Patti, Francois.

    1979-02-01

    The chelation of di- and trivalent iron with some polyaminopolycarboxylic acids was studied. The influence of pH on the formation of the complex was investigated, the molecular ratio and the stability constants were determined [fr

  9. Metal chelate process to remove pollutants from fluids

    Science.gov (United States)

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  10. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  11. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  12. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    Science.gov (United States)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  13. Iron chelators ICL670 and 311 inhibit HIV-1 transcription

    International Nuclear Information System (INIS)

    Debebe, Zufan; Ammosova, Tatyana; Jerebtsova, Marina; Kurantsin-Mills, Joseph; Niu, Xiaomei; Charles, Sharroya; Richardson, Des R.; Ray, Patricio E.; Gordeuk, Victor R.; Nekhai, Sergei

    2007-01-01

    HIV-1 replication is induced by an excess of iron and iron chelation by desferrioxamine (DFO) inhibits viral replication by reducing proliferation of infected cells. Treatment of cells with DFO and 2-hydroxy-1-naphthylaldehyde isonicotinoyl hydrazone (311) inhibit expression of proteins that regulate cell-cycle progression, including cycle-dependent kinase 2 (CDK2). Our recent studies showed that CDK2 participates in HIV-1 transcription and viral replication suggesting that inhibition of CDK2 by iron chelators might also affect HIV-1 transcription. Here we evaluated the effect of a clinically approved orally effective iron chelator, 4-[3,5-bis-(hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid (ICL670) and 311 on HIV-1 transcription. Both ICL670 and 311 inhibited Tat-induced HIV-1 transcription in CEM-T cells, 293T and HeLa cells. Neither ICL670 nor 311 induced cytotoxicity at concentrations that inhibited HIV-1 transcription. The chelators decreased cellular activity of CDK2 and reduced HIV-1 Tat phosphorylation by CDK2. Neither ICL670A or 311 decreased CDK9 protein level but significantly reduced association of CDK9 with cyclin T1 and reduced phosphorylation of Ser-2 residues of RNA polymerase II C-terminal domain. In conclusion, our findings add to the evidence that iron chelators can inhibit HIV-1 transcription by deregulating CDK2 and CDK9. Further consideration should be given to the development of iron chelators for future anti-retroviral therapeutics

  14. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  15. Asymmetric organocatalytic Michael addition of Meldrum's acid to nitroalkenes: probing the mechanism of bifunctional thiourea organocatalysts

    OpenAIRE

    Kataja, Antti O.; Koskinen, Ari M.P.

    2010-01-01

    The asymmetric Michael addition of Meldrum’s acid to nitroalkenes was studied using a novel type of Cinchona alkaloid-based bifunctional thiourea organocatalyst. The functionality of the thiourea catalysts was also probed by preparing and testing thiourea-N-methylated analogues of the well-known bis-(3,5-trifluoromethyl)phenyl-substituted catalyst. Peer reviewed

  16. Synthesis, characterization and use of ATRP bifunctional initiator with trichloromethyl end-groups

    Czech Academy of Sciences Publication Activity Database

    Toman, Luděk; Janata, Miroslav; Spěváček, Jiří; Masař, Bohumil; Vlček, Petr; Látalová, Petra

    2002-01-01

    Roč. 43, č. 2 (2002), s. 18-19 ISSN 0032-3934 R&D Projects: GA ČR GA203/01/0513 Institutional research plan: CEZ:AV0Z4050913 Keywords : bifunctional initiator * ATRP polymerization * trichloromethyl end-groups Subject RIV: CD - Macromolecular Chemistry

  17. Bi-functional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides

    DEFF Research Database (Denmark)

    Laursen, Tomas; Stonebloom, Solomon H; Pidatala, Venkataramana R

    2018-01-01

    . Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bi-functionality of AtGALS1 may suggest that plants can produce the incredible structural...

  18. High surface area carbon for bifunctional air electrodes applied in zinc-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Arai, H [on leave from NTT Laboratories (Japan); Mueller, S; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Bifunctional air electrodes with high surface area carbon substrates showed low reduction overpotential, thus are promising for enhancing the energy efficiency and power capability of zinc-air batteries. The improved performance is attributed to lower overpotential due to diffusion of the reaction intermediate, namely the peroxide ion. (author) 1 fig., 2 refs.

  19. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    DEFF Research Database (Denmark)

    Li, Hu; Khokarale, Santosh Govind; Kotni, Ramakrishna

    2014-01-01

    carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl...

  20. D-bifunctional protein deficiency associated with drug resistant infantile spasms

    NARCIS (Netherlands)

    Buoni, Sabrina; Zannolli, Raffaella; Waterham, Hans; Wanders, Ronald; Fois, Alberto

    2007-01-01

    Peroxisomal disorders appear with a frequency of about 1:5000 in newborns. Peroxisomal D-bifunctional protein (D-BP), encoded by the HSD17B4 gene (gene ID: 3294; locus tag: HGNC:5213, chromosome 5q2; official symbol: HSD17B4; name: hydroxysteroid (17-beta) dehydrogenase; gene type: protein coding)

  1. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts.

    Science.gov (United States)

    Hong, Do-Young; Miller, Stephen J; Agrawal, Pradeep K; Jones, Christopher W

    2010-02-21

    Pt supported on HY zeolite is successfully used as a bifunctional catalyst for phenol hydrodeoxygenation in a fixed-bed configuration at elevated hydrogen pressures, leading to hydrogenation-hydrogenolysis ring-coupling reactions producing hydrocarbons, some with enhanced molecular weight.

  2. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    Science.gov (United States)

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  3. Liquid phase in situ hydrodeoxygenation of biomass-derived phenolic compounds to hydrocarbons over bifunctional catalysts

    Science.gov (United States)

    Junfeng Feng; Chung-yun Hse; Zhongzhi Yang; Kui Wang; Jianchun Jiang; Junming Xu

    2017-01-01

    The objective of this study was to find an effective method for converting renewable biomass-derived phenolic compounds into hydrocarbons bio-fuel via in situ catalytic hydrodeoxygenation. The in situ hydrodeoxygenation of biomass-derived phenolic compounds was carried out in methanol-water solvent over bifunctional catalysts of Raney Ni and HZSM-5 or H-Beta. In the in...

  4. Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction.

    Science.gov (United States)

    Back, Seoin; Kim, Jun-Hyuk; Kim, Yong-Tae; Jung, Yousung

    2016-09-07

    Gold is known currently as the most active single-element electrocatalyst for CO2 electroreduction reaction to CO. In this work, we combine Au with a second metal element, Cu, to reduce the amount of precious metal content by increasing the surface-to-mass ratio and to achieve comparable activity to Au-based catalysts. In particular, we demonstrate that the introduction of a Au-Cu bifunctional "interface" is more beneficial than a simple and conventional homogeneous alloying of Au and Cu in stabilizing the key intermediate species, *COOH. The main advantages of the proposed metal-metal bifunctional interfacial catalyst over the bimetallic alloys include that (1) utilization of active materials is improved, and (2) intrinsic properties of metals are less affected in bifunctional catalysts than in alloys, which can then facilitate a rational bifunctional design. These results demonstrate for the first time the importance of metal-metal interfaces and morphology, rather than the simple mixing of the two metals homogeneously, for enhanced catalytic synergies.

  5. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  6. Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting.

    Science.gov (United States)

    Ling, Chongyi; Shi, Li; Ouyang, Yixin; Zeng, Xiao Cheng; Wang, Jinlan

    2017-08-09

    Nanosheet supported single-atom catalysts (SACs) can make full use of metal atoms and yet entail high selectivity and activity, and bifunctional catalysts can enable higher performance while lowering the cost than two separate unifunctional catalysts. Supported single-atom bifunctional catalysts are therefore of great economic interest and scientific importance. Here, on the basis of first-principles computations, we report a design of the first single-atom bifunctional eletrocatalyst, namely, isolated nickel atom supported on β 12 boron monolayer (Ni 1 /β 12 -BM), to achieve overall water splitting. This nanosheet supported SAC exhibits remarkable electrocatalytic performance with the computed overpotential for oxygen/hydrogen evolution reaction being just 0.40/0.06 V. The ab initio molecular dynamics simulation shows that the SAC can survive up to 800 K elevated temperature, while enacting a high energy barrier of 1.68 eV to prevent isolated Ni atoms from clustering. A viable experimental route for the synthesis of Ni 1 /β 12 -BM SAC is demonstrated from computer simulation. The desired nanosheet supported single-atom bifunctional catalysts not only show great potential for achieving overall water splitting but also offer cost-effective opportunities for advancing clean energy technology.

  7. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.

    Science.gov (United States)

    Fu, Gengtao; Yan, Xiaoxiao; Chen, Yifan; Xu, Lin; Sun, Dongmei; Lee, Jong-Min; Tang, Yawen

    2018-02-01

    Electrocatalysts for oxygen-reduction and oxygen-evolution reactions (ORR and OER) are crucial for metal-air batteries, where more costly Pt- and Ir/Ru-based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel-supported Ni/MnO (Ni-MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni-MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn-air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO 2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Li, Hu; Govind, Khokarale Santosh; Kotni, Ramakrishna; Shunmugavel, Saravanamurugan; Riisager, Anders; Yang, Song

    2014-01-01

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  9. Synthesis and characterization of ligands and bifunctional chelating agents by modification of cysteine for complexation studies with 99mTc

    International Nuclear Information System (INIS)

    Pillai, M.R.A.; Kothari, K.; Banerjee, S.; Samuel, G.; Suresh, M.; Sarma, H.D.

    1998-01-01

    The synthesis of four novel ligands using the amino-acid cysteine and its ethyl carboxylate derivative is described. The synthetic method involves a two-step procedure, wherein the intermediate Schiff base formed by the condensation of the amino group of the cysteine substrate and salicylaldehyde is reduced to give the target ligands. The intermediates and the final products are characterised by high resolution NMR spectroscopy. Complexation studies of the ligands with 99m Tc are standardised using stannous tartrate as the reducing agent at varying reaction conditions. The complexes are characterised using standard quality control techniques such as TLC, paper electrophoresis and PC. Lipophilicities of the complexes are estimated by solvent extraction into chloroform. Substantial changes in net charge and lipophilicity in the 99m Tc complexes are observed on substituting the carboxylic acid residue in ligand I and II with the ethyl carboxylate groups (ligands III and IV). All the ligands formed complexes in high yield. While the complexes of ligand I and II are observed to be hydrophilic in nature and are not extractable into CHCl 3 , ligands III and IV gave neutral and lipophilic complexes. Though the distribution ratios of the complexes of ligands III and IV in CHCl 3 /saline system are observed to be very high, considerable differences in lipophilicities are also observed as evidenced by the difference in their respective extractabilities in chloroform. On storage, the complex of ligand III exhibit a tendency to get converted to a hydrophilic and non-extractable species. The bio-distribution of the complexes of ligands I and II showed that they have predominantly renal clearances whereas the complexes of ligands III and IV exhibited a significant hepatobiliary uptake and did not show much uptake in brain in spite of its favourable properties such as neutrality, lipophilicity and conversion into a hydrophilic species. (author)

  10. To chelate or not to chelate in MDS: That is the question!

    Science.gov (United States)

    Zeidan, Amer M; Griffiths, Elizabeth A

    2018-03-08

    Myelodysplastic syndromes (MDS) are a heterogeneous group of hemopathies that exhibit physical manifestations with clinical consequences of bone marrow failure and inherent risk of progression to acute myeloid leukemia. Iron overload (IO) is common in MDS due to chronic transfusion support and disease-related alterations in iron metabolism. IO has been conclusively associated with inferior outcomes among MDS patients. Despite lack of randomized trials showing a survival impact of iron chelation therapy (ICT), ICT is recommended by experts and guidelines for select MDS patients with IO and is often used. The availability of effective oral ICT agents has reignited the controversy regarding ICT use in patients with MDS and IO. Here we summarize the studies evaluating the value of ICT in MDS and suggest a practical approach for use of these therapies. We also highlight controversies regarding use of ICT in MDS and discuss some ongoing efforts to answer these questions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In vitro and in vivo evaluation of potential aluminum chelators.

    Science.gov (United States)

    Graff, L; Muller, G; Burnel, D

    1995-10-01

    The potential for aluminium (Al) chelation by different compounds was determined using 2 in vitro techniques. The formation of stable complexes with Al in an aqueous solution was evaluated using pulse polarography. This technique allowed the influence of temperature and calcium (Ca) to be studied for each compound. Certain compounds (EDDHA, HAES, citric acid and HBED) showed great chelation in the absence of Ca2+ at a temperature of 37 +/- 1 C. An ultrafiltration technique combined with Al determination by atomic emission spectroscopy allowed the efficiency of different substances to complex Al that were previously bound to serum proteins to be estimated. The kinetics of chelation and minimum efficient concentration have been determined for all products studied. EDDHA had chelation potential similar to DFO. The real efficacies of the compounds were studied in vivo to compare the effectiveness of repeated administrations of the best chelating agents (EDDHA, DFO, HAES and tartaric acid) on the distribution and excretion of Al after repeated i.p. administrations to rats. Intraperitoneal EDDHA significantly increased urinary metal (Al, Ca, Cu, Fe and Zn) excretion. These excretions may be correlated to a renal toxic potential property.

  12. The adsorption of chelating reagents on oxide minerals

    International Nuclear Information System (INIS)

    Bryson, M.A.W.

    1984-06-01

    This work constitutes a fundamental study of the interaction between chelating reagents and oxide minerals. The adsorption mechanisms have been elucidated for most of the systems generated by the oxides of copper(II) or iron(III) and chelating reagents octyl hydroxamate, N-phenylbenzohydroxamate, salicylaldoxime, 5-nitro-salicylaldoxime or 8-hydroxyquinoline. In order to better understand the adsorption process associated with copper(II) oxide, the oxide was recrystallized to produce a coarser material with a more uniform surface. This allowed the oxide surface to be viewed under the scanning electron microscope. A detailed investigation of the effect of the system variables; pH, conditioning period, concentration, temperature, surface area and dispersing reagent on the rate of precipitation of the copper chelate species of general form, Cu(chel) 2 , was made. In addition the chemical nature of the adsorbed species and the structural form of the precipitates were determined with the aid of infra-red spectroscopy and the scanning electron microscope. On the basis of these results a model has been formulated for the adsorption processes. The precipitation process was examined in more detail by the study of the adsorption of chelate on copper metal. Contact angle measurements of air bubbles on copper metal conditioned with chelate were related to the adsorption results in an attempt to isolate the optimum conditions for flotation of oxide minerals

  13. Chelation therapy to prevent diabetes-associated cardiovascular events.

    Science.gov (United States)

    Diaz, Denisse; Fonseca, Vivian; Aude, Yamil W; Lamas, Gervasio A

    2018-05-24

    For over 60 years, chelation therapy with disodium ethylene diamine tetraacetic acid (EDTA, edetate) had been used for the treatment of cardiovascular disease (CVD) despite lack of scientific evidence for efficacy and safety. The Trial to Assess Chelation Therapy (TACT) was developed and received funding from the National Institutes of Health (NIH) to ascertain the safety and efficacy of chelation therapy in patients with CVD. This pivotal trial demonstrated an improvement in outcomes in postmyocardial infarction (MI) patients. Interestingly, it also showed a particularly large reduction in CVD events and all-cause mortality in the prespecified subgroup of patients with diabetes. The TACT results may support the concept of metal chelation to reduce metal-catalyzed oxidation reactions that promote the formation of advanced glycation end products, a precursor of diabetic atherosclerosis. In this review, we summarize the epidemiological and basic evidence linking toxic metal accumulation and diabetes-related CVD, supported by the salutary effects of chelation in TACT. If the ongoing NIH-funded TACT2, in diabetic post-MI patients, proves positive, this unique therapy will enter the armamentarium of endocrinologists and cardiologists seeking to reduce the atherosclerotic risk of their diabetic patients.

  14. Albumin microspheres labeled with Ga-67 by chelation: concise communication

    International Nuclear Information System (INIS)

    Hnatowich, D.J.; Schlegel, P.

    1981-01-01

    Albumin microspheres have been synthesized with EDTA and DTPA chelating groups covalently bound to their surface. The microspheres may be labeled with Ga-67 at high yield (97 +- 2%) by transcomplexation from a 0.1 M Ga-67 acetate solution. With EDTA microspheres the resulting label dissociates only slightly after 24 hr in 50% plasma at 37 0 C, whereas with DTPA microspheres the label shows no detectable dissociation over this period. By contrast, microspheres without chelating groups lose their label virtually completely under these conditions. Following intravenous administration of sized Ga-67 DTPA microspheres in mice, about (84 +- 16)% of the activity localizes in the lungs at 5 min, with (60 +- 7)% remaining after 2 h. Since labeling is by chelation, the microspheres may also be tagged with other metallic radionuclides

  15. Inositol hexa-phosphate: a potential chelating agent for uranium

    International Nuclear Information System (INIS)

    Cebrian, D.; Tapia, A.; Real, A.; Morcillo, M.A.

    2007-01-01

    Chelation therapy is an optimal method to reduce the radionuclide-related risks. In the case of uranium incorporation, the treatment of choice is so far i.v infusion of a 1.4% sodium bicarbonate solution, but the efficacy has been proved to be not very high. In this study, we examine the efficacy of some substances: bicarbonate, citrate, diethylenetriamine pentaacetic acid (DTPA), ethidronate (EHBP) and inositol hexa-phosphate (phytic acid) to chelate uranium using a test developed by Braun et al. Different concentrations of phytic acid, an abundant component of plant seeds that is widely distributed in animal cells and tissues in substantial levels, were tested and compared to the same concentrations of sodium citrate, bicarbonate, EHBP and DTPA. The results showed a strong affinity of inositol hexa-phosphate for uranium, suggesting that it could be an effective chelating agent for uranium in vivo. (authors)

  16. Protracted chelate therapy after incorporation of plutonium 239 in rats

    International Nuclear Information System (INIS)

    Gemenetzis, E.

    1976-01-01

    The author has tested in how far 239 Pu can be mobilized by Ca and Zn, Desfenioxamin B(DFDA) and by combined doses of Ca-DTPA and DFDA. The pre-experiment covered the 239 Pu-metabolism in untreated male and female rats and the distribution in dependence of the way of application. If treatment is started immediately by multiple chelate doses, the first two injections play the main part in the decorporation of 239 Pu. The combination Ca-DTPA30 + DFDA30 μMol x kg -1 is proved to be the best means of decorporation for the whole body. The efficiency of another therapy depends essentially on the treatment used, a daily treatment showing the best effects. If treatment is started later with multiple chelate doses, the total decorporation efficiency is of less value, especially in the skeleton. Aequimolar doses of Ca-DTPA and Zn-DTPA have the same degree of efficiency. This indicates that during protracted chelate treatment starting later, Ca-DTPA could be substituted by the less toxic Zn-DTPA after incorporation of 239 Pu. These results show that intermittant administration of the week's dose is more efficient than a single chelate administration of the whole week's dose at once. Permanent chelate infusion does not seem necessary in any case since it has the same effect as 3 to 5 injections per week and is difficult to carry out in medical practice. Thus, it seems advisable to divide up the weekly dose into 3-5 injections. In case of a wound contamination, the efficiency of immediate intensive treatment depends on the 239 Pu compound used, on the chelate used, and on its dosage. (orig.) [de

  17. EDTA chelation therapy for cardiovascular disease: a systematic review

    Directory of Open Access Journals (Sweden)

    Wu Ping

    2005-11-01

    Full Text Available Abstract Background Numerous practitioners of both conventional and complementary and alternative medicine throughout North America and Europe claim that chelation therapy with EDTA is an effective means to both control and treat cardiovascular disease. These claims are controversial, and several randomized controlled trials have been completed dealing with this topic. To address this issue we conducted a systematic review to evaluate the best available evidence for the use of EDTA chelation therapy in the treatment of cardiovascular disease. Methods We conducted a systematic review of 7 databases from inception to May 2005. Hand searches were conducted in review articles and in any of the trials found. Experts in the field were contacted and registries of clinical trials were searched for unpublished data. To be included in the final systematic review, the studies had to be randomized controlled clinical trials. Results A total of seven articles were found assessing EDTA chelation for the treatment of cardiovascular disease. Two of these articles were subgroup analyses of one RCT that looked at different clinical outcomes. Of the remaining five studies, two smaller studies found a beneficial effect whereas the other three exhibited no benefit for cardiovascular disease from the use of EDTA chelation therapy. Adverse effects were rare but those of note included a few cases of hypocalcemia and a single case of increased creatinine in a patient on the EDTA intervention. Conclusion The best available evidence does not support the therapeutic use of EDTA chelation therapy in the treatment of cardiovascular disease. Although not considered to be a highly invasive or harmful therapy, it is possible that the use of EDTA chelation therapy in lieu of proven therapy may result in causing indirect harm to the patient.

  18. Heavy metal displacement in chelate-irrigated soil during phytoremediation

    Science.gov (United States)

    Madrid, F.; Liphadzi, M. S.; Kirkham, M. B.

    2003-03-01

    Heavy metals in wastewater sewage sludge (biosolids), applied to land, contaminate soils. Phytoremediation, the use of plants to clean up toxic heavy metals, might remove them. Chelating agents are added to soil to solubilize the metals for enhanced phytoextraction. Yet no studies follow the displacement and leaching of heavy metals in soil with and without roots following solubilization with chelates. The objective of this work was to determine the mobility of heavy metals in biosolids applied to the surface of soil columns (76 cm long; 17 cm diam.) with or without plants (barley; Hordeum vulgare L.). Three weeks after barley was planted, all columns were irrigated with the disodium salt of the chelating agent, EDTA (ethylenediamine tetraacetic acid) (0.5 g/kg soil). Drainage water, soil, and plants were analyzed for heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, Zn). Total concentrations of the heavy metals in all columns at the end of the experiment generally were lower in the top 30 cm of soil with EDTA than without EDTA. The chelate increased concentrations of heavy metals in shoots. With or without plants, the EDTA mobilized Cd, Fe, Mn, Ni, Pb, and Zn, which leached to drainage water. Drainage water from columns without EDTA had concentrations of these heavy metals below detection limits. Only Cu did not leach in the presence of EDTA. Even though roots retarded the movement of Cd, Fe, Mn, Ni, Pb, and Zn through the EDTA-treated soil from 1 d (Cd) to 5 d (Fe), the drainage water from columns with EDTA had concentrations of Cd, Fe, Mn, and Pb that exceeded drinking water standards by 1.3, 500, 620, and 8.6 times, respectively. Because the chelate rendered Cd, Fe, Mn, Ni, Pb, and Zn mobile, it is suggested that the theory for leaching of soluble salts, put forward by Nielsen and associates in 1965, could be applied to control movement of the heavy metals for maximum uptake during chelate-assisted phytoremediation.

  19. Combinational chelation therapy abrogates lead-induced neurodegeneration in rats

    International Nuclear Information System (INIS)

    Pachauri, Vidhu; Saxena, Geetu; Mehta, Ashish; Mishra, Deepshikha; Flora, Swaran J.S.

    2009-01-01

    Lead, a ubiquitous and potent neurotoxicant causes oxidative stress which leads to numerous neurobehavioral and physiological alterations. The ability of lead to bind sulfhydryl groups or compete with calcium could be one of the reasons for its debilitating effects. In the present study, we addressed: i) if chelation therapy could circumvent the altered oxidative stress and prevent neuronal apoptosis in chronic lead-intoxicated rats, ii) whether chelation therapy could reverse biochemical and behavioral changes, and iii) if mono or combinational therapy with captopril (an antioxidant) and thiol chelating agents (DMSA/MiADMSA) is more effective than individual thiol chelator in lead-exposed rats. Results indicated that lead caused a significant increase in reactive oxygen species, nitric oxide, and intracellular free calcium levels along with altered behavioral abnormalities in locomotor activity, exploratory behavior, learning, and memory that were supported by changes in neurotransmitter levels. A fall in membrane potential, release of cytochrome c, and DNA damage indicated mitochondrial-dependent apoptosis. Most of these alterations showed significant recovery following combined therapy with captopril with MiADMSA and to a smaller extend with captopril + DMSA over monotherapy with these chelators. It could be concluded from our present results that co-administration of a potent antioxidant (like captopril) might be a better treatment protocol than monotherapy to counter lead-induced oxidative stress. The major highlight of the work is an interesting experimental evidence of the efficacy of combinational therapy using an antioxidant with a thiol chelator in reversing neurological dystrophy caused due to chronic lead exposure in rats.

  20. Interaction of chelating agents with cadmium in mice and rats

    International Nuclear Information System (INIS)

    Eybl, V.; Sykora, J.; Koutensky, J.; Caisova, D.; Schwartz, A.; Mertl, F.

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl 2 and on the whole body retention and tissue distribution of cadmium after the IV application of /sup 115mCdCl 2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatement of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl 2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of /sup 115m/Cd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes

  1. Interaction of chelating agents with cadmium in mice and rats.

    Science.gov (United States)

    Eybl, V; Sýkora, J; Koutenský, J; Caisová, D; Schwartz, A; Mertl, F

    1984-01-01

    The influence of several chelating agents (CaDTPA, ZnDTPA, CaEDTA, ZnEDTA, DMSA, D-penicillamine and DMPS, DMP and DDC) on the acute toxicity of CdCl2 and on the whole body retention and tissue distribution of cadmium after the IV application of 115mCdCl2 was compared in mice. The chelating agents were applied immediately after the application of cadmium. CaDTPA, ZnDTPA and DMSA appeared to be the most effective antidotes. However, DMSA increased the amount of cadmium retained in kidneys. The treatment of cadmium-poisoned mice with the combination of DMSA (IP) and ZnDTPA (SC) (all the compounds were injected in equimolar dose) decreased the toxicity of cadmium more than treatment with one chelating agents (given in a 2:1 dose). However, by studying the effect of these chelating agents and their combination of the retention and distribution of Cd in mice, it was demonstrated that the combined application of the antidotes showed little or no improvement over the results obtained with the most effective of the individual components. In the urine of rats injected with CdCl2 and treated with the chelating agents (CaDTPA, ZnDTPA, DMSA), the presence of cadmium complexes was demonstrated. The formation of mixed ligand chelates in vivo was not proved. Experiments in mice given a single injection of 115mCd-labeled Cd complexes of DMPS, DMSA and DTPA showed a high retention of cadmium in the organisms after the IV application of CdDMPS and CdDMSA complexes. PMID:6734561

  2. Chelation therapy in intoxications with mercury, lead and copper

    DEFF Research Database (Denmark)

    Cao, yang; Skaug, Marit Aralt; Andersen, Ole

    2015-01-01

    In the present review we provide an update of the appropriate use of chelating agents in the treatment of intoxications with compounds of mercury, lead and copper. The relatively new chelators meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercapto-propanesulphonate (DMPS) can effectively...... mobilize deposits of mercury as well as of lead into the urine. These drugs can be administered orally and have relatively low toxicity compared to the classical antidote dimercaptopropanol (BAL). d-Penicillamine has been widely used in copper overload, although 2,3-dimercaptosuccinic acid...

  3. Potentiometric study of Nd3+ chelates of substituted salicylhydroxamic acids

    International Nuclear Information System (INIS)

    Deshpande, R.G.; Jahagirdar, D.V.

    1976-01-01

    The interaction of Nd 3+ ion with salicylhydroxamic acid and 5-methyl, 5-chloro, 5-bromo, 5-nitro, 4-chloro, 4-bromo and 3-chloro salicylhydroxamic acids is investigated potentiometrically by Calvin-Bjerrum titration technique at 30 0 +- 0.1 0 and ionic strength μ=0.1 M(NaClO 4 ) in 50% v/v dioxane-water mixtures. Nd 3+ forms only 1:1 chelates with these ligands. The validity of the log K= apk + b relationship is examined for these chelates. (author)

  4. Transfer of copper from a chelated 67Cu-antibody conjugate to ceruloplasmin in lymphoma patients

    International Nuclear Information System (INIS)

    Mirick, Gary R.; O'Donnell, Robert T.; DeNardo, Sally J.; Shen Sui; Meares, Claude F.; DeNardo, Gerald L.

    1999-01-01

    The Lym-1 monoclonal antibody was conjugated with the bifunctional chelating agent 6-[p-(bromoacetamido)benzyl]-1,4,8,11-tetraazacyclotetradecane-N,N',N'',N' -tetraacetic acid (BAT), using 2IT as a linker, and radiolabeled with 67 Cu to make the radiopharmaceutical, 67 Cu-2IT-BAT-Lym-1. Ten patients received a total of 18 doses of 67 Cu-2IT-BAT-Lym-1 as targeted, systemic radiotherapy. The beta phase of blood clearance, when corrected for 67 Cu decay, was positive or flat, a phenomenon not observed in similar patients treated with 131 I-Lym-1. The flat beta phase of blood clearance suggested recycling of 67 Cu from 67 Cu-2IT-BAT-Lym-1 to another plasma protein. Therefore, the amount of 67 Cu transferred from the radiopharmaceutical to CP, Alb, and TF was measured using affinity-purified polyclonal antibodies. The fraction of plasma 67 Cu precipitated by anti-human CP increased daily; most blood radioactivity was 67 Cu-CP after a median of 4 days (range 2-7 days). The transfer of 67 Cu to CP was observed in all patients and was consistent from dose to dose within the same patient. An average of 2.8±1.5% (range 0.8-7.8%) of the 67 Cu dose (%ID) was transferred to CP. The release rate of 67 Cu-CP from the liver into the blood was 0.9±0.4 %ID/day for the first 3 days. The 67 Cu-CP effective clearance half-life was 3.7 ± 0.7 days. Subtraction of the 67 Cu-CP activity from the total blood radioactivity yielded a biphasic blood clearance similar to that obtained for patients given 131 I-Lym-1. Cu-67-CP increased the AUC for whole blood by 24 ± 10%. The %ID of 67 Cu recycled correlated with GGT, ALT, and alkaline phosphatase levels; r=0.958 (p 67 Cu-2IT-BAT-Lym-1 and recycles a small fraction of the 67 Cu, transferring it to CP

  5. Efficacy of a novel chelator BPCBG for removing uranium and protecting against uranium-induced renal cell damage in rats and HK-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Yizhong; Wang, Dan [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Li, Zhiming [Department of Chemistry, Fudan University, Shanghai 200433 (China); Hu, Yuxing; Xu, Aihong [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Wang, Quanrui [Department of Chemistry, Fudan University, Shanghai 200433 (China); Shao, Chunlin [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China); Chen, Honghong, E-mail: hhchen@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai 200032 (China)

    2013-05-15

    Chelation therapy is a known effective method to increase the excretion of U(VI) from the body. Until now, no any uranium chelator has been approved for emergency medical use worldwide. The present study aimed to evaluate the efficacy of new ligand BPCBG containing two catechol groups and two aminocarboxylic acid groups in decorporation of U(VI) and protection against acute U(VI) nephrotoxicity in rats, and further explored the detoxification mechanism of BPCBG for U(VI)-induced nephrotoxicity in HK-2 cells with comparison to DTPA-CaNa{sub 3}. Chelating agents were administered at various times before or after injections of U(VI) in rats. The U(VI) levels in urine, kidneys and femurs were measured 24 h after U(VI) injections. Histopathological changes in the kidney and serum urea and creatinine and urine protein were examined. After treatment of U(VI)-exposed HK-2 cells with chelating agent, the intracellular U(VI) contents, formation of micronuclei, lactate dehydrogenase (LDH) activity and production of reactive oxygen species (ROS) were assessed. It was found that prompt, advanced or delayed injections of BPCBG effectively increased 24 h-urinary U(VI) excretion and decreased the levels of U(VI) in kidney and bone. Meanwhile, BPCBG injection obviously reduced the severity of the U(VI)-induced histological alterations in the kidney, which was in parallel with the amelioration noted in serum indicators, urea and creatinine, and urine protein of U(VI) nephrotoxicity. In U(VI)-exposed HK-2 cells, immediate and delayed treatment with BPCBG significantly decreased the formation of micronuclei and LDH release by inhibiting the cellular U(VI) intake, promoting the intracellular U(VI) release and inhibiting the production of intracellular ROS. Our data suggest that BPCBG is a novel bi-functional U(VI) decorporation agent with a better efficacy than DTPA-CaNa{sub 3}. - Highlights: ► BPCBG accelerated the urine U(VI) excretion and reduced the tissues U(VI) in rats.

  6. Metal chelate conjugated monoclonal antibodies, wherein the metal is an α emitter

    International Nuclear Information System (INIS)

    Gansow, O.A.; Strand, M.

    1984-01-01

    Methods of manufacturing and purifying metal chelate conjugated monoclonal antibodies are described, wherein the chelated metal emits alpha radiation. The conjugates are suited for therapeutic uses being substantially free of nonchelated radiometal. (author)

  7. Chelating ligands: enhancers of quality and purity of biogas ...

    African Journals Online (AJOL)

    The quality of biogas depends largely on the percentage of methane and hydrogen sulphide gas present. High concentration of hydrogen sulphide results in low quality biogas. This work employed the use of chelating ligands in scrubbing hydrogen sulphide gas while improving the yield of methane gas. Experimental ...

  8. Studies on effect of Microbial Iron Chelators on Candida Albican

    International Nuclear Information System (INIS)

    Rehmani, Fouzia S.; Milicent, S.; Zaheer-Uddin

    2005-01-01

    Iron is an essential for the life of all microbe cells. It generally exists in the oxidized form Fe(III). Even under anaerobic reducing condition the metal appear to be taken up as Fe(III). Thus free-living microorganisms require specific and effective ferric ion transport system to cope with low availability of the metal. In iron deficient environment they produce a low molecular weight specific chelators called siderphores or microbial iron chelators. Siderphores compete for limited supplied of iron. These compounds came out of the cell but can not re-enter without iron due to high affinity of these siderphores often have more than one catechol/hydroxamate functions and are multidentate (usually hexadentate ligands). The aim of the present research is to check the effect of iron chelators, namely gallic acid and salisyl hydroxamate on the growth of Candida albican in vitro. C. albican is the opportunistic paltogen present as the normal flora inside human body. In vivo the growth of C. albican is distributed by the use of antibiotics and immuno suppressers. In cases of iron over-dosage in human being, the patients are treated with certain a-iron chelators. Hence an attempt is made to notice the effect that might be inhibition or enhancement of the organism in vitro. (author)

  9. Laccase Immobilization by Chelated Metal Ion Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Qingqing Wang

    2014-09-01

    Full Text Available In this work, amidoxime polyacrylonitrile (AOPAN nanofibrous membrane was prepared by a reaction between PAN nanofibers and hydroxylamine hydrochloride. The AOPAN nanofibrous membranes were used for four metal ions (Fe3+, Cu2+, Ni2+, Cd2+ chelation under different conditions. Further, the competition of different metal ions coordinating with AOPAN nanofibrous membrane was also studied. The AOPAN chelated with individual metal ion (Fe3+, Cu2+, Ni2+, Cd2+ and also the four mixed metal ions were further used for laccase (Lac immobilization. Compared with free laccase, the immobilized laccase showed better resistance to pH and temperature changes as well as improved storage stability. Among the four individual metal ion chelated membranes, the stability of the immobilized enzymes generally followed the order as Fe–AOPAN–Lac > Cu–AOPAN–Lac > Ni–AOPAN–Lac > Cd–AOPAN–Lac. In addition, the immobilized enzyme on the carrier of AOPAN chelated with four mixed metal ions showed the best properties.

  10. Chelation of thallium by combining deferasirox and desferrioxamine in rats.

    Science.gov (United States)

    Saljooghi, Amir Shokooh; Babaie, Maryam; Mendi, Fatemeh Delavar; Zahmati, Maliheh; Saljooghi, Zoheir Shokouh

    2016-01-01

    The hypothesis that two known chelators deferasirox (4-[3,5-bis(2-hydroxyphenyl)-1,2,4-triazol-1-yl]-benzoic acid) and desferrioxamine (DFO) might be more efficient as combined treatment than as monotherapies in removing thallium from the body was tested in a new acute rat model. 7-week-old male Wistar rats received chelators: deferasirox (orally), DFO (intraperitoneal; i.p.), or deferasirox + DFO as 75 or 150 mg/kg dose half an hour after a single i.p. administration of 8 mg thallium/kg body weight in the form of chloride. Serum thallium concentration, urinary thallium, and iron excretions were determined by graphite furnace atomic absorption spectrometry. Both chelators were effective only at the higher dose level, while DFO was more effective than deferasirox in enhancing urinary thallium excretion, deferasirox was more effective than DFO in enhancing urinary iron excretion. In the combined treatment group, deferasirox did not increase the DFO effect on thallium and DFO did not increase the effect of deferasirox on iron elimination. Our results support the usefulness of this animal model for preliminary in vivo testing of thallium chelators. Urinary values were more useful because of the high variability of serum results. © The Author(s) 2013.

  11. Mixed ligand chelate therapy for plutonium and cadmium poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, J; Derr, S K [Hope Coll., Holland, MI (USA)

    1978-09-28

    Some experiments with mice are described in which complete removal of tissue deposits of /sup 239/Pu and prevention of mortality in animals given lethal doses of Cd were achieved using a mixed ligand chelate treatment (MLC). The mixed ligand consisted of diethylenetriaminepentaacetic acid and salicylic acid.

  12. Iron chelating activity, phenol and flavonoid content of some ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-09-17

    Sep 17, 2008 ... require regular blood transfusions in order to improve both quality of ... fused red blood cells and the excess iron is deposited as ... potentiation of reactive oxygen species (ROS) and .... The percentage inhibition of ferrozine–Fe2+ complex formation was ... estimation of the chelating activity of the coexisting.

  13. Bone marrow and chelatable iron in patients with protein energy ...

    African Journals Online (AJOL)

    Objectives: To examine the iron status of malnourished children by comparing bone marrow iron deposits in children with protein energy malnutrition with those in well-nourished controls, and measuring chelatable urinary iron excretion in children with kwashiorkor. Design: Bone marrow iron was assessed histologicaHy in ...

  14. f-Element Ion Chelation in Highly Basic Media

    International Nuclear Information System (INIS)

    Paine, R.T.

    2000-01-01

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelators for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  15. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sorption of Pu(IV) from nitric acid by bifunctional anion-exchange resins

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Zhang, Z.Y.; Elshani, S.; Zhao, W.; Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.; Chamberlin, R.M.

    1999-01-01

    Anion exchange is attractive for separating plutonium because the Pu(IV) nitrate complex is very strongly sorbed and few other metal ions form competing anionic nitrate complexes. The major disadvantage of this process has been the unusually slow rate at which the Pu(IV) nitrate complex is sorbed by the resin. The paper summarizes the concept of bifunctional anion-exchange resins, proposed mechanism for Pu(IV) sorption, synthesis of the alkylating agent, calculation of K d values from Pu(IV) sorption results, and conclusions from the study of Pu(IV) sorption from 7M nitric acid by macroporous anion-exchange resins including level of crosslinking, level of alkylation, length of spacer, and bifunctional vs. monofunctional anion-exchange resins

  17. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species.

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W B; Kabia, Omaru M; Do, Dung T; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M; Ghandi, Sonia; Bohndiek, Sarah E; Snaddon, Thomas N; Lee, Steven F

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H 2 O 2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H 2 O 2 . We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H 2 O 2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  19. Bifunctional fluorescent probes for detection of amyloid aggregates and reactive oxygen species

    Science.gov (United States)

    Needham, Lisa-Maria; Weber, Judith; Fyfe, James W. B.; Kabia, Omaru M.; Do, Dung T.; Klimont, Ewa; Zhang, Yu; Rodrigues, Margarida; Dobson, Christopher M.; Ghandi, Sonia; Bohndiek, Sarah E.; Snaddon, Thomas N.; Lee, Steven F.

    2018-02-01

    Protein aggregation into amyloid deposits and oxidative stress are key features of many neurodegenerative disorders including Parkinson's and Alzheimer's disease. We report here the creation of four highly sensitive bifunctional fluorescent probes, capable of H2O2 and/or amyloid aggregate detection. These bifunctional sensors use a benzothiazole core for amyloid localization and boronic ester oxidation to specifically detect H2O2. We characterized the optical properties of these probes using both bulk fluorescence measurements and single-aggregate fluorescence imaging, and quantify changes in their fluorescence properties upon addition of amyloid aggregates of α-synuclein and pathophysiological H2O2 concentrations. Our results indicate these new probes will be useful to detect and monitor neurodegenerative disease.

  20. Loop Replacement Enhances the Ancestral Antibacterial Function of a Bifunctional Scorpion Toxin

    Directory of Open Access Journals (Sweden)

    Shangfei Zhang

    2018-06-01

    Full Text Available On the basis of the evolutionary relationship between scorpion toxins targeting K+ channels (KTxs and antibacterial defensins (Zhu S., Peigneur S., Gao B., Umetsu Y., Ohki S., Tytgat J. Experimental conversion of a defensin into a neurotoxin: Implications for origin of toxic function. Mol. Biol. Evol. 2014, 31, 546–559, we performed protein engineering experiments to modify a bifunctional KTx (i.e., weak inhibitory activities on both K+ channels and bacteria via substituting its carboxyl loop with the structurally equivalent loop of contemporary defensins. As expected, the engineered peptide (named MeuTXKα3-KFGGI remarkably improved the antibacterial activity, particularly on some Gram-positive bacteria, including several antibiotic-resistant opportunistic pathogens. Compared with the unmodified toxin, its antibacterial spectrum also enlarged. Our work provides a new method to enhance the antibacterial activity of bifunctional scorpion venom peptides, which might be useful in engineering other proteins with an ancestral activity.

  1. Chiral 2-Aminobenzimidazole as Bifunctional Catalyst in the Asymmetric Electrophilic Amination of Unprotected 3-Substituted Oxindoles

    Directory of Open Access Journals (Sweden)

    Llorenç Benavent

    2018-06-01

    Full Text Available The use of readily available chiral trans-cyclohexanediamine-benzimidazole derivatives as bifunctional organocatalysts in the asymmetric electrophilic amination of unprotected 3-substituted oxindoles is presented. Different organocatalysts were evaluated; the most successful one contained a dimethylamino moiety (5. With this catalyst under optimized conditions, different oxindoles containing a wide variety of substituents at the 3-position were aminated in good yields and with good to excellent enantioselectivities using di-tert-butylazodicarboxylate as the aminating agent. The procedure proved to be also efficient for the amination of 3-substituted benzofuranones, although with moderate results. A bifunctional role of the catalyst, acting as Brønsted base and hydrogen bond donor, is proposed according to the experimental results observed.

  2. Phenolic aminocarboxylic acids - new chelating agents for modifying gallium-67 biodistribution

    International Nuclear Information System (INIS)

    Hunt, F.C.; Maddalena, D.J.

    1982-01-01

    The chelating agents EDDHA and HBED were synthesised with carboxyl or sulphonyl groups in the phenolic ring to favour urinary excretion on complexing with gallium. Carboxyl EDDMA was administered to tumor-bearing rats, and its concentration in the tumours and other tissues determined by scintigraphic imaging. The chelating agents increase tumour to blood ratios by chelating gallium in vivo. (U.K.)

  3. Phenolic aminocarboxylic acids - new chelating agents for modifying gallium-67 biodistribution

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, F.C.; Maddalena, D.J. (Australian Atomic Energy Commission Research Establishment, Lucas Heights)

    The chelating agents EDDHA and HBED were synthesised with carboxyl or sulphonyl groups in the phenolic ring to favour urinary excretion on complexing with gallium. Carboxyl EDDMA was administered to tumor-bearing rats, and its concentration in the tumours and other tissues determined by scintigraphic imaging. The chelating agents increase tumour to blood ratios by chelating gallium in vivo.

  4. Chelator induced phytoextraction and in situ soil washing of Cu

    International Nuclear Information System (INIS)

    Kos, Bostjan; Lestan, Domen

    2004-01-01

    In a soil column experiment, we investigated the effect of 5 mmol kg -1 soil addition of citric acid, ethylenediamine tetraacetate (EDTA), diethylenetriamine-pentaacetate (DTPA) and [S,S]-stereoisomer of ethylenediamine-disuccinate (EDDS) on phytoextraction of Cu from a vineyard soil with 162.6 mg kg -1 Cu, into the test plant Brassica rapa var. pekinensis. We also examined the use of a horizontal permeable barrier, composed of layers of nutrient enriched sawdust and apatite, for reduction of chelator induced Cu leaching. The addition of all chelators, except citric acid, enhanced Cu mobility and caused leaching of 19.5-23% of initial total Cu from the soil column. However, Cu plant uptake did not increase accordingly; the most effective was the EDDS treatment, in which plant Cu concentration reached 37.8±1.3 mg kg -1 Cu and increased by 3.3-times over the control treatment. The addition of none of the chelators in the concentration range from 5 to 15 mmol kg -1 exerted any toxic effect on respiratory soil microorganisms. When EDDS was applied into the columns with horizontal permeable barriers, only 0.53±0.32% of the initial total Cu was leached. Cu (36.7%) was washed from the 18 cm soil layer above the barrier and accumulated in the barrier. Our results indicate that rather than for a reduction of Cu leaching during rather ineffective chelate induced Cu phytoextraction, horizontal permeable barriers could be more effective in a new remediation technique of controlled in situ soil washing of Cu with biodegradable chelates

  5. Copper chelators: chemical properties and bio-medical applications.

    Science.gov (United States)

    Tegoni, M; Valensin, D; Toso, L; Remelli, M

    2014-01-01

    Copper is present in different concentrations and chemical forms throughout the earth crust, surface and deep water and even, in trace amounts, in the atmosphere itself. Copper is one of the first metals used by humans, the first artifacts dating back 10,000 years ago. Currently, the world production of refined copper exceeds 16,000 tons/year. Copper is a micro-element essential to life, principally for its red-ox properties that make it a necessary cofactor for many enzymes, like cytochrome-c oxidase and superoxide dismutase. In some animal species (e.g. octopus, snails, spiders, oysters) copper-hemocyanins also act as carriers of oxygen instead of hemoglobin. However, these red-ox properties also make the pair Cu(+)/Cu(2+) a formidable catalyst for the formation of reactive oxygen species, when copper is present in excess in the body or in tissues. The treatment of choice in cases of copper overloading or intoxication is the chelation therapy. Different molecules are already in clinical use as chelators or under study or clinical trial. It is worth noting that chelation therapy has also been suggested to treat some neurodegenerative diseases or cardiovascular disorders. In this review, after a brief description of the homeostasis and some cases of dyshomeostasis of copper, the main (used or potential) chelators are described; their properties in solution, even in relation to the presence of metal or ligand competitors, under physiological conditions, are discussed. The legislation of the most important Western countries, regarding both the use of chelating agents and the limits of copper in foods, drugs and cosmetics, is also outlined.

