Sample records for tetanic force produced

  1. Hexamethonium produces both twitch and tetanic depression ...

    African Journals Online (AJOL)

    Hexamethonium, however does not produce tetanic fade at the same concentration. We hypothesized that the cholinoceptors of the neuromuscular junction of the common African toad (Bufo regularis) resemble the developing synapse of African clawed toad (Xenopus laevis) and may contain muscarinic M1 autoreceptors ...

  2. Serotonin and Histamine Therapy Increases Tetanic Forces of Myoblasts, Reduces Muscle Injury, and Improves Grip Strength Performance of Dmdmdx Mice

    Directory of Open Access Journals (Sweden)

    Volkan Gurel


    Full Text Available Duchenne muscular dystrophy (DMD is a recessive X-linked fatal disorder caused by a mutation in the dystrophin gene. Although several therapeutic approaches have been studied, none has led to substantial long-term effects in patients. The aim of this study was to test a serotonin and histamine (S&H combination on human skeletal myoblasts and Dmdmdx mice for its effects on muscle strength and injury. Normal human bioartificial muscles (BAMs were treated, and muscle tetanic forces and muscle injury tests were performed using the MyoForce Analysis System. Dmdmdx mice, the murine model of DMD, were administered serotonin, histamine, or S&H combination twice daily for 6 weeks, and functional performance tests were conducted once a week. The S&H combination treatment caused significant increases in tetanic forces at all time points and concentrations tested as compared to the saline controls. Dose response of the BAMs to the treatment demonstrated a significant increase in force generation at all concentrations compared to the controls after 3 to 4 days of drug treatment. The highest 3 concentrations had a significant effect on lowering contractile-induced injury as measured by a reduction in the release of adenylate kinase. Histamine-only and S&H treatments improved grip strength of Dmdmdx mice, whereas serotonin-only treatment resulted in no significant improvement in muscle strength. The results of this study indicate that S&H therapy might be a promising new strategy for muscular dystrophies and that the mechanism should be further investigated.

  3. Serotonin and Histamine Therapy Increases Tetanic Forces of Myoblasts, Reduces Muscle Injury, and Improves Grip Strength Performance of Dmd(mdx) Mice. (United States)

    Gurel, Volkan; Lins, Jeremy; Lambert, Kristyn; Lazauski, Joan; Spaulding, James; McMichael, John


    Duchenne muscular dystrophy (DMD) is a recessive X-linked fatal disorder caused by a mutation in the dystrophin gene. Although several therapeutic approaches have been studied, none has led to substantial long-term effects in patients. The aim of this study was to test a serotonin and histamine (S&H) combination on human skeletal myoblasts and Dmd(mdx) mice for its effects on muscle strength and injury. Normal human bioartificial muscles (BAMs) were treated, and muscle tetanic forces and muscle injury tests were performed using the MyoForce Analysis System. Dmd(mdx) mice, the murine model of DMD, were administered serotonin, histamine, or S&H combination twice daily for 6 weeks, and functional performance tests were conducted once a week. The S&H combination treatment caused significant increases in tetanic forces at all time points and concentrations tested as compared to the saline controls. Dose response of the BAMs to the treatment demonstrated a significant increase in force generation at all concentrations compared to the controls after 3 to 4 days of drug treatment. The highest 3 concentrations had a significant effect on lowering contractile-induced injury as measured by a reduction in the release of adenylate kinase. Histamine-only and S&H treatments improved grip strength of Dmd(mdx) mice, whereas serotonin-only treatment resulted in no significant improvement in muscle strength. The results of this study indicate that S&H therapy might be a promising new strategy for muscular dystrophies and that the mechanism should be further investigated.

  4. Atropine and ODQ antagonize tetanic fade induced by L-arginine in cats

    Directory of Open Access Journals (Sweden)

    J.M. Cruciol-Souza


    Full Text Available Although it has been demonstrated that nitric oxide (NO released from sodium nitrite induces tetanic fade in the cat neuromuscular preparations, the effect of L-arginine on tetanic fade and its origin induced by NO have not been studied in these preparations. Furthermore, atropine reduces tetanic fade induced by several cholinergic and anticholinergic drugs in these preparations, whose mechanism is suggested to be mediated by the interaction of acetylcholine with inhibitory presynaptic muscarinic receptors. The present study was conducted in cats to determine the effects of L-arginine alone or after pretreatment with atropine or 1H-[1,2,4]oxadiazole [4,3-a]quinoxalin-1-one (ODQ on neuromuscular preparations indirectly stimulated at high frequency. Drugs were injected into the middle genicular artery. L-arginine (2 mg/kg and S-nitroso-N-acetylpenicillamine (SNAP; 16 µg/kg induced tetanic fade. The Nw-nitro-L-arginine (L-NOARG; 2 mg/kg alone did not produce any effect, but reduced the tetanic fade induced by L-arginine. D-arginine (2 mg/kg did not induce changes in tetanic fade. The tetanic fade induced by L-arginine or SNAP was reduced by previous injection of atropine (1.0 µg/kg or ODQ (15 µg/kg. ODQ alone did not change tetanic fade. The data suggest that the NO-synthase-GC pathway participates in the L-arginine-induced tetanic fade in cat neuromuscular preparations. The tetanic fade induced by L-arginine probably depends on the action of NO at the presynaptic level. NO may stimulate guanylate cyclase increasing acetylcholine release and thereby stimulating presynaptic muscarinic receptors.

  5. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres (United States)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels; Westerblad, Håkan


    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator of sarcoplasmic reticulum Ca2+ release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca2+ ([Ca2+]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz, 350 ms tetani given at 2 s (high-intensity fatigue, HIF) or 10 s (low-intensity fatigue, LIF) intervals, while force and [Ca2+]i were measured. Stimulation continued until force decreased to 30% of its initial value. Fibres were then prepared for analyses of subcellular glycogen distribution by transmission electron microscopy. At fatigue, tetanic [Ca2+]i was reduced to 70 ± 4% and 54 ± 4% of the initial in HIF (P fibres, respectively. At fatigue, the mean inter- and intramyofibrillar glycogen content was 60–75% lower than in rested control fibres (P fibres showed a good correlation between the fatigue-induced decrease in tetanic [Ca2+]i and the reduction in intermyofibrillar (P = 0.051) and intramyofibrillar (P = 0.0008) glycogen. In conclusion, the fatigue-induced decrease in tetanic [Ca2+]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca2+]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca2+ release critically depends on energy supply from the intramyofibrillar glycogen pool. PMID:24591577

  6. "The Film Producer as a Creative Force"


    Pardo, A


    This article seeks to shed new light on our understanding of the work of the film producer, discussing the creative nature of this craft. It does that by searching for answers to two questions: Firstly, up to what point can we talk about creativity in the producing of films? And secondly, how is that creativity practiced? To deal with both these questions it offers a historical overview of the creative producer and how it is presently considered. Finally, it also briefly addresses the influen...

  7. Twitch interpolation: superimposed twitches decline progressively during a tetanic contraction of human adductor pollicis. (United States)

    Gandevia, S C; McNeil, C J; Carroll, T J; Taylor, J L


    The assessment of voluntary activation of human muscles usually depends on measurement of the size of the twitch produced by an interpolated nerve or cortical stimulus. In many forms of fatiguing exercise the superimposed twitch increases and thus voluntary activation appears to decline. This is termed 'central' fatigue. Recent studies on isolated mouse muscle suggest that a peripheral mechanism related to intracellular calcium sensitivity increases interpolated twitches. To test whether this problem developed with human voluntary contractions we delivered maximal tetanic stimulation to the ulnar nerve (≥60 s at physiological motoneuronal frequencies, 30 and 15 Hz). During the tetani (at 30 Hz) in which the force declined by 42%, the absolute size of the twitches evoked by interpolated stimuli (delivered regularly or only in the last second of the tetanus) diminished progressively to less than 1%. With stimulation at 30 Hz, there was also a marked reduction in size and area of the interpolated compound muscle action potential (M wave). With a 15 Hz tetanus, a progressive decline in the interpolated twitch force also occurred (to ∼10%) but did so before the area of the interpolated M wave diminished. These results indicate that the increase in interpolated twitch size predicted from the mouse studies does not occur. Diminution in superimposed twitches occurred whether or not the M wave indicated marked impairment at sarcolemmal/t-tubular levels. Consequently, the increase in superimposed twitch, which is used to denote central fatigue in human fatiguing exercise, is likely to reflect low volitional drive to high-threshold motor units, which stop firing or are discharging at low frequencies.

  8. Forces produced by lip bumpers on mandibular molars. (United States)

    Hodge, J J; Nanda, R S; Ghosh, J; Smith, D


    The purpose of this study was to measure the forces produced by a lip bumper on the mandibular permanent first molars. The forces in a sample of 38 patients were measured bilaterally with specially designed gauges at rest but with their lips lightly touching, speaking the words church, phone, and pop, and swallowing water. Forces were compared between two types of lip bumpers, i.e., wire or shield, and between various anteroposterior and vertical positions of the lip bumper. The resting forces produced by the wire lip bumper 2 mm anterior to the incisors and vertically positioned at the middle of the incisor crown were 5.93 +/- 4.84 gm for the left side and 4.66 +/- 4.8 gm for the right. The forces were found to be significantly higher when the wire lip bumper was placed 4 mm anterior to the incisors and at a more gingival position, measuring 16.68 +/- 8.7 gm for the left side and 13.88 +/- 8.28 gm for the right. The shield lip bumper had higher forces both at the center of the incisor as well as when it was positioned gingivally. A large individual variation was observed. There were no statistically significant differences in force levels between male and female subjects. Speaking the words church, pop, and phone, produced forces between 11 and 23 gm, using a wire lip bumper. Swallowing produced the highest forces, between 32 and 36 gm. Lip thickness and height did not appear to affect the force levels.

  9. Estimating the minimum stimulation frequency necessary to evoke tetanic progression based on muscle twitch parameters. (United States)

    Watanabe, Shogo; Fukuhara, Shinichi; Fujinaga, Takeshi; Oka, Hisao


    The summation of the muscle force caused by an increase in the firing rate is named a tetanic contraction (tetanus), and the minimum stimulation frequency necessary to evoke an unfused/fused tetanus is related to the contraction time (CT) and relaxation time (RT) of the twitch. In particular, the fusion index (FI) is a very useful indicator, and it is used to evaluate the change in the muscle fiber component ratio. However, the measurement of the FI is invasive, because most patients experience pain during the electrical stimulation for tetanus. We expect that the twitch parameters CT and RT can substitute for the FI in the future. We found that the minimum stimulation frequency necessary to evoke the unfused/fused tetanus can be estimated from the twitch parameters as a first step. The results showed that (1) the minimum stimulation frequencies calculated from twitch parameters during unfused/fused tetanus were very similar to those calculated from FI parameters, and (2) they were also strongly correlated with FI parameters regardless of fiber components. The basic characteristics of tetanic progression in different fiber types could be estimated from twitch parameters.

  10. [Plastic changes in responses of chemo- and electro-excitable membranes of a cortical neurons following orthodromal tetanization]. (United States)

    Pivovarov, A S; Tsagareli, M G; Gusel'nikov, V I


    Orthodromic tetanization produces in the turtle visual cortex two types of reversible plastic changes of electrical responses: facilitation and depression. Posttetanic facilitation is attended with reversible enhancement of evoked postsynaptic potentials and APs; the excitability of the electroexcitable membrane increases: the critical level of depolarization of the evoked spike shifts in the negative direction and its threshold potential decreases. Posttetanic depression is accompanied by a reversible decrease of the amplitude of evoked postsynaptic and spike potentials; the excitability of the electroexcitable membrane decreases: the critical level of depolarization of the evoked spike shifts in the positive direction, and its threshold potential increases. Reversible changes of excitability of the spike generating membrane following tetanization testify to the existence of an active mechanism of spike discharge change.

  11. Electrode position markedly affects knee torque in tetanic, stimulated contractions. (United States)

    Vieira, Taian M; Potenza, Paolo; Gastaldi, Laura; Botter, Alberto


    The purpose of this study was to investigate how much the distance between stimulation electrodes affects the knee extension torque in tetanic, electrically elicited contractions. Current pulses of progressively larger amplitude, from 0 mA to maximally tolerated intensities, were delivered at 20 pps to the vastus medialis, rectus femoris and vastus lateralis muscles of ten, healthy male subjects. Four inter-electrode distances were tested: 32.5% (L1), 45.0% (L2), 57.5% (L3) and 70% (L4) of the distance between the patella apex and the anterior superior iliac spine. The maximal knee extension torque and the current leading to the maximal torque were measured and compared between electrode configurations. The maximal current tolerated by each participant ranged from 60 to 100 mA and did not depend on the inter-electrode distance. The maximal knee extension torque elicited did not differ between L3 and L4 (P = 0.15) but, for both conditions, knee torque was significantly greater than for L1 and L2 (P torque elicited for L3 and L4 was two to three times greater than that obtained for L1 and L2. The current leading to maximal torque was not as sensitive to inter-electrode distance. Except for L1 current intensity did not change with electrode configuration (P > 0.16). Key results presented here revealed that for a given stimulation intensity, knee extension torque increased dramatically with the distance between electrodes. The distance between electrodes seems therefore to critically affect knee torque, with potential implication for optimising exercise protocols based on electrical stimulation.

  12. Experimental Investigation of Forces Produced by Misaligned Steel Rollers (United States)

    Krantz, Timothy; DellaCorte, Christopher; Dube, Michael


    The International Space Station (ISS) Solar Alpha Rotary Joint (SARJ) uses a roller-based mechanism for positioning of the solar arrays. The forces and moments that develop at the roller interfaces are influenced by the design including the kinematic constraints and the lubrication condition. To help understand the SARJ operation, a set of dedicated experiments were completed using roller pairs. Of primary interest was to measure the axial force directed along the axis of rotation of the roller as a function of shaft misalignment. The conditions studied included dry and clean surfaces; one surface plated by a gold film, and greased surfaces. For the case of a bare 440C roller against a nitrided 15-5 roller without lubrication, the axial force can be as great as 0.4 times the normal load for a shaft angle of 0.5 deg. Such a magnitude of force on a roller in the SARJ mechanism would cause roller tipping and contact pressures much greater than anticipated by the designers. For the case of a bare 440C roller against a nitrided 15-5 roller with grease lubrication, the axial force does not exceed about 0.15 times the normal load even for the largest misalignment angles tested. Gold films provided good lubrication for the short duration testing reported herein. Grease lubrication limited the magnitude of the axial force to even smaller magnitudes than was achieved with the gold films. The experiments demonstrate the critical role of good lubrication for the SARJ mechanism.

  13. Cyclosporine increases muscular force generation in Duchenne muscular dystrophy. (United States)

    Sharma, K R; Mynhier, M A; Miller, R G


    We investigated the effect of cyclosporine (CsA) on force generation in 15 boys with Duchenne muscular dystrophy (DMD) by obtaining monthly measures of tetanic force and maximum voluntary contraction (MVC) of both anterior tibial muscles. During 4 months of a natural history phase, both tetanic force and MVC declined significantly. During 8 weeks of CsA treatment (5 mg/kg/day), significantly increased tetanic force (25.8 +/- 6.6%) and MVC (13.6 +/- 4.0%) occurred within 2 weeks. The maximum mean increase during treatment was 35.2 +/- 5.9% (tetanic force) and 19.0 +/- 4.6% (MVC). Side effects from CsA, gastrointestinal and flu-like symptoms, were transient and self-limiting. Thus, as previously reported with prednisone, CsA increases muscular force generation in the anterior tibial muscles of DMD patients.

  14. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions.

    NARCIS (Netherlands)

    Janssen, T.W.; Hopman, M.T.E.


    OBJECTIVES: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. DESIGN: Intervention with within-subject comparisons. SETTING: University research

  15. Blood flow response to electrically induced twitch and tetanic lower-limb muscle contractions

    NARCIS (Netherlands)

    Janssen, T.W.J.; Hopman, M.T.E.


    Objectives: To compare the effect of electric stimulation (ES)-induced twitch with tetanic leg muscle contractions on blood flow responses and to assess blood flow responses in the contralateral inactive leg. Design: Intervention with within-subject comparisons. Setting: University research


    Goehler, Craig M.; Murray, Wendy M.


    This study utilizes a biomechanical model of the thumb to estimate the force produced at the thumb-tip by each of the four extrinsic muscles. We used the principle of virtual work to relate joint torques produced by a given muscle force to the resulting endpoint force and compared the results to two separate cadaveric studies. When we calculated thumb-tip forces using the muscle forces and thumb postures described in the experimental studies, we observed large errors. When relatively small deviations from experimentally reported thumb joint angles were allowed, errors in force direction decreased substantially. For example, when thumb posture was constrained to fall within ±15° of reported joint angles, simulated force directions fell within experimental variability in the proximal-palmar plane for all four muscles. Increasing the solution space from ±1° to an unbounded space produced a sigmoidal decrease in error in force direction. Changes in thumb posture remained consistent with a lateral pinch posture, and were generally consistent with each muscle’s function. Altering thumb posture alters both the components of the Jacobian and muscle moment arms in a nonlinear fashion, yielding a nonlinear change in thumb-tip force relative to muscle force. These results explain experimental data that suggest endpoint force is a nonlinear function of muscle force for the thumb, support the continued use of methods that implement linear transformations between muscle force and thumb-tip force for a specific posture, and suggest the feasibility of accurate prediction of lateral pinch force in situations where joint angles can be measured accurately. PMID:20303085

  17. Thumb and finger forces produced by motor units in the long flexor of the human thumb (United States)

    Yu, W S; Kilbreath, S L; Fitzpatrick, R C; Gandevia, S C


    The uncommonly good proprioceptive performance of the long flexor of the thumb, flexor pollicis longus (FPL), may add significantly to human manual dexterity. We investigated the forces produced by FPL single motor units during a weak static grip involving all digits by spike-triggered averaging from single motor units, and by averaging from twitches produced by intramuscular stimulation. Nine adult subjects were studied. The forces produced at each digit were used to assess how forces produced in FPL are distributed to the fingers. Most FPL motor units produced very low forces on the thumb and were positively correlated with the muscle force at recruitment. Activity in FPL motor units commonly loaded the index finger (42/55 units), but less commonly the other fingers (P thumb) with the same time-to-peak force as the thumb (∼50 ms), but had no significant effect on other fingers. However, intramuscular stimulation within FPL did not produce significant forces in any finger. Coherence at 2–10 Hz between the thumb and index finger force was twice that for the other finger forces and the coherence to the non-index fingers was not altered when the index finger did not participate in the grasp. These results indicate that, within the long-term coordinated forces of all digits during grasping, FPL motor units generate forces highly focused on the thumb with minimal peripheral transfer to the fingers and that there is a small but inflexible neural coupling to the flexors of the index finger. PMID:17656436

  18. Dependence of Force Produced by Polypyrrole Based Artificial Muscles on Ionic Species Involved

    DEFF Research Database (Denmark)

    Careem, M.A.; Vidanapathirana, K.P.; Skaarup, Steen


    Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization electrol......Artificial muscles have been fabricated in the form bilayer strips using an insulating polymer layer and polypyrrole (PPy) conducting polymer film, and the force produced by them during redox processes have been investigated. This study reports the effects of anions in the polymerization...

  19. Finite element method (FEM) analysis of the force systems produced by asymmetric inner headgear bows. (United States)

    Geramy, Allahyar; Kizilova, Natalya; Terekhov, Leonid


    Extra-oral traction appliances were introduced more than a century ago and continue to be used to produce orthopaedic and/or dental changes in the maxilla. While force systems produced by asymmetric outer bows have been studied extensively, the force systems produced by asymmetric inner bows have been overlooked. To analyse the forces acting on the maxillary first molars: when the size of one bayonet bend is increased; when the point of application of the distalising force on the inner bow is moved to one side; when one molar is displaced palatally. Four FEM models of cervical headgear attached to maxillary first molars were designed in SolidWorks 2010 and transferred to an ANSYS Workbench Ver. 12.1. Model 1, each molar was 23 mm from the midpalatal line and the inner bow was symmetrical; Model 2, the left molar was displaced 4 mm towards the midpalatal line and the inner bow was symmetrical; Model 3, the molars were equidistant (23 mm) from the midpalatal line, but the left molar was engaged by a 2 mm larger bayonet bend; Model 4, the molars were equidistant (23 mm) from the midpalatal line but the join between the inner and outer bows was displaced 2 mm towards the left molar. In all FEM models, a 2N force was applied to the inner bow at the join between inner and outer bows and the energy transmitted to the teeth and the von Mises stresses on the molar PDLs were assessed. There were marked differences in the strain energy on the teeth and the von Mises stresses on their PDLs. A 14 to 20 per cent increase in energy and force was produced on the tooth closer to the symmetric plane of the headgear. In addition, the increase in energy produced a 30 to 62 per cent increase in the von Mises stresses within the PDLs. Small asymmetries in molar position, the size of a bayonet bend and the point of application of a force on an inner bow resulted in asymmetrical forces on the molars. These forces were higher on the molar closer to the symmetric plane of the headgear.

  20. Ground reaction forces produced by two different hockey skating arm swing techniques. (United States)

    Hayward-Ellis, Julie; Alexander, Marion J L; Glazebrook, Cheryl M; Leiter, Jeff


    The arm swing in hockey skating can have a positive effect on the forces produced by each skate, and the resulting velocity from each push off. The main purpose of this study was to measure the differences in ground reaction forces (GRFs) produced from an anteroposterior versus a mediolateral style hockey skating arm swing. Twenty-four elite-level female hockey players performed each technique while standing on a ground-mounted force platform, and all trials were filmed using two video cameras. Force data was assessed for peak scaled GRFs in the frontal and sagittal planes, and resultant GRF magnitude and direction. Upper limb kinematics were assessed from the video using Dartfish video analysis software, confirming that the subjects successfully performed two distinct arm swing techniques. The mediolateral arm swing used a mean of 18.38° of glenohumeral flexion/extension and 183.68° of glenohumeral abduction/adduction while the anteroposterior technique used 214.17° and 28.97° respectively. The results of this study confirmed that the mediolateral arm swing produced 37% greater frontal plane and 33% less sagittal plane GRFs than the anteroposterior arm swing. The magnitudes of the resultant GRFs were not significantly different between the two techniques; however, the mediolateral technique produced a resultant GRF with a significantly larger angle from the direction of travel (44.44°) as compared to the anteroposterior technique (31.60°). The results of this study suggest that the direction of GRFs produced by the mediolateral arm swing more closely mimic the direction of lower limb propulsion during the skating stride.

  1. The mechanoelectric feedback: a novel "calcium clamp" method, using tetanic contraction, for testing the role of the intracellular free calcium. (United States)

    Yaniv, Yael; Levy, Carmit; Landesberg, Amir


    Mechanical perturbations affect the membrane action potential, a phenomenon denoted as the mechanoelectric feedback (MEF), and may elicit cardiac arrhythmias. Two plausible mechanisms were suggested to explain this phenomenon: (i) stretch-activated channels (SACs) within the cell membrane and (ii) modulation of the action potential by the intracellular Ca(2+) (the Calcium hypothesis). The intracellular Ca(2+) varies mainly due to the effects of the mechanical perturbations on the affinity of troponin for calcium. The present study concentrates on the unique experimental methods that allow differentiating between the effects of SAC and Ca(2+) on the action potential. This is achieved by controlling the sarcomere lengths (SLs) independently of the intracellular Ca(2+) concentration, in the intact fiber. A dedicated experimental setup allowed simultaneous measurements of the membrane potential and the mechanical performance (Force and SL). The action potential was measured by voltage-sensitive dye (Di-4-ANEPPS). The SL was measured by laser diffraction technique and was controlled by a fast servomotor. The intracellular Ca(2+) was controlled (calcium clamp) by imposing stable tetanic contractions at various extracellular calcium concentrations ([Ca(2+)](0)s). Tetanus was obtained by 8 Hz stimulation in the presence of cyclopiazonic acid (CPA) (30 muM). Isolated trabeculae from a rat's right ventricle were studied at different SLs and [Ca(2+)](0)s. The experimental data strongly support the calcium hypothesis. Although the action potential duration (APD) decreases at longer SL, the [Ca(2+)](0) has a significantly larger effect on the APD. The APD decreases as the [Ca(2+)](0) increases. Understanding the underlying mechanism opens new research avenues for the development of therapeutic modalities for cardiac arrhythmias.

  2. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms. (United States)

    Yu, Zhi-Bin


    Muscle unloading due to long-term exposure of weightlessness or simulated weightlessness causes atrophy, loss of functional capacity, impaired locomotor coordination, and decreased resistance to fatigue in the antigravity muscles of the lower limbs. Besides reducing astronauts' mobility in space and on returning to a gravity environment, the molecular mechanisms for the adaptation of skeletal muscle to unloading also play an important medical role in conditions such as disuse and paralysis. The tail-suspended rat model was used to simulate the effects of weightlessness on skeletal muscles and to induce muscle unloading in the rat hindlimb. Our series studies have shown that the maximum of twitch tension and the twitch duration decreased significantly in the atrophic soleus muscles, the maximal tension of high-frequency tetanic contraction was significantly reduced in 2-week unloaded soleus muscles, however, the fatigability of high-frequency tetanic contraction increased after one week of unloading. The maximal isometric tension of intermittent tetanic contraction at optimal stimulating frequency did not alter in 1- and 2-week unloaded soleus, but significantly decreased in 4-week unloaded soleus. The 1-week unloaded soleus, but not extensor digitorum longus (EDL), was more susceptible to fatigue during intermittent tetanic contraction than the synchronous controls. The changes in K+ channel characteristics may increase the fatigability during high-frequency tetanic contraction in atrophic soleus muscles. High fatigability of intermittent tetanic contraction may be involved in enhanced activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) and switching from slow to fast isoform of myosin heavy chain, tropomyosin, troponin I and T subunit in atrophic soleus muscles. Unloaded soleus muscle also showed a decreased protein level of neuronal nitric oxide synthase (nNOS), and the reduction in nNOS-derived NO increased frequency of calcium sparks and elevated

  3. Skeleton growth under uniformly distributed force conditions: producing spherical sea urchins (United States)

    Cheng, Polly; Kambli, Ankita; Stone, Johnny


    Sea urchin skeletons, or tests, comprise rigid calcareous plates, interlocked and sutured together with collagen fibres. The tests are malleable due to mutability in the collagen fibres that loosen during active feeding, yielding interplate gaps. We designed an extraterrestrial simulation experiment wherein we subjected actively growing sea urchins to one factor associated with zero-gravity environments, by growing them under conditions in which reactionary gravitational forces were balanced, and observed how their tests responded. Preventing tests from adhering to surfaces during active growth produced more-spherical bodies, realized as increased height-to-diameter ratios. Sea urchin tests constitute ideal systems for obtaining data that could be useful in extraterrestrial biology research, particularly in how skeletons grow under altered-gravity conditions.

  4. Air Force Transformation -- Will It Produce a Revolution in Military Affairs? (United States)


    Architecture,” Armed Forces Journal, September 2002, 55. 32 by services, Global Strike Task Force ( GSTF ) in the Air Force, Expeditionary Strike Groups (ESGs...under the Navy/Marine Corps team, and Striker Brigades within the Army, the Global Strike Task Force is furthest along. GSTF incorporates many of

  5. Comparison of the initial orthodontic force systems produced by a new lingual bracket system and a straight-wire appliance. (United States)

    Fuck, Lars-Michael; Wiechmann, Dirk; Drescher, Dieter


    Over the last few years, lingual appliances have become an established orthodontic treatment technique. Many studies have concentrated on various esthetic aspects, on laboratory and clinical procedures, and on patient comfort and compliance. The orthodontic force systems of these appliances, however, have not yet been investigated. The aim of this study was thus to determine the forces and moments produced by a new lingual bracket system during the leveling phase of orthodontic treatment and to compare those with the corresponding force system of a labial straight-wire appliance. The intra-oral situation of ten patients undergoing orthodontic treatment was replicated in measurement casts fitted with lingual and labial brackets. Special care was taken to precisely reproduce each patient's interbracket geometry. We measured each tooth's force systems as generated by a leveling arch inserted into the lingual and labial brackets. The resulting force systems of both appliances were found to be quite similar with regard to the magnitude of most force and moment components. Only the first molars were subjected to considerably greater single forces with the lingual appliance. Tipping moments were found to be significantly smaller with the lingual technique, whereas the rotational moments were significantly smaller with the labial appliance. All in all we noted significant differences between the two techniques only in certain areas which upon closer examination were distributed over only a few tooth types. The initial force systems produced by the new lingual bracket system proved to be comparable with those delivered by a conventional straight-wire appliance. The actual levels of forces and moments, however, were found in certain cases to be too heavy with both techniques. We therefore recommend the development of leveling wires producing considerably lighter forces and moments.

  6. Effect of temperature on post-tetanic potentiation in human dorsiflexor muscles. (United States)

    Gossen, E R; Allingham, K; Sale, D G


    The effect of temperature on post-tetanic potentiation (PTP) has been examined in the muscles of small mammals but not in human skeletal muscle. We examined PTP in the ankle dorsiflexor muscles of 10 young men by evoking twitches before and after a 7-second tetanus at 100 Hz in a control (room air approximately 21 degrees C) condition and after immersion of the lower leg in warm (45 degrees C) and cold (10 degrees C) water baths for 30 min. Exposure to cold decreased tetanus and pre-tetanus twitch peak torque, but increased rise time, half-relaxation time, and muscle action potential (M-wave) amplitude; exposure to warm water had little effect. PTP was smallest in cold exposure 5 s post-tetanus, but persisted throughout the 12 min test period, whereas PTP had subsided by 6 min post-tetanus in control and warm exposures. M-wave amplitude initially decreased after exposure to warm water, recovered, then decreased again by 11 min post-tetanus. In contrast, exposure to cold had no initial effect but did increase the M-wave amplitude during the last half of the 12 min test period, similar to that seen in the control. The greatest immediate decrease in rise time and half-relaxation time was observed in the control; however, by 12 min post-tetanus warm exposure showed the greatest increase in rise time and half-relaxation time above pre-tetanus values. The decrease in the unpotentiated twitch torque with cooling in human dorsiflexors is typical for muscles with a predominance of type I (slow) fibres. The effect of cold on PTP is similar to that seen previously in mammalian muscles with a predominance of type II (fast) fibres, although the underlying mechanism of the cooling effect appears to differ.

  7. Force

    CERN Document Server

    Graybill, George


    Forces are at work all around us. Discover what a force is, and different kinds of forces that work on contact and at a distance. We use simple language and vocabulary to make this invisible world easy for students to ""see"" and understand. Examine how forces ""add up"" to create the total force on an object, and reinforce concepts and extend learning with sample problems.

  8. Kinetic changes in tetanic Ca2+ transients in enzymatically dissociated muscle fibres under repetitive stimulation (United States)

    Calderón, Juan C; Bolaños, Pura; Caputo, Carlo


    Abstract We used enzymatically dissociated flexor digitorum brevis (FDB) and soleus fibres loaded with the fast Ca2+ dye Magfluo-4 AM, and adhered to Laminin, to test whether repetitive stimulation induces progressive changes in the kinetics of Ca2+ release and reuptake in a fibre-type-dependent fashion. We applied a protocol of tetani of 350 ms, 100 Hz, every 4 s to reach a mean amplitude reduction of 25% of the first peak. Morphology type I (MT-I) and morphology type II (MT-II) fibres underwent a total of 96 and 52.8 tetani (P fibres (n = 18) showed significant reductions of the amplitude (19%), an increase in rise time (8.5%) and a further reduction of the amplitude/rise time ratio (25.5%) of the first peak of the tetanic transient after 40 tetani, while MT-I fibres (n = 5) did not show any of these changes. However, both fibre types showed significant reductions in the maximum rate of rise of the first peak after 40 tetani. Two subpopulations among the MT-II fibres could be distinguished according to Ca2+ reuptake changes. Fast-fatigable MT-II fibres (fMT-II) showed an increase of 32.2% in the half-width value of the first peak, while for fatigue-resistant MT-II fibres (rMT-II), the increase amounted to 6.9%, both after 40 tetani. Significant and non-significant increases of 36.4% and 11.9% in the first time constant of decay (t1) values were seen after 40 tetani in fMT-II and rMT-II fibres, respectively. MT-I fibres did not show kinetic changes in any of the Ca2+ reuptake variables. All changes were reversed after an average recovery of 7.5 and 15.4 min for MT-I and MT-II fibres, respectively. Further experiments ruled out the possibility that the differences in the kinetic changes of the first peak of the Ca2+ transients between fibres MT-I and MT-II could be related to the inactivation of Ca2+ release mechanism. In conclusion, we established a model of enzymatically dissociated fibres, loaded with Magfluo-4 and adhered to Laminin, to study muscle fatigue and

  9. Length dependence of active force production in skeletal muscle. (United States)

    Rassier, D E; MacIntosh, B R; Herzog, W


    The sliding filament and cross-bridge theories of muscle contraction provide discrete predictions of the tetanic force-length relationship of skeletal muscle that have been tested experimentally. The active force generated by a maximally activated single fiber (with sarcomere length control) is maximal when the filament overlap is optimized and is proportionally decreased when overlap is diminished. The force-length relationship is a static property of skeletal muscle and, therefore, it does not predict the consequences of dynamic contractions. Changes in sarcomere length during muscle contraction result in modulation of the active force that is not necessarily predicted by the cross-bridge theory. The results of in vivo studies of the force-length relationship suggest that muscles that operate on the ascending limb of the force-length relationship typically function in stretch-shortening cycle contractions, and muscles that operate on the descending limb typically function in shorten-stretch cycle contractions. The joint moments produced by a muscle depend on the moment arm and the sarcomere length of the muscle. Moment arm magnitude also affects the excursion (length change) of a muscle for a given change in joint angle, and the number of sarcomeres arranged in series within a muscle fiber determines the sarcomere length change associated with a given excursion.