  6. Synthesis of acid-base bifunctional mesoporous materials by oxidation and thermolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaofang [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Zou, Yongcun [State Key Laboratory of Inoranic Synthesis and Preparative Chemistryg, College of Chemistry, Jilin University, Changchun 130012 (China); Wu, Shujie; Liu, Heng [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@jlu.edu.cn [College of Chemistry, Jilin University, Jiefang Road 2519, Changchun 130023 (China)

    2011-06-15

    Graphical abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst. The obtained sample of SO{sub 3}H-MCM-41-NH{sub 2} containing amine and sulfonic acids exhibits excellent catalytic activity in aldol condensation reaction. Research highlights: {yields} Synthesize acid-base bifunctional mesoporous materials SO{sub 3}H-MCM-41-NH{sub 2}. {yields} Oxidation and then thermolysis to generate acidic site and basic site. {yields} Exhibit good catalytic performance in aldol condensation reaction between acetone and various aldehydes. -- Abstract: A novel and efficient method has been developed for the synthesis of acid-base bifunctional catalyst SO{sub 3}H-MCM-41-NH{sub 2}. This method was achieved by co-condensation of tetraethylorthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and (3-triethoxysilylpropyl) carbamicacid-1-methylcyclohexylester (3TAME) in the presence of cetyltrimethylammonium bromide (CTAB), followed by oxidation and then thermolysis to generate acidic site and basic site. X-ray diffraction (XRD) and transmission electron micrographs (TEM) show that the resultant materials keep mesoporous structure. Thermogravimetric analysis (TGA), X-ray photoelectron spectra (XPS), back titration, solid-state {sup 13}C CP/MAS NMR and solid-state {sup 29}Si MAS NMR confirm that the organosiloxanes were condensed as a part of the silica framework. The bifunctional sample (SO{sub 3}H-MCM-41-NH{sub 2}) containing amine and sulfonic acids exhibits excellent acid-basic properties, which make it possess high activity in aldol condensation reaction between acetone and various aldehydes.

  7. Radiation Induced Crosslinking of Polyethylene in the Presence of Bifunctional Vinyl Monomers

    DEFF Research Database (Denmark)

    Joshi, M. S.; Singer, Klaus Albert Julius; Silverman, J.

    1977-01-01

    Several reports have been published showing that the radiation induced grafting of bifunctional vinyl monomers to low density polyethylene results in a product with an unusually high density of crosslinks. The same grafting reactions are shown to reduce the incipient gel dose by more than a factor...... of fifty. This paper is concerned with the apparent crosslinking produced by the radiation grafting of two monomers to polyethylene: acrylic acid and acrylonitrile....

  8. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Wang, Mingbo [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); She, Zhending [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China); Fan, Kunwu; Xu, Cheng [Department of Plastic Surgery and Burns, Shenzhen Second People' s Hospital, Shenzhen 518035 (China); Chu, Bin; Chen, Changsheng [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shi, Shengjun, E-mail: shengjunshi@yahoo.com [The Burns Department of Zhujiang Hospital, Southern Medical University, Guangzhou 510280 (China); Tan, Rongwei, E-mail: tanrw@landobiom.com [Key Laboratory of Biomedical Materials and Implants, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057 (China); Shenzhen Lando Biomaterials Co., Ltd., Shenzhen 518057 (China)

    2015-07-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation.

  9. Bifunctional bridging linker-assisted synthesis and characterization of TiO{sub 2}/Au nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Žunič, Vojka, E-mail: vojka.zunic@ijs.si, E-mail: vojka13@gmail.com; Kurtjak, Mario; Suvorov, Danilo [Jožef Stefan Institute, Advanced Materials Department (Slovenia)

    2016-11-15

    Using a simple organic bifunctional bridging linker, titanium dioxide (TiO{sub 2}) nanoparticles were coupled with the Au nanoparticles to form TiO{sub 2}/Au nanocomposites with a variety of Au loadings. This organic bifunctional linker, meso-2,3-dimercaptosuccinic acid, contains two types of functional groups: (i) the carboxyl group, which enables binding to the TiO{sub 2}, and (ii) the thiol group, which enables binding to the Au. In addition, the organic bifunctional linker acts as a stabilizing agent to prevent the agglomeration and growth of the Au particles, resulting in the formation of highly dispersed Au nanoparticles. To form the TiO{sub 2}/Au nanocomposites in a simple way, we deliberately applied a synthetic method that simultaneously ensures: (i) the capping of the Au nanoparticles and (ii) the binding of different amounts of Au to the TiO{sub 2}. The TiO{sub 2}/Au nanocomposites formed with this method show enhanced UV and Vis photocatalytic activities when compared to the pure TiO{sub 2} nanopowders.Graphical Abstract.

  10. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Mingbo; She, Zhending; Fan, Kunwu; Xu, Cheng; Chu, Bin; Chen, Changsheng; Shi, Shengjun; Tan, Rongwei

    2015-01-01

    Inspired from the sophisticated bilayer structures of natural dermis, here, we reported collagen/chitosan based two-compartment and bi-functional dermal scaffolds. Two functions refer to mediating rapid angiogenesis based on recombinant human vascular endothelial growth factor (rhVEGF) and antibacterial from gentamicin, which were encapsulated in PLGA microspheres. The gentamicin and rhVEGF encapsulated PLGA microspheres were further combined with collagen/chitosan mixtures in low (lower layer) and high (upper layer) concentrations, and molded to generate the two-compartment and bi-functional scaffolds. Based on morphology and pore structure analyses, it was found that the scaffold has a distinct double layered porous and connective structure with PLGA microspheres encapsulated. Statistical analysis indicated that the pores in the upper layer and in the lower layer have great variations in diameter, indicative of a two-compartment structure. The release profiles of gentamicin and rhVEGF exceeded 28 and 49 days, respectively. In vitro culture of mouse fibroblasts showed that the scaffold can facilitate cell adhesion and proliferation. Moreover, the scaffold can obviously inhibit proliferation of Staphylococcus aureus and Serratia marcescens, exhibiting its unique antibacterial effect. The two-compartment and bi-functional dermal scaffolds can be a promising candidate for skin regeneration. - Highlights: • The dermal scaffold is inspired from the bilayer structures of natural dermis. • The dermal scaffold has two-compartment structures. • The dermal scaffold containing VEGF and gentamicin encapsulated PLGA microspheres • The dermal scaffold can facilitate cell adhesion and proliferation

  11. Removal of cadmium from fish sauce using chelate resin.

    Science.gov (United States)

    Sasaki, Tetsuya; Araki, Ryohei; Michihata, Toshihide; Kozawa, Miyuki; Tokuda, Koji; Koyanagi, Takashi; Enomoto, Toshiki

    2015-04-15

    Fish sauce that is prepared from squid organs contains cadmium (Cd), which may be present at hazardous concentrations. Cd molecules are predominantly protein bound in freshly manufactured fish sauce, but are present in a liberated form in air-exposed fish sauce. In the present study, we developed a new method for removing both Cd forms from fish sauce using chelate resin and a previously reported tannin treatment. Sixteen-fold decreases in Cd concentrations were observed (0.78-0.05 mg/100 mL) following the removal of liberated Cd using chelate resin treatment, and the removal of protein-bound Cd using tannin treatment. Major nutritional components of fish sauce were maintained, including free amino acids and peptides, and angiotensin I-converting enzyme inhibitory and antioxidant activities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Improved paramagnetic chelate for molecular imaging with MRI

    International Nuclear Information System (INIS)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-01-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent

  13. MULTIDENTATE TEREPHTHALAMIDATE AND HYDROXYPYRIDONATE LIGANDS: TOWARDS NEW ORALLY ACTIVE CHELATORS

    Energy Technology Data Exchange (ETDEWEB)

    Abergel, Rebecca J.; Raymond, Kenneth N.

    2011-07-13

    The limitations of current therapies for the treatment of iron overload or radioisotope contamination have stimulated efforts to develop new orally bioavailable iron and actinide chelators. Siderophore-inspired tetradentate, hexadentate and octadentate terephthalamidate and hydroxypyridonate ligands were evaluated in vivo as selective and efficacious iron or actinide chelating agents, with several metal loading and ligand assessment procedures, using {sup 59}Fe, {sup 238}Pu, and {sup 241}Am as radioactive tracers. The compounds presented in this study were compared to commercially available therapeutic sequestering agents [deferoxamine (DFO) for iron and diethylenetriaminepentaacetic acid (DPTA) for actinides] and are unrivaled in terms of affinity, selectivity and decorporation efficacy, which attests to the fact that high metal affinity may overcome the low bioavailability properties commonly associated to multidenticity.

  14. Treatment of some radioactive wastes by using new chelating membranes

    International Nuclear Information System (INIS)

    Hegazy, S.A.; El-Adham, K.; Abdel Geleel, M.; Soliman, S.A.

    2000-01-01

    The preparation of chelating membranes containing nitrile and carboxylic acid as functional groups was investigated. The modification of such membranes by chemical treatments to produce significant changes in their properties was studied. This modification results in a higher rate of exchange and higher capacity. The applicability of such modified membranes in the removal of Co-60 and Cs-137 from their wastes were tested. The dependence of these radioactive nuclides uptake on the time and degree of grafting for H CI-, NH 2 OH-and KOH-treated membranes was investigated. It was found that the adsorption rate and capacity were higher for KOH-treated membrane than those for the NH 2 OH and H CI treated ones. The prepared grafted membranes have a good affinity towards the adsorption or chelation with Co-60 and Cs-137. This result may make such prepared materials acceptable for practicable use in some radioactive waste treatments and recovery

  15. Chelation studies involving decontamination of light lanthanides by polyaminopolycarboxylic

    International Nuclear Information System (INIS)

    Hassan, N.E.H.

    1985-01-01

    The present thesis constitutes chelation studies involving decontamination of light lanthanides, cobalt , and uranium with 2,2-bis-acryloyliminomethylene- acid (BAETA) using the spectrophotometric method. the work carried out aimed to clear up the effectiveness of BAETA as a decontaminating agent for radioactive nuclides from human body . the thesis includes a general introduction , outlines the aim of work and contains three main chapters . the results of the work are discussed at the end of the thesis. the first chapter deals with a comprehensive survey of the relevant literature. this includes the metabolism and toxicity of cerium, uranium, cobalt and Ln +3 elements, general methodologies of internal decontamination, choice and effectiveness of chelating agents

  16. Iron overload and chelation therapy in myelodysplastic syndromes.

    Science.gov (United States)

    Temraz, Sally; Santini, Valeria; Musallam, Khaled; Taher, Ali

    2014-07-01

    Iron overload remains a concern in MDS patients especially those requiring recurrent blood transfusions. The consequence of iron overload may be more relevant in patients with low and intermediate-1 risk MDS who may survive long enough to experience such manifestations. It is a matter of debate whether this overload has time to yield organ damage, but it is quite evident that cellular damage and DNA genotoxic effect are induced. Iron overload may play a critical role in exacerbating pre-existing morbidity or even unmask silent ones. Under these circumstances, iron chelation therapy could play an integral role in the management of these patients. This review entails an in depth analysis of iron overload in MDS patients; its pathophysiology, effect on survival, associated risks and diagnostic options. It also discusses management options in relation to chelation therapy used in MDS patients and the impact it has on survival, hematologic response and organ function. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Encapsulation and retention of chelated-copper inside hydrophobic nanoparticles

    DEFF Research Database (Denmark)

    Hervella, Pablo; Ortiz, Elisa Parra; Needham, David

    2016-01-01

    ) Chelate copper into the octaethyl porphyrin; (3) Encapsulate OEP-Cu in nanoparticles: the encapsulation efficiency of copper into liquid nanoparticles (LNP), solid nanoparticles (SNP) and phospholipid liposomes (PL) was evaluated by UV-Vis and atomic absorption spectroscopy; (4) Retain the encapsulated...... OEP-Cu in the liquid or solid cores of the nanoparticles in the presence of a lipid sink. RESULTS: (1) The size of the nanoparticles was found to be strongly dependent on the Reynolds number and the initial concentration of components for the fast injection technique. At high Reynolds number (2181......), a minimum value for the particle diameter of ∼30nm was measured. (2) Copper was chelated by OEP in a 1:1mol ratio with an association constant of 2.57×10(5)M(-1). (3) The diameter of the nanoparticles was not significantly affected by the presence of OEP or OEP-Cu. The percentage of encapsulation of copper...

  18. Iron chelates: a challenge to chemists and Moessbauer spectroscopists

    Energy Technology Data Exchange (ETDEWEB)

    Homonnay, Z., E-mail: homonnay@chem.elte.hu; Szilagyi, P. A.; Vertes, A. [Eoetvoes Lorand University, Laboratory of Nuclear Chemistry, Institute of Chemistry (Hungary); Kuzmann, E. [Hungarian Academy of Sciences, Department of Nuclear Chemistry, Chemical Research Center (Hungary); Sharma, V. K. [Florida Institute of Technology (United States); Molnar, G.; Bousseksou, A. [CNRS UPR-8241, Laboratoire de Chimie de Coordination (France); Greneche, J.-M. [Universite du Maine, Laboratoire de Physique de l' Etat Condense, CNRS UMR 6087 (France); Brausam, A.; Meier, R.; Eldik, R. van [University of Erlangen-Nuernberg, Institute for Inorganic Chemistry (Germany)

    2008-02-15

    The speciation of iron in aqueous solutions containing Fe{sup 3+} and selected chelates such as EDTA, EDDA, CDTA and HEDTA has been studied using transmission {sup 57}Fe Moessbauer spectrometry in frozen solutions. The protonation of various complexes as well as binuclear complex formation could be detected as a function of pH. Autoreduction of Fe{sup 3+} to Fe{sup 2+} was observed in several cases. Reaction with hydrogen peroxide proved to be rather different for the four ligands, while the dihapto complex [XFe({eta}{sup 2}-O{sub 2})]{sup 3-} had surprisingly identical Moessbauer parameters for X = EDTA, CDTA or HEDTA. Paramagnetic spin relaxation observed in the Moessbauer spectra was found to be strongly influenced by the identity of the chelating ligand, despite the basically spin-spin origin of the phenomenon.

  19. Improved paramagnetic chelate for molecular imaging with MRI

    Science.gov (United States)

    Winter, Patrick; Athey, Phillip; Kiefer, Garry; Gulyas, Gyongyi; Frank, Keith; Fuhrhop, Ralph; Robertson, David; Wickline, Samuel; Lanza, Gregory

    2005-05-01

    The relaxivity and transmetallation of two lipophilic paramagnetic chelates incorporated onto perfluorocarbon nanoparticles, i.e., gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid phosphatidylethanolamine (Gd-MeO-DOTA-PE) and gadolinium-methoxy-tetraazacyclododecane-tetraacetic acid triglycine phosphatidylethanolamine (Gd-MeO-DOTA-triglycine-PE (Gd-MeO-DOTA-triglycine-PE)), were compared to a prototypic gadolinium-diethylene-triamine-pentaacetic acid bis-oleate (Gd-DTPA-BOA) paramagnetic formulation. Nanoparticles with MeO-DOTA-based chelates demonstrated higher relaxivity (40% higher for Gd-MeO-DOTA-PE and 55% higher for Gd-MeO-DOTA-triglycine-PE) and less transmetallation than the original Gd-DTPA-BOA-based agent.

  20. Self-assembled polymeric chelate nanoparticles as potential theranostic agents

    Czech Academy of Sciences Publication Activity Database

    Škodová, Michaela; Černoch, Peter; Štěpánek, Petr; Chánová, Eliška; Kučka, Jan; Kálalová, Zuzana; Kaňková, Dana; Hrubý, Martin

    2012-01-01

    Roč. 13, č. 18 (2012), s. 4244-4250 ISSN 1439-4235 R&D Projects: GA ČR GPP207/10/P054; GA ČR GA202/09/2078; GA ČR GAP304/12/0950 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : chelate s * nanoparticles * polymers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.349, year: 2012

  1. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  2. Polymeric metal chelates with piperazine(bis)dithiocarbamate

    International Nuclear Information System (INIS)

    Larionov, S.V.; Kosareva, L.A.; Ikorskij, V.N.; Uskov, E.M.

    1982-01-01

    Roentgenoamorphous polymer chelates of Fe 3 , Co 2 , Ni 2 , Cu 2 , Zn 2 , Cd 2 , Pb 2 with tetradentate bridge ligand piperazine-(bis) dithiocarbamate have been synthesized. IR spectra in the region 200-400 cm - 1 point to coordination of sulphur atoms of groups CS 2- with metals. It is found that among the polymers synthesized CuLxH 2 O possesses the lowest electric resistance

  3. Flue gas desulfurization/denitrification using metal-chelate additives

    Science.gov (United States)

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  4. Reaction of gadolinium chelates with ozone and hydroxyl radicals.

    Science.gov (United States)

    Cyris, Maike; Knolle, Wolfgang; Richard, Jessica; Dopp, Elke; von Sonntag, Clemens; Schmidt, Torsten C

    2013-09-03

    Gadolinium chelates are used in increasing amounts as contrast agents in magnetic resonance imaging, and their fate in wastewater treatment has recently become the focus of research. Oxidative processes, in particular the application of ozone, are currently discussed or even implemented for advanced wastewater treatment. However, reactions of the gadolinium chelates with ozone are not yet characterized. In this study, therefore, rate constants with ozone were determined for the three commonly used chelates Gd-DTPA, Gd-DTPA-BMA, and Gd-BT-DO3A, which were found to be 4.8 ± 0.88, 46 ± 2.5, and 24 ± 1.5 M(-1) s(-1), respectively. These low rate constants indicate that a direct reaction with ozone in wastewater is negligible. However, application of ozone in wastewater leads to substantial yields of (•)OH. Different methods have been applied and compared for determination of k((•)OH+Gd chelate). From rate constants determined by pulse radiolysis experiments (k((•)OH+Gd-DTPA) = 2.6 ± 0.2 × 10(9) M(-1) s(-1), k((•)OH+Gd-DTPA-BMA) = 1.9 ± 0.7 × 10(9) M(-1) s(-1), k((•)OH+Gd-BT-DO3A) = 4.3 ± 0.2 × 10(9) M(-1) s(-1)), it is concluded that a reaction in wastewater via (•)OH radicals is feasible. Toxicity has been tested for educt and product mixtures of both reactions. Cytotoxicity (MTT test) and genotoxicity (micronuclei assay) were not detectable.

  5. Ocular Toxicity Profile of ST-162 and ST-168 as Novel Bifunctional MEK/PI3K Inhibitors.

    Science.gov (United States)

    Smith, Andrew; Pawar, Mercy; Van Dort, Marcian E; Galbán, Stefanie; Welton, Amanda R; Thurber, Greg M; Ross, Brian D; Besirli, Cagri G

    2018-04-30

    ST-162 and ST-168 are small-molecule bifunctional inhibitors of MEK and PI3K signaling pathways that are being developed as novel antitumor agents. Previous small-molecule and biologic MEK inhibitors demonstrated ocular toxicity events that were dose limiting in clinical studies. We evaluated in vitro and in vivo ocular toxicity profiles of ST-162 and ST-168. Photoreceptor cell line 661W and adult retinal pigment epithelium cell line ARPE-19 were treated with increasing concentrations of bifunctional inhibitors. Western blots, cell viability, and caspase activity assays were performed to evaluate MEK and PI3K inhibition and dose-dependent in vitro toxicity, and compared with monotherapy. In vivo toxicity profile was assessed by intravitreal injection of ST-162 and ST-168 in Dutch-Belted rabbits, followed by ocular examination and histological analysis of enucleated eyes. Retinal cell lines treated with ST-162 or ST-168 exhibited dose-dependent inhibition of MEK and PI3K signaling. Compared with inhibition by monotherapies and their combinations, bifunctional inhibitors demonstrated reduced cell death and caspase activity. In vivo, both bifunctional inhibitors exhibited a more favorable toxicity profile when compared with MEK inhibitor PD0325901. Novel MEK and PI3K bifunctional inhibitors ST-162 and ST-168 demonstrate favorable in vitro and in vivo ocular toxicity profiles, supporting their further development as potential therapeutic agents targeting multiple aggressive tumors.

  6. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  7. Effectiveness of chelation therapy with time after acute uranium intoxication

    International Nuclear Information System (INIS)

    Domingo, J.L.; Ortega, A.; Llobet, J.M.; Corbella, J.

    1990-01-01

    The effect of increasing the time interval between acute uranium exposure and chelation therapy was studied in male Swiss mice. Gallic acid, 4,5-dihydroxy-1,3- benzenedisulfonic acid (Tiron), diethylenetriaminepentaacetic acid (DTPA), and 5-aminosalicylic acid (5-AS) were administered ip at 0, 0.25, 1, 4, and 24 hr after sc injection of 10 mg/kg of uranyl acetate dihydrate. Chelating agents were given at doses equal to one-fourth of their respective LD50 values. Daily elimination of uranium into urine and feces was determined for 4 days after which time the mice were killed, and the concentration of uranium was measured in kidney, spleen, and bone. The excretion of uranium was especially rapid in the first 24 hr. Treatment with Tiron or gallic acid at 0, 0.25, or 1 hr after uranium exposure significantly increased the total excretion of the metal. In kidney and bone, only administration of Tiron at 0, 0.25, or 1 hr after uranium injection, or gallic acid at 1 hr after uranium exposure significantly reduced tissue uranium concentrations. Treatment at later times (4 to 24 hr) did not increase the total excretion of the metal and did not decrease the tissue uranium concentrations 4 days after uranyl acetate administration. The results show that the length of time before initiating chelation therapy for acute uranium intoxication greatly influences the effectiveness of this therapy

  8. Hydroxyurea could be a good clinically relevant iron chelator.

    Science.gov (United States)

    Italia, Khushnooma; Colah, Roshan; Ghosh, Kanjaksha

    2013-01-01

    Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  9. Chelate forms of biometalls. Theoretical aspects of obtaining and characteristics

    Directory of Open Access Journals (Sweden)

    A. Kapustyan

    2017-04-01

    Full Text Available The problem of microelements bioavailability is highlighted and the correct ways of its solution are substantiated as a result of generalization of theoretical aspects of obtaining of the biometals chelate forms. The characteristics of the main biogenic elements, their physiological significance, electrochemical properties are presented. The main examples of the participation of biometals in various biological processes are given. The properties and the structure peculiarities of biometals coordination complexes are considered in detail. It is shown that in obtaining of biometals chelate forms, there is the mutual selectivity and the affinity of biometals and ligands. The main factors of obtaining a hard metal complex are given. Potential bioligands for obtaining bioavailable forms of microelements are detailed. Among them there are amino acids, peptides, proteins, nucleic acids, carbohydrates. The possible character of complexation depending on the nature of the bioligand is indicated. Practical examples of preparation of biometals mixed ligand complexes are given. The expediency of using metabolic products and processing of lactic acid bacteria as promising components of mixed ligand chelate complexes is substantiated. These substances contain in their composition a mass of potential donor atoms that are capable to form covalent and coordination bonds with biomethalles, and also possess high biological and immunotropic activities. The use of this system in the biocoordination compounds of the "metals of life" can provide a synergistic effect of the components, significantly to expand the range of their physiological activity and to increase the degree of assimilation by the body.

  10. High precision isotopic ratio analysis of volatile metal chelates

    International Nuclear Information System (INIS)

    Hachey, D.L.; Blais, J.C.; Klein, P.D.

    1980-01-01

    High precision isotope ratio measurements have been made for a series of volatile alkaline earth and transition metal chelates using conventional GC/MS instrumentation. Electron ionization was used for alkaline earth chelates, whereas isobutane chemical ionization was used for transition metal studies. Natural isotopic abundances were determined for a series of Mg, Ca, Cr, Fe, Ni, Cu, Cd, and Zn chelates. Absolute accuracy ranged between 0.01 and 1.19 at. %. Absolute precision ranged between +-0.01-0.27 at. % (RSD +- 0.07-10.26%) for elements that contained as many as eight natural isotopes. Calibration curves were prepared using natural abundance metals and their enriched 50 Cr, 60 Ni, and 65 Cu isotopes covering the range 0.1-1010.7 at. % excess. A separate multiple isotope calibration curve was similarly prepared using enriched 60 Ni (0.02-2.15 at. % excess) and 62 Ni (0.23-18.5 at. % excess). The samples were analyzed by GC/CI/MS. Human plasma, containing enriched 26 Mg and 44 Ca, was analyzed by EI/MS. 1 figure, 5 tables

  11. Hydroxyurea could be a good clinically relevant iron chelator.

    Directory of Open Access Journals (Sweden)

    Khushnooma Italia

    Full Text Available Our previous study showed a reduction in serum ferritin of β-thalassemia patients on hydroxyurea therapy. Here we aimed to evaluate the efficacy of hydroxyurea alone and in combination with most widely used iron chelators like deferiprone and deferasirox for reducing iron from experimentally iron overloaded mice. 70 BALB/c mice received intraperitonial injections of iron-sucrose. The mice were then divided into 8 groups and were orally given hydroxyurea, deferiprone or deferasirox alone and their combinations for 4 months. CBC, serum-ferritin, TBARS, sTfr and hepcidin were evaluated before and after iron overload and subsequently after 4 months of drug therapy. All animals were then killed. Iron staining of the heart and liver tissue was done using Perl's Prussian Blue stain. Dry weight of iron in the heart and liver was determined by atomic absorption spectrometry. Increased serum-ferritin, TBARS, hepcidin and dry weight of iron in the liver and heart showed a significant reduction in groups treated with iron chelators with maximum reduction in the group treated with a combination of deferiprone, deferasirox and hydroxyurea. Thus hydroxyurea proves its role in reducing iron from iron overloaded mice. The iron chelating effect of these drugs can also be increased if given in combination.

  12. Antibacterial and antibiofilm effects of iron chelators against Prevotella intermedia.

    Science.gov (United States)

    Moon, Ji-Hoi; Kim, Cheul; Lee, Hee-Su; Kim, Sung-Woon; Lee, Jin-Yong

    2013-09-01

    Prevotella intermedia, a major periodontopathogen, has been shown to be resistant to many antibiotics. In the present study, we examined the effect of the FDA-approved iron chelators deferoxamine (DFO) and deferasirox (DFRA) against planktonic and biofilm cells of P. intermedia in order to evaluate the possibility of using these iron chelators as alternative control agents against P. intermedia. DFRA showed strong antimicrobial activity (MIC and MBC values of 0.16 mg ml(-1)) against planktonic P. intermedia. At subMICs, DFRA partially inhibited the bacterial growth and considerably prolonged the bacterial doubling time. DFO was unable to completely inhibit the bacterial growth in the concentration range tested and was not bactericidal. Crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that DFRA significantly decreased the biofilm-forming activity as well as the biofilm formation, while DFO was less effective. DFRA was chosen for further study. In the ATP-bioluminescent assay, which reflects viable cell counts, subMICs of DFRA significantly decreased the bioactivity of biofilms in a concentration-dependent manner. Under the scanning electron microscope, P. intermedia cells in DFRA-treated biofilm were significantly elongated compared to those in untreated biofilm. Further experiments are necessary to show that iron chelators may be used as a therapeutic agent for periodontal disease.

  13. Copper and Zinc Chelation as a Treatment of Alzheimer's Disease

    Science.gov (United States)

    Hodak, Miroslav; Bernholc, Jerry

    2014-03-01

    Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people in the U.S. The cause of the disease remains unknown, but amyloid- β (A β), a short peptide, is considered causal its pathogenesis. At cellular level, AD is characterized by deposits mainly composed of A β that also contain elevated levels of transition metals ions. Targeting metals is a promising new strategy for AD treatment, which uses moderately strong metal chelators to sequester them from A β or the environment. PBT2 is a chelating compound that has been the most promising in clinical trials. In our work, we use computer simulations to investigate complexes of a close analog of PBT2 with Cu2+ and Zn2+ ions. The calculations employ KS/FD DFT method, which combines Kohn-Sham DFT with the frozen-density DFT to achieve efficient description of explicit solvent beyond the first solvation shell. Our work is based on recent experiments and examines both 1:1 and 2:1 chelator-metal stochiometries detected experimentally. The results show that copper attaches more strongly than zinc, find that 1:1 complexes involve water in the first coordination shell and determine which one of several possible 2:1 geometries is the most preferable.

  14. f-Element Ion Chelation in Highly Basic Media

    International Nuclear Information System (INIS)

    Paine, Robert T.

    1999-01-01

    High-level radioactive waste (HLW) generated in the DOE complex is stored in tanks at several sites, but predominantly it is found at the Hanford reservation. Much of the material has been exposed to high pHs, consequently the waste exists in a complex, poorly understood mixture of solids, gels and solutions. The final waste remediation plan may involve chemical separation of fractions and a suitable, well developed molecular chemistry basis for performing these separations is not available. Indeed, the fundamental chemical behavior of most radioactive nuclides in basic media is not known. The goal of this project is to undertake fundamental studies of the coordination chemistry of f-element species in basic aqueous solutions containing common waste treatment ions (e.g., NO3 -, CO3 2-, organic carboxylates, and EDTA), as well as new waste scrubbing chelators produced in this study. The experimental agenda includes: 1. Studies of the speciation of Sr and Ln ions in basic solutions wit h and without common counterions; 2. Preparations of new multifunctional ligands that may act as strong, ion-specific chelators for Sr and/or Ln ions in basic media; and 3. Studies of the coordination and dissolution behavior of oxide-hydroxide species, as well as in insoluble sols, gels, and precipitates in combination with new chelating ligands. It is anticipated that this coordination chemistry will facilitate the design of advanced separation schemes required for handling the complex waste matrices found at the Hanford HLW facility

  15. Chelated mineral supplements for Nelore: quality and early embryonic development

    Directory of Open Access Journals (Sweden)

    Camila Pasa

    2014-01-01

    Full Text Available ABSTRACT. Pasa C., Hatamoto-Zervoudakis L.K., Zervoudakis J.T. & Soares L. [Chelated mineral supplements for Nelore: quality and early embryonic development.] Suplementos minerais quelatados para vacas Nelore: qualidade e desenvolvimento embrionário inicial. Revista Brasileira de Medicina Veterinária, 36(1:29-34, 2014. Programa de Pós-Graduação em Ciência Animal, Faculdade de Agronomia e Medicina Veterinária, Universidade Federal do Mato Grosso, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, Cuiabá, MT 78060-900, Brasil. E-mail: pasa_camila@hotmail.com The objective of this study was to evaluate the quality and early development of embryos produced with oocytes of cows supplemented with copper, zinc and selenium in a non-chelated and chelated. The experiment was conducted in Cuiabá-MT during the months April to July 2009. We used 24 adult Nellore multiparous, aged, average weights of the initial 36 months, 395 kg and mean body condition score 4.8, respectively randomly divided into 2 groups: control group (CG, supplemented with conventional mineral and Supplemented Group (GS, animals supplemented with zinc, copper and selenium chelated. Each group was kept in a paddock of Brachiaria brizantha cv Marandu received 1 kg of animal per day. chelated mineral supplementation (GS and conventional mineral (GC delivered via the protein supplement was given during a period of 99 days with daily average 1kg/cabeça. During the experimental period were two follicular aspirations, one to 59 days and another at 99 days of supplementation. Every two weeks the animals were weighed and ECC evaluated. oocytes viable (grades I, II and III were used for in vitro production of embryos. The experiment was completely randomized and data were analyzed by ANOVA and a significance level of 10%. There was no effect (p> 0.10 of supplementation with chelated minerals on the percentage of cleaved oocytes, total embryos produced, percentage of produced

  16. Bifunctional groups grafted polyethersulfone magnetic beads for selective sequestration of plutonium

    International Nuclear Information System (INIS)

    Paul, Sumana; Aggarwal, S.K.; Pandey, A.K.

    2014-01-01

    The present study involves synthesis of polyethersulfone (PES) beads grafted with two different monomers viz. 2-hydroxyethylmethacrylate phosphoric acid ester (HEMP) and 2-acrylamido-2-methyl-1-propane sulphonic acid (AMPS) by photo-induced free radical polymerization method. The selection of bifunctional polymer was based on our previous studies, which indicated its efficacy for selective preconcentration of Pu from 3-4 mol L -1 HNO 3 . The HEMP-co-AMPS grafted PES beads were used for selective extraction of plutonium from dissolver solution

  17. A Proton-Switchable Bifunctional Ruthenium Complex That Catalyzes Nitrile Hydroboration.

    Science.gov (United States)

    Geri, Jacob B; Szymczak, Nathaniel K

    2015-10-14

    A new bifunctional pincer ligand framework bearing pendent proton-responsive hydroxyl groups was prepared and metalated with Ru(II) and subsequently isolated in four discrete protonation states. Stoichiometric reactions with H2 and HBPin showed facile E-H (E = H or BPin) activation across a Ru(II)-O bond, providing access to unusual Ru-H species with strong interactions with neighboring proton and boron atoms. These complexes were found to promote the catalytic hydroboration of ketones and nitriles under mild conditions, and the activity was highly dependent on the ligand's protonation state. Mechanistic experiments revealed a crucial role of the pendent hydroxyl groups for catalytic activity.

  18. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  19. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  20. Bifunctional electrode performance for zinc-air flow cells with pulse charging

    International Nuclear Information System (INIS)

    Pichler, Birgit; Weinberger, Stephan; Reščec, Lucas; Grimmer, Ilena; Gebetsroither, Florian; Bitschnau, Brigitte; Hacker, Viktor

    2017-01-01

    Highlights: •Manufacture of bi-catalyzed bifunctional air electrodes via scalable process. •Direct synthesis of NiCo 2 O 4 on carbon nanofibers or nickel powder support. •450 charge and discharge cycles over 1000 h at 50 mA cm −2 demonstrated. •Pulse charging with 150 mA cm −2 is successfully applied on air electrodes. •Charge and discharge ΔV of <0.8 V at 50 mA cm −2 when supplied with O 2. -- Abstract: Bifunctional air electrodes with tuned composition consisting of two precious metal-free oxide catalysts are manufactured for application in rechargeable zinc-air flow batteries and electrochemically tested via long-term pulse charge and discharge cycling experiments at 50 mA cm −2 (mean). NiCo 2 O 4 spinel, synthesized via direct impregnation on carbon nanofibers or nickel powder and characterized by energy dispersive X-ray spectroscopy and X-ray diffraction experiments, shows high activity toward oxygen evolution reaction with low charge potentials of < 2.0 V vs. Zn/Zn 2+ . La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 perovskite exhibits bifunctional activity and outperforms the NiCo 2 O 4 spinel in long-term stability tenfold. By combining the catalysts in one bi-catalyzed bifunctional air electrode, stable performances of more than 1000 h and 450 cycles are achieved when supplied with oxygen and over 650 h and 300 cycles when supplied with synthetic air. In addition, the pulse charging method, which is beneficial for compact zinc deposition, is successfully tested on air electrodes during long-term operation. The oxygen evolution potentials during pulse, i.e. at tripled charge current density of 150 mA cm −2 , are only 0.06–0.08 V higher compared to constant charging current densities. Scanning electron microscopy confirms that mechanical degradation caused by bubble formation during oxygen evolution results in slowly decreasing discharge potentials.

  1. Oxidations of amines with molecular oxygen using bifunctional gold–titania catalysts

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Mentzel, Uffe Vie

    2008-01-01

    –titania catalysts can be employed to facilitate the oxidation of amines into amides with high selectivity. Furthermore, we report that pure titania is in fact itself a catalyst for the oxidation of amines with molecular oxygen under very mild conditions. We demonstrate that these new methodologies open up for two......Over the past decades it has become clear that supported gold nanoparticles are surprisingly active and selective catalysts for several green oxidation reactions of oxygen-containing hydrocarbons using molecular oxygen as the stoichiometric oxidant. We here report that bifunctional gold...

  2. Basic evaluation of 67Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    International Nuclear Information System (INIS)

    Fujibayashi, Yasuhisa; Konishi, Junji; Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira.

    1993-01-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na + , K + -ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with 67 Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The 67 Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na + , K + -ATPase. The 67 Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na + , K + -ATPase imaging. (author)

  3. Neurodegeneration in D-bifunctional protein deficiency: diagnostic clues and natural history using serial magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Aneal [University of Calgary, Department of Medical Genetics and Pediatrics, Alberta Children' s Hospital, Calgary, AB (Canada); Wei, Xing-Chang [University of Calgary, Department of Radiology, Alberta Children' s Hospital, Calgary, AB (Canada); Snyder, Floyd F. [Alberta Children' s Hospital, Biochemical Genetics Laboratory, Calgary, AB (Canada); Mah, Jean K. [University of Calgary, Division of Neurology, Department of Pediatrics, Calgary, AB (Canada); Waterham, Hans; Wanders, Ronald J.A. [University of Amsterdam, Academic Medical Center, Lab Genetic Metabolic Diseases, Amsterdam (Netherlands)

    2010-12-15

    We report serial neurodegenerative changes on neuroimaging in a rare peroxisomal disease called D-bifunctional protein deficiency. The pattern of posterior to anterior demyelination with white matter disease resembles X-linked adrenoleukodystrophy. We feel this case is important to (1) highlight that D-bifunctional protein deficiency should be considered in cases where the neuroimaging resembles X-linked adrenoleukodystrophy, (2) to show different stages of progression to help identify this disease using neuroimaging in children, and (3) to show that neuroimaging suggesting a leukodystrophy can warrant peroxisomal beta-oxidation studies in skin fibroblasts even when plasma very long chain fatty acids are normal. (orig.)

  4. Synergistic extraction of Am(III) using HTTA and bi-functional (DHDECMP) and mono-functional (TBP) donors

    International Nuclear Information System (INIS)

    Pai, S.A.; Lohithakshan, K.V.; Mithapara, P.D.; Aggarwal, S.K.

    1999-01-01

    The equilibrium constant (log Ks) for the organic phase synergistic reaction for Am(III)-HTTA system with bi-functional neutral donor di-hexyl di-ethyl carbamoylmethyl phosphonate (DHDECMP) was found to be about two orders of magnitude higher than that of the mono-functional neutral donor (TBP) with comparable basicity values. This log Ks value along with a large positive entropy change with DHDECMP compared to that with TBP confirms that the neutral donors like DHDECMP behave as bi-functional, in sharp contrast to its mono-functional behaviour in Pu(VI). (author)

  5. Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

    Science.gov (United States)

    Schönherr, Jörg; Fernández, Victoria; Schreiber, Lukas

    2005-06-01

    Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe

  6. Study of cyclization of chelating compounds using electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Shi Ying; Campbell, J.A.

    2000-01-01

    Electrospray ionization mass spectrometry (ESI-MS) was used for the study of cyclization of organic chelating compounds (chelators). Four chelating compounds were studied: Symmetrical ethylenediaminediacetic acid (s-EDDA), Unsymmetrical ethylenediaminediacetic acid (u-EDDA), N-(2-hydroxyethyl) ethylenediaminetriacetic acid (HEDTA), and N-(2-hydroxyethyl)iminodiacetic acid (HEIDA). The chelators were cyclized with treatments of acids and heating. The open and cyclized form of the chelators were semi-quantified by both positive and negative ion modes ESI-MS. The kinetics of chelator cyclization was studied as a function of reaction temperature and the pH of the matrix. The cyclization of s-EDDA was found to be a pseudo-first order reaction in s-EDDA and overall second order. The cyclizations of HEIDA and HEDTA are reversible reactions. Higher temperature and lower pH favors cyclization. (author)

  7. Effect of other metals on iron bioavailability in presence of a selective chelator

    International Nuclear Information System (INIS)

    Rehman, F.S.

    1995-01-01

    Iron (III) is generally very easily chelated by a number of chelators in the biological environment, either supplied by food or already present there. One of the these chelator is gallic acid. The stability constants of the complexes formed between gallic acid and other trace metals have been determined by a potentiometric method. The data obtained was computed with the help of computer program B est . The resulted Beta values were compared with already known values of iron gallic acid complexes. (author)

  8. Photocatalyzed removal of lead ion from lead-chelator solution

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Hyun; Na, Jung Won; Sung, Ki Woung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    The present study was undertaken to examine the influence of such chelating agents on the ease and speed of photocatalyzed metal removal and deposition. With excess EDTA, the free EDTA competes with Pb for oxidation, and at a ten fold excess, no lead oxidation (hence removal) occurs. With insufficient EDTA, the corresponding initial concentration of Pb-EDTA is decreased; after its destruction, the remaining Pb{sup 2+} is removed more slowly, at rates found with lead nitrate solution. The net result is that the maximum rate of lead deposition occurs at the stoichiometric ratio of 1:1 EDTA : Pb{sup 2+}.

  9. Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates.

    Science.gov (United States)

    Kukis, D L; DeNardo, S J; DeNardo, G L; O'Donnell, R T; Meares, C F

    1998-12-01

    Radioimmunotherapy (RIT) with 90Y-labeled immunoconjugates has shown promise in clinical trials. The macrocyclic chelating agent 1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA) binds 90Y with extraordinary stability, minimizing the toxicity of 90Y-DOTA immunoconjugates arising from loss of 90Y to bone. However, reported 90Y-DOTA immunoconjugate product yields have been typically only BAD) was conjugated to the monoclonal antibody Lym-1 via 2-iminothiolane (2IT). The immunoconjugate product, 2IT-BAD-Lym-1, was labeled in excess yttrium in various buffers over a range of concentrations and pH. Kinetic studies were performed in selected buffers to estimate radiolabeling reaction times under prospective radiopharmacy labeling conditions. The effect of temperature on reaction kinetics was examined. Optimal radiolabeling conditions were identified and used in eight radiolabeling experiments with 2IT-BAD-Lym-1 and a second immunoconjugate, DOTA-peptide-chimeric L6, with 248-492 MBq (6.7-13.3 mCi) of 90Y. Ammonium acetate buffer (0.5 M) was associated with the highest uptake of yttrium. On the basis of kinetic data, the time required to chelate 94% of 90Y (four half-times) under prospective radiopharmacy labeling conditions in 0.5 M ammonium acetate was 17-148 min at pH 6.5, but it was only 1-10 min at pH 7.5. Raising the reaction temperature from 25 degrees C to 37 degrees C markedly increased the chelation rate. Optimal radiolabeling conditions were identified as: 30-min reaction time, 0.5 M ammonium acetate buffer, pH 7-7.5 and 37 degrees C. In eight labeling experiments under optimal conditions, a mean product yield (+/- s.d.) of 91%+/-8% was achieved, comparable to iodination yields. The specific activity of final products was 74-130 MBq (2.0-3.5 mCi) of 90Y per mg of monoclonal antibody. The immunoreactivity of 90Y-labeled immunoconjugates was 100%+/-11%. The optimization of 90Y-DOTA chelation conditions represents an important advance in 90Y RIT

  10. Acidizing reservoirs while chelating iron with sulfosalicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    McLaughlin, W A; Berkshire, D C

    1980-09-30

    A well treating process is described in which an aqueous solution of a strong acid capable of dissolving solids in a manner increasing the permeability of a subterranean earth formation is injected into a subterranean reservoir that contains an asphaltenic oil. At least the first injected portion of the aqueous acid and a solution or homogeneous dispersion of at least enough 5-sulfosalicylic acid to chelate with and prevent the formation of iron-asphaltene solids are included with substantially all of the ferric ions that become dissolved within the strong acid solution that enters the earth formation. 10 claims.

  11. Characterization and thermogravimetric analysis of lanthanide hexafluoroacetylacetone chelates.

    Science.gov (United States)

    Shahbazi, Shayan; Stratz, S Adam; Auxier, John D; Hanson, Daniel E; Marsh, Matthew L; Hall, Howard L

    2017-01-01

    This work reports the thermodynamic characterizations of organometallic species as a vehicle for the rapid separation of volatile nuclear fission products via gas chromatography due to differences in adsorption enthalpy. Because adsorption and sublimation thermodynamics are linearly correlated, there is considerable motivation to determine sublimation enthalpies. A method of isothermal thermogravimetric analysis, TGA-MS and melting point analysis are employed on thirteen lanthanide 1,1,1,5,5,5-hexafluoroacetylacetone complexes to determine sublimation enthalpies. An empirical correlation is used to estimate adsorption enthalpies of lanthanide complexes on a quartz column from the sublimation data. Additionally, four chelates are characterized by SC-XRD, elemental analysis, FTIR and NMR.

  12. Uranium and neodymium biosorption using novel chelating polysaccharide.

    Science.gov (United States)

    Elsalamouny, Ahmed R; Desouky, Osman A; Mohamed, Saad A; Galhoum, Ahmed A; Guibal, Eric

    2017-11-01

    A direct reaction is described to prepare hydrophobic α-aminomethylphosphonic acid as a novel chitosan-based material. It exhibits chelating properties for polyvalent metal ions such as U(VI) and Nd(III) ions. The new sorbent was fully characterized using Elemental analysis, scanning electron microscope (SEM) and FTIR spectra. Different parameters were examined in order to evaluate the optimum conditions for U(VI) and Nd(III) ions biosorption. Sorption mechanisms of metal ions were investigated using kinetic and isotherm models. In addition, the sorbent selectivity was tested for both metal ions together in a binary solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The influence of functional groups on the permeation and distribution of antimycobacterial rhodamine chelators.

    Science.gov (United States)

    Moniz, T; Leite, A; Silva, T; Gameiro, P; Gomes, M S; de Castro, B; Rangel, M

    2017-10-01

    We formerly hypothesized a mechanism whereby the antimycobacterial efficiency of a set of rhodamine labelled iron chelators is improved via the rhodamine fluorophore which enhances the chelators' permeation properties through membranes. To validate our hypothesis in a cellular context and to understand the influence of the structure of the fluorophore on the chelator's uptake and distribution within macrophages we now report comparative confocal microscopy studies performed with a set of rhodamine labelled chelators. We identify the functional groups of the chelator's framework that favor uptake by macrophages and conclude that the antimycobacterial effect is strongly related with the capacity of the chelator to distribute within the host cell and its compartments, a property that is closely related with the chelators' ability to interact with membranes. The quantification of the chelators' interaction with membranes was assessed through measurement of the corresponding partition constants in liposomes. The overall results support that the compounds which are preferentially taken up are the most efficient antimycobacterial chelators and for that reason we infer that the biological activity is modulated by the structural features of the fluorophore. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  15. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2. 1998 annual progress report

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Chateauneuf, J.E.; Stadtherr, M.A.

    1998-01-01

    'This report summarizes work after 1 year and 8 months (9/15/96-5/14/98) of a 3 year project. Thus far, progress has been made in: (1) the measurement of the solubility of metal chelates in SC CO 2 with and without added cosolvents, (2) the spectroscopic determination of preferential solvation of metal chelates by cosolvents in SC CO 2 solutions, and (3) the development of a totally reliable computational technique for phase equilibrium computations. An important factor in the removal of metals from solid matrices with CO 2 /chelate mixtures is the equilibrium solubility of the metal chelate complex in the CO 2 .'

  16. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    Science.gov (United States)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  17. Synthesis and characterization of new bifunctional nanocomposites possessing upconversion and oxygen-sensing properties

    International Nuclear Information System (INIS)

    Liu Lina; Li Bin; Qin Ruifei; Zhao Haifeng; Ren Xinguang; Su Zhongmin

    2010-01-01

    A new type of bifunctional nanocomposites for biomedical applications, upconversion NaY F 4 :Y b 3+ , Tm 3+ nanoparticles coated with Ru(II) complex chemically doped SiO 2 , has been developed by combining the useful functions of upconversion and oxygen-sensing properties into one nanoparticle. NaY F 4 :Y b 3+ , Tm 3+ nanoparticles were successfully coated with an Ru(II) complex doped SiO 2 shell with a thickness of ∼ 30 nm, and the surface of the SiO 2 was functionalized with amines. The obtained nanocomposites exhibited bright blue upconversion emission, and the luminescent emission intensity of the Ru(II) complex in the nanocomposites was sensitive to oxygen. Compared with the simple mixture of Ru(II) complex and SiO 2 , the core-shell nanocomposites showed better linearity between emission intensity of Ru(II) complex and oxygen concentrations. These bifunctional nanocomposites may find applications in biochemical and biomedical fields, such as biolabels and optical oxygen sensors, which can measure the oxygen concentrations in biological fluids.

  18. Iminodiacetic acid as bifunctional linker for dimerization of cyclic RGD peptides

    International Nuclear Information System (INIS)

    Xu, Dong; Zhao, Zuo-Quan; Chen, Shu-Ting; Yang, Yong; Fang, Wei; Liu, Shuang

    2017-01-01

    Introduction: In this study, I2P-RGD 2 was used as the example to illustrate a novel approach for dimerization of cyclic RGD peptides. The main objective of this study was to explore the impact of bifunctional linkers (glutamic acid vs. iminodiacetic acid) on tumor-targeting capability and excretion kinetics of the 99m Tc-labeled dimeric cyclic RGD peptides. Methods: HYNIC-I2P-RGD 2 was prepared by reacting I2P-RGD 2 with HYNIC-OSu in the presence of diisopropylethylamine, and was evaluated for its α v β 3 binding affinity against 125 I-echistatin bound to U87MG glioma cells. 99m Tc-I2P-RGD 2 was prepared with high specific activity (~185 GBq/μmol). The athymic nude mice bearing U87MG glioma xenografts were used to evaluate its biodistribution properties and image quality in comparison with those of 99m Tc-3P-RGD 2 . Results: The IC 50 value for HYNIC-I2P-RGD 2 was determined to be 39 ± 6 nM, which was very close to that (IC 50 = 33 ± 5 nM) of HYNIC-3P-RGD 2 . Replacing glutamic acid with iminodiacetic acid had little impact on α v β 3 binding affinity of cyclic RGD peptides. 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 shared similar tumor uptake values over the 2 h period, and its α v β 3 -specificity was demonstrated by a blocking experiment. The uptake of 99m Tc-I2P-RGD 2 was significantly lower than 99m Tc-3P-RGD 2 in the liver and kidneys. The U87MG glioma tumors were visualized by SPECT with excellent contrast using both 99m Tc-I2P-RGD 2 and 99m Tc-3P-RGD 2 . Conclusion: Iminodiacetic acid is an excellent bifunctional linker for dimerization of cyclic RGD peptides. Bifunctional linkers have significant impact on the excretion kinetics of 99m Tc radiotracers. Because of its lower liver uptake and better tumor/liver ratios, 99m Tc-I2P-RGD 2 may have advantages over 99m Tc-3P-RGD 2 for diagnosis of tumors in chest region. -- Graphical abstract: This report presents novel approach for dimerization of cyclic RGD peptides using iminodiacetic acid as a

  19. Synthesis of LaNiO3 perovskite type by chelating precursor method using EDTA: optimization of chelating content

    International Nuclear Information System (INIS)

    Santos, Jose Carlos dos; Pedrosa, Anne Michelle Garrido; Mesquita, Maria Eliane; Souza, Marcelo Jose Barros de

    2011-01-01

    The perovskites are strategic materials due their catalytic, electronic and magnetic properties. These properties are influenced by the calcination and synthesis conditions. In this work was carried out the synthesis of LaNiO 3 perovskite type by chelating precursor method using EDTA and also was studied the optimization of the EDTA content in the synthesis. The synthesized materials were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TG) and Infrared Spectroscopy (FTIR). In the optimization of the EDTA content the lowest ratio of metal / EDTA used was 1.0 / 0.1, where it was possible to obtain monophasic perovskite. (author)

  20. Complexation and biodistribution study of 111In complexes of bifunctional phosphinic acid analogues of H4DOTA

    Czech Academy of Sciences Publication Activity Database

    Forsterová, Michaela; Zimová, Jana; Petrík, M.; Lázníček, M.; Lázníčková, A.; Hermann, P.; Melichar, František

    2007-01-01

    Roč. 2, č. 337 (2007), s. 34-34 ISSN 1619-7070 R&D Projects: GA AV ČR 1QS100480501 Institutional research plan: CEZ:AV0Z10480505 Keywords : bifunctional H4DOTA ligands * phosphinic acid analogues, * complexation of 111In Subject RIV: FR - Pharmacology ; Medidal Chemistry

  1. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas : A review

    NARCIS (Netherlands)

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and

  2. Detoxication and removal of uranium by phenolic chelating agents

    International Nuclear Information System (INIS)

    Luo Meichu; Chen Guibao; Li Landi

    1992-01-01

    The use of phenolic chelating agents for detoxication and removal of uranyl nitrate in mice and rats is reported. Antidotal test: 8102, 7601 and 811 were given 2 mM/kg subcutaneously to mice and 1 mM/kg intramuscularly to rats when the animals were injected i.p. with different doses (100-500 mg/kg) of uranyl nitrate. The results showed that the antidotal effects of 8102 and 7601 were better than 811 in augmenting survival, survival time (day) and renal factor (kidney weight/body weight x100). 8102 was superior to 7601 against higher dose of uranyl nitrate intoxication. Removal test: five phenolic chelating agents (8102, 7601, 811, 7603 and 8307) were studied in rats. The results obtained demonstrated that 8102 and 7601 were better than 811, 7603 and 8307 in increasing U excretion in the urine after acute uranyl nitrate intoxication. The effects of different doses (300-1000 μM/kg) of 8102 was superior to 7601 in increasing U excretion in the urine and decreasing U deposition in the tissues. The toxicity and dose of 8102 in treating uranium intoxication are discussed

  3. Selective separation of indium by iminodiacetic acid chelating resin

    International Nuclear Information System (INIS)

    Fortes, M.C.B.; Benedetto, J.S.; Martins, A.H.

    2007-01-01

    - Indium can be recovered by treating residues, flue dusts, slags, and metallic intermediates in zinc smelting. This paper investigates the adsorption characteristics of indium and iron on an iminodiacetic acid chelating resin, Amberlite R IRC748 (Rohm and Haas Co.-USA). High concentrations of iron are always present in the aqueous feed solution of indium recovery. In addition, the chemical behaviour of iron in adsorptive systems is similar to that of indium. The metal concentrations in the aqueous solution were based on typical indium sulfate leach liquor obtained from zinc hydrometallurgical processing in a Brazilian plant. The ionic adsorption experiments were carried out by the continuous column method. Amberlite R IRC748 resin had a high affinity for indium under acidic conditions. Indium ions adsorbed onto the polymeric resin were eluted with a 0.5 mol/dm 3 sulphuric acid solution passed through the resin bed in the column. 99.5% pure indium sulfate aqueous solution was obtained using the iminodiacetic acid chelating resin Amberlite R IRC748. (author)

  4. Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Naf, S.M., E-mail: sm.abo-naf@nrc.sci.eg [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Abdel-Hameed, S.A.M.; Marzouk, M.A. [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt)

    2017-06-15

    Red phosphor, composed of Eu-Gd-Bi-codoped hybrid organo-silica glass, has been synthesized via a modified Pechini sol-gel process. The synthesized hybrid glass was analyzed with powder X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetry (DTA-TG) and Fourier transform infrared (FTIR) spectroscopy. XRD and DTA-TG confirmed its amorphous structure up to 1000 °C. Magnetic behavior of the produced phosphor was investigated using vibrating specimen magnetometer (VSM) and the obtained results revealed its unsaturated ferromagnetic behavior. Photoluminescence (PL) properties of the obtained phosphor have been investigated under near-UV excitation at 395 nm. The influence of calcination temperature on the PL intensity and its decay behavior as well as on the ferromagnetic characteristics has been studied to determine the optimal reaction temperature of the phosphor. The PL emission spectra show the characteristic emission bands of Eu{sup 3+} ions in the wavelength range from 580 to 700 nm. These emission spectra have been dominated by the electric dipole {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of the Eu{sup 3+} peaked at 610–620 nm producing the red light emission of the phosphors. It was found that the phosphor performance, expressed by its PL intensity and life time, could be significantly improved by increasing of the heat treatment temperature up to 900 °C. Also, calcination at 900 °C for 6 h greatly increased both of the magnetization and retentivity, while decreased the coercivity value. The organic phenomenon of metal citrate-ethylene glycol chelation and its degradation by calcination were well followed by FTIR spectroscopy. The obtained results are promising and could afford a basis for designing of efficient red phosphors for displays, lighting and bifunctional biosensors for biomedical applications. - Highlights: • Eu-Gd-Bi-codoped hybrid organo-silica phosphor was synthesized by sol-gel method. • Inorganic Eu

  5. KINETICS OF THE OXIDATION OF FERROUS CHELATES OF EDTA AND HEDTA IN AQUEOUS-SOLUTION

    NARCIS (Netherlands)

    WUBS, HJ; BEENACKERS, AACM

    1993-01-01

    The kinetics of the reaction of oxygen with ferrous chelates of EDTA and HEDTA was studied in a stirred cell reactor under industrial conditions. The temperature was varied from 20 to 60-degrees-C and the concentration of the ferrous chelate ranged from 0 to 100 mol/m3. The initial pH was 7.5. Under

  6. Antioxidant, Iron-chelating and Anti-glucosidase Activities of Typha ...

    African Journals Online (AJOL)

    Iron chelating activity was assessed using a ferrozine-based assay. Anti- glucosidase activity was determined using 4-nitrophenyl ... flavonoid (TF) content was determined based an aluminum chloride colorimetric assay [6]. TF content was ..... Dietary iron restriction or iron chelation protects from diabetes and loss of β-cell.

  7. The structure of Haemophilus influenzae prephenate dehydrogenase suggests unique features of bifunctional TyrA enzymes

    International Nuclear Information System (INIS)

    Chiu, Hsiu-Ju; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Carlton, Dennis; Clayton, Thomas; Das, Debanu; Deller, Marc C.; Duan, Lian; Feuerhelm, Julie; Grant, Joanna C.; Grzechnik, Anna; Han, Gye Won; Jaroszewski, Lukasz; Jin, Kevin K.; Klock, Heath E.; Knuth, Mark W.; Kozbial, Piotr; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Okach, Linda; Reyes, Ron; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2010-01-01

    The crystal structure of the prephenate dehydrogenase component of the bifunctional H. influenzae TyrA reveals unique structural differences between bifunctional and monofunctional TyrA enzymes. Chorismate mutase/prephenate dehydrogenase from Haemophilus influenzae Rd KW20 is a bifunctional enzyme that catalyzes the rearrangement of chorismate to prephenate and the NAD(P) + -dependent oxidative decarboxylation of prephenate to 4-hydroxyphenylpyruvate in tyrosine biosynthesis. The crystal structure of the prephenate dehydrogenase component (HinfPDH) of the TyrA protein from H. influenzae Rd KW20 in complex with the inhibitor tyrosine and cofactor NAD + has been determined to 2.0 Å resolution. HinfPDH is a dimeric enzyme, with each monomer consisting of an N-terminal α/β dinucleotide-binding domain and a C-terminal α-helical dimerization domain. The structure reveals key active-site residues at the domain interface, including His200, Arg297 and Ser179 that are involved in catalysis and/or ligand binding and are highly conserved in TyrA proteins from all three kingdoms of life. Tyrosine is bound directly at the catalytic site, suggesting that it is a competitive inhibitor of HinfPDH. Comparisons with its structural homologues reveal important differences around the active site, including the absence of an α–β motif in HinfPDH that is present in other TyrA proteins, such as Synechocystis sp. arogenate dehydrogenase. Residues from this motif are involved in discrimination between NADP + and NAD + . The loop between β5 and β6 in the N-terminal domain is much shorter in HinfPDH and an extra helix is present at the C-terminus. Furthermore, HinfPDH adopts a more closed conformation compared with TyrA proteins that do not have tyrosine bound. This conformational change brings the substrate, cofactor and active-site residues into close proximity for catalysis. An ionic network consisting of Arg297 (a key residue for tyrosine binding), a water molecule, Asp206 (from

  8. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Soja Siti, E-mail: soja-sf@upi.edu [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia); Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Bahti, Husein H.; Hastiawan, Iwan [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang, Km. 21, Jatinangor (Indonesia); Permanasari, Anna [Departemen Pendidikan Kimia, Universitas Pendidikan Indonesia, Jl. Dr. Setiabudhi No. 229, Bandung 40154 (Indonesia)

    2016-02-08

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, ({sup 1}H, and {sup 13}C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  9. Synthesis and characterization of dihexyldithiocarbamate as a chelating agent in extraction of gold(III)

    Science.gov (United States)

    Fatimah, Soja Siti; Bahti, Husein H.; Hastiawan, Iwan; Permanasari, Anna

    2016-02-01

    The use of dialkyldithiocarbamates as chelating agents of transition metals have been developing for decades. Many chelating agents have been synthesized and used in the extraction of the metals. Studies on particular aspects of extraction of the metals, such as the effect of increasing hydrophobicity of chelating agents on the effectiveness of the extraction, have been done. However, despite the many studies on the synthesis and applications of this type of chelating agents, interests in the aspect of molecular structure of the synthesized ligands and of their complexes, have been limited. This study aimed at synthesizing and characterizing dihexylthiocarbamate, and using the ligand for the extraction of gold III). Characterization of the ligand and of its metal complex were done by using elemental analysis, DTG, and spectroscopic methods to include NMR, (1H, and 13C), FTIR, and MS-ESI. Data on the synthesis, characterization, and the application of the ligand as a chelating agent are presented.

  10. Preparation, characterization, magnetic and thermal studies of some chelate polymers of first series transition metal ions

    International Nuclear Information System (INIS)

    Ukey, Vaishali V.; Juneja, H.D.; Borkar, S.D.; Ghubde, R.S.; Naz, S.

    2006-01-01

    Azelaoyl-bis-hydroxamic acid used as bis ligand for the preparation of chelate polymers of Mn(II), Co(II), Ni(II) and Zn(II). These chelate polymers have been synthesized by refluxing the metal acetate and bis ligand as 1:1 stoichiometry. In the present work, structural determination of these newly synthesized chelate polymers has been studied on the basis of elemental analyses, infrared and reflectance spectral, magnetic and thermal studies. The decomposition temperature and the order of reaction have been determined by TGA analysis. On the basis of these studies, the Zn(II) chelate polymer has tetrahedral geometry, whereas Mn(II), Co(II) and Ni(II) chelate polymers have octahedral geometry and have the thermal stability in the order Ni(II) > Mn(II) > Zn(II) > Co(II)

  11. Studies of the competition for thorium ion between chelating agents and bovine serum albumin

    International Nuclear Information System (INIS)

    Luo Meichu; Zhang Meizhen; Sun Meizhen; Chen Shijie

    1995-01-01

    Fourteen chelation agents (polyaminopolcarboxylate type--TTHA, DTPA, EDTA; phenolicpolycarboxylate type--811, 8102, 7601, 7602, 7603, 7616, 7711, 7724, 7803, 7804, 8307) were studied their competitive ability to mobilize the thorium with bovine serum albumin (BSA). The experimental results showed that the competitive ability of TTHA, 8102, 811 to chelate Thorium with BSA were the strongest, and EDTA was the worst in all chelating agents. The measured order of the competitive ability of chelators is basically consistent with animal experimental results in vivo. The parameter F is defined as the competitive ability of chelators. F is taken as a screening criterion for de-corporate thorium which is simple, quick and effective method in vitro

  12. Red Blood Cell Transfusion Independence Following the Initiation of Iron Chelation Therapy in Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Maha A. Badawi

    2010-01-01

    Full Text Available Iron chelation therapy is often used to treat iron overload in patients requiring transfusion of red blood cells (RBC. A 76-year-old man with MDS type refractory cytopenia with multilineage dysplasia, intermediate-1 IPSS risk, was referred when he became transfusion dependent. He declined infusional chelation but subsequently accepted oral therapy. Following the initiation of chelation, RBC transfusion requirement ceased and he remained transfusion independent over 40 months later. Over the same time course, ferritin levels decreased but did not normalize. There have been eighteen other MDS patients reported showing improvement in hemoglobin level with iron chelation; nine became transfusion independent, nine had decreased transfusion requirements, and some showed improved trilineage myelopoiesis. The clinical features of these patients are summarized and possible mechanisms for such an effect of iron chelation on cytopenias are discussed.

  13. Preparation, Spectroscopic Investigation and Biological Activity of New Mixed Ligand Chelates

    International Nuclear Information System (INIS)

    Alassbaly, F.S.; Ajaily, M.M.E.

    2014-01-01

    Preparation and investigation of new Co(II), Ni(II), Zn(II) and Cr(III) chelates with mixed ligands including Schiff base (L1) formed from the condensation of 4-dimethylaminobenzaldehyde with 2-aminophenol and anthranilic acid (L2) were studied. The obtained Schiff base and mixed ligand chelates were subjected to several physiochemical techniques, in terms of CHN elemental analyses, molar conductivity, magnetic moment measurements, infrared, proton nuclear magnetic resonance, electronic and mass spectra. The analytical data showed the formation of the Schiff base compound and the ratio of metal to ligands of the chelates are 1:1:1(M:L1:L2). The infrared spectral data exhibited that the used ligands behaving as bidentate ligands towards the metal ions. The proton nuclear magnetic resonance spectral data showed the signals of the active groups in the ligands which entered in chelation with Zn(II) metal ion. The electronic spectral results showed the existence of pie (phenyl ring) and n = pie (C=N) of the ligands and suggested the geometrical structures of the chelates. Meanwhile, the mass spectral data revealed the fragmentations of the Schiff base, anthranilic acid and their Ni(II) mixed ligand chelate has been preformed the only chelate conducted for justification. All the prepared mixed chelates were non-electrolyte in nature. The antibacterial activity of the Schiff base, anthranilic acid, metal salts and mixed ligand chelates were studied and found to be that mixed ligand chelates have the most biological activity in comparison to the free ligands and salts. (author)

  14. Modeling systemic and renal gadolinium chelate transport with MRI

    Energy Technology Data Exchange (ETDEWEB)

    Votaw, John R.; Martin, Diego [Emory University Hospital, Department of Radiology, Atlanta, GA (United States)

    2008-01-15

    The advent of modern MRI scanners and computer equipment permits the rapid sequential collection of images of gadolinium chelate (Gd) transit through the kidney. The excellent spatial and temporal (0.9 s) resolution permits analyzing the shape of the recovered curves with a sophisticated model that includes both space and time. The purpose of this manuscript is to present such a mathematical model. By building into the model significant physical processes that contribute to the shape of the measured curve, quantitative values can be assigned to important parameters. In this work, quantitative values are determined for blood dispersion through the cardio-pulmonary system, systemic clearance rate of Gd, blood flow into each kidney, blood transit time in each kidney, the extraction rate of Gd across the capillary membrane, interstitial distribution volume, and the GFR for each kidney. (orig.)

  15. Kinetic study of ion exchange in phosphoric acid chelating resin

    International Nuclear Information System (INIS)

    Brikci-Nigassa, Mounir; Hamouche, Hafida

    1995-11-01

    Uranium may be recovered as a by product of wet phosphoric acid using a method based on specific ion exchange resins. These resins called chelates contain amino-phosphonic functional groups. The resin studied in this work is a purolite S-940; uranium may be loaded on this resin from 30% P2O5 phosphoric acid in its reduced state. The influence of different parameters on the successive steps of the process have been studied in batch experiments: uranium reduction, loading and oxydation. Uranium may be eluted with ammonium carbonate and the resin regeneration may be done with hydrochloric acid.Ferric ions reduce the effective resin capacity considerably and inert fixation conditions are proposed to enhance uranium loading

  16. 3,4,5-trihydroxybenzoic acid as chelating agent

    International Nuclear Information System (INIS)

    Agrawal, M.D.; Bhandari, C.S.; Dixit, M.K.; Sogani, N.C.

    1976-01-01

    Stability constants of praseodymium chelates of 3,4,5-trihydroxy sodium benzoate are determined by using Bjerrum-Calvin pH titration techniques at constant ionic strength 0.1M-sodium perchlorate and at 28+-0.1 0 C. Values calculated by different methods are in good agreement. The study reveals that during complexation only one proton of the ligand molecule is replaced by the metal and oxygen of adjacent phenolic group acts as a coordinating atom. IR and NMR spectral studies of the ligand reveal that one of the OH groups (in meta position to carboxylic group) remains free while two other phenolic groups are involved in intramolecular hydrogen bonding. One water molecule is found attached in crystalline gallic acid. (author)

  17. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiao; Goto, Yasutomo; Maegawa, Yoshifumi; Inagaki, Shinji, E-mail: inagaki@mosk.tytlabs.co.jp [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan); Japan Science and Technology Agency (JST)/ACT-C, Nagakute, Aichi, 480-1192 (Japan); Ohsuna, Tetsu [Toyota Central R and D Laboratories, Inc., Nagakute, Aichi 480-1192 (Japan)

    2014-11-01

    We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce{sup 4+}, due to the ready access of reactants to the active sites in the nanotubes.

  18. Thermometric studies on the Fe(III)-EDTA chelate.

    Science.gov (United States)

    Dot, K

    1978-02-01

    A DeltaH of -11.5 +/- 0.5 kJ/mole has been determined for the formation of the Fe(III)-EDTA chelate at 25.0 degrees and mu = 0.1(= [HClO(4)] + [NaClO(4)]) by a direct thermometric titration procedure. The entropy change, DeltaS, has been calculated to be 440 J.mole(-1) .deg(-1) by combining the result of the heat measurements with the free energy change obtained from the stability constant previously determined. A relationship between the DeltaS values and the standard partial molal entropies of the tervalent metal ions is discussed. In addition, conditions for the thermometric titration of Fe(III) with NA(4)EDTA at room temperature have been investigated. Iron(III) can be determined in the presence of fairly large amounts of phosphate, Cr(III), Mn(II) and Al(III).

  19. Mesoporous organosilica nanotubes containing a chelating ligand in their walls

    Directory of Open Access Journals (Sweden)

    Xiao Liu

    2014-11-01

    Full Text Available We report the synthesis of organosilica nanotubes containing 2,2′-bipyridine chelating ligands within their walls, employing a single-micelle-templating method. These nanotubes have an average pore diameter of 7.8 nm and lengths of several hundred nanometers. UV-vis absorption spectra and scanning transmission electron microscopy observations of immobilized nanotubes with an iridium complex on the bipyridine ligands showed that the 2,2′-bipyridine groups were homogeneously distributed in the benzene-silica walls. The iridium complex, thus, immobilized on the nanotubes exhibited efficient catalytic activity for water oxidation using Ce4+, due to the ready access of reactants to the active sites in the nanotubes.

  20. Chelation and stabilization of berkelium in oxidation state +IV

    Science.gov (United States)

    Deblonde, Gauthier J.-P.; Sturzbecher-Hoehne, Manuel; Rupert, Peter B.; An, Dahlia D.; Illy, Marie-Claire; Ralston, Corie Y.; Brabec, Jiri; de Jong, Wibe A.; Strong, Roland K.; Abergel, Rebecca J.

    2017-09-01

    Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin—a mammalian metal transporter—in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

  1. Growth and optical characterization of colloidal CdTe nanoparticles capped by a bifunctional molecule

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-sadek, M.S., E-mail: el_sadek_99@email.co [Nanomaterial Laboratory, Physics Department, Faculty of Science, South Valley University, Qena-83523 (Egypt); Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India); Moorthy Babu, S. [Crystal Growth Centre, Anna University Chennai, Chennai-600025 (India)

    2010-08-15

    Thiol-capped CdTe nanoparticles were synthesized in aqueous solution by wet chemical route. CdTe nanoparticles with bifunctional molecule mercaptoacetic acid as a stabilizer were synthesized at pH{approx}11.2 and using potassium tellurite as tellurium source. The effect of refluxing time on the preparation of these samples was measured using UV-vis absorption and photoluminescence analysis. By increasing the refluxing time the UV-vis absorption and photoluminescence results show that the band edge emission is redshifted. The synthesized thiol-capped CdTe were characterized with FT-IR, TEM and TG-DTA. The particle size was calculated by the effective mass approximation (EMA). The role of precursors, their composition, pH and reaction procedure on the development of nanoparticles are analyzed.

  2. Boehmite-An Efficient and Recyclable Acid-Base Bifunctional Catalyst for Aldol Condensation Reaction.

    Science.gov (United States)

    Reshma, P C Rajan; Vikneshvaran, Sekar; Velmathi, Sivan

    2018-06-01

    In this work boehmite was used as an acid-base bifunctional catalyst for aldol condensation reactions of aromatic aldehydes and ketones. The catalyst was prepared by simple sol-gel method using Al(NO3)3·9H2O and NH4OH as precursors. The catalyst has been characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), UV-visible spectroscopy (DRS), BET surface area analyses. Boehmite is successfully applied as catalyst for the condensation reaction between 4-nitrobenzaldehyde and acetone as a model substrate giving α, β-unsaturated ketones without any side product. The scope of the reaction is extended for various substituted aldehydes. A probable mechanism has been suggested to explain the cooperative behavior of the acidic and basic sites. The catalyst is environmentally friendly and easily recovered from the reaction mixture. Also the catalyst is reusable up to 3 catalytic cycles.

  3. Bi-functional biobased packing of the cassava starch, glycerol, licuri nanocellulose and red propolis.

    Directory of Open Access Journals (Sweden)

    Samantha Serra Costa

    Full Text Available The aim of this study was to characterize and determine the bi-functional efficacy of active packaging films produced with starch (4% and glycerol (1.0%, reinforced with cellulose nanocrystals (0-1% and activated with alcoholic extracts of red propolis (0.4 to 1.0%. The cellulose nanocrystals used in this study were extracted from licuri leaves. The films were characterized using moisture, water-activity analyses and water vapor-permeability tests and were tested regarding their total phenolic compounds and mechanical properties. The antimicrobial and antioxidant efficacy of the films were evaluated by monitoring the use of the active films for packaging cheese curds and butter, respectively. The cellulose nanocrystals increased the mechanical strength of the films and reduced the water permeability and water activity. The active film had an antimicrobial effect on coagulase-positive staphylococci in cheese curds and reduced the oxidation of butter during storage.

  4. Improving battery safety by early detection of internal shorting with a bifunctional separator

    Science.gov (United States)

    Wu, Hui; Zhuo, Denys; Kong, Desheng; Cui, Yi

    2014-10-01

    Lithium-based rechargeable batteries have been widely used in portable electronics and show great promise for emerging applications in transportation and wind-solar-grid energy storage, although their safety remains a practical concern. Failures in the form of fire and explosion can be initiated by internal short circuits associated with lithium dendrite formation during cycling. Here we report a new strategy for improving safety by designing a smart battery that allows internal battery health to be monitored in situ. Specifically, we achieve early detection of lithium dendrites inside batteries through a bifunctional separator, which offers a third sensing terminal in addition to the cathode and anode. The sensing terminal provides unique signals in the form of a pronounced voltage change, indicating imminent penetration of dendrites through the separator. This detection mechanism is highly sensitive, accurate and activated well in advance of shorting and can be applied to many types of batteries for improved safety.

  5. Basic evaluation of [sup 67]Ga labeled digoxin derivative as a metal-labeled bifunctional radiopharmaceutical

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Yasuhisa; Konishi, Junji (Kyoto Univ. (Japan). Faculty of Medicine); Takemura, Yasutaka; Taniuchi, Hideyuki; Iijima, Naoko; Yokoyama, Akira

    1993-11-01

    To develop metal-labeled digoxin radiopharmaceuticals with affinity with anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase, a digoxin derivative conjugated with deferoxamine was synthesized. The derivative had a high binding affinity with [sup 67]Ga at deferoxamine introduced to the terminal sugar ring of digoxin. The [sup 67]Ga labeled digoxin derivative showed enough in vitro binding affinity and selectivity to anti-digoxin antibody as well as Na[sup +], K[sup +]-ATPase. The [sup 67]Ga labeled digoxin derivative is considered to be a potential metal-labeled bifunctional radiopharmaceutical for digoxin RIA as well as myocardial Na[sup +], K[sup +]-ATPase imaging. (author).

  6. First-Principles Study of Structure Property Relationships of Monolayer (Hydroxy)Oxide-Metal Bifunctional Electrocatalysts

    DEFF Research Database (Denmark)

    Zeng, Zhenhua; Kubal, Joseph; Greeley, Jeffrey Philip

    2015-01-01

    step towards accurate identification and prediction of a variety of oxide/electrode interfacial structure-properties relationships, but also provides the foundation for rational design and control of ‘targeted active phases’ at catalytic interfaces. The successful design of bifunctional......In the present study, on the basis of detailed density functional theory (DFT) calculations, and using Ni hydroxy(oxide) films on Pt(111) and Au(111) electrodes as model systems, we describe a detailed structural and electrocatalytic analysis of hydrogen evolution (HER) at three-phase boundaries...... under alkaline electrochemical conditions. We demonstrate that the structure and oxidation state of the films can be systematically tuned by changing the applied electrode potential and/or the nature of substrates. Structural features determined from the theoretical calculations provide a wealth...

  7. Polarization holograms in a bifunctional amorphous polymer exhibiting equal values of photoinduced linear and circular birefringences.

    Science.gov (United States)

    Provenzano, Clementina; Pagliusi, Pasquale; Cipparrone, Gabriella; Royes, Jorge; Piñol, Milagros; Oriol, Luis

    2014-10-09

    Light-controlled molecular alignment is a flexible and useful strategy introducing novelty in the fields of mechanics, self-organized structuring, mass transport, optics, and photonics and addressing the development of smart optical devices. Azobenzene-containing polymers are well-known photocontrollable materials with large and reversible photoinduced optical anisotropies. The vectorial holography applied to these materials enables peculiar optical devices whose properties strongly depend on the relative values of the photoinduced birefringences. Here is reported a polarization holographic recording based on the interference of two waves with orthogonal linear polarization on a bifunctional amorphous polymer that, exceptionally, exhibits equal values of linear and circular birefringence. The peculiar photoresponse of the material coupled with the holographic technique demonstrates an optical device capable of decomposing the light into a set of orthogonally polarized linear components. The holographic structures are theoretically described by the Jones matrices method and experimentally investigated.

  8. Development of tartaric esters as bifunctional additives of methanol-gasoline.

    Science.gov (United States)

    Zhang, Jie; Yang, Changchun; Tang, Ying; Zhou, Rui; Wang, Xiaoli; Xu, Lianghong

    2014-01-01

    Methanol has become an alternative fuel for gasoline, which is facing a rapidly rising world demand with a limited oil supply. Methanol-gasoline has been used in China, but phase stability and vapor lock still need to be resolved in methanol-gasoline applications. In this paper, a series of tartaric esters were synthesized and used as phase stabilizers and saturation vapor pressure depressors for methanol-gasoline. The results showed that the phase stabilities of tartaric esters for methanol-gasoline depend on the length of the alkoxy group. Several tartaric esters were found to be effective in various gasoline-methanol blends, and the tartaric esters display high capacity to depress the saturation vapor pressure of methanol-gasoline. According to the results, it can be concluded that the tartaric esters have great potential to be bifunctional gasoline-methanol additives.

  9. Novel 3-nitrotriazole-based amides and carbinols as bifunctional anti-Chagasic agents

    Science.gov (United States)

    Papadopoulou, Maria V.; Bloomer, William D.; Lepesheva, Galina I.; Rosenzweig, Howard S.; Kaiser, Marcel; Aguilera-Venegas, Benjamín; Wilkinson, Shane R.; Chatelain, Eric; Ioset, Jean-Robert

    2015-01-01

    3-Nitro-1H-1,2,4-triazole-based amides with a linear, rigid core and 3-nitrotriazole-based fluconazole analogs were synthesized as dual functioning antitrypanosomal agents. Such compounds are excellent substrates for type I nitroreductase (NTR) located in the mitochondrion of trypanosomatids and, at the same time, act as inhibitors of the sterol 14α-demethylase (T. cruzi CYP51) enzyme. Because combination treatments against parasites are often superior to monotherapy, we believe that this emerging class of bifunctional compounds may introduce a new generation of antitrypanosomal drugs. In the present work, the synthesis and in vitro and in vivo evaluation of such compounds is discussed. PMID:25580906

  10. On the molecular basis of D-bifunctional protein deficiency type III.

    Directory of Open Access Journals (Sweden)

    Maija L Mehtälä

    Full Text Available Molecular basis of D-bifunctional protein (D-BP deficiency was studied with wild type and five disease-causing variants of 3R-hydroxyacyl-CoA dehydrogenase fragment of the human MFE-2 (multifunctional enzyme type 2 protein. Complementation analysis in vivo in yeast and in vitro enzyme kinetic and stability determinants as well as in silico stability and structural fluctuation calculations were correlated with clinical data of known patients. Despite variations not affecting the catalytic residues, enzyme kinetic performance (K(m, V(max and k(cat of the recombinant protein variants were compromised to a varying extent and this can be judged as the direct molecular cause for D-BP deficiency. Protein stability plays an additional role in producing non-functionality of MFE-2 in case structural variations affect cofactor or substrate binding sites. Structure-function considerations of the variant proteins matched well with the available data of the patients.

  11. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    International Nuclear Information System (INIS)

    Hoy, C.A.; Thompson, L.H.; Mooney, C.L.; Salazar, E.P.

    1985-01-01

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  12. Arabidopsis RIBA Proteins: Two out of Three Isoforms Have Lost Their Bifunctional Activity in Riboflavin Biosynthesis

    Science.gov (United States)

    Hiltunen, Hanna-Maija; Illarionov, Boris; Hedtke, Boris; Fischer, Markus; Grimm, Bernhard

    2012-01-01

    Riboflavin serves as a precursor for flavocoenzymes (FMN and FAD) and is essential for all living organisms. The two committed enzymatic steps of riboflavin biosynthesis are performed in plants by bifunctional RIBA enzymes comprised of GTP cyclohydrolase II (GCHII) and 3,4-dihydroxy-2-butanone-4-phosphate synthase (DHBPS). Angiosperms share a small RIBA gene family consisting of three members. A reduction of AtRIBA1 expression in the Arabidopsis rfd1mutant and in RIBA1 antisense lines is not complemented by the simultaneously expressed isoforms AtRIBA2 and AtRIBA3. The intensity of the bleaching leaf phenotype of RIBA1 deficient plants correlates with the inactivation of AtRIBA1 expression, while no significant effects on the mRNA abundance of AtRIBA2 and AtRIBA3 were observed. We examined reasons why both isoforms fail to sufficiently compensate for a lack of RIBA1 expression. All three RIBA isoforms are shown to be translocated into chloroplasts as GFP fusion proteins. Interestingly, both AtRIBA2 and AtRIBA3 have amino acid exchanges in conserved peptides domains that have been found to be essential for the two enzymatic functions. In vitro activity assays of GCHII and DHBPS with all of the three purified recombinant AtRIBA proteins and complementation of E. coli ribA and ribB mutants lacking DHBPS and GCHII expression, respectively, confirmed the loss of bifunctionality for AtRIBA2 and AtRIBA3. Phylogenetic analyses imply that the monofunctional, bipartite RIBA3 proteins, which have lost DHBPS activity, evolved early in tracheophyte evolution. PMID:23203051

  13. Gently reduced graphene oxide incorporated into cobalt oxalate rods as bifunctional oxygen electrocatalyst

    International Nuclear Information System (INIS)

    Phihusut, Doungkamon; Ocon, Joey D.; Jeong, Beomgyun; Kim, Jin Won; Lee, Jae Kwang; Lee, Jaeyoung

    2014-01-01

    Graphical abstract: - Abstract: Water-oxygen electrochemistry is at the heart of key renewable energy technologies (fuel cells, electrolyzers, and metal-air batteries) due to the sluggish kinetics of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although much effort has been devoted to the development of improved bifunctional electrocatalysts, an inexpensive, highly active oxygen electrocatalyst, however, remains to be a challenge. In this paper, we present a facile and robust method to create gently reduced graphene oxide incorporated into cobalt oxalate microstructures (CoC 2 O 4 /gRGO) and demonstrate its excellent and stable electrocatalytic activity in both OER and ORR, arising from the inherent properties of the components and their physicochemical interaction. Our synthesis technique also explores a single pot method to partially reduce graphene oxide and form CoC 2 O 4 structures while maintaining the solution processability of reduced graphene oxide. While the OER activity of CoC 2 O 4 /gRGO is exclusively due to CoC 2 O 4 , which transformed into OER-active Co species, the combination with gRGO significantly improves OER stability. On the other hand, CoC 2 O 4 /gRGO exhibits synergistic effect towards ORR, via a quasi-four-electron pathway, leading to a slightly higher ORR limiting current than Pt/C. Remarkably, gRGO offers dual functionality, contributing to ORR activity via the N-functional groups and also enhancing OER stability through the gRGO coating around CoC 2 O 4 structures. Our results suggest a new class of metal-carbon composite that has the potential to be alternative bifunctional catalysts for regenerative fuel cells and metal-air batteries

  14. AmpH, a bifunctional DD-endopeptidase and DD-carboxypeptidase of Escherichia coli.

    Science.gov (United States)

    González-Leiza, Silvia M; de Pedro, Miguel A; Ayala, Juan A

    2011-12-01

    In Escherichia coli, low-molecular-mass penicillin-binding proteins (LMM PBPs) are important for correct cell morphogenesis. These enzymes display DD-carboxypeptidase and/or dd-endopeptidase activities associated with maturation and remodeling of peptidoglycan (PG). AmpH has been classified as an AmpH-type class C LMM PBP, a group closely related to AmpC β-lactamases. AmpH has been associated with PG recycling, although its enzymatic activity remained uncharacterized until now. Construction and purification of His-tagged AmpH from E. coli permitted a detailed study of its enzymatic properties. The N-terminal export signal of AmpH is processed, but the protein remains membrane associated. The PBP nature of AmpH was demonstrated by its ability to bind the β-lactams Bocillin FL (a fluorescent penicillin) and cefmetazole. In vitro assays with AmpH and specific muropeptides demonstrated that AmpH is a bifunctional DD-endopeptidase and DD-carboxypeptidase. Indeed, the enzyme cleaved the cross-linked dimers tetrapentapeptide (D45) and tetratetrapeptide (D44) with efficiencies (k(cat)/K(m)) of 1,200 M(-1) s(-1) and 670 M(-1) s(-1), respectively, and removed the terminal D-alanine from muropeptides with a C-terminal D-Ala-D-Ala dipeptide. Both DD-peptidase activities were inhibited by 40 μM cefmetazole. AmpH also displayed a weak β-lactamase activity for nitrocefin of 1.4 × 10(-3) nmol/μg protein/min, 1/1,000 the rate obtained for AmpC under the same conditions. AmpH was also active on purified sacculi, exhibiting the bifunctional character that was seen with pure muropeptides. The wide substrate spectrum of the DD-peptidase activities associated with AmpH supports a role for this protein in PG remodeling or recycling.

  15. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    Science.gov (United States)

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  16. MRI marrow observations in thalassemia: the effects of the primary disease, transfusional therapy, and chelation

    International Nuclear Information System (INIS)

    Levin, T.L.; Sheth, S.S.; Ruzal-Shapiro, C.; Abramson, S.; Piomelli, S.; Berdon, W.E.

    1995-01-01

    The magnetic resonance bone marrow patterns in thalassemia were evaluated to determine changes produced by transfusion and chelation therapy. Thirteen patients had T1- and T2-weighted images of the spine, pelvis and femurs. Three received no therapy (age range 2.5-3 years). Three were ''hypertransfused'' (transfused to maintain a hemoglobin greater than 10 g/dl) and not chelated because of age (age range 6 months-8 years). Seven were ''hypertransfused'' and chelated (age range 12-35 years). Signal characteristics of marrow were compared with those of surrounding muscle and fat. Fatty marrow (isointense with subcutaneous fat) was compared with red marrow (hypointense to fat and slightly hyperintense to muscle). Marrow hypointense to muscle was identified as iron deposition within red marrow. The untreated group demonstrated signal consistent with red marrow throughout the central and peripheral skeleton. Hypertransfused but not chelated patients demonstrated marked iron deposition in the central and peripheral skeleton. Hypertransfused and chelated patients demonstrated iron deposition in the central skeleton and a mixed appearance of marrow in the peripheral skeleton. The MR appearance of marrow in thalassemia is a reflection of the patient's transfusion and chelation therapy. Iron deposition occurs despite chelation therapy in sites of active red marrow. As red marrow retreats centrally with age, so does the pattern of iron deposition. The long-term biological effects of this iron deposition are unknown. (orig.). With 8 figs., 1 tab

  17. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  18. Different photoluminescent properties of binary and ternary europium chelates doped in PMMA

    International Nuclear Information System (INIS)

    Liu Hongguo; Park, Seongtae; Jang, Kiwan; Zhang Wansong; Seo, Hyo-Jin; Lee, Yong-Ill

    2003-01-01

    Two kinds of europium-β-diketone chelates, binary Eu(DBM) 3 and ternary Eu(DBM) 3 phen were doped in poly(methyl methacrylate) (PMMA). These chelates show very different photoluminescent (PL) behaviors: the hypersensitive 5 D 0 → 7 F 2 emission bands of Eu(DBM) 3 phen change slightly with the molar ratios, while those of Eu(DBM) 3 change obviously and regularly with the molar ratios. The results of the luminescent lifetimes of 5 D 0 levels show that the binary chelate exists as two kinds of species in the doped systems, and the lifetimes and contents of each species change with the molar ratios, while the ternary chelate exists as one kind of species in the doped systems. X-ray diffraction (XRD) patterns of the binary chelate doped systems give some diffraction peaks that are different from those of pure chelate and change with the molar ratios, indicating new kinds of crystal structures formed, and consequently, the first coordination sphere of Eu 3+ ion changes; while those of the ternary chelate doped systems just show amorphous diffraction halos of the host, indicating that the ternary chelate exist in an amorphous state and disperse well in the host. The FTIR spectra of PMMA also change gradually with increasing the molar ratios of the doped two kinds of chelates, and the XRD patterns show that the amorphous halos of PMMA in the doped systems are different from those of pure PMMA and change with the molar ratios, too, suggesting the interaction between the guest and the host

  19. Study of Anti-Fatigue Effect in Rats of Ferrous Chelates Including Hairtail Protein Hydrolysates

    Directory of Open Access Journals (Sweden)

    Saibo Huang

    2015-12-01

    Full Text Available The ability of ferrous chelates including hairtail protein hydrolysates to prevent and reduce fatigue was studied in rats. After hydrolysis of hairtail surimi with papain, the hairtail protein hydrolysates (HPH were separated into three groups by range of relative molecular weight using ultrafiltration membrane separation. Hairtail proteins were then chelated with ferrous ions, and the antioxidant activity, the amino acid composition and chelation rate of the three kinds of ferrous chelates including hairtail protein hydrolysates (Fe-HPH were determined. Among the three groups, the Fe-HPH chelate showing the best conditions was selected for the anti-fatigue animal experiment. For it, experimental rats were randomly divided into seven groups. Group A was designated as the negative control group given distilled water. Group B, the positive control group, was given glutathione. Groups C, D and E were designated as the Fe-HPH chelate treatment groups and given low, medium, and high doses, respectively. Group F was designated as HPH hydrolysate treatment group, and Group G was designated as FeCl2 treatment group. The different diets were orally administered to rats for 20 days. After that time, rats were subjected to forced swimming training after 1 h of gavage. Rats given Fe-FPH chelate had higher haemoglobin regeneration efficiency (HRE, longer exhaustive swimming time and higher SOD activity. Additionally, Fe-FPH chelate was found to significantly decrease the malondialdehyde content, visibly enhance the GSH-Px activity in liver and reduce blood lactic acid of rats. Fe-HPH chelate revealed an anti-fatigue effect, similar to or better than the positive control substance and superior to HPH or Fe when provided alone.