  10. [Effect of arotinolol on the incomplete tetanic contractions of the cat soleus muscle--relation to its anti-tremorgenic action]. (United States)

    Hara, Y; Sugimoto, S; Ono, H


    The effect of arotinolol on the incomplete tetanic contractions of the cat soleus muscle was studied. Isoproterenol and epinephrine injected intravenously decreased the tension and degree of fusion of incomplete tetanic contractions of the soleus muscle in anesthetized cats. Intravenous arotinolol (> 3 micrograms/kg), propranolol (> 30 micrograms/kg) and pindolol (> 3 micrograms/kg) blocked the effects of isoproterenol and epinephrine, but atenolol (-300 micrograms/kg), prazosin (0.1-10 micrograms/kg) and phentolamine (10, 30 micrograms/kg) did not block them. These results indicate that the receptors involved can be classified as of the beta 2-type. It is proposed that arotinolol may inhibit beta 2-adrenoceptors in the extrafusal muscle fibers of slow muscle, and thereby reduces the amplitude of tremor by changing the incomplete tetanic contractions of the muscle to the complete ones.

  11. Laser focus accelerator by relativistic self-focusing and high electric fields in double layers of nonlinear force produced cavitons

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.J.; Eliezer, S.; Farley, F.J.M.; Goldsworthy, M.P.; Green, F.; Hora, H.; Kelly, J.C.; Lalousis, P.; Luther-Davies, B.; Stening, R.J.


    The laser focus accelerator with relativistic self-focusing for achieving Z-separated heavy ions of energies beyond 10 GeV was studied experimentally, in detailed numerical work and estimations on intense muon sources, heavy nuclear collisions and generation of new isotopes are on the way. The recently detected inverted double layers in the nonlinear (ponderomotive) force produced cavitons with 10/sup 9/ V/cm nearly static field can be used for electron acceleration. An upgraded present days Antares system with 20 phase-optimized steps should arrive at TeV electrons. The spontaneous high magnetic fields should produce highly directed non-Z-separated ion bunches where the E x B mechanism of Forslund and Brackbill with thermally created electric fields can be improved drastically by nonlinear force generated fields. Further studies were on acceleration by relativistic Doppler shift and by the transverse free electron laser.

  12. Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment? (United States)

    Manuel, Marin; Heckman, C J


    Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.

  13. Skinned fibres produce the same power and force as intact fibre bundles from muscle of wild rabbits. (United States)

    Curtin, Nancy A; Diack, Rebecca A; West, Timothy G; Wilson, Alan M; Woledge, Roger C


    Skinned fibres have advantages for comparing the muscle properties of different animal species because they can be prepared from a needle biopsy taken under field conditions. However, it is not clear how well the contractile properties of skinned fibres reflect the properties of the muscle fibres in vivo. Here, we compare the mechanical performance of intact fibre bundles and skinned fibres from muscle of the same animals. This is the first such direct comparison. Maximum power and isometric force were measured at 25 °C using peroneus longus (PL) and extensor digiti-V (ED-V) muscles from wild rabbits (Oryctolagus cuniculus). More than 90% of the fibres in these muscles are fast-twitch, type 2 fibres. Maximum power was measured in force-clamp experiments. We show that maximum power per volume was the same in intact (121.3 ± 16.1 W l(-1), mean ± s.e.m.; N=16) and skinned (122.6 ± 4.6 W l(-1); N=141) fibres. Maximum relative power (power/F(IM) Lo, where F(IM) is maximum isometric force and Lo is standard fibre length) was also similar in intact (0.645 ± 0.037; N=16) and skinned (0.589 ± 0.019; N=141) fibres. Relative power is independent of volume and thus not subject to errors in measurement of volume. Finally, maximum isometric force per cross-sectional area was also found to be the same for intact and skinned fibres (181.9 kPa ± 19.1; N=16; 207.8 kPa ± 4.8; N=141, respectively). These results contrast with previous measurements of performance at lower temperatures where skinned fibres produce much less power than intact fibres from both mammals and non-mammalian species. © 2015. Published by The Company of Biologists Ltd.

  14. Virtual-Reality Simulator System for Double Interventional Cardiac Catheterization Using Fractional-Order Vascular Access Tracker and Haptic Force Producer

    National Research Council Canada - National Science Library

    Chen, Guan-Chun; Lin, Chia-Hung; Li, Chien-Ming; Hsieh, Kai-Sheng; Du, Yi-Chun; Chen, Tainsong


    ...) using fractional-order vascular access tracker and haptic force producer. An endoscope or a catheter for diagnosis and surgery of cardiovascular disease has been commonly used in minimally invasive surgery...

  15. Effect of Elastase-induced Emphysema on the Force-generating Ability of the Diaphragm (United States)

    Supinski, Gerald S.; Kelsen, Steven G.


    The effect of emphysema on the ability of the diaphragm to generate force was examined in costal diaphragm muscle strips from 10 Golden hamsters killed 18 mo after intratracheal injection of pancreatic elastase in a dose producing hyperinflation (mean total lung capacity [TLC] = 163% of control) and generalized panacinar emphysema. 13 saline-injected normal animals served as controls. The time course of isometric tension and the effect of alterations in muscle fiber and sarcomere length on the isometric tension (T) generated in response to tetanizing electrical stimuli (length-tension [L-T] relationship) were examined. Elastase administration caused an increase in diaphragm muscle thickness and reduction in the length of costal diaphragm muscle fibers measured in situ. Emphysema significantly increased the maximum tetanic tension as a result of hypertrophy. Maximal tension corrected for increases in muscle cross-sectional area (T/cm2), however, was the same in emphysematous (E) and control (C) animals. Emphysema also shifted the muscle fiber L-T curve of the diaphragm but not of a control muscle, the soleus, toward shorter lengths. In contrast to the effects of E on the diaphragm muscle fiber L-T curve, the sarcomere L-T curve was the same in E and C. Since the length at which tension was maximal correlated closely with sarcomere number (r = 0.94; P < 0.001) reduction in the number of sarcomeres in series in muscles from emphysematous animals appeared to explain the shift in the muscle fiber L-T curve. We conclude that in elastase-induced emphysema adaptive changes both in diaphragm cross-sectional area and sarcomere number augment the force-generating ability of the diaphragm. We speculate that changes in sarcomere number compensate for alterations in muscle fiber length resulting from chronic hyperinflation of the thorax, while diaphragmatic muscle hypertrophy represents a response to changes in respiratory load and/or diaphragm configuration (La

  16. Acclimation of leaves to low light produces large grana: the origin of the predominant attractive force at work. (United States)

    Jia, Husen; Liggins, John R; Chow, Wah Soon


    Photosynthetic membrane sacs (thylakoids) of plants form granal stacks interconnected by non-stacked thylakoids, thereby being able to fine-tune (i) photosynthesis, (ii) photoprotection and (iii) acclimation to the environment. Growth in low light leads to the formation of large grana, which sometimes contain as many as 160 thylakoids. The net surface charge of thylakoid membranes is negative, even in low-light-grown plants; so an attractive force is required to overcome the electrostatic repulsion. The theoretical van der Waals attraction is, however, at least 20-fold too small to play the role. We determined the enthalpy change, in the spontaneous stacking of previously unstacked thylakoids in the dark on addition of Mg(2+), to be zero or marginally positive (endothermic). The Gibbs free-energy change for the spontaneous process is necessarily negative, a requirement that can be met only by an increase in entropy for an endothermic process. We conclude that the dominant attractive force in thylakoid stacking is entropy-driven. Several mechanisms for increasing entropy upon stacking of thylakoid membranes in the dark, particularly in low-light plants, are discussed. In the light, which drives the chloroplast far away from equilibrium, granal stacking accelerates non-cyclic photophosphorylation, possibly enhancing the rate at which entropy is produced.

  17. Effect of Prenatal Protein Malnutrition on Long-Term Potentiation and BDNF Protein Expression in the Rat Entorhinal Cortex after Neocortical and Hippocampal Tetanization

    Directory of Open Access Journals (Sweden)

    Alejandro Hernández


    Full Text Available Reduction of the protein content from 25 to 8% casein in the diet of pregnant rats results in impaired neocortical long-term potentiation (LTP of the offspring together with lower visuospatial memory performance. The present study was aimed to investigate whether this type of maternal malnutrition could result in modification of plastic capabilities of the entorhinal cortex (EC in the adult progeny. Unlike normal eutrophic controls, 55–60-day-old prenatally malnourished rats were unable to develop LTP in the medial EC to tetanizing stimulation delivered to either the ipsilateral occipital cortex or the CA1 hippocampal region. Tetanizing stimulation of CA1 also failed to increase the concentration of brain-derived neurotrophic factor (BDNF in the EC of malnourished rats. Impaired capacity of the EC of prenatally malnourished rats to develop LTP and to increase BDNF levels during adulthood may be an important factor contributing to deficits in learning performance having adult prenatally malnourished animals.

  18. Removal Tools are Faster and Produce Less Force and Torque on the Helmet Than Cutting Tools During Face-Mask Retraction. (United States)

    Jenkins, Heather L; Valovich, Tamara C; Arnold, Brent L; Gansneder, Bruce M


    OBJECTIVE: To investigate the retraction time, forces, and torques applied to the football helmet during removal of the face mask with different face-mask removal tools. DESIGN AND SETTING: Subjects retracted the face mask of a football helmet mounted to a force platform in a laboratory setting. They removed a standard face mask by cutting or removing (or both) the lateral plastic loop straps using 4 different tools: the Trainer's Angel (TA), FM Extractor (FM), power screwdriver (SD), and Quick Release System (QR) in a counterbalanced fashion. SUBJECTS: Eighteen certified athletic trainers participated in this study. MEASUREMENTS: We started measuring time when the subject picked up the tool and ended when the face mask was in a fully retracted position. Maximum forces and torques were measured from the force platform during the retraction process. RESULTS: The SD and QR retracted the face mask significantly faster than the TA and FM. Forces producing superior-inferior translation were least with the SD. The SD and QR produced less lateral translation and rotation and lateral flexion moment than the TA and FM. The FM produced less torque in the lateral flexion moment than the TA. CONCLUSIONS: Tools that removed the loop straps (SD, QR) were faster and produced less force and torque on the helmet than the tools that cut through the loop straps (TA, FM).

  19. Contribution of M-waves and H-reflexes to contractions evoked by tetanic nerve stimulation in humans. (United States)

    Klakowicz, Piotr M; Baldwin, Evan R L; Collins, David F


    Tetanic neuromuscular stimulation evokes contractions by depolarizing motor axons beneath the stimulating electrodes. However, we have shown that extra torque can develop due to the discharge of spinal neurons recruited by the evoked sensory volley. The present experiments investigated whether extra torque in the ankle plantar- and dorsiflexors was associated with enhanced H-reflexes. The tibial and common peroneal nerves were stimulated using 7-s trains (20 Hz for 2 s, 100 Hz for 2 s, 20 Hz for 3 s). Extra torque was defined as significantly more torque during 20-Hz stimulation after the 100-Hz burst (time2) than before it (time1). In 9 of 11 subjects, extra plantarflexion torque developed during stimulation just above motor threshold. In these nine subjects, torque increased from 8 to 13% MVC (time1 to time2), the soleus H-reflex increased from 13 to 19% Mmax and the M-wave of approximately 2% Mmax did not change significantly. To evoke extra dorsiflexion torque, greater stimulation intensities were required. In 6 of 13 subjects, extra torque developed at intensities that evoked an M-wave of 5-20% Mmax at time1. In these six subjects, torque doubled from 2 to 4% MVC (time1 to time2), whereas tibialis anterior (TA) H-reflexes and M-waves did not change significantly (H-reflex from 0.8 to 2% Mmax; M-wave from 12 to 14% Mmax). In 7 of 13 subjects, extra torque developed at higher stimulation intensities (35-65% Mmax). In these seven subjects, torque increased from 13 to 20% MVC, whereas TA H-reflexes and M-waves were not significantly different (H-reflex from 0.7 to 1% Mmax; M-wave from 49 to 54% Mmax). Thus enhanced H-reflexes contributed to extra plantarflexion, however, other factors generated extra dorsiflexion.

  20. Validation of Innovative Techniques for Monitoring Nociception during General Anesthesia: A Clinical Study Using Tetanic and Intracutaneous Electrical Stimulation. (United States)

    Funcke, Sandra; Sauerlaender, Sven; Pinnschmidt, Hans O; Saugel, Bernd; Bremer, Kai; Reuter, Daniel A; Nitzschke, Rainer


    This study compares the analgesic indices Analgesia Nociception Index (heart rate variability), Surgical Pleth Index (photoplethysmography), and pupillary dilatation, to heart rate, mean arterial pressure, and bispectral index, with regard to diagnostic accuracy and prediction probability for nociceptive response. The primary endpoint was the correlation between Δ values and the remifentanil dose administered. We anesthetized 38 patients with propofol and increasing doses of remifentanil and applied standardized tetanic and intracutaneous electrical painful stimulations on each analgesic level. Baseline and Δ values of the Analgesia Nociception Index, the Surgical Pleth Index, pupillary dilatation, heart rate, mean arterial pressure, and bispectral index and their relation to remifentanil doses were analyzed by receiver operating characteristic curves, prediction probability (PK), and mixed-model analysis. Under propofol sedation, sensitivity and specificity of the Analgesia Nociception Index (PK = 0.98), the Surgical Pleth Index (PK = 0.87), and pupillary dilatation (PK = 0.98) for detecting both painful stimulations were high compared to heart rate (PK = 0.74), mean arterial pressure (PK = 0.75), and bispectral index (PK = 0.55). Baseline values had limited prediction probability toward the nociceptive response (Analgesia Nociception Index: PK = 0.7; Surgical Pleth Index: PK = 0.63; pupillary dilatation: PK = 0.67; and bispectral index: PK = 0.67). The remifentanil dose had an effect (P Nociception Index, the Surgical Pleth Index, and pupillary dilatation are superior in detecting painful stimulations compared to heart rate and mean arterial pressure but had limited predictive value. These effects are attenuated by increasing dosages of remifentanil. Our data confirm that bispectral index is not a marker of analgesia.

  1. Internal combustion engine for producing a direct driving force by generating centrifugal force pulse in rapid succession. Verbrennungsmotor zur Erzeugung einer direkten Antriebskraft durch Erzeugung von schnell aufeinanderfolgenden Zentrifugalkraftimpulsen

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, J.


    This is an internal combustion engine to produce a direct driving force by generating centrifugal force pulses in rapid succession with short centrifugal force pulse drive. Conventional vehicles require an internal combustion engine as the drive with subsequent transmission elements such as gearboxes, drive shafts, ships' screws, propellers etc. The effectiveness of these drive mechanisms is reduced by the liability of failure of the expensive technology, dependency on the weather and frictional and flow losses. These disadvantages are avoided by this invention by a driving force generated directly in the engine housing (1). In this, a piston (2) is caused to oscillate by combustion pressure in the housing with a semi-circular guide duct, where centrifugal force pulses (Fz) occur in the direction of the central axis. The fresh or exhaust gases are controlled via slots (3) in the guide duct, where the exhaust gas turbo-supercharger (6) produces a permament air flow. The fresh gases are formed by injecting fuel into the compression duct (4) of the turbo-ignition. The engine is started by a starting compressor with a starting carburettor and starting valves (8) controlled by a linkage (9). The engine can be used in land-, water- and air-vehicles and out in space.

  2. Influence of Depth of Hypnosis on Pupillary Reactivity to a Standardized Tetanic Stimulus in Patients Under Propofol-Remifentanil Target-Controlled Infusion: A Crossover Randomized Pilot Study. (United States)

    Sabourdin, Nada; Peretout, Jean-Baptiste; Khalil, Eliane; Guye, Marie-Laurence; Louvet, Nicolas; Constant, Isabelle


    Pupillometry allows the measurement of pupillary diameter variations in response to nociceptive stimuli. This technique has been used to monitor the balance between analgesia and nociception. Under general anesthesia, the amplitude of pupillary dilation is related to the amount of administered opioids. The objective of this study was to determine whether at a constant infusion rate of opioids, the pupillary response was influenced by depth of hypnosis assessed by the bispectral index (BIS). Twelve patients (14-20 years) anesthetized for orthopedic surgery were included. Under propofol-remifentanil target-controlled infusion, remifentanil effect site target concentration was fixed at 1 ng/mL. Two measures of pupillary reflex dilation were performed on each patient in a randomized order: one at BIS 55 and one at BIS 25. These levels of BIS were obtained by adjusting propofol target concentration and maintained for 10 minutes before each measure. For each measure, we applied a standardized tetanic stimulation on the patient's forearm (60 mA, 100 Hz, 5 seconds). All measures were performed before the beginning of surgery. Pupillary dilation was significantly greater at BIS 55 than at BIS 25: 32.1% ± 5.3% vs 10.4% ± 2.5% (mean difference estimate [95% confidence interval]: 21.8% [12.9-30.6], P constant infusion of remifentanil at a target concentration of 1 ng/mL, pupillary dilation after a standardized tetanic stimulation was influenced by depth of hypnosis assessed by the BIS.

  3. Producing a Data Dictionary from an Extensible Markup Language (XML) Schemain the Global Force Management Data Initiative (United States)


    technique to extract information for use by other programs . XML, XSD, XSLT, HTML, SQL , database, data dictionary 38 Frederick S Brundick 410-278...Schema in the Global Force Management Data Initiative by Frederick S Brundick Computing and Information Sciences Directorate, ARL Approved for public...COVERED (From To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  4. Voluntary and electromyostimulation forces in trained and untrained men. (United States)

    Hortobágyi, T; Lambert, N J; Tracy, C; Shinebarger, M


    Electromyostimulation (EMS) evoked responses of lower extremity muscles of sedentary or disabled subjects have been extensively studied to improve muscular strength and delay atrophy. However, it is not apparent whether EMS can serve a similar function in upper extremity muscles and in athletes. We compared the forces of maximal voluntary isometric contraction (MVC), percutaneous EMS-evoked tetanus, and EMS superimposed on MVC of the elbow flexors in six strength-trained and six untrained healthy men. Stimulation consisted of a 2.5-kHz alternating current sine wave modulated at 50 bursts.s-1 with a 50% duty cycle. Reliability of the criterion measures was assessed over 4 d and ranged from R = 0.746 to R = 0.948. Strength-trained men had 29% higher MVC than untrained controls (P less than 0.001). Untrained men tolerated 21.9 mA and trained men 31.3 mA of EMS current (P less than 0.021), yet tetanic forces were similar: 92.5 N vs 96.0 N (P greater than 0.196). These tetanic forces corresponded to 32% (untrained) and 24% (trained) of MVC (P less than 0.047). When EMS was superimposed on MVC, compared with MVC alone, force was significantly (P less than 0.048) lower by 10% (31 N, untrained) and 13% (55 N, trained). These data suggest that, independent of training status, percutaneous EMS reduces maximal voluntary elbow flexion forces and that tetanic forces may not be sufficiently high for purposes of muscular strength development or prevention of atrophy.

  5. Post-tetanic count at adductor pollicis is a better indicator of early diaphragmatic recovery than train-of-four count at corrugator supercilii. (United States)

    Dhonneur, G; Kirov, K; Motamed, C; Amathieu, R; Kamoun, W; Slavov, V; Ndoko, S-K


    Because the intensity of neuromuscular block at the diaphragm (DIA) is indirectly assessed, the electromyographic measurements of the DIA (DIA(EMG)) from surface electrodes were related to information provided by visual estimation of neuromuscular transmission at the adductor pollicis (AP) and the corrugator supercilii (CSC) during recovery from vecuronium block. Twelve adult patients were studied during balanced anaesthesia. After induction of anaesthesia and tracheal intubation without neuromuscular blocking agent, supramaximal stimulations were applied to phrenic, ulnar and facial nerves. During recovery from vecuronium 0.1 mg kg(-1) an independent observer blinded to DIA(EMG) counted visually detectable train-of-four (TOF) at CSC (TOF(CSC)) and post-tetanic AP (PTC(AP)) responses. Times to recovery of PTC(AP) = 1, 10, and TOF(CSC) = 1-4 responses were related to DIA(EMG). Values are means (sd). Reappearance of the first response to PTC(AP) occurred significantly (P recovery of DIA(EMG) than that of TOF(CSC) [24 (8) min vs 33 (9) min, and 10 (10)% vs 25 (8)%, respectively]. With PTC(AP) recovery was 21 (11)%. Recovery of TOF(CSC) = 1 and 2 coincided with DIA(EMG) recovery of 25 (8)% and 47 (9)%, respectively. PTC(AP) may better reflect early recovery of vecuronium-induced DIA paralysis than TOF(CSC). The findings suggested that PTC(AP)

  6. Incubating Isolated Mouse EDL Muscles with Creatine Improves Force Production and Twitch Kinetics in Fatigue Due to Reduction in Ionic Strength (United States)

    Head, Stewart I.; Greenaway, Bronwen; Chan, Stephen


    Background Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. Methods and Results The extensor digitorum longus muscle from mice aged 12–14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i) before fatigue; (ii) immediately after a fatigue protocol; and (iii) after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. Conclusion Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation. PMID:21850234

  7. Incubating isolated mouse EDL muscles with creatine improves force production and twitch kinetics in fatigue due to reduction in ionic strength.

    Directory of Open Access Journals (Sweden)

    Stewart I Head

    Full Text Available BACKGROUND: Creatine supplementation can improve performance during high intensity exercise in humans and improve muscle strength in certain myopathies. In this present study, we investigated the direct effects of acute creatine incubation on isolated mouse fast-twitch EDL muscles, and examined how these effects change with fatigue. METHODS AND RESULTS: The extensor digitorum longus muscle from mice aged 12-14 weeks was isolated and stimulated with field electrodes to measure force characteristics in 3 different states: (i before fatigue; (ii immediately after a fatigue protocol; and (iii after recovery. These served as the control measurements for the muscle. The muscle was then incubated in a creatine solution and washed. The measurement of force characteristics in the 3 different states was then repeated. In un-fatigued muscle, creatine incubation increased the maximal tetanic force. In fatigued muscle, creatine treatment increased the force produced at all frequencies of stimulation. Incubation also increased the rate of twitch relaxation and twitch contraction in fatigued muscle. During repetitive fatiguing stimulation, creatine-treated muscles took 55.1±9.5% longer than control muscles to lose half of their original force. Measurement of weight changes showed that creatine incubation increased EDL muscle mass by 7%. CONCLUSION: Acute creatine application improves force production in isolated fast-twitch EDL muscle, and these improvements are particularly apparent when the muscle is fatigued. One likely mechanism for this improvement is an increase in Ca(2+ sensitivity of contractile proteins as a result of ionic strength decreases following creatine incubation.

  8. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres (United States)

    Cheng, Arthur J; Bruton, Joseph D; Lanner, Johanna T; Westerblad, Håkan


    The contractile performance of skeletal muscle declines during intense activities, i.e. fatigue develops. Fatigued muscle can enter a state of prolonged low-frequency force depression (PLFFD). PLFFD can be due to decreased tetanic free cytosolic [Ca2+] ([Ca2+]i) and/or decreased myofibrillar Ca2+ sensitivity. Increases in reactive oxygen and nitrogen species (ROS/RNS) may contribute to fatigue-induced force reductions. We studied whether pharmacological ROS/RNS inhibition delays fatigue and/or counteracts the development of PLFFD. Mechanically isolated mouse fast-twitch fibres were fatigued by sixty 150 ms, 70 Hz tetani given every 1 s. Experiments were performed in standard Tyrode solution (control) or in the presence of: NADPH oxidase (NOX) 2 inhibitor (gp91ds-tat); NOX4 inhibitor (GKT137831); mitochondria-targeted antioxidant (SS-31); nitric oxide synthase (NOS) inhibitor (l-NAME); the general antioxidant N-acetylcysteine (NAC); a cocktail of SS-31, l-NAME and NAC. Spatially and temporally averaged [Ca2+]i and peak force were reduced by ∼20% and ∼70% at the end of fatiguing stimulation, respectively, with no marked differences between groups. PLFFD was similar in all groups, with 30 Hz force being decreased by ∼60% at 30 min of recovery. PLFFD was mostly due to decreased tetanic [Ca2+]i in control fibres and in the presence of NOX2 or NOX4 inhibitors. Conversely, in fibres exposed to SS-31 or the anti ROS/RNS cocktail, tetanic [Ca2+]i was not decreased during recovery so PLFFD was only caused by decreased myofibrillar Ca2+ sensitivity. The cocktail also increased resting [Ca2+]i and ultimately caused cell death. In conclusion, ROS/RNS-neutralizing compounds did not counteract the force decline during or after induction of fatigue. PMID:25630265

  9. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    Energy Technology Data Exchange (ETDEWEB)

    Pangilinan, Monica [Brown Univ., Providence, RI (United States)


    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the

  10. Análise das forças produzidas por alças de nivelamento: ensaio mecânico Analysis of the forces produced by loops: mechanical testing

    Directory of Open Access Journals (Sweden)

    Milton Santamaria Jr.


    Full Text Available OBJETIVO: avaliar a força aplicada pelas alças simples, L divergente e L convergente, confeccionadas no fio de 0,016 polegadas, durante a fase de nivelamento, em função da deformação produzida e da amarração do ômega na extremidade posterior dos arcos. METODOLOGIA: empregou-se um modelo especialmente construído para o experimento, mensurando-se as forças por meio da máquina universal EMIC-DL10.000. RESULTADOS E CONCLUSÕES: a deformação produzida variou de 0,5 a 2mm e gerou força que variou de 75,1 a 268,5gf para alça simples, 69,7 a 241,0gf para a alça L divergente e 67,0 a 220,4gf para a alça L convergente, na condição de não se amarrar o ômega. Quando o ômega foi amarrado ao molar, a força variou de 105,0 a 311,6gf; 70,8 a 251,4gf e 69,4 a 243,4gf; respectivamente. Aplicou-se teste t de Student para variáveis pareadas e foi verificado que a alça simples produziu maior força de acordo com a deformação, seguida da alça L divergente e L convergente (pAIM: the aim of this work was to assess the force applied by the vertical loop, divergent boot loop and convergent boot loop, made with 0.016" arch wire, during the leveling phase in function of the produced deformation and of the tie back in the posterior extremity of the arch wire. METHODS: a special experimental model was built for this study, and a Universal Test Machine EMIC-DL10.000 was used to evaluate force levels. RESULTS AND CONCLUSIONS: The produced deformation varied of 0.5 to 2mm and the force produced varied from 75.1 to 268.5gf for vertical loop, 69.7 to 241.0gf for the divergent boot loop and 67.0 to 220.4gf for the convergent boot loop, in the condition of not tying back the wire. When wire was tied back the force varied from 105.0 to 311.6gf; 70.8 to 251.4gf and 69.4 to 243.4gf; respectively. It was applied Student t test and it was verified that the vertical loop produces larger force in agreement with the deformation followed by the divergent boot

  11. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring. (United States)

    Bayol, Stéphanie A; Macharia, Raymond; Farrington, Samantha J; Simbi, Bigboy H; Stickland, Neil C


    Obesity is a multi-factorial condition generally attributed to an unbalanced diet and lack of exercise. Recent evidence suggests that maternal malnutrition during pregnancy and lactation can also contribute to the development of obesity in offspring. We have developed an animal model in rats to examine the effects of maternal overeating on a westernized "junk food" diet using palatable processed foods rich in fat, sugar and salt designed for human consumption. Using this model, we have shown that such a maternal diet can promote overeating and a greater preference for junk food in offspring at the end of adolescence. The maternal junk food diet also promoted adiposity and muscle atrophy at weaning. Impaired muscle development may permanently affect the function of this tissue including its ability to generate force. The aim of this study is to determine whether a maternal junk food diet can impair muscle force generation in offspring. Twitch and tetanic tensions were measured in offspring fed either chow alone (C) or with a junk food diet (J) during gestation, lactation and/or post-weaning up to the end of adolescence such that three groups of offspring were used, namely the CCC, JJC and JJJ groups. We show that adult offspring from mothers fed the junk food diet in pregnancy and lactation display reduced muscle force (both specific twitch and tetanic tensions) regardless of the post-weaning diet compared with offspring from mothers fed a balanced diet. Maternal malnutrition can influence muscle force production in offspring which may affect an individual's ability to exercise and thereby combat obesity.

  12. Labor Force (United States)

    Occupational Outlook Quarterly, 2012


    The labor force is the number of people ages 16 or older who are either working or looking for work. It does not include active-duty military personnel or the institutionalized population, such as prison inmates. Determining the size of the labor force is a way of determining how big the economy can get. The size of the labor force depends on two…

  13. Dispersion Forces

    CERN Document Server

    Buhmann, Stefan Yoshi


    In this book, a modern unified theory of dispersion forces on atoms and bodies is presented which covers a broad range of advanced aspects and scenarios. Macroscopic quantum electrodynamics is shown to provide a powerful framework for dispersion forces which allows for discussing general properties like their non-additivity and the relation between microscopic and macroscopic interactions. It is demonstrated how the general results can be used to obtain dispersion forces on atoms in the presence of bodies of various shapes and materials. Starting with a brief recapitulation of volume I, this volume II deals especially with bodies of irregular shapes, universal scaling laws, dynamical forces on excited atoms, enhanced forces in cavity quantum electrodynamics, non-equilibrium forces in thermal environments and quantum friction. The book gives both the specialist and those new to the field a thorough overview over recent results in the field. It provides a toolbox for studying dispersion forces in various contex...

  14. Forced marriage. (United States)


    Guidelines to help A&E staff and other healthcare professionals who suspect cases of forced marriage were launched this month by the government. The guidelines provide practical advice on how to recognise the warning signs, and what to do if patients disclose that they have been, or are about to be, forced to marry. The guidelines, Dealing with Cases of Forced Marriage, are available at

  15. Chronic hypobaric hypoxia increases isolated rat fast-twitch and slow-twitch limb muscle force and fatigue. (United States)

    El-Khoury, R; Bradford, A; O'Halloran, K D


    Chronic hypoxia alters respiratory muscle force and fatigue, effects that could be attributed to hypoxia and/or increased activation due to hyperventilation. We hypothesized that chronic hypoxia is associated with phenotypic change in non-respiratory muscles and therefore we tested the hypothesis that chronic hypobaric hypoxia increases limb muscle force and fatigue. Adult male Wistar rats were exposed to normoxia or hypobaric hypoxia (PB=450 mm Hg) for 6 weeks. At the end of the treatment period, soleus (SOL) and extensor digitorum longus (EDL) muscles were removed under pentobarbitone anaesthesia and strips were mounted for isometric force determination in Krebs solution in standard water-jacketed organ baths at 25 °C. Isometric twitch and tetanic force, contractile kinetics, force-frequency relationship and fatigue characteristics were determined in response to electrical field stimulation. Chronic hypoxia increased specific force in SOL and EDL compared to age-matched normoxic controls. Furthermore, chronic hypoxia decreased endurance in both limb muscles. We conclude that hypoxia elicits functional plasticity in limb muscles perhaps due to oxidative stress. Our results may have implications for respiratory disorders that are characterized by prolonged hypoxia such as chronic obstructive pulmonary disease (COPD).

  16. Magnus Force and Aharonov-Bohm Effect in Superfluids


    Sonin, E. B.


    The paper addresses the problem of the transverse force (Magnus force) on a vortex in a Galilean invariant quantum Bose liquid. Interaction of quasiparticles (phonons) with a vortex produces an additional transverse force (Iordanskii force). The Iordanskii force is related to the acoustic Aharonov--Bohm effect.Connection of the effective Magnus force with the Berry phase is also discussed.

  17. Rate of force development

    DEFF Research Database (Denmark)

    Maffiuletti, Nicola A; Aagaard, Per; Blazevich, Anthony J


    The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force...... development and to discuss various methodological considerations inherent to its evaluation for research and clinical purposes. Rate of force development (1) seems to be mainly determined by the capacity to produce maximal voluntary activation in the early phase of an explosive contraction (first 50-75 ms......), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way...

  18. β-Alanine supplementation enhances human skeletal muscle relaxation speed but not force production capacity. (United States)

    Hannah, Ricci; Stannard, Rebecca Louise; Minshull, Claire; Artioli, Guilherme Giannini; Harris, Roger Charles; Sale, Craig


    β-Alanine (BA) supplementation improves human exercise performance. One possible explanation for this is an enhancement of muscle contractile properties, occurring via elevated intramuscular carnosine resulting in improved calcium sensitivity and handling. This study investigated the effect of BA supplementation on in vivo contractile properties and voluntary neuromuscular performance. Twenty-three men completed two experimental sessions, pre- and post-28 days supplementation with 6.4 g/day of BA (n = 12) or placebo (PLA; n = 11). During each session, force was recorded during a series of knee extensor contractions: resting and potentiated twitches and octet (8 pulses, 300 Hz) contractions elicited via femoral nerve stimulation; tetanic contractions (1 s, 1-100 Hz) via superficial muscle stimulation; and maximum and explosive voluntary contractions. BA supplementation had no effect on the force-frequency relationship, or the force responses (force at 25 and 50 ms from onset, peak force) of resting or potentiated twitches, and octet contractions (P > 0.05). Resting and potentiated twitch electromechanical delay and time-to-peak tension were unaffected by BA supplementation (P > 0.05), although half-relaxation time declined by 7-12% (P forces were unchanged after BA supplementation. BA supplementation had no effect on evoked force responses, implying that altered calcium sensitivity and/or release are not the mechanisms by which BA supplementation influences exercise performance. The reduced half-relaxation time with BA supplementation might, however, be explained by enhanced reuptake of calcium, which has implications for the efficiency of muscle contraction following BA supplementation. Copyright © 2015 the American Physiological Society.