  20. Chelating extractants of improved selectivity. Progress report, September 1, 1976--October 31, 1977

    International Nuclear Information System (INIS)

    Freiser, H.

    1977-07-01

    New means of characterizing metal chelating reagent selectivity have been developed and incorporated into a theoretical factor analysis of the chelate stability constants of 24 metal ions with 14 ligands of the EDTA family. The factor analysis will be extended to extracting ligand families. A computer-controlled automated metal chelate stability constant apparatus has been assembled and successfully tested. A high performance liquid chromatograph has been set up and preliminary examination of comparison of reversed phase chromatographic separation of metal ions with their solvent extraction behavior begun

  1. AAZTA: an ideal chelating agent for the development of {sup 44}Sc PET imaging agents

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Gabor; Szikra, Dezso; Trencsenyi, Gyoergy [Scanomed Ltd., Debrecen (Hungary); University of Debrecen, Medical Imaging Clinic (Hungary); Fekete, Aniko [University of Debrecen, Medical Imaging Clinic (Hungary); Garai, Ildiko [Scanomed Ltd., Debrecen (Hungary); Giani, Arianna M.; Negri, Roberto [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); Masciocchi, Norberto [Dipartimento di Scienza e Alta Tecnologia e To.Sca.Lab, Universita degli Studi dell' Insubria, Como (Italy); Maiocchi, Alessandro; Uggeri, Fulvio [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Toth, Imre [Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary); Aime, Silvio [Dipartimento di Biotecnologie Molecolari e Scienze della Salute, Centro di Imaging Molecolare e Preclinico, Universita degli Studi di Torino (Italy); Giovenzana, Giovanni B. [Dipartimento di Scienze del Farmaco, Universita del Piemonte Orientale, Novara (Italy); CAGE Chemicals srl, Novara (Italy); Baranyai, Zsolt [Bracco Imaging spa, Bracco Research Centre, Colleretto Giacosa (Italy); Department of Inorganic and Analytical Chemistry, University of Debrecen (Hungary)

    2017-02-13

    Unprecedented fast and efficient complexation of Sc{sup III} was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)] amino-6-methylperhydro-1,4-d iazepine) under mild experimental conditions. The robustness of the {sup 44}Sc(AAZTA){sup -} chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Design, synthesis, and evaluation of polyhydroxamate chelators for selective complexation of actinides

    International Nuclear Information System (INIS)

    Gopalan, A.; Jacobs, H.; Koshti, N.; Stark, P.; Huber, V.; Dasaradhi, L.; Caswell, W.; Smith, P.; Jarvinen, G.

    1995-01-01

    Specific chelating polymers targeted for actinides have much relevance to problems involving remediation of nuclear waste. Goal is to develop polymer supported, ion specific extraction systems for removing actinides and other hazardous metal ions from wastewaters. This is part of an effort to develop chelators for removing actinide ions such as Pu from soils and waste streams. Selected ligands are being attached to polymeric backbones to create novel chelating polymers. These polymers and other water soluble and insoluble polymers have been synthesized and are being evaluated for ability to selectively remove target metal ions from process waste streams

  3. Assessment of the body burden of chelatable lead: a model and its application to lead workers

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S.; Ushio, K.

    1982-05-01

    A hypothetical model was introduced to estimate the body burden of chelatable lead from the mobilisation yield of lead by calcium disodium ethylenediamine tetra-acetate. It was estimated that, on average, 14 and 19% of the body burden was mobilized into the urine during the 24 hours after an injection of 53.4 mumol and 107 mumol CaEDTA per kg bodyweight, respectively. The body burden of chelatable lead ranged from 4 mumol to 120 mumol in lead workers with blood lead concentrations of 0.3-2.9 mumol/kg. There were linear relationships between blood lead concentrations and body burden of chelatable lead on a log scale.

  4. Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe.

    Directory of Open Access Journals (Sweden)

    Roni F Rayes

    Full Text Available The dynamics of four regions of tropomyosin was assessed using saturation transfer electron paramagnetic resonance in the muscle fiber. In order to fully immobilize the spin probe on the surface of tropomyosin, a bi-functional spin label was attached to i,i+4 positions via cysteine mutagenesis. The dynamics of bi-functionally labeled tropomyosin mutants decreased by three orders of magnitude when reconstituted into "ghost muscle fibers". The rates of motion varied along the length of tropomyosin with the C-terminus position 268/272 being one order of magnitude slower then N-terminal domain or the center of the molecule. Introduction of troponin decreases the dynamics of all four sites in the muscle fiber, but there was no significant effect upon addition of calcium or myosin subfragment-1.

  5. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    Science.gov (United States)

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functionalization of nanoparticle titanium dioxide with different bifunctional organic molecules and trimers of transition compounds for obtaining new materials

    International Nuclear Information System (INIS)

    Rivera Martinez, Maria Cinthya

    2012-01-01

    Functionalization of titanium dioxide in nanoporous anatase phase is investigated for obtaining new nanomaterials. Functionalizations were performed using two heating methods: the conventional of refluxing heating method and microwave irradiation with bifunctional organic molecules is used to study how to anchor molecules and the change in the wettability of the material. Besides, reactions with organic molecules were performed as the derived from nanoproxene. The growth layer by layer is performed using the bifunctional molecules previous for the immobilization of cobalt trimers. Functionalized molecules were characterized by infrared spectroscopy, X-ray diffraction, contact angle, scanning electron microscopy, x-ray elemental analysis, plasma atomic emission spectroscopy coupled inductively, x-ray photoelectron spectroscopy and thermogravimetric analysis. This type of functionalizations on nanoporous titanium dioxide could potentially improve optical sensitivity and activity of this nanomaterial in the visible region. (author) [es

  7. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5.

    Science.gov (United States)

    Ehsani, Ali; Saetrom, Pål; Zhang, Jane; Alluin, Jessica; Li, Haitang; Snøve, Ola; Aagaard, Lars; Rossi, John J

    2010-04-01

    Small-interfering RNAs (siRNAs) and micro-RNAs (miRNAs) are distinguished by their modes of action. SiRNAs serve as guides for sequence-specific cleavage of complementary mRNAs and the targets can be in coding or noncoding regions of the target transcripts. MiRNAs inhibit translation via partially complementary base-pairing to 3' untranslated regions (UTRs) and are generally ineffective when targeting coding regions of a transcript. In this study, we deliberately designed siRNAs that simultaneously direct cleavage and translational suppression of HIV RNAs, or cleavage of the mRNA encoding the HIV coreceptor CCR5 and suppression of translation of HIV. These bifunctional siRNAs trigger inhibition of HIV infection and replication in cell culture. The design principles have wide applications throughout the genome, as about 90% of genes harbor sites that make the design of bifunctional siRNAs possible.

  8. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  9. Crystallization and preliminary X-ray analysis of a bifunctional catalase-phenol oxidase from Scytalidium thermophilum

    International Nuclear Information System (INIS)

    Sutay Kocabas, Didem; Pearson, Arwen R.; Phillips, Simon E. V.; Bakir, Ufuk; Ogel, Zumrut B.; McPherson, Michael J.; Trinh, Chi H.

    2009-01-01

    The bifunctional enzyme catalase-phenol oxidase from S. thermophilum was crystallized by the hanging-drop vapour-diffusion method in space group P2 1 and diffraction data were collected to 2.8 Å resolution. Catalase-phenol oxidase from Scytalidium thermophilum is a bifunctional enzyme: its major activity is the catalase-mediated decomposition of hydrogen peroxide, but it also catalyzes phenol oxidation. To understand the structural basis of this dual functionality, the enzyme, which has been shown to be a tetramer in solution, has been purified by anion-exchange and gel-filtration chromatography and has been crystallized using the hanging-drop vapour-diffusion technique. Streak-seeding was used to obtain larger crystals suitable for X-ray analysis. Diffraction data were collected to 2.8 Å resolution at the Daresbury Synchrotron Radiation Source. The crystals belonged to space group P2 1 and contained one tetramer per asymmetric unit

  10. Self-organization of Au–CdSe hybrid nanoflowers at different length scales via bi-functional diamine linkers

    Energy Technology Data Exchange (ETDEWEB)

    AbouZeid, Khaled Mohamed [Virginia Commonwealth University, Department of Chemistry (United States); Mohamed, Mona Bakr [Cairo University, National Institute of Laser Enhanced Science (NILES) (Egypt); El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Virginia Commonwealth University, Department of Chemistry (United States)

    2016-01-15

    This work introduces a series of molecular bridging bi-functional linkers to produce laterally self-assembled nanostructures of the Au–CdSe nanoflowers on different length scales ranging from 10 nm to 100 microns. Assembly of Au nanocrystals within amorphous CdSe rods is found in the early stages of the growth of the Au–CdSe nanoflowers. The Au–CdSe nanoflowers are formed through a one-pot low temperature (150 °C) process where CdSe clusters are adsorbed on the surface of the Au cores, and they then start to form multiple arms and branches resulting in flower-shaped hybrid nanostructures. More complex assembly at a micron length scale can be achieved by means of bi-functional capping agents with appropriate alkyl chain lengths, such as 1,12-diaminododecane.

  11. Purification, crystallization and preliminary X-ray crystallographic analysis of rice bifunctional α-amylase/subtilisin inhibitor from Oryza sativa

    International Nuclear Information System (INIS)

    Lin, Yi-Hung; Peng, Wen-Yan; Huang, Yen-Chieh; Guan, Hong-Hsiang; Hsieh, Ying-Cheng; Liu, Ming-Yih; Chang, Tschining; Chen, Chun-Jung

    2006-01-01

    The crystallization of rice α-amylase/subtilisin bifunctional inhibitor is reported. Rice bifunctional α-amylase/subtilisin inhibitor (RASI) can inhibit both α-amylase from larvae of the red flour beetle (Tribolium castaneum) and subtilisin from Bacillus subtilis. The synthesis of RASI is up-regulated during the late milky stage in developing seeds. The 8.9 kDa molecular-weight RASI from rice has been crystallized using the hanging-drop vapour-diffusion method. According to 1.81 Å resolution X-ray diffraction data from rice RASI crystals, the crystal belongs to space group P2 1 2 1 2, with unit-cell parameters a = 79.99, b = 62.95, c = 66.70 Å. Preliminary analysis indicates two RASI molecules in an asymmetric unit with a solvent content of 44%

  12. Construction of Bifunctional Co/H-ZSM-5 Catalysts for the Hydrodeoxygenation of Stearic Acid to Diesel-range Alkanes.

    Science.gov (United States)

    Wu, Guangjun; Zhang, Nan; Dai, Weili; Guan, Naijia; Li, Landong

    2018-04-27

    Bifunctional Co/H-ZSM-5 zeolites were prepared by surface organometallic chemistry grafting route, namely by the stoichiometric reaction between cobaltocene and the Brønsted acid sites in zeolites, and applied to the model reaction of stearic acid catalytic hydrodeoxygenation. Cobalt species existed in the form of isolated Co2+ ions at exchange positions after grafting, transformed to CoO species on the surface of zeolite and stabilized inside zeolite channels upon calcination in air, and finally reduced to metallic cobalt species of homogeneous clusters of ca. 1.5 nm by hydrogen. During this process, the Brønsted acid sites of H-ZSM-5 zeolites could be preserved with acid strength slightly reduced. The as-prepared bifunctional catalyst exhibited a ~16 times higher activity in stearic acid hydrodeoxygenation (2.11 gSAgcat-1h-1) than the reference catalyst (0.13 gSAgcat-1h-1) prepared by solid-state ion exchange, and a high C18/C17 ratio of ~24 was achieved as well. The remarkable hydrodeoxygenation performance of bifunctional Co/H-ZSM-5 could be explained from the effective synergy between the uniformed metallic cobalt clusters and the Brønsted acid sites in H-ZSM-5 zeolite. The simplified reaction network and kinetics of stearic acid hydrodeoxygenation catalyzed by the as-prepared bifunctional Co/H-ZSM-5 zeolites were also investigated. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Yin, Feng-Xiang; Chen, Biao-Hua; He, Xiao-Bo; Lv, Peng-Liang; Ye, Cai-Yun; Liu, Di-Jia

    2017-05-01

    Developing carbon catalyst materials using natural, abundant and renewable resources as precursors plays an increasingly important role in clean energy generation and environmental protection. In this work, N-doped pomelo-peel-derived carbon (NPC) materials were prepared using a widely available food waste-pomelo peels and melamine. The synthetic NPC exhibits well-defined porosities and a highly doped-N content (e.g. 6.38 at% for NPC-2), therefore affords excellent oxygen reduction reaction (ORR) catalytic activities in alkaline electrolytes. NPC was further integrated with ZIF-67 to form ZIF-67@NPC hybrids through solvothermal reactions. The hybrid catalysts show substantially enhanced ORR catalytic activities comparable to that of commercial 20 wa Pt/C. Furthermore, the catalysts also exhibit excellent oxygen evolution reaction (OER) catalytic activities. Among all prepared ZIF-67@NPC hybrids, the optimal composition with ZIF-67 to NPC ratio of 2:1 exhibits the best ORR and OER bifunctional catalytic performance and the smallest Delta E (E-OER@10 mA cm(-2)-E-ORR@-1 mA cm(-2)) value of 0.79 V. The catalyst also demonstrated desirable 4-electron transfer pathways and superior catalytic stabilities. The Co-N-4 in ZIF-67, electrochemical active surface area, and the strong interactions between ZIF-67 and NPC are attributed as the main contributors to the bifunctional catalytic activities. These factors act synergistically, resulting in substantially enhanced bifunctional catalytic activities and stabilities; consequently, this hybrid catalyst is among the best of the reported bifunctional electrocatalysts and is promising for use in metal-air batteries and fuel cells. (C) 2016 Elsevier B.V. All rights reserved.

  14. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  15. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: A review

    OpenAIRE

    Sartipi, S.; Makkee, M.; Kapteijn, F.; Gascon, J.

    2014-01-01

    The combination of acidic zeolites and Fischer–Tropsch synthesis (FTS) catalysts for one-step production of liquid fuels from syngas is critically reviewed. Bifunctional systems are classified by the proximity between FTS and acid functionalities on three levels: reactor, catalyst particle, and active phase. A thorough analysis of the published literature on this topic reveals that efficiency in the production of liquid fuels correlates well with the proximity of FTS and acid sites. Moreover,...

  16. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    Science.gov (United States)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  17. Electrodeposited nano-scale islands of ruthenium oxide as a bifunctional electrocatalyst for simultaneous catalytic oxidation of hydrazine and hydroxylamine

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Hamid R., E-mail: hrzare@yazduni.ac.ir [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Nanotechnology Research Center, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of); Hashemi, S. Hossein; Benvidi, Ali [Department of Chemistry, Yazd University, P.O. Box 89195-741, Yazd (Iran, Islamic Republic of)

    2010-06-04

    For the first time, an electrodeposited nano-scale islands of ruthenium oxide (ruthenium oxide nanoparticles), as an excellent bifunctional electrocatalyst, was successfully used for hydrazine and hydroxylamine electrocatalytic oxidation. The results show that, at the present bifunctional modified electrode, two different redox couples of ruthenium oxides serve as electrocatalysts for simultaneous electrocatalytic oxidation of hydrazine and hydroxylamine. At the modified electrode surface, the peaks of differential pulse voltammetry (DPV) for hydrazine and hydroxylamine oxidation were clearly separated from each other when they co-exited in solution. Thus, it was possible to simultaneously determine hydrazine and hydroxylamine in the samples at a ruthenium oxide nanoparticles modified glassy carbon electrode (RuON-GCE). Linear calibration curves were obtained for 2.0-268.3 {mu}M and 268.3-417.3 {mu}M of hydrazine and for 4.0-33.8 {mu}M and 33.8-78.3 {mu}M of hydroxylamine at the modified electrode surface using an amperometric method. The amperometric method also exhibited the detection limits of 0.15 {mu}M and 0.45 {mu}M for hydrazine and hydroxylamine respectively. RuON-GCE was satisfactorily used for determination of spiked hydrazine in two water samples. Moreover, the studied bifunctional modified electrode exhibited high sensitivity, good repeatability, wide linear range and long-term stability.

  18. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2(E)-nonenal.

    Science.gov (United States)

    Arora, Jasbir S; Oe, Tomoyuki; Blair, Ian A

    2011-05-15

    Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2( E )-nonenal and 4-oxo-2( E )-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α , β -unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.

  19. A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis.

    Science.gov (United States)

    Dasgupta, Tathagata; Croll, David H; Owen, Jeremy A; Vander Heiden, Matthew G; Locasale, Jason W; Alon, Uri; Cantley, Lewis C; Gunawardena, Jeremy

    2014-05-09

    Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between "on" and "off" and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed "linear framework" for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.

  20. Chelating ion exchange with macroreticular hydroxamic acid resins

    International Nuclear Information System (INIS)

    Phillips, R.J.

    1980-01-01

    The synthesis, reactions, and analytical applications of hydroxamic acids, including chelating resins with this functional group, are reviewed. A procedure for attaching N-phenyl hydroxamic acid groups to Amberlite XAD-4 is described. The extraction of 20 metal ions from 2 M hydrochloric acid by this resin is discussed. Conditions for the quantitative extraction and back-extraction of 9 ions are reported. Results are compared with work on solvent extraction with N-phenylbenzohydroxamic acid. Procedures for attaching N-methyl and N-unsubstituted hydroxamic acid groups to Amberlite XAD-4 are described. The N-phenyl, N-methyl, and N-unsubstituted hydroxamic acid resins are compared with respect to metal-ion complexation. The scope of applications for hydroxamic acid resins is investigated by studying the extraction of 19 metal ions as a function of pH. The resins are especially suitable for the extraction of zirconium(IV), titanium(IV), and uranium(IV) from strongly acidic solution. Aluminum(III) is separated from calcium and phosphate by extraction at pH 4. The use of the resins for the purification of reagents, concentration of trace constituents, and chromatographic separation is demonstrated

  1. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    International Nuclear Information System (INIS)

    Fukuda, Satoshi

    1989-01-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs

  2. Assessment of toxicity on chelating agent DTPA (diethylenetriaminepentaacetic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Satoshi (National Inst. of Radiological Sciences, Chiba (Japan))

    1989-09-01

    DTPA (diethylenetriaminepentaacetic acid) is a very important chelating agent to decorporate the radionuclides such as plutonium and americium from human body. However, before DTPA will be administered to humans, the toxicity should be clarified. This report described the summary on data of DTPA toxicities obtained from animal experiments and assessment on the safety for humans, based on the results that compared their data among animal species. In short, Ca-DTPA is less toxic than Zn-DTPA when it is injected intravenously, while Zn-DTPA is less toxic than Ca-DTPA when it is administered orally. Both DTPAs acted on the serum calcium metabolism and induced the functional damages of cardiovascular system. Particularly, it is stressed that Zn-DTPA by intravenous injection occurred the heart failure, increases of blood pressure and pulse with hypocalcemia in even normal rats and beagle dogs. Other side effects by both DTPAs were also observed in the intestine, liver, kidney and bone. It is estimated that there are almost no species differences on DTPA toxicity between animals and humans. As a result, it is concluded that DTPA should be used very carefully for humans, with reference to the results obtained from animal experiments. (author) 61 refs.

  3. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  4. Mechanisms of oxide dissolution by acid chelating agents

    International Nuclear Information System (INIS)

    Blesa, M.A.; Maroto, A.J.G.

    1982-01-01

    In this paper, the different possible rate controlling processes in the dissolution of metallic oxides are examined. In particular, the following situations are assessed: mass-transfer control; coupling of mass-transfer and reactions at the interface; interface equilibration with the solution; various interface disruption and reconstruction phenomena. For each of the above mentioned cases, the influence of variables such as reagent concentration, temperature, pH, fluid hydrodynamics and general and specific catalysts is discussed. Depending upon the particular situation it is found that a more rational basis for the development of reagent is given by these considerations. The influence of chelating agents on both the thermodynamics and kinetics of the process is discussed, and the results of experimental studies in batch on magnetite and various ferrites are presented and discussed. For this purpose, several reagents were studied, including some very effective ones like thioglycolic acid, and others commonly used in actual decontamination, like ethylenediaminetetraacetic acid and oxalic acid. The relation to other (reductive) chemical decontamination procedures is discussed. The relevance of these studies to decontamination of metallic surfaces is discussed

  5. Chelatable trace zinc causes low, irreproducible KDAC8 activity.

    Science.gov (United States)

    Toro, Tasha B; Edenfield, Samantha A; Hylton, Brandon J; Watt, Terry J

    2018-01-01

    Acetylation is an important regulatory mechanism in cells, and emphasis is being placed on identifying substrates and small molecule modulators of this post-translational modification. However, the reported in vitro activity of the lysine deacetylase KDAC8 is inconsistent across experimental setups, even with the same substrate, complicating progress in the field. We detected trace levels of zinc, a known inhibitor of KDAC8 when present in excess, even in high-quality buffer reagents, at concentrations that are sufficient to significantly inhibit the enzyme under common reaction conditions. We hypothesized that trace zinc in solution could account for the observed variability in KDAC8 activity. We demonstrate that addition of chelators, including BSA, EDTA, and citrate, and/or the use of a phosphate-based buffer instead of the more common tris-based buffer, eliminates the inhibition from low levels of zinc as well as the dependence of specific activity on enzyme concentration. This results in high KDAC8 activity that is consistent across buffer systems, even using low concentrations of enzyme. We report conditions that are suitable for several assays to increase both enzyme activity and reproducibility. Our results have significant implications for approaches used to identify substrates and small molecule modulators of KDAC8 and interpretation of existing data. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. ATMP-stabilized iron nanoparticles: chelator-controlled nanoparticle synthesis

    Science.gov (United States)

    Greenlee, Lauren F.; Rentz, Nikki S.

    2014-11-01

    In this study, we characterize iron nanoparticles synthesized in water in the presence of a phosphonate chelator, amino tris(methylene phosphonic acid) (ATMP) for a range of molar ratios of ATMP to iron. An increase in the molar ratio from 0.05 to 0.8 decreases nanoparticle size from approximately 150 nm to less than 10 nm. Zeta potential measurements were used to evaluate colloidal stability. Zeta potential values varied as a function of pH, and zeta potential values decreased with increasing pH. At lower molar ratios of ATMP to iron, the zeta potential varied between 15 and -40 mV, passing through an isoelectric point at pH 7.5. At higher ratios, the zeta potential was negative across the measured pH range of 2-12 and varied from -2 to -55 mV. Diffraction analysis indicates that ATMP-stabilized iron nanoparticles may have a nano-crystalline structure, potentially with regions of amorphous iron. Characterization results of ATMP-stabilized iron nanoparticles are compared to results obtained for carboxymethyl cellulose (CMC)-stabilized iron nanoparticles. CMC stabilization caused similar peak broadening in diffraction spectra as for ATMP, suggesting similar nano-crystalline/amorphous structure; however, an increase in the molar ratio of CMC to iron did not cause the same reduction in nanoparticle size as was observed for ATMP-stabilized iron nanoparticles.

  7. Metal chelators and neurotoxicity: lead, mercury, and arsenic.

    Science.gov (United States)

    Bjørklund, Geir; Mutter, Joachim; Aaseth, Jan

    2017-12-01

    This article reviews the clinical use of the metal chelators sodium 2,3-dimercapto-1-propanesulfonate (DMPS), meso-2,3-dimercaptosuccinic acid (DMSA), and calcium disodium edetate (CaEDTA, calcium EDTA) in overexposure and poisonings with salts of lead (Pb), mercury (Hg), and arsenic (As). DMSA has considerably lower toxicity than the classic heavy metal antagonist BAL (2,3-dimercaptopropanol) and is also less toxic than DMPS. Because of its adverse effects, CaEDTA should be replaced by DMSA as the antidote of choice in treating moderate Pb poisoning. Combination therapy with BAL and CaEDTA was previously recommended in cases of severe acute Pb poisoning with encephalopathy. We suggest that BAL in such cases acted as a shuttling Pb transporter from the intra- to the extracellular space. The present paper discusses if a combination of the extracellularly distributed DMSA with the ionophore, Monensin may provide a less toxic combination for Pb mobilization by increasing both the efflux of intracellularly deposited Pb and the urinary Pb excretion. Anyhow, oral therapy with DMSA should be continued with several intermittent courses. DMPS and DMSA are also promising antidotes in Hg poisoning, whereas DMPS seems to be a more efficient agent against As poisoning. However, new insight indicates that a combination of low-dosed BAL plus DMPS could be a preferred antidotal therapy to obtain mobilization of the intracerebral deposits into the circulation for subsequent rapid urinary excretion.

  8. The performance of 2-nitroso-1-naphthol chelating pigment in paint ...

    African Journals Online (AJOL)

    The performance of 2-nitroso-1-naphthol chelating pigment in paint formulation with gum Arabic and polyvinyl acetate as binders, Paper I: UV- visible spectroscopy, viscosity and breaking stress of the paints.

  9. Study of chelating agent as a surface modifier for retarding corrosion attack on ferrous metal

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Muhamad Daud; Siti Radiah Mohd Kamarudin; Zaifol Samsu; Azali Muhamad; Rusni Rejab; Mohd Saari Ripin; Mohd Shariff Sattar

    2010-01-01

    A different concentration of chelating agents in electrolyte of 3.5 % NaCl was applied to bare ferrous metal and tested for their effectiveness as a corrosion retardant. The performance of the samples was measured using corrosion measurement system. The results indicated that the contribution of chelating agent was expediting the reduction of the passive film. The anodic behavior was clearly found to be influenced by the concentration of the chelating agent. It was also found that some of the corrosion was apparently converted to protective layer over a period of time. Excessive moisture caused breakdown of film by removing the unreacted chelating agent and causing regrowth of the existing rust. (author)

  10. Effect of calcium chelators on physical changes in casein micelles in concentrated micellar casein solutions

    NARCIS (Netherlands)

    Kort, de E.J.P.; Minor, M.; Snoeren, T.H.M.; Hooijdonk, van A.C.M.; Linden, van der E.

    2011-01-01

    The effect of calcium chelators on physical changes of casein micelles in concentrated micellar casein solutions was investigated by measuring calcium-ion activity, viscosity and turbidity, and performing ultracentrifugation. The highest viscosities were measured on addition of sodium

  11. Click-to-Chelate: Development of Technetium and Rhenium-Tricarbonyl Labeled Radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Thomas L. Mindt

    2013-03-01

    Full Text Available The Click-to-Chelate approach is a highly efficient strategy for the radiolabeling of molecules of medicinal interest with technetium and rhenium-tricarbonyl cores. Reaction of azide-functionalized molecules with alkyne prochelators by the Cu(I-catalyzed azide-alkyne cycloaddition (CuAAC; click reaction enables the simultaneous synthesis and conjugation of tridentate chelating systems for the stable complexation of the radiometals. In many cases, the functionalization of (biomolecules with the ligand system and radiolabeling can be achieved by convenient one-pot procedures. Since its first report in 2006, Click-to-Chelate has been applied to the development of numerous novel radiotracers with promising potential for translation into the clinic. This review summarizes the use of the Click-to-Chelate approach in radiopharmaceutical sciences and provides a perspective for future applications.

  12. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  13. Hydrolysis of Some C,N-Chelated Organotin(IV) Species Used in Catalysis

    OpenAIRE

    Švec, P.

    2012-01-01

    This work deals with the reactivity of the selected C, N-chelated organotin (IV) species towards cyclohexene oxide, ethylene carbonate, and CO2. Structure of organotin(IV) hydrolytic products isolated from respective reaction mixtures was described.

  14. Diagnostic compositions containing a chelate of radioactive indium and 8-hydroxyquinoline

    International Nuclear Information System (INIS)

    Goedemans, W.T.

    1981-01-01

    There are disclosed aqueous, radioassaying solutions of a chelate of radioactive indium and an 8-hydroxyquinoline, having an essential absence of an organic solvent, e.g., alcohol or chloroform. The solutions are useful in radioassaying warmblooded animals. (author)

  15. Theoretical analysis of the influence of chelate-ring size and vicinal effects on electronic circular dichroism spectra of cobalt(III) EDDA-type complexes.

    Science.gov (United States)

    Wang, Ai; Wang, Yuekui; Jia, Jie; Feng, Lixia; Zhang, Chunxia; Liu, Linlin

    2013-06-20

    To assess the contributions of configurational and vicinal effects as well as chelate-ring size to rotational strengths, the geometries of a series of cobalt(III) complexes [Co(EDDA-type)(L)](±) with the tetradentate EDDA-type ligands, EDDA (ethylenediamine-N,N'-diacetate), DMEDDA (N,N'-dimethylethylenediamine-N,N'-diacetate), DEEDDA (N,N'-diethylethylenediamine-N,N'-diacetate), and a bidentate ancillary ligand L (L = ethylenediamine, oxalate, carbonate, (S)-alanine, and malonate) in aqueous solution have been optimized at the DFT/B3LYP/6-311++G(2d,p) level of theory. Based on the optimized geometries, the excitation energies and oscillator and rotational strengths have been calculated using the time-dependent density functional theory (TDDFT) method with the same functional and basis set. The calculated circular dichroism (CD) curves are in excellent agreement with the observed ones except for some small red or blue shifts in peak wavelengths. For the influence of chelate-ring size of the bidentate ligands on the CD intensities, a qualitative analysis together with the quantitative TDDFT calculation reveal that it depends on the symmetry of the cobalt-EDDA backbone. For the s-cis-isomers, the influence is negligible due to the perturbation is symmetric. For the uns-cis-isomers, the perturbation is unsymmetric. Since a small ring size means a large perturbation, this leads to the integral CD intensities decreasing with increasing the chelate ring size. The vicinal effects of asymmetric nitrogens incorporate both the substitutent effects and conformational relaxation effects, with the former being dominant. By analyzing the contributions of chiral arrays to rotational strengths, we found that the part of contributions dominated by the S-type chiral nitrogens could be considered as a good measure for the vicinal effects of chiral nitrogens. In addition, we found that the twist form (δ/λ) of the backbone ethylenediamine ring (E-ring) of the coordinated EDDA

  16. The Mycobacterium tuberculosis Rv2540c DNA sequence encodes a bifunctional chorismate synthase

    Directory of Open Access Journals (Sweden)

    Santos Diógenes S

    2008-04-01

    Full Text Available Abstract Background The emergence of multi- and extensively-drug resistant Mycobacterium tuberculosis strains has created an urgent need for new agents to treat tuberculosis (TB. The enzymes of shikimate pathway are attractive targets to the development of antitubercular agents because it is essential for M. tuberculosis and is absent from humans. Chorismate synthase (CS is the seventh enzyme of this route and catalyzes the NADH- and FMN-dependent synthesis of chorismate, a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Although the M. tuberculosis Rv2540c (aroF sequence has been annotated to encode a chorismate synthase, there has been no report on its correct assignment and functional characterization of its protein product. Results In the present work, we describe DNA amplification of aroF-encoded CS from M. tuberculosis (MtCS, molecular cloning, protein expression, and purification to homogeneity. N-terminal amino acid sequencing, mass spectrometry and gel filtration chromatography were employed to determine identity, subunit molecular weight and oligomeric state in solution of homogeneous recombinant MtCS. The bifunctionality of MtCS was determined by measurements of both chorismate synthase and NADH:FMN oxidoreductase activities. The flavin reductase activity was characterized, showing the existence of a complex between FMNox and MtCS. FMNox and NADH equilibrium binding was measured. Primary deuterium, solvent and multiple kinetic isotope effects are described and suggest distinct steps for hydride and proton transfers, with the former being more rate-limiting. Conclusion This is the first report showing that a bacterial CS is bifunctional. Primary deuterium kinetic isotope effects show that C4-proS hydrogen is being transferred during the reduction of FMNox by NADH and that hydride transfer contributes significantly to the rate-limiting step of FMN reduction reaction. Solvent kinetic isotope effects and

  17. Iron overload of organism and current options of chelation treatment in onco haematology

    International Nuclear Information System (INIS)

    Guman, T.; Rothova, E.; Kafkova, A.; Fricova, M.; Dulova, I.; Stecova, N.; Hlebaskova, M.; Surova, M.; Takac, V.

    2011-01-01

    The article summarizes the biological importance of iron in the organism, primary and secondary causes of iron overload, complications in function of liver, heart and endocrine organs due to overload of iron, the pathophysiology of iron overload, transfusion risks associated with the iron overload, assessment of risk groups of patients suitable for chelation treatment fulfilling the indication criteria, treatment modalities of chelation therapy and its significance regarding the prevention and treatment effectiveness. (author)

  18. Synthesis, Characterization and Chelating Properties of 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one

    Directory of Open Access Journals (Sweden)

    J. D. Patel

    2010-01-01

    Full Text Available 4-Butyrylsemicarbazone-1-phenyl-3-methyl-2-pyrazolin-5-one (BUMP-SC was prepared and its metal chelates of Cu2+, Ni2+, Co2+, Mn2+, Fe2+, Fe3+, Cr3+, UO2 and OV were prepared. The ligands and its chelates were characterized by elemental analysis, metal:ligand (M:L stoichiometry, IR-electronic spectral studies and magnetic properties. The compounds also were screened for their antimicrobial activity.

  19. Chelation therapy and cardiovascular disease: connecting scientific silos to benefit cardiac patients.

    Science.gov (United States)

    Peguero, Julio G; Arenas, Ivan; Lamas, Gervasio A

    2014-08-01

    Medical practitioners have treated atherosclerotic disease with chelation therapy for over 50 years. Lack of strong of evidence led conventional practitioners to abandon its use in the 1960s and 1970s. This relegated chelation therapy to complementary and alternative medicine practitioners, who reported good anecdotal results. Concurrently, the epidemiologic evidence linking xenobiotic metals with cardiovascular disease and mortality gradually accumulated, suggesting a plausible role for chelation therapy. On the basis of the continued use of chelation therapy without an evidence base, the National Institutes of Health released a Request for Applications for a definitive trial of chelation therapy. The Trial to Assess Chelation Therapy (TACT) was formulated as a 2 × 2 factorial randomized controlled trial of intravenous EDTA-based chelation vs. placebo and high-dose oral multivitamins and multiminerals vs. oral placebo. The composite primary endpoint was death, reinfarction, stroke, coronary revascularization, or hospitalization for angina. A total of 1708 post-MI patients who were 50 years or older with a creatinine of 2.0 or less were enrolled and received 55,222 infusions of disodium EDTA or placebo with a median follow-up of 55 months. Patients were on evidence-based post-MI medications including statins. EDTA proved to be safe. EDTA chelation therapy reduced cardiovascular events by 18%, with a 5-year number needed to treat (NNT) of 18. Prespecified subgroup analysis revealed a robust benefit in patients with diabetes mellitus with a 41% reduction in the primary endpoint (5-year NNT = 6.5), and a 43% 5-year relative risk reduction in all-cause mortality (5-year NNT = 12). The magnitude of benefit is such that it suggests urgency in replication and implementation, which could, due to the excellent safety record, occur simultaneously. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. A review of pitfalls and progress in chelation treatment of metal poisonings.

    Science.gov (United States)

    Andersen, Ole; Aaseth, Jan

    2016-12-01

    Most acute and chronic human metal poisonings are due to oral or inhalation exposure. Almost 80% of published animal experiments on chelation in metal poisoning used single or repeated intraperitoneal, intramuscular or intravenous administration of metal and chelator, impeding extrapolation to clinical settings. Intramuscular administration of dimercaptopropanol (BAL) has until now been used in acute arsenic, lead, and mercury poisonings, but repeated BAL administration increased the brain uptake of As, Pb and Hg in experimental animals. Also, diethyl dithiocarbamate (DDC) has been used as antidote in acute experimental animal parenteral Cd poisoning, and both DDC and tetraethylthiuram disulfide (TTD, disulfiram, Antabuse) have been used in nickel allergic patients. However, even one dose of DDC given immediately after oral Cd or Ni increased their brain uptake considerably. The calcium salt of ethylenediamminetetraacetic acid (CaEDTA) but not dimercaptosuccinic acid (DMSA) increased the brain uptake of Pb. In oral Cd or Hg poisoning, early oral administration of DMSA or dimercaptopropane sulfonate (DMPS) increased survival and reduced intestinal metal uptake. Oral administration of Prussian Blue or resins with fixed chelating groups that are not absorbed offer chelation approaches for decorporation after oral exposure to various metals. Diethylenetriaminepentaacetic acid (DTPA) nebulizers for pulmonary chelation after inhalation exposure need further development. Also, combined chelation with more than one compound may offer extensive advances. Solid knowledge on the chemistry of metal chelates together with relevant animal experiments should guide development of chelation procedures to alleviate and not aggravate the clinical status of poisoned patients. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Mathematical modeling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and, hence, the mobility of actinides in subsurface environments. We combined mathematical modeling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bio-utilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modeling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems

  2. Chelate chase of radiopharmaceuticals reversibly bound to monoclonal antibodies improves dosimetry

    International Nuclear Information System (INIS)

    Goodwin, D.A.; Smith, S.I.; Meares, C.F.; David, G.S.; McTigue, M.; Finston, R.A.

    1986-01-01

    One hundred micrograms of monoclonal antibody (MoAb) CHA 255 with a binding constant Kb of 4 x 10 9 was complexed with indium-111 labeled BLEDTA II, GLEDTA IV, benzyl EDTA, and an EDTA conjugate of Fab. The 24-hour tumor and organ distribution in BALB/c mice bearing KHJJ tumors was studied for each compound alone, the antibody complex, and 3 hours following a chelate chase of the antibody complex. Whole-body biological half-life was measured for 7 days with and without a chelate chase for each antibody complex. The 24-hour whole-body counts dropped 20-60% within 3 hours of administering the chelate chase. Blood concentration fell over 89% within 3 hours of administering the chase and there was a decrease in concentration in all organs, except the kidneys, of 10 to 85%. Theoretical equivalent human doses were calculated from the 24-hour organ concentrations, effective half-life, and MIRD 11 S values (absorbed dose per cumulated activity). Liver and spleen were the target organs, with the dose ranging from 0.50 to 3.91 rads per millicurie. The reduction in organ radiation dose varied up to 95% following the chelate chase. Rapid selective renal clearance of chelate labeled radiopharmaceuticals by competitive inhibition (chelate chase) of their reversible binding to monoclonal antibodies, greatly improves the radiation dosimetry of tumor imaging agents. 28 references, 5 figures, 5 tables

  3. Chelating effect of silver nitrate by chitosan on its toxicity and growth performance in broiler chickens

    Directory of Open Access Journals (Sweden)

    Yemdjie Mane Divine Doriane

    2017-06-01

    Full Text Available Objective: This study was conducted to investigate the chelating effect of silver nitrate (AgNO3 by chitosan on growth performances, hematological and biochemical parameters, and the histopathological structure of the liver and the kidney in broiler chicken. Materials and methods: A total of 192 day-old Cobb 500 strain chicks were randomly assigned to 3 treatments of 64 chicks each. Control group was fed on basal diet without supplement (R0 and the two others groups were fed on rations supplemented with 10 mg of unchelated (RAg or chelated (RCs-Ag AgNO3 per Kg of feed, respectively. Parameters that have been studied consisted of feed intake, weight gain, blood and serum biochemical, and histopathological analyses of liver and kidney. Results: Results revealed that chelation of AgNO3 by chitosan did not have any effect on growth performances and hematological parameters in chicken. However, chelated and unchelated AgNO3 increased the serum content in triglyceride, and cholesterol and decreased the serum content in creatinin, albumin and alanine aminotransferase (ALAT. Chelating AgNO3 with chitosan prevented and corrected the toxicity induced on the histological structure of liver and kidney. Conclusion: Chitosan can be used as a chelating agent to alleviate the harmful effects of AgNO3 as silver ion for poultry. [J Adv Vet Anim Res 2017; 4(2.000: 187-193

  4. Mathematical modelling of the effects of aerobic and anaerobic chelate biodegradation on actinide speciation

    International Nuclear Information System (INIS)

    Banaszak, J.E.; VanBriesen, J.M.; Rittmann, B.E.; Reed, D.T.

    1998-01-01

    Biodegradation of natural and anthropogenic chelating agents directly and indirectly affects the speciation, and hence, the mobility of actinides in subsurface environments. We combined mathematical modelling with laboratory experimentation to investigate the effects of aerobic and anaerobic chelate biodegradation on actinide [Np(IV/V), Pu(IV)] speciation. Under aerobic conditions, nitrilotriacetic acid (NTA) biodegradation rates were strongly influenced by the actinide concentration. Actinide-chelate complexation reduced the relative abundance of available growth substrate in solution and actinide species present or released during chelate degradation were toxic to the organisms. Aerobic bioutilization of the chelates as electron-donor substrates directly affected actinide speciation by releasing the radionuclides from complexed form into solution, where their fate was controlled by inorganic ligands in the system. Actinide speciation was also indirectly affected by pH changes caused by organic biodegradation. The two concurrent processes of organic biodegradation and actinide aqueous chemistry were accurately linked and described using CCBATCH, a computer model developed at Northwestern University to investigate the dynamics of coupled biological and chemical reactions in mixed waste subsurface environments. CCBATCH was then used to simulate the fate of Np during anaerobic citrate biodegradation. The modelling studies suggested that, under some conditions, chelate degradation can increase Np(IV) solubility due to carbonate complexation in closed aqueous systems. (orig.)

  5. ELECTED PROBLEMS RELATED TO ENVIRONMENTAL HEAVY METALS EXPOSURE AND CHELATION THERAPY

    Directory of Open Access Journals (Sweden)

    Anna Skoczyńska

    2010-09-01

    Full Text Available Background: Exposure to heavy metals leads to functional and metabolic disturbances and many of them are included in pathogenesis of common diseases (arterial hypertension, atherosclerosis, neurodegenerative processes. In this context new therapeutic and prophylactic strategies are necessary. Patients diagnosed with chronic heavy metals intoxication usually require chelation to increase mobilisation of metals from tissues and elimination of them via urine. Acute poisoning with toxic metal may be difficult to diagnosis, especially in case of accidental intoxication or suicidal intention. Patients also require chelation after causative factor is identified. Objectives: To describe some problems connected with toxicity of metals poisoning and to review pharmacologic therapies that could have a role in poisoning with metals. Methods: A review of the literature was carried out and expert opinion expressed. Results/conclusion: Chelation is a common therapy in case of poisoning with toxic metals but it is satisfied only partially. A combined therapy with structurally different chelators or long-term acting chelators could become viable alternatives in the future. A combined therapy with an antioxidant plus chelator may be a good choice in patients chronically poisoned with metals. Exposure to lead should be taken into account during estimation of global cardiovascular risk.

  6. Chelation therapy to treat atherosclerosis, particularly in diabetes: is it time to reconsider?

    Science.gov (United States)

    Lamas, Gervasio A; Ergui, Ian

    2016-08-01

    Case reports and case series have suggested a possible beneficial effect of chelation therapy in patients with atherosclerotic disease. Small randomized trials conducted in patients with angina or peripheral artery disease, however, were not sufficiently powered to provide conclusive evidence on clinical outcomes. The Trial to Assess Chelation Therapy (TACT) was the first randomized trial adequately powered to detect the effects of chelation therapy on clinical endpoints. We discuss results and future research. Expert commentary: Chelation reduced adverse cardiovascular events in a post myocardial infarction (MI) population. Patients with diabetes demonstrated even greater benefit, with a number needed to treat of 6.5 patients to prevent a cardiac event over 5 years, with a 41% relative reduction in risk of a cardiac event (p = 0.0002). These results led to the revision of the ACC/AHA guideline recommendations for chelation therapy, changing its classification from class III to class IIb. TACT2, a replicative trial, will assess the effects of chelation therapy on cardiovascular outcomes in diabetic patients with a prior myocardial infarction. We are seeking participating sites for TACT2.

  7. Deaths associated with hypocalcemia from chelation therapy--Texas, Pennsylvania, and Oregon, 2003-2005.

    Science.gov (United States)

    2006-03-03

    Chelating agents bind lead in soft tissues and are used in the treatment of lead poisoning to enhance urinary and biliary excretion of lead, thus decreasing total lead levels in the body. During the past 30 years, environmental and dietary exposures to lead have decreased substantially, resulting in a considerable decrease in population blood lead levels (BLLs) and a corresponding decrease in the number of patients requiring chelation therapy. Chelating agents also increase excretion of other heavy metals and minerals, such as zinc and, in certain cases, calcium. This report describes three deaths associated with chelation-therapy--related hypocalcemia that resulted in cardiac arrest. Several drugs are used in the treatment of lead poisoning, including edetate disodium calcium (CaEDTA), dimercaperol (British anti-Lewisite), D-penicillamine, and meso-2,3-dimercaptosuccinic acid (succimer). Health-care providers who are unfamiliar with chelating agents and are considering this treatment for lead poisoning should consult an expert in the chemotherapy of lead poisoning. Hospital pharmacies should evaluate whether continued stocking of Na2EDTA is necessary, given the established risk for hypocalcemia, the availability of less toxic alternatives, and an ongoing safety review by the Food and Drug Administration (FDA). Health-care providers and pharmacists should ensure that Na2EDTA is not administered to children during chelation therapy.

  8. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  9. Bifunctional Anti-Non-Amyloid Component α-Synuclein Nanobodies Are Protective In Situ.

    Directory of Open Access Journals (Sweden)

    David C Butler

    Full Text Available Misfolding, abnormal accumulation, and secretion of α-Synuclein (α-Syn are closely associated with synucleinopathies, including Parkinson's disease (PD. VH14 is a human single domain intrabody selected against the non-amyloid component (NAC hydrophobic interaction region of α-Syn, which is critical for initial aggregation. Using neuronal cell lines, we show that as a bifunctional nanobody fused to a proteasome targeting signal, VH14PEST can counteract heterologous proteostatic effects of mutant α-Syn on mutant huntingtin Exon1 and protect against α-Syn toxicity using propidium iodide or Annexin V readouts. We compared this anti-NAC candidate to NbSyn87, which binds to the C-terminus of α-Syn. NbSyn87PEST degrades α-Syn as well or better than VH14PEST. However, while both candidates reduced toxicity, VH14PEST appears more effective in both proteostatic stress and toxicity assays. These results show that the approach of reducing intracellular monomeric targets with novel antibody engineering technology should allow in vivo modulation of proteostatic pathologies.

  10. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions

    Science.gov (United States)

    Chen, Xiudan; Wang, Huili; Li, Jing; Hu, Wenqin; Li, Mei-Jin

    2017-02-01

    Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy = 2-phenylpyridine, ppz = 4,7-phenanthrolino-5,6:5,6-pyrazine, bppz = 2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2 +, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission ;turn-on; bifunctional detection for CN-, especially for complex 1-Cu2 + showed a high sensitivity toward CN- with a limit of diction is 97 nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.

  11. Hypoxia targeted bifunctional suicide gene expression enhances radiotherapy in vitro and in vivo

    International Nuclear Information System (INIS)

    Sun, Xiaorong; Xing, Ligang; Deng, Xuelong; Hsiao, Hung Tsung; Manami, Akiko; Koutcher, Jason A.; Clifton Ling, C.; Li, Gloria C.

    2012-01-01

    Purpose: To investigate whether hypoxia targeted bifunctional suicide gene expression-cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) with 5-FC treatments can enhance radiotherapy. Materials and methods: Stable transfectants of R3327-AT cells were established which express a triple-fusion-gene: CD, UPRT and monomoric DsRed (mDsRed) controlled by a hypoxia inducible promoter. Hypoxia-induced expression/function of CDUPRTmDsRed was verified by western blot, flow cytometry, fluorescent microscopy, and cytotoxicity assay of 5-FU and 5-FC. Tumor-bearing mice were treated with 5-FC and local radiation. Tumor volume was monitored and compared with those treated with 5-FC or radiation alone. In addition, the CDUPRTmDsRed distribution in hypoxic regions of tumor sections was visualized with fluorescent microscopy. Results: Hypoxic induction of CDUPRTmDsRed protein correlated with increased sensitivity to 5-FC and 5-FU. Significant radiosensitization effects were detected after 5-FC treatments under hypoxic conditions. In the tumor xenografts, the distribution of CDUPRTmDsRed expression visualized with fluorescence microscopy was co-localized with the hypoxia marker pimonidazole positive staining cells. Furthermore, administration of 5-FC to mice in combination with local irradiation resulted in significant tumor regression, as in comparison with 5-FC or radiation treatments alone. Conclusions: Our data suggest that the hypoxia-inducible CDUPRT/5-FC gene therapy strategy has the ability to specifically target hypoxic cancer cells and significantly improve the tumor control in combination with radiotherapy.

  12. Bifunctional Rhodamine Probes of Myosin Regulatory Light Chain Orientation in Relaxed Skeletal Muscle Fibers

    Science.gov (United States)

    Brack, Andrew S.; Brandmeier, Birgit D.; Ferguson, Roisean E.; Criddle, Susan; Dale, Robert E.; Irving, Malcolm

    2004-01-01

    The orientation of the regulatory light chain (RLC) region of the myosin heads in relaxed skinned fibers from rabbit psoas muscle was investigated by polarized fluorescence from bifunctional rhodamine (BR) probes cross-linking pairs of cysteine residues introduced into the RLC. Pure 1:1 BR-RLC complexes were exchanged into single muscle fibers in EDTA rigor solution for 30 min at 30°C; ∼60% of the native RLC was removed and stoichiometrically replaced by BR-RLC, and >85% of the BR-RLC was located in the sarcomeric A-bands. The second- and fourth-rank order parameters of the orientation distributions of BR dipoles linking RLC cysteine pairs 100-108, 100-113, 108-113, and 104-115 were calculated from polarized fluorescence intensities, and used to determine the smoothest RLC orientation distribution—the maximum entropy distribution—consistent with the polarized fluorescence data. Maximum entropy distributions in relaxed muscle were relatively broad. At the peak of the distribution, the “lever” axis, linking Cys707 and Lys843 of the myosin heavy chain, was at 70–80° to the fiber axis, and the “hook” helix (Pro830–Lys843) was almost coplanar with the fiber and lever axes. The temperature and ionic strength of the relaxing solution had small but reproducible effects on the orientation of the RLC region. PMID:15041671

  13. Toward Protein Structure In Situ: Comparison of Two Bifunctional Rhodamine Adducts of Troponin C

    Science.gov (United States)

    Julien, Olivier; Sun, Yin-Biao; Knowles, Andrea C.; Brandmeier, Birgit D.; Dale, Robert E.; Trentham, David R.; Corrie, John E. T.; Sykes, Brian D.; Irving, Malcolm

    2007-01-01

    As part of a program to develop methods for determining protein structure in situ, sTnC was labeled with a bifunctional rhodamine (BR or BSR), cross-linking residues 56 and 63 of its C-helix. NMR spectroscopy of the N-terminal domain of BSR-labeled sTnC in complex with Ca2+ and the troponin I switch peptide (residues 115–131) showed that BSR labeling does not significantly affect the secondary structure of the protein or its dynamics in solution. BR-labeling was previously shown to have no effect on the solution structure of this complex. Isometric force generation in isolated demembranated fibers from rabbit psoas muscle into which BR- or BSR-labeled sTnC had been exchanged showed reduced Ca2+-sensitivity, and this effect was larger with the BSR label. The orientation of rhodamine dipoles with respect to the fiber axis was determined by polarized fluorescence. The mean orientations of the BR and BSR dipoles were almost identical in relaxed muscle, suggesting that both probes accurately report the orientation of the C-helix to which they are attached. The BSR dipole had smaller orientational dispersion, consistent with less flexible linkers between the rhodamine dipole and cysteine-reactive groups. PMID:17483167

  14. A self-cleaning Li-S battery enabled by a bifunctional redox mediator

    Science.gov (United States)

    Ren, Y. X.; Zhao, T. S.; Liu, M.; Zeng, Y. K.; Jiang, H. R.

    2017-09-01

    The polysulfide shuttle effect and lithium dendrite growth in lithium-sulfur (Li-S) batteries can repeatedly breach the anodic solid electrolyte interphase (SEI) over cycling. As a result, irreversible short-chain sulfide side products (Li2Sx, x = 1, 2) keep depositing on the Li anode, leading to the active material loss, increasing the Li+ transport resistance, and thereby reducing the cycle life. In this work, indium iodide (InI3) is investigated as a bifunctional electrolyte additive for Li-S batteries to protect the Li anode and decompose the side products spontaneously. On the one hand, Indium (In) is electrodeposited onto the Li anode prior to Li plating during the initial charging process, forming a chemically and mechanically stable SEI to prevent the Li anode from reacting with soluble polysulfide species to form Li2Sx (x = 1, 2) side products. On the other hand, by adequately overcharging the battery, the triiodide/iodide redox mediator is capable of chemically transforming side products deposited on the Li anode and separator into soluble polysulfides, which can be recycled by the cathode. It is shown that the battery with the InI3 additive exhibits a prolonged cycle life, and is capable of retrieving its capacity by a facile overcharging process.

  15. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali

    2016-05-24

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  16. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    Science.gov (United States)

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. A bifunctional electrolyte additive for separator wetting and dendrite suppression in lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Hao; Xie, Yong; Xiang, Hongfa; Shi, Pengcheng; Liang, Xin; Xu, Wu

    2018-04-01

    Reformulation of electrolyte systems and improvement of separator wettability are vital to electrochemical performances of rechargeable lithium (Li) metal batteries, especially for suppressing Li dendrites. In this work we report a bifunctional electrolyte additive that improves separator wettability and suppresses Li dendrite growth in LMBs. A triblock polyether (Pluronic P123) was introduced as an additive into a commonly used carbonate-based electrolyte. It was found that addition of 0.2~1% (by weight) P123 into the electrolyte could effectively enhance the wettability of polyethylene separator. More importantly, the adsorption of P123 on Li metal surface can act as an artificial solid electrolyte interphase layer and contribute to suppress the growth of Li dendrites. A smooth and dendritic-free morphology can be achieved in the electrolyte with 0.2% P123. The Li||Li symmetric cells with the 0.2% P123 containing electrolyte exhibit a relatively stable cycling stability at high current densities of 1.0 and 3.0 mA cm-2.

  18. Bifunctional separator as a polysulfide mediator for highly stable Li-S batteries

    KAUST Repository

    Abbas, Syed Ali; Ibrahem, Mohammed Aziz; Hu, Lung-hao; Lin, Chia-Nan; Fang, Jason; Boopathi, Karunakara Moorthy; Wang, Pen-Cheng; Li, Lain-Jong; Chu, Chih Wei

    2016-01-01

    The shuttling process involving lithium polysulfides is one of the major factors responsible for the degradation in capacity of lithium–sulfur batteries (LSBs). Herein, we demonstrate a novel and simple strategy—using a bifunctional separator, prepared by spraying poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) on pristine separator—to obtain long-cycle LSBs. The negatively charged SO3– groups present in PSS act as an electrostatic shield for soluble lithium polysulfides through mutual coulombic repulsion, whereas PEDOT provides chemical interactions with insoluble polysulfides (Li2S, Li2S2). The dual shielding effect can provide an efficient protection from the shuttling phenomenon by confining lithium polysulfides to the cathode side of the battery. Moreover, coating with PEDOT:PSS transforms the surface of the separator from hydrophobic to hydrophilic, thereby improving the electrochemical performance. We observed an ultralow decay of 0.0364% per cycle when we ran the battery for 1000 cycles at 0.25 C—far superior to that of the pristine separator and one of the lowest recorded values reported at a low current density. We examined the versatility of our separator by preparing a flexible battery that functioned well under various stress conditions; it displayed flawless performance. Accordingly, this economical and simple strategy appears to be an ideal platform for commercialization of LSBs.

  19. Solution Structure of a Novel C2-Symmetrical Bifunctional Bicyclic Inhibitor Based on SFTI-1

    International Nuclear Information System (INIS)

    Jaulent, Agnes M.; Brauer, Arnd B. E.; Matthews, Stephen J.; Leatherbarrow, Robin J.

    2005-01-01

    A novel bifunctional bicyclic inhibitor has been created that combines features both from the Bowman-Birk inhibitor (BBI) proteins, which have two distinct inhibitory sites, and from sunflower trypsin inhibitor-1 (SFTI-1), which has a compact bicyclic structure. The inhibitor was designed by fusing together a pair of reactive loops based on a sequence derived from SFTI-1 to create a backbone-cyclized disulfide-bridged 16-mer peptide. This peptide has two symmetrically spaced trypsin binding sites. Its synthesis and biological activity have been reported in a previous communication [Jaulent and Leatherbarrow, 2004, PEDS 17, 681]. In the present study we have examined the three-dimensional structure of the molecule. We find that the new inhibitor, which has a symmetrical 8-mer half-cystine CTKSIPP'I' motif repeated through a C 2 symmetry axis also shows a complete symmetry in its three-dimensional structure. Each of the two loops adopts the expected canonical conformation common to all BBIs as well as SFTI-1. We also find that the inhibitor displays a strong and unique structural identity, with a notable lack of minor conformational isomers that characterise most reactive site loop mimics examined to date as well as SFTI-1. This suggests that the presence of the additional cyclic loop acts to restrict conformational mobility and that the deliberate introduction of cyclic symmetry may offer a general route to locking the conformation of β-hairpin structures

  20. Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold.

    Science.gov (United States)

    Chen, Qiushui; Chen, Dong; Wu, Jing; Lin, Jin-Ming

    2016-11-01

    Designing cell-compatible, bio-degradable, and stimuli-responsive hydrogels is very important for biomedical applications in cellular delivery and micro-scale tissue engineering. Here, we report achieving flexible control of cellular microencapsulation, permeability, and release by rationally designing a diblock copolymer, alginate-conjugated poly(N-isopropylacrylamide) (Alg-co-PNiPAM). We use the microfluidic technique to fabricate the bifunctional copolymers into thousands of mono-disperse droplet-templated hydrogel microparticles for controlled encapsulation and triggered release of mammalian cells. In particular, the grafting PNiPAM groups in the synthetic cell-laden microgels produce lots of nano-aggregates into hydrogel networks at elevated temperature, thereafter enhancing the permeability of microparticle scaffolds. Importantly, the hydrogel scaffolds are readily fabricated via on-chip quick gelation by triggered release of Ca 2+ from the Ca-EDTA complex; it is also quite exciting that very mild release of microencapsulated cells is achieved via controlled degradation of hydrogel scaffolds through a simple strategy of competitive affinity of Ca 2+ from the Ca-Alginate complex. This finding suggests that we are able to control cellular encapsulation and release through ion-induced gelation and degradation of the hydrogel scaffolds. Subsequently, we demonstrate a high viability of microencapsulated cells in the microgel scaffolds.

  1. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    Energy Technology Data Exchange (ETDEWEB)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2012-06-15

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  2. Designing calcium phosphate-based bifunctional nanocapsules with bone-targeting properties

    International Nuclear Information System (INIS)

    Khung, Yit-Lung; Bastari, Kelsen; Cho, Xing Ling; Yee, Wu Aik; Loo, Say Chye Joachim

    2012-01-01

    Using sodium dodecyl sulphate micelles as template, hollow-cored calcium phosphate nanocapsules were produced. The surfaces of the nanocapsule were subsequently silanised by a polyethylene glycol (PEG)-based silane with an N-hydroxysuccinimide ester end groups which permits for further attachment with bisphosphonates (BP). Characterisations of these nanocapsules were investigated using Field Emission Scanning Electron Microscopy (FESEM), Transmission Electron Microscopy, Fourier Transform Infra-Red Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Dynamic Light Scattering. To further validate the bone-targeting potential, dentine discs were incubated with these functionalised nanocapsules. FESEM analysis showed that these surface-modified nanocapsules would bind strongly to dentine surfaces compared to non-functionalised nanocapsules. We envisage that respective components would give this construct a bifunctional attribute, whereby (1) the shell of the calcium phosphate nanocapsule would serve as biocompatible coating aiding in gradual osteoconduction, while (2) surface BP moieties, acting as targeting ligands, would provide the bone-targeting potential of these calcium phosphate nanocapsules.

  3. "Click" chemistry mildly stabilizes bifunctional gold nanoparticles for sensing and catalysis.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Liu, Na; Echeverria, María; Moya, Sergio; Salmon, Lionel; Ruiz, Jaime; Astruc, Didier

    2014-07-01

    A large family of bifunctional 1,2,3-triazole derivatives that contain both a polyethylene glycol (PEG) chain and another functional fragment (e.g., a polymer, dendron, alcohol, carboxylic acid, allyl, fluorescence dye, redox-robust metal complex, or a β-cyclodextrin unit) has been synthesized by facile "click" chemistry and mildly coordinated to nanogold particles, thus providing stable water-soluble gold nanoparticles (AuNPs) in the size range 3.0-11.2 nm with various properties and applications. In particular, the sensing properties of these AuNPs are illustrated through the detection of an analogue of a warfare agent (i.e., sulfur mustard) by means of a fluorescence "turn-on" assay, and the catalytic activity of the smallest triazole-AuNPs (core of 3.0 nm) is excellent for the reduction of 4-nitrophenol in water. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Development of chelate tagging method of protein at low temperature

    International Nuclear Information System (INIS)

    Oida, Shigeru; Sekiya, Keizo

    1999-01-01

    This study aimed at development of a protein labelling method at a low temperature, available for functional proteins, such as antibodies and enzymes mostly unstable at high temperatures. A solution of anti-mouse IgG antibody added with EDTA was incubated with 51 CrCl 3 at 4degC for 24 hours. After stopping the reaction with 100-fold amount of EDTA-2Na, the solution was fractionated into antibody fraction and metal fraction by HPLC. After incubation, non-specific Cr adsorption on the antibody in no relation to the chelate reagent was chased with 10-fold amount of CrCl 3 . To remove free Cr, the sample solution was incubated with 10 to 50-fold ICB-EDTA solution containing N,N-dimethyl-formamide. Then, the amount of Cr-labelling on the antibody was determined. In Western-blotting, chick actin was applied onto SDS-polyacrylamide gel electrophoresis. One part of the lane was stained with brilliant-blue and the other was transferred on nitrocellulose membrane by semi-dry method and stained with panceau-S. Anti-actin monoclonal antibody and anti-mouse IgG antibody were used as the first antibody and the second one, respectively. When incubated with ICB-EDTA for 3 days, labelling reached the maximum level. Although labelling of the second antibody was performed with maleimido-C 3 -benzyl EDTA and 45 Ca as a substitute for 51 Cr, the rate of labelling was lower than the rate for a combination of ICB-EDTA and 51 Cr. Autoradiography of the anti-mouse IgG preparation after SDS-acrylamide gel electrophoresis revealed that radioactivity was detected on the site of H-chain but not L-chain. This indicates that 51 Cr labelling of protein is stable even under the conditions of SDS denaturation. (M.N.)

  5. Resinas quelantes amidoxímicas Amidoxime chelating resins

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    1999-12-01

    Full Text Available Resinas quelantes com grupos amidoxima foram sintetizadas por copolimerização em suspensão de acrilonitrila (AN e divinilbenzeno (DVB e subsequente modificação química dos grupos ciano por reação com hidroxilamina. Na copolimerização, a proporção de divinilbenzeno e o grau de diluição foram variados. Gelatina e carbonato de cálcio foram usados como estabilizadores de suspensão e sulfato de sódio foi adicionado para reduzir a solubilidade da acrilonitrila em água, por meio do efeito salting out. Os copolímeros de AN/DVB e as resinas amidoxímicas obtidos foram caracterizados por meio de densidade aparente, área específica, volume de poros e teor de nitrogênio. As resinas amidoxímicas foram também avaliadas em relação a capacidade de complexação de íons cobre.Chelating resins with amidoxime groups were synthesized by suspension copolymerization of acrylonitrile (AN and divinylbenzene (DVB and subsequent chemical modification of cyano groups by reaction with hydroxylamine. In the copolymerization, the proportion of divinylbenzene and the dilution degree were varied. Gelatin and calcium carbonate were used as suspension stabilizers and sodium sulphate was added in order to reduce acrylonitrile solubility in water, by salting out effect. The AN/DVB copolymers and amidoxime resins obtained were characterized by apparent density, surface area, pore volume and by the content of nitrogen. The amidoxime resins were also evaluated in relation to the complexation capacity of copper ion.

  6. Chelation of intracellular calcium blocks insulin action in the adipocyte

    International Nuclear Information System (INIS)

    Pershadsingh, H.A.; Shade, D.L.; Delfert, D.M.; McDonald, J.M.

    1987-01-01

    The hypothesis that intracellular Ca 2+ is an essential component of the intracellular mechanism of insulin action in the adipocyte was evaluated. Cells were loaded with the Ca 2+ chelator quin-2, by preincubating them with quin-2 AM, the tetrakis(acetoxymethyl) ester of quin-2. Quin-2 loading inhibited insulin-stimulated glucose transport without affecting basal activity. The ability of insulin to stimulate glucose uptake in quin-2-loaded cells could be partially restored by preincubating cells with buffer supplemented with 1.2 mM CaCl 2 and the Ca 2+ ionophore A23187. These conditions had no effect on basal activity and omission of CaCl 2 from the buffer prevented the restoration of insulin-stimulated glucose uptake by A23187. Quin-2 loading also inhibited insulin-stimulated glucose oxidation and the ability of insulin to inhibit cAMP-stimulated lipolysis without affecting their basal activities. Incubation of cells with 100 μM quin-2 or quin-2 AM had no effect on intracellular ATP concentration or the specific binding of 125 I=labeled insulin to adipocytes. These findings suggest that intracellular Ca 2+ is an essential component in the coupling of the insulin-activated receptor complex to cellular physiological/metabolic machinery. Furthermore, differing quin-2 AM dose-response profiles suggest the presence of dual Ca 2+ -dependent pathways in the adipocyte. One involves insulin stimulation of glucose transport and oxidation, whereas the other involves the antilipolytic action of insulin

  7. Decontamination of process equipment using recyclable chelating solvent

    International Nuclear Information System (INIS)

    Jevec, J.; Lenore, C.; Ulbricht, S.

    1995-01-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. With sufficient decontamination, some of the material from DOE facilities could be released as scrap into the commercial sector for recycle, thereby reducing the volume of radioactive waste requiring disposal. Although recycling may initially prove to be more costly than current disposal practices, rapidly increasing disposal costs are expected to make recycling more and more cost effective. Additionally, recycling is now perceived as the ethical choice in a world where the consequences of replacing resources and throwing away reusable materials are impacting the well-being of the environment. Current approaches to the decontamination of metals most often involve one of four basic process types: (1) chemical, (2) manual and mechanical, (3) electrochemical, and (4) ultrasonic. open-quotes Hardclose quotes chemical decontamination solutions, capable of achieving decontamination factors (Df's) of 50 to 100, generally involve reagent concentrations in excess of 5%, tend to physically degrade the surface treated, and generate relatively large volumes of secondary waste. open-quotes Softclose quotes chemical decontamination solutions, capable of achieving Df's of 5 to 10, normally consist of reagents at concentrations of 0.1 to 1%, generally leave treated surfaces in a usable condition, and generate relatively low secondary waste volumes. Under contract to the Department of Energy, the Babcock ampersand Wilcox Company is developing a chemical decontamination process using chelating agents to remove uranium compounds and other actinide species from process equipment

  8. CARDIAC FUNCTION AND IRON CHELATION IN THALASSEMIA MAJOR AND INTERMEDIA: A REVIEW OF THE UNDERLYING PATHOPHYSIOLOGY AND APPROACH TO CHELATION MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Athanasios Aessopos

    2009-07-01

    Full Text Available Heart disease is the leading cause of mortality and one of the main causes of morbidity in beta-thalassemia. Patients with homozygous thalassemia may have either a severe phenotype which is usually transfusion dependent or a milder form that is thalassemia intermedia.  The two main factors that determine cardiac disease in homozygous β thalassemia are the high output state that results from chronic tissue hypoxia, hypoxia-induced compensatory reactions and iron overload.  The high output state playing a major role in thalassaemia intermedia and the iron load being more significant in the major form. Arrhythmias, vascular involvement that leads to an increased pulmonary vascular resistance and an increased systemic vascular stiffness and valvular abnormalities also contribute to the cardiac dysfunction in varying degrees according to the severity of the phenotype.  Endocrine abnormalities, infections, renal function and medications can also play a role in the overall cardiac function.  For thalassaemia major, regular and adequate blood transfusions and iron chelation therapy are the mainstays of management. The approach to thalassaemia intermedia, today, is aimed at monitoring for complications and initiating, timely, regular transfusions and/or iron chelation therapy.  Once the patients are on transfusions, then they should be managed in the same way as the thalassaemia major patients.  If cardiac manifestations of dysfunction are present in either form of thalassaemia, high pre transfusion Hb levels need to be maintained in order to reduce cardiac output and appropriate intensive chelation therapy needs to be instituted.  In general recommendations on chelation, today, are usually made according to the Cardiac Magnetic Resonance findings, if available.  With the advances in the latter technology and the ability to tailor chelation therapy according to the MRI findings as well as the availability of three iron chelators, together with

  9. Metal-chelating active packaging film enhances lysozyme inhibition of Listeria monocytogenes.

    Science.gov (United States)

    Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2014-07-01

    Several studies have demonstrated that metal chelators enhance the antimicrobial activity of lysozyme. This study examined the effect of metal-chelating active packaging film on the antimicrobial activity of lysozyme against Listeria monocytogenes. Polypropylene films were surface modified by photoinitiated graft polymerization of acrylic acid (PP-g-PAA) from the food contact surface of the films to impart chelating activity based on electrostatic interactions. PP-g-PAA exhibited a carboxylic acid density of 113 ± 5.4 nmol cm(-2) and an iron chelating activity of 53.7 ± 9.8 nmol cm(-2). The antimicrobial interaction of lysozyme and PP-g-PAA depended on growth media composition. PP-g-PAA hindered lysozyme activity at low ionic strength (2.48-log increase at 64.4 mM total ionic strength) and enhanced lysozyme activity at moderate ionic strength (5.22-log reduction at 120 mM total ionic strength). These data support the hypothesis that at neutral pH, synergy between carboxylate metal-chelating films (pKa(bulk) 6.45) and lysozyme (pI 11.35) is optimal in solutions of moderate to high ionic strength to minimize undesirable charge interactions, such as lysozyme absorption onto film. These findings suggest that active packaging, which chelates metal ions based on ligand-specific interactions, in contrast to electrostatic interactions, may improve antimicrobial synergy. This work demonstrates the potential application of metal-chelating active packaging films to enhance the antimicrobial activity of membrane-disrupting antimicrobials, such as lysozyme.

  10. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    Science.gov (United States)

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  11. Enhanced in vitro activity of tigecycline in the presence of chelating agents.

    Science.gov (United States)

    Deitchman, Amelia N; Singh, Ravi Shankar Prasad; Rand, Kenneth H; Derendorf, Hartmut

    2018-05-01

    The lack of availability of novel antibiotic agents and the rise of resistance to existing therapies has led clinicians to utilise combination therapy to adequately treat bacterial infections. Here we examined how chelators may impact the in vitro activity of tigecycline (TIG) against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Minimum inhibitory concentrations (MICs) were determined by broth dilution with and without various combinations of chelators (EDTA and other tetracyclines) and metal ions (i.e. calcium, magnesium). Trimethoprim (TMP) was used as a non-chelating control. Addition of metal ions led to increases in MICs, whilst addition of EDTA led to decreases in MICs. The chelating effects of EDTA were reversed by addition of magnesium and most profoundly calcium. Similar effects of EDTA and calcium were observed for tetracycline (TET) and TMP. When other tetracyclines (TET, oxytetracycline (OXY) and chlortetracycline (CHL)) were used as chelators at concentrations below their MICs, TIG MICs decreased for P. aeruginosa but not for E. coli. Some decreases in TIG MICs were observed for K. pneumoniae when TET and CHL were added. A dose-dependent decrease in TIG MIC was observed for TET and was reversed by the addition of calcium. The presence of effects of EDTA and calcium on TMP MICs indicates that mechanisms outside of TIG chelation likely play a role in enhanced activity. Full characterisation of an unexpected interaction such as TIG-TET with different microorganisms could provide valuable insights into the underlying mechanisms and design of physiologically viable chelators as candidates for future combinations regimens. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Olivine-type cathode for rechargeable batteries: Role of chelating agents

    International Nuclear Information System (INIS)

    Kandhasamy, Sathiyaraj; Singh, Pritam; Thurgate, Stephen; Ionescu, Mihail; Appadoo, Dominique; Minakshi, Manickam

    2012-01-01

    Highlights: ► Olivine powder was synthesized by sol–gel method using a range of chelating agents. ► Role of chelating agents in olivine cathode was investigated for battery application. ► Battery was fabricated with olivine cathode, Zn anode and aqueous electrolyte. ► Synergetic effect of additives (CA + TEA + PVP) led to improved storage capacity. - Abstract: Olivine (LiCo 1/3 Mn 1/3 Ni 1/3 PO 4 ) powders were synthesized at 550–600 °C for 6 h in air by a sol–gel method using multiple chelating agents and used as a cathode material for rechargeable batteries. Range of chelating agents like a weak organic acid (citric acid – CA), emulsifier (triethanolamine – TEA) and non-ionic surfactant (polyvinylpyrrolidone – PVP) in sol–gel wet chemical synthesis were used. The dependence of the physicochemical properties of the olivine powders such as particle size, morphology, structural bonding and crystallinity on the chelating agent was extensively investigated. Among the chelating agents used, unique cycling behavior (75 mAh/g after 25 cycles) is observed for the PVP assisted olivine. This is due to volumetric change in trapped organic layer for first few cycles. The trapped organic species in the electrode–electrolyte interface enhances the rate of lithium ion diffusion with better capacity retention. In contrast, CA and TEA showed a gradual capacity fade of 30 and 38 mAh/g respectively after multiple cycles. The combination of all the three mixed chelating agents showed an excellent electrochemical behavior of 100 mAh/g after multiple cycles and the synergistic effect of these agents are discussed.

  13. Organically complexed copper, zinc, and chelating agents in the rivers of Western Puerto Rico

    International Nuclear Information System (INIS)

    Montgomery, J.R.; Echevarria, J.E.

    1975-01-01

    The method for determining soluble chelators gives their concentration in copper-equivalent chelating capacity units in fresh or slightly brackish (less than 3 percent salinity) water. The mean concentration of chelators in the Rio Guanajibo for December 1973 and January 1974 was 0.4 mg of copper per liter of water (N = 21, SD = 0.2) and for February 1974, 0.9 mg/liter (N = 8, SD = 0.4). The combined mean for the Rio Anasco and Culebrinas was 0.5 mg/liter (N = 7, SD = 0.4) in January and February 1974. The mean concentration of ionic copper was 0.5 μg/liter (N = 7, SD = 0.6) and of ionic zinc, 0.2 μg/liter (N = 8, SD = 0.1) in the Rio Guanajibo from November 1972 to February 1973. The concentration of organically bound copper was 0.3 μ/liter (N = 7, SD = 0.2) and that of organically bound zinc was 0.6 μg/liter (N = 8, SD = 0.6); this indicates that there was more than a sufficient quantity of chelator available in the river to complex all the soluble copper. The presence of a high ratio of Ca 2+ to Cu 2+ probably prevents the formation of larger concentrations of organically complexed copper. The mean concentration of chelating agents in the Guanajibo River seems to be directly related to the increased organic input from municipalities and a sugar mill. The concentration of chelators in tropical rivers appears to be higher than that found in Canadian lakes. The mean concentration for particulate organic carbon (POC) was 3653 μg atoms/liter (SD = 3653, N = 29). The dissolved reactive phosphate (DRP) ranged from a mean of 1.1 μg atom/liter. No significant correlation could be found between POC, DRP, and the concentration of chelators

  14. A study on the adsorption and subsurface transport of radioactive solutes in the presence of chelating agents

    International Nuclear Information System (INIS)

    Baik, Min Hoon

    1994-02-01

    In this study, adsorption and transport models were developed to analyze the effect of chelating agents on the adsorption and subsurface transport of radioactive solutes. The effect of chelating agents on the adsorption of radioactive solutes was analyzed by developing an adsorption model based upon the extended concept of distribution coefficient reflecting the presence of chelating agents. Also, a batch adsorption experiment was conducted in order to validate the developed adsorption model and to investigate the effect of chelating agent on the adsorption of radioactive metal solutes. In this experiment, a Cobalt(II)/EDTA/Bentonite system was considered as a representative chelation/adsorption system. It was found from the results that the presence of chelating agents significantly reduced the adsorbing capacity of geologic media such as clay minerals and soils. Thus it was concluded that the presence of chelating agents even in a small amount could contribute to the mobilization of radioactive solutes from radioactive waste burial sites by reducing the adsorbing capacity of geologic media. The effect of chelating agents on the transport of radioactive solutes in subsurface porous media was analyzed by formulating an advective-dispersive transport model which incorporated chelate formation, adsorption, decay, and degradations and by introducing the concept of a tenad. Particularly the governing equation for the tenad of radioactive solutes, M, was presented as a linear partial differential form by introducing the extended distribution coefficient, K D . The calculated results from the model showed that the transport rate of the chelated radionuclides was much greater than that of the free ionic radionuclides. This much faster transport of the chelated radionuclides was found to be due to the lower retardation factor of the chelated radionuclides than the free ionic radionuclides. The effect of parameters on the transport of radioactive solutes was also analyzed

  15. Gadolinium and fluorescent bi-functionally labeling and in vitro MRI of rat bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Shen Jun; Zhou Cuiping; Cheng Li'na; Duan Xiaohui; Liang Biling; Fu Yue; Bi Xiaobin; Liu Yu; Deng Yubin

    2008-01-01

    Objective: To determine the feasibility of magnetically labeling and tracking mesenchymal stem cells (MSCs) in vitro by using a gadolinium and fluorescent bi-functionally transfection agent of polyethylenimine. Methods: A gadolinium bifunctional transfection reagent complex was obtained after the linear polyethylenimine derivative (JetPEI-FluoR) was incubated with Gd-DTPA. Mesenchymal stem cells isolated from the bone marrows of SD rats were cultured and expanded. The mesenchymal stem cells were incubated with the bi-functional labeling agents. After labeling, the MSCs were examined with fluoroscope and electron microscope and the biological characters were detected including trypan blue exclusion test, MTT, and apoptosis detection. On a 1.5 T MR system, the labeled MSCs were examined with spin echo T 1 WI and T 2 WI and T 1 measurement with mixed sequence. After labeling, the cells were cultured and undergone routine passage. Prior MR examinations were repeated for each passage of labeled cells. All data was statistically prolessed with SPSS for Windows. Results: Of 5 x 10 5 MSCs incubated with the bi-functional agents, 4.25 x 10 5 MSCs were successfully labeled, the percentage of labeled MSCs was 85% fluoroscopically. The high density electron particles of gadolinium observed electron microscopically existed around cellular apparatuses, especially around Golgi apparatus. In trypan blue exclusion test, the exclusion rate of labeled MSCs with incubation duration of 3,6,12,24 h was (96.55±2.90)%, (94.17± 2.56)%, (97.16±3.12)% and (94.23±2.67)%, respectively. The corresponding exclusion rate of unlabeled MSCs was (95.86±2.67)%, (92.04±2.21)%, (93.38±3.64)% and (92.12±2.53)%, respectively. There was no statistical difference of trypan blue exclusion rate between labeled cells and control unlabeled cells within 24 hours of incubation (F=4.523, P>0.05). In the proliferation test, the optical absorption value of labeled MSC with 2.5, 5.0, 10.0, 20.0, 30.0 and 40

  16. N-acetylcysteine protects rats with chronic renal failure from gadolinium-chelate nephrotoxicity.

    Directory of Open Access Journals (Sweden)

    Leonardo Victor Barbosa Pereira

    Full Text Available The aim of this study was to evaluate the effect of Gd-chelate on renal function, iron parameters and oxidative stress in rats with CRF and a possible protective effect of the antioxidant N-Acetylcysteine (NAC. Male Wistar rats were submitted to 5/6 nephrectomy (Nx to induced CRF. An ionic-cyclic Gd (Gadoterate Meglumine was administrated (1.5 mM/KgBW, intravenously 21 days after Nx. Clearance studies were performed in 4 groups of anesthetized animals 48 hours following Gd- chelate administration: 1--Nx (n = 7; 2--Nx+NAC (n = 6; 3--Nx+Gd (n = 7; 4--Nx+NAC+Gd (4.8 g/L in drinking water, initiated 2 days before Gd-chelate administration and maintained during 4 days (n = 6. This group was compared with a control. We measured glomerular filtration rate, GFR (inulin clearance, ml/min/kg BW, proteinuria (mg/24 hs, serum iron (µg/dL; serum ferritin (ng/mL; transferrin saturation (%, TIBC (µg/dL and TBARS (nmles/ml. Normal rats treated with the same dose of Gd-chelate presented similar GFR and proteinuria when compared with normal controls, indicating that at this dose Gd-chelate is not nephrotoxic to normal rats. Gd-chelate administration to Nx-rats results in a decrease of GFR and increased proteinuria associated with a decrease in TIBC, elevation of ferritin serum levels, transferrin oversaturation and plasmatic TBARS compared with Nx-rats. The prophylactic treatment with NAC reversed the decrease in GFR and the increase in proteinuria and all alterations in iron parameters and TBARS induced by Gd-chelate. NAC administration to Nx rat did not modify the inulin clearance and iron kinetics, indicating that the ameliorating effect of NAC was specific to Gd-chelate. These results suggest that NAC can prevent Gd-chelate nephrotoxicity in patients with chronic renal failure.

  17. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  18. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  19. Metal-Organic-Framework-Derived Hybrid Carbon Nanocages as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution.

    Science.gov (United States)

    Liu, Shaohong; Wang, Zhiyu; Zhou, Si; Yu, Fengjiao; Yu, Mengzhou; Chiang, Chang-Yang; Zhou, Wuzong; Zhao, Jijun; Qiu, Jieshan

    2017-08-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are cornerstone reactions for many renewable energy technologies. Developing cheap yet durable substitutes of precious-metal catalysts, especially the bifunctional electrocatalysts with high activity for both ORR and OER reactions and their streamlined coupling process, are highly desirable to reduce the processing cost and complexity of renewable energy systems. Here, a facile strategy is reported for synthesizing double-shelled hybrid nanocages with outer shells of Co-N-doped graphitic carbon (Co-NGC) and inner shells of N-doped microporous carbon (NC) by templating against core-shell metal-organic frameworks. The double-shelled NC@Co-NGC nanocages well integrate the high activity of Co-NGC shells into the robust NC hollow framework with enhanced diffusion kinetics, exhibiting superior electrocatalytic properties to Pt and RuO 2 as a bifunctional electrocatalyst for ORR and OER, and hold a promise as efficient air electrode catalysts in Zn-air batteries. First-principles calculations reveal that the high catalytic activities of Co-NGC shells are due to the synergistic electron transfer and redistribution between the Co nanoparticles, the graphitic carbon, and the doped N species. Strong yet favorable adsorption of an OOH* intermediate on the high density of uncoordinated hollow-site C atoms with respect to the Co lattice in the Co-NGC structure is a vital rate-determining step to achieve excellent bifunctional electrocatalytic activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  1. Mechanism and efficiency of cell death of type II photosensitizers: effect of zinc chelation.

    Science.gov (United States)

    Pavani, Christiane; Iamamoto, Yassuko; Baptista, Maurício S

    2012-01-01

    A series of meso-substituted tetra-cationic porphyrins, which have methyl and octyl substituents, was studied in order to understand the effect of zinc chelation and photosensitizer subcellular localization in the mechanism of cell death. Zinc chelation does not change the photophysical properties of the photosensitizers (all molecules studied are type II photosensitizers) but affects considerably the interaction of the porphyrins with membranes, reducing mitochondrial accumulation. The total amount of intracellular reactive species induced by treating cells with photosensitizer and light is similar for zinc-chelated and free-base porphyrins that have the same alkyl substituent. Zinc-chelated porphyrins, which are poorly accumulated in mitochondria, show higher efficiency of cell death with features of apoptosis (higher MTT response compared with trypan blue staining, specific acridine orange/ethidium bromide staining, loss of mitochondrial transmembrane potential, stronger cytochrome c release and larger sub-G1 cell population), whereas nonchelated porphyrins, which are considerably more concentrated in mitochondria, triggered mainly necrotic cell death. We hypothesized that zinc-chelation protects the photoinduced properties of the porphyrins in the mitochondrial environment. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  2. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Massoud, M.A.; Abd-El-Sabour, M.F. (Agriculture Dept. for Soil and Water Research, Nuclear Research Centre, A.E.A., Cairo (Egypt)); Omar, M.A. (Ain Shams Univ., Cairo (Egypt). Faculty of Agriculture)

    1983-01-01

    The effect of Fe/sub 2/(So/sub 4/)/sub 3/, Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe/sub 2/(So/sub 4/)/sub 3/. It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion.

  3. Immobilization of Fe chelators on sepharose gel and its effect on their chemical properties.

    Science.gov (United States)

    Yehuda, Zehava; Hadar, Yitzhak; Chen, Yona

    2003-09-24

    Iron chelates are usually costly and easily leached beyond the root zone. This creates a need to frequently replenish the rhizosphere with chelated Fe and might contaminate groundwater with organic compounds and metals. The development of a slow-release Fe fertilizer that will efficiently supply Fe to plants while exhibiting high resistance toward leaching and/or degradation in the rhizosphere has been the focus of this study. Desferrioxamine B (DFOB) and ethylenediaminebis(o-hydroxyphenylacetic acid) (EDDHA) were immobilized on Sepharose. (13)C NMR and FTIR measurements confirmed that coupling of DFOB to the gel did not appear to influence its ability to chelate Fe(3+) or its binding nature. Isotherms for the immobilized ligands were determined in the presence of 1 mM HEDTA, at 25 degrees C and at an ionic strength of 0.1 M. The isotherms showed a high affinity of Fe(3+) to the ligands and binding up to saturation level throughout the pH range examined (4.0-9.0). The K(app) values for the immobilized Fe chelates were determined using a modified Scatchard model and found to be lower than the soluble ones. This decrease in K(app) might facilitate Fe uptake from these chelates by plants.

  4. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  5. Which psychosocial factors are related to chelation adherence in thalassemia? A systematic review.

    Science.gov (United States)

    Evangeli, Michael; Mughal, Kulsoom; Porter, John B

    2010-06-01

    Good adherence to iron chelation therapy in thalassemia is crucial. Although there is evidence that adherence is related to regimen factors, there has been less emphasis on the relationship between psychosocial (psychological, demographic and social) factors and adherence. We present a systematic review of psychosocial correlates of chelation adherence in thalassemia. Nine studies met the inclusion criteria. Information was extracted regarding the study characteristics and the relationship between psychosocial factors and chelation adherence. Methodological quality was rated. The studies took place in a range of countries, were mostly cross sectional in design, and examined adherence to deferoxamine (DFO) only. Sample sizes ranged from 15 to 1573. A variety of psychosocial variables were examined. Definitions of adherence varied between studies and non adherence rates were also variable (9 to 66%). Older age was consistently associated with lower levels of chelation adherence. There were few other consistent findings. The methodological quality of studies was variable. There is a need for more methodologically sophisticated and theoretically informed studies on psychosocial correlates of chelation adherence. We offer specific suggestions.

  6. Effect of different chelated zinc sources on the growth and yield of maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    M. Tahir

    2009-05-01

    Full Text Available A field study was conducted at Agronomic Research Area, University of Agriculture, Faisalabad during spring, 2007 to evaluate the effect of different chelated zinc sources on growth and yield of maize (Zea mays L.. Crop was sown on well prepared soil in 1st week of March, 2007. The experiment was laid out according to randomized complete block design. The treatments comprised of different chelated zinc sources: ZnSO4-DTPA, ZnSO4-Fulvate, ZnSO4-Lignosulphonate, ZnSO4-EDTA and ZnSO4-H2O along with control (no zinc, repeated three times. Results showed that number of cobs plant-1, grain rows cob-1 and oil contents did not differ significantly. However, differences among treatments for plant height at harvest (cm, leaf area plant-1 (cm2, stem diameter (cm, cob length (cm, cob diameter (cm, 100-grains weight (g, number of grains cob-1, grains weight cob-1(g, biological yield (tons ha-1, grain yield (tons ha-1 and protein contents (% were significantly higher. Moreover, results also revealed that ZnSO4-DPTA was found the most effective Zn chelated source among all the treatments. Rest of the chelating agents were not too impressive as they showed varied response for different variables. The result of this experiment suggest further experimentation to explore behaviour of Zn-DTPA with other macro and micro nutrients and to calculate cost benefit ratio for use ofZn chelated compounds.

  7. Increased Uptake of Chelated Copper Ions by Lolium perenne Attributed to Amplified Membrane and Endodermal Damage

    Directory of Open Access Journals (Sweden)

    Anthea Johnson

    2015-10-01

    Full Text Available The contributions of mechanisms by which chelators influence metal translocation to plant shoot tissues are analyzed using a combination of numerical modelling and physical experiments. The model distinguishes between apoplastic and symplastic pathways of water and solute movement. It also includes the barrier effects of the endodermis and plasma membrane. Simulations are used to assess transport pathways for free and chelated metals, identifying mechanisms involved in chelate-enhanced phytoextraction. Hypothesized transport mechanisms and parameters specific to amendment treatments are estimated, with simulated results compared to experimental data. Parameter values for each amendment treatment are estimated based on literature and experimental values, and used for model calibration and simulation of amendment influences on solute transport pathways and mechanisms. Modeling indicates that chelation alters the pathways for Cu transport. For free ions, Cu transport to leaf tissue can be described using purely apoplastic or transcellular pathways. For strong chelators (ethylenediaminetetraacetic acid (EDTA and diethylenetriaminepentaacetic acid (DTPA, transport by the purely apoplastic pathway is insufficient to represent measured Cu transport to leaf tissue. Consistent with experimental observations, increased membrane permeability is required for simulating translocation in EDTA and DTPA treatments. Increasing the membrane permeability is key to enhancing phytoextraction efficiency.