  19. Force oscillations simulating breathing maneuvers do not prevent force adaptation. (United States)

    Pascoe, Chris; Jiao, Yuekan; Seow, Chun Y; Paré, Peter D; Bossé, Ynuk


    Airway inflammation in patients with asthma exposes the airway smooth muscle (ASM) to a variety of spasmogens. These spasmogens increase ASM tone, which can lead to force adaptation. Length oscillations of ASM, which occur in vivo due to breathing maneuvers, can attenuate force adaptation. However, in the presence of tone, the force oscillations required to achieve these length oscillations may be unphysiologic (i.e., magnitude greater than the ones achieved due to the swings in transpulmonary pressure required for breathing). In the present study, we applied force oscillations simulating the tension oscillations experienced by the wall of a fourth-generation airway during tidal breathing with or without deep inspirations (DI) to ASM. The goal was to investigate whether force adaptation occurs in conditions mimicking breathing maneuvers. Tone was induced by carbachol (average, 20 nM), and the force-generating capacity of the ASM was assessed at 5-minute intervals before and after carbachol administration using electrical field stimulations (EFS). The results show that force oscillations applied before the introduction of tone had a small effect on the force produced by EFS (declined to 96.8% [P > 0.05] and 92.3% [P breathing oscillations (25%). These force oscillations did not prevent force adaptation (gain of force of 11.2 ± 2.2 versus 13.5 ± 2.7 and 11.2 ± 3.0% in static versus dynamic conditions with or without DI, respectively). The lack of effect of simulated breathing maneuvers on force adaptation suggests that this gain in ASM force may occur in vivo and could contribute to the development of airway hyperresponsiveness.

  20. Laser-produced microjets (United States)

    Thoroddsen, Sigurdur; Takehara, K.; Etoh, T. G.; Ohl, C.-D.


    We use ultra-high-speed imaging to characterize the formation of a micro-jet when a laser-produced shock hits a bubble sitting under a free surface. The bubble is formed inside a sessile drop, sitting on a glass slide and buoyancy drives it to its top. The jetting is forced by an Nd:YAG-laser pulse of about 30 mJ, focused by a microscope objective sitting under the glass plate. The jet is initiated when the shock hits the curved bottom of the bubble. It emerges out of a bottom crown and has a very regular shape. For water the jets are a few microns in size and can emerge at over 200 m/s. In intermediate viscosity liquids the jetting can be even faster and can emerge at over 500 m/s, depending on the depth of the laser focus. Jets can even be produced in pure glycerin where they emerge at about 100 m/s.

  1. Acoustic and psychoacoustic analysis of the noise produced by the police force firearms Análise acústica e psicoacústica do ruído de armas utilizadas pela Polícia Militar

    Directory of Open Access Journals (Sweden)

    Heraldo Lorena Guida


    Full Text Available Police officers are exposed to impact noise coming from firearms, which may cause irreversible injuries to the hearing system. AIM: To evaluate the noise exposure in shooting stands during gunfire exercises, to analyze the acoustic impact of the noise produced by the firearms and to associate it with tonal audiometry results. STUDY DESIGN: Cross-sectional. MATERIALS AND METHODS: To measure noise intensity we used a digital sound level meter, and the acoustic analysis was carried out by means of the oscillations and cochlear response curves provided by the praat software. 30 police officers were selected (27 males and 3 females. RESULTS: The peak level measured was 113.1 dB(C from a .40 pistol and 116.8 dB(C for a .38 revolver. The values obtained for oscillation and praat was 17.9±0.3 Barks, corresponding to the rate of 4,120 and 4,580 Hz. Audiometry indicated greater hearing loss at 4,000Hz in 86.7% of the cases. CONCLUSION: With the acoustic analysis it was possible to show cause and effect between the main areas of energy excitation of the cochlea (praat cochlear response curve and the frequencies of low hearing acuity.Os policiais militares estão expostos a ruídos de impacto provenientes de armas de fogo, os quais são capazes de causar lesões irreversíveis ao sistema auditivo. OBJETIVO: Avaliar a exposição ao ruído no estande de tiros durante os exercícios de tiro, analisar acusticamente o ruído de impacto e relacioná-lo com os resultados de audiometria tonal. FORMA DE ESTUDO: Transversal. MATERIAL E MÉTODO: A medição do ruído foi feita por meio de decibelímetro digital e a análise acústica foi feita no software Praat, levantando as curvas de oscilograma e cocleograma. Foi selecionada uma amostra de 30 policiais militares (27 masculinos e 3 femininos. RESULTADOS: Os picos máximos medidos no estante de tiros foram de 113,1 dB(C para pistola .40 e 116,8 dB(C para revólver .38. Os valores obtidos por meio da relação entre

  2. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands......, Portugal and New Zealand have adopted the concept. Public sector interventions that aim to support cluster development in industries most often focus upon economic policy goals such as enhanced employment and improved productivity, but rarely emphasise broader societal policy goals relating to e.......g. sustainability or quality of life. The purpose of this paper is to explore how and to what extent public sector interventions that aim at forcing cluster development in industries can support sustainable development as defined in the Brundtland tradition and more recently elaborated in such concepts as eco-industrialism...

  3. Coriolis Force (United States)

    Marciuc, Daly; Solschi, Viorel


    Understanding the Coriolis effect is essential for explaining the movement of air masses and ocean currents. The lesson we propose aims to familiarize students with the manifestation of the Coriolis effect. Students are guided to build, using the GeoGebra software, a simulation of the motion of a body, related to a rotating reference system. The mathematical expression of the Coriolis force is deduced, for particular cases, and the Foucault's pendulum is presented and explained. Students have the opportunity to deepen the subject, by developing materials related to topics such as: • Global Wind Pattern • Ocean Currents • Coriolis Effect in Long Range Shooting • Finding the latitude with a Foucault Pendulum

  4. Grasp force control in telemanipulation (United States)

    Wiker, Steven F.; Duffie, Neil A.


    This paper presents two experiments which focus upon the issue of grasp force control in telemanipulation. The first experiment examines the ability to control and stabilize master-controller grasp force during a 30-s compensatory tracking task under different levels of master controller digit mass, friction, and backlash. The second experiment explores the potential for substituting tactile feedback in lieu of direct force-feedback to gage and control remote grasp force. Results show that subjects were better able to control force when mass and friction levels were increased. Even when perceptual gains between tactile and direct force feedback displays were matched, force reflection produced better grasp control. The lack of backlash effects and improvements in performance with direct force reflection in comparison to tactile feedback are attributable to reflexive short-loop adjustment of grasp tension afforded by the muscle's length-tension control system. The criterion of acceptable operator performance, dependent upon both the quality of the transmission of control commands and feedback, and the response of the remote device, is discussed.


    National Research Council Canada - National Science Library




  6. Time course changes in [Ca2+]i, force, and protein content in hindlimb-suspended mouse soleus muscles (United States)

    Ingalls, C. P.; Wenke, J. C.; Armstrong, R. B.; Hamilton, S. L. (Principal Investigator)


    BACKGROUND: Exposure to reduced gravitational forces during spaceflight is associated with significant reductions in skeletal muscle mass and strength. The purpose of this study was to test the hypothesis that increases in resting cytosolic free calcium concentration ([Ca2+]i) would precede reductions in protein content and maximal isometric tetanic force (Po) in mouse soleus muscle after initiation of hindlimb suspension. METHODS: Female ICR mice (n = 42) were hindlimb suspended for 1, 2, 3, 5, or 7 d; weight-matched mice were used as controls. Following the hindlimb suspension, the left soleus muscle was used to determine Po in vitro and the right soleus muscle was used to determine protein content and [Ca2+]i via confocal laser scanning microscopy. RESULTS: Compared with controls, [Ca2+]i was elevated by 38% at 2 d, and 117% at 7 d. Compared with controls, soleus muscle total and myofibrillar protein contents were reduced 27-29% and 30-34%, respectively, at 5-7 d after initiation of hindlimb suspension. Compared with controls, soleus muscle Po was decreased by 24% at 3 d, and 38% at 7 d. CONCLUSION: It appears that resting cytosolic Ca2+ homeostasis is disturbed soon after the initiation of hindlimb suspension, and these elevations in [Ca2+]i may play a role in initiating soleus muscle atrophy.

  7. Transition States from Empirical Force Fields

    DEFF Research Database (Denmark)

    Jensen, Frank; Norrby, Per-Ola


    This is an overview of the use of empirical force fields in the study of reaction mechanisms. EVB-type methods (including RFF and MCMM) produce full reaction surfaces by mixing, in the simplest case, known force fields describing reactants and products. The SEAM method instead locates approximate...

  8. Force Modulator System

    Energy Technology Data Exchange (ETDEWEB)

    Redmond Clark


    marry the die-specific Force Modulator technology with stamping presses in the form of a press cushion. This system would be designed to operate the binder ring for multiple parts, thus cutting the per-die cost of the technology. This study reports the results of technology field application. This project produced the following conclusions: (1) The Force Modulator system is capable of operating at very high tempos in the stamping environment; (2) The company can generate substantial, controlled holding tonnage (binder ring pressure) necessary to hold high strength steel parts for proper formation during draw operations; (3) A single system can be designed to operate with a family of parts, thus significantly reducing the per-die cost of a FM system; (4) High strength steel parts made with these systems appear to show significant quality improvements; (5) The amounts of steel required to make these parts is typically less than the amounts required with traditional blank-holding technologies; and (6) This technology will aid in the use of higher strength steels in auto and truck production, thus reducing weight and improving fuel efficiency.

  9. Malaysia and forced migration

    National Research Council Canada - National Science Library

    Arzura Idris


    This paper analyzes the phenomenon of "forced migration" in Malaysia. It examines the nature of forced migration, the challenges faced by Malaysia, the policy responses and their impact on the country and upon the forced migrants...

  10. Impairment of diaphragm muscle force and neuromuscular transmission after normothermic cardiopulmonary bypass: effect of low-dose inhaled CO (United States)

    Ermilov, Leonid G.; Pulido, Juan N.; Atchison, Fawn W.; Zhan, Wen-Zhi; Ereth, Mark H.; Sieck, Gary C.


    Cardiopulmonary bypass (CPB) is associated with significant postoperative morbidity, but its effects on the neuromuscular system are unclear. Recent studies indicate that even relatively short periods of mechanical ventilation result in significant neuromuscular effects. Carbon monoxide (CO) has gained recent attention as therapy to reduce the deleterious effects of CPB. We hypothesized that 1) CPB results in impaired neuromuscular transmission and reduced diaphragm force generation; and 2) CO treatment during CPB will mitigate these effects. In adult male Sprague-Dawley rats, diaphragm muscle-specific force and neuromuscular transmission properties were measured 90 min after weaning from normothermic CPB (1 h). During CPB, either low-dose inhaled CO (250 ppm) or air was administered. The short period of mechanical ventilation used in the present study (∼3 h) did not adversely affect diaphragm muscle contractile properties or neuromuscular transmission. CPB elicited a significant decrease in isometric diaphragm muscle-specific force compared with time-matched, mechanically ventilated rats (∼25% decline in both twitch and tetanic force). Diaphragm muscle fatigability to 40-Hz repetitive stimulation did not change significantly. Neuromuscular transmission failure during repetitive activation was 60 ± 2% in CPB animals compared with 76 ± 4% in mechanically ventilated rats (P < 0.05). CO treatment during CPB abrogated the neuromuscular effects of CPB, such that diaphragm isometric twitch force and neuromuscular transmission were no longer significantly different from mechanically ventilated rats. Thus, CPB has important detrimental effects on diaphragm muscle contractility and neuromuscular transmission that are largely mitigated by CO treatment. Further studies are needed to ascertain the underlying mechanisms of CPB-induced neuromuscular dysfunction and to establish the potential role of CO therapy. PMID:20089713

  11. Immediate and delayed transplantation of mesenchymal stem cells improve muscle force after skeletal muscle injury in rats. (United States)

    Winkler, Tobias; von Roth, Philipp; Radojewski, Piotr; Urbanski, Alexander; Hahn, Sebastian; Preininger, Bernd; Duda, Georg N; Perka, Carsten


    Mesenchymal stem cell (MSC) therapy is a promising approach for regaining muscle function after trauma. Prior to clinical application, the ideal time of transplantation has to be determined. We investigated the effects of immediate and delayed transplantation. Sprague-Dawley rats received a crush trauma to the left soleus muscle. Treatment groups were transplanted locally with 2 × 10(6) autologous MSCs, either immediately or 7 days after trauma. Saline was used as sham therapy. Contraction force tests and histological analyses were performed 4 weeks after injury. GFP-labelled MSCs were followed after transplantation. The traumatized soleus muscles of the sham group displayed a reduction of twitch forces to 36 ± 17% and of tetanic forces to 29 ± 11% of the non-injured right control side, respectively. Delayed MSC transplantation resulted in a significant improvement of contraction maxima in both stimulation modes (twitch, p = 0.011; tetany, p = 0.014). Immediate transplantation showed a significant increase in twitch forces to 59 ± 17% (p = 0.043). There was no significant difference in contraction forces between muscles treated by immediate and delayed cell transplantation. We were able to identify MSCs in the interstitium of the injured muscles up to 4 weeks after transplantation. Despite the fundamental differences of the local environment, which MSCs encounter after transplantation, similar results could be obtained with respect to functional muscle regeneration. We believe that transplanted MSCs residing in the interstitial compartment evolve their regenerative capabilities through paracrine pathways. Our data suggest a large time window of the therapeutical measures. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Handbook of force transducers

    CERN Document Server

    Stefanescu, Dan Mihai


    Part I introduces the basic ""Principles and Methods of Force Measurement"" acording to a classification into a dozen of force transducers types: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the ""(Strain Gauge) Force Transducers Components"", evolving from the classical force transducer to the digital / intelligent one, with the inco

  13. The swim force as a body force (United States)

    Yan, Wen; Brady, John


    Net (as opposed to random) motion of active matter results from an average swim (or propulsive) force. It is shown that the average swim force acts like a body force - an internal body force [Yan and Brady, Soft Matter, DOI:10.1039/C5SM01318F]. As a result, the particle-pressure exerted on a container wall is the sum of the swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 028103] and the `weight' of the active particles. A continuum mechanical description is possible when variations occur on scales larger than the run length of the active particles and gives a Boltzmann-like distribution from a balance of the swim force and the swim pressure. Active particles may also display `action at a distance' and accumulate adjacent to (or be depleted from) a boundary without any external forces. In the momentum balance for the suspension - the mixture of active particles plus fluid - only external body forces appear.

  14. Continuous forces are more effective than intermittent forces in expanding sutures. (United States)

    Liu, Sean Shih-Yao; Kyung, Hee-Moon; Buschang, Peter H


    While both intermittent and continuous forces are commonly used to expand sutures, it remains unclear which force is most effective. Using nickel-titanium (NiTi) open coil springs (50 g) and 3 mm long miniscrew implants (MSIs) for skeletal anchorage, intermittent and continuous forces were used to expand the midsagittal sutures in 18 New Zealand white juvenile male rabbits, 11 weeks of age, for 29 days. In the intermittent group, expansion forces of 50 g were delivered for 5 days (on) and paused for 1 day (off); the on/off cycles were repeated five times. Expansion forces of 50 g were delivered for 29 consecutive days in the continuous group. Longitudinal biometric and histomorphometric analyses were performed to evaluate sutural separation and bone formation using implanted tantalum bone markers and fluorescent bone labelling, respectively. Multilevel modelling procedures were undertaken to compare the groups and time intervals. Continuous forces produced significantly greater overall sutural separation (1.3 mm) than intermittent forces (0.8 mm). Although they were delivered over a period of time 86 per cent as long, intermittent forces produced only 61 per cent of the sutural separation of continuous forces. Between days 7 and 17, continuous forces resulted in significantly greater mineral apposition and bone formation rates than intermittent forces. Intermittent forces produced approximately 59 per cent as much mineral apposition and 61 per cent as much bone formation as continuous forces. Due to greater sutural separation and bone formation, continuous forces provide a more effective approach for separating sutures than intermittent forces.

  15. Forced Migration: Refugee Populations (United States)

    Boyle, Joyceen S.


    Undocumented migration is a global phenomenon that manifests in various contexts. This article describes the impact of the movement of large numbers of people in several African countries, producing a unique type of migrant—the refugee. We describe issues that refugee movements create on fragile health care systems, situations that precipitate refugee movements, certain human rights violations that are of particular concern such as gender based violence (GBV) and child soldiers, and lastly, implications for nursing practice and policy. We use examples from several countries in Sub-Saharan Africa, including the Democratic Republic of the Congo, Rwanda, Liberia, Sierra Leone, and Mozambique. Drawing on key documents from the United Nations High Commissioner for Refugees, current literature, as well as the international experience of the authors, this article presents an overview of forced migration and discusses opportunities for nurses to impact research, practice and policy related to refugee health. PMID:25645484

  16. The Analysis of Forming Forces in Single Point Incremental Forming

    Directory of Open Access Journals (Sweden)

    Koh Kyung Hee


    Full Text Available Incremental forming is a process to produce sheet metal parts in quick. Because there is no need for dedicated dies and molds, this process is less cost and time spent. The purpose of this study is to investigate forming forces in single point incremental forming. Producing a cone frustum of aluminum is tested for forming forces. A dynamometer is used to collect forming forces and analyze them. These forces are compared with cutting forces upon producing same geometrical shapes of experimental parts. The forming forces in Z direction are 40 times larger than the machining forces. A spindle and its axis of a forming machine should be designed enough to withstand the forming forces.

  17. CD Review: Tour de Force

    Directory of Open Access Journals (Sweden)

    Diana Golden


    Full Text Available Review of Tour de Force, the third album from C Force, an ensemble comprised of flutist Christine Gangelhoff, euphoniumist Christian Justilien, and pianist Christy Lee. With repertoire spanning over two centuries, the trio embarks on a musical tour to Guadaloupe, Jamaica, and Haiti on Disc One, and then Trinidad and Tobago, Curaçao, the U.S. Virgin Islands and the Bahamas on Disc Two. Just as the eclectic album artwork by John Cox might suggest, Tour de Force provides listeners with a sense of the rich tapestry of musical connections shared in art music across the Caribbean. This two-disc set (released March 2016 was recorded at the Performing Arts Center of The College of The Bahamas and produced by Terry Manning of Lucky Seven Records.

  18. Optical forces in polychromatic light fields (United States)

    Cashen, Matthew Todd

    For the past 20 years, optical manipulation of neutral atoms has been primarily performed with a monochromatic laser beam. The simplest tool for the control of atomic motion is the radiative force exerted by a monochromatic laser on a two-level atom. The radiative force arises from absorption followed by spontaneous emission, and its magnitude is limited by the atom's excited state lifetime. Forces with magnitudes exceeding the limit of the radiative force can be obtained using counterpropagating modulated laser beams with time-varying amplitudes or frequencies. In this dissertation, forces on metastable helium atoms subject to counterpropagating modulated laser beams are studied. Modulated laser beams have polychromatic spectra, and the polychromatic nature of these spectra can be exploited to produce forces with velocity ranges and magnitudes exceeding the radiative force. These properties make forces in polychromatic fields superior tools for control of atomic motion. Three particular types of polychromatic forces are examined in detail in this thesis work. Using atomic beam deflections, experimental studies were performed of forces on atoms from counterpropagating frequency modulated laser beams in the limits of low and high modulation. The bichromatic force, arising from controlled momentum exchange mediated by counterpropagating amplitude modulated laser beams was used for short distance slowing of a metastable helium beam. Experimental results, simple physical models and detailed numerical calculations are presented for all cases.

  19. Mechanical forces during muscle development. (United States)

    Lemke, Sandra B; Schnorrer, Frank


    Muscles are the major force producing tissue in the human body. While certain muscle types specialize in producing maximum forces, others are very enduring. An extreme example is the heart, which continuously beats for the entire life. Despite being specialized, all body muscles share similar contractile mini-machines called sarcomeres that are organized into regular higher order structures called myofibrils. The major sarcomeric components and their organizational principles are conserved throughout most of the animal kingdom. In this review, we discuss recent progress in the understanding of myofibril and sarcomere development largely obtained from in vivo models. We focus on the role of mechanical forces during muscle and myofibril development and propose a tension driven self-organization mechanism for myofibril formation. We discuss recent technological advances that allow quantification of forces across tissues or molecules in vitro and in vivo. Although their application towards muscle development is still in its infancy, these technologies are likely to provide fundamental new insights into the mechanobiology of muscle and myofibril development in the near future. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Deep atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)


    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  1. Contribution of the cerebellum to the coupling of grip force and pull force during an isometric precision grip task. (United States)

    Meindl, Tobias; Schmid, Barbara C; Timmann, Dagmar; Kolb, Florian P; Kutz, Dieter F


    This study addresses the influence of the cerebellum on the performance of an isometric precision grip task. For the task, in which the process of "picking a raspberry" is simulated, grip force and pull force had to be increased linearly for a duration of 1-5 s (pull phase) to accomplish the task skillfully. The performance of 11 patients suffering from degenerative cerebellar disease was analyzed and compared with the performance of 11 age- and sex-matched healthy control subjects. Patients with cerebellar disease showed systematic deviations of the pull force slope from a linear trend, dividing the pull phase into two intervals. After an initial sharp and brief increase of pull force (first interval), patients maintained the achieved pull force level almost constant without further increase (second interval). Although controls showed changes in the pull force slope also, they increased pull force during the whole pull phase. Coupling of grip force and pull force was analyzed using stochastic frontier analysis. This technique allows covariation of grip force and the resulting pull force to be analyzed depending on the variation of the grip force. In the patients, grip force and pull force were coupled efficiently only in the first interval. During the second interval, grip force was often exaggerated compared with pull force. In conclusion, patients with cerebellar diseases have difficulties in producing smooth isometric movements and in coupling grip force and pull force efficiently.

  2. Estudo qualitativo fotoelástico do sistema de forças gerado pela mola "T" de retração com diferentes pré-ativações Qualitative photoelastic study of the force system produced by retraction T-springs with different preactivations

    Directory of Open Access Journals (Sweden)

    Luiz Guilherme Martins Maia


    Full Text Available OBJETIVO: avaliar o sistema de forças gerado pela mola T utilizada para fechamento de espaços. MÉTODOS: por meio do método experimental fotoelástico, avaliou-se a mola T utilizada no fechamento de espaços com duas variações de pré-ativação em sua porção apical, sendo uma com 30º e a outra com 45º. As molas foram confeccionadas com fio retangular de titânio-molibdênio (TMA de secção 0,017" x 0,025", centralizadas no espaço interbraquetes de 27mm e ativadas em 5,0mm, 2,5mm e posição neutra. Para melhor confiabilidade dos resultados, os testes foram repetidos em três modelos fotoelásticos igualmente reproduzidos e confeccionados pelo mesmo operador. Para compreensão dos resultados, as franjas fotoelásticas visualizadas no polariscópio foram fotografadas e analisadas qualitativamente. RESULTADOS: por meio da análise qualitativa da ordem de franjas no modelo fotoelástico, notou-se que, nas extremidades de retração e ancoragem, a mola T com 30º de ativação apical apresentou um acúmulo de energia discretamente maior para o sistema de forças liberado.OBJECTIVE: Evaluate the force system produced by the T-spring used for space closure. METHODS: By means of the experimental photoelastic method, we evaluated the T-spring-used for space closure-with two different preactivations on its apical portion, i.e., one with 30° and one with 45º. The springs were fabricated with rectangular 0.017 X 0.025-in titanium-molybdenum alloy (TMA, centered in a 27.0 mm interbracket space and activated at 5.0 mm and 2.5 mm, and in a neutral position. For more reliable results, tests were repeated on three photoelastic models duplicated and prepared by the same operator. To better understand the results, the fringes seen in the polariscope were photographed and analyzed qualitatively. RESULTS: Through qualitative analysis of the fringe order in the photoelastic model it was noted that at the retraction and anchoring ends the T-spring with

  3. Brookhaven Linac Isotope Producer (United States)

    Federal Laboratory Consortium — The Brookhaven Linac Isoptope Producer (BLIP)—positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis—produces commercially...

  4. Labour Force and World Population Growth. Bulletin of Labour Statistics. (United States)

    International Labour Office, Geneva (Switzerland).

    Presented in three languages (English, French, and Spanish), the document deals only with the demographic aspects of the world labor force--fully employed, underemployed, and unemployed. It includes employers, salaried employees, self-employed, wage earners, unpaid family workers, members of producer cooperatives, and members of the armed forces.…

  5. The Adaptive Range of 1/f Isometric Force Production (United States)

    Sosnoff, Jacob J.; Valantine, Andrew D.; Newell, Karl M.


    The adaptive range of 1/f dynamics in isometric force output was investigated. Participants produced isometric force to targets with predictable demands (constant and sinusoidal) and 1/f noise waveforms (white, pink, brown, and black) that also varied in the frequency bandwidth represented in the force signal (0-4 Hz, 0-8 Hz, and 0-12 Hz). The…

  6. Synaptic metaplasticity underlies tetanic potentiation in Lymnaea: a novel paradigm.

    Directory of Open Access Journals (Sweden)

    Anita Mehta

    Full Text Available We present a mathematical model that explains and interprets a novel form of short-term potentiation, which was found to be use-, but not time-dependent, in experiments done on Lymnaea neurons. The high degree of potentiation is explained using a model of synaptic metaplasticity, while the use-dependence (which is critically reliant on the presence of kinase in the experiment is explained using a model of a stochastic and bistable biological switch.

  7. Tetanòs 1 PSA (:30) (Tetanus 1)

    Centers for Disease Control (CDC) Podcasts


    This is an important public health announcement with tips to prevent wounds and cuts from infection. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  8. Tetanòs 2 PSA (:30) (Tetanus 2)

    Centers for Disease Control (CDC) Podcasts


    The following is an important public health announcement about washing your hands to prevent the spread of disease. Language: Haitian Creole.  Created: 2/18/2010 by Centers for Disease Control and Prevention (CDC).   Date Released: 2/18/2010.

  9. Forces in general relativity (United States)

    Ridgely, Charles T.


    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced by an observer in general coordinates. The general force is then applied to the local co-moving coordinate system of a uniformly accelerating observer, leading to an expression of the inertial force experienced by the observer. Next, applying the general force in Schwarzschild coordinates is shown to lead to familiar expressions of the gravitational force. As a more complex demonstration, the general force is applied to an observer in Boyer-Lindquist coordinates near a rotating, Kerr black hole. It is then shown that when the angular momentum of the black hole goes to zero, the force on the observer reduces to the force on an observer held stationary in Schwarzschild coordinates. As a final consideration, the force on an observer moving in rotating coordinates is derived. Expressing the force in terms of Christoffel symbols in rotating coordinates leads to familiar expressions of the centrifugal and Coriolis forces on the observer. It is envisioned that the techniques presented herein will be most useful to graduate level students, as well as those undergraduate students having experience with general relativity and tensor analysis.

  10. Labor Force Participation Rate (United States)

    City and County of Durham, North Carolina — This thematic map presents the labor force participation rate of working-age people in the United States in 2010. The 2010 Labor Force Participation Rate shows the...

  11. Aerodynamic Lifting Force. (United States)

    Weltner, Klaus


    Describes some experiments showing both qualitatively and quantitatively that aerodynamic lift is a reaction force. Demonstrates reaction forces caused by the acceleration of an airstream and the deflection of an airstream. Provides pictures of demonstration apparatus and mathematical expressions. (YP)

  12. Trois familles, quatre forces

    CERN Multimedia

    Augereau, J F


    ENSEMBLE DE QUATRE ARTICLES - LARGE HADRON COLLIDER: Le monde des particules tel que nous le connaissons aujourd'hui est constitue de trois familles de quatre membres. Ces particules sont collees les unes aux autres par des forces. Celles-ci, au nombre de quatre - gravitation, force forte, force electromagnetique et force faible -, sont " portees " par d'autres particules dont certaines sont a decouvrir (graviton) et d'autres deja identifiees (gluons, photons, bosons W et Z) (1/2 page).

  13. French Nuclear Forces, (United States)


    International Defense Review, and Foreign Affairs have published articles treating various as- .1 pects of France’s Forces Nucleaires Strategiques(FNS...forces(La Force Nucleaire Strategique or FNS) consist of three systems similar to the American triad. France’s tactical nuclear forces(L’Arme... Nucleaire Tactique or ANT) include a variety of land- and carrier-based aircraft and a tactical missile--Pluton--deployed by the French Army. Thirty-four M

  14. Forces in General Relativity (United States)

    Ridgely, Charles T.


    Many textbooks dealing with general relativity do not demonstrate the derivation of forces in enough detail. The analyses presented herein demonstrate straightforward methods for computing forces by way of general relativity. Covariant divergence of the stress-energy-momentum tensor is used to derive a general expression of the force experienced…

  15. Mechanotransduction: use the force(s)

    National Research Council Canada - National Science Library

    Paluch, Ewa K; Nelson, Celeste M; Biais, Nicolas; Fabry, Ben; Moeller, Jens; Pruitt, Beth L; Wollnik, Carina; Kudryasheva, Galina; Rehfeldt, Florian; Federle, Walter


    Mechanotransduction - how cells sense physical forces and translate them into biochemical and biological responses - is a vibrant and rapidly-progressing field, and is important for a broad range of biological phenomena...

  16. Force Dynamics During T Cell Activation (United States)

    Garcia, David A.; Upadhyaya, Arpita

    T cell activation is an essential step in the adaptive immune response. The binding of the T cell receptor (TCR) with antigen triggers signaling cascades and cell spreading. Physical forces exerted on the TCR by the cytoskeleton have been shown to induce signaling events. While cellular forces are known to depend on the mechanical properties of the cytoskeleton, the biophysical mechanisms underlying force induced activation of TCR-antigen interactions unknown. Here, we use traction force microscopy to measure the force dynamics of activated Jurkat T cells. The movements of beads embedded in an elastic gel serve as a non-invasive reporter of cytoskeletal and molecular motor dynamics. We examined the statistical structure of the force profiles throughout the cell during signaling activation. We found two spatially distinct active regimes of force generation characterized by different time scales. Typically, the interior of the cells was found to be more active than the periphery. Inhibition of myosin motor activity altered the correlation time of the bead displacements indicating additional sources of stochastic force generation. Our results indicate a complex interaction between myosin activity and actin polymerization dynamics in producing cellular forces in immune cells.

  17. Thermal Creep Force: Analysis And Application (United States)


    pressure does exist, it produces a small force and would tend to move the vanes with the black side leading contrary to the observed motion . The same year...the simulation. After the particles have completed their motion , particles are randomly selected for collision . The probability that an individual...of the mean free time between collisions at lower pressures. Each simulation ran 100 thousand time steps. We calculated the force by multiplying

  18. Measurement of tool forces in diamond turning

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, J.; Dow, T.A.


    A dynamometer has been designed and built to measure forces in diamond turning. The design includes a 3-component, piezoelectric transducer. Initial experiments with this dynamometer system included verification of its predicted dynamic characteristics as well as a detailed study of cutting parameters. Many cutting experiments have been conducted on OFHC Copper and 6061-T6 Aluminum. Tests have involved investigation of velocity effects, and the effects of depth and feedrate on tool forces. Velocity has been determined to have negligible effects between 4 and 21 m/s. Forces generally increase with increasing depth of cut. Increasing feedrate does not necessarily lead to higher forces. Results suggest that a simple model may not be sufficient to describe the forces produced in the diamond turning process.

  19. Dispersed droplet dynamics during produced water treatment in oil industry

    NARCIS (Netherlands)

    van Eijkeren, D.F.


    For Lagrangian particle tracking applied to swirling flow produced water treatment the influence of the history force is investigated. In the expression for the history force an existing Reynolds number dependent kernel is adapted and validated for a range of experimental data for settling spheres.

  20. Consumers and Producers

    NARCIS (Netherlands)

    E. Maira (Elisa)


    markdownabstractIn the last few decades, advances in information and communication technology have dramatically changed the way consumers and producers interact in the marketplace. The Internet and social media have torn down the information barrier between producers and consumers, leading to

  1. Neural adaptations in isometric contractions with EMG and force biofeedback

    Directory of Open Access Journals (Sweden)

    Francisco Locks


    Full Text Available This study aimed to evaluate the quadriceps femoris neural adaptations during isometric contractions using force and electromyogram (EMG signals as visual biofeedback. Forty-two participants were randomly assigned to three groups: EMG group, tested with EMG biofeedback; Force group, tested with force biofeedback; and Control group, tested without biofeedback. Evaluations were performed pre (baseline and post-tests to determine the maximum force and EMG amplitude during maximal voluntary isometric contraction (MVIC. The tests consisted of series of MVICs in which the participants were encouraged to surpass the force or EMG thresholds determined at baseline. The vastus lateralis EMG amplitude and knee extensor force increased significantly in all groups when compared the baseline and post-test evaluations values (p < .05. EMG percentage gain was significantly different between Force and Control groups (p < .01, while force percentage gain was not different between groups. Force biofeedback was more effective in producing neural adaptations.

  2. Finger Forces in Clarinet Playing

    Directory of Open Access Journals (Sweden)

    Alex Hofmann


    Full Text Available Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17 and professional clarinettists (N = 6 were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 x 2 x 2 design (register: low--high; tempo: slow--fast, dynamics: soft--loud. There was an additional condition controlled by the experimenter, which determined the expression levels (low--high of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions. The melody was performed in three tempo conditions (slow, medium, fast in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean and peak force (Fmax were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N compared to those on other musical instruments (e.g. guitar. Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N.For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N. Such sensor instruments provide useful insights into player

  3. Finger Forces in Clarinet Playing. (United States)

    Hofmann, Alex; Goebl, Werner


    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low-high; tempo: slow-fast, dynamics: soft-loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low-high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (F mean ) and peak force (F max ) were calculated. The overall finger forces were low (F mean = 1.17 N, F max = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (F mean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (F mean = 0.54 N). Such sensor instruments provide useful insights into player

  4. Stationary Density Variation Produced by a Standing Plasma Wave

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens


    Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....