  8. Self-diffusion coefficient of iron as affected by chelating agents using tracer technique

    International Nuclear Information System (INIS)

    Massoud, M.A.; Abd-El-Sabour, M.F.; Omar, M.A.

    1983-01-01

    The effect of Fe 2 (So 4 ) 3 , Fe-DTPA, and Fe-EDDHA on the self-diffusion coefficient of Fe in some soils of Egypt was studied. The effect of chelating compounds on the ratio between solid phase fraction of the labile Fe and its concentration in the soil solution (capacity factor) was also studied. The data reveals the following items of more interesting: 1) The use of chelating agents, i.e., DTPA and EDDHA increased the amount of Fe in soil solution, hence the capacity factor was decreased using these compounds. It seems that as the addition of Fe was in the chelated form in soil solution, the slight loss of 59Fe from solution when 59Fe - chelate was used could be attributed to the isotopic exchange with soil Fe. 2) It was found that the addition of either Fe-DTPA or Fe-EDDHA significantly increased the self-diffusion of Fe in soil as compared with Fe 2 (So 4 ) 3 . It was also noticed that the self-diffusion for Fe in the alluvial soil was greater than in the calcareous one due to the instance competition between Ca and Fe for the chelating ligands in the calcareous soil. It was also seen that soil texture affects Fe self-diffusion

  9. Reversible adsorption of catalase onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogels.

    Science.gov (United States)

    Aktaş Uygun, Deniz; Uygun, Murat; Akgöl, Sinan; Denizli, Adil

    2015-05-01

    In this presented study, poly(acrylamide-glycidyl methacrylate) [poly(AAm-GMA)] cryogels were synthesized by cryopolymerization technique at sub-zero temperature. Prepared cryogels were then functionalized with iminodiacetic acid (IDA) and chelated with Fe(3+) ions in order produce the metal chelate affinity matrix. Synthesized cryogels were characterized with FTIR, ESEM and EDX analysis, and it was found that the cryogel had sponge like structure with interconnected pores and their pore diameter was about 200 μm. Fe(3+) chelated poly(AAm-GMA)-IDA cryogels were used for the adsorption of catalase and optimum adsorption conditions were determined by varying the medium pH, initial catalase concentration, temperature and ionic strength. Maximum catalase adsorption onto Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was found to be 12.99 mg/g cryogel at 25 °C, by using pH 5.0 acetate buffer. Adsorbed catalase was removed from the cryogel by using 1.0M of NaCl solution and desorption yield was found to be 96%. Additionally, reusability profile of the Fe(3+) chelated poly(AAm-GMA)-IDA cryogel was also investigated and it was found that, adsorption capacity of the cryogels didn't decrease significantly at the end of the 40 reuses. Catalase activity studies were also tested and it was demonstrated that desorbed catalase retained 70% of its initial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    Science.gov (United States)

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  11. Bifunctional Agents for MRI, PET and Fluorescence Imaging and Study of Nanoparticles Formed from Water Oxidation Catalysts /

    OpenAIRE

    Abadjian, Marie-Caline Z.

    2014-01-01

    The work is divided into four parts : (1) MRI contrast agents are designed to enhance T₁ relaxivity by coupling them to dendrimers, the precise structure of which can be controlled through synthesis. Cyclen is used as a starting scaffold for the synthesis of bifunctional Gd-DOTA and Gd- DOTMA analogues. One unique side chain on the macrocycle contains an azide moiety that can be clicked to an alkyne- containing core, making a first-generation dendrimer with the potential to improve MRI effici...

  12. The sunburn cell in hairless mouse epidermis: quantitative studies with UV-A radiation and mono- and bifunctional psoralens

    International Nuclear Information System (INIS)

    Young, A.R.; Magnus, I.A.

    1982-01-01

    The production of the sunburn cell by UV-A radiation and topical psoralens in hairless mouse epidermis has been studied. It has been shown that the appearance of this cell is dependent on the dose of both UV-A radiation and of the psoralen. The time-course with 8-methoxypsoralen has peak sunburn cell numbers at 28 hr postirradiation. A comparison of 2 bifunctional (8-methoxypsoralen and 5-methoxypsoralen) and 2 monofunctional (angelicin and 3-carbethoxypsoralen) psoralens showed the former are more potent. This suggests that DNA crosslink lesions may play a rle in sunburn cell production

  13. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda

    2017-07-14

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  15. Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions

    KAUST Repository

    Arayachukiat, Sunatda; Kongtes, Chutima; Barthel, Alexander; Vummaleti, Sai V. C.; Poater, Albert; Wannakao, Sippakorn; Cavallo, Luigi; D'Elia, Valerio

    2017-01-01

    Readily available ascorbic acid was discovered as an environmentally benign hydrogen bond donor (HBD) for the synthe-sis of cyclic organic carbonates from CO2 and epoxides in the presence of nucleophilic co-catalysts. The ascorbic acid/TBAI (TBAI: tetrabutylammonium iodide) binary system could be applied for the cycloaddition of CO2 to various epoxides under ambient or mild conditions. DFT calculations and catalysis experiments revealed an intriguing bifunctional mechanism in the step of CO2 insertion involving different hydroxyl moieties (enediol, ethyldiol) of the ascorbic acid scaffold.

  16. NAD-Dependent DNA-Binding Activity of the Bifunctional NadR Regulator of Salmonella typhimurium

    OpenAIRE

    Penfound, Thomas; Foster, John W.

    1999-01-01

    NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo co...

  17. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  18. Novel bifunctional anthracycline and nitrosourea chemotherapy for human bladder cancer: analysis in a preclinical survival model.

    Science.gov (United States)

    Glaves, D; Murray, M K; Raghavan, D

    1996-08-01

    A hybrid drug [N-2-chloroethylnitrosoureidodaunorubicin (AD312)] that combines structural and functional features of both anthracyclines and nitrosoureas was evaluated in a preclinical survival model of human bladder cancer. To measure the therapeutic activity of AD312, UCRU-BL13 transitional cell carcinoma cells were grown as xenografts in nude mice, and tumor growth rates were compared after i.v. administration of the drug at three dose levels. AD312 treatment at 45 and 60 mg/kg achieved 7-10-fold inhibition of tumor growth and increased host survival by 156 and 249%, respectively. Doses of 60 mg/kg showed optimal therapeutic efficacy, with sustained tumor growth inhibition, an over 2-fold increase in life span, and 40% of mice tumor free ("cured") at 120 days. Tumors were unresponsive to maximum tolerated doses of doxorubicin, a standard anthracycline used as a single agent and in combination therapies for bladder cancer. 1,3-Bis-[2-chloroethyl]-1-nitrosourea was used as a control for the apparently enhanced response of human tumors in murine hosts to nitrosoureas. 1, 3-Bis-[2-chloroethyl]-1-nitrosourea administered in three injections of 20 mg/kg did not cure mice but temporarily inhibited tumor growth by 70% and prolonged survival by 55%; its activity in this model suggests that it may be included in the repertoire of alkylating agents currently used for treatment of bladder cancers. AD312 showed increased antitumor activity with less toxicity than doxorubicin, and its bifunctional properties provide the opportunity for simultaneous treatment of individual cancer cells with two cytotoxic modalities as well as treatment of heterogeneous populations typical of bladder cancers. This novel cytotoxic drug cured doxorubicin-refractory disease and should be investigated for the clinical management of bladder cancer.

  19. Modification of bifunctional epoxy resin using CO{sub 2} fixation process and nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Khoshkish, Morteza; Bouhendi, Hosein, E-mail: H.boohendi@ippi.ac.ir; Vafayan, Mehdi

    2014-10-15

    A bifunctional epoxy resin was modified by using a CO{sub 2} fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO{sub 2} fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO{sub 2} fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T{sub max}), and the decomposition activation energy (E{sub d}) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T{sub g} of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO{sub 2} fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO{sub 2} fixation noticeably changed the curing mechanism. • CO{sub 2} fixation reaction consumes CO{sub 2} which is a harmful greenhouse gas.

  20. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    Science.gov (United States)

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Spectrophotometric method for determination of bifunctional macrocyclic ligands in macrocyclic ligand-protein conjugates

    International Nuclear Information System (INIS)

    Dadachova, E.; Chappell, L.L.; Brechbiel, M.W.

    1999-01-01

    A simple spectrophotometric assay for determination of bifunctional polyazacarboxylate-macrocyclic ligands of different sizes that are conjugated to proteins has been developed for: 12-membered macrocycle DOTA (2-[4-nitrobenzyl]-1, 4, 7, 10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) and analogs, the 15-membered PEPA macrocycle (2-[4-nitrobenzyl]-1,4,7,10,13-pentaazacyclopentadecane-N,N',N'',N''',N'''' -pentaacetic acid), and the large 18-membered macrocycle HEHA (1,4,7,10,13,16-hexaazacyclooctadecane-N,N',N'',N''',N''''-hexaacetic acid). The method is based on titration of the blue-colored 1:1 Pb(II)-Arsenazo III (AAIII) complex with the polyazacarboxylate macrocyclic ligand in the concentration range of 0-2.5 μM, wherein color change occurring upon transchelation of the Pb(II) from the AAIII to the polyazamacrocyclic ligand is monitored at 656 nm. The assay is performed at ambient temperature within 20 min without any interfering interaction between the protein and Pb(II)-AA(III) complex. Thus, this method also provides a ligand-to-protein ratio (L/P ratio) that reflects the effective number of ligands per protein molecule available to radiolabeling. The method is not suitable for 14-membered TETA macrocycle (2-[4-nitrobenzyl]-1, 4, 8, 11-tetraazacyclotetradecane N,N',N'',N'''-tetraacetic acid) because of low stability constant of Pb(II)-TETA complex. The method is rapid, simple and may be customized for other polyazacarboxylate macrocyclic ligands

  2. Enhancing Cooperativity in Bifunctional Acid–Pd Catalysts with Carboxylic Acid-Functionalized Organic Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Coan, Patrick D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Ellis, Lucas D. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Griffin, Michael B. [National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States; Schwartz, Daniel K. [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States; Medlin, J. Will [Department of Chemical and Biological Engineering, University of Colorado—Boulder, Boulder, Colorado 80309, United States

    2018-03-01

    Cooperative catalysts containing a combination of noble metal hydrogenation sites and Bronsted acid sites are critical for many reactions, including the deoxygenation (DO) of biomass-derived oxygenates in the upgrading of pyrolysis oil. One route toward the design of cooperative catalysts is to tether two different catalytically active functions so that they are in close proximity while avoiding undesirable interactions that can block active sites. Here, we deposited carboxylic acid (CA)-functionalized organophosphonate monolayers onto Al2O3-supported Pd nanoparticle catalysts to prepare bifunctional catalysts containing both Bronsted acid and metal sites. Modification with phosphonic acids (PAs) improved activity and selectivity for gas-phase DO reactions, but the degree of improvement was highly sensitive to both the presence and positioning of the CA group, suggesting a significant contribution from both the PA and CA sites. Short spacer lengths of 1-2 methylene groups between the phosphonate head and CA tail were found to yield the best DO rates and selectivities, whereas longer chains performed similarly to self-assembled monolayers having alkyl tails. Results from a combination of density functional theory and Fourier transform infrared spectroscopy suggested that the enhanced catalyst performance on the optimally positioned CAs was due to the generation of strong acid sites on the Al2O3 support adjacent to the metal. Furthermore, the high activity of these sites was found to result from a hydrogen-bonded cyclic structure involving cooperativity between the phosphonate head group and CA tail function. More broadly, these results indicate that functional groups tethered to supports via organic ligands can influence catalytic chemistry on metal nanoparticles.

  3. Facile preparation of Ag-Cu bifunctional electrocatalysts for zinc-air batteries

    International Nuclear Information System (INIS)

    Jin, Yachao; Chen, Fuyi

    2015-01-01

    Highlights: • Ag-Cu dendrites are observed for the first time to exhibit high catalytic activity for oxygen reduction reaction. • Ag-Cu dendrites are directly synthesized through galvanic displacement on the current collector layer made of Ni foams. • A bifunctional air cathode is fabricated using Ag-Cu dendrites as a carbon-free, binder-free catalyst layer. • Both the primary and rechargeable zinc–air batteries fabricated by Ag-Cu catalysts exhibit excellent performance. - ABSTRACT: An inexpensive, facile galvanic displacement reaction for the direct growth of silver–copper (Ag-Cu) catalysts on nickel foams is developed for the first time. The resulting Ag-Cu catalysts exhibit dendritic morphologies. Ag and Cu atoms are in their metallic state while the presence of CuO and Cu 2 O are limited on the surface of catalyst. The catalysts demonstrate high catalytic activity for oxygen reduction reaction (ORR) in alkaline solution, as evaluated by both linear scanning voltammetry and rotating disk electrode polarization measurements. The ORR catalysed by Ag-Cu catalyst in alkaline solution proceeds through a four-electron pathway. An air cathode is fabricated using Ag-Cu catalyst as a carbon-free, binder-free catalyst layer. Using this Ag-Cu catalyst based air cathode, both the primary and rechargeable zinc-air batteries show excellent battery performance. The specific capacity of the primary zinc-air battery is 572 mAh g −1 . Especially, the rechargeable zinc-air battery shows high round-trip efficiency, appealing stability at a long charge-discharge cycle period

  4. Modification of bifunctional epoxy resin using CO2 fixation process and nanoclay

    International Nuclear Information System (INIS)

    Khoshkish, Morteza; Bouhendi, Hosein; Vafayan, Mehdi

    2014-01-01

    A bifunctional epoxy resin was modified by using a CO 2 fixation solution process in the presence of tetra n-butyl ammonium bromide (TBAB) as catalyst and the modified treated resin was treated by cloisite 30B as nano additive. The Unmodified epoxy resin (UME), CO 2 fixated modified epoxy resin (CFME), and CFME/clay nano composite (CFMEN), were cured by diethylenetriamine (DETA). A cycloaliphatic compound as a reactive diluent was used to control the viscosity of high viscose CFME. The exfoliation of organoclay in UME and CFME was investigated by X-ray diffraction and activation energy was computed using the advanced integral isoconversional method. The activation energy dependency demonstrated that the mechanism of UME curing did not change in the presence of nanoclay. In contrast, the CO 2 fixation results showed a significant change in the activation energy dependency. The Thermal stability parameters include the initial degradation temperature (IDT), the temperature at the maximum rate of weight loss (T max ), and the decomposition activation energy (E d ) were determined by thermal gravimetry analysis. Dynamic mechanical thermal analysis measurements showed that the presence of organoclay in CFME increases the T g of nano composite in contrast to UME. The fracture roughness of UME, CFME and CFNE were determined by scanning electron microscope. The exfoliated UME/1%clay nanocomposite was confirmed by TEM image. - Highlights: • A new epoxy resin was synthesized using CO 2 fixation reaction. • The synthesized epoxy resin was modified by an organo nano-clay. • CO 2 fixation noticeably changed the curing mechanism. • CO 2 fixation reaction consumes CO 2 which is a harmful greenhouse gas

  5. Facile deferration of commercial fertilizers containing iron chelates for their NMR analysis.

    Science.gov (United States)

    Laghi, Luca; Alcañiz, Sara; Cerdán, Mar; Gomez-Gallego, Mar; Sierra, Miguel Angel; Placucci, Giuseppe; Cremonini, Mauro Andrea

    2009-06-24

    Ethylenediamine-N,N'-bis(o-hydroxyphenylacetic) acid (o,o-EDDHA) is widely used in commercial formulations as a Fe(3+) chelating agent to remedy iron shortage in calcareous and alkaline soils. Commercially available o,o-EDDHA-Fe(3+) formulations contain a mixture of EDDHA regioisomers (o,p-EDDHA and p,p-EDDHA), together with other, still uncharacterized, products. NMR spectroscopy can be applied to their study as long as iron is accurately removed prior to the observation. This paper shows that it is possible to obtain a deferrated solution of the organic ligands present in commercial fertilizers containing the EDDHA-Fe(3+) chelate by treating the chelate with ferrocyanide, thus forming Prussian Blue that can be easily removed by centrifugation. This iron removal process does not cause significant losses of the o,o-EDDHA ligand or its minor structural isomers.

  6. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract.

    Science.gov (United States)

    Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis

    2017-01-01

    Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.

  7. REVIEW ARTICLE:Future of Lead Chelation – Distribution and Treatment

    Directory of Open Access Journals (Sweden)

    Venkatesh Thuppil

    2012-01-01

    Full Text Available Lead is the major environmental toxin resulting in the ill health and deleterious effect on almost all organs in the human body in a slow and effective manner. The best treatment for lead poisoning is chelation therapy which is next only to prevention. The authors describe the disruption of homeostasis of the human body by lead in various tissues like blood, bones, liver, kidneys and brain; and the ability of lead to enter the cell using calcium channels and calcium receptors like Ca++ dependant K+ ion channels, transient receptor potential channels, T-tubules, calmodulin receptors, inositol trisphosphate receptors and ryanodine receptors. We report a few novel chelating agents like ionophores, decadentate ligands, picolinate ligands, octadentate ligand, allicin, thiamine, that show good potential for being used in chelation therapy. Future of leadpoisoning is a challenge to all and it needs to be meticulously studies to have an economic and health approach.

  8. Removal of heavy elements from Contaminated Matrices using amidoxime chelating starch

    International Nuclear Information System (INIS)

    Shama, S.A.; Wally, S.A.; Aly, H.F.

    2012-01-01

    The synthesis of a amidoxime chelating starch was carried out by grafting of acrylonitrile onto starch using the mutual irradiation techniques at dose rate 2.5 kGy. Conversion of nitrile groups of the grafted copolymer into the amidoxime was carried out by treatment with hydroxylamine under alkaline solution. The amidoxime chelating starch was characterized by FT-IR spectra, TG, Particle size, Surface area, SEM, and Elemental analyses. The chelating behavior of the prepared resin was carried out by using uranium. The binding capacity of uranium ion by the amidoxime resin was carried out by the batch technique. The sorption capacity was high for uranium, 86.9 mg/g at ph 6.5. The kinetic exchange rate was fast. It was observed that the uranium uptake ratio reaches 50% at 10 min (t 1/2 ). The treatment process using amidoxime sorbent is efficient to remove uranium from the waste solution of the FMPP plant.

  9. Isotopic measurement of uranium using NP-type chelate resin beads

    International Nuclear Information System (INIS)

    Wu Lanbi; Chen Wenpo; Wang Shijun

    1994-08-01

    NP-type chelate resin beads is used as a carrier of samples in the isotopic measurements of uranium by mass spectrometry. The results show that its absorption efficiency for uranium can be greater than 50%. It is one order magnitude higher than that strong basic anion resin, however, the ionization efficiencies of both are almost the same. Therefore, the amount of uranium required for isotopic analysis can be reduced one order of magnitude. This method has been used for isotopic analysis of uranium in NP-type chelate resin beads contained 10 -9 ∼ 10 -7 g uranium. For standard sample UTB-500, the external precision of measurements are within +-0.2%, for natural uranium samples are within +- 0.5%. The application of NP-type chelate resin beads in the isotopic measurement of uranium is a new creative achievement. It has been used in the depletion test of uranium-atomic vapor laser isotope separation

  10. Preparation and Properties of the Chitosan/PVA Blend for Heavy Metals Chelation

    Directory of Open Access Journals (Sweden)

    Zuhair Jabbar Abdul Ameer

    2016-09-01

    Full Text Available Current research based on the use of extracted chitosan mixed with Polyvinyl alcohol to manufacture blend that can been used in water purification from heavy metals such as copper, this due to chitosan properties and its ability to chelation these metals because of the presence of the functional groups in their structure. The blend has been treated with borax to increase the viscosity, and then high density polyethylene granulated coated with polymer solution to increase the surface area for chelation. The ultraviolet test showed the efficiency of blend to chelation of copper ions through lower the copper ions absorbance peak after each stage where the solution of copper ions pass on the polymer blend containing chitosan.

  11. Microbial screening of thorium(IV) and dioxouranium(VI) chelates with oxine and phenols

    International Nuclear Information System (INIS)

    Kapadia, M.A.; Patel, M.M.; Patel, G.P.; Joshi, J.D.

    2007-01-01

    In the present investigation synthesis, characterization of mixed ligand chelates of the type MA 2 L 2 , where, M = Th 4+ and UO 2 2+ , A 8-hydroxyquinoline (oxine) and L = phenols, H2L I = catechol, H 2 L 2 pyrogallol, H 2 L 3 = 2,3-dihydroxy naphthalene, H 2 L 4 = 1,5-dihydroxy naphthalene and H 2 L 5 = 1,7-dihydroxy naphthalene have been reported. Their geometry have been elucidated on the basis of elemental analyses, thermogravimetric, magnetic moments, NMR, IR and electronic spectra. A study of thermal properties has also been carried out. The antimicrobial activity of 8-hydroxyquinoline and MA 2 L 2 chelates have been determined and described. All the chelates showed an effective antimicrobial activity than the free ligand. (author)

  12. Chronic Toxic Metal Exposure and Cardiovascular Disease: Mechanisms of Risk and Emerging Role of Chelation Therapy.

    Science.gov (United States)

    Aneni, Ehimen C; Escolar, Esteban; Lamas, Gervasio A

    2016-12-01

    Over the last few decades, there has been a growing body of epidemiologic evidence linking chronic toxic metal exposure to cardiovascular disease-related morbidity and mortality. The recent and unexpectedly positive findings from a randomized, double-blind, multicenter trial of metal chelation for the secondary prevention of atherosclerotic cardiovascular disease (Trial to Assess Chelation Therapy (TACT)) have focused the discussion on the role of chronic exposure to toxic metals in the development and propagation of cardiovascular disease and the role of toxic metal chelation therapy in the secondary prevention of cardiovascular disease. This review summarizes the most recent evidence linking chronic toxic metal exposure to cardiovascular disease and examines the findings of TACT.

  13. Modeling for Colloid and Chelator Facilitated Nuclide Transport in Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) program template, by which assessment of safety and performance for a radioactive waste repository with normal and/or abnormal nuclide release cases can be made has been developed. Colloid and chelator facilitated transport that is believed to result for faster nuclide transport in various mediabothinthegeosphereandbiospherehas been evaluated deterministically and probabilistically to demonstrate the capability of the template developed through this study. To this end colloid and chelator facilitated nuclide transport has been modeled rather strainghtforwardly with assumed data through this study by utilizing some powerful function offered by GoldSim. An evaluation in view of apparent influence of colloid and chelator on the nuclide transport in the various media in and around a repository system with data assumed are illustrated

  14. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications.

    Science.gov (United States)

    Dai, Lixiong; Jones, Chloe M; Chan, Wesley Ting Kwok; Pham, Tiffany A; Ling, Xiaoxi; Gale, Eric M; Rotile, Nicholas J; Tai, William Chi-Shing; Anderson, Carolyn J; Caravan, Peter; Law, Ga-Lai

    2018-02-27

    Despite established clinical utilisation, there is an increasing need for safer, more inert gadolinium-based contrast agents, and for chelators that react rapidly with radiometals. Here we report the syntheses of a series of chiral DOTA chelators and their corresponding metal complexes and reveal properties that transcend the parent DOTA compound. We incorporated symmetrical chiral substituents around the tetraaza ring, imparting enhanced rigidity to the DOTA cavity, enabling control over the range of stereoisomers of the lanthanide complexes. The Gd chiral DOTA complexes are shown to be orders of magnitude more inert to Gd release than [GdDOTA] - . These compounds also exhibit very-fast water exchange rates in an optimal range for high field imaging. Radiolabeling studies with (Cu-64/Lu-177) also demonstrate faster labelling properties. These chiral DOTA chelators are alternative general platforms for the development of stable, high relaxivity contrast agents, and for radiometal complexes used for imaging and/or therapy.

  15. Assessment of the body burden of chelatable lead: a model and its application to lead workers.

    Science.gov (United States)

    Araki, S; Ushio, K

    1982-01-01

    A hypothetical model was introduced to estimate the body burden of chelatable lead from the mobilisation yield of lead by calcium disodium ethylenediamine tetra-acetate (CaEDTA). It was estimated that, on average, 14 and 19% of the body burden was mobilised into the urine during the 24 hours after an injection of 53.4 mumol (20 mg) and 107 mumol (40 mg) CaEDTA per kg bodyweight, respectively. The body burden of chelatable lead ranged from 4 mumol (0.8 mg) to 120 mumol (24.9 mg) (mean 37 mumol (7.7 mg) in lead workers with blood lead concentrations of 0.3-2.9 mumol/kg (6-60 microgram/100 g) (mean 1.4 mumol/kg (29 microgram/100 g)). There were linear relationships between blood lead concentrations and body burden of chelatable lead on a log scale. PMID:6802167

  16. Enhancement of 67Ga tumor-to-blood ratios by chelating agent

    International Nuclear Information System (INIS)

    Saji, Hideo; Yokoyama, Akira; Hata, Naotaka; Misaki, Atsushi; Tanaka, Hisashi.

    1980-01-01

    Chelating agent, such as, CaEDTA, CaDTPA, D-penicillamine, DMSA, desferoxamine, NTA, cysteine ethyl ester, BAL, α-MPG, phthalein complexone, were tested as a possible contrast enhancing agent for tumor imaging with 67 Ga-citrate. The intravenous administration of a chelating agent to Ehrlich's tumor bearing mice, one hour after the injection of 67 Ga-citrate, accelerated the blood clearance with only a very slight change of activity in the target, increasing the tumor-to-blood ratio, and consequently achieving a better visualization. Among the tested chelating agents, D-penicillamine showed the highest target-to-nontarget ratio at a shorter time: a good tumor-to-blood ratio, performed after 24 hr with non-treated animals, was achieved in only 1-3 hr with post-treated animals. Thus, D-penicillamine hold a considerable promise as a contrast enhancing agent for future clinical use. (author)

  17. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility.

    Science.gov (United States)

    Isabettini, Stéphane; Massabni, Sarah; Hodzic, Arnel; Durovic, Dzana; Kohlbrecher, Joachim; Ishikawa, Takashi; Fischer, Peter; Windhab, Erich J; Walde, Peter; Kuster, Simon

    2017-08-09

    Lanthanide ion (Ln 3+ ) chelating amphiphiles are powerful molecules for tailoring the magnetic response of polymolecular assemblies. Mixtures of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-dimyristoyl-sn-glycero-3-phospho-ethanolamine-diethylene triaminepentaacetate (DMPE-DTPA) complexed to Ln 3+ deliver highly magnetically responsive bicelles. Their magnetic properties are readily tuned by changing the bicellar size or the magnetic susceptibility Δχ of the bilayer lipids. The former technique is intrinsically bound to the region of the phase diagram guarantying the formation of bicelles. Methods aiming towards manipulating the Δχ of the bilayer are comparatively more robust, flexible and lacking. Herein, we synthesized a new Ln 3+ chelating phospholipid using glutamic acid as a backbone: DMPE-Glu-DTPA. The chelate polyhedron was specifically engineered to alter the Δχ, whilst remaining geometrically similar to DMPE-DTPA. Planar asymmetric assemblies hundreds of nanometers in size were achieved presenting unprecedented magnetic alignments. The DMPE-Glu-DTPA/Ln 3+ complex switched the Δχ, achieving perpendicular alignment of assemblies containing Dy 3+ and parallel alignment of those containing Tm 3+ . Moreover, samples with chelated Yb 3+ were more alignable than the Tm 3+ chelating counterparts. Such a possibility has never been demonstrated for planar Ln 3+ chelating polymolecular assemblies. The physico-chemical properties of these novel assemblies were further studied by monitoring the alignment behavior at different temperatures and by including 16 mol% of cholesterol (Chol-OH) in the phospholipid bilayer. The DMPE-Glu-DTPA/Ln 3+ complex and the resulting assemblies are promising candidates for applications in numerous fields including pharmaceutical technologies, structural characterization of membrane biomolecules by NMR spectroscopy, as contrasting agents for magnetic resonance imaging, and for the development of smart optical gels.

  18. On-load chelating agent treatments for conventional and nuclear power stations

    International Nuclear Information System (INIS)

    Turner, D.J.

    1978-01-01

    The paper is concerned with the application of on-load chelating agent treatments to those types of water circuit for which they are not currently available: high pressure drum boilers, sub-critical once-through boilers and water reactors. An attempt was made to see whether the most thermally stable types of chelating agent are likely to be sufficiently strong chelating agents either to dissolve established Fe 3 O 4 deposits or to prevent their precipitation from solution. It seems likely that they are strong enough to prevent Fe 3 O 4 depositing in a once-through boiler, through some may require that mildly reducing conditions are maintained. They would not be effective in a high pressure drum boiler (at 350 0 C) unless much more strongly reducing conditions could be maintained. For such boilers it would probably be better to seek multidentate ligands of less than maximum thermal stability. There are some indications that chelating agents based on carbon chains are more stable than NTA or EDTA so that citric acid or some of the unidentified chelating agents recently found to be produced radiolytically may have potential in the treatment of high pressure drum boilers. The prospects for periodic full-load cleaning seem less good for both types of boiler. There may also be a role for radiolytically produced chelating agents in alleviating some of the problems caused by the deposition of radioactive corrosion products in water reactor circuits. The chances for successful development fall from quite good to very low down the series SGHWR moderator circuit, PWR primary circuit, ammonia dosed BWR, neutral chemistry BWR (including SGHWR). (author)

  19. The preparation and characterization of novel human-like collagen metal chelates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Chenhui; Sun, Yan [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Wang, Yaoyu [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Xi' an 710069 (China); Luo, Yane, E-mail: luoyane@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering Northwest University, Xi' an 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Xi' an 710069 (China)

    2013-07-01

    In order to develop the nutritional trace elements which could be absorbed and utilized effectively, protein chelates were adopted. Calcium, copper and manganese were considered based on their physiological functions, and the new chelates of HLC-Ca, HLC-Cu and HLC-Mn were formed in MOPS or MES buffer and purified by gel chromatography, and then freeze-dried. And they were detected and analyzed by atomic absorption spectrophotometry, ultraviolet–visible absorption (UV–vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, fluorescence quenching method, circular dichroism (CD) and differential scanning calorimetry (DSC). The results showed that some chemical reactions happened between HLC and the three metal ions to form new chemical compounds. The thermodynamic parameters, ∆H, ∆G and ∆S, showed that the chelation process between HLC and metal ions was performed spontaneously. Fluorescence quenching spectra of HLC indicated that the quenching mechanism was static in nature. According to the data of DSC, the new chelates were more stable than the free HLC. And HLC-metal complex was non-toxic to the BHK21 cell through MTT assay. - Highlights: ► HLC-Ca, HLC-Cu and HLC-Mn were new chemical compounds and different to free HLC. ► Possible sites for Ca{sup 2+}, Cu{sup 2+} and Mn{sup 2+} to bind with HLC were presented. ► The chelation process between HLC and metal ions was performed spontaneously. ► The thermodynamic stability of the new chelates was higher than that of free HLC.

  20. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  1. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  2. Synthesis and physicochemical analysis of Sm (II, III) acetylacetone chelate complexes

    International Nuclear Information System (INIS)

    Kostyuk, N.N.; Dik, T.A.; Trebnikov, A.G.

    2004-01-01

    Sm (II, III) acetylacetone chelate complexes were synthesized by electrochemical method. It was shown that anode dissolution of the metal samarium over acetylacetone leads to formation of the Sm (II, III) chelate complexes: xSm(acac)2 · ySm(acac)3 · zH(acac). Factors x, y and z depend on quantity of the electricity, which flew through the electrolysis cell. The compositions of the obtained substances were confirmed by the physicochemical analysis (ultimate analysis, IR-, mass spectroscopy and thermal analysis (thermogravimetric, isothermal warming-up and differential scanning colorimetry). (Authors)

  3. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  4. An optimized antibody-chelator conjugate for imaging of carcinoembryonic antigen with indium-111

    International Nuclear Information System (INIS)

    Sumerdon, G.A.; Rogers, P.E.; Lombardo, C.M.; Schnobrich, K.E.; Melvin, S.L.; Tribby, I.I.E.; Stroupe, S.D.; Johnson, D.K.; Hobart, E.D.

    1990-01-01

    A monoclonal antibody to carcinoembryonic antigen showing minimal cross-reactivity with blood cells and normal tissues was derivatized with benzylisothiocyanate derivatives of EDTA and DTPA. Seven chelators per immunoglobulin could be incorporated without loss of immunoreactivity. The resulting conjugates, labeled with indium-111, showed low liver uptake in animals. A cold kit, comprising the DTPA conjugate at a molarity of antibody bound chelator exceeding 1 x 10 -4 M, gave radiochemical yields of indium labeled antibody of ≥ 95% and was stable for 1 yr. (author)

  5. Assessment of the body burden of chelatable lead: a model and its application to lead workers.

    OpenAIRE

    Araki, S; Ushio, K

    1982-01-01

    A hypothetical model was introduced to estimate the body burden of chelatable lead from the mobilisation yield of lead by calcium disodium ethylenediamine tetra-acetate (CaEDTA). It was estimated that, on average, 14 and 19% of the body burden was mobilised into the urine during the 24 hours after an injection of 53.4 mumol (20 mg) and 107 mumol (40 mg) CaEDTA per kg bodyweight, respectively. The body burden of chelatable lead ranged from 4 mumol (0.8 mg) to 120 mumol (24.9 mg) (mean 37 mumol...

  6. Synthesis and Characterization of Bifunctional Organic-Glasses Based on Diphenylhydrazone and Barbituric Acid Derivative for Photorefractive Application

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ki Hong [KIST, Seoul (Korea, Republic of); Lee, Sang Ho; Choi, Chil Sung; Kim, Nak Joong [Hanyang University, Seoul (Korea, Republic of); Choi, Dong Hoon [Kyunghee University, Youngin (Korea, Republic of)

    2003-12-15

    A series of amorphous molecules that possess both photoconductive and electro-optic properties was synthesized in order to investigate photorefractive properties of bifunctional organic-glasses. Diethylaminobenzaldehyde- diphenylhydrazone was covalently attached to 5-(4-diethylamino-benzylidene)-1,3-dimethylpyrimidine- 2,4,6-trione through a flexible alkyl chain (3, 4, 5, 6 and 10 carbons) containing two ether linkages. The longer linkage not only lowered the glass transition temperature (Tg) of the molecules, but also allowed faster orientation of the chromophore. To examine the photorefractive properties, a 50 μm-thick film was prepared from the mixture of a bifunctional molecule, butyl benzyl phthalate, and C{sup 60}. The photoconductivity of this composite was as high as 8.01 x 10{sup -12} S/cm at 60 V/μm, and the maximum diffraction efficiency (ηmax) of 50 μm-thick film was about 5% at 80 V/μm.

  7. Preparation of highly hydrophobic cotton fabrics by modification with bifunctional silsesquioxanes in the sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Przybylak, Marcin, E-mail: marcin.przybylak@ppnt.poznan.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Maciejewski, Hieronim, E-mail: maciejm@amu.edu.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland); Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań (Poland); Dutkiewicz, Agnieszka, E-mail: agdut@interia.pl [Poznań Science and Technology Park, Adam Mickiewicz University Foundation, Rubież 46, 61-612 Poznań (Poland)

    2016-11-30

    Highlights: • Fabric hydrophobization process using bifunctional silsesquioxanes was studied. • Superhydrophobic fabric was produced using fluorofunctional silsesquioxanes. • Surface of modified fabrics was analyzed using different techniques. - Abstract: The surface modification of cotton fabrics was carried out using two types of bifunctional fluorinated silsesquioxanes with different ratios of functional groups. The modification was performed either by one- or two-step process. Two methods, the sol-gel and the dip coating method were used in different configurations. The heat treatment and the washing process were applied after modification. The wettability of cotton fabric was evaluated by measuring water contact angles (WCA). Changes in the surface morphology were examined by scanning electron microscopy (SEM, SEM-LFD) and atomic force microscopy (AFM). Moreover, the modified fabrics were subjected to analysis of elemental composition of the applied coatings using SEM-EDS techniques. Highly hydrophobic textiles were obtained in all cases studied and one of the modifications resulted in imparting superhydrophobic properties. Most of impregnated textiles remained hydrophobic even after multiple washing process which shows that the studied modification is durable.

  8. A novel bifunctional Ni-doped TiO2 inverse opal with enhanced SERS performance and excellent photocatalytic activity

    Science.gov (United States)

    Li, Xuehong; Wu, Yun; Shen, Yuhua; Sun, Yan; Yang, Ying; Xie, Anjian

    2018-01-01

    Three-dimensional inverse opal photonic microarray (IOPM) structure exhibits good qualities in structural regularity and interconnectivity, such as high specific surface area, large pore volume, uniform pore size, and ordered periodic construction. Here, a novel nickel-doped titanium dioxide IOPM (Ni-TiO2 IOPM) was fabricated for the first time as a bifunctional material for the applications of surface-enhanced Raman scattering (SERS) substrate and photocatalyst. The Ni doping could change the defect concentration of the substrate to enhance the SERS effect, and could increase the light absorption of the substrate in visible region. The synergistic effect of Ni doping and the periodically ordered porous structure enhanced both SERS sensitivity and photocatalytic activity. As a SERS substrate, the Ni-TiO2 IOPM exhibited highly sensitive detection capability for 4-mercaptobenzoic acid (4-MBA) at a concentration as low as 1 × 10-11 M. Under simulated sunlight, about 95% of the methylene blue (MB) was degraded within 90 min when Ni-TiO2 IOPM was used as the photocatalytst. The Ni-TiO2 IOPM prepared in this work may be a promising bifunctional SERS substrate candidate for organic sewage detection and environment protection. In addition, the fabrication strategy can be extended to synthesize other nanomaterials with orderly and porous structure.

  9. Bifunctional cis-Abienol Synthase from Abies balsamea Discovered by Transcriptome Sequencing and Its Implications for Diterpenoid Fragrance Production*

    Science.gov (United States)

    Zerbe, Philipp; Chiang, Angela; Yuen, Macaire; Hamberger, Björn; Hamberger, Britta; Draper, Jason A.; Britton, Robert; Bohlmann, Jörg

    2012-01-01

    The labdanoid diterpene alcohol cis-abienol is a major component of the aromatic oleoresin of balsam fir (Abies balsamea) and serves as a valuable bioproduct material for the fragrance industry. Using high-throughput 454 transcriptome sequencing and metabolite profiling of balsam fir bark tissue, we identified candidate diterpene synthase sequences for full-length cDNA cloning and functional characterization. We discovered a bifunctional class I/II cis-abienol synthase (AbCAS), along with the paralogous levopimaradiene/abietadiene synthase and isopimaradiene synthase, all of which are members of the gymnosperm-specific TPS-d subfamily. The AbCAS-catalyzed formation of cis-abienol proceeds via cyclization and hydroxylation at carbon C-8 of a postulated carbocation intermediate in the class II active site, followed by cleavage of the diphosphate group and termination of the reaction sequence without further cyclization in the class I active site. This reaction mechanism is distinct from that of synthases of the isopimaradiene- or levopimaradiene/abietadiene synthase type, which employ deprotonation reactions in the class II active site and secondary cyclizations in the class I active site, leading to tricyclic diterpenes. Comparative homology modeling suggested the active site residues Asp-348, Leu-617, Phe-696, and Gly-723 as potentially important for the specificity of AbCAS. As a class I/II bifunctional enzyme, AbCAS is a promising target for metabolic engineering of cis-abienol production. PMID:22337889

  10. Hepatobiliary delivery of polyaminopolycarboxylate chelates: Synthesis and characterization of a cholic acid conjugate of EDTA and biodistribution and imaging studies with its indium-111 chelate

    Energy Technology Data Exchange (ETDEWEB)

    Betebenner, D.A.; Carney, P.L.; Zimmer, A.M.; Kazikiewicz, J.M.; Bruecher, E.S.; Sherry, A.D.; Johnson, D.K. (Abbott Laboratories, Abbott Park, Illinois (USA))

    1991-03-01

    A conjugate in which the steroid nucleus of cholic acid was linked to EDTA via an 11-atom spacer was obtained by reacting the succinimidyl ester of cholic acid with the amine formed by reaction of a benzyl isothiocyanate derivative of EDTA with N-(tert-butoxycarbonyl)ethylenediamine and subsequent deprotection. Potentiometric titration studies with model complexes showed that the EDTA moiety retained the ability to form 1:1 chelates of high thermodynamic stability, although formation constants were some 3-4 log K units lower for complexes of the conjugate than for the analogous chelates with underivatized EDTA. A complex formed between the cholic acid-EDTA conjugate and 111InIII was clearly rapidly into the liver when injected iv into mice, with subsequent excretion from the liver into the gastrointestinal tract being complete within 1 h of injection. Radioscintigraphic imaging studies conducted in a rabbit given the 111In-labeled conjugate also showed early liver uptake followed by rapid clearance from the liver into the intestine, with good visualization of the gallbladder in images obtained at 20-25 min postinjection. It is concluded that conjugation to cholic acid provides a useful means for the hepatobiliary delivery of EDTA chelates that otherwise exhibit predominantly extracellular distribution and renal clearance.

  11. Hepatobiliary delivery of polyaminopolycarboxylate chelates: Synthesis and characterization of a cholic acid conjugate of EDTA and biodistribution and imaging studies with its indium-111 chelate

    International Nuclear Information System (INIS)

    Betebenner, D.A.; Carney, P.L.; Zimmer, A.M.; Kazikiewicz, J.M.; Bruecher, E.S.; Sherry, A.D.; Johnson, D.K.

    1991-01-01

    A conjugate in which the steroid nucleus of cholic acid was linked to EDTA via an 11-atom spacer was obtained by reacting the succinimidyl ester of cholic acid with the amine formed by reaction of a benzyl isothiocyanate derivative of EDTA with N-(tert-butoxycarbonyl)ethylenediamine and subsequent deprotection. Potentiometric titration studies with model complexes showed that the EDTA moiety retained the ability to form 1:1 chelates of high thermodynamic stability, although formation constants were some 3-4 log K units lower for complexes of the conjugate than for the analogous chelates with underivatized EDTA. A complex formed between the cholic acid-EDTA conjugate and 111InIII was clearly rapidly into the liver when injected iv into mice, with subsequent excretion from the liver into the gastrointestinal tract being complete within 1 h of injection. Radioscintigraphic imaging studies conducted in a rabbit given the 111In-labeled conjugate also showed early liver uptake followed by rapid clearance from the liver into the intestine, with good visualization of the gallbladder in images obtained at 20-25 min postinjection. It is concluded that conjugation to cholic acid provides a useful means for the hepatobiliary delivery of EDTA chelates that otherwise exhibit predominantly extracellular distribution and renal clearance

  12. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    International Nuclear Information System (INIS)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K.

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates

  13. Effects of nutrient trace metal speciation on algal growth in the presence of the chelator [S,S]-EDDS

    NARCIS (Netherlands)

    Schowanek, D.; McAvoy, D.; Versteeg, D.; Hanstveit, A.

    1996-01-01

    This study tests the hypothesis that the apparent toxicity of strong chelators in standard algal growth inhibition tests (e.g. method OECD 201, EC C.3., ISO 8692) is related to essential trace metal bioavailability. This hypothesis was investigated for the chelator [S,S]-ethylene diamine disuccinate

  14. Oxidative degradation stability and hydrogen sulfide removal performance of dual-ligand iron chelate of Fe-EDTA/CA.

    Science.gov (United States)

    Miao, Xinmei; Ma, Yiwen; Chen, Zezhi; Gong, Huijuan

    2017-09-05

    Catalytic oxidation desulfurization using chelated iron catalyst is an effective method to remove H 2 S from various gas streams including biogas. However, the ligand of ethylenediaminetetraacetic acid (EDTA), which is usually adopted to prepare chelated iron catalyst, is liable to be oxidative degraded, and leads to the loss of desulfurization performance. In order to improve the degradation stability of the iron chelate, a series of iron chelates composed of two ligands including citric acid (CA) and EDTA were prepared and the oxidative degradation stability as well as desulfurization performance of these chelated iron catalysts were studied. Results show that the iron chelate of Fe-CA is more stable than Fe-EDTA, while for the desulfurization performance, the situation is converse. For the dual-ligand iron chelates of Fe-EDTA/CA, with the increase of mol ratio of CA to EDTA in the iron chelate solution, the oxidative degradation stability increased while the desulfurization performance decreased. The results of this work showed that Fe-EDTA/CA with a mol ratio of CA:EDTA = 1:1 presents a relative high oxidative degradation stability and an acceptable desulfurization performance with over 90% of H 2 S removal efficiency.

  15. Characterization of radionuclide-chelating agent complexes found in low-level radioactive decontamination waste. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R.J.; Felmy, A.R.; Cantrell, K.J.; Krupka, K.M.; Campbell, J.A.; Bolton, H. Jr.; Fredrickson, J.K. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-03-01

    The US Nuclear Regulatory Commission is responsible for regulating the safe land disposal of low-level radioactive wastes that may contain organic chelating agents. Such agents include ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), picolinic acid, oxalic acid, and citric acid, and can form radionuclide-chelate complexes that may enhance the migration of radionuclides from disposal sites. Data from the available literature indicate that chelates can leach from solidified decontamination wastes in moderate concentration (1--100 ppm) and can potentially complex certain radionuclides in the leachates. In general it appears that both EDTA and DTPA have the potential to mobilize radionuclides from waste disposal sites because such chelates can leach in moderate concentration, form strong radionuclide-chelate complexes, and can be recalcitrant to biodegradation. It also appears that oxalic acid and citric acid will not greatly enhance the mobility of radionuclides from waste disposal sites because these chelates do not appear to leach in high concentration, tend to form relatively weak radionuclide-chelate complexes, and can be readily biodegraded. In the case of picolinic acid, insufficient data are available on adsorption, complexation of key radionuclides (such as the actinides), and biodegradation to make definitive predictions, although the available data indicate that picolinic acid can chelate certain radionuclides in the leachates.