    Imhoff, D.H.; Harker, W.H.


    This patent relates to a method of producing neutrons in which there is produced a heated plasma containing heavy hydrogen isotope ions wherein heated ions are injected and confined in an elongated axially symmetric magnetic field having at least one magnetic field gradient region. In accordance with the method herein, the amplitude of the field and gradients are varied at an oscillatory periodic frequency to effect confinement by providing proper ratios of rotational to axial velocity components in the motion of said particles. The energetic neutrons may then be used as in a blanket zone containing a moderator and a source fissionable material to produce heat and thermal neutron fissionable materials. (AEC)

  6. Agricultural Producer Certificates (United States)

    Montgomery County of Maryland — A Certified Agricultural Producer, or representative thereof, is an individual who wishes to sell regionally-grown products in the public right-of-way. A Certified...

  7. Factors Affecting Aerosol Radiative Forcing (United States)

    Wang, J.; Lin, J.; Ni, R.


    Rapid industrial and economic growth has meant large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RFof aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissionsper unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size.South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions,its aerosol RF is alleviated by its lowest chemical efficiency.The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is loweredbyasmall per capita GDP.Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The resulting

  8. StringForce

    DEFF Research Database (Denmark)

    Barendregt, Wolmet; Börjesson, Peter; Eriksson, Eva


    In this paper, we present the forced collaborative interaction game StringForce. StringForce is developed for a special education context to support training of collaboration skills, using readily available technologies and avoiding the creation of a "mobile bubble". In order to play String......Force two or four physically collocated tablets are required. These tablets are connected to form one large shared game area. The game can only be played by collaborating. StringForce extends previous work, both technologically and regarding social-emotional training. We believe String......Force to be an interesting demo for the IDC community, as it intertwines several relevant research fields, such as mobile interaction and collaborative gaming in the special education context....

  9. Measurement of Surface Forces (United States)


    structural force is often observed on hydrophilic and hydrophobic surfaces, respectively. These forces are referred to in the literature as hydration and...47,481. One parameter, the effective molecular diffusivity in a pore (e.g., zeolite or polymer), has been indirectly related to transport limited rates...adhesion force (2 g.N) and a marked increase in rate of Fe(CN)6 -3 reduction. Both effects were ascribed to the more hydrophilic nature of the activated

  10. Relativistic Linear Restoring Force (United States)

    Clark, D.; Franklin, J.; Mann, N.


    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  11. Intermolecular and surface forces

    CERN Document Server

    Israelachvili, Jacob N


    This reference describes the role of various intermolecular and interparticle forces in determining the properties of simple systems such as gases, liquids and solids, with a special focus on more complex colloidal, polymeric and biological systems. The book provides a thorough foundation in theories and concepts of intermolecular forces, allowing researchers and students to recognize which forces are important in any particular system, as well as how to control these forces. This third edition is expanded into three sections and contains five new chapters over the previous edition.· starts fr

  12. Complex myograph allows the examination of complex muscle contractions for the assessment of muscle force, shortening, velocity, and work in vivo

    Directory of Open Access Journals (Sweden)

    Ruhschulte Hainer


    Full Text Available Abstract Background The devices used for in vivo examination of muscle contractions assess only pure force contractions and the so-called isokinetic contractions. In isokinetic experiments, the extremity and its muscle are artificially moved with constant velocity by the measuring device, while a tetanic contraction is induced in the muscle, either by electrical stimulation or by maximal voluntary activation. With these systems, experiments cannot be performed at pre-defined, constant muscle length, single contractions cannot be evaluated individually and the separate examination of the isometric and the isotonic components of single contractions is not possible. Methods The myograph presented in our study has two newly developed technical units, i.e. a. a counterforce unit which can load the muscle with an adjustable, but constant force and b. a length-adjusting unit which allows for both the stretching and the contraction length to be infinitely adjustable independently of one another. The two units support the examination of complex types of contraction and store the counterforce and length-adjusting settings, so that these conditions may be accurately reapplied in later sessions. Results The measurement examples presented show that the muscle can be brought to every possible pre-stretching length and that single isotonic or complex isometric-isotonic contractions may be performed at every length. The applied forces act during different phases of contraction, resulting into different pre- and after-loads that can be kept constant – uninfluenced by the contraction. Maximal values for force, shortening, velocity and work may be obtained for individual muscles. This offers the possibility to obtain information on the muscle status and to monitor its changes under non-invasive measurement conditions. Conclusion With the Complex Myograph, the whole spectrum of a muscle's mechanical characteristics may be assessed.

  13. Forces in yeast flocculation (United States)

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P.; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N.; Dufrêne, Yves F.


    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion (``flocculation'') is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  14. ``Force-free'' electrophoresis? (United States)

    Yariv, Ehud


    When a colloidal particle is exposed to an externally applied electric field, it acquires an electrophoretic velocity, resulting from fluid slip occurring across the Debye screening layer. When the field is uniformly applied, it is usually assumed that the net neutrality of the combined particle-layer system implies that the net electric force acting on it must vanish. This assumption of "force-free" phoretic motion has been employed extensively to describe electrophoresis in both unbounded and bounded fluid domains [J. L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)]. A careful inspection reveals here that this intuitive premise may fail when the fluid domain is bounded, in which case a nonzero electric force (resembling dielectrophoretic forces in nonuniformly applied fields) may actually exist. Such forces (represented via surface integrals of Maxwell stresses) result in particle motion above and beyond the one driven by the phoretic slip mechanism. A positive demonstration for the existence of a such a force is provided for a standard sphere-wall configuration, where the applied field acts parallel to the wall. In that scenario, particle motion consists of a (familiar) slip-driven contribution parallel to the wall, together with a superimposed force-driven drift away from the wall. An analogy with pressure forces occurring at incompressible and inviscid potential flows is presented.

  15. Quantum fictitious forces

    DEFF Research Database (Denmark)

    Bialynicki-Birula, I; Cirone, M.A.; Dahl, Jens Peder


    We present Heisenberg's equation of motion for the radial variable of a free non-relativistic particle in D dimensions. The resulting radial force consists of three contributions: (i) the quantum fictitious force which is either attractive or repulsive depending on the number of dimensions, (ii) ...

  16. Preliminary evaluation of fuel oil produced from pyrolysis of waste ...

    African Journals Online (AJOL)

    The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water sachets can therefore be used in place of JP–4, providing the aviation ...

  17. Preliminary evaluation of fuel oil produced from pyrolysis of low ...

    African Journals Online (AJOL)

    The physical and structural properties of the fuel oil produced compared favorably with that of Aviation fuel JP-4 (a wide-cut US Air force fuel). Presently African countries are importing aviation fuels. The fuel oil produced from the pyrolysis of waste water sachets can therefore be used in place of JP–4, providing the aviation ...

  18. Finger forces in fastball baseball pitching. (United States)

    Kinoshita, Hiroshi; Obata, Satoshi; Nasu, Daiki; Kadota, Koji; Matsuo, Tomoyuki; Fleisig, Glenn S


    Forces imparted by the fingers onto a baseball are the final, critical aspects for pitching, however these forces have not been quantified previously as no biomechanical technology was available. In this study, an instrumented baseball was developed for direct measurement of ball reaction force by individual fingers and used to provide fundamental information on the forces during a fastball pitch. A tri-axial force transducer with a cable having an easily-detachable connector were installed in an official baseball. Data were collected from 11 pitchers who placed the fingertip of their index, middle, ring, or thumb on the transducer, and threw four-seam fastballs to a target cage from a flat mound. For the index and middle fingers, resultant ball reaction force exhibited a bimodal pattern with initial and second peaks at 38-39ms and 6-7ms before ball release, and their amplitudes were around 97N each. The ring finger and thumb produced single-peak forces of approximately 50 and 83N, respectively. Shear forces for the index and middle fingers formed distinct peak at 4-5ms before release, and the peaks summed to 102N; a kinetic source for backspin on the ball. An additional experiment with submaximal pitching effort showed a linear relationship of peak forces with ball velocity. The peak ball reaction force for fastballs exceeded 80% of maximum finger strength measured, suggesting that strengthening of the distal muscles is important both for enhancing performance and for avoiding injuries. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Produce Sanitation System Evaluation (United States)


    was also expected to improve food safety (i.e., reduce microbes) and reduce premature spoilage while minimizing environmental impact and unpleasant...PRECISION REDUCTION VEGETABLES CONTAMINATION TEST AND EVALUATION SAFETY PH FACTOR SANITATION FRESH FOODS MICROORGANISMS ...fruits and vegetables (FF&V) aboard Navy vessels, The sink saves labor associated with the washing of produce in food service operations by

  20. Characterization of a Lorentz Force Actuator (United States)

    Donovan, John F.; Kral, Linda D.; Cary, Andrew W.


    To develop a detailed understanding of the effect of a Lorentz force actuator in seawater, both experiments and numerical simulations are conducted in an environment with no mean flow. The Lorentz force actuator is comprised of a pair of magnets and a pair of electrodes and produces a volumetric body force. A pressurized water vessel contains a uniform water/electrolyte solution. Particle image velocimetry and laser sheet flow visualization are used to obtain snapshots of the induced flow for different orientations of the laser sheet. Simulations are also performed in a static water/electrolyte solution with the same current levels as in the experiments. Flow is induced upward at the center of the actuator, even though a downward Lorentz force is applied there. Both the simulations and the experiments show that the Lorentz force actuator creates a complex three-dimensional interaction resulting in a upward flow over the actuator. Two wall jets directed toward one another are created by the forces over the electrodes that impinge in the center of the actuator and fluid is pushed up and away from the wall. In terms of vorticity production, the actuator exhibits local maxima in the curl of the Lorentz force away from the wall in a region above the magnets. Comparison between simulation and experiment is remarkably good. This work is supported by Mr. Gary Jones at the Defense Advanced Research Projects Agency.

  1. Multidomain proteins under force. (United States)

    Valle-Orero, Jessica; Rivas-Pardo, Jaime Andrés; Popa, Ionel


    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91-two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins-ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  2. Multidomain proteins under force (United States)

    Valle-Orero, Jessica; Andrés Rivas-Pardo, Jaime; Popa, Ionel


    Advancements in single-molecule force spectroscopy techniques such as atomic force microscopy and magnetic tweezers allow investigation of how domain folding under force can play a physiological role. Combining these techniques with protein engineering and HaloTag covalent attachment, we investigate similarities and differences between four model proteins: I10 and I91—two immunoglobulin-like domains from the muscle protein titin, and two α + β fold proteins—ubiquitin and protein L. These proteins show a different mechanical response and have unique extensions under force. Remarkably, when normalized to their contour length, the size of the unfolding and refolding steps as a function of force reduces to a single master curve. This curve can be described using standard models of polymer elasticity, explaining the entropic nature of the measured steps. We further validate our measurements with a simple energy landscape model, which combines protein folding with polymer physics and accounts for the complex nature of tandem domains under force. This model can become a useful tool to help in deciphering the complexity of multidomain proteins operating under force.

  3. OOTW Force Design Tools

    Energy Technology Data Exchange (ETDEWEB)

    Bell, R.E.; Hartley, D.S.III; Packard, S.L.


    This report documents refined requirements for tools to aid the process of force design in Operations Other Than War (OOTWs). It recommends actions for the creation of one tool and work on other tools relating to mission planning. It also identifies the governmental agencies and commands with interests in each tool, from whom should come the user advisory groups overseeing the respective tool development activities. The understanding of OOTWs and their analytical support requirements has matured to the point where action can be taken in three areas: force design, collaborative analysis, and impact analysis. While the nature of the action and the length of time before complete results can be expected depends on the area, in each case the action should begin immediately. Force design for OOTWs is not a technically difficult process. Like force design for combat operations, it is a process of matching the capabilities of forces against the specified and implied tasks of the operation, considering the constraints of logistics, transport and force availabilities. However, there is a critical difference that restricts the usefulness of combat force design tools for OOTWs: the combat tools are built to infer non-combat capability requirements from combat capability requirements and cannot reverse the direction of the inference, as is required for OOTWs. Recently, OOTWs have played a larger role in force assessment, system effectiveness and tradeoff analysis, and concept and doctrine development and analysis. In the first Quadrennial Defense Review (QDR), each of the Services created its own OOTW force design tool. Unfortunately, the tools address different parts of the problem and do not coordinate the use of competing capabilities. These tools satisfied the immediate requirements of the QDR, but do not provide a long-term cost-effective solution.

  4. Engineering microbes to produce biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Wackett, LP


    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  5. Producing Civil Society

    DEFF Research Database (Denmark)

    Feldt, Liv Egholm; Hein Jessen, Mathias

    Since the beginning of the 1990’s, civil society has attracted both scholarly and political interest as the ‘third sphere’ outside the state and the market not only a normatively privileged site of communication and ‘the public sphere’, but also as a resource for democratization processes......’ and as such dominates our way of thinking about civil society. Yet, this view hinders the understanding of how civil society is not a pre-existing or given sphere, but a sphere which is constantly produced both discursively, conceptually and practically. Through two examples; 1,the case of philanthropy in the beginning...... of the century. 2, the laws and strategies of implementing regarding the regulation of civil societal institutions (folkeoplysningsloven) since the 1970’s this paper shows how civil society in 20th century Denmark was produced both conceptually and practically and how this entailed a specific vision and version...

  6. Forced magnetic reconnection (United States)

    Vekstein, G.


    This is a tutorial-style selective review explaining basic concepts of forced magnetic reconnection. It is based on a celebrated model of forced reconnection suggested by J. B. Taylor. The standard magnetohydrodynamic (MHD) theory of this process has been pioneered by Hahm & Kulsrud (Phys. Fluids, vol. 28, 1985, p. 2412). Here we also discuss several more recent developments related to this problem. These include energetics of forced reconnection, its Hall-mediated regime, and nonlinear effects with the associated onset of the secondary tearing (plasmoid) instability.

  7. A Non-Cross-Bridge Stiffness in Activated Frog Muscle Fibers


    Bagni, Maria A.; Cecchi, Giovanni; Colombini, Barbara; Colomo, Francesco


    Force responses to fast ramp stretches of various amplitude and velocity, applied during tetanic contractions, were measured in single intact fibers from frog tibialis anterior muscle. Experiments were performed at 14 degrees C at approximately 2.1 microm sarcomere length on fibers bathed in Ringer's solution containing various concentrations of 2,3-butanedione monoxime (BDM) to greatly reduce the isometric tension. The fast tension transient produced by the stretch was followed by a period, ...

  8. Hanscom Air Force Base (United States)

    Federal Laboratory Consortium — MIT Lincoln Laboratory occupies 75 acres (20 acres of which are MIT property) on the eastern perimeter of Hanscom Air Force Base, which is at the nexus of Lexington,...

  9. Bow Crushing Forces

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup


    The purpose of these notes is to present a basis for the estimation of the internal collision forces between conventinal merchant vessels and large volume offshore structures in the form of gravity-supported offshore installations and bridges crossing international shipping routes.The main emphasis...... is on the presentation of impact loads on fixed offshore structures due to bow collisions. The crushing forces are determined as functions of vessels size, vessels speed, bow profile, collision angles and eccentric impacts....

  10. The amazing normal forces


    Petrache, Horia I.


    This manuscript is written for students in introductory physics classes to address some of the common difficulties and misconceptions of the normal force, especially the relationship between normal and friction forces. Accordingly, it is intentionally informal and conversational in tone to teach students how to build an intuition to complement mathematical formalism. This is accomplished by beginning with common and everyday experience and then guiding students toward two realizations: (i) Th...

  11. Air Force Leadership Diversity (United States)


    general officer statistics bear out that the group is 94% white and only 7% female as opposed to the overall Air Force population that is 72% white and 20...programmed, over time, to think about skin color and gender. The Air Force is trying to change this programming by adding other words to describe...Officer Corps, those officers in the ranks of O-7 through O-10 indicates that cohort of officers is 94% white and only 7% female. Since officer

  12. Effects of electromagnetic forcing on self-sustained jet oscillations

    NARCIS (Netherlands)

    Kalter, R.; Tummers, M.J.; Kenjeres, S.; Righolt, B.W.; Kleijn, C.R.


    The influence of electromagnetic forcing on self-sustained oscillations of a jet issuing from a submerged nozzle into a thin vertical cavity (width W much larger than thickness T) has been studied using particle image velocimetry. A permanent Lorentz force is produced by applying an electrical

  13. Global mega forces: Implications for the future of natural resources (United States)

    George H. Kubik


    The purpose of this paper is to provide an overview of leading global mega forces and their importance to the future of natural resource decisionmaking, policy development, and operation. Global mega forces are defined as a combination of major trends, preferences, and probabilities that come together to produce the potential for future high-impact outcomes. These...

  14. A simple force platform. (United States)

    Bonde-Petersen, F


    The force platform consists of a sandwhich of steel, Rockwool and concrete plates about 900 X 700 mm in surface. Four steel rings were bolted to the under side of the steel plate in each corner. Each steel ring was furnished with only one strain gauge, two of which were placed on the outer- respectively on the inner side of each ring. The four strain gauges were connected to a measuring bridge. Before mounting the rings on the steel plate, the sensitivity to pressure of each ring was adjusted in such a way that they were all similar. Because of this the platform responded with a signal which was independent of where a pressure was applied within the surface of the platform. The platform showed a rectilinear response for static forces up to 500 kp with a stable zero value. In response to dynamic forces the platform showed a resononance frequency of about 50 Hz, with a damping factor of 0.15. Calibration of dynamic forces was carried out by calculation of the forces during a vertical jump compared with what would be expected from the time of flight also registered by the platform-measuring-bridge-ink-writer-set-up. The time of flight was significantly higher (11%) than exected from the time-force relations beforetake-off. This was esplained partly by the relatively low damping factor in the system, partly by the subjects not extending their knees at landing on the platform.

  15. Relationship between friction force and orthodontic force at the leveling stage using a coated wire

    Directory of Open Access Journals (Sweden)

    Masaki MURAYAMA


    Full Text Available The relationship between orthodontic force and friction produced from an archwire and brackets affects the sliding of the wire in the leveling stage. Objective: The purpose of this study was to evaluate the relationship between force and friction in a small esthetic nickel-titanium (Ni-Ti wire. Material and Methods: Five esthetic wires (three coated and two plated and two small, plain Ni-Ti wires (0.012 and 0.014 inches were used. We performed a three-point bending test according to ISO 15841 and the drawing test with a dental arch model designed with upper linguoversion of the lateral incisor in the arch (displacements of 0.5, 1.0, 2.0 and 3.0 mm, and evaluated the relationship between them. Results: Unloading bending forces of all wires at displacements of less than 1.0 mm were larger than friction forces, but all friction forces at displacements exceeding 2.0 mm were larger than unloading bending forces. The arch likely expands when displacement from the proximal brackets exceeds 1.0 mm. The friction force of a martensite 0.014-inch Ni-Ti wire was significantly greater than those of the other esthetic and austenitic wires. Conclusions: A wire with the smallest possible friction force should be used in cases with more than 1.0 mm displacement.

  16. Molecular dynamics and forces of a motile cell simultaneously visualized by TIRF and force microscopies. (United States)

    Iwadate, Yoshiaki; Yumura, Shigehiko


    Cells must exert traction forces onto the substratum for continuous migration. Molecular dynamics such as actin polymerization at the front of the cell and myosin II accumulation at the rear should play important roles in the exertion of forces required for migration. Therefore, it is important to reveal the relationships between the traction forces and molecular dynamics. Traction forces can be calculated from the deformation of the elastic substratum under a migrating cell. A transparent and colorless elastic substratum with a high refractive index (1.40) and a low Young's modulus (1.0 kPa) were made from a pair of platinum-catalyzed silicones. We used this substratum to develop a new method for simultaneous recording of molecular dynamics and traction forces under a migrating cell in which total internal refractive fluorescence (TIRF) and force microscopies were combined. This new method allows the detection of the spatiotemporal distribution of traction forces produced by individual filopodia in migrating Dictyostelium cells, as well as simultaneous visualization of these traction forces and the dynamics of filamentous myosin II.

  17. Bilateral movements increase sustained extensor force in the paretic arm. (United States)

    Kang, Nyeonju; Cauraugh, James H


    Muscle weakness in the extensors poststroke is a common motor impairment. Unfortunately, research is unclear on whether bilateral movements increase extensor force production in the paretic arm. This study investigated sustained force production while stroke individuals maximally extended their wrist and fingers on their paretic arm. Specifically, we determined isometric force production in three conditions: (a) unilateral paretic arm, (b) unilateral nonparetic arm, and (c) bilateral (both arms executing the same movement simultaneously). Seventeen chronic stroke patients produced isometric sustained force by executing wrist and fingers extension in unilateral and bilateral contraction conditions. Mean force, force variability (coefficient of variation), and signal-to-noise ratio were calculated for each contraction condition. Analysis of two-way (Arm × Type of Condition: 2 × 2; Paretic or Nonparetic Arm × Unilateral or Bilateral Conditions) within-subjects ANOVAs revealed that the bilateral condition increased sustained force in the paretic arm, but reduced sustained force in the nonparetic arm. Further, although the paretic arm exhibited more force variability and less signal-to-noise ratio than the nonparetic arm during a unilateral condition, there were no differences when participants simultaneously executed isometric contractions with both arms. Our unique findings indicate that bilateral contractions transiently increased extensor force in the paretic arm. Implications for Rehabilitation Bilateral movements increased isometric wrsit extensor force in paretic arms and redcued force in nonparetic arms versus unilateral movements. Both paretic and nonparetic arms produced similar force variability and signal-to-noise ratio during bilateral movements. Increased sustained force in the paretic arm during the bilateral condition indicates that rehabilitation protocols based on bilateral movements may be beneficial for functional recovery.

  18. Confusion around the tidal force and the centrifugal force

    CERN Document Server

    Matsuda, Takuya; Boffin, Henri M J


    We discuss the tidal force, whose notion is sometimes misunderstood in the public domain literature. We discuss the tidal force exerted by a secondary point mass on an extended primary body such as the Earth. The tidal force arises because the gravitational force exerted on the extended body by the secondary mass is not uniform across the primary. In the derivation of the tidal force, the non-uniformity of the gravity is essential, and inertial forces such as the centrifugal force are not needed. Nevertheless, it is often asserted that the tidal force can be explained by the centrifugal force. If we literally take into account the centrifugal force, it would mislead us. We therefore also discuss the proper treatment of the centrifugal force.

  19. CCT`s in a deregulated environment: A producer`s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, R.F. Jr.; Fayssoux, J.O. [Duke Power Co., Charlotte, NC (United States)


    The US electric industry will be deregulated (or substantially re-regulated) within 5 years. Several states, including California, Rhode Island, and New Hampshire, already have passed legislation to introduce competition into the electric markets before the year 2000. As this trend sweeps across the country, the resulting competitive market for generation will reward the lowest cost producers and force high cost producers out of the market. As a result, at least in the short run, it may be very difficult for new power plants employing Clean Coal Technologies (CCTs) to compete. This paper discusses a producer`s perspective of the new competitive market, and suggests several short and long term strategies and niches for CCTs.

  20. Surfaces of forced vergence disparity

    Directory of Open Access Journals (Sweden)

    A. Rubin


    Full Text Available Purpose: To introduce the concept of surfaces offorced vergence disparity using measurementsof fixation disparity from three young, healthy individuals.Method: Fixation disparities were measured in three individuals in relation to variation in stimulus distance and vergence demand.  All measurementswere obtained by means of the Sheedy disparometerwhich can be used to measure not only fixation disparity but also associated phorias.  For each individual, consecutive measurements of fixation disparity only were determined over a short time period at four stimulus distances (0.25 m, 0.4 m, 1 m and 2 m and under five different vergence demands as produced with the application of different amounts of prism (either base in or base out and also without any prism.  Parametric and non-parametric statistical methods are used to understand short-term variation of fixation disparity and pseudo-3D and stereo-pairs represent thesurfaces of forced vergence disparity with which this paper is mainly concerned.Results:  Surfaces of forced vergence disparity are very useful to study variation of fixation disparity inrelation to change in stimulus distance and vergence demand.  They are effectively 3-dimensional equivalents of 2-dimensional Ogle curves of forcedvergence disparity.Conclusion: Surfaces of forced vergence disparity may be useful in many contexts - both in relation to normal or unusual binocular behaviour.  This paper introduces such surfaces in relation to three individuals who were considered as having satisfactory binocular and accommodative-vergence function.  The surfaces assist one in understanding complicated three-dimensional or trivariate data that involves fixation disparities, different stimulus locations and different accommodative-vergence demands upon the oculo-motor system.  (S Afr Optom 2013 72(1 25-33 

  1. Radiative forcing by contrails

    Directory of Open Access Journals (Sweden)

    R. Meerkötter


    Full Text Available A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm-2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.Key words. Atmospheric composition and structure (aerosols and particles · Meteorology and atmospheric dynamics (climatology · radiative processes

  2. Radiative forcing by contrails

    Directory of Open Access Journals (Sweden)

    R. Meerkötter

    Full Text Available A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm-2 daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

    Key words. Atmospheric composition and structure (aerosols and particles · Meteorology and atmospheric dynamics (climatology · radiative processes

  3. Radiative forcing by contrails

    Energy Technology Data Exchange (ETDEWEB)

    Meerkoetter, R.; Schumann, U. [DLR Oberpfaffenhofen, Wessling (Germany). Inst. fuer Phys. der Atmosphaere; Doelling, D.R.; Minnis, P. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Nakajima, T.; Tsushima, Y. [Tokyo Univ. (Japan). Center for Climate System Research


    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmosphere. The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, midlatitude, and subarctic summer and winter atmospheres. Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere, a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 Wm{sup -2} daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude. The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover. (orig.) 78 refs.

  4. Radiative Forcing of Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat


    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  5. ForcePAD

    DEFF Research Database (Denmark)

    Lindemann, J.; Damkilde, Lars


    ForcePAD is a 2-dimensional finite element application that started as a concept application for finite element modeling. Over the course of 10 years the application has been evolved into an application that is used extensively in both an educational setting as well as a tool for design and engin......ForcePAD is a 2-dimensional finite element application that started as a concept application for finite element modeling. Over the course of 10 years the application has been evolved into an application that is used extensively in both an educational setting as well as a tool for design...... and engineering. In the latest version of ForcePAD an optimization module was added to enable to take advantage of topology optimization in the design process....

  6. Forces in strategy formation

    DEFF Research Database (Denmark)

    Steensen, Elmer Fly; Sanchez, Ron


    literature. Based on an extensive review of relevant theory and empirical work in strategic decision-making, organizational change theory, cognitive and social psychology, and strategy processes, seven kinds of ''forces'' - rational, imposed, teleological, learning, political, heuristic, and social......This chapter proposes that organizational strategy formation should be characterized theoretically as a process that is subject to several interacting forces, rather than represented by separate discrete decisionmodels or theoretic perspectives, as is commonly done in the strategic management...... - are identified as interacting in and having significant influence on the strategy formation process. It is further argued that by applying a holistic ''forces-view'' of the significant and interacting influences on strategy formation, we can better understand the dynamics and challenges in managing the process...

  7. Shear force allowance in lumbar spine under follower load in neutral standing posture. (United States)

    Kim, Kyungsoo; Kim, Yoon Hyuk; Lee, Sukyoung


    It has been shown experimentally that the load carrying capacity of the spine significantly increases when compressive loads are carried along the follower load (FL) direction. However, it is necessary to modify the current FL concept because a certain amount of shear force is produced during activities in daily life. In this study, a clinically allowable range of shear force was investigated using the modified FL concept. The shear force allowance was defined as the maximum ratio of the shear force to the follower force at each vertebral body center. Then, it was shown that the appropriate shear force allowance was within approximately 0.2 ~ 0.5 from the investigation of the follower forces, the shear forces, and the muscle force coordination. The predicted shear force allowance indicated that the resultant joint force is directed to a certain inside region between a half vertebral body and whole vertebral body.

  8. Electrochemical force microscopy (United States)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.


    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  9. Rate of force development

    DEFF Research Database (Denmark)

    Maffiuletti, Nicola A; Aagaard, Per; Blazevich, Anthony J


    ), particularly as a result of increased motor unit discharge rate; (2) can be improved by both explosive-type and heavy-resistance strength training in different subject populations, mainly through an improvement in rapid muscle activation; (3) is quite difficult to evaluate in a valid and reliable way......The evaluation of rate of force development during rapid contractions has recently become quite popular for characterising explosive strength of athletes, elderly individuals and patients. The main aims of this narrative review are to describe the neuromuscular determinants of rate of force...

  10. Knitting Force Measurement on Flat Knitting Machines

    Directory of Open Access Journals (Sweden)

    A. Fouda


    Full Text Available Knittability can be defined as the ability of yarns to run on knitting machines without problems. Knittability can be achieved when less stress is applied on the knitting machine parts by the knitting yarns. This paper presents a novel measuring system for the knitting force needed to perform knitting yarns on flat knitting machine based on data acquisition system (DAS. The proposed system is used to measure the knitting force at different machine settings and different properties of the knitting yarns to determine the optimal production conditions. For this reason, three types of knitted fabric structures (single jersey, Rib 1 × 1, and full cardigan with three different loop lengths and five different twists of ply yarn were produced. The obtained results showed the optimal yarn ply twist factor (αe which gave minimum knitting force (less stress on needles or knitting yarns at different loop lengths for each structure.

  11. Air Force Security Forces Professionalism: Useful Insights for Leaders (United States)


    REPORT DOCUMENTATION PAGE Air Force Security Forces Professionalism· tns19hts for Leaders Secrest Justin D .. Major, USAF USMC Command and Staff...corporateness characteristics as theorized by Samuel P. Huntingon, yields helpful insights for current and future-generation leaders . Huntington theorizes...theory, this analysis examines professoonalism in Air Force Security Forces. Security Forces expertise developed as career field leaders constantly

  12. Power Producer Production Valuation

    Directory of Open Access Journals (Sweden)

    M. Kněžek


    Full Text Available The ongoing developments in the electricity market, in particular the establishment of the Prague Energy Exchange (PXE and the associated transfer from campaign-driven sale to continuous trading, represent a significant change for power companies.  Power producing companies can now optimize the sale of their production capacities with the objective of maximizing profit from wholesale electricity and supporting services. The Trading Departments measure the success rate of trading activities by the gross margin (GM, calculated by subtracting the realized sales prices from the realized purchase prices and the production cost, and indicate the profit & loss (P&L to be subsequently calculated by the Control Department. The risk management process is set up on the basis of a business strategy defining the volumes of electricity that have to be sold one year and one month before the commencement of delivery. At the same time, this process defines the volume of electricity to remain available for spot trading (trading limits. 

  13. Activation force splines

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    We present a method for simulating the active contraction of deformable models, usable for interactive animation of soft deformable objects. We present a novel physical principle as the governing equation for the coupling between the low dimensional 1D activation force model and the higher...

  14. Muscle contraction and force

    DEFF Research Database (Denmark)

    Brüggemann, Dagmar Adeline; Risbo, Jens; Pierzynowski, Stefan G.


    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms of nu...... contributor to force transfer within muscular tissue....

  15. Forced Displacement and Refugee

    African Journals Online (AJOL)

    Rutinwa: Forced Displacement and Refugee Rights in the Great Lakes 1 3 with the new problems associated with refugees, such as those outlined above. An effective system for refugee protection must be holistic and address the refugee problem at the levels of pre- vention, response and solution. At the level of prevention, ...

  16. The Dynamic Force Table (United States)

    Geddes, John B.; Black, Kelly


    We examine an experimental apparatus that is used to motivate the connections between the basic properties of vectors, potential functions, systems of nonlinear equations, and Newton's method for nonlinear systems of equations. The apparatus is an adaptation of a force table where we remove the center-pin and allow the center-ring to move freely.…

  17. Wearing Forces Spectacles (United States)

    Perrin, Graham


    When providing training to teachers struggling with the concept of forces, the author encourages them to start with something within the experience of the children they are teaching. For example, show them photographs taken on windy days, such as that of a tree, and ask them to explain what is happening. This encourages the children to focus on…

  18. Perpendicular-Force Latch (United States)

    Mattei, John P.; Buck, Peter A.; Williams, Michael D.


    Latching mechanism simultaneously applies force in two perpendicular directions to install or remove electronic-equipment modules. Used to simplify installation and removal of modular equipment where movement restricted by protective clothing as in hazardous environments or where installation and removal to be performed by robots or remote manipulators. Concept adaptable to hydraulic, pneumatic, and mechanical systems.

  19. Atomic Force Microscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  20. Magnetic Force Microscopy

    NARCIS (Netherlands)

    Abelmann, Leon

    Principle of MFM In magnetic force microscopy (MFM), the magnetic stray field above a very flat specimen, or sample, is detected by placing a small magnetic element, the tip, mounted on a cantilever spring very close to the surface of the sample (Figure 1). Typical dimensions are a cantilever length

  1. Biodegradable Piezoelectric Force Sensor. (United States)

    Curry, Eli J; Ke, Kai; Chorsi, Meysam T; Wrobel, Kinga S; Miller, Albert N; Patel, Avi; Kim, Insoo; Feng, Jianlin; Yue, Lixia; Wu, Qian; Kuo, Chia-Ling; Lo, Kevin W-H; Laurencin, Cato T; Ilies, Horea; Purohit, Prashant K; Nguyen, Thanh D


    Measuring vital physiological pressures is important for monitoring health status, preventing the buildup of dangerous internal forces in impaired organs, and enabling novel approaches of using mechanical stimulation for tissue regeneration. Pressure sensors are often required to be implanted and directly integrated with native soft biological systems. Therefore, the devices should be flexible and at the same time biodegradable to avoid invasive removal surgery that can damage directly interfaced tissues. Despite recent achievements in degradable electronic devices, there is still a tremendous need to develop a force sensor which only relies on safe medical materials and requires no complex fabrication process to provide accurate information on important biophysiological forces. Here, we present a strategy for material processing, electromechanical analysis, device fabrication, and assessment of a piezoelectric Poly-l-lactide (PLLA) polymer to create a biodegradable, biocompatible piezoelectric force sensor, which only employs medical materials used commonly in Food and Drug Administration-approved implants, for the monitoring of biological forces. We show the sensor can precisely measure pressures in a wide range of 0-18 kPa and sustain a reliable performance for a period of 4 d in an aqueous environment. We also demonstrate this PLLA piezoelectric sensor can be implanted inside the abdominal cavity of a mouse to monitor the pressure of diaphragmatic contraction. This piezoelectric sensor offers an appealing alternative to present biodegradable electronic devices for the monitoring of intraorgan pressures. The sensor can be integrated with tissues and organs, forming self-sensing bionic systems to enable many exciting applications in regenerative medicine, drug delivery, and medical devices.

  2. Forced Displacement: Legal Versus Illegal Crops


    Palacios Rojas, Paola Andrea


    Anecdotal evidence suggests that, in stateless regions in Colombia, the establishment of oil palm 1 plantations generates more forced migration than the introduction of coca crops. We provide a theoretical model to study this phenomenon where an agent, allied with the illegal armed group that controls a region, chooses between buying an agricultural good from peasants or producing it himself by evicting farmers from their lands. We compare two crops that differ in their labor intensity. Resul...

  3. Feminization of agriculture: Trends and driving forces


    Lastarria-Cornhiel, Susana


    "This paper will describe how women have increased their labor in two types of agricultural production - smallholder production and agro-export agriculture - and the economic and socio-cultural forces that are driving this trend. Finally, this paper examines whether women's participation in income-producing activities, whether as wage workers or as family workers in cash cropping, contributes to empowerment and improves their status within the household." (Excerpt from Executive Summary)

  4. Principles and applications of force spectroscopy using atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Kyu; Kim, Woong; Park, Joon Won [Dept. of Chemistry, Pohang University of Science and Technology, Pohang (Korea, Republic of)


    Single-molecule force spectroscopy is a powerful technique for addressing single molecules. Unseen structures and dynamics of molecules have been elucidated using force spectroscopy. Atomic force microscope (AFM)-based force spectroscopy studies have provided picoNewton force resolution, subnanometer spatial resolution, stiffness of substrates, elasticity of polymers, and thermodynamics and kinetics of single-molecular interactions. In addition, AFM has enabled mapping the distribution of individual molecules in situ, and the quantification of single molecules has been made possible without modification or labeling. In this review, we describe the basic principles, sample preparation, data analysis, and applications of AFM-based force spectroscopy and its future.

  5. Characterization of microcantilever spring and force sensor using nanomanipulators

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Himanshu Dutt, E-mail:; Pal, Tanmay, E-mail:; Shekhar, Chandra, E-mail: chandra@ceeri.ernet.i


    In this paper the authors present the development of a characterization process for microcantilever based spring and force sensor wherein fusion of real-time vision and force feedback is used. The process applies a very small force in micronewtons using MM3A nanomanipulators and senses the corresponding deflection using vision feedback, which produces direct characterization of microcantilever for evaluating its effective spring constant. The same process has been applied to find sensitivity of a microcantilever based force sensor. In the process force feedback values are viewed on a digital storage oscilloscope and once calibrated it is directly proportional to the applied force. By having known deflections (x) on images and known values of force (F) sensed by a force feedback sensor, the spring constant of microcantilever has been found as K = 8.75 {mu}N/{mu}m. Using the same procedure a microcantilever based force sensor has been characterized, the resulting sensitivity of force sensor has been found as 34.35 mV/{mu}N.

  6. Force Feedback Joystick (United States)


    I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.

  7. Suicide and forced marriage. (United States)

    Pridmore, Saxby; Walter, Garry


    The prevailing view that the vast majority of those who complete suicide have an underlying psychiatric disorder has been recently challenged by research on the contribution of "predicaments", in the absence of mental illness, to suicide. In this paper, we sought data to support the notion that forced marriage may lead to suicide without the presence of psychiatric disorder. Historical records, newspapers, and the electronic media were searched for examples. Two examples from ancient times and six from the last hundred years were located and described. These cases suggest that forced marriage may lead to suicide and complements earlier findings that loss of fortune, health, liberty, and reputation may lead to suicide in the absence of mental disorder.

  8. Air Force Smart Bases (United States)


    bases and missions toward an enterprise solution for incorporating smart technologies in the future (defined in the Information Environment Mission... technology might enrich and protect our nation, businesses, and lives. As a human-centric design center, we seek out unique ways to connect Air Force...warfighters with current and future technology in meaningful ways. We look to transfer, license, and share promising prototypes, solutions, and knowledge

  9. Is Gravity Entropic Force?

    Directory of Open Access Journals (Sweden)

    Rongjia Yang


    Full Text Available If we assume that the source of thermodynamic system, ρ and p, are also the source of gravity, then either thermal quantities, such as entropy, temperature, and chemical potential, can induce gravitational effects, or gravity can induce thermal effects. We find that gravity can be seen as entropic force only for systems with constant temperature and zero chemical potential. The case for Newtonian approximation is discussed.

  10. Health of the Force (United States)


    for disease preven- tion which can also reduce the transmission of other sexually transmitted infec- tions (STIs). However, rates are considered con...65 HEALTH OF THE FORCE Chlamydia Sexually transmitted infections such as chla- mydia can impact medical readiness and Soldier well-being. Most...particularly among women , who may experience pelvic inflammatory disease , ec- topic pregnancy, and infertility. Therefore, it is rec- ommended that

  11. Hand digit control in children: motor overflow in multi-finger pressing force vector space during maximum voluntary force production. (United States)

    Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves


    The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.

  12. ``Force,'' ontology, and language (United States)

    Brookes, David T.; Etkina, Eugenia


    We introduce a linguistic framework through which one can interpret systematically students’ understanding of and reasoning about force and motion. Some researchers have suggested that students have robust misconceptions or alternative frameworks grounded in everyday experience. Others have pointed out the inconsistency of students’ responses and presented a phenomenological explanation for what is observed, namely, knowledge in pieces. We wish to present a view that builds on and unifies aspects of this prior research. Our argument is that many students’ difficulties with force and motion are primarily due to a combination of linguistic and ontological difficulties. It is possible that students are primarily engaged in trying to define and categorize the meaning of the term “force” as spoken about by physicists. We found that this process of negotiation of meaning is remarkably similar to that engaged in by physicists in history. In this paper we will describe a study of the historical record that reveals an analogous process of meaning negotiation, spanning multiple centuries. Using methods from cognitive linguistics and systemic functional grammar, we will present an analysis of the force and motion literature, focusing on prior studies with interview data. We will then discuss the implications of our findings for physics instruction.

  13. Gap Task Force

    CERN Multimedia

    Lissuaer, D

    One of the more congested areas in the ATLAS detector is the GAP region (the area between the Barrel Calorimeter and the End Cap calorimeter) where Inner Detector services, LAr Services and some Tile services all must co-habitat in a very limited area. It has been clear for some time that the space in the GAP region is not sufficient to accommodate all that is needed. In the last few month additional problems of routing all the services to Z=0 have been encountered due to the very limited space between the Tile Calorimeter and the first layer of Muon chambers. The Technical Management Board (TMB) and the Executive Board (EB) decided in the middle of March to establish a Task Force to look at this problem and come up with a solution within well-specified guidelines. The task force consisted of experts from the ID, Muon, Liquid Argon and Tile systems in addition to experts from the Technical Coordination team and the Physics coordinator. The task force held many meetings and in general there were some very l...

  14. Force transmission in epithelial tissues. (United States)

    Vasquez, Claudia G; Martin, Adam C


    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  15. Effects of oncoming target velocities on rapid force production and accuracy of force production intensity and timing. (United States)

    Ohta, Yoichi


    The present study aimed to clarify the effects of oncoming target velocities on the ability of rapid force production and accuracy and variability of simultaneous control of both force production intensity and timing. Twenty male participants (age: 21.0 ± 1.4 years) performed rapid gripping with a handgrip dynamometer to coincide with the arrival of an oncoming target by using a horizontal electronic trackway. The oncoming target velocities were 4, 8, and 12 m · s -1 , which were randomly produced. The grip force required was 30% of the maximal voluntary contraction. Although the peak force (Pf) and rate of force development (RFD) increased with increasing target velocity, the value of the RFD to Pf ratio was constant across the 3 target velocities. The accuracy of both force production intensity and timing decreased at higher target velocities. Moreover, the intrapersonal variability in temporal parameters was lower in the fast target velocity condition, but constant variability in 3 target velocities was observed in force intensity parameters. These results suggest that oncoming target velocity does not intrinsically affect the ability for rapid force production. However, the oncoming target velocity affects accuracy and variability of force production intensity and timing during rapid force production.

  16. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity. (United States)

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U


    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Force illusions and drifts observed during muscle vibration. (United States)

    Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L


    We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with

  18. Optimizing Global Force Management for Special Operations Forces (United States)


    FORCE MANAGEMENT FOR SPECIAL OPERATIONS FORCES by Emily A. LaCaille December 2016 Thesis Advisor: Paul L. Ewing Second Reader: Jeffrey...Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE OPTIMIZING GLOBAL FORCE MANAGEMENT FOR SPECIAL OPERATIONS FORCES 5. FUNDING NUMBERS 6

  19. A study of force extension and force degradation of orthodontic latex elastics: An in vitro study

    Directory of Open Access Journals (Sweden)

    Parag Vishnu Gangurde


    Full Text Available Introduction: The purpose of this study was to determine the force values of different orthodontic latex elastics at different extensions when subjected to testing in dry and wet conditions. This study also aims to determine and compare the force degradation of the elastics produced by four manufacturers at different extensions and at regular intervals. Materials and Methods: 5/16 inch lumen medium (Green and ¼ inch lumen medium elastics (blue of 4 companies were used. The elastics were stretched on a correx gauge to two times and three times the inner lumen diameter and at a fixed distance of 25 mm (dry test.The elastics were stretched at the specific distances and then immersed in artificial saliva and checked after 24 and 48 h (wet test. The data was analyzed using Student′s t-test. Results: Force degradation increases with time. Force degradation percentage values vary from 5% to a maximum of 25%. Conclusions: Thus from the study, the clinician can know the force degradation rates of elastics of two different sizes, manufactured by four different companies. This study also shows that though, the force degradation during the 2 nd day was found to be significant in most of the elastics, it is not sufficient to justify daily change of elastics.

  20. Special Operations Forces and Conventional Forces: Integration, Interoperability, and Interdependence (United States)


    in enemy territory, working with indige - nous forces, and performing deep reconnais- sance, strikes, and raids. The 1993 version of the manual still...designated combat zones, like training and advising indig - enous security forces, and operating differently SPECIAL OPERATIONS FORCES AND CONVENTIONAL

  1. Force modulation for improved conductive-mode atomic force microscopy

    NARCIS (Netherlands)

    Koelmans, W.W.; Sebastian, Abu; Despont, Michel; Pozidis, Haris

    We present an improved conductive-mode atomic force microscopy (C-AFM) method by modulating the applied loading force on the tip. Unreliable electrical contact and tip wear are the primary challenges for electrical characterization at the nanometer scale. The experiments show that force modulation

  2. Force tracing: a method to sculpt the optical force (United States)

    Akbarzadeh, Alireza; Caloz, Christophe


    A brief description of the long-standing problem of the optical momentum in media and its resolution is given. The method of force tracing to trace optical force fields along the trajectories of light rays is reviewed and a few illustrative examples are shown. Then, based on the method of force tracing, several graded-index devices performing interesting optical manipulations are reviewed.

  3. Fossil fuel producers under threat

    NARCIS (Netherlands)

    van der Ploeg, F.


    Oil and gas producers face three threats: prolonged low oil and gas prices, tightening of climate policy and a tough budget on cumulative carbon emissions, and technological innovation producing cheap substitutes for oil and gas. These threats pose real risks of putting oil and gas producers out of

  4. Atomic Force Microscope Mediated Chromatography (United States)

    Anderson, Mark S.


    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  5. Unsteady steady-states: central causes of unintentional force drift. (United States)

    Ambike, Satyajit; Mattos, Daniela; Zatsiorsky, Vladimir M; Latash, Mark L


    We applied the theory of synergies to analyze the processes that lead to unintentional decline in isometric fingertip force when visual feedback of the produced force is removed. We tracked the changes in hypothetical control variables involved in single fingertip force production based on the equilibrium-point hypothesis, namely the fingertip referent coordinate (R FT) and its apparent stiffness (C FT). The system's state is defined by a point in the {R FT; C FT} space. We tested the hypothesis that, after visual feedback removal, this point (1) moves along directions leading to drop in the output fingertip force, and (2) has even greater motion along directions that leaves the force unchanged. Subjects produced a prescribed fingertip force using visual feedback and attempted to maintain this force for 15 s after the feedback was removed. We used the "inverse piano" apparatus to apply small and smooth positional perturbations to fingers at various times after visual feedback removal. The time courses of R FT and C FT showed that force drop was mostly due to a drift in R FT toward the actual fingertip position. Three analysis techniques, namely hyperbolic regression, surrogate data analysis, and computation of motor-equivalent and non-motor-equivalent motions, suggested strong covariation in R FT and C FT stabilizing the force magnitude. Finally, the changes in the two hypothetical control variables {R FT; C FT} relative to their average trends also displayed covariation. On the whole, the findings suggest that unintentional force drop is associated with (a) a slow drift of the referent coordinate that pulls the system toward a low-energy state and (b) a faster synergic motion of R FT and C FT that tends to stabilize the output fingertip force about the slowly drifting equilibrium point.

  6. Force Dynamics of Verb Complementation

    Directory of Open Access Journals (Sweden)

    Jacek Woźny


    Full Text Available Force Dynamics of Verb Complementation The concepts of motion and force are both extensively discussed in cognitive linguistics literature. But they are discussed separately. The first usually in the context of ‘motion situations’ (Talmy, Slobin, Zlatev, the other as part of the Force Dynamics framework, which was developed by Talmy. The aim of this paper is twofold: first, to argue that the concepts of force and motion should not be isolated but considered as two inseparable parts of force-motion events. The second goal is to prove that the modified Force Dynamics (force-motion framework can be used for precise characterization of the verb complementation patterns. To this end, a random sample of 50 sentences containing the verb ‘went’ is analyzed, demonstrating the differences between the categories of intensive and intransitive complementation with respect to the linguistically coded parameters of force and motion.

  7. Grasping 2010 with Naval Forces

    National Research Council Canada - National Science Library

    Barnett, Roger


    This article focuses on how naval combat forces should be employed in 2010. Narrowing that focus presumes the Nation will want to maintain capable forces to underwrite its security and that of its allies and friends around the globe...

  8. Modernization of African Armed Forces

    DEFF Research Database (Denmark)

    Mandrup, Thomas


    Concept paper framing the debate at the Dakar Forum Workshop on Modernization of Armed forces in Africa.......Concept paper framing the debate at the Dakar Forum Workshop on Modernization of Armed forces in Africa....

  9. The law of electromagnetic force

    Directory of Open Access Journals (Sweden)

    V.J. Kutkovetskyy


    Full Text Available Calculation peculiarities for Lorentz force, Ampere force, interaction of parallel electric currents, and the moment of electrical machines are analyzed. They have exceptions on application, and they are the rules which result from the law of electromagnetic force as coordinate derivative of the operating magnetic flow. An addition to the direction of electromagnetic force action is proposed. Standards of salient-pole electrical machine designing are considered.

  10. Why is the magnetic force similar to a Coriolis force?


    Royer, Antoine


    It is pointed out that the underlying reason why the magnetic force is similar to a Coriolis force is that it is caused by Thomas rotations, induced by successions of non-collinear Lorentz boosts. The magnetic force may even be viewed as a kind of Coriolis force (making perhaps more acceptable the apparent non-existence of magnetic monopoles). We also show that under a change of inertial frames, Faraday lines of force Lorentz contract as if 'etched' in space, while 'Coriolis' terms get added on.

  11. Optically induced forces and torques:Interactions between nanoparticles in a laser beam


    Bradshaw, D.S.; Andrews, D.L.


    Distinctive optical forces and torques arise between nanoparticles irradiated by intense laser radiation. These forces, associated with a pairwise process of stimulated scattering, prove to enable the possibility of producing significant modifications to both the form and magnitude of interparticle forces, with additional contributions arising in the case of dipolar materials. Moreover, such forces have the capacity to generate unusual patterns of nanoscale response, entirely controlled by th...

  12. Atomic Force Microscope

    Energy Technology Data Exchange (ETDEWEB)

    Day, R.D.; Russell, P.E.


    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  13. Causal Entropic Forces (United States)

    Wissner-Gross, A. D.; Freer, C. E.


    Recent advances in fields ranging from cosmology to computer science have hinted at a possible deep connection between intelligence and entropy maximization, but no formal physical relationship between them has yet been established. Here, we explicitly propose a first step toward such a relationship in the form of a causal generalization of entropic forces that we find can cause two defining behaviors of the human “cognitive niche”—tool use and social cooperation—to spontaneously emerge in simple physical systems. Our results suggest a potentially general thermodynamic model of adaptive behavior as a nonequilibrium process in open systems.

  14. Small amplitude atomic force spectroscopy

    NARCIS (Netherlands)

    de Beer, Sissi; van den Ende, Henricus T.M.; Ebeling, Daniel; Mugele, Friedrich Gunther; Bhushan, Bharat


    Over the years atomic force microscopy has developed from a pure imaging technique to a tool that can be employed for measuring quantitative tip–sample interaction forces. In this chapter we provide an overview of various techniques to extract quantitative tip–sample forces focusing on both

  15. Neuromuscular rate of force development deficit in Parkinson disease. (United States)

    Hammond, Kelley G; Pfeiffer, Ronald F; LeDoux, Mark S; Schilling, Brian K


    Bradykinesia and reduced neuromuscular force exist in Parkinson disease. The interpolated twitch technique has been used to evaluate central versus peripheral manifestations of neuromuscular strength in healthy, aging, and athletic populations, as well as moderate to advanced Parkinson disease, but this method has not been used in mild Parkinson disease. This study aimed to evaluate quadriceps femoris rate of force development and quantify potential central and peripheral activation deficits in individuals with Parkinson disease. Nine persons with mild Parkinson Disease (Hoehn & Yahr≤2, Unified Parkinson Disease Rating Scale total score=mean 19.1 (SD 5.0)) and eight age-matched controls were recruited in a cross-sectional investigation. Quadriceps femoris voluntary and stimulated maximal force and rate of force development were evaluated using the interpolated twitch technique. Thirteen participants satisfactorily completed the protocol. Individuals with early Parkinson disease (n=7) had significantly slower voluntary rate of force development (p=0.008; d=1.97) and rate of force development ratio (p=0.004; d=2.18) than controls (n=6). No significant differences were found between groups for all other variables. Persons with mild-to-moderate Parkinson disease display disparities in rate of force development, even without deficits in maximal force. The inability to produce force at a rate comparable to controls is likely a downstream effect of central dysfunction of the motor pathway in Parkinson disease. Copyright © 2017. Published by Elsevier Ltd.

  16. Breaking the Status Quo: Information and the Future Force (United States)


    times, armed force and aggression have been used to pursue individual, group and nation-state objectives. From the history of Thucydides to the...Bonds. Hollywood rolled out Movietone news releases before every cinema offering, and stalwarts such as Frank Capra produced films destined to commissioned by the French Joint Forces Centre for Concept Development, Doctrine, and Experimentation – recommended that France adopt this

  17. Force and motion

    CERN Document Server

    Robertson, William C


    Intimidated by inertia? Frightened by forces? Mystified by Newton s law of motion? You re not alone and help is at hand. The stop Faking It! Series is perfect for science teachers, home-schoolers, parents wanting to help with homework all of you who need a jargon-free way to learn the background for teaching middle school physical science with confidence. With Bill Roberton as your friendly, able but somewhat irreverent guide, you will discover you CAN come to grips with the basics of force and motion. Combining easy-to-understand explanations with activities using commonly found equipment, this book will lead you through Newton s laws to the physics of space travel. The book is as entertaining as it is informative. Best of all, the author understands the needs of adults who want concrete examples, hands-on activities, clear language, diagrams and yes, a certain amount of empathy. Ideas For Use Newton's laws, and all of the other motion principles presented in this book, do a good job of helping us to underst...

  18. Magnetic force microscopy (United States)

    Passeri, Daniele; Dong, Chunhua; Reggente, Melania; Angeloni, Livia; Barteri, Mario; Scaramuzzo, Francesca A; De Angelis, Francesca; Marinelli, Fiorenzo; Antonelli, Flavia; Rinaldi, Federica; Marianecci, Carlotta; Carafa, Maria; Sorbo, Angela; Sordi, Daniela; Arends, Isabel WCE; Rossi, Marco


    Magnetic force microscopy (MFM) is an atomic force microscopy (AFM) based technique in which an AFM tip with a magnetic coating is used to probe local magnetic fields with the typical AFM spatial resolution, thus allowing one to acquire images reflecting the local magnetic properties of the samples at the nanoscale. Being a well established tool for the characterization of magnetic recording media, superconductors and magnetic nanomaterials, MFM is finding constantly increasing application in the study of magnetic properties of materials and systems of biological and biomedical interest. After reviewing these latter applications, three case studies are presented in which MFM is used to characterize: (i) magnetoferritin synthesized using apoferritin as molecular reactor; (ii) magnetic nanoparticles loaded niosomes to be used as nanocarriers for drug delivery; (iii) leukemic cells labeled using folic acid-coated core-shell superparamagnetic nanoparticles in order to exploit the presence of folate receptors on the cell membrane surface. In these examples, MFM data are quantitatively analyzed evidencing the limits of the simple analytical models currently used. Provided that suitable models are used to simulate the MFM response, MFM can be used to evaluate the magnetic momentum of the core of magnetoferritin, the iron entrapment efficiency in single vesicles, or the uptake of magnetic nanoparticles into cells. PMID:25050758

  19. Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation


    Miyahara, Yoichi; Grutter, Peter


    We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It features a simple implementation and faster scanning as it requires no low frequency modulation. We show that applying a coherent ac voltage with two times the cantilever oscillation frequency induces the dissipation signal proportional to the electrost...

  20. Short-range fundamental forces

    CERN Document Server

    Antoniadis, I; Buchner, M; Fedorov, V V; Hoedl, S; Lambrecht, A; Nesvizhevsky, V V; Pignol, G; Protasov, K V; Reynaud, S; Sobolev, Yu


    We consider theoretical motivations to search for extra short-range fundamental forces as well as experiments constraining their parameters. The forces could be of two types: 1) spin-independent forces, 2) spin-dependent axion-like forces. Differe nt experimental techniques are sensitive in respective ranges of characteristic distances. The techniques include measurements of gravity at short distances, searches for extra interactions on top of the Casimir force, precision atomic and neutron experim ents. We focus on neutron constraints, thus the range of characteristic distances considered here corresponds to the range accessible for neutron experiments.

  1. Predicting muscle forces of individuals with hemiparesis following stroke

    Directory of Open Access Journals (Sweden)

    Maladen Ryan


    Full Text Available Abstract Background Functional electrical stimulation (FES has been used to improve function in individuals with hemiparesis following stroke. An ideal functional electrical stimulation (FES system needs an accurate mathematical model capable of designing subject and task-specific stimulation patterns. Such a model was previously developed in our laboratory and shown to predict the isometric forces produced by the quadriceps femoris muscles of able-bodied individuals and individuals with spinal cord injury in response to a wide range of clinically relevant stimulation frequencies and patterns. The aim of this study was to test our isometric muscle force model on the quadriceps femoris, ankle dorsiflexor, and ankle plantar-flexor muscles of individuals with post-stroke hemiparesis. Methods Subjects were seated on a force dynamometer and isometric forces were measured in response to a range of stimulation frequencies (10 to 80-Hz and 3 different patterns. Subject-specific model parameter values were obtained by fitting the measured force responses from 2 stimulation trains. The model parameters thus obtained were then used to obtain predicted forces for a range of frequencies and patterns. Predicted and measured forces were compared using intra-class correlation coefficients, r2 values, and model error relative to the physiological error (variability of measured forces. Results Results showed excellent agreement between measured and predicted force-time responses (r2 >0.80, peak forces (ICCs>0.84, and force-time integrals (ICCs>0.82 for the quadriceps, dorsiflexor, and plantar-fexor muscles. The model error was within or below the +95% confidence interval of the physiological error for >88% comparisons between measured and predicted forces. Conclusion Our results show that the model has potential to be incorporated as a feed-forward controller for predicting subject-specific stimulation patterns during FES.

  2. Examination of the forces controlling dust dispersion by shock waves (United States)

    Ugarte, O. J.; Houim, R. W.; Oran, E. S.


    The interaction between a shock wave and a thin layer of inert dust is studied by solving unsteady, multidimensional Navier-Stokes equations representing the interactions between a compressible gas and incompressible particles. The system studied consists of a layer of densely packed limestone dust containing particles of uniform diameter (40 μ m ) that interact with a shock of strength Ms=1.4 . Particle dispersion is investigated by comparing vertical particle accelerations due to Archimedes, gravitational, intergranular, and aerodynamic drag and lift forces. The simulations show that the shock produces two dust regions: a compacted layer and a dispersed region. The layer compaction, which increases the intergranular particle stress, is produced by drag and Archimedes forces. The dispersed dust is produced by forces that change in time as the shock passes. Initially, the dispersion is caused by intergranular forces. Later it is driven by a tradeoff between lift and drag forces. Eventually, drag forces dominate. Comparisons of the computations to experimental shock-tube data reproduced the observed initial growth of the dispersed dust and later leveled off. Particle agglomeration in the experiments made it difficult to determine a true particle size experimentally, although the computations for 40-μ m particles explain the experimental data.

  3. Equivalent linearization of nonlinear forces (United States)

    Meng, Guang; Xue, Zhongqing


    A method used for equivalent linearization of the two orthogonal squeeze-film forces is extended here to the general case of n degrees of freedom and n components of nonlinear forces, and the expressions for equivalent linear coefficients are derived. Nonlinear forces can be linearized by the methods of Fourier expansion, active and reactive powers, or mean-square error. The n components of nonlinear forces can all be expressed formally as the sum of an average force, a linear spring force, and a linear damping force. This paper also gives a flow chart for calculating the steady-state responses of a nonlinear system with many degrees of freedom, using the method of equivalent linearization. The resulting saving in computation time is demonstrated by a numerical example of a flexible rotor-bearing system with a noncentralized squeeze-film damper.

  4. Flow mechanotransduction regulates traction forces, intercellular forces, and adherens junctions (United States)

    Ting, Lucas H.; Jahn, Jessica R.; Jung, Joon I.; Shuman, Benjamin R.; Feghhi, Shirin; Han, Sangyoon J.; Rodriguez, Marita L.


    Endothelial cells respond to fluid shear stress through mechanotransduction responses that affect their cytoskeleton and cell-cell contacts. Here, endothelial cells were grown as monolayers on arrays of microposts and exposed to laminar or disturbed flow to examine the relationship among traction forces, intercellular forces, and cell-cell junctions. Cells under laminar flow had traction forces that were higher than those under static conditions, whereas cells under disturbed flow had lower traction forces. The response in adhesion junction assembly matched closely with changes in traction forces since adherens junctions were larger in size for laminar flow and smaller for disturbed flow. Treating the cells with calyculin-A to increase myosin phosphorylation and traction forces caused an increase in adherens junction size, whereas Y-27362 cause a decrease in their size. Since tugging forces across cell-cell junctions can promote junctional assembly, we developed a novel approach to measure intercellular forces and found that these forces were higher for laminar flow than for static or disturbed flow. The size of adherens junctions and tight junctions matched closely with intercellular forces for these flow conditions. These results indicate that laminar flow can increase cytoskeletal tension while disturbed flow decreases cytoskeletal tension. Consequently, we found that changes in cytoskeletal tension in response to shear flow conditions can affect intercellular tension, which in turn regulates the assembly of cell-cell junctions. PMID:22447948

  5. Probing Gravitational Sensitivity in Biological Systems Using Magnetic Body Forces (United States)

    Valles, James; Guevorkian, Karine; Wurzel, Samuel; Mihalusova, Mariana


    We have commissioned a superconducting solenoid based apparatus designed to exert strong magnetic body forces on biological specimens and other organic materials in ambient environmental conditions for extended periods. In its room temperature bore, it can produce a maximum magnetic field-field gradient product of 16 T^2-cm-1 which is sufficient to levitate frog embryos Xenopus Laevis[1]. We will discuss how we are applying these magnetic body forces to probe the known influences of gravitational forces on frog embryos and the swimming behavior of Paramecium Caudatum. In the process, we will describe a novel method for measuring the diamagnetic susceptibilities of specimens such as paramecia.

  6. Method for producing size selected particles

    Energy Technology Data Exchange (ETDEWEB)

    Krumdick, Gregory K.; Shin, Young Ho; Takeya, Kaname


    The invention provides a system for preparing specific sized particles, the system comprising a continuous stir tank reactor adapted to receive reactants; a centrifugal dispenser positioned downstream from the reactor and in fluid communication with the reactor; a particle separator positioned downstream of the dispenser; and a solution stream return conduit positioned between the separator and the reactor. Also provided is a method for preparing specific sized particles, the method comprising introducing reagent into a continuous stir reaction tank and allowing the reagents to react to produce product liquor containing particles; contacting the liquor particles with a centrifugal force for a time sufficient to generate particles of a predetermined size and morphology; and returning unused reagents and particles of a non-predetermined size to the tank.

  7. Chin force in violin playing. (United States)

    Obata, Satoshi; Kinoshita, Hiroshi


    Force generated between the left mandible of violinists and the chinrest of the violin was examined using a force-sensing chinrest developed in this study. A strain-gauge force sensor was built, and it was fixed between the violin's top plate and a chin cup. Fifteen professional/amateur violinists held the violin statically, played musical scales with different sound properties and sounding techniques, as well as an excerpt from a Max Bruch concerto. Peak and mean forces were evaluated for each task. In a separate experiment, lateral movement of the lower teeth due to different levels of voluntary chin force exertion was measured. Static holding forces observed were 15 and 22 N with and without the help of the left hand, respectively. Peak force increased from 16 N at soft dynamics to 20 N at strong dynamics during scales. The force further increased to 29 N with the use of vibrato technique and 35 N during shifts. Tempo and hand position did not affect the force. Playing a Bruch concerto induced a mean peak force of 52 N, ranging from 31 to 82 N among the violinists. The developed force-sensing chinrest could accurately record the generated chin force. Typical chin force to stabilize the violin during ordinary musical performance was less than 30 N, but it could momentarily exceed 50 N when technically demanding musical pieces were performed. The lateral shift of the mandible was fairly small (<0.4 mm) even with high chin-force exertion, possibly due to clenching of the molars.

  8. Forces and torques on rotating spirochete flagella. (United States)

    Yang, Jing; Huber, Greg; Wolgemuth, Charles W


    Spirochetes are a unique group of motile bacteria that are distinguished by their helical or flat-wave shapes and the location of their flagella, which reside within the tiny space between the bacterial cell wall and the outer membrane (the periplasm). In Borrelia burgdorferi, rotation of the flagella produces cellular undulations that drive swimming. How these shape changes arise due to the forces and torques that act between the flagella and the cell body is unknown. It is possible that resistive forces come from friction or from fluid drag, depending on whether or not the flagella are in contact with the cell wall. Here, we consider both of these cases. By analyzing the motion of an elastic flagellum rotating in the periplasmic space, we show that the flagella are most likely separated from the bacterial cell wall by a lubricating layer of fluid. This analysis then provides drag coefficients for rotation and sliding of a flagellum within the periplasm.

  9. Force protection: today's reality. (United States)

    Torgerson, Ron


    Most US infrastructure and major chemical manufacturing facilities as well as their supporting utility systems are inherently vulnerable to a terrorist attack. Force protection is a military and civilian term used to protect personnel and critical facilities and assets against would-be aggressors or terrorists. The war on terrorism is a 200-300-year war. Terrorist attacks on US soil could become as common-place as in the State of Israel. It is very easy to penetrate infrastructure or plants as evidenced by vulnerability assessments performed for states, cities, plants, and military facilities by Versar and others around the country. Chemical, biological, radiological, nuclear, and explosive weapons can be readily used to attack facilities in the US. This paper will explain some of those vulnerabilities, outline the current DoD standard as it relates to vulnerability assessments, and explain how this may be used in commercial applications to deter potential aggressors.

  10. [Galileo and centrifugal force]. (United States)

    Vilain, Christiane

    This work intends to focus on Galileo's study of what is now called "centrifugal force," within the framework of the Second Day of his Dialogo written in 1632, rather than on the previously published commentaries on the topic. Galileo proposes three geometrical demonstrations in order to prove that gravity will always overcome centrifugalforce, and that the potential rotation of the Earth, whatever its speed, cannot in any case project objects beyond it. Each of these demonstrations must consequently contain an error and it has seemed to us that the first one had not been understood up until now. Our analysis offers an opportunity to return to Galileo's geometrical representation of dynamical questions; actually, we get an insight into the sophistication of Galileo's practices more than into his mistakes. Our second point, concerning the historiography of the problem, shows an evolution from anachronic critics to more contextual considerations, in the course of the second half of the twentieth century.