  16. Coupling fast water exchange to slow molecular tumbling in Gd3+ chelates: why faster is not always better.

    Science.gov (United States)

    Avedano, Stefano; Botta, Mauro; Haigh, Julian S; Longo, Dario L; Woods, Mark

    2013-08-05

    The influence of dynamics on solution state structure is a widely overlooked consideration in chemistry. Variations in Gd(3+) chelate hydration with changing coordination geometry and dissociative water exchange kinetics substantially impact the effectiveness (or relaxivity) of monohydrated Gd(3+) chelates as T1-shortening contrast agents for MRI. Theory shows that relaxivity is highly dependent upon the Gd(3+)-water proton distance (rGdH), and yet this distance is almost never considered as a variable in assessing the relaxivity of a Gd(3+) chelate as a potential contrast agent. The consequence of this omission can be seen when considering the relaxivity of isomeric Gd(3+) chelates that exhibit different dissociative water exchange kinetics. The results described herein show that the relaxivity of a chelate with "optimal" dissociative water exchange kinetics is actually lower than that of an isomeric chelate with "suboptimal" dissociative water exchange. When the rate of molecular tumbling of these chelates is slowed, an approach that has long been understood to increase relaxivity, the observed difference in relaxivity is increased with the more rapidly exchanging ("optimal") chelate exhibiting lower relaxivity than the "suboptimally" exchanging isomer. The difference between the chelates arises from a non-field-dependent parameter: either the hydration number (q) or rGdH. For solution state Gd(3+) chelates, changes in the values of q and rGdH are indistinguishable. These parametric expressions simply describe the hydration state of the chelate--i.e., the number and position of closely associating water molecules. The hydration state (q/rGdH(6)) of a chelate is intrinsically linked to its dissociative water exchange rate kex, and the interrelation of these parameters must be considered when examining the relaxivity of Gd(3+) chelates. The data presented herein indicate that the changes in the hydration parameter (q/rGdH(6)) associated with changing dissociative

  17. Robust Control of PEP Formation Rate in the Carbon Fixation Pathway of C4 Plants by a Bi-functional Enzyme

    Directory of Open Access Journals (Sweden)

    Hart Yuval

    2011-10-01

    Full Text Available Abstract Background C4 plants such as corn and sugarcane assimilate atmospheric CO2 into biomass by means of the C4 carbon fixation pathway. We asked how PEP formation rate, a key step in the carbon fixation pathway, might work at a precise rate, regulated by light, despite fluctuations in substrate and enzyme levels constituting and regulating this process. Results We present a putative mechanism for robustness in C4 carbon fixation, involving a key enzyme in the pathway, pyruvate orthophosphate dikinase (PPDK, which is regulated by a bifunctional enzyme, Regulatory Protein (RP. The robust mechanism is based on avidity of the bifunctional enzyme RP to its multimeric substrate PPDK, and on a product-inhibition feedback loop that couples the system output to the activity of the bifunctional regulator. The model provides an explanation for several unusual biochemical characteristics of the system and predicts that the system's output, phosphoenolpyruvate (PEP formation rate, is insensitive to fluctuations in enzyme levels (PPDK and RP, substrate levels (ATP and pyruvate and the catalytic rate of PPDK, while remaining sensitive to the system's input (light levels. Conclusions The presented PPDK mechanism is a new way to achieve robustness using product inhibition as a feedback loop on a bifunctional regulatory enzyme. This mechanism exhibits robustness to protein and metabolite levels as well as to catalytic rate changes. At the same time, the output of the system remains tuned to input levels.

  18. Effects of thiourea and ammonium bicarbonate on the formation and stability of bifunctional cisplatin-DNA adducts : consequences for the accurate quantification of adducts in (cellular) DNA

    NARCIS (Netherlands)

    Fichtinger-Schepman, A.M.J.; Dijk-Knijnenburg, H.C.M. van; Dijt, F.J.; Velde-Visser, S.D. van der; Berends, F.; Baan, R.A.

    1995-01-01

    Cisplatin reacts with DNA by forming mainly bifunctional adducts via reactive monofunctional intermediates. When freshly platinated DNA was postincubated with thiourea (10 mM, at 23 or 37°C) for periods of up to 24 h, followed by determination of mono- and diadducts, a rapid initial decrease was

  19. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  20. Modelling chelate-Induced phytoextraction: functional models predicting bioavailability of metals in soil, metal uptake and shoot biomass

    Directory of Open Access Journals (Sweden)

    Pasqualina Sacco

    2006-06-01

    Full Text Available Chelate-induced phytoextraction of heavy metals from contaminated soils requires special care to determine, a priori, the best method of chelate application, in terms of both dose and timing. In fact, the chelate dose must assure the bioavailability of the metal to the plant without increasing leaching risk and giving toxic effects. Three mathematical models are here proposed for usefully interpreting the processes taking place: a increased soil bioavailability of metals by chelants; b metal uptake by plants; c variation in plant biomass. The models are implemented and validated using data from pot and lysimeter trials. Both the chelate dose and the time elapsed since its application affected metal bioavailability and plant response. Contrariwise, the distribution strategy (single vs. split application seems to produce significant differences both in plant growth and metal uptake, but not in soil metal bioavailability. The proposed models may help to understand and predict the chelate dose – effect relationship with less experimental work.

  1. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches.

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B

    2018-01-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of

  2. Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Max Hirte

    2018-04-01

    Full Text Available Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially

  3. Insights into the bifunctional Aphidicolan-16-ß-ol synthase through rapid biomolecular modelling approaches

    Science.gov (United States)

    Hirte, Max; Meese, Nicolas; Mertz, Michael; Fuchs, Monika; Brück, Thomas B.

    2018-04-01

    Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modelling techniques offer an alternative route to study the enzyme’s reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modelling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modelling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789 and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modelling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location

  4. Parameter design and experimental study of a bifunctional isolator for optical payload protection and stabilization

    Science.gov (United States)

    Wang, Guang-yuan; Guan, Xin; Cao, Dong-jing; Tang, Shao-fan; Chen, Xiang; Liang, Lu; Zheng, Gang-tie

    2017-11-01

    With the raise of resolution, optical payloads are becoming increasingly sensitive to satellite jitter. An approach where the entire spacecraft is pointed with great accuracy requires sophisticated and expensive bus design. In an effort to lower the overall cost of space missions that require highly stable line-of-sight pointing, a method of separating the bus and the payload with low frequency isolators is proposed. This isolation system can block the transmission of disturbance and allow relatively large bus motion. However, if the isolator is linear then there is a trade-off between isolation and static deflection as the launch and the on-orbit stage have difference requirements on the isolation frequency. Otherwise, an extra locking system should be appended to protect the payload before getting into orbit, as the STABLE isolation system[1] and the MIM isolation system[2] did. To overcome this limitation, an alternative approach is to design a nonlinear isolator with high-static stiffness during launch and low dynamic stiffness on orbit. Several specially designed nonlinear isolators have achieved low dynamic stiffness with large static load capacity. Virgin[3] considered a structure made from a highly deformed elastic element to achieve a softening spring. Platus[4] exploited the buckling of beams under axial load in a specific configuration to achieve a negative stiffness in combination with a positive stiffness, and hence low-dynamic stiffness. Others have achieved the same by connecting linear springs with positive stiffness in parallel with elements of negative stiffness[5] [7]. In the present study, a bifunctional isolator has been developed for optical payloads. The isolator have good performance both during launch and on orbit because of its specially designed nonlinear stiffness and damping. The isolator works in a linear part with low stiffness and small damping ratio under the micro-vibration and microgravity on orbit. The transmissibility

  5. Effect of Chelator Conjugation Level and Injection Dose on Tumor and Organ Uptake of 111In Labeled MORAb-009, an Anti-mesothelin Antibody

    Science.gov (United States)

    Shin, I. S.; Lee, S.-M.; Kim, H. S.; Yao, Z.; Regino, C.; Sato, N.; Cheng, K. T.; Hassan, R.; Campo, M. F.; Albone, E. F.; Choyke, P. L.; Pastan, I.; Paik, C. H.

    2012-01-01

    Introduction Radiolabeling of a monoclonal antibody (mAb) with a metallic radionuclide requires the conjugation of a bifunctional chelator to the mAb. The conjugation, however, can alter the physical and immunological properties of the mAb, consequently affecting its tumor targeting pharmacokinetics. In this study, we investigated the effect of the amount of 2-(p-isothiocyanatobenzyl)-cyclohexyl-diethylenetriamine-pentaacetic acid (CHX-A″) conjugated to MORAb-009, a mAb directed against mesothelin and the effect of MORAb dose on the biodistribution of 111In labeled MORAb-009. Methods We used nude mice bearing A431/K5 tumor as a mesothelin-positive tumor model and A431 tumor as a mesothelin-negative control. To find the optimal level of CHX-A″ conjugation, CHX-A″-MORAb-009 conjugates with 2.4, 3.5, and 5.5 CHX-A″ molecules were investigated. To investigate the effect of injected MORAb-009 dose on neutralizing the shed-mesothelin in the circulation, the biodistribution studies were performed after the i.v. co-injection of the 111In labeled MORAb-009 (2.4 CHX-A″/MORAb-009) with three different doses, 0.2, 2, and 30 μg of MORAb-009. Results The tumor uptake in A431/K5 tumor was 4 times higher than that in A431 tumor, indicating that the tumor uptake in A431/K5 was mesothelin-mediated. The conjugate with 5.5 CHX-A″ showed a lower isoelectric point (pI) and lower immunoreactivity (IR) than the 2.4 CHX-A″ conjugate. These differences were reflected in biodistribution of the 111In label. The 111In labeled MORAb-009 conjugated with 2.4 CHX-A″ produced higher tumor uptake, and lower liver and spleen uptakes than the 5.5 CHX-A″ conjugate. The biodistribution studies also revealed that the tumor uptake was significantly affected by the injected MORAb-009 dose and tumor size. The 30 μg dose produced higher tumor uptake than the 0.2 and 2 μg doses whereas the 30 μg dose produced lower liver and spleen uptakes than the 0.2 μg dose. Conclusion This study

  6. Isolation and Utilization of Corn Cobs Hemisellulose as Chelating Agent for Lead Ions

    International Nuclear Information System (INIS)

    Muchlisyam; Harahap, U; Silalahi, J.; Zul Alfian

    2013-01-01

    Corn cobs is an agricultural byproduct containing polysaccharide composed of cellulose, hemicelluloses and lignin. Hemicelluloses has a hydroxyl and carbonyl functional groups which can be used as chelating agent for metal ions. The purpose of this study was to isolate and evaluate corncobs hemicelluloses as a chelating agent toward lead ion. Graphite furnace spectrophotometry at 283.3 nm was used to determine the residual lead ion in solution. The research's result showed that the highest yield of hemicelluloses (12.04 %) was obtained from delignication with 0,03 M NaOH in 60 % ethanol and 3 % H 2 O 2 , hemicelluloses isolation with 500 ml of 0.2 M NaOH, and precipitation with 1:4 ratio of 10 % acetic acid in 95 % ethanol. The 300 mg corn cobs hemicelluloses has chelating effect for 40 mg lead solution at (39.52±0.1350) mg or 98.80 %, that the corn cobs hemicelluloses can be used as a chelating agent for lead. (author)

  7. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids.

    Science.gov (United States)

    Messner, Donald J; Surrago, Christine; Fiordalisi, Celia; Chung, Wing Yin; Kowdley, Kris V

    2017-10-01

    Iron overload disorders may be treated by chelation therapy. This study describes a novel method for isolating iron chelators from complex mixtures including plant extracts. We demonstrate the one-step isolation of curcuminoids from turmeric, the medicinal food spice derived from Curcuma longa. The method uses iron-nitrilotriacetic acid (NTA)-agarose, to which curcumin binds rapidly, specifically, and reversibly. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin each bound iron-NTA-agarose with comparable affinities and a stoichiometry near 1. Analyses of binding efficiencies and purity demonstrated that curcuminoids comprise the primary iron binding compounds recovered from a crude turmeric extract. Competition of curcuminoid binding to the iron resin was used to characterize the metal binding site on curcumin and to detect iron binding by added chelators. Curcumin-Iron-NTA-agarose binding was inhibited by other metals with relative potency: (>90% inhibition) Cu 2+  ~ Al 3+  > Zn 2+  ≥ Ca 2+  ~ Mg 2+  ~ Mn 2+ (80% by addition of iron to the media; uptake was completely restored by desferoxamine. Ranking of metals by relative potencies for blocking curcumin uptake agreed with their relative potencies in blocking curcumin binding to iron-NTA-agarose. We conclude that curcumin can selectively bind toxic metals including iron in a physiological setting, and propose inhibition of curcumin binding to iron-NTA-agarose for iron chelator screening.

  8. Effect of inorganic chelate of zinc and restaurant residual oil added ...

    African Journals Online (AJOL)

    Effect of inorganic chelate of zinc and restaurant residual oil added to feed mixture ... The interaction effects of RRO and ZnO did not result to a significant change in ... Therefore, the effects of RRO deteriorated the quality of meat by raising the ...

  9. The effects of Fe-chelate type and PH on substrate grown roses

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2009-01-01

    Substrate grown roses appear to be susceptible to chlorosis, which indicates problems with Fe or Mn uptake and hence yield reduction. In common practice this problem is often treated by the addition of extra Fe-chelate, or the use of Fe-EDDHA instead of Fe-DTPA. In previous tests, it was shown that

  10. Effectiveness of DTPA Chelate on Cd Availability in Soils Treated with Sewage Sludge

    Directory of Open Access Journals (Sweden)

    Pegah Houshyar

    2017-09-01

    Full Text Available Application of sewage sludge as a fertilizer on farmlands is a common practice in most countries. Although the practice may play a positive role in plant performance, the organic amendments introduced may increase the soil heavy metals content. This study was conducted in Arak, Iran, to investigate the effectiveness of DTPA chelate on corn Cd availability in a sewage sludge treated soil. The treatments consisted of sewage sludge (0, 15, and 30 t ha-1 polluted with cadmium applied at 0, 5, 10, and 15 mg kg-1 as well as DTPA applied at 0 and 1.5 mmol kg-1 soil. Corn plants were then grown in the soil in each treatmnent and, on day 60, the physic-chemical characteristics and Cd quantities were measured ion both the corn plants and soil samples. Application of 1.5 m mol of DTPA chelate in soil contaminated with 5 mg Cd led to a significant increase in the soil available Cd content. It was also observed that application of DTPA chelate to soils containing 30 t ha-1 of sewage sludge polluted with 10 mg Cd increased root and shoot Cd concentrations by 17 and 25%, respectively. Results indicated the effectiveness of DTPA chelate in reducing Cd phytoremediation with increasing sewage sludge loading rate. This was evidenced by the lowest phytoremediation effectiveness observed for the treatment with the greatest sewage sludge loading (30 t ha-1 and the lowest cadmium pollution (5 mg Cd.

  11. Production of chelating agents by Pseudomonas aeruginosa grown in the presence of thorium and uranium

    International Nuclear Information System (INIS)

    Premuzic, E.T.; Lin, M.; Francis, A.J.; Schubert, J.

    1986-01-01

    Chelating agents produced by microorganisms enhance the dissolution of iron increasing the mobility and bioavailability of the metal. Since some similarities exist in the biological behavior of ferric, thorium and uranyl ions, microorganisms resistant to these metals and which grow in their presence may produce sequestering agents of Th and U, and other metals in a manner similar to the complexation of iron by siderophores. The ability of P. aeruginosa to elaborate sequestering agents in medium containing thorium or uranium salts was tested. Uranium has a stronger inhibitory effect on growth of the organism than thorium at similar concentrations. Analyses of the culture media have shown, that relative to the control, and under the experimental conditions used, the microorganisms have produced several new chelating agents for thorium and uranium. Extracts containing these chelating agents have been tested for their decorporation potential. In vitro mouse liver bioassay and in vivo mouse toxicity tests indicate that their efficiency is comparable to DTPA and DFOA and that they are virtually non-toxic to mice. The bacterially produced compounds resemble, but are not identical to the known iron chelating siderophores isolated from microorganisms. Some of their chemical properties are also discussed. (author)

  12. [Enhanced phytoextraction of heavy metal contaminated soil by chelating agents and auxin indole-3-acetic acid].

    Science.gov (United States)

    Zhou, Jian-min; Dang, Zhi; Chen, Neng-chang; Xu, Sheng-guang; Xie, Zhi-yi

    2007-09-01

    The environmental risk of chelating agents such as EDTA application to the heavy metals polluted soils and the stress on plant roots due to the abrupt increase metals concentration limit the wide commercial use of chelate-induced phytoextraction. Chelating agent ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) and auxin indole-3-acetic acid (IAA) were used for enhancing heavy metals uptake from soils by Zea mays L. (corn) in pot experiments. The metals content in plant tissues was quantified using an inductively coupled plasma mass spectrometer (ICP-MS). The results showed that the combination of IAA and EDTA increased the biomass by about 40.0% and the contents of Cu, Zn, Cd and Pb in corn shoots by 27.0%, 26.8%, 27.5% and 32.8% respectively, as compared to those in EDTA treatment. While NTA&IAA treatment increased the biomass by about 29.9% and the contents of Cu, Zn, Cd and Pb in corn shoots by 31.8%, 27.6%, 17.0% and 26.9% respectively, as compared to those in NTA treatment. These results indicated that corn growth was promoted, and the biomass and the accumulation of heavy metals in plant shoots were increased significantly with the addition of IAA, which probably helps to change the cell membrane properties and the biomass distribution, resulting in the alleviation of the phytotoxicity of metals and the chelating agents.

  13. Spectroscopy, modeling and computation of metal chelate solubility in supercritical CO2

    International Nuclear Information System (INIS)

    Brennecke, J.F.; Stadtherr, M.A.

    1999-01-01

    The overall objectives of this project were to gain a fundamental understanding of the solubility and phase behavior of metal chelates in supercritical CO 2 . Extraction with CO 2 is an excellent way to remove organic compounds from soils, sludges and aqueous solutions, and recent research has demonstrated that, together with chelating agents, it is a viable way to remove metals, as well. In this project the authors sought to gain fundamental knowledge that is vital to computing phase behavior, and modeling and designing processes using CO 2 to separate organics and metal compounds from DOE mixed wastes. The overall program was a comprehensive one to measure, model and compute the solubility of metal chelate complexes in supercritical CO 2 and CO 2 /cosolvent mixtures. Through a combination of phase behavior measurements, spectroscopy and the development of a new computational technique, the authors have achieved a completely reliable way to model metal chelate solubility in supercritical CO 2 and CO 2 /co-contaminant mixtures. Thus, they can now design and optimize processes to extract metals from solid matrices using supercritical CO 2 , as an alternative to hazardous organic solvents that create their own environmental problems, even while helping in metals decontamination

  14. Molecular characterization of whey protein hydrolysate fractions with ferrous chelating and enhanced iron solubility capabilities.

    Science.gov (United States)

    O'Loughlin, Ian B; Kelly, Phil M; Murray, Brian A; FitzGerald, Richard J; Brodkorb, Andre

    2015-03-18

    The ferrous (Fe2+) chelating capabilities of WPI hydrolysate fractions produced via cascade membrane filtration were investigated, specifically 1 kDa permeate (P) and 30 kDa retentate (R) fractions. The 1 kDa-P possessed a Fe2+ chelating capability at 1 g L(-1) equivalent to 84.4 μM EDTA (for 30 kDa-R the value was 8.7 μM EDTA). Fourier transformed infrared (FTIR) spectroscopy was utilized to investigate the structural characteristics of hydrolysates and molecular interactions with Fe2+. Solid-phase extraction was employed to enrich for chelating activity; the most potent chelating fraction was enriched in histidine and lysine. The solubility of ferrous sulfate solutions (10 mM) over a range of pH values was significantly (Piron solubility was improved by 72% in the presence of the 1 kDa-P fraction following simulated gastrointestinal digestion (SGID) compared to control FeSO4·7H2O solutions.

  15. Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead.

    Science.gov (United States)

    van Eijkeren, Jan C H; Olie, J Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Clewell, Harvey J; Meulenbelt, Jan; Hunault, Claudine C

    2017-02-01

    Kinetic models could assist clinicians potentially in managing cases of lead poisoning. Several models exist that can simulate lead kinetics but none of them can predict the effect of chelation in lead poisoning. Our aim was to devise a model to predict the effect of succimer (dimercaptosuccinic acid; DMSA) chelation therapy on blood lead concentrations. We integrated a two-compartment kinetic succimer model into an existing PBPK lead model and produced a Chelation Lead Therapy (CLT) model. The accuracy of the model's predictions was assessed by simulating clinical observations in patients poisoned by lead and treated with succimer. The CLT model calculates blood lead concentrations as the sum of the background exposure and the acute or chronic lead poisoning. The latter was due either to ingestion of traditional remedies or occupational exposure to lead-polluted ambient air. The exposure duration was known. The blood lead concentrations predicted by the CLT model were compared to the measured blood lead concentrations. Pre-chelation blood lead concentrations ranged between 99 and 150 μg/dL. The model was able to simulate accurately the blood lead concentrations during and after succimer treatment. The pattern of urine lead excretion was successfully predicted in some patients, while poorly predicted in others. Our model is able to predict blood lead concentrations after succimer therapy, at least, in situations where the duration of lead exposure is known.

  16. Toxicity of copper chelates of azomethines and amino acids for Chlorella pyrenoidosa

    Energy Technology Data Exchange (ETDEWEB)

    Barashkov, G.K.; Rukhadze, E.G.; Talyzenkova, G.P.

    1979-01-01

    The authors have attempted to assess the toxicity of copper-containing compounds from the point of view of their interrelationship with the structural characteristics of the chelate compound and the structure of the ligand. The copper chelates of the azomethines tested may be provisionally divided into three types: A - complexes with N-alkly-azomethines; B - complexes with N-aryl-azomethines; C - binuclear complexes. Consideration was also given to chelates with aromatic and heterocyclic amino acids and to heteroligand chelates in which the copper atom coordinates azomethine and an amino acid simultaneously. Toxicity was determined by the method previously described and expressed as a critical concentration (C/sub cr/, mg Cu/liter) and in relative toxicity units (T/sub c/). The compounds investigated were obtained from the interaction between a bidentant ligand of an azomethine or anamino acid and copper acetate in a water-alcohol medium at pH 6-8. Since they are not very soluble in water, true solutions were obtained by using dimethyl sulfoxide.

  17. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  18. Fluorescence detection of flavonols in HPLC by postcolumn chelation with aluminum

    NARCIS (Netherlands)

    Hollman, Peter C H; Van Trijp, J. M P; Buysman, Michel N C P

    1996-01-01

    Flavonols are dietary antioxidants which may prevent coronary heart disease. To be able to study absorption of flavonols in humans, we developed a postcolumn derivatization with aluminum for HPLC with fluorescence detection. Variables governing postcolumn chelation, such as water content, buffer,

  19. Searching for new aluminium chelating agents: a family of hydroxypyrone ligands.

    Science.gov (United States)

    Toso, Leonardo; Crisponi, Guido; Nurchi, Valeria M; Crespo-Alonso, Miriam; Lachowicz, Joanna I; Mansoori, Delara; Arca, Massimiliano; Santos, M Amélia; Marques, Sérgio M; Gano, Lurdes; Niclós-Gutíerrez, Juan; González-Pérez, Josefa M; Domínguez-Martín, Alicia; Choquesillo-Lazarte, Duane; Szewczuk, Zbigniew

    2014-01-01

    Attention is devoted to the role of chelating agents in the treatment of aluminium related diseases. In fact, in spite of the efforts that have drastically reduced the occurrence of aluminium dialysis diseases, they so far constitute a cause of great medical concern. The use of chelating agents for iron and aluminium in different clinical applications has found increasing attention in the last thirty years. With the aim of designing new chelators, we synthesized a series of kojic acid derivatives containing two kojic units joined by different linkers. A huge advantage of these molecules is that they are cheap and easy to produce. Previous works on complex formation equilibria of a first group of these ligands with iron and aluminium highlighted extremely good pMe values and gave evidence of the ability to scavenge iron from inside cells. On these bases a second set of bis-kojic ligands, whose linkers between the kojic chelating moieties are differentiated both in terms of type and size, has been designed, synthesized and characterized. The aluminium(III) complex formation equilibria studied by potentiometry, electrospray ionization mass spectroscopy (ESI-MS), quantum-mechanical calculations and (1)H NMR spectroscopy are here described and discussed, and the structural characterization of one of these new ligands is presented. The in vivo studies show that these new bis-kojic derivatives induce faster clearance from main organs as compared with the monomeric analog. © 2013.

  20. Modeling the effect of succimer (DMSA; dimercaptosuccinic acid) chelation therapy in patients poisoned by lead

    NARCIS (Netherlands)

    van Eijkeren, Jan C H; Olie, J. Daniël N; Bradberry, Sally M; Vale, J Allister; de Vries, Irma; Clewell, Harvey J.; Meulenbelt, Jan; Hunault, Claudine C

    CONTEXT: Kinetic models could assist clinicians potentially in managing cases of lead poisoning. Several models exist that can simulate lead kinetics but none of them can predict the effect of chelation in lead poisoning. Our aim was to devise a model to predict the effect of succimer

  1. Chelating extractants of improved selectivity. Progress report for period November 1, 1977--July 31 1978

    International Nuclear Information System (INIS)

    Freiser, H.

    1978-08-01

    During the current contract period, the high susceptibility of lanthanide chelate stability to steric hindrance was confirmed. The increase in coordination number of lanthanides from lanthanum to ytterbium as evidenced from extraction equilibria serves to increase their separability. 8-Quinolinol immobilized on silica can separate lanthanide ions

  2. Photostability of solutions of rare earth chelates in organic solvents and polymers

    International Nuclear Information System (INIS)

    Karasev, V.E.; Mirochnik, A.G.; Lysun, T.V.; Vovna, V.I.

    1990-01-01

    Consideration is given to results of comparative study of photochemical properties of rare erath chelate complexes (adducts of rare earth β-diketonates with triphenylphosphine oxide, hexamethylphosphotriamide, phenanthroline) in organic solvents and polymers. Effect of excitation conditions, composition, solvent, nature of ligand and rare earth ion on photolysis rate was investigated. 9 refs.; 2 figs.; 4 tabs

  3. Functionalized dithiocarbamate chelating resin for the removal of Co2+ from simulated wastewater

    Science.gov (United States)

    Shi, Xuewei; Fu, Linwei; Wu, Yanyang; Zhao, Huiling; Zhao, Shuangliang; Xu, Shouhong

    2017-12-01

    Industrial wastewater that contains trace amounts of heavy metal ions is often seen in petrochemical industry. While this wastewater can not be directly discharged, it is difficult to treat due to the low concentration of metal ions. Introducing chelating reagents into this wastewater for selective ion adsorption, followed by a mechanical separation process, provides an appealing solution. Toward the success of this technology, the development of effective chelating resins is of key importance. In the present work, a chelating resin containing amino and dithiocarbamate groups was reported for the removal of Co(II) metal ions in trace concentrations from simulated wastewater. By investigating the adsorption performance of the chelating resin at different solution pH values, adsorbent dosages, contact time, initial ion concentrations, and adsorption temperatures, the maximum adsorption capacity of the resin for Co(II) was identified to be 24.89 mg g-1 for a 2 g L-1 adsorbent dosage and a pH value of 5. After four adsorption-desorption cycles, 97% of the adsorption capacity of the resin was maintained. The adsorption kinetics and thermodynamics were analyzed and discussed as well.

  4. Various types of metal complexes based on chelating {beta}-diketones and their structural analogues

    Energy Technology Data Exchange (ETDEWEB)

    Skopenko, Viktor V; Amirkhanov, Vladimir M; Sliva, T Yu [Department of Chemistry, Kyiv National Taras Shevchenko University (Ukraine); Vasilchenko, Igor S; Anpilova, E L; Garnovskii, Alexander D [Institute of Physical and Organic Chemistry, Rostov State University, Rostov-on-Don (Russian Federation)

    2004-08-31

    Data on the synthesis and structures of {beta}-diketonates and their N,P-containing structural analogues are generalised and described systematically. The possibility of creating diverse metal complexes with various modes of coordination of typical chelating ligands is discussed.

  5. Various types of metal complexes based on chelating β-diketones and their structural analogues

    International Nuclear Information System (INIS)

    Skopenko, Viktor V; Amirkhanov, Vladimir M; Sliva, T Yu; Vasilchenko, Igor S; Anpilova, E L; Garnovskii, Alexander D

    2004-01-01

    Data on the synthesis and structures of β-diketonates and their N,P-containing structural analogues are generalised and described systematically. The possibility of creating diverse metal complexes with various modes of coordination of typical chelating ligands is discussed.

  6. Value of 1.0-M gadolinium chelates: review of preclinical and clinical data on gadobutrol

    International Nuclear Information System (INIS)

    Tombach, Bernd; Heindel, Walter

    2002-01-01

    Several preclinical and clinical studies with the first commercially available highly concentrated Gd-chelate gadobutrol (1 mol/l) are reviewed. Physicochemical, pharmacological, and pharmacokinetic properties, safety analysis, as well as experimental and clinical efficacy studies are highlighted in comparison with 0.5-M Gd-chelates. The 1-mol gadobutrol has been proven to be safe in an examined dose range from 0.04 up to 0.5 mmol/kg body weight (b.w.). Even in patients with chronic renal impairment, including hemodialysis, gadobutrol can safely be applied at doses up to 0.3 mmol/kg b.w. For contrast-enhanced MRI in the equilibrium phase, efficacy data analysis shows comparable results to other commercially available extracellular Gd-chelates with lower Gd-concentrations (0.5 M). Studies focused on the potential benefit of a tighter bolus, such as brain perfusion imaging using T2*-effects, document the superiority of a highly concentrated Gd contrast agent. For contrast-enhanced MRA, clinical studies are still ongoing; therefore, the ultimate potential of a more compact bolus, using 1-M Gd-chelates, for contrast-enhanced MRI, has still to be analyzed, especially for time-resolved magnetic resonance angiography. (orig.)

  7. Bis-ligated Ti and Zr complexes of chelating N-heterocyclic carbenes

    KAUST Repository

    El-Batta, Amer; Waltman, Andrew W.; Grubbs, Robert H.

    2011-01-01

    In this communication we report the synthesis of novel titanium and zirconium complexes ligated by bidentate "salicylaldimine-like" N-heterocyclic carbenes (NHC). Double addition of the NHC chelate to either TiCl4(thf)2 or ZrCl4 forms bis

  8. C,N-Chelated Organotin(IV) Azides: Synthesis, Structure and Use within the Click Chemistry.

    Czech Academy of Sciences Publication Activity Database

    Švec, P.; Bartoš, K.; Růžičková, Z.; Cuřínová, Petra; Dušek, L.; Turek, J.; de Proft, F.; Růžička, A.

    2016-01-01

    Roč. 40, č. 7 (2016), s. 5808-5817 ISSN 1144-0546 Grant - others:FWO(BE) 12T6615N Institutional support: RVO:67985858 Keywords : organotin(IV)azides * click chemistry * chelation Subject RIV: CC - Organic Chemistry Impact factor: 3.269, year: 2016

  9. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals

    International Nuclear Information System (INIS)

    Li Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki

    2007-01-01

    Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH· signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH· signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]· radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions

  10. Lead toxicosis of captive vultures: case description and responses to chelation therapy

    Science.gov (United States)

    2013-01-01

    Background Lead, a serious threat for raptors, can hamper the success of their conservation. This study reports on experience with accidental lead intoxication and responses to chelation therapy in captive Cinereous (Aegypius monachus) and Egyptian (Neophron percnopterus) Vultures. Results Soil contamination by lead-based paint sanded off the steel aviary resulted in poisoning of eight Cinereous and two Egyptian Vultures. A male Egyptian Vulture developed signs of apathy, polydipsia, polyuria, regurgitation, and stupor, and died on the next day. Liver, kidney and blood lead concentrations were 12.2, 8.16 and 2.66 μg/g, respectively. Laboratory analyses confirmed severe liver and kidney damage and anaemia. Blood Pb levels of Pb-exposed Cinereous Vultures were 1.571 ± 0.510 μg/g shortly after intoxication, decreased to 0.530 ± 0.165 μg/g without any therapy in a month and to 0.254 ± 0.097 μg/g one month after CaNa2EDTA administration. Eight months later, blood lead levels decreased to close to the background of the control group. Blood parameters of healthy Pb-non-exposed Cinereous Vultures were compared with those of the exposed group prior to and after chelation therapy. Iron levels in the lead-exposed pre-treatment birds significantly decreased after chelation. Haematocrit levels in Pb-exposed birds were significantly lower than those of the controls and improved one month after chelation. Creatine kinase was higher in pre-treatment birds than in the controls but normalised after therapy. Alkaline phosphatase increased after chelation. A marked increase in the level of lipid peroxidation measured as thiobarbituric acid reactive species was demonstrated in birds both prior to and after chelation. The ferric reducing antioxidant power was significantly lower in pre-treatment vultures and returned to normal following chelation therapy. Blood metallothionein levels in lead-exposed birds were higher than in controls. Reduced glutathione dropped after

  11. Lead toxicosis of captive vultures: case description and responses to chelation therapy.

    Science.gov (United States)

    Pikula, Jiri; Hajkova, Pavlina; Bandouchova, Hana; Bednarova, Ivana; Adam, Vojtech; Beklova, Miroslava; Kral, Jiri; Ondracek, Karel; Osickova, Jitka; Pohanka, Miroslav; Sedlackova, Jana; Skochova, Hana; Sobotka, Jakub; Treml, Frantisek; Kizek, Rene

    2013-01-16

    Lead, a serious threat for raptors, can hamper the success of their conservation. This study reports on experience with accidental lead intoxication and responses to chelation therapy in captive Cinereous (Aegypius monachus) and Egyptian (Neophron percnopterus) Vultures. Soil contamination by lead-based paint sanded off the steel aviary resulted in poisoning of eight Cinereous and two Egyptian Vultures. A male Egyptian Vulture developed signs of apathy, polydipsia, polyuria, regurgitation, and stupor, and died on the next day. Liver, kidney and blood lead concentrations were 12.2, 8.16 and 2.66 μg/g, respectively. Laboratory analyses confirmed severe liver and kidney damage and anaemia. Blood Pb levels of Pb-exposed Cinereous Vultures were 1.571 ± 0.510 μg/g shortly after intoxication, decreased to 0.530 ± 0.165 μg/g without any therapy in a month and to 0.254 ± 0.097 μg/g one month after CaNa(2)EDTA administration. Eight months later, blood lead levels decreased to close to the background of the control group. Blood parameters of healthy Pb-non-exposed Cinereous Vultures were compared with those of the exposed group prior to and after chelation therapy. Iron levels in the lead-exposed pre-treatment birds significantly decreased after chelation. Haematocrit levels in Pb-exposed birds were significantly lower than those of the controls and improved one month after chelation. Creatine kinase was higher in pre-treatment birds than in the controls but normalised after therapy. Alkaline phosphatase increased after chelation. A marked increase in the level of lipid peroxidation measured as thiobarbituric acid reactive species was demonstrated in birds both prior to and after chelation. The ferric reducing antioxidant power was significantly lower in pre-treatment vultures and returned to normal following chelation therapy. Blood metallothionein levels in lead-exposed birds were higher than in controls. Reduced glutathione dropped after CaNa(2)EDTA therapy, while

  12. f-Element Ion Chelation in Highly Basic Media - Final Report

    International Nuclear Information System (INIS)

    Paine, R.T.

    2000-01-01

    A large body of data has been collected over the last fifty years on the chemical behavior of f-element ions. The ions undergo rapid hydrolysis reactions in neutral or basic aqueous solutions that produce poorly understood oxide-hydroxide species; therefore, most of the fundamental f-element solution chemistry has allowed synthetic and separations chemists to rationally design advanced organic chelating ligands useful for highly selective partitioning and separation of f-element ions from complex acidic solution matrices. These ligands and new examples under development allow for the safe use and treatment of solutions containing highly radioactive species. This DOE/EMSP project was undertaken to address the following fundamental objectives: (1) study the chemical speciation of Sr and lanthanide (Ln) ions in basic aqueous media containing classical counter anions found in waste matrices; (2) prepare pyridine N-oxide phosphonates and phosphonic acids that might act as selective chelator s for Ln ions in model basic pH waste streams; (3) study the binding of the new chelators toward Ln ions and (4) examine the utility of the chelators as decontamination and dissolution agents under basic solution conditions. The project has been successful in attacking selected aspects of the very difficult problems associated with basic pH solution f-element waste chemistry. In particular, the project has (1) shed additional light on the initial stages of Ln ion sol-gel-precipitate formulation under basic solution conditions; (2) generated new families of pyridine phosphonic acid chelators; (3) characterized the function of the chelators and (4) examined their utility as oxide-hydroxide dissolution agents. These findings have contributed significantly to an improved understanding of the behavior of Ln ions in basic media containing anions found in typical waste sludges as well as to the development of sludge dissolution agents. The new chelating reagents are easily made and could be

  13. Zn availability in nutrient solutions for cucumber (Cucumis sativus L) in hydroponics as affected by Fe-chelates and pH

    NARCIS (Netherlands)

    Voogt, W.; Sonneveld, C.

    2017-01-01

    In soil-less culture systems Fe is usually supplied as chelate to ensure an adequate availability of this element. As chelates have affinity for many metal ions these chelates will interact with other cation nutrients in nutrient solutions. This affects the availability of Fe and other nutrients.

  14. Chelation technology: a promising green approach for resource management and waste minimization.

    Science.gov (United States)

    Chauhan, Garima; Pant, K K; Nigam, K D P

    2015-01-01

    Green chemical engineering recognises the concept of developing innovative environmentally benign technologies to protect human health and ecosystems. In order to explore this concept for minimizing industrial waste and for reducing the environmental impact of hazardous chemicals, new greener approaches need to be adopted for the extraction of heavy metals from industrial waste. In this review, a range of conventional processes and new green approaches employed for metal extraction are discussed in brief. Chelation technology, a modern research trend, has shown its potential to develop sustainable technology for metal extraction from various metal-contaminated sites. However, the interaction mechanism of ligands with metals and the ecotoxicological risk associated with the increased bioavailability of heavy metals due to the formation of metal-chelant complexes is still not sufficiently explicated in the literature. Therefore, a need was felt to provide a comprehensive state-of-the-art review of all aspects associated with chelation technology to promote this process as a green chemical engineering approach. This article elucidates the mechanism and thermodynamics associated with metal-ligand complexation in order to have a better understanding of the metal extraction process. The effects of various process parameters on the formation and stability of complexes have been elaborately discussed with respect to optimizing the chelation efficiency. The non-biodegradable attribute of ligands is another important aspect which is currently of concern. Therefore, biotechnological approaches and computational tools have been assessed in this review to illustrate the possibility of ligand degradation, which will help the readers to look for new environmentally safe mobilizing agents. In addition, emerging trends and opportunities in the field of chelation technology have been summarized and the diverse applicability of chelation technology in metal extraction from

  15. Zn2+ chelation by serum albumin improves hexameric Zn2+-insulin dissociation into monomers after exocytosis.

    Directory of Open Access Journals (Sweden)

    José A G Pertusa

    Full Text Available β-cells release hexameric Zn2+-insulin into the extracellular space, but monomeric Zn2+-free insulin appears to be the only biologically active form. The mechanisms implicated in dissociation of the hexamer remain unclear, but they seem to be Zn2+ concentration-dependent. In this study, we investigate the influence of albumin binding to Zn2+ on Zn2+-insulin dissociation into Zn2+-free insulin and its physiological, methodological and therapeutic relevance. Glucose and K+-induced insulin release were analyzed in isolated mouse islets by static incubation and perifusion experiments in the presence and absence of albumin and Zn2+ chelators. Insulin tolerance tests were performed in rats using different insulin solutions with and without Zn2+ and/or albumin. Albumin-free buffer does not alter quantification by RIA of Zn2+-free insulin but strongly affects RIA measurements of Zn2+-insulin. In contrast, accurate determination of Zn2+-insulin was obtained only when bovine serum albumin or Zn2+ chelators were present in the assay buffer solution. Albumin and Zn2+ chelators do not modify insulin release but do affect insulin determination. Preincubation with albumin or Zn2+ chelators promotes the conversion of "slow" Zn2+-insulin into "fast" insulin. Consequently, insulin diffusion from large islets is ameliorated in the presence of Zn2+ chelators. These observations support the notion that the Zn2+-binding properties of albumin improve the dissociation of Zn2+-insulin into subunits after exocytosis, which may be useful in insulin determination, insulin pharmacokinetic assays and islet transplantation.

  16. Photophysical investigation of energy transfer luminescence of lanthanide chelates with aromatic polyaminocarboxylate ligands in aqueous solutions

    International Nuclear Information System (INIS)

    Hoshino, Hitoshi; Saitoh, Takashi; Yotsuyanagi, Takao

    1995-01-01

    Some photophysical data including emission lifetimes (τ), total emission quantum yields (Φ), and ligand phosphorescence data are reported for the energy-transfer luminescence of the Eu(III) chelate of Quin 2 and the Tb(III) chelate of BAPTA: Quin 2 means 2-[(2-amino-5-methylphenoxy)methyl]-6-methoxy-8-aminoquinoline-N,N,N',N'-tetraacetic acid; BAPTA means 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. The energy diagrams for the ligand T 1 and the metal-center f-f levels are proposed. The τ values of Tb(III)-BAPTA chelates are 1.73 ms in H 2 O and 3.44 ms in D 2 O. The Eu(III)-Quin 2 chelate system shows a bi-exponential decay of emission; τ=0.048 and 0.20 ms in H 2 O and 0.066 and 1.44 ms in D 2 O. The Quin 2 chelate is kinetically inert, so that the interchange of these two conformer structures are very slow at room temperature. The number of water molecules in the primary coordination sphere is calculated from the lifetime data to be 1.9-2.4 for Eu-Quin 2 and 0.5 for Tb-BAPTA. The Φ values in aqueous solutions are rather small in these systems; 0.009 for Tb-BAPTA and 0.0023 for Eu-Quin 2, but these are enough counterbalanced by the large molar absorptivities giving the great sensitization factors for the ions; the sensitization factors against each aqua ion are 1380 for Eu-Quin 2 and 1600 for Tb-BAPTA. (author)

  17. Thermodynamic stability and relaxation studies of small, triaza-macrocyclic Mn(II) chelates.

    Science.gov (United States)

    de Sá, Arsénio; Bonnet, Célia S; Geraldes, Carlos F G C; Tóth, Éva; Ferreira, Paula M T; André, João P

    2013-04-07

    Due to its favorable relaxometric properties, Mn(2+) is an appealing metal ion for magnetic resonance imaging (MRI) contrast agents. This paper reports the synthesis and characterization of three new triazadicarboxylate-type ligands and their Mn(2+) chelates (NODAHep, 1,4,7-triazacyclononane-1,4-diacetate-7-heptanil; NODABA, 1,4,7-triazacyclononane-1,4-diacetate-7-benzoic acid; and NODAHA, 1,4,7-triazacyclononane-1,4-diacetate-7-hexanoic acid). The protonation constants of the ligands and the stability constants of the chelates formed with Mn(2+) and the endogenous Zn(2+) ion have been determined by potentiometry. In overall, the thermodynamic stability of the chelates is lower than that of the corresponding NOTA analogues (NOTA = 1,4,7-triazacyclononane-1,4,7-triacetate), consistent with the decreased number of coordinating carboxylate groups. Variable temperature (1)H NMRD and (17)O NMR measurements have been performed on the paramagnetic chelates to provide information on the water exchange rates and the rotational dynamics. The values of the (17)O chemical shifts are consistent with the presence of one water molecule in the first coordination sphere of Mn(2+). The three complexes are in the slow to intermediate regime for the water exchange rate, and they all display relatively high rotational correlation times, which explain the relaxivity values between 4.7 and 5.8 mM(-1) s(-1) (20 MHz and 298 K). These relaxivities are higher than expected for Mn(2+) chelates of such size and comparable to those of small monohydrated Gd(3+) complexes. The amphiphilic [Mn(NODAHep)] forms micelles above 22 mM (its critical micellar concentration was determined by relaxometry and fluorescence), and interacts with HSA via its alkylic carbon chain providing a 60% relaxivity increase at 20 MHz due to a longer tumbling time.