  11. Silicon force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.


    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  12. Forced cocurrent smoldering combustion (United States)

    Dosanjh, Sudip S.; Pagni, Patrick J.; Fernandez-Pello, A. Carlos


    An analytical model of cocurrent smoldering combustion through a very porous solid fuel is developed. Smoldering is initiated at the top of a long radially insulated uniform fuel cylinder, so that the smolder wave propagates downward, opposing an upward-forced flow of oxidizer, with the solid fuel and the gaseous oxidizer entering the reaction zone from the same direction (hence, cocurrent). Radiative heat transfer was incorporated using a diffusion approximation, and smoldering was modeled using a one-step reaction mechanism. The results indicate that, for a given fuel, the final temperature depends only on the initial oxygen mass flux, increasing logarithmically with the mass flux. The smolder velocity is linearly dependent on the initial oxygen mass flux, and, at a fixed value of the flux, increases with initial oxygen mass fraction. The mathematical relationship determining the conditions for steady smolder propagation is presented.

  13. Maximal voluntary force strengthened by the enhancement of motor system state through barely visible priming words with reward

    National Research Council Canada - National Science Library

    Takarada, Yudai; Nozaki, Daichi


    .... However, what is relatively unknown is whether subconsciously delivered priming stimuli, with or without rewards, can affect individuals' maximum level of force produced with their best effort...

  14. Maximal Voluntary Force Strengthened by the Enhancement of Motor System State through Barely Visible Priming Words with Reward: e109422

    National Research Council Canada - National Science Library

    Yudai Takarada; Daichi Nozaki


    .... However, what is relatively unknown is whether subconsciously delivered priming stimuli, with or without rewards, can affect individuals' maximum level of force produced with their best effort...

  15. Prikry-type forcing and minimal $\\alpha$-degree


    Sen, Yang


    In this paper, we introduce several classes of Prikry-type forcing notions, two of which are used to produce minimal generic extensions, and the third is applied in $\\alpha$-recursion theory to produce minimal covers. The first forcing as a warm up yields a minimal generic extension at a measurable cardinal (in $V$), the second at an $\\omega$-limit of measurable cardinals $\\langle\\gamma_n\\colon n0$) carries $\\gamma_{n-1}$-many normal measures. Via a notion of $V_\\gamma $-degree (see Definitio...

  16. Critical forces for actin filament buckling and force transmission influence transport in actomyosin networks (United States)

    Stam, Samantha; Gardel, Margaret

    Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.


    Directory of Open Access Journals (Sweden)

    Vladimír RIEVAJ


    Full Text Available This article focuses on the comparison of the amount of emissions produced by vehicles with a combustion engine and electric cars. The comparison, which is based on the LCA factor results, indicates that an electric car produces more emissions than a vehicle with combustion engine. The implementation of electric cars will lead to an increase in the production of greenhouse gases.

  18. Automated force controller for amplitude modulation atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miyagi, Atsushi, E-mail:, E-mail:; Scheuring, Simon, E-mail:, E-mail: [U1006 INSERM, Université Aix-Marseille, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13009 Marseille (France)


    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  19. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study


    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu


    Background: Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Methods: Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force w...

  20. The cost of leg forces in bipedal locomotion: a simple optimization study.

    Directory of Open Access Journals (Sweden)

    John R Rebula

    Full Text Available Simple optimization models show that bipedal locomotion may largely be governed by the mechanical work performed by the legs, minimization of which can automatically discover walking and running gaits. Work minimization can reproduce broad aspects of human ground reaction forces, such as a double-peaked profile for walking and a single peak for running, but the predicted peaks are unrealistically high and impulsive compared to the much smoother forces produced by humans. The smoothness might be explained better by a cost for the force rather than work produced by the legs, but it is unclear what features of force might be most relevant. We therefore tested a generalized force cost that can penalize force amplitude or its n-th time derivative, raised to the p-th power (or p-norm, across a variety of combinations for n and p. A simple model shows that this generalized force cost only produces smoother, human-like forces if it penalizes the rate rather than amplitude of force production, and only in combination with a work cost. Such a combined objective reproduces the characteristic profiles of human walking (R² = 0.96 and running (R² = 0.92, more so than minimization of either work or force amplitude alone (R² = -0.79 and R² = 0.22, respectively, for walking. Humans might find it preferable to avoid rapid force production, which may be mechanically and physiologically costly.

  1. MEMS Bragg grating force sensor

    DEFF Research Database (Denmark)

    Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole


    We present modeling, design, fabrication and characterization of a new type of all-optical frequency modulated MEMS force sensor based on a mechanically amplified double clamped waveguide beam structure with integrated Bragg grating. The sensor is ideally suited for force measurements in harsh...... environments and for remote and distributed sensing and has a measured sensitivity of -14 nm/N, which is several times higher than what is obtained in conventional fiber Bragg grating force sensors. © 2011 Optical Society of America....

  2. Stochastic force in gravitational systems


    Del Popolo, A.


    In this paper I study the probability distribution of the gravitational force in gravitational systems through numerical experiments. I show that Kandrup's (1980) and Antonuccio-Delogu & Atrio-Barandela's (1992) theories describe correctly the stochastic force probability distribution respectively in inhomogeneous and clustered systems. I find equations for the probability distribution of stochastic forces in finite systems, both homogeneous and clustered, which I use to compare the theoretic...

  3. Force generation by titin folding. (United States)

    Mártonfalvi, Zsolt; Bianco, Pasquale; Naftz, Katalin; Ferenczy, György G; Kellermayer, Miklós


    Titin is a giant protein that provides elasticity to muscle. As the sarcomere is stretched, titin extends hierarchically according to the mechanics of its segments. Whether titin's globular domains unfold during this process and how such unfolded domains might contribute to muscle contractility are strongly debated. To explore the force-dependent folding mechanisms, here we manipulated skeletal-muscle titin molecules with high-resolution optical tweezers. In force-clamp mode, after quenching the force (force trace contained rapid fluctuations and a gradual increase of average force, indicating that titin can develop force via dynamic transitions between its structural states en route to the native conformation. In 4 M urea, which destabilizes H-bonds hence the consolidated native domain structure, the net force increase disappeared but the fluctuations persisted. Thus, whereas net force generation is caused by the ensemble folding of the elastically-coupled domains, force fluctuations arise due to a dynamic equilibrium between unfolded and molten-globule states. Monte-Carlo simulations incorporating a compact molten-globule intermediate in the folding landscape recovered all features of our nanomechanics results. The ensemble molten-globule dynamics delivers significant added contractility that may assist sarcomere mechanics, and it may reduce the dissipative energy loss associated with titin unfolding/refolding during muscle contraction/relaxation cycles. © 2017 The Protein Society.

  4. Wind Forces on Container Ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent


    An investigation of the wind forces acting on a 9,000+ TEU container ship has been carried out through a series of wind tunnel tests. It was investigated how the wind forces depend on the container configuration on the deck using a 1:450 scale model and a series of appropriate container...... are presented as nondimensional coefficients. It is concluded, that the measured forces and moment depend on the container configuration on deck, and the results may provide a general idea of how the magnitude of the wind forces is affected by a given container stacking configuration on a similar container ship....

  5. Magnetic Resonance Force Microscopy System (United States)

    Federal Laboratory Consortium — The Magnetic Resonance Force Microscopy (MRFM) system, developed by ARL, is the world's most sensitive nuclear magnetic resonance (NMR) spectroscopic analysis tool,...

  6. Microorganisms for producing organic acids

    Energy Technology Data Exchange (ETDEWEB)

    Pfleger, Brian Frederick; Begemann, Matthew Brett


    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  7. Unleashed forces; Entfesselte Kraefte

    Energy Technology Data Exchange (ETDEWEB)

    Gille, Denny


    Many wind turbines can produce through a few handles more power. The business with upgrades is the trend. So one can get more power, if one refit the rotor blades of a wind turbine with pointed teeth, shell-like spoilers and small fins. [German] Viele Windenergieanlagen koennen durch ein paar Handgriffe mehr leisten. Das Geschaeft mit den Upgrades liegt im Trend. So kann man mehr Leistung herausholen, wenn man z.B. die Rotorblaetter einer Windturbine mit spitzen Zaehnen, muschelartigen Spoilern und kleinen Finnen ausruestet.

  8. Measuring Forces between Oxide Surfaces Using the Atomic Force Microscope

    DEFF Research Database (Denmark)

    Pedersen, Henrik Guldberg; Høj, Jakob Weiland


    The interactions between colloidal particles play a major role in processing of ceramics, especially in casting processes. With the Atomic Force Microscope (AFM) it is possible to measure the inter-action force between a small oxide particle (a few micron) and a surface as function of surface...

  9. Role of attractive forces in tapping tip force microscopy

    DEFF Research Database (Denmark)

    Kyhle, Anders; Sørensen, Alexis Hammer; Bohr, Jakob


    We present experimental and numerical results demonstrating the drastic influence of attractive forces on the behaviour of the atomic force microscope when operated in the resonant tapping tip mode in an ambient environment. It is often assumed that tapping is related to repulsive interaction...

  10. Comprehending illocutionary force. (United States)

    Holtgraves, T; Ashley, A


    According to speech act theory (Searle, 1969), utterances have both a propositional content and an illocutionary force (the speech act performed with the utterance). Four experiments were conducted to examine whether utterance comprehension involves speech act recognition. Participants in all experiments first read remarks that could be characterized by a particular speech act (e.g., beg). A recognition probe reaction time procedure was used in Experiments 1 and 2; participants indicated whether a probe word had literally appeared in the last remark that they had read. Participants were significantly slower at making this judgment (and made significantly more errors) when the probe represented the speech act performed with the prior remark than when it did not. A lexical decision task was used in Experiments 3 and 4, and participants were significantly faster at verifying target words representing the speech act performed with a remark, relative to control words. Overall, the results suggest that speech act recognition may be an important component of the comprehension of conversational remarks.

  11. Forces of nature

    CERN Document Server



    A breathtaking and beautiful exploration of our planet. This groundbreaking book, which accompanies the new BBC1 TV series, provides the deepest answers to the simplest questions. 'Why is the sky blue?' 'Why is the Earth round?' 'Why is every snowflake unique?' To answer these and many other questions, Professor Brian Cox will reveal some of the most extraordinary phenomena and events on Earth and in the Universe and beyond. From the immensity of Earth's globe to all the world's myriad snowflakes, the forces of nature shape everything we see. Pushed to extremes, the results are astonishing. From the realm of auroras to the heart of our planet, the ingredients that make everything on Earth connect each one of us in an eternal cycle of life. Brian will reveal why Earth is the most colourful world we know, exploring the white light of the sun as it travels through the darkness of space until it hits Earth's atmosphere where it begins a new journey, splitting into a rainbow of colours. From the great plains of th...

  12. Tunneling magnetic force microscopy (United States)

    Burke, Edward R.; Gomez, Romel D.; Adly, Amr A.; Mayergoyz, Isaak D.


    We have developed a powerful new tool for studying the magnetic patterns on magnetic recording media. This was accomplished by modifying a conventional scanning tunneling microscope. The fine-wire probe that is used to image surface topography was replaced with a flexible magnetic probe. Images obtained with these probes reveal both the surface topography and the magnetic structure. We have made a thorough theoretical analysis of the interaction between the probe and the magnetic fields emanating from a typical recorded surface. Quantitative data about the constituent magnetic fields can then be obtained. We have employed these techniques in studies of two of the most important issues of magnetic record: data overwrite and maximizing data-density. These studies have shown: (1) overwritten data can be retrieved under certain conditions; and (2) improvements in data-density will require new magnetic materials. In the course of these studies we have developed new techniques to analyze magnetic fields of recorded media. These studies are both theoretical and experimental and combined with the use of our magnetic force scanning tunneling microscope should lead to further breakthroughs in the field of magnetic recording.

  13. Timing and extent of finger force enslaving during a dynamic force task cannot be explained by EMG activity patterns.

    Directory of Open Access Journals (Sweden)

    Mojtaba Mirakhorlo

    Full Text Available Finger enslaving is defined as the inability of the fingers to move or to produce force independently. Such finger enslaving has predominantly been investigated for isometric force tasks. The aim of this study was to assess whether the extent of force enslaving is dependent on relative finger movements. Ten right-handed subjects (22-30 years flexed the index finger while counteracting constant resistance forces (4, 6 and 8 N orthogonal to the fingertip. The other, non-instructed fingers were held in extension. EMG activities of the mm. flexor digitorum superficialis (FDS and extensor digitorum (ED in the regions corresponding to the index, middle and ring fingers were measured. Forces exerted by the non-instructed fingers increased substantially (by 0.2 to 1.4 N with flexion of the index finger, increasing the enslaving effect with respect to the static, pre-movement phase. Such changes in force were found 260-370 ms after the initiation of index flexion. The estimated MCP joint angle of the index finger at which forces exerted by the non-instructed fingers started to increase varied between 4° and 6°. In contrast to the finger forces, no significant changes in EMG activity of the FDS regions corresponding to the non-instructed fingers upon index finger flexion were found. This mismatch between forces and EMG of the non-instructed fingers, as well as the delay in force development are in agreement with connective tissue linkages being slack when the positions of the fingers are similar, but pulled taut when one finger moves relative to the others. Although neural factors cannot be excluded, our results suggest that mechanical connections between muscle-tendon structures were (at least partly responsible for the observed increase in force enslaving during index finger flexion.

  14. Force dependence of energy barriers in atomic friction and single-molecule force spectroscopy: critique of a critical scaling relation. (United States)

    Evstigneev, M; Reimann, P


    Friction force microscopy and single-molecule force spectroscopy are experimental methods to explore multistable energy landscapes by means of a controlled reduction of the energy barriers between adjacent potential minima. This affects the system's interstate transition rates proportional to e(-ΔE(f)/kBT), with ΔE(f) being the barrier height, k(B)T the thermal energy, and f the elastic force applied. It is often assumed that, at large forces, the barrier height scales as (f(c) - f)(3/2), where f(c) is the critical force, at which the barrier vanishes. We show that, for the elastic forces produced by a pulling device of finite stiffness κ, this scaling relation is actually incorrect. Rather, the barrier is a double-valued function of force of the form E(f) ∝ (κ/κ(c) ±√1 − f/f(0))(3), where f(0) is the maximal force that the system potential can generate, and the characteristic stiffness κ(c) is not necessarily much larger than κ. In particular, for finite κ, the barrier vanishes at a certain force f(κ) force f0 can still be reached. We derive the relation between the most probable force at the moment of transition, fm, and the pulling velocity, v. The usually assumed scaling f(m) ∝ (ln v)(2/3) is recovered as the κ → 0 limit of our more general result, but becomes increasingly worse as κ grows. We introduce a new data analysis method that allows one to quantitatively characterize the system potential and evaluate the stiffness of the pulling device, κ, which is usually not known beforehand. We demonstrate the feasibility of our method by analyzing the results of a numerical experiment based on the standard Prandtl-Tomlinson model of nanoscale friction.

  15. Bacterial adhesion force quantification by fluidic force microscopy (United States)

    Potthoff, Eva; Ossola, Dario; Zambelli, Tomaso; Vorholt, Julia A.


    Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many cells. The contact time and setpoint dependence of the adhesion forces of E. coli and Streptococcus pyogenes, as well as the sequential detachment of bacteria out of a chain, are shown, revealing distinct force patterns in the detachment curves. This study demonstrates the potential of the FluidFM technology for quantitative bacterial adhesion measurements of cell-substrate and cell-cell interactions that are relevant in biofilms and infection biology.Quantification of detachment forces between bacteria and substrates facilitates the understanding of the bacterial adhesion process that affects cell physiology and survival. Here, we present a method that allows for serial, single bacterial cell force spectroscopy by combining the force control of atomic force microscopy with microfluidics. Reversible bacterial cell immobilization under physiological conditions on the pyramidal tip of a microchanneled cantilever is achieved by underpressure. Using the fluidic force microscopy technology (FluidFM), we achieve immobilization forces greater than those of state-of-the-art cell-cantilever binding as demonstrated by the detachment of Escherichia coli from polydopamine with recorded forces between 4 and 8 nN for many

  16. Methods of producing transportation fuel (United States)

    Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX; Cherrillo, Ralph Anthony [Houston, TX; Bauldreay, Joanna M [Chester, GB


    Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for producing transportation fuel is described herein. The method for producing transportation fuel may include providing formation fluid having a boiling range distribution between C. and C. from a subsurface in situ heat treatment process to a subsurface treatment facility. A liquid stream may be separated from the formation fluid. The separated liquid stream may be hydrotreated and then distilled to produce a distilled stream having a boiling range distribution between C. and C. The distilled liquid stream may be combined with one or more additives to produce transportation fuel.

  17. Force-gradient sensitive Kelvin probe force microscopy by dissipative electrostatic force modulation (United States)

    Miyahara, Yoichi; Grutter, Peter


    We report a Kelvin probe force microscopy (KPFM) implementation using the dissipation signal of a frequency modulation atomic force microscopy that is capable of detecting the gradient of electrostatic force rather than electrostatic force. It features a simple implementation and faster scanning as it requires no low frequency modulation. We show that applying a coherent ac voltage with two times the cantilever oscillation frequency induces the dissipation signal proportional to the electrostatic force gradient which depends on the effective dc bias voltage including the contact potential difference. We demonstrate the KPFM images of a MoS2 flake taken with the present method are in quantitative agreement with those taken with the frequency modulated Kelvin probe force microscopy technique.

  18. Force balancing in mammographic compression

    Energy Technology Data Exchange (ETDEWEB)

    Branderhorst, W., E-mail:; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A. [Department of Biomedical Engineering and Physics, Academic Medical Center, P.O. Box 22660, Amsterdam 1100 DD (Netherlands); Sigmascreening B.V., Meibergdreef 45, Amsterdam 1105 BA (Netherlands); Neeter, L. M. F. H.; Heeten, G. J. den [Department of Biomedical Engineering and Physics, Academic Medical Center, P.O. Box 22660, Amsterdam 1100 DD (Netherlands); Neeleman, C. [Sigmascreening B.V., Meibergdreef 45, Amsterdam 1105 BA (Netherlands)


    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  19. Force balancing in mammographic compression. (United States)

    Branderhorst, W; de Groot, J E; Neeter, L M F H; van Lier, M G J T B; Neeleman, C; den Heeten, G J; Grimbergen, C A


    In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. In mammographic breast compression, even small changes in the

  20. Tissue Dynamics and the Forces the Drive Cell Sheet Morphogenesis (United States)

    Edwards, Glenn; Hutson, M. Shane; Tokutake, Yoichiro; Chang, Ming-Shien; Venakides, Stephanos; Bloor, James; Kiehart, Daniel


    Dorsal closure is an early stage of fly development when sheets of cells move in a coordinated pattern exhibiting symmetries on the hundred-micron length scale and consequently is ideal for biophysical investigation. We image these patterns by genetically labeling the cytoskeleton with green fluorescent protein, where a visible laser scans the tissue to excite florescence as measured in real time with confocal microscopy. To selectively remove classes of tissue and the forces they produce, we developed a UV-laser microbeam, with subcellular spatial resolution, that can be steered in two-dimensions. By modeling the response to a chosen set of laser incisions, we account for these experimental observations and consequently map the force field. We find that the overall mechanism for dorsal closure is redundant and robust and governed by four processes: two types of contractile mechanisms for force production; reaction force due to stretching of cell sheets; and the intersection of three sheets of tissues that produces a lengthening seam and apparently synchronizes the overall mechanism. Moreover, we are investigating mutant flies that fail to close in a normal way and are beginning to identify the connection between mutations and modified force fields. Identifying the forces that result from the genetic blueprint and how they manifest themselves in tissue dynamics has applications to, for example, developmental biology and wound healing.

  1. Effect of self-induced magnetic force in a coronal loop transient (United States)

    Yeh, T.; Dryer, M.


    The distribution of the self-induced magnetic force in a section of a model coronal loop is examined and it is found that an axial current produces a pointwise magnetic force in the direction toward the axis of the loop. The direction of the pointwise magnetic force indicates that the effect of this force, acting alone, is to cause a contraction of the cross section of the magnetic loop toward the axis, but not the translation motion of the loop as a whole. It is concluded that forces other than the self-induced magnetic force, such as thermal force of pressure gradient or extra-induced magnetic force of magnetic buoyancy, must be involved in the acceleration mechanisms for the heliocentrifugal motion of coronal transients.

  2. Production of screw dislocations by the external dc and ac forces (United States)

    Zhang, Xia; Duan, Wen-Shan; Gou, Xue-Qiang


    The effects of both the ac and the dc external driving forces on the production of screw dislocations are studied by employing the two-dimensional Frenkel-Kontorova model. The ac force is introduced in the model as a way to describe external periodic disturbances or artificial periodic forces. We find that the appearance of the screw dislocation is influenced by the frequency and amplitude of the ac force. It is shown that the screw dislocation can be easily produced by either the lower frequency or the larger amplitude of the ac force.

  3. Examining the Relationship between Forces During Stereolithography 3D Printing and Geometric Parameters of the Model

    Directory of Open Access Journals (Sweden)

    Kovalenko Iaroslav


    Full Text Available In the case of stereolithography 3D printing technology, detaching formed model from the tank with photopolymer is a lengthy process. Forces, which appear during removing of solid photopolymer layerformed in stereolithography 3D DLP printer, can destroy the built model. In this article the detachment force is measured, obtained results arestatistically analyzed and relation between detach force, area of produced layer and thickness of the layer are verified. Linear dependence between detach force and built area is determined. On the other hand, relation between detach force and thickness of the layer is not confirmed.

  4. Societal Forces That ERODE Creativity (United States)

    Sternberg, Robert; Kaufman, James C.


    Background/Context: Creativity is an indispensable force in intellectual, social, cultural, and economic development. Yet societal forces conspire to erode it. Educators have despaired for many years over how schools often fail to encourage creativity, but society as a whole is just as guilty. But how do schools and society fail to encourage, or…

  5. enterprise architecture

    CERN Document Server

    Fawcett, Andrew


    This book is for advanced developers and architects who need to understand the Salesforce platform from the perspective of enterprise-level requirements. You should have an existing understanding of Apex and Visualforce. Those familiar with other enterprise software ecosystems will also find this book ideal as they adopt

  6. Multiphase forces on bend structures

    NARCIS (Netherlands)

    Nennie, E.D.; Belfroid, S.P.C.


    Piping structures are generally subjected to high dynamic loading due to multiphase forces. In particular subsea structures are very vulnerable as large flexibility is required to cope for instance with thermal stresses. The forces due to multiphase flow are characterized by a broadband spectrum

  7. Handbook of Molecular Force Spectroscopy

    CERN Document Server

    Noy, Aleksandr


    "...Noy's Handbook of Molecular Force Spectroscopy is both a timely and useful summary of fundamental aspects of molecular force spectroscopy, and I believe it would make a worthwhile addition to any good scientific library. New research groups that are entering this field would be well advisedto study this handbook in detail before venturing into the exciting and challenging world of molecular force spectroscopy." Matthew F. Paige, University of Saskatchewan, Journal of the American Chemical Society Modern materials science and biophysics are increasingly focused on studying and controlling intermolecular interactions on the single-molecule level. Molecular force spectroscopy was developed in the past decade as the result of several unprecedented advances in the capabilities of modern scientific instrumentation, and defines a number of techniques that use mechanical force measurements to study interactions between single molecules and molecular assemblies in chemical and biological systems. Examples of these...

  8. Gene regulation by mechanical forces (United States)

    Oluwole, B. O.; Du, W.; Mills, I.; Sumpio, B. E.


    Endothelial cells are subjected to various mechanical forces in vivo from the flow of blood across the luminal surface of the blood vessel. The purpose of this review was to examine the data available on how these mechanical forces, in particular cyclic strain, affect the expression and regulation of endothelial cell function. Studies from various investigators using models of cyclic strain in vitro have shown that various vasoactive mediators such as nitric oxide and prostacyclin are induced by the effect of mechanical deformation, and that the expression of these mediators may be regulated at the transcription level by mechanical forces. There also seems to be emerging evidence that endothelial cells may also act as mechanotransducers, whereby the transmission of external forces induces various cytoskeletal changes and second messenger cascades. Furthermore, it seems these forces may act on specific response elements of promoter genes.

  9. Single-cell force spectroscopy. (United States)

    Helenius, Jonne; Heisenberg, Carl-Philipp; Gaub, Hermann E; Muller, Daniel J


    The controlled adhesion of cells to each other and to the extracellular matrix is crucial for tissue development and maintenance. Numerous assays have been developed to quantify cell adhesion. Among these, the use of atomic force microscopy (AFM) for single-cell force spectroscopy (SCFS) has recently been established. This assay permits the adhesion of living cells to be studied in near-physiological conditions. This implementation of AFM allows unrivaled spatial and temporal control of cells, as well as highly quantitative force actuation and force measurement that is sufficiently sensitive to characterize the interaction of single molecules. Therefore, not only overall cell adhesion but also the properties of single adhesion-receptor-ligand interactions can be studied. Here we describe current implementations and applications of SCFS, as well as potential pitfalls, and outline how developments will provide insight into the forces, energetics and kinetics of cell-adhesion processes.

  10. Roles of production, consumption and trade in global and regional aerosol radiative forcing (United States)

    Lin, J.; Tong, D.; Davis, S. J.; Ni, R.; Tan, X.; Pan, D.; Zhao, H.; Lu, Z.; Streets, D. G.; Feng, T.; Zhang, Q.; Yan, Y.; Hu, Y.; Li, J.; Liu, Z.; Jiang, X.; Geng, G.; He, K.; Huang, Y.; Guan, D.


    Anthropogenic aerosols exert strong radiative forcing on the climate system. Prevailing view regards aerosol radiative forcing as a result of emissions from regions' economic production, with China and other developing regions having the largest contributions to radiative forcing at present. However, economic production is driven by global demand for computation, and international trade allows for separation of regions consuming goods and services from regions where goods and related aerosol pollution are produced. It has recently been recognized that regions' consumption and trade have profoundly altered the spatial distribution of aerosol emissions and pollution. Building upon our previous work, this study quantifies for the first time the roles of trade and consumption in aerosol climate forcing attributed to different regions. We contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers like Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences in radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of

  11. Kelvin Probe Force Microscopy by Dissipative Electrostatic Force Modulation (United States)

    Miyahara, Yoichi; Topple, Jessica; Schumacher, Zeno; Grutter, Peter


    We report an experimental technique for Kelvin probe force microscopy using the dissipation signal of frequency-modulation atomic force microscopy for bias-voltage feedback. It features a simple implementation and faster scanning as it requires no low-frequency modulation. The dissipation is caused by the oscillating electrostatic force that is coherent with the tip oscillation, which is induced by a sinusoidally oscillating voltage applied between the tip and sample. We analyze the effect of the phase of the oscillating force on the frequency shift and dissipation and found that the relative phase of 90° that causes only the dissipation is the most appropriate for Kelvin-probe-force-microscopy measurements. The present technique requires a significantly smaller ac-voltage amplitude by virtue of enhanced force detection due to the resonance enhancement and the use of fundamental flexural-mode oscillation for electrostatic force detection. This feature will be of great importance in the electrical characterizations of technically relevant materials whose electrical properties are influenced by the externally applied electric field as is the case in semiconductor electronic devices.

  12. Consumer Information. NASFAA Task Force Report. Consumer Information (United States)

    National Association of Student Financial Aid Administrators, 2014


    The National Association of Student Financial Aid and Administrators (NASFAA) Consumer Information Task Force was convened to conduct a thorough review of the current student consumer information requirements and propose ways to streamline both the content and delivery of those requirements. The proposals in the this report were produced for…

  13. Application of Sensing Techniques to Cellular Force Measurement

    Directory of Open Access Journals (Sweden)

    James H.-C. Wang


    Full Text Available Cell traction forces (CTFs are the forces produced by cells and exerted on extracellular matrix or an underlying substrate. CTFs function to maintain cell shape, enable cell migration, and generate and detect mechanical signals. As such, they play a vital role in many fundamental biological processes, including angiogenesis, inflammation, and wound healing. Therefore, a close examination of CTFs can enable better understanding of the cellular and molecular mechanisms of such processes. To this end, various force-sensing techniques for CTF measurement have been developed over the years. This article will provide a concise review of these sensing techniques and comment on the needs for improved force-sensing technologies for cell mechanics and biology research.

  14. Video measurements of instantaneous forces of flapping wing vehicles (United States)

    Jennings, Alan; Mayhew, Michael; Black, Jonathan


    Flapping wings for small aerial vehicles have revolutionary potential for maneuverability and endurance. Ornithopters fail to achieve the performance of their biological equivalents, despite extensive research on how animals fly. Flapping wings produce peak forces due to the stroke reversal of the wing. This research demonstrates in-flight measurements of an ornithopter through the use of image processing, specifically measuring instantaneous forces. Results show that the oscillation about the flight path is significant, being about 20% of the mean velocity and up to 10 g's. Results match forces with deformations of the wing to contrast the timing and wing shape of the upstroke and the downstroke. Holding the vehicle fixed (e.g. wind tunnel testing or simulations) structural resonance is affected along with peak forces, also affecting lift. Non-contact, in-flight measurements are proposed as the best method for matching the flight conditions of flapping wing vehicles.

  15. Torque and Suspension Force in a Bearingless Switched Reluctance Motor (United States)

    Takemoto, Masatsugu; Chiba, Akira; Akagi, Hirofumi; Fukao, Tadashi

    Bearingless switched reluctance motors, which can control rotor radial positions with magnetic force, have been proposed. The bearingless switched reluctance motors are characterized by integration of switched reluctance motors and magnetic bearings. These motors have two kinds of stator windings composed of motor main windings and suspension windings in the same stator in order to produce suspension force that can realize rotor shaft suspension without mechanical contacts or lubrication. For successful stable operation, accurate theoretical formulae of instantaneous torque and suspension force are necessary to a rotational speed controller and a rotor radial position controller. This paper derives the theoretical formulae of the instantaneous torque and the suspension force from an assumption of simple permeance distribution. This derivation process makes an assumption that fringing fluxes are distributed on elliptical lines. It is shown with experimental results that the derived theoretical formulae are very accurate in terms of practical application.

  16. Postharvest treatments of fresh produce (United States)

    Mahajan, P. V.; Caleb, O. J.; Singh, Z.; Watkins, C. B.; Geyer, M.


    Postharvest technologies have allowed horticultural industries to meet the global demands of local and large-scale production and intercontinental distribution of fresh produce that have high nutritional and sensory quality. Harvested products are metabolically active, undergoing ripening and senescence processes that must be controlled to prolong postharvest quality. Inadequate management of these processes can result in major losses in nutritional and quality attributes, outbreaks of foodborne pathogens and financial loss for all players along the supply chain, from growers to consumers. Optimal postharvest treatments for fresh produce seek to slow down physiological processes of senescence and maturation, reduce/inhibit development of physiological disorders and minimize the risk of microbial growth and contamination. In addition to basic postharvest technologies of temperature management, an array of others have been developed including various physical (heat, irradiation and edible coatings), chemical (antimicrobials, antioxidants and anti-browning) and gaseous treatments. This article examines the current status on postharvest treatments of fresh produce and emerging technologies, such as plasma and ozone, that can be used to maintain quality, reduce losses and waste of fresh produce. It also highlights further research needed to increase our understanding of the dynamic response of fresh produce to various postharvest treatments. PMID:24797137

  17. Hydrofocusing Bioreactor Produces Anti-Cancer Alkaloids (United States)

    Gonda, Steve R.; Valluri, Jagan V.


    A methodology for growing three-dimensional plant tissue models in a hydrodynamic focusing bioreactor (HFB) has been developed. The methodology is expected to be widely applicable, both on Earth and in outer space, as a means of growing plant cells and aggregates thereof under controlled conditions for diverse purposes, including research on effects of gravitation and other environmental factors upon plant growth and utilization of plant tissue cultures to produce drugs in quantities greater and at costs lower than those of conventional methodologies. The HFB was described in Hydro focus - ing Bioreactor for Three-Dimensional Cell Culture (MSC-22358), NASA Tech Briefs, Vol. 27, No. 3 (March 2003), page 66. To recapitulate: The HFB offers a unique hydrofocusing capability that enables the creation of a low-shear liquid culture environment simultaneously with the herding of suspended cells and tissue assemblies and removal of unwanted air bubbles. The HFB includes a rotating cell-culture vessel with a centrally located sampling port and an internal rotating viscous spinner attached to a rotating base. The vessel and viscous spinner can be made to rotate at the same speed and direction or different speeds and directions to tailor the flow field and the associated hydrodynamic forces in the vessel in order to obtain low-shear suspension of cells and control of the locations of cells and air bubbles. For research and pharmaceutical-production applications, the HFB offers two major benefits: low shear stress, which promotes the assembly of cells into tissue-like three-dimensional constructs; and randomization of gravitational vectors relative to cells, which affects production of medicinal compounds. Presumably, apposition of plant cells in the absence of shear forces promotes cell-cell contacts, cell aggregation, and cell differentiation. Only gentle mixing is necessary for distributing nutrients and oxygen. It has been postulated that inasmuch as cells in the simulated

  18. Experimental characterization of jet static forces impacting waste tank components

    Energy Technology Data Exchange (ETDEWEB)

    Bamberger, J.A.; Bates, J.M. (Pacific Northwest Lab., Richland, WA (USA)); Waters, E.D. (Westinghouse Hanford Co., Richland, WA (USA))


    Westinghouse Hanford Company plans to install mixer pumps in doubleshell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. Scaled experiments were conducted to characterize the velocity profiles of the floor jet and to quantify the drag coefficients and impact forces for three tank components: radiation dry well, air lift circulator, and steam coil. Jet impact forces were measured on the scaled models at a 4 to 1 range of hydraulically scaled flow rates and a scaled range of distances between discharge nozzle and test component. The test were designed to provide hydraulic similarity between test conditions and expected actual waste tank conditions by using equal Reynolds number the jet maximum velocity impacted the test component. Forces measured on the models were used to calculate expected forces on the full scale components. Correlations of force on the test article versus distance from the nozzle were derived for the radiation dry well and air lift circulator based on the velocity correlation and drag parameter. The force data were also used to derive equivalent drag parameters which accounted for component shape factors including variation of jet impact area on the test article with distance from the nozzle. 8 refs., 44 figs., 42 tabs.