  18. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Science.gov (United States)

    Kim, Young-Soon; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-01

    Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y2O3 dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm2 area. After Y2O3 deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO3 (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y2O3 and GdBCO/LMO/MgO/Y2O3 stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y2O3 multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  19. Acid/base bifunctional carbonaceous nanomaterial with large surface area: Preparation, characterization, and adsorption properties for cationic and anionic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kai; Ma, Chun–Fang; Ling, Yuan; Li, Meng [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Gao, Qiang, E-mail: gaoqiang@cug.edu.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); Luo, Wen–Jun, E-mail: heartnohome@yahoo.com.cn [Department of Chemistry, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China)

    2015-07-15

    Nanostructured carbonaceous materials are extremely important in the nano field, yet developing simple, mild, and “green” methods that can make such materials possess large surface area and rich functional groups on their surfaces still remains a considerable challenge. Herein, a one-pot and environment-friendly method, i.e., thermal treatment (180 °C; 18 h) of water mixed with glucose and chitosan (CTS), has been proposed. The resultant carbonaceous nanomaterials were characterized by field emitting scanning electron microscope, N{sub 2} adsorption/desorption, Fourier transform infrared spectroscope, X-ray photoelectron spectroscopy, and zeta-potential analysis. It was found that, in contrast to the conventional hydrothermally carbonized product from pure glucose, with low surface area (9.3 m{sup 2} g{sup −1}) and pore volume (0.016 cm{sup 3} g{sup −1}), the CTS-added carbonaceous products showed satisfactory textural parameters (surface area and pore volume up to 254 m{sup 2} g{sup −1} and 0.701 cm{sup 3} g{sup −1}, respectively). Moreover, it was also interestingly found that these CTS-added carbonaceous products possessed both acidic (–COOH) and basic (–NH{sub 2}) groups on their surfaces. Taking the advantages of large surface area and –COOH/–NH{sub 2} bifunctional surface, the carbonaceous nanomaterials exhibited excellent performance for adsorptions of cationic compound (i.e., methylene blue) at pH 10 and anionic compound (i.e., acid red 18) at pH 2, respectively. This work not only provides a simple and green route to prepare acid/base bifunctional carbonaceous nanomaterials with large surface area but also well demonstrates their potential for application in adsorption. - Highlights: • A simple and green method was proposed to prepare carbon nanomaterials. • The carbon product showed acid/base bifunctional surface with large surface area. • The carbon material could efficiently adsorb both cationic and anionic compounds.

  20. Facile synthesis of flower like FePt@ZnO core–shell structure and its bifunctional properties

    Energy Technology Data Exchange (ETDEWEB)

    Majeed, Jerina [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, O.D., E-mail: ddjaya@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Mandal, B.P. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Salunke, H.G. [Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Naik, R. [Department of Physics, Wayne State University, Detroit, MI 48202 (United States); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-06-01

    Graphical abstract: Flower shaped FePt and ZnO coated FePt with core–shell nanostructures are synthesized by a facile solvothermal procedure. Shell thickness of ZnO over FePt core was tuned by varying FePt concentration with respect to ZnO. Hybrid structure with lower FePt concentration exhibited bifunctionality such as near room temperature ferromagnetism and photoluminescence. Pristine FePt crystallize in the fct (L1{sub 0}) phase whereas it converts into fcc phase in presence of ZnO. - Highlights: • FePt@ZnO hybrid core–shell particles, with unique flower shape morphology have been prepared by solvothermal method. • Phase transition of fct-FePt to fcc-FePt has been found in presence of ZnO nanoparticles. • Plausible mechanism for growth of flowershaped nanoparticle is in accordance with energy minimization principle. • The core shell structure (FePt@ZnO) exhibits bi-functional properties. - Abstract: Flower shaped FePt and ZnO coated FePt (FePt@ZnO) core–shell nanostructures are synthesized by a facile solvothermal procedure. Two different compositions (molar ratio) of FePt and ZnO (FePt:ZnO = 1:3 and FePt:ZnO = 1:6) core–shells with different thicknesses of ZnO shells were synthesized. Hybrid FePt@ZnO core–shell flower structure with lower FePt concentration (FePt:ZnO = 1:6) exhibited bifunctionality including near room temperature ferromagnetism and photoluminescence at ambient conditions. X-ray diffraction patterns of pristine FePt showed partially ordered face centred tetragonal (fct) L1{sub 0} phase whereas ZnO coated FePt (FePt@ZnO) nanostructures showed hexagonal ZnO and disordered phase of FePt with fcc structure. The phase transition of fct FePt to fcc phase occurring in presence of ZnO is further confirmed by transmission electron microscopy and magnetic measurement studies. The formation of the nanoflowers was possibly due to growth along the [0 1 1] or [0 0 1] direction, keeping the core nearly spherical in accordance with the

  1. Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness

    International Nuclear Information System (INIS)

    Chai, Luxiao; Wang, Xiaodong; Wu, Dezhen

    2015-01-01

    Highlights: • We designed and synthesized a sort of bifunctional PCMs-based microcapsules. • These microcapsules have an n-eicosane core and a crystalline TiO 2 shell. • Such a crystalline TiO 2 shell exhibited a good photocatalytic activity. • The microcapsules showed good performance in energy storage and sterilization. - Abstract: A sort of novel bifunctional microencapsulated phase change material (PCM) was designed by encapsulating n-eicosane into a crystalline titanium dioxide (TiO 2 ) shell and, then, was successfully synthesized through in-situ polycondensation in the sol–gel process using tetrabutyl titanate as a titania precursor. The resultant microcapsule samples were characterized by Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy to determine their chemical compositions and structures. Furthermore, the crystallinity of the TiO 2 shell was verified by powder X-ray diffraction patterns. It was confirmed that the fluorinions could induce the phase transition from the amorphous TiO 2 to the brookite-form crystals during the sol–gel process, thus resulting in a crystalline TiO 2 shell for the microencapsulated n-eicosane. The scanning and transmission electron microscopy investigations indicated that all of the resultant microcapsules presented a perfect spherical shape with a uniform particle size of 1.5–2 μm, and they also exhibited a well-defined core–shell structure as well as a smooth and compact shell. The crystalline TiO 2 shell made the resultant microcapsules a photocatalytic activity, and therefore, these microcapsules demonstrated a good photocatalytic effect for the chemical degradation and an antimicrobial function for some of the Gram-negative bacteria. Most of all, all of the microencapsulated n-eicosane samples indicated good phase-change performance and high thermal reliability for latent-heat storage and release, and moreover, they achieved a high

  2. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  3. Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil

    International Nuclear Information System (INIS)

    Ruley, Adam T.; Sharma, Nilesh C.; Sahi, Shivendra V.; Singh, Shree R.; Sajwan, Kenneth S.

    2006-01-01

    Effects of lead (Pb) and chelators, such as EDTA, HEDTA, DTPA, NTA and citric acid, were studied to evaluate the growth potential of Sesbania drummondii in soils contaminated with high concentrations of Pb. S. drummondii seedlings were grown in soil containing 7.5 g Pb(NO 3 ) 2 and 0-10 mmol chelators/kg soil for a period of 2 and 4 weeks and assessed for growth profile (length of root and shoot), chlorophyll a fluorescence kinetics (F v /F m and F v /F o ) and Pb accumulations in root and shoot. Growth of plants in the presence of Pb + chelators was significantly higher (P v /F m and F v /F o values of treated seedlings remained unaffected, indicating normal photosynthetic efficiency and strength of plants in the presence of chelators. On application of chelators, while root uptake of Pb increased four-five folds, shoot accumulations increased up to 40-folds as compared to controls (Pb only) depending on the type of chelator used. Shoot accumulations of Pb varied from 0.1 to 0.42% (dry weight) depending on the concentration of chelators used. - Sesbania drummondii tolerates and accumulates high concentrations of Pb

  4. Iron Chelators and Antioxidants Regenerate Neuritic Tree and Nigrostriatal Fibers of MPP+/MPTP-Lesioned Dopaminergic Neurons.

    Directory of Open Access Journals (Sweden)

    Pabla Aguirre

    Full Text Available Neuronal death in Parkinson's disease (PD is often preceded by axodendritic tree retraction and loss of neuronal functionality. The presence of non-functional but live neurons opens therapeutic possibilities to recover functionality before clinical symptoms develop. Considering that iron accumulation and oxidative damage are conditions commonly found in PD, we tested the possible neuritogenic effects of iron chelators and antioxidant agents. We used three commercial chelators: DFO, deferiprone and 2.2'-dypyridyl, and three 8-hydroxyquinoline-based iron chelators: M30, 7MH and 7DH, and we evaluated their effects in vitro using a mesencephalic cell culture treated with the Parkinsonian toxin MPP+ and in vivo using the MPTP mouse model. All chelators tested promoted the emergence of new tyrosine hydroxylase (TH-positive processes, increased axodendritic tree length and protected cells against lipoperoxidation. Chelator treatment resulted in the generation of processes containing the presynaptic marker synaptophysin. The antioxidants N-acetylcysteine and dymetylthiourea also enhanced axodendritic tree recovery in vitro, an indication that reducing oxidative tone fosters neuritogenesis in MPP+-damaged neurons. Oral administration to mice of the M30 chelator for 14 days after MPTP treatment resulted in increased TH- and GIRK2-positive nigra cells and nigrostriatal fibers. Our results support a role for oral iron chelators as good candidates for the early treatment of PD, at stages of the disease where there is axodendritic tree retraction without neuronal death.

  5. Assessment of the Efficacy of Chelate-Assisted Phytoextraction of Lead by Coffeeweed (Sesbania exaltata Raf.

    Directory of Open Access Journals (Sweden)

    Gloria Miller

    2008-12-01

    Full Text Available Lead (Pb, depending upon the reactant surface, pH, redox potential and other factors can bind tightly to the soil with a retention time of many centuries. Soil-metal interactions by sorption, precipitation and complexation processes, and differences between plant species in metal uptake efficiency, transport, and susceptibility make a general prediction of soil metal bioavailability and risks of plant metal toxicity difficult. Moreover, the tight binding characteristic of Pb to soils and plant materials make a significant portion of Pb unavailable for uptake by plants. This experiment was conducted to determine whether the addition of ethylenediaminetetraacetic acid (EDTA, ethylene glycol tetraacetic acid (EGTA, or acetic acid (HAc can enhance the phytoextraction of Pb by making the Pb soluble and more bioavailable for uptake by coffeeweed (Sesbania exaltata Raf.. Also we wanted to assess the efficacy of chelates in facilitating translocation of the metal into the above-ground biomass of this plant. To test the effect of chelates on Pb solubility, 2 g of Pb-spiked soil (1000 mg Pb/kg dry soil were added to each 15 mL centrifuge tube. Chelates (EDTA, EGTA, HAc in a 1:1 ratio with the metal, or distilled deionized water were then added. Samples were shaken on a platform shaker then centrifuged at the end of several time periods. Supernatants were filtered with a 0.45 μm filter and quantified by inductively coupled plasma-optical emission spectrometry (ICP-OES to determine soluble Pb concentrations. Results revealed that EDTA was the most effective in bringing Pb into solution, and that maximum solubility was reached 6 days after chelate amendment. Additionally, a greenhouse experiment was conducted by planting Sesbania seeds in plastic tubes containing top soil and peat (2:1, v:v spiked with various levels (0, 1000, 2000 mg Pb/kg dry soil of lead nitrate. At six weeks after emergence, aqueous solutions of EDTA and/or HAc (in a 1:1 ratio

  6. CaNa2EDTA chelation attenuates cell damage in workers exposed to lead--a pilot study.

    Science.gov (United States)

    Čabarkapa, A; Borozan, S; Živković, L; Stojanović, S; Milanović-Čabarkapa, M; Bajić, V; Spremo-Potparević, B

    2015-12-05

    Lead induced oxidative cellular damage and long-term persistence of associated adverse effects increases risk of late-onset diseases. CaNa2EDTA chelation is known to remove contaminating metals and to reduce free radical production. The objective was to investigate the impact of chelation therapy on modulation of lead induced cellular damage, restoration of altered enzyme activities and lipid homeostasis in peripheral blood of workers exposed to lead, by comparing the selected biomarkers obtained prior and after five-day CaNa2EDTA chelation intervention. The group of smelting factory workers diagnosed with lead intoxication and current lead exposure 5.8 ± 1.2 years were administered five-day CaNa2EDTA chelation. Elevated baseline activity of antioxidant enzymes Cu, Zn-SOD and CAT as well as depleted thiols and increased protein degradation products-carbonyl groups and nitrites, pointing to Pb induced oxidative damage, were restored toward normal values following the treatment. Lead showed inhibitor potency on both RBC AChE and BChE in exposed workers, and chelation re-established the activity of BChE, while RBC AChE remained unaffected. Also, genotoxic effect of lead detected in peripheral blood lymphocytes was significantly decreased after therapy, exhibiting 18.9% DNA damage reduction. Administration of chelation reversed the depressed activity of serum PON 1 and significantly decreased lipid peroxidation detected by the post-chelation reduction of MDA levels. Lactate dehydrogenase LDH1-5 isoenzymes levels showed evident but no significant trend of restoring toward normal control values following chelation. CaNa2EDTA chelation ameliorates the alterations linked with Pb mediated oxidative stress, indicating possible benefits in reducing health risks associated with increased oxidative damage in lead exposed populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Imine derivatives of lathonones. Part I -- Reactions of neodymium (III) isopropoxide with monofunctional bidendtate and bifunctional tridentate aldimines and ketamines

    International Nuclear Information System (INIS)

    Mital, S.P.; Singh, R.V.; Tandon, J.P.

    1980-01-01

    Nd(OPrsup(i))sub(2) (SB) and Nd(Oprsup(i))(SB)sub(2) [where SBH represents the molecule of monofunctional bidentate aldimine] type of derivatives have been synthesised by 1:1 and 1:2 molar reactions of neodymium isopropoxide with the aldimines having the donor system NOH and formed by the condensation of salicylaldehyde with alkylamines. However, bifunctional tridentate Schiff bases (LH) 2 have been found to yield Nd(OPrsup(i)) (L) and Nd 2 (L) 3 type of complexes in 1:1 and 2:3 molar ratio respectively. The isopropoxy groups of the 1:1 complexes have been found to undergo replacement reactions with excess of t-butanol and the resulting complexes are hydrolytically stable. All the newly synthesized complexes have been characterized on the basis of elemental analyses, molecular weight determinations, conductance measurements and infrared and proton magnetic resonance spectral studies. (auth.)

  8. Acid–Base Bifunctional Hf Nanohybrids Enable High Selectivity in the Catalytic Conversion of Ethyl Levulinate to γ-Valerolactone

    Directory of Open Access Journals (Sweden)

    Weibo Wu

    2018-06-01

    Full Text Available The catalytic upgrading of bio-based platform molecules is a promising approach for biomass valorization. However, most solid catalysts are not thermally or chemically stable, and are difficult to prepare. In this study, a stable organic phosphonate–hafnium solid catalyst (PPOA–Hf was synthesized, and acid–base bifunctional sites were found to play a cooperative role in the cascade transfer hydrogenation and cyclization of ethyl levulinate (EL to γ-valerolactone (GVL. Under relatively mild reaction conditions of 160 °C for 6 h, EL was completely converted to GVL with a good yield of 85%. The apparent activation energy was calculated to be 53 kJ/mol, which was lower than other solid catalysts for the same reaction. In addition, the PPOA-Hf solid catalyst did not significantly decrease its activity after five recycles, and no evident leaching of Hf was observed, indicating its high stability and potential practical application.

  9. Potent antitumor bifunctional DNA alkylating agents, synthesis and biological activities of 3a-aza-cyclopenta[a]indenes.

    Science.gov (United States)

    Kakadiya, Rajesh; Dong, Huajin; Lee, Pei-Chih; Kapuriya, Naval; Zhang, Xiuguo; Chou, Ting-Chao; Lee, Te-Chang; Kapuriya, Kalpana; Shah, Anamik; Su, Tsann-Long

    2009-08-01

    A series of bifunctional DNA interstrand cross-linking agents, bis(hydroxymethyl)- and bis(carbamates)-8H-3a-azacyclopenta[a]indene-1-yl derivatives were synthesized for antitumor evaluation. The preliminary antitumor studies revealed that these agents exhibited potent cytotoxicity in vitro and antitumor therapeutic efficacy against human tumor xenografts in vivo. Furthermore, these derivatives have little or no cross-resistance to either Taxol or Vinblastine. Remarkably, complete tumor remission in nude mice bearing human breast carcinoma MX-1 xenograft by 13a,b and 14g,h and significant suppression against prostate adenocarcinoma PC3 xenograft by 13b were achieved at the maximum tolerable dose with relatively low toxicity. In addition, these agents induce DNA interstrand cross-linking and substantial G2/M phase arrest in human non-small lung carcinoma H1299 cells. The current studies suggested that these agents are promising candidates for preclinical studies.

  10. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    International Nuclear Information System (INIS)

    Zhang Yunsong; Liu Weiguo; Zhang Li; Wang Meng; Zhao Maojun

    2011-01-01

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb 2+ , 40.72 mg/g for Cd 2+ ) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  11. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  12. Recovery of plutonium from nitric acid containing oxalate and fluoride by a macroporous bifunctional phosphinic acid resin (MPBPA)

    International Nuclear Information System (INIS)

    Venugopal Chetty, K.; Godbole, A.G.; Swarup, R.; Vaidya, V.N.; Venugopal, V.; Vasudeva Rao, P.R.

    2006-01-01

    The sorption of Pu from nitric acid solutions containing oxalate/fluoride was studied using an indigenously available macroporous bifunctional phosphinic acid (MPBPA) resin. Batch experiments were carried out to obtain the distribution data of Pu(IV) with a view to optimize conditions for its recovery from nitric acid waste solutions containing oxalate or fluoride ions. The measurements showed high distribution ratio (D) values even in the presence of strong complexing ions, like oxalate and fluoride, indicating the possibility of recovery of Pu from these types of waste solution. Column studies were carried out using this resin to recover Pu from the oxalate supernatant waste solution, which showed that up to 99% of Pu could be adsorbed on the resin. Elution of Pu loaded on the resin was studied using different eluting agents. (author)

  13. The synthesis of new oxazoline-containing bifunctional catalysts and their application in the addition of diethylzinc to aldehydes.

    Science.gov (United States)

    Coeffard, Vincent; Müller-Bunz, Helge; Guiry, Patrick J

    2009-04-21

    The straightforward preparation of new modular oxazoline-containing bifunctional catalysts is reported employing a microwave-assisted Buchwald-Hartwig aryl amination as the key step. Covalent attachment of 2-(o-aminophenyl)oxazolines and pyridine derivatives generated in good-to-high yields a series of ligands in two or three steps in which each part was altered independently to tune the activity and the selectivity of the corresponding catalysts. These catalysts prepared in situ were subsequently applied in the asymmetric addition of diethylzinc to various aldehydes, producing the corresponding alcohols with enantioselectivities of up to 68%. A transition state model, based on relevant X-ray crystal structures, has also been proposed to explain the observed stereoselectivities.

  14. Graphene-cobaltite-Pd hybrid materials for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells.

    Science.gov (United States)

    Sharma, Chandra Shekhar; Awasthi, Rahul; Singh, Ravindra Nath; Sinha, Akhoury Sudhir Kumar

    2013-12-14

    Hybrid materials comprising of Pd, MCo2O4 (where M = Mn, Co or Ni) and graphene have been prepared for use as efficient bifunctional electrocatalysts in alkaline direct methanol fuel cells. Structural and electrochemical characterizations were carried out using X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry and cyclic, CO stripping, and linear sweep voltammetries. The study revealed that all the three hybrid materials are active for both methanol oxidation (MOR) and oxygen reduction (ORR) reactions in 1 M KOH. However, the Pd-MnCo2O4/GNS hybrid electrode exhibited the greatest MOR and ORR activities. This active hybrid electrode has also outstanding stability under both MOR and ORR conditions, while Pt- and other Pd-based catalysts undergo degradation under similar experimental conditions. The Pd-MnCo2O4/GNS hybrid catalyst exhibited superior ORR activity and stability compared to even Pt in alkaline solutions.

  15. Cloning and characterization of Escherichia coli DUF299: a bifunctional ADP-dependent kinase - Pi-dependent pyrophosphorylase from bacteria

    Directory of Open Access Journals (Sweden)

    Burnell Jim N

    2010-01-01

    Full Text Available Abstract Background Phosphoenolpyruvate synthetase (PEPS; EC 2.7.9.2 catalyzes the synthesis of phosphoenolpyruvate from pyruvate in Escherichia coli when cells are grown on a three carbon source. It also catalyses the anabolic conversion of pyruvate to phosphoenolpyruvate in gluconeogenesis. A bioinformatics search conducted following the successful cloning and expression of maize leaf pyruvate, orthophosphate dikinase regulatory protein (PDRP revealed the presence of PDRP homologs in more than 300 bacterial species; the PDRP homolog was identified as DUF299. Results This paper describes the cloning and expression of both PEPS and DUF299 from E. coli and establishes that E. coli DUF299 catalyzes both the ADP-dependent inactivation and the Pi-dependent activation of PEPS. Conclusion This paper represents the first report of a bifunctional regulatory enzyme catalysing an ADP-dependent phosphorylation and a Pi-dependent pyrophosphorylation reaction in bacteria.

  16. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yunsong [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Liu Weiguo [Agronomy College, Sichuan Agricultural University, Wenjiang 611130 (China); Zhang Li; Wang Meng [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China); Zhao Maojun, E-mail: yaanyunsong@yahoo.com.cn [Department of Chemistry, College of Life and Science, Sichuan Agricultural University, Yaan 625014 (China)

    2011-09-15

    A magnetic adsorbent, EDTAD-functionalized Saccharomyces cerevisiae, has been synthesized to behave as an adsorbent for heavy metal ions by adjusting the pH value of the aqueous solution to make carboxyl and amino groups protonic or non-protonic. The bifunctional Saccharomyces cerevisiae (EMS) were used to remove lead(II) and cadmium(II) in solution in a batch system. The results showed that the adsorption capacity of the EMS for the heavy metal ions increased with increasing solution pH, and the maximum adsorption capacity (88.16 mg/g for Pb{sup 2+}, 40.72 mg/g for Cd{sup 2+}) at 10 deg. C was found to occur at pH 5.5 and 6.0, respectively. The adsorption process followed the Langmuir isotherm model. The regeneration experiments revealed that the EMS could be successfully reused.

  17. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  18. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  19. A paclitaxel prodrug with bifunctional folate and albumin binding moieties for both passive and active targeted cancer therapy.

    Science.gov (United States)

    Shan, Lingling; Zhuo, Xin; Zhang, Fuwu; Dai, Yunlu; Zhu, Guizhi; Yung, Bryant C; Fan, Wenpei; Zhai, Kefeng; Jacobson, Orit; Kiesewetter, Dale O; Ma, Ying; Gao, Guizhen; Chen, Xiaoyuan

    2018-01-01

    Folate receptor (FR) has proven to be a valuable target for chemotherapy using folic acid (FA) conjugates. However, FA-conjugated chemotherapeutics still have low therapeutic efficacy accompanied with side effects, resulting from complications such as short circulation half-life, limited tumor delivery, as well as high kidney accumulation. Herein, we present a novel FA-conjugated paclitaxel (PTX) prodrug which was additionally conjugated with an Evans blue (EB) derivative for albumin binding. The resulting bifunctional prodrug prolonged blood circulation, enhanced tumor accumulation, and consequently improved tumor therapeutic efficacy. Methods: Fmoc-Cys(Trt)-OH was coupled onto PTX at the 7'-OH position for further synthesis of ester prodrug FA-PTX-EB. The targeting ability was investigated using confocal microscopy and flow cytometry. The pharmacokinetics of this bifunctional compound was also studied. Meanwhile, cell viability was evaluated in normal cells and three cancer cell lines by MTT assay. In vivo therapeutic effect was tested on FR-α overexpressing MDA-MB-231 tumor model. Results: Compared with free PTX, the FA-PTX, PTX-EB and FA-PTX-EB prodrugs increased circulation half-life in mice from 2.19 to 3.82, 4.41, and 7.51 h, respectively. Pharmacokinetics studies showed that the FA-PTX-EB delivered more PTX to tumors than FA-PTX and free PTX. In vitro and in vivo studies demonstrated that FA-EB-conjugated PTX induced potent antitumor activity. Conclusion: FA-PTX-EB showed prolonged blood circulation, enhanced drug accumulation in tumors, higher therapeutic index, and lower side effects than either free PTX or monofunctional FA-PTX and EB-PTX. The results support the potential of using EB for the development of long-acting therapeutics.

  20. Phytoremediation of metals contaminated dredged sediments: Use of synthetic chelates in metals phytoextraction

    Science.gov (United States)

    Sahut, C.; Geniaut, G.; Lillo, M. P.

    2003-05-01

    (in Times 10 points) The waterways maintenance leads to a large volume of dredged polluted sediments, to be disposed of, every year. As the economic disposal of dredged sediment is a single line along the stream they can behave as a sink of pollutant and a migration in the environment is observed. Chelate-enhanced phytoremediation has been proposed as an effective tool for the extraction of heavy metals from dredged sediment by plants. Lysimeters studies were conducted to study the phytoremediation of sediments with EDTA and lactic acid used as synthetic chelators. EDTA appeared to enhance metal solubility by plant uptake did not increase accordingly. Futhermore EDTA enhance metal leaching which could lead 10 groungwater pollution. To prevent these unwanted side-effects, careful management of phytoremediation and of the use of EDTA seems necessary.

  1. Determination of cadmium in seawater by chelate vapor generation atomic fluorescence spectrometry

    Science.gov (United States)

    Sun, Rui; Ma, Guopeng; Duan, Xuchuan; Sun, Jinsheng

    2018-03-01

    A method for the determination of cadmium in seawater by chelate vapor generation (Che-VG) atomic fluorescence spectrometry is described. Several commercially available chelating agents, including ammonium pyrrolidine dithiocarbamate (APDC), sodium dimethyl dithiocarbamate (DMDTC), ammonium dibutyl dithiophosphate (DBDTP) and sodium O,O-diethyl dithiophosphate (DEDTP), are compared with sodium diethyldithiocarbamate (DDTC) for the Che-VG of cadmium, and results showed that DDTC and DEDTP had very good cadmium signal intensity. The effect of the conditions of Che-VG with DDTC on the intensity of cadmium signal was investigated. Under the optimal conditions, 85 ± 3% Che-VG efficiency is obtained for cadmium. The detection limit (3σ) obtained in the optimal conditions was 0.19 ng ml- 1. The relative standard deviation (RSD, %) for ten replicate determinations at 2 ng ml- 1 Cd was 3.42%. The proposed method was successfully applied to the ultratrace determination of cadmium in seawater samples by the standard addition method.

  2. Fusaric acid induces a notochord malformation in zebrafish via copper chelation.

    Science.gov (United States)

    Yin, Emily S; Rakhmankulova, Malika; Kucera, Kaury; de Sena Filho, Jose Guedes; Portero, Carolina E; Narváez-Trujillo, Alexandra; Holley, Scott A; Strobel, Scott A

    2015-08-01

    Over a thousand extracts were tested for phenotypic effects in developing zebrafish embryos to identify bioactive molecules produced by endophytic fungi. One extract isolated from Fusarium sp., a widely distributed fungal genus found in soil and often associated with plants, induced an undulated notochord in developing zebrafish embryos. The active compound was isolated and identified as fusaric acid. Previous literature has shown this phenotype to be associated with copper chelation from the active site of lysyl oxidase, but the ability of fusaric acid to bind copper ions has not been well described. Isothermal titration calorimetry revealed that fusaric acid is a modest copper chelator with a binding constant of 4.4 × 10(5) M(-1). These results shed light on the toxicity of fusaric acid and the potential teratogenic effects of consuming plants infected with Fusarium sp.

  3. The use of dihexyldithiocarbamate in reverse-phase HPLC of metal chelates

    Science.gov (United States)

    Fatimah, S. S.; Bahti, H. H.; Hastiawan, I.; Permanasari, A.

    2018-05-01

    Dialkyldithiocarbamates have long been used as chelating agents in reverse-phase HPLC of transition metals. In the previous study, an alkyl homolog of this type of ligand, namely dihexyldithiocarbamate (DHDTC), was synthesized and characterized. The use of this particular ligand in the revese-phase HPLC of some selected transition metal ions is now reported for the first time. The mobile phase comprising of the flow rate and of the detection, in the separation of the metal chelates of Cd (II), Fe (III), Cu (II), and Co (III), were investigated on a C-18 column. The results showed that dihexylditiocarbamate could be used for separating Cd (II), Fe(III), Cu(II), and Co(III). Therefore, it could be used in simultaneous analysis.

  4. Design and Methodology of the Trial to Assess Chelation Therapy (TACT)

    Science.gov (United States)

    Lamas, Gervasio A.; Goertz, Christine; Boineau, Robin; Mark, Daniel B.; Rozema, Theodore; Nahin, Richard L.; Drisko, Jeanne A.; Lee, Kerry L.

    2011-01-01

    The Trial to Assess Chelation Therapy (TACT) is an NIH-sponsored, randomized, double blind, placebo-controlled, 2×2 factorial clinical trial testing the benefits and risks of 40 infusions of a multi-component Na2EDTA-chelation solution compared with placebo, and of an oral, high-dose multivitamin and mineral supplement. TACT has randomized and will follow 1708 patients for an average of approximately 4 years. The primary endpoint is a composite of all cause mortality, myocardial infarction, stroke, coronary revascularization, and hospitalization for angina. A 900 patient substudy will examine quality of life outcomes. The trial is designed to have >85% power to detect a 25% relative reduction in the primary endpoint for each treatment factor. Enrollment began in September 2003 and completed in October 2010. PMID:22172430

  5. Heavy Metals, Cardiovascular Disease, and the Unexpected Benefits of Edetate Disodium Chelation Therapy

    Science.gov (United States)

    Lamas, Gervasio A.; Navas-Acien, Ana; Mark, Daniel B.; Lee, Kerry L.

    2016-01-01

    This review summarizes evidence from 2 lines of research previously thought unrelated: the unexpectedly positive results of the Trial to Assess Chelation Therapy (TACT), and a body of epidemiological data showing that accumulation of biologically active metals, such as lead and cadmium, is an important risk factor for cardiovascular disease. Considering these 2 areas of work together may lead to the identification of new, modifiable risk factors for atherosclerotic cardiovascular disease. We examine the history of chelation up through the report of TACT. We then describe work connecting higher metal levels in the body with the future risk of cardiovascular disease. We conclude by presenting a brief overview of a newly planned National Institutes of Health trial, TACT2, in which we will attempt to replicate the findings of TACT and to establish that removal of toxic metal stores from the body is a plausible mechanistic explanation for the benefits of edetate disodium treatment. PMID:27199065

  6. Lanthanide-binding peptides with two pendant aminodiacetate arms: impact of the sequence on chelation.

    Science.gov (United States)

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Gateau, Christelle; Delangle, Pascale

    2012-03-21

    Lanthanide complexes with a series of hexapeptides-incorporating two unnatural chelating amino acids with aminodiacetate groups, Ada(1) and Ada(2)-have been examined in terms of their speciation, structure, stability and luminescence properties. Whereas Ada(2) acts as a tridentate donor in all cases, Ada(1) may act as a tetradentate donor thanks to the coordination of the amide carbonyl function assisted by the formation of a six-membered chelate ring. The position of the Ada(1) residue in the sequence is demonstrated to be critical for the lanthanide complex speciation and structure. Ada(1) promotes the coordination of the backbone amide function to afford a highly dehydrated Ln complex and an S-shape structure of the peptide backbone, only when found in position 2.

  7. Molecular Docking Assessment of Efficacy of Different Clinically Used Arsenic Chelator Drugs

    OpenAIRE

    Durjoy Majumder; Sayan Mukherjee

    2013-01-01

    Arsenic contamination of ground water has become a global problem affecting specially, south-east Asian countries like Bangladesh and eastern parts of India. It also affects South America and some parts of the US. Different organs of the physiological system are affected due to contamination of inorganic arsenic in water. Animal studies with different chelators are not very conclusive as far as the multi/differential organ effect(s) of arsenic is concerned. Our docking study establishes the m...

  8. Chelation in metal intoxication. VIII. Removal of chromium from organs of potassium chromate administered rats.

    Science.gov (United States)

    Behari, J R; Tandon, S K

    1980-03-01

    Some polyaminocarboxylic acids were examined for their ability to mobilize chromium from certain vital organs, their subcellular fractions, and blood cells of potassium chromate administered rats. Hexamethylene 1,6-diamino tetraacetic acid (TDTA), triethylene tetramine hexaacetic acid (TTHA), and ethylene diamine di (O-hydroxylphenyl acetic acid) (EDDHA) may be useful in preventing or reducing chromate toxicity. No definite relationship could be observed between the structure of the chelating agents and their chromium-removing capacity.

  9. Curcumin Inhibits Growth of Saccharomyces cerevisiae through Iron Chelation ▿ ††

    OpenAIRE

    Minear, Steven; O'Donnell, Allyson F.; Ballew, Anna; Giaever, Guri; Nislow, Corey; Stearns, Tim; Cyert, Martha S.

    2011-01-01

    Curcumin, a polyphenol derived from turmeric, is an ancient therapeutic used in India for centuries to treat a wide array of ailments. Interest in curcumin has increased recently, with ongoing clinical trials exploring curcumin as an anticancer therapy and as a protectant against neurodegenerative diseases. In vitro, curcumin chelates metal ions. However, although diverse physiological effects have been documented for this compound, curcumin's mechanism of action on mammalian cells remains un...

  10. Lutetium-177 and iodine-131 loaded chelating polymer microparticles intended for radioembolization of liver malignancies

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Martin; Škodová, Michaela; Macková, Hana; Skopal, Jan; Tomeš, Marek; Kropáček, Martin; Zimová, Jana; Kučka, Jan

    2011-01-01

    Roč. 71, č. 12 (2011), s. 1155-1159 ISSN 1381-5148 R&D Projects: GA ČR GPP207/10/P054; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z10480505 Keywords : macroporous chelating beads * radioembolization * quinoline-8-ol Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.479, year: 2011

  11. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review

    OpenAIRE

    Delimont, Nicole M.; Rosenkranz, Sara K.; Haub, Mark D.; Lindshield, Brian L.

    2017-01-01

    Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme ir...

  12. Chelating polymeric beads as potential therapeutics for Wilson’s disease

    Czech Academy of Sciences Publication Activity Database

    Mattová, J.; Poučková, P.; Kučka, Jan; Škodová, Michaela; Vetrík, Miroslav; Štěpánek, Petr; Urbánek, P.; Petřík, M.; Nový, Z.; Hrubý, Martin

    2014-01-01

    Roč. 62, 1 October (2014), s. 1-7 ISSN 0928-0987 R&D Projects: GA ČR GAP304/12/0950; GA ČR GA13-08336S; GA MPO FR-TI4/625 Institutional support: RVO:61389013 Keywords : Wilson’s disease * polymer beads * chelators Subject RIV: CA - Inorganic Chemistry Impact factor: 3.350, year: 2014

  13. Micronutrient metal speciation is controlled by competitive organic chelation in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Boiteau, Rene M.; Shaw, Jared B.; Pasa Tolic, Ljiljana; Koppenaal, David W.; Jansson, Janet K.

    2018-05-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population. Even small structural differences

  14. Switch from antagonist to agonist after addition of a DOTA chelator to a somatostatin analog

    International Nuclear Information System (INIS)

    Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Erchegyi, Judit; Rivier, Jean E.

    2010-01-01

    Peptide receptor targeting has become an increasingly attractive method to target tumors diagnostically and radiotherapeutically. Peptides linked to a variety of chelators have been developed for this purpose. They have, however, rarely been tested for their agonistic or antagonistic properties. We report here on a somatostatin antagonist that switched to an agonist upon coupling to a DOTA chelator. Two novel somatostatin analogs, 406-040-15 and its DOTA-coupled counterpart 406-051-20, with and without cold Indium labeling, were tested for their somatostatin receptor subtypes 1-5 (sst 1 -sst 5 ) binding affinity using receptor autoradiography. Moreover, they were tested functionally for their ability to affect sst 2 and sst 3 internalization in vitro in HEK293 cells stably expressing the human sst 2 or sst 3 receptor, using an immunofluorescence microscopy-based internalization assay. All three compounds were characterized as pan-somatostatin analogs having a high affinity for all five sst. In the sst 2 internalization assay, all three compounds showed an identical behavior, namely, a weak agonistic effect complemented by a weak antagonistic effect, compatible with the behavior of a partial agonist. Conversely, in the sst 3 internalization assay, 406-040-15 was a full antagonist whereas its DOTA-coupled counterpart, 406-051-20, with and without Indium labeling, switched to a full agonist. Adding the DOTA chelator to the somatostatin analog 406-040-15 triggers a switch at sst 3 receptor from an antagonist to an agonist. This indicates that potential radioligands for tumor targeting should always be tested functionally before further development, in particular if a chelator is added. (orig.)

  15. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.

    Science.gov (United States)

    Wang, Jianxu; Xia, Jicheng; Feng, Xinbin

    2017-01-15

    Screening of optimal chelating ligands which not only have high capacities to enhance plant uptake of mercury (Hg) from soil but also can decrease bioavailable Hg concentration in soil is necessary to establish a viable chemically-assisted phytoextraction. Therefore, Brassica juncea was exposed to historically Hg-contaminated soil (total Hg, 90 mg kg -1 ) to investigate the efficiency of seven chelating agents [ammonium thiosulphate, sodium thiosulphate, ammonium sulfate, ammonium chloride, sodium nitrate, ethylenediaminetetraacetic acid (EDTA), and sodium sulfite] at enhancing Hg phytoextraction; the leaching of bioavailable Hg caused by these chelating agents was also investigated. The Hg concentration in control (treated with double-distilled water) plant tissues was below 1 mg kg -1 . The remarkably higher Hg concentration was found in plants receiving ammonium thiosulphate and sodium sulfite treatments. The bioaccumulation factors and translocation factors of ammonium thiosulphate and sodium sulfite treatments were significantly higher than those of the other treatments. The more efficient uptake of Hg by plants upon treatment with ammonium thiosulphate and sodium sulfite compared to the other treatments might be explained by the formation of special Hg-thiosulphate complexes that could be preferentially taken up by the roots and transported in plant tissues. The application of sulfite significantly increased bioavailable Hg concentration in soil compared with that in initial soil and control soil, whereas ammonium thiosulphate significantly decreased bioavailable Hg concentration. The apparent decrease of bioavailable Hg in ammonium thiosulphate-treated soil compared with that in sodium sulfite-treated soil might be attributable to the unstable Hg-thiosulphate complexes formed between thiosulphate and Hg; they could react to produce less bioavailable Hg in the soil. The results of this study indicate that ammonium thiosulphate may be an optimal chelating

  16. Protection against SR 4233 (tirapazamine) aerobic cytotoxicity by the metal chelators desferrioxamine and tiron

    International Nuclear Information System (INIS)

    Herscher, L.L.; Krishna, M.C.; Cook, J.A.

    1994-01-01

    Metal chelating agents and antioxidants were evaluated as potential protectors against aerobic SR 4233 cytotoxicity in Chinese hamster V79 cells. The differential protection of aerobic and hypoxic cells by two metal chelators, desferrrioxamine and Tiron, is discussed in the context of their potential use in the on-going clinical trials with SR 4233. Cytotoxicity was evaluated using clonogenic assay. SR 4233 exposure was done in glass flasks as a function of time either alone or in the presence of the following agents: superoxide dismutase, catalase, 5,5-dimethyl-1-pyrroline, Trolox, ICRF-187, desferrioxamine, Tiron (1,2-dihydroxybenzene-3,5-disulfonate), and ascorbic acid. Experiments done under hypoxic conditions were carried out in specially designed glass flasks that were gassed with humidified nitrogen/carbon dioxide mixture and with a side-arm reservoir from which SR 4233 was added to cell media after hypoxia was obtained. Electron paramagnetic resonance studies were also performed. Electron paramagnetic resonance and spectrophotometry experiments suggest that under aerobic conditions SR 4233 undergoes futile redox cycling to produce superoxide. Treatment of cells during aerobic exposure to SR 4233 with the enzymes superoxide dismutase and catalase, the spin trapping agent DMPO, the water-soluble vitamin E analog Trolox, and the metal chelator ICRF-187 provided little or no protection against aerobic SR 4233 cytotoxicity. However, two other metal chelators, desferrioxamine and Tiron afforded significant protection against minimal protection to hypoxic cells treated with SR 4233. One potential mechanism of aerobic cytotoxicity is redox cycling of SR 4233 with molecular oxygen resulting in several potentially toxic oxidative species that overburden the intrinsic intracellular detoxification systems such as superoxide dismutase, catalase, and glutathione peroxidase. 23 refs., 4 figs., 1 tab

  17. Metal-Chelate Immobilization of Lipase onto Polyethylenimine Coated MCM-41 for Apple Flavor Synthesis.

    Science.gov (United States)

    Sadighi, Armin; Motevalizadeh, Seyed Farshad; Hosseini, Morteza; Ramazani, Ali; Gorgannezhad, Lena; Nadri, Hamid; Deiham, Behnaz; Ganjali, Mohammad Reza; Shafiee, Abbas; Faramarzi, Mohammad Ali; Khoobi, Mehdi

    2017-08-01

    An enzyme immobilized on a mesoporous silica nanoparticle can serve as a multiple catalyst for the synthesis of industrially useful chemicals. In this work, MCM-41 nanoparticles were coated with polyethylenimine (MCM-41@PEI) and further modified by chelation of divalent metal ions (M = Co 2+ , Cu 2+ , or Pd 2+ ) to produce metal-chelated silica nanoparticles (MCM-41@PEI-M). Thermomyces lanuginosa lipase (TLL) was immobilized onto MCM-41, MCM-41@PEI, and MCM-41@PEI-M by physical adsorption. Maximum immobilization yield and efficiency of 75 ± 3.5 and 65 ± 2.7% were obtained for MCM@PEI-Co, respectively. The highest biocatalytic activity at extremely acidic and basic pH (pH = 3 and 10) values were achieved for MCM-PEI-Co and MCM-PEI-Cu, respectively. Optimum enzymatic activity was observed for MCM-41@PEI-Co at 75 °C, while immobilized lipase on the Co-chelated support retained 70% of its initial activity after 14 days of storage at room temperature. Due to its efficient catalytic performance, MCM-41@PEI-Co was selected for the synthesis of ethyl valerate in the presence of valeric acid and ethanol. The enzymatic esterification yield for immobilized lipase onto MCM-41@PEI-Co was 60 and 53%, respectively, after 24 h of incubation in n-hexane and dimethyl sulfoxide media. Graphical Abstract Divalent metal chelated polyethylenimine coated MCM-41 (MCM-41@PEI-M) was used for immobilization of Thermomyces lanuginosa lipase catalyzing green apple flavor preparation.

  18. Micronutrient metal speciation is driven by competitive organic chelation in grassland soils.

    Science.gov (United States)

    Boiteau, R.; Shaw, J. B.; Paša-Tolić, L.; Koppenaal, D.; Jansson, J.

    2017-12-01

    Many elements are scarcely soluble in aqueous conditions found in high pH environments, such as calcareous grassland soils, unless complexed to strong binding organic ligands. To overcome this limitation, some plants and microbes produce chelators that solubilize micronutrient metals such as Fe, Ni, Cu, and Zn from mineral phases. These complexes are taken up by organisms via specific membrane receptors, thereby differentially impacting the bioavailability of these metals to the plant and microbial community. Although the importance of these chelation strategies for individual organisms has been well established, little is known about which pathways coexist within rhizosphere microbiomes or how they interact and compete for metal binding. Identifying these metallo-organic species within natural ecosystems has remained a formidable analytical challenge due to the vast diversity of compounds and poorly defined metabolic processes in complex soil matrix. Herein, we employed recently developed liquid chromatography (LC) mass spectrometry (MS) methods to characterize the speciation of water-soluble dissolved trace elements (Fe, Ni, Cu, and Zn) from Kansas Prairie soil. Both plant and fungal chelators were identified, revealing compound-specific patterns of chelation to biologically essential metals. Numerous metabolites typically implicated in plant iron acquisition and homeostasis, including mugineic acids, deoxymugineic acid, nicotianamine, and hydroxynicotianamine, dominated the speciation of divalent metals such as Ni, Cu, and Zn (2-57 pmol / g soil). In contrast, the fungal siderophore ferricrocine bound comparatively more trivalent Fe (9pmol / g soil). These results define biochemical pathways that underpin the regulation of metals in the grassland rhizosphere. They also raise new questions about the competition of these compounds for metal binding and their bioavailability to different members of the rhizosphere population.

  19. Bioinspired Interfacial Chelating-like Reinforcement Strategy toward Mechanically Enhanced Lamellar Materials.

    Science.gov (United States)

    Chen, Ke; Zhang, Shuhao; Li, Anran; Tang, Xuke; Li, Lidong; Guo, Lin

    2018-05-22

    Many biological organisms usually derived from the ordered assembly of heterogeneous, hierarchical inorganic/organic constituents exhibit outstanding mechanical integration, but have proven to be difficult to produce the combination of excellent mechanical properties, such as strength, toughness, and light weight, by merely mimicking their component and structural characteristics. Herein, inspired by biologically strong chelating interactions of phytic acid (PA) or IP6 in many biomaterials, we present a biologically interfacial chelating-like reinforcement (BICR) strategy for fabrication of a highly dense ordered "brick-and-mortar" microstructure by incorporating tiny amounts of a natural chelating agent ( e. g., PA) into the interface or the interlamination of a material ( e. g., graphene oxide (GO)), which shows joint improvement in hardness (∼41.0%), strength (∼124.1%), maximum Young's modulus (∼134.7%), and toughness (∼118.5%) in the natural environment. Besides, for different composite matrix systems and artificial chelating agents, the BICR strategy has been proven successful for greatly enhancing their mechanical properties, which is superior to many previous reinforcing approaches. This point can be mainly attributed to the stronger noncovalent cross-linking interactions such as dense hydrogen bonds between the richer phosphate (hydroxyl) groups on its cyclohexanehexol ring and active sites of GO, giving rise to the larger energy dissipation at its hybrid interfaces. It is also simple and environmentally friendly for further scale-up fabrication and can be readily extended to other material systems, which opens an advanced reinforcement route to construct structural materials with high mechanical performance in an efficient way for practical applications.

  20. Solution mining dawsonite from hydrocarbon containing formations with a chelating agent

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX

    2009-07-07

    A method for treating an oil shale formation comprising dawsonite includes providing heat from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation. At least some dawsonite in the formation is decomposed with the provided heat. A chelating agent is provided to the formation to dissolve at least some dawsonite decomposition products. The dissolved dawsonite decomposition products are produced from the formation.