  19. Evaluation of the maximum isometric tongue force of healthy volunteers. (United States)

    Ulrich Sommer, J; Birk, Richard; Hörmann, Karl; Stuck, Boris A


    The forces of specific muscle groups have been well described for nearly all parts of the human body. Interestingly, data for the tongue and its forces are rare. In light of ongoing development of systems for managing the tongue (retaining, advancing, suspending or stabilizing), especially in patients with obstructive sleep apnea, knowledge of the maximum tongue force is important for the conceptual design of those systems. The maximum tongue force in a sagittal direction was documented using a custom-built device that included a tongue clamp and a piezoelectric sensor to capture force measurements. Once positioned securely in the device, participants were asked to move the tongue in a posterior sagittal direction, with maximum force, in each of three test positions. Forty-nine healthy volunteers (29 male) were included in the study. Tongue force measurements were collected three times in three different tongue positions. Thirty-three participants had repeated measurements to investigate any potential learning effect. The maximum force of the human tongue in a posterior sagittal direction showed high inter-individual variation and ranged from 3.2 to 52.4 Newton (N; mean 14.1 ± 7.5 N), when measured from a "neutral protrusion or resting" tongue position. The "retracted" and "maximal protrusion" testing positions yielded lower maximum tongue forces. Men (m) showed statistically significantly higher tongue forces than women (w) (m: 16.0 ± 8.4 N, w: 11.0 ± 4.3 N), and there was a positive correlation with BMI and a negative correlation with age. Comparing the first measurement session with the second session (per patient) showed higher mean maximum forces in the second session, but with no statistical significance. The maximum tongue force data showed substantial inter- and intra-individual variability and gender dependency. Some male individuals produced very high forces. These forces should be considered for the future conception and development of tongue

  20. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms. (United States)

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M


    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  1. High force 10 kN piezoresistive silicon force sensor with output independent of force distribution

    NARCIS (Netherlands)

    Zwijze, A.F.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; de Boer, Meint J.; Elwenspoek, Michael Curt; Peeters, Eric; Paul, Oliver


    A 10 kN silicon force sensor is realized in which the force is measured by compressing a meander shaped polysilicon strain gage. A second gage which is not loaded, is used for temperature compensation, for compensation of bending and stretching stresses in the chip and for common changes in zero

  2. Passive Joint Forces Are Tuned to Limb Use in Insects and Drive Movements without Motor Activity (United States)

    Ache, Jan M.; Matheson, Thomas


    Summary Background Limb movements are generally driven by active muscular contractions working with and against passive forces arising in muscles and other structures. In relatively heavy limbs, the effects of gravity and inertia predominate, whereas in lighter limbs, passive forces intrinsic to the limb are of greater consequence. The roles of passive forces generated by muscles and tendons are well understood, but there has been little recognition that forces originating within joints themselves may also be important, and less still that these joint forces may be adapted through evolution to complement active muscle forces acting at the same joint. Results We examined the roles of passive joint forces in insect legs with different arrangements of antagonist muscles. We first show that passive forces modify actively generated movements of a joint across its working range, and that they can be sufficiently strong to generate completely passive movements that are faster than active movements observed in natural behaviors. We further demonstrate that some of these forces originate within the joint itself. In legs of different species adapted to different uses (walking, jumping), these passive joint forces complement the balance of strength of the antagonist muscles acting on the joint. We show that passive joint forces are stronger where they assist the weaker of two antagonist muscles. Conclusions In limbs where the dictates of a key behavior produce asymmetry in muscle forces, passive joint forces can be coadapted to provide the balance needed for the effective generation of other behaviors. PMID:23871240

  3. Sudden drop in ground support produces force-related unload response in human overground walking

    DEFF Research Database (Denmark)

    Af Klint, Richard; Nielsen, Jens Bo; Sinkjaer, Thomas


    healthy volunteers. Subjects walked unrestrained over a hydraulically actuated platform. On random trials the platform was accelerated downward at 0.8 g, unloading the plantar flexor muscles in midstance or late stance. The drop of the platform resulted in a significant depression of the soleus muscle...... was decreased starting 22 ms (SD 15) after the drop. To investigate the role of length- and velocity-sensitive afferents on the depression in soleus muscle activity, the ankle rotation was arrested by using an ankle foot orthotic as the platform was dropped. Preventing the ankle movement did not significantly......Humans maneuver easily over uneven terrain. To maintain smooth and efficient gait the motor system needs to adapt the locomotor output to the walking environment. In the present study we investigate the role of sensory feedback in adjusting the soleus muscle activity during overground walking in 19...

  4. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. (United States)

    Cairns, Simeon P; Leader, John P; Loiselle, Denis S; Higgins, Amanda; Lin, Wei; Renaud, Jean-Marc


    We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials. Copyright © 2015 the American Physiological Society.

  5. Embedded Media - A Force Multiplier or Force Divider

    National Research Council Canada - National Science Library

    Sipes, John A


    .... forces operating in Iraq. Some had preconceived agendas about how they were going to exploit the terrible horrors they were about to encounter in an effort to degrade the military leadership, dissuade the civilian leadership...

  6. Revisiting Frank–Starling: regulatory light chain phosphorylation alters the rate of force redevelopment (ktr) in a length‐dependent fashion

    National Research Council Canada - National Science Library

    Toepfer, Christopher N; West, Timothy G; Ferenczi, Michael A


    Regulatory light chain (RLC) phosphorylation has been shown to alter the ability of muscle to produce force and power during shortening and to alter the rate of force redevelopment ( k tr ) at submaximal [Ca 2...

  7. Consistent force fields for saccharides

    DEFF Research Database (Denmark)

    Rasmussen, Kjeld


    Consistent force fields for carbohydrates were hitherto developed by extensive optimization ofpotential energy function parameters on experimental data and on ab initio results. A wide range of experimental data is used: internal structures obtained from gas phase electron diffraction and from x......-anomeric effects are accounted for without addition of specific terms. The work is done in the framework of the Consistent Force Field which originatedin Israel and was further developed in Denmark. The actual methods and strategies employed havebeen described previously. Extensive testing of the force field...

  8. Price satisfaction and producer loyalty

    DEFF Research Database (Denmark)

    Mutonyi, Sarah; Beukel, Karin; Gyau, Amos


    Purpose The purpose of this paper is to investigate which dimensions of price satisfaction influence producers’ trust in buyers and assess the mediating role of such trust in the relationship between price satisfaction and producer loyalty in fresh fruit supply chains. Design/methodology/approach...

  9. Marketing Hardwoods to Furniture Producers (United States)

    Steven A. Sinclair; Robert J. Bush; Philip A. Araman


    This paper discusses some of the many problems in developing marketing programs for small wood products manufacturers. It examines the problems of using price as a dominant means for getting and attracting customers. The marketing of hardwood lumber to furniture producers is then used as an example. Data from 36 furniture lumber buyers is presented to illustrate...

  10. Process for producing chalcogenide semiconductors (United States)

    Noufi, R.; Chen, Y.W.


    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  11. Development of producer gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar, G.; Sridhar, H.V.; Dasappa, S.; Paul, P.J.; Rajan, N.K.S.; Mukunda, H.S. [Indian Institute of of Science, Bangalore (India). Combustion Gasification and Propulsion Laboratory


    This paper summarizes the findings involved in the development of producer gas fuelled reciprocating engines over a time frame of six years. The high octane rating, ultra clean, and low energy density producer gas derived from biomass has been examined. Development efforts are aimed at a fundamental level, wherein the parametric effects of the compression ratio and ignition timing on the power output are studied. These findings are subsequently applied in the adaptation of commercially available gas engines at two different power levels and make. Design of a producer gas carburettor also formed a part of this developmental activity. The successful operations with producer gas fuel have opened possibilities for adapting a commercially available gas engine for large-scale power generation application, albeit with a loss of power to an extent of 20-30 per cent. This loss in power is compensated to a much larger extent by the way toxic emissions are reduced; these technologies generate smaller amounts of toxic gases (low NO{sub x} and almost zero SO{sub x}), being zero for greenhouse gas (GHG). (author)

  12. Smoke producing and inflammable materials

    NARCIS (Netherlands)

    Wilms EB; van Xanten NHW; Meulenbelt J


    On behalf of the AMGB (Afdeling Militair Geneeskundig Beleid) toxicological reviews have been made about several smoke producing and inflammable materials. The reviews have been made after a literature search and are meant to complete or to replace the concerning chapters in the NATO handbook on

  13. The Top Theological Degree Producers (United States)

    Diverse: Issues in Higher Education, 2012


    Each year, "Diverse: Issues in Higher Education" publishes a list of the Top 100 producers of associate, bachelor's and graduate degrees awarded to minority students based on research conducted by Dr. Victor M. H. Borden, professor of educational leadership and policy studies at Indiana University Bloomington. This year, for the first…

  14. amylase producing thermophile Bacillus sphaericus

    African Journals Online (AJOL)

    Studies on the -amylase-producing thermophilic bacterium isolated and identified from a hot spring in Jordan and designated as Bacillus sphaericus were carried out in a laboratory scale fermenter. The growth and enzyme production optimum conditions were pH 7 and 50oC. The kinetic study of cellular growth indicates ...

  15. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. (United States)

    Akin-Ojo, Omololu; Song, Yang; Wang, Feng


    A new method called adaptive force matching (AFM) has been developed that is capable of producing high quality force fields for condensed phase simulations. This procedure involves the parametrization of force fields to reproduce ab initio forces obtained from condensed phase quantum-mechanics/molecular-mechanics (QM/MM) calculations. During the procedure, the MM part of the QM/MM is iteratively improved so as to approach ab initio quality. In this work, the AFM method has been tested to parametrize force fields for liquid water so that the resulting force fields reproduce forces calculated using the ab initio MP2 and the Kohn-Sham density functional theory with the Becke-Lee-Yang-Parr (BLYP) and Becke three-parameter LYP (B3LYP) exchange correlation functionals. The AFM force fields generated in this work are very simple to evaluate and are supported by most molecular dynamics (MD) codes. At the same time, the quality of the forces predicted by the AFM force fields rivals that of very expensive ab initio calculations and are found to successfully reproduce many experimental properties. The site-site radial distribution functions (RDFs) obtained from MD simulations using the force field generated from the BLYP functional through AFM compare favorably with the previously published RDFs from Car-Parrinello MD simulations with the same functional. Technical aspects of AFM such as the optimal QM cluster size, optimal basis set, and optimal QM method to be used with the AFM procedure are discussed in this paper.

  16. Eucalyptol, an essential oil, reduces contractile activity in rat cardiac muscle

    Directory of Open Access Journals (Sweden)

    M.C.M.S. Soares


    Full Text Available Eucalyptol is an essential oil that relaxes bronchial and vascular smooth muscle although its direct actions on isolated myocardium have not been reported. We investigated a putative negative inotropic effect of the oil on left ventricular papillary muscles from male Wistar rats weighing 250 to 300 g, as well as its effects on isometric force, rate of force development, time parameters, post-rest potentiation, positive inotropic interventions produced by Ca2+ and isoproterenol, and on tetanic tension. The effects of 0.3 mM eucalyptol on myosin ATPase activity were also investigated. Eucalyptol (0.003 to 0.3 mM reduced isometric tension, the rate of force development and time parameters. The oil reduced the force developed by steady-state contractions (50% at 0.3 mM but did not alter sarcoplasmic reticulum function or post-rest contractions and produced a progressive increase in relative potentiation. Increased extracellular Ca2+ concentration (0.62 to 5 mM and isoproterenol (20 nM administration counteracted the negative inotropic effects of the oil. The activity of the contractile machinery evaluated by tetanic force development was reduced by 30 to 50% but myosin ATPase activity was not affected by eucalyptol (0.3 mM, supporting the idea of a reduction of sarcolemmal Ca2+ influx. The present results suggest that eucalyptol depresses force development, probably acting as a calcium channel blocker.

  17. 32 CFR 632.4 - Deadly force. (United States)


    ... 32 National Defense 4 2010-07-01 2010-07-01 true Deadly force. 632.4 Section 632.4 National... INVESTIGATIONS USE OF FORCE BY PERSONNEL ENGAGED IN LAW ENFORCEMENT AND SECURITY DUTIES § 632.4 Deadly force. (a) Deadly force is destructive physical force directed against a person or persons (e.g., firing a lethal...

  18. Digit forces bias sensorimotor transformations underlying control of fingertip position (United States)

    Shibata, Daisuke; Kappers, Astrid M. L.; Santello, Marco


    Humans are able to modulate digit forces as a function of position despite changes in digit placement that might occur from trial to trial or when changing grip type for object manipulation. Although this phenomenon is likely to rely on sensing the position of the digits relative to each other and the object, the underlying mechanisms remain unclear. To address this question, we asked subjects (n = 30) to match perceived vertical distance between the center of pressure (CoP) of the thumb and index finger pads (dy) of the right hand (“reference” hand) using the same hand (“test” hand). The digits of reference hand were passively placed collinearly (dy = 0 mm). Subjects were then asked to exert different combinations of normal and tangential digit forces (Fn and Ftan, respectively) using the reference hand and then match the memorized dy using the test hand. The reference hand exerted Ftan of thumb and index finger in either same or opposite direction. We hypothesized that, when the tangential forces of the digits are produced in opposite directions, matching error (1) would be biased toward the directions of the tangential forces; and (2) would be greater when the remembered relative contact points are matched with negligible digit force production. For the test hand, digit forces were either negligible (0.5–1 N, 0 ± 0.25 N; Experiment 1) or the same as those exerted by the reference hand (Experiment 2).Matching error was biased towards the direction of digit tangential forces: thumb CoP was placed higher than the index finger CoP when thumb and index finger Ftan were directed upward and downward, respectively, and vice versa (p forces. We propose that the expected sensory consequence of motor commands for tangential forces in opposite directions overrides estimation of fingertip position through haptic sensory feedback. PMID:25136304

  19. Voice Force tulekul / Tõnu Ojala

    Index Scriptorium Estoniae

    Ojala, Tõnu, 1969-


    60. sünnipäeva tähistava Tallinna Tehnikaülikooli Akadeemilise Meeskoori juubelihooaja üritusest - a capella pop-gruppide festivalist Voice Force (kontserdid 12. nov. klubis Parlament ja 3. dets. Vene Kultuurikeskuses)

  20. Physical forcing and phytoplankton distributions

    Directory of Open Access Journals (Sweden)

    Trevor Platt


    Full Text Available At the global and regional scales, the distribution and abundance of marine phytoplankton are under the control of physical forcing. Moreover, the community structure and the size structure of phytoplankton assemblages also appear to be under physical control. Areas of the ocean with common physical forcing (ecological provinces may be expected to have phytoplankton communities that respond in a similar fashion to changes in local forcing, and with ecophysiological rate parameters that are predictable from local environmental conditions. In modelling the marine ecosystem, relevant parameters may be assigned according to a partition into ecological provinces. To the extent that physical forcing of the ocean is not constant within or between years, the boundaries of the provinces should be considered as dynamic. The dynamics and the associated changes in taxa can be revealed by remote sensing.

  1. US Air Force Balloon Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Worksheets containing pilot balloon data computed from releases at Air Force stations in the western United States. Elevation and azimuth angles are used to compute...

  2. Air Force Afloat Prepostion Fleet

    National Research Council Canada - National Science Library

    Dugan, Richard


    ...) to assist assigned airmen with operations tempo. AEFs present pre-designated combat, mobility, support and leadership capabilities from which the Joint Force Commander can tailor the desired operational effect...

  3. Understanding Irish Labour Force Participation

    National Research Council Canada - National Science Library

    Stephen Byrne; Martin D O'Brien


    .... Given the important role of labour supply in explaining Irish economic growth, we aim to identify the relative influence of structural and cyclical factors in the recent dynamics of Irish labour force participation...

  4. US Air Force Base Observations (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations taken by U.S. Air Force personnel at bases in the United States and around the world. Foreign observations concentrated in the Middle East and...

  5. Electrotactile EMG feedback improves the control of prosthesis grasping force (United States)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario


    Objective. A drawback of active prostheses is that they detach the subject from the produced forces, thereby preventing direct mechanical feedback. This can be compensated by providing somatosensory feedback to the user through mechanical or electrical stimulation, which in turn may improve the utility, sense of embodiment, and thereby increase the acceptance rate. Approach. In this study, we compared a novel approach to closing the loop, namely EMG feedback (emgFB), to classic force feedback (forceFB), using electrotactile interface in a realistic task setup. Eleven intact-bodied subjects and one transradial amputee performed a routine grasping task while receiving emgFB or forceFB. The two feedback types were delivered through the same electrotactile interface, using a mixed spatial/frequency coding to transmit 8 discrete levels of the feedback variable. In emgFB, the stimulation transmitted the amplitude of the processed myoelectric signal generated by the subject (prosthesis input), and in forceFB the generated grasping force (prosthesis output). The task comprised 150 trials of routine grasping at six forces, randomly presented in blocks of five trials (same force). Interquartile range and changes in the absolute error (AE) distribution (magnitude and dispersion) with respect to the target level were used to assess precision and overall performance, respectively. Main results. Relative to forceFB, emgFB significantly improved the precision of myoelectric commands (min/max of the significant levels) for 23%/36% as well as the precision of force control for 12%/32%, in intact-bodied subjects. Also, the magnitude and dispersion of the AE distribution were reduced. The results were similar in the amputee, showing considerable improvements. Significance. Using emgFB, the subjects therefore decreased the uncertainty of the forward pathway. Since there is a correspondence between the EMG and force, where the former anticipates the latter, the emgFB allowed for

  6. WORK FORCE OPTIMIZATION FOR 2025 (United States)


    gain maximum return on investment in the workforce.15 Within the military, this applies to the total work force; Active, National Guard, a team environment.18 The best example of this application is the ability of Special Forces teams (Seals, Rangers, Green Beret) to execute...execution of a capital investment program is required to provide other capabilities within fitness facilities. Civilian personnel involvement in

  7. Forces in Liquid Metal Contacts

    DEFF Research Database (Denmark)

    Duggen, Lars; Mátéfi-Tempfli, Stefan


    Using rather well known theory about capillary bridges between two electrodes we calculate the tensile force that can be applied to liquid metal contacts in the micrometer regime. Assuming circular symmetry, full wetting of the electrodes, and neglecting gravity, we present a brief review...... of the necessary theory and find numerically the forces to be in the 100μN range for liquid metals as mercury and liquid Gallium suspended between electrodes of 20μm radius....

  8. Phonon forces and cold denaturatio

    DEFF Research Database (Denmark)

    Bohr, Jakob


    Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing the molec......Protein unfolds upon temperature reduction as Well as upon In increase in temperature, These phenomena are called cold denaturation and hot denaturation, respectively. The contribution from quantum mode forces to denaturation is estimated using a simple phenomenological model describing...

  9. Magnetic Forces on Moving Charges



    sim drag Simulation Drag-and-Drop Exercise Interactive Media Element This interactive tutorial provides the practice to reinforce the concept of magnetic force of moving charges. The key concepts covered include: The direction of the resultant magnetic force is always perpendicular to the plane defined by the velocity vector of the charge and the magnetic field vector., The direction of motion of the charge is also influenced by the sign/polarity of the charge., If the velocity...

  10. Wave Forces on Windturbine Foundations

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Frigaard, Peter

    A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested.......A testprogramme has been performed to determine the wave forces on two types of foundations for an offshore windturbine. the tested foundation types are a monopile and cone. Furthermore the shaft of the cone has been tested....

  11. The Generalized Centrifugal Force Model

    CERN Document Server

    Chraibi, Mohcine; Schadschneider, Andreas


    A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which occur for certain choices of the forces. The main intention of this work is the quantitative description of pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide corridors are performed. The results of the proposed model show good agreement with empirical data obtained in controlled experiments.

  12. Feedback trap using optical force (United States)

    Jun, Yonggun; Pak, Hyuk Kyu

    Recently, the feedback trap using electrophoretic force (ABEL trap) has been used in the experimental study of non-equilibrium thermodynamics such as Landauer's erasure principle. This trap can trap and manipulate a small particle in solution by canceling the Brownian fluctuations. Here, we propose a simple way to control a bead using optical force with feedback and show the dynamics of a single particle in the virtual potential.

  13. Electromagnetic forces in photonic crystals


    Antonoyiannakis, M. I.; Pendry, J. B.


    We develop a general methodology for numerical computations of electromagnetic (EM) fields and forces in matter, based on solving the macroscopic Maxwell's equations in real space and adopting the Maxwell Stress Tensor formalism. Our approach can be applied to both dielectric and metallic systems of frequency-dependent dielectric function; as well as to objects of any size and geometrical properties in principle. We are particularly interested in calculating forces on nanostructures. We find ...

  14. Probing the Stochastic, Motor-Driven Properties of the Cytoplasm Using Force Spectrum Microscopy

    NARCIS (Netherlands)

    Guo, M.; Ehrlicher, A.J.; Jensen, M.H.; Renz, M.; Moore, J.R.; Goldman, R.D.; Lippincott-Schwartz, J.; MacKintosh, F.C.; Weitz, D.A.


    Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify

  15. High resolution magnetic force microscopy using focused ion beam modified tips

    NARCIS (Netherlands)

    Phillips, G.N.; Siekman, Martin Herman; Abelmann, Leon; Lodder, J.C.


    Atomic force microscope tips coated by the thermal evaporation of a magnetic 30 nm thick Co film have been modified by focused ion beam milling with Ga+ ions to produce tips suitable for magnetic force microscopy. Such tips possess a planar magnetic element with high magnetic shape anisotropy, an

  16. Fore-aft ground force adaptations to induced forelimb lameness in walking and trotting dogs.

    Directory of Open Access Journals (Sweden)

    Jalal Abdelhadi

    Full Text Available Animals alter their locomotor mechanics to adapt to a loss of limb function. To better understand their compensatory mechanisms, this study evaluated the changes in the fore-aft ground forces to forelimb lameness and tested the hypothesis that dogs unload the affected limb by producing a nose-up pitching moment via the exertion of a net-propulsive force when the lame limb is on the ground. Seven healthy Beagles walked and trotted at steady speed on an instrumented treadmill while horizontal force data were collected before and after a moderate lameness was induced. Peak, mean and summed braking and propulsive forces as well as the duration each force was exerted and the time to reach maximum force were evaluated for both the sound and the lame condition. Compared with the sound condition, a net-propulsive force was produced by the lame diagonal limbs due to a reduced braking force in the affected forelimb and an increased propulsive force in the contralateral hindlimb when the dogs walked and trotted. To regain pitch stability and ensure steady speed for a given locomotor cycle, the dogs produced a net-braking force when the sound diagonal limbs were on the ground by exerting greater braking forces in both limbs during walking and additionally reducing the propulsive force in the hindlimb during trotting. Consistent with the proposed mechanism, dogs maximize their double support phases when walking. Likely associated with the fore-aft force adaptations to lameness are changes in muscle recruitment that potentially result in short- and long-term effects on the limb and trunk muscles.

  17. Biologically inspired force enhancement for maritime propulsion and maneuvering

    CERN Document Server

    Weymouth, G D


    The move to high performance applications greatly increases the demand to produce large instantaneous fluid forces for high-speed maneuvering and improved power efficiency for sustained propulsion. Animals achieve remarkable feats of maneuvering and efficiency by changing their body shape to generate unsteady fluid forces. Inspired by this, we have studied a range of immersed bodies which drastically change their shape to produce fluid forces. These include relatively simple shape- changes, such as quickly changing the angle of attack of a foil to induce emergency stops and the use of tandem flapping foils to generate three times the average propulsive force of a single flapping foil. They also include more unconventional shape-changes such as high-speed retracting foil sections to power roll and dive maneuvers and the use of soft robotics to rapidly shrink the frontal area of an ellipsoid to power 68% efficient fast-start maneuvers or even completely cancel the drag force with 91% quasi-propulsive efficiency...

  18. Force production during pereiopod power strokes in Calanus finmarchicus (United States)

    Lenz, P. H.; Hower, A. E.; Hartline, D. K.


    Copepods achieve the dramatic speeds of 300-1000 body lengths/s during escape reactions. We investigated the details of this behavior in Calanus finmarchicus. Pereiopod movements during the power strokes were monitored in tethered individuals using high-speed video, while simultaneously measuring force production. At 8-10 °C, the power strokes for each pair of pereiopods registered as separate peaks in the force record, with the largest force being produced by the fourth and third pairs. Peak forces of 500-600 μN were attained within 3.5 ms of initiation of the power stroke sequence. During the power strokes, the pereiopods maximized their surface area by splaying distal segments and setae. During the return stroke, the pereiopods and the setae collapsed, minimizing surface area and thus generating only a weak reverse force. During power stroke sequences in free swimming C. finmarchicus, multiple peaks in acceleration (200 m s -2) corresponded to the power strokes of different pereiopod pairs. During the escape, C. finmarchicus produced maximum swimming speeds of 800 mm s -1 and an estimated muscle-mass specific power output of 300 W kg -1. Comparisons to other organisms indicate that this behavioral performance is particularly powerful and fast. How the copepods achieve this performance remains to be determined.

  19. Electrostatic forces on grains near asteroids and comets

    Directory of Open Access Journals (Sweden)

    Hartzell Christine


    Full Text Available Dust on and near the surface of small planetary bodies (e.g. asteroids, the Moon, Mars’ moons is subject to gravity, cohesion and electrostatic forces. Due to the very low gravity on small bodies, the behavior of small dust grains is driven by non-gravitational forces. Recent work by Scheeres et al. has shown that cohesion, specifically van der Waals force, is significant for grains on asteroids. In addition to van der Waals cohesion, dust grains also experience electrostatic forces, arising from their interaction with each other (through tribocharging and the solar wind plasma (which produces both grain charging and an external electric field. Electrostatic forces influence both the interactions of grains on the surface of small bodies as well as the dynamics of grains in the plasma sheath above the surface. While tribocharging between identical dielectric grains remains poorly understood, we have recently expanded an existing charge transfer model to consider continuous size distributions of grains and are planning an experiment to test the charge predictions produced. Additionally, we will present predictions of the size of dust grains that are capable of detaching from the surface of small bodies.

  20. A Parallel Tracking Method for Acoustic Radiation Force Impulse Imaging (United States)

    Dahl, Jeremy J.; Pinton, Gianmarco F.; Mark, L; Agrawal, Vineet; Nightingale, Kathryn R.; Trahey, Gregg E.


    Radiation force-based techniques have been developed by several groups for imaging the mechanical properties of tissue. Acoustic Radiation Force Impulse (ARFI) imaging is one such method that uses commercially available scanners to generate localized radiation forces in tissue. The response of the tissue to the radiation force is determined using conventional B-mode imaging pulses to track micron-scale displacements in tissue. Current research in ARFI imaging is focused on producing real-time images of tissue displacements and related mechanical properties. Obstacles to producing a real-time ARFI imaging modality include data acquisition, processing power, data transfer rates, heating of the transducer, and patient safety concerns. We propose a parallel receive beamforming technique to reduce transducer heating and patient acoustic exposure, and to facilitate data acquisition for real-time ARFI imaging. Custom beam sequencing was used with a Siemens SONOLINE AntaresTM scanner to track tissue displacements with parallel-receive beam-forming in tissue-mimicking phantoms. Using simulations, the effects of material properties on parallel tracking are observed. Transducer and tissue heating for parallel tracking are compared to standard ARFI beam sequencing. The effects of tracking beam position and size of the tracked region are also discussed in relation to the size and temporal response of the region of applied force, and the impact on ARFI image contrast and signal-to-noise ratio are quantified. PMID:17328327

  1. Labor force activity after 60

    DEFF Research Database (Denmark)

    Pedersen, Peder J.; Larsen, Mona


    In most OECD member countries labor force attachement has increased in recent years in the 60+ group. Focus in the paper is on the development in this area in Denmark, Norway and Sweden since the 1990s. The development in the same period in the German labor market is included as a frame of refere......In most OECD member countries labor force attachement has increased in recent years in the 60+ group. Focus in the paper is on the development in this area in Denmark, Norway and Sweden since the 1990s. The development in the same period in the German labor market is included as a frame...... in labor force participation is described based on register data and on labor force surveys along with indicators of cohort relevant changes in education and health. Focus in the paper includes also the gender aspect to accommodate stronger cohort effects for women than for men. The impact on labor force...... a brief survey of policy changes in the Scandinavian countries and Germany as other determinants of labor force participation in the 60 and older group....

  2. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao


    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  3. Performance profiles of major energy producers, 1997

    Energy Technology Data Exchange (ETDEWEB)



    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  4. Spectroscopic Studies of Laser Produced Plasma Metasurfaces (United States)

    Colon Quinones, Roberto; Underwood, Thomas; Cappelli, Mark


    In this presentation, we describe the spatial and temporal plasma characteristics of the dense plasma kernels that are used to construct a laser produced plasma metasurface (PM) that is intended to serve as a tunable THz reflector. The PM is an n x n array of plasmas generated by focusing the light from a 2 J/p Q-switched Nd:YAG laser through a multi-lens array (MLA) and into a gas of varying pressure. A gated CCD camera coupled to a high-resolution spectrometer is used to obtain chord-averaged H α broadening data for the cross section of a single plasma element at the lens focal point. The data is then Abel inverted to derive the radial plasma density distribution. Measurements are repeated for a range of pressures, laser energies, and lens f-number, with a time resolution of 100 ns and a gate width of 20 ns. Results are presented for the variation of plasma density and size over these different conditions. Work supported by the Air Force Office of Scientific Research (AFOSR). R. Colon Quinones and T. Underwood acknowledge the support of the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  5. ESBL-Producing Escherichia coli

    DEFF Research Database (Denmark)

    Hertz, Frederik Boetius

    Urinary tract infection (UTI) is one the most common bacterial infections and is regularly treated in primary health care. The most common cause of UTI is extraintestinal pathogenic Escherichia coli (ExPEC) already present in the intestinal microflora, often as the dominating strain. Resistance...... in E.coli is increasing and especially isolates producing Extended-Spectrum Beta-Lactamases (ESBL) have been reported worldwide. Treatment of UTI is usually initiated by the general practitioners and a significant proportion of clinical isolates are now resistant to first line antibiotics. The global...... dissemination of resistant E.coli has in particular been driven by the spread of a few specific E.coli-lineages and it seems that there is a difference between the sequence types found among resistant E.coli, ESBL-producing E.coli and antibiotic susceptible E.coli. The overall objectives of this thesis were...

  6. Rotary and radial forcing effects on center-of-mass locomotion dynamics. (United States)

    Shen, Z H; Larson, P L; Seipel, J E


    Rotary and radial forcing are two common actuation methods for legged robots. However, these two orthogonal methods of center-of-mass (CoM) forcing have not been compared as potentially alternative strategies of actuation. In this paper, we compare the CoM stability and energetics of running with rotary and radial actuation through the simulation of two models: the rotary-forced spring-loaded inverted pendulum (rotary-forced-SLIP), and the radially-forced-SLIP. We model both radial and rotary actuation in the simplest way, applying them as a constant force during the stance portion of the gait. A simple application of constant rotary forcing throughout stance is capable of producing fully-asymptotically stable motion; however, a similarly constant application of radial forcing throughout the stance is not capable of producing stable solutions. We then allow both the applied rotary and radial forcing functions to turn on or off based on the occurrence of the mid-stance event, which breaks the symmetry of actuation during stance towards a net forward propulsion. We find that both a rotary force applied in the first half of stance and a radial force applied in the second half of stance, are capable of stabilizing running. Interestingly, these two forcing methods improve the motion stability in different ways. Rotary forcing first reduces then greatly increases the size of the stable parameter region when gradually increased. Radial forcing expands the stable parameter region, but only in a moderate way. Also, it is found that parameter region stabilized by rotary and radial forcing are largely complementary. Overall, rotary forcing can better stabilize running for both constant and event-based forcing functions that were attempted. This indicates that rotary forcing has an inherent capability of stabilizing running, even when minimal time-or-event-or-state feedback is present. Radial forcing, however, tends to be more energy efficient when compared to rotary forcing

  7. Thermal casting of polymers in centrifuge for producing X-ray optics (United States)

    Hill, Randy M [Livermore, CA; Decker, Todd A [Livermore, CA


    An optic is produced by the steps of placing a polymer inside a rotateable cylindrical chamber, the rotateable cylindrical chamber having an outside wall, rotating the cylindrical chamber, heating the rotating chamber forcing the polymer to the outside wall of the cylindrical chamber, allowing the rotateable cylindrical chamber to cool while rotating producing an optic substrate with a substrate surface, sizing the optic substrate, and coating the substrate surface of the optic substrate to produce the optic with an optic surface.

  8. Producing a complex aluminum lubricant

    Energy Technology Data Exchange (ETDEWEB)

    Steinmec, F.


    The thickener for the complex laminar lubricant is produced through a reaction between aluminum alcoholate and a high molecular organic fatty acid of the C16 to C22 fraction, the product is partially hydrolized by water and the obtained oil soluble hydrolysis product is subjected to a reaction with a low molecular organic aromatic acid, chiefly, benzoic acid in an oil solvent. The obtained thickner is well dispersed, which makes it possible to reduce the temperature of its dispersion in the oil.

  9. Nonlinear Pricing to Produce Information


    David J. Braden; Oren, Shmuel S.


    We investigate the firm's dynamic nonlinear pricing problem when facing consumers whose tastes vary according to a scalar index. We relax the standard assumption that the firm knows the distribution of this index. In general the firm should determine its marginal price schedule as if it were myopic, and produce information by lowering the price schedule; “bunching” consumers at positive purchase levels should be avoided. As a special case we also consider a market characterized by homogeneous...

  10. Antiprotons Produced in Supernova Remnants


    Berezhko, E. G.; Ksenofontov, L. T.


    We present the energy spectrum of antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNR). The model includes reacceleration of already existing in interstellar medium antiprotons as well as creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shock. It is shown that antiprotons production in SNRs produces considerable effect in their result...

  11. Color van der Waals forces between heavy quarkonia in effective QCD


    Narebski, Jakub


    The perturbative renormalization group for light-front QCD Hamiltonian produces a logarithmically rising interquark potential already in second order, when all gluons are neglected. There is a question if this approach produces also color van der Waals forces between heavy quarkonia and of what kind. This article shows that such forces do exist and estimates their strength, with the result that they are on the border of exclusion in naive approach, while more advanced calculation is possible ...

  12. The continuous measurement of the springboard reaction force in gymnastic vaulting. (United States)

    Sano, Shinya; Ikegami, Yasuo; Nunome, Hiroyuki; Apriantono, Tommy; Sakurai, Shinji


    A new method was established for the continuous measurement of force applied from a springboard to a gymnast in vaulting (board reaction force). Male gymnasts performed a handspring vault using a springboard mounted on force platforms. A high-speed video camera sampled the springboard motion at 500 Hz. The springboard was initially partitioned into 29 segments. The force due to the accelerative motion of the springboard was determined by summing the forces of the individual segments. The board reaction force acting on the gymnast was calculated by subtracting the force due to the accelerative motion of the springboard and weight from the force recorded by the force platform. The new method succeeded in illustrating transient changes of the board reaction force. The horizontal and vertical components of the peak values of the board reaction force were three and two times greater respectively than the average values. A series of tests was conducted to determine whether the number of segments of the springboard model could be reduced without affecting accuracy. A model consisting of only four segments produced almost the same accuracy as the 29-segment model. The simplified model is recommended as a more efficient method to measure board reaction force.

  13. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)


    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  14. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.


    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  15. Dynamo action in dissipative, forced, rotating MHD turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, John V. [Astromaterials Research Office, NASA Johnson Space Center, Houston, Texas 77058-3696 (United States)


    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  16. Combining configurational energies and forces for molecular force field optimization (United States)

    Vlcek, Lukas; Sun, Weiwei; Kent, Paul R. C.


    While quantum chemical simulations have been increasingly used as an invaluable source of information for atomistic model development, the high computational expenses typically associated with these techniques often limit thorough sampling of the systems of interest. It is therefore of great practical importance to use all available information as efficiently as possible, and in a way that allows for consistent addition of constraints that may be provided by macroscopic experiments. Here we propose a simple approach that combines information from configurational energies and forces generated in a molecular dynamics simulation to increase the effective number of samples. Subsequently, this information is used to optimize a molecular force field by minimizing the statistical distance similarity metric. We illustrate the methodology on an example of a trajectory of configurations generated in equilibrium molecular dynamics simulations of argon and water and compare the results with those based on the force matching method.

  17. Force systems in the initial phase of orthodontic treatment -- a comparison of different leveling arch wires. (United States)

    Fuck, Lars-Michael; Drescher, Dieter


    The determination of orthodontically-effective forces and moments places great demands on the technical equipment. Many patients report severe pain after fixed appliance insertion. Since it is assumed that pain from orthodontic appliances is associated with the force and moment levels applied to the teeth and since the occurrence of root resorption is a common therapeutic side effect, it would seem important to know the actual magnitudes of the components of the active orthodontic force systems. The aim of the present study was therefore to measure initial force systems produced by different leveling arch-wires in a complete multi-bracket appliance and to assess whether force and moment levels can be regarded as biologically acceptable or not. The actual bracket position in 42 patients was transferred onto a measurement model. Forces and moments produced by a super-elastic nickel-titanium (NiTi) archwire, a 6-strand stainless steel archwire, and a 7-strand super-elastic NiTi archwire were determined experimentally on different teeth. Average forces and moments produced by the super-elastic NiTi arch wires were found to be the highest. In spite if their larger diameter, the stranded arch wires' average force and moment levels were lower, especially that of the stranded super-elastic archwire. Nevertheless, maximum force levels sometimes exceeded recommended values in the literature and must be considered as too high. The measured arch wires' initial force systems differed significantly depending on the type of archwire and its material structure. Stranded arch wires produced lower force and moment levels, and we recommend their use in the initial phase of orthodontic treatment.

  18. Forces in electromagnetic field and gravitational field


    Weng, Zihua


    The force can be defined from the linear momentum in the gravitational field and electromagnetic field. But this definition can not cover the gradient of energy. In the paper, the force will be defined from the energy and torque in a new way, which involves the gravitational force, electromagnetic force, inertial force, gradient of energy, and some other new force terms etc. One of these new force terms can be used to explain why the solar wind varies velocity along the magnetic force line in...

  19. Ultrastable atomic force microscopy: improved force and positional stability. (United States)

    Churnside, Allison B; Perkins, Thomas T


    Atomic force microscopy (AFM) is an exciting technique for biophysical studies of single molecules, but its usefulness is limited by instrumental drift. We dramatically reduced positional drift by adding two lasers to track and thereby actively stabilize the tip and the surface. These lasers also enabled label-free optical images that were spatially aligned to the tip position. Finally, sub-pN force stability over 100 s was achieved by removing the gold coating from soft cantilevers. These enhancements to AFM instrumentation can immediately benefit research in biophysics and nanoscience. Published by Elsevier B.V.

  20. Biochemical degradation treats produced water

    Energy Technology Data Exchange (ETDEWEB)



    In Colombia, Kelt Oil Co. employs a lined, reed-based, root-zone filtering system to remove contaminants from water produced with crude oil. The roots of the reeds absorb the contaminants. The treated water is then used for agriculture. Kelt has operated te system for over 1 year near Trinidad, in the Casanare district of eastern Colombia. After 1 year, the system removed 90% of the phenol compounds. It expects 3 years will be required for the system to achieve full efficiency.

  1. Producing biofuels using polyketide synthases (United States)

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D


    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  2. Fatty acid-producing hosts (United States)

    Pfleger, Brian F; Lennen, Rebecca M


    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at C. Methods of producing a fatty acid product comprising culturing such hosts at C. are also described.

  3. Mutation in Aldosterone Producing Adenoma

    Directory of Open Access Journals (Sweden)

    Jian-Jhong Wang


    Full Text Available Discoveries of somatic mutations permit the recognition of subtypes of aldosterone-producing adenomas (APAs with distinct clinical presentations and pathological features. Catenin β1 (CTNNB1 mutation in APAs has been recently described and discussed in the literature. However, significant knowledge gaps still remain regarding the prevalence, clinical characteristics, pathophysiology, and outcomes in APA patients harboring CTNNB1 mutations. Aberrant activation of the Wnt/β-catenin signaling pathway will further modulate tumorigenesis. We also discuss the recent knowledge of CTNNB1 mutation in adrenal adenomas.

  4. Producing The New Regressive Left

    DEFF Research Database (Denmark)

    Crone, Christine

    to be a committed artist, and how that translates into supporting al-Assad’s rule in Syria; the Ramadan programme Harrir Aqlak’s attempt to relaunch an intellectual renaissance and to promote religious pluralism; and finally, al-Mayadeen’s cooperation with the pan-Latin American TV station TeleSur and its ambitions...... becomes clear from the analytical chapters is the emergence of the new cross-ideological alliance of The New Regressive Left. This emerging coalition between Shia Muslims, religious minorities, parts of the Arab Left, secular cultural producers, and the remnants of the political,strategic resistance...

  5. Climate hypersensitivity to solar forcing?

    Directory of Open Access Journals (Sweden)

    W. Soon


    Full Text Available We compare the equilibrium climate responses of a quasi-dynamical energy balance model to radiative forcing by equivalent changes in CO2, solar total irradiance (Stot and solar UV (SUV. The response is largest in the SUV case, in which the imposed UV radiative forcing is preferentially absorbed in the layer above 250 mb, in contrast to the weak response from global-columnar radiative loading by increases in CO2 or Stot. The hypersensitive response of the climate system to solar UV forcing is caused by strongly coupled feedback involving vertical static stability, tropical thick cirrus ice clouds and stratospheric ozone. This mechanism offers a plausible explanation of the apparent hypersensitivity of climate to solar forcing, as suggested by analyses of recent climatic records. The model hypersensitivity strongly depends on climate parameters, especially cloud radiative properties, but is effective for arguably realistic values of these parameters. The proposed solar forcing mechanism should be further confirmed using other models (e.g., general circulation models that may better capture radiative and dynamical couplings of the troposphere and stratosphere.Key words: Meteorology and atmospheric dynamics (climatology · general or miscellaneous · Solar physics · astrophysics · and astronomy (ultraviolet emissions

  6. Atomic Force Microscopy for DNA SNP Identification (United States)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  7. Avoiding numerical pitfalls in social force models (United States)

    Köster, Gerta; Treml, Franz; Gödel, Marion


    The social force model of Helbing and Molnár is one of the best known approaches to simulate pedestrian motion, a collective phenomenon with nonlinear dynamics. It is based on the idea that the Newtonian laws of motion mostly carry over to pedestrian motion so that human trajectories can be computed by solving a set of ordinary differential equations for velocity and acceleration. The beauty and simplicity of this ansatz are strong reasons for its wide spread. However, the numerical implementation is not without pitfalls. Oscillations, collisions, and instabilities occur even for very small step sizes. Classic solution ideas from molecular dynamics do not apply to the problem because the system is not Hamiltonian despite its source of inspiration. Looking at the model through the eyes of a mathematician, however, we realize that the right hand side of the differential equation is nondifferentiable and even discontinuous at critical locations. This produces undesirable behavior in the exact solution and, at best, severe loss of accuracy in efficient numerical schemes even in short range simulations. We suggest a very simple mollified version of the social force model that conserves the desired dynamic properties of the original many-body system but elegantly and cost efficiently resolves several of the issues concerning stability and numerical resolution.

  8. Microfluidics, Chromatography, and Atomic-Force Microscopy (United States)

    Anderson, Mark


    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  9. G8 Regional Security Governance through Sanctions and Force

    Directory of Open Access Journals (Sweden)

    John Kirton


    Full Text Available Why do the Group of Eight (G8 members approve its members’ use of material sanctions in some regional conflicts but military force in others?2 As an informal security institution composed of major democratic powers from North America, Europe and Asia, the G8 has often chosen sanctions, notably on Iran in 1980, Afghanistan in 1980, Sudan in 2004, North Korea in 2006, and Syria in 2011. It has increasingly chosen military force, notably in Iraq in 1990, Kosovo in 1999, the USSR over Afghanistan in 2001, Libya in 2011, and Mali in 2013. Yet the G8’s choice, initiation, commitment, compliance, implementation and effectiveness of both sanctions and force has varied. Force was chosen and used effectively only in the post cold war period, primarily where the target was close to southern Europe. A high relative-capability predominance of G8 members over the target country strongly produces the G8’s choice of force, but a high, direct, deadly threat from the target state to G8 countries does not. Geographic proximity and the connectivity coming from the former colonial relationship between G8 members and the target country only weakly cause the G8 to choose force. Support from the most relevant regional organization – the North Atlantic Treaty Organization – and support from the United Nations in the form of an authorizing UN Security Council or General Assembly resolution have a strong, positive effect on the G8’s choice of force. Accompanying accountability mechanisms from the G8 itself have a variable impact, as leaders’ iteration of the issue at subsequent summits does not increase compliance with G8 commitments on force-related cases, but their foreign ministers’ follow up does to a substantial degree.

  10. Optical Near-field Interactions and Forces for Optoelectronic Devices (United States)

    Kohoutek, John Michael

    Throughout history, as a particle view of the universe began to take shape, scientists began to realize that these particles were attracted to each other and hence came up with theories, both analytical and empirical in nature, to explain their interaction. The interaction pair potential (empirical) and electromagnetics (analytical) theories, both help to explain not only the interaction between the basic constituents of matter, such as atoms and molecules, but also between macroscopic objects, such as two surfaces in close proximity. The electrostatic force, optical force, and Casimir force can be categorized as such forces. A surface plasmon (SP) is a collective motion of electrons generated by light at the interface between two mediums of opposite signs of dielectric susceptibility (e.g. metal and dielectric). Recently, surface plasmon resonance (SPR) has been exploited in many areas through the use of tiny antennas that work on similar principles as radio frequency (RF) antennas in optoelectronic devices. These antennas can produce a very high gradient in the electric field thereby leading to an optical force, similar in concept to the surface forces discussed above. The Atomic Force Microscope (AFM) was introduced in the 1980s at IBM. Here we report on its uses in measuring these aforementioned forces and fields, as well as actively modulating and manipulating multiple optoelectronic devices. We have shown that it is possible to change the far field radiation pattern of an optical antenna-integrated device through modification of the near-field of the device. This modification is possible through change of the local refractive index or reflectivity of the "hot spot" of the device, either mechanically or optically. Finally, we have shown how a mechanically active device can be used to detect light with high gain and low noise at room temperature. It is the aim of several of these integrated and future devices to be used for applications in molecular sensing

  11. Simulated 2050 aviation radiative forcing from contrails and aerosols

    Directory of Open Access Journals (Sweden)

    C.-C. Chen


    Full Text Available The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5 in the present (2006 and the future (through 2050. Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m−2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as −160 mW m−2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  12. Mapping Muscles Activation to Force Perception during Unloading.

    Directory of Open Access Journals (Sweden)

    Simone Toma

    Full Text Available It has been largely proved that while judging a force humans mainly rely on the motor commands produced to interact with that force (i.e., sense of effort. Despite of a large bulk of previous investigations interested in understanding the contributions of the descending and ascending signals in force perception, very few attempts have been made to link a measure of neural output (i.e., EMG to the psychophysical performance. Indeed, the amount of correlation between EMG activity and perceptual decisions can be interpreted as an estimate of the contribution of central signals involved in the sensation of force. In this study we investigated this correlation by measuring the muscular activity of eight arm muscles while participants performed a quasi-isometric force detection task. Here we showed a method to quantitatively describe muscular activity ("muscle-metric function" that was directly comparable to the description of the participants' psychophysical decisions about the stimulus force. We observed that under our experimental conditions, muscle-metric absolute thresholds and the shape of the muscle-metric curves were closely related to those provided by the psychophysics. In fact a global measure of the muscles considered was able to predict approximately 60% of the perceptual decisions total variance. Moreover the inter-subjects differences in psychophysical sensitivity showed high correlation with both participants' muscles sensitivity and participants' joint torques. Overall, our findings gave insights into both the role played by the corticospinal motor commands while performing a force detection task and the influence of the gravitational muscular torque on the estimation of vertical forces.

  13. Dual-axis MEMS force sensors for gecko adhesion studies (United States)

    Hill, Ginel Corina

    Dual-axis piezoresistive microelectromechanical systems (MEMS) force sensors were used to investigate the effects of orientation angle on the adhesion of gecko hairs, called setae. These hairs are part of a fantastic, robust dry adhesive. Their adhesion is highly angle-dependent, with both the "pitch" and "roll" orientation angles playing a role. This anisotropy in adhesion properties is critical for locomotion, as it enables detachment of the gecko's foot with limited pull-off force. Many synthetic mimics of the gecko adhesive are isotropic. This work on the anisotropy of natural setae will inform future work on synthetic dry adhesives. A dual-axis microscale force sensor was needed to study single seta adhesive forces, which are stronger parallel to a substrate than perpendicular. Piezoresistive silicon cantilevers that separately detect lateral and normal forces applied at the tip were used. The fabrication process and rigorous characterization of new devices are reported. A novel calibration method was developed that uses resonant frequency measurements in concert with finite element models to correct for the expected variability of critical dimensions. These corrected models were used to predict the stiffnesses of each cantilever, and thus improve the accuracy of force measurements made with these sensors. This calibration technique was also validated by direct measurement of the dual-axis cantilever stiffnesses using a reference cantilever. The adhesion force of a single gecko seta is dramatically enhanced by proper orientation. The dual-axis cantilevers were used to measure two components of force between a substrate and a Gekko gecko seta. Lateral adhesion was highest with the stalk oriented parallel to the surface at 0° pitch. Adhesion decreased smoothly as the pitch angle of the stalk was increased, until detachment or no adhesion occurred at approximately 30°. To display enhanced adhesion, the splayed tuft at the end of the seta needed to be only

  14. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  15. User-Producer Interaction as a Driver of Innovation

    DEFF Research Database (Denmark)

    Laursen, Keld


    While drawing on theories of distributed innovation and search, we conjecture that because a lot of important knowledge can only be obtained through the use of a product, the use of customer knowledge is beneficial for firms’ innovative performance. However, the use of customer knowledge also has...... among other sources of innovation: If firms search more broadly among several sources of innovation, they are much more likely to enjoy the benefits of customer knowledge, while avoiding important negative aspects. Overall, we find empirical support for these conjectures....... an important downside as customers may often be conservative (for many good reasons), forcing producer firms to search for new solutions along established paths, while shying away from truly new and promising opportunities. In this paper these two forces are reconciled through an argument stating...

  16. Force spectroscopy in studying infection

    CERN Document Server

    Zhou, Zhaokun


    Biophysical force spectroscopy tools - for example optical tweezers, magnetic tweezers, atomic force microscopy, - have been used to study elastic, mechanical, conformational and dynamic properties of single biological specimens from single proteins to whole cells to reveal information not accessible by ensemble average methods such as X-ray crystallography, mass spectroscopy, gel electrophoresis and so on. Here we review the application of these tools on a range of infection-related questions from antibody-inhibited protein processivity to virus-cell adhesion. In each case we focus on how the instrumental design tailored to the biological system in question translates into the functionality suitable for that particular study. The unique insights that force spectroscopy has gained to complement knowledge learned through population averaging techniques in interrogating biomolecular details prove to be instrumental in therapeutic innovations such as those in structure-based drug design.


    Directory of Open Access Journals (Sweden)

    Ioana Olariu


    Full Text Available Building an effective sales force starts with selecting good salespeople, but good salespeople are very difficult to find. The reason for this is that most sales jobs are very demanding and require a great deal from the salesperson. There are many different types of sales jobs. Before it can hire salespeople, each company must do a careful job analysis to see what particular types of selling and other skills are necessary for each sales job. One task of the market planner is to establish clear objectives each year for the entire sales force, for each region, each sales office, and each salesperson. Sales jobs are different from in-house jobs in some significant ways. Nevertheless, each company must continually work on building and maintaining an effective sales force using the following steps: recruitment, selection, training, compensation and evaluation of each salesperson.

  18. The theory of intermolecular forces

    CERN Document Server

    Stone, Anthony J


    The theory of intermolecular forces has advanced very greatly in recent years. It has become possible to carry out accurate calculations of intermolecular forces for molecules of useful size, and to apply the results to important practical applications such as understanding protein structure and function, and predicting the structures of molecular crystals. The Theory of Intermolecular Forces sets out the mathematical techniques that are needed to describe and calculate intermolecular interactions and to handle the more elaborate mathematical models. It describes the methods that are used to calculate them, including recent developments in the use of density functional theory and symmetry-adapted perturbation theory. The use of higher-rank multipole moments to describe electrostatic interactions is explained in both Cartesian and spherical tensor formalism, and methods that avoid the multipole expansion are also discussed. Modern ab initio perturbation theory methods for the calculation of intermolecular inte...

  19. Transversal light forces in semiconductors

    CERN Document Server

    Lindberg, M


    The transversal light force is a well established effect in atomic and molecular systems that are exposed to spatially inhomogeneous light fields. In this paper it is shown theoretically that in an excited semiconductor, containing an electron-hole plasma or excitons, a similar light force exists, if the semiconductor is exposed to an ultrashort spatially inhomogeneous light field. The analysis is based on the equations of motion for the Wigner distribution functions of charge carrier populations and interband polarizations. The results show that, while the light force on the electron-hole plasma or the excitons does exist, its effects on the kinetic behaviour of the electron-hole plasma or the excitons are different compared to the situation in an atomic or molecular system. A detailed analysis presented here traces this difference back to the principal differences between atoms and molecules on the one hand and electron-hole plasmas or excitons on the other hand.

  20. Atomic force microscopy and direct surface force measurements

    NARCIS (Netherlands)

    Ralston, J.; Larson, I.; Rutland, M.; Feiler, A.; Kleijn, J.M.


    The atomic force microscope (AFM) is designed to provide high-resolution (in the ideal case, atomic) topographical analysis, applicable to both conducting and nonconducting surfaces. The basic imaging principle is very simple: a sample attached to a piezoelectric positioner is rastered beneath a

  1. Development of isometric force and force control in children

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.


    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  2. Development of isometric force and force control in children.

    NARCIS (Netherlands)

    Smits-Engelsman, B.C.M.; Westenberg, Y.; Duysens, J.E.J.


    Fifty-six children between 5 and 12 years of age and 15 adults performed a task (pressing on a lever with the index finger of the preferred hand), in which a force had to be maintained constant at five levels with on-line visual feedback. Since this is a simple isometric task, the hypothesis is that

  3. High-speed atomic force microscopy: imaging and force spectroscopy. (United States)

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon


    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. [Preliminary study on force feedback of acupuncture in virtual reality based on the visible human]. (United States)

    Cheng, Zhuo; Wang, Hai-sheng; Min, You-jiang; Yan, Zhen-guo; Hong, Z Tan; Zhuang, Tian-ge


    This paper discusses the application of virtual reality technology in the 3-D visible human body and acupuncture research. Based on the 3-D visible human fused with the localization information and hierarchy of acupoints, the paper analyzes the force against the needle and haptic rendering during the needle manipulation according to the physical properties of different tissues. A haptic model is constructed to demonstrate the force behaviors during acupuncture, and the force will be produced and passed to the manipulator by a force feedback device. It enriches the contents of 3-D visible human project, provides a dynamic simulation instrument for acupuncture teaching, and supplies a platform for acupuncture research.

  5. Systems and methods of detecting force and stress using tetrapod nanocrystal (United States)

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul


    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  6. Wave Forces on Crown Walls

    DEFF Research Database (Denmark)

    Pedersen, Jan; Burcharth, H. F.


    This paper presents some of the results from a large parametric laboratory study including more than 200 long-duration model tests. The study addresses both the wave forces imposed on the breakwater crown wall as well as the performance of the structure in reducing the wave overtopping. The testing...... programme includes variations of the sea state parameters and of the geometrical configuration of the breakwater and crown wall. Basic relations between forces/overtopping and the varied parameters are examined and preliminary design guidelines for structures within the tested range of variations...

  7. Radiohumeral stability to forced translation

    DEFF Research Database (Denmark)

    Jensen, Steen Lund; Olsen, Bo Sanderhoff; Seki, Atsuhito


    Radiohumeral stability to forced translation was experimentally analyzed in 8 osteocartilaginous joint preparations. The joints were dislocated in 8 centrifugal directions at 12 different combinations of joint flexion and rotation while a constant joint compression force of 23 N was applied...... did not. In supination, the greatest stability was observed for anteromedial dislocations, in neutral rotation for posteromedial dislocations, and in pronation for posterolateral dislocations. The findings from this study indicate systematic variations in wall height around the radial head concavity...... as well as individual variations in joint constraint. This may have implications for the treatment of conditions involving radiohumeral joint dislocation....

  8. Archimedes Force on Casimir Apparatus

    CERN Document Server

    Shevchenko, Vladimir


    We address a problem of Casimir apparatus in dense medium and weak gravitational field. The falling of the apparatus has to be governed by the equivalence principle, with proper account for contributions to the weight of the apparatus from its material part and from distorted quantum fields. We discuss general expression for the corresponding force in metric with cylindrical symmetry. By way of example we compute explicit expression for Archimedes force, acting on the Casimir apparatus of finite size, immersed into thermal bath of free scalar field. It is shown that besides universal term, proportional to the volume of the apparatus, there are non-universal quantum corrections, depending on the boundary conditions.

  9. Magnetic Force Microscopy in Liquids. (United States)

    Ares, Pablo; Jaafar, Miriam; Gil, Adriana; Gómez-Herrero, Julio; Asenjo, Agustina


    In this work, the use of magnetic force microscopy (MFM) to acquire images of magnetic nanostructures in liquid environments is presented. Optimization of the MFM signal acquisition in liquid media is performed and it is applied to characterize the magnetic signal of magnetite nanoparticles. The ability for detecting magnetic nanostructures along with the well-known capabilities of atomic force microscopy in liquids suggests potential applications in fields such as nanomedicine, nanobiotechnology, or nanocatalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ponderomotive Force in the Presence of Electric Fields (United States)

    Khazanov, G. V.; Krivorutsky, E. N.


    This paper presents averaged equations of particle motion in an electromagnetic wave of arbitrary frequency with its wave vector directed along the ambient magnetic field. The particle is also subjected to an E cross B drift and a background electric field slowly changing in space and acting along the magnetic field line. The fields, wave amplitude, and the wave vector depend on the coordinate along the magnetic field line. The derivations of the ponderomotive forces are done by assuming that the drift velocity in the ambient magnetic field is comparable to the particle velocity. Such a scenario leads to new ponderomotive forces, dependent on the wave magnetic field intensity, and, as a result, to the additional energy exchange between the wave and the plasma particles. It is found that the parallel electric field can lead to the change of the particle-wave energy exchange rate comparable to that produced by the previously discussed ponderomotive forces.

  11. A Bimorph Moment/Force Actuator for Dynamic Testing

    Directory of Open Access Journals (Sweden)

    Hou Xiaoyan


    Full Text Available This paper focuses on a novel bimorph actuator which can produce pure moment or pure force to structures under testing. Due to its unique construction, this actuator is only sensitive to one translational and one rotational degree of freedom (DOF, which can be further decoupled from each other through controlling the phase of the excitation voltage supplied to the actuator. To correlate the input electrical voltage with the output moment (or force, angular velocity, linear velocity, rotational (or translational conversion functions are defined and then numerically determined. Compared with conventional twin-shaker setup to generate moment, the bimorph actuator is simple, compact, light-weight, effective and cheap. When generating moment, the usually-existing unwanted force excitation is avoided. The working frequency range of the actuator is much wider and the loading effect is greatly reduced.

  12. Modelling vertical human walking forces using self-sustained oscillator (United States)

    Kumar, Prakash; Kumar, Anil; Racic, Vitomir; Erlicher, Silvano


    This paper proposes a model of a self-sustained oscillator which can generate reliably the vertical contact force between the feet of a healthy pedestrian and the supporting flat rigid surface. The model is motivated by the self-sustained nature of the walking process, i.e. a pedestrian generates the required inner energy to sustain its repetitive body motion. The derived model is a fusion of the well-known Rayleigh, Van der Pol and Duffing oscillators. Some additional nonlinear terms are added to produce both the odd and even harmonics observed in the experimentally measured force data. The model parameters were derived from force records due to twelve pedestrians walking on an instrumented treadmill at ten speeds using a linear least square technique. The stability analysis was performed using the energy balance method and perturbation method. The results obtained from the model show a good agreement with the experimental results.

  13. An analysis of force-reduced toroidal magnets

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J.L.; Amm, B.C.; Schwartz, J. [Univ. of Illinois, Urbana, IL (United States)


    Superconductors alleviate the problem of Joule losses in electromagnetic devices, but an upper limit on large-scale electromagnets remains the difficulty in supporting the Lorentz forces within such a magnet. The problem is magnified if the materials are brittle, such as a ceramic superconductor. Recently, the authors discussed a possible solution to this problem: electromagnets with a force-reduced winding. Producing such a phenomenon may greatly reduce the size and support needed. Force-free finite geometries are not possible due to the limits of the Virial theorem, but present-day magnet support masses are up to an order of magnitude greater than the Virial limit. Here the authors present results from finite element calculations indicating that this design offers substantial improvement over conventional approaches.

  14. Selective effects of arm proximal and distal muscles fatigue on force coordination in manipulation tasks. (United States)

    Emge, Nicholas; Uygur, Mehmet; Radivoj, Mandic; Kaminski, Thomas W; Royer, Todd; Jaric, Slobodan


    Effects of muscle fatigue on force coordination and task performance of various manipulation tasks are explored. Grip force (GF; normal force component acting at the digits-object contact area) and load force (LF; tangential component that lifts and holds objects) were recorded prior to and after fatiguing the distal (DAM; i.e., GF producing) and proximal arm muscles (PAM; LF producing). Results reveal a deterioration of GF scaling (i.e., averaged GF-LF ratio), GF-LF coupling (their correlation), and task performance (ability to exert a prescribed LF pattern) associated with DAM, but not PAM fatigue. Deteriorated force coordination clearly increases the likelihood of dropping an object; however, the observed selective effects of DAM and PAM fatigue represent a novel finding deserving of further research.

  15. A force transmission system based on a tulip-shaped electrostatic clutch for haptic display devices (United States)

    Sasaki, Hikaru; Shikida, Mitsuhiro; Sato, Kazuo


    This paper describes a novel type of force transmission system for haptic display devices. The system consists of an array of end-effecter elements, a force/displacement transmitter and a single actuator producing a large force/displacement. It has tulip-shaped electrostatic clutch devices to distribute the force/displacement from the actuator among the individual end effecters. The specifications of three components were determined to stimulate touched human fingers. The components were fabricated by using micro-electromechanical systems and conventional machining technologies, and finally they were assembled by hand. The performance of the assembled transmission system was experimentally examined and it was confirmed that each projection in the arrayed end effecters could be moved individually. The actuator in a system whose total size was only 3.0 cm × 3.0 cm × 4.0 cm produced a 600 mN force and displaced individual array elements by 18 µm.

  16. How Mobility Systems Produce Inequality

    DEFF Research Database (Denmark)

    Richardson, Tim; Jensen, Ole B.


    This paper explores a crucial aspect of sustainable mobility: the production of social inequality in mobility systems. The approach taken is to focus on how, as new transit infrastructures create alternative ways of traveling in and accessing the city, they create changed conditions for the forma......This paper explores a crucial aspect of sustainable mobility: the production of social inequality in mobility systems. The approach taken is to focus on how, as new transit infrastructures create alternative ways of traveling in and accessing the city, they create changed conditions...... for the formation of subject identities. New types of travellers are realised in the newly engineered spaces of mobility. The paper argues that this focus on these emergent mobile subject types can be useful in investigating the social inequalities that can result from the introduction of new infrastructures...... are constructed and how social inequality is materially produced....


    Energy Technology Data Exchange (ETDEWEB)

    Berezhko, E. G.; Ksenofontov, L. T., E-mail: [Yu. G. Shafer Institute of Cosmophysical Research and Aeronomy, 31 Lenin Avenue, 677891 Yakutsk (Russian Federation)


    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  18. Antiprotons Produced in Supernova Remnants (United States)

    Berezhko, E. G.; Ksenofontov, L. T.


    We present the energy spectrum of an antiproton cosmic ray (CR) component calculated on the basis of the nonlinear kinetic model of CR production in supernova remnants (SNRs). The model includes the reacceleration of antiprotons already existing in the interstellar medium as well as the creation of antiprotons in nuclear collisions of accelerated protons with gas nuclei and their subsequent acceleration by SNR shocks. It is shown that the production of antiprotons in SNRs produces a considerable effect in their resultant energy spectrum, making it essentially flatter above 10 GeV so that the spectrum at TeV energies increases by a factor of 5. The calculated antiproton spectrum is consistent with the PAMELA data, which correspond to energies below 100 GeV. As a consistency check, we have also calculated within the same model the energy spectra of secondary nuclei and show that the measured boron-to-carbon ratio is consistent with the significant SNR contribution.

  19. Reduced-Force Closed Trocar Entry Technique: Analysis of Trocar Insertion Force Using a Mechanical Force Gauge


    Fanning, James; Shah, Manish; Fenton, Bradford


    Background and Objectives: Trocar insertion injury has a high morbidity, mortality, and cost. The purpose of this study was to compare standard trocar entry with our reduced-force closed trocar entry technique by measuring trocar insertion force using a mechanical force gauge. Methods: In the operating room, the force gauge was inserted into a sterile glove and connected to the proximal portion of the trocar to measure insertion force. Through one incision, we used a standard closed trocar en...

  20. Cooperative retraction of bundled type IV pili enables nanonewton force generation.

    Directory of Open Access Journals (Sweden)

    Nicolas Biais


    Full Text Available The causative agent of gonorrhea, Neisseria gonorrhoeae, bears retractable filamentous appendages called type IV pili (Tfp. Tfp are used by many pathogenic and nonpathogenic bacteria to carry out a number of vital functions, including DNA uptake, twitching motility (crawling over surfaces, and attachment to host cells. In N. gonorrhoeae, Tfp binding to epithelial cells and the mechanical forces associated with this binding stimulate signaling cascades and gene expression that enhance infection. Retraction of a single Tfp filament generates forces of 50-100 piconewtons, but nothing is known, thus far, on the retraction force ability of multiple Tfp filaments, even though each bacterium expresses multiple Tfp and multiple bacteria interact during infection. We designed a micropillar assay system to measure Tfp retraction forces. This system consists of an array of force sensors made of elastic pillars that allow quantification of retraction forces from adherent N. gonorrhoeae bacteria. Electron microscopy and fluorescence microscopy were used in combination with this novel assay to assess the structures of Tfp. We show that Tfp can form bundles, which contain up to 8-10 Tfp filaments, that act as coordinated retractable units with forces up to 10 times greater than single filament retraction forces. Furthermore, single filament retraction forces are transient, whereas bundled filaments produce retraction forces that can be sustained. Alterations of noncovalent protein-protein interactions between Tfp can inhibit both bundle formation and high-amplitude retraction forces. Retraction forces build over time through the recruitment and bundling of multiple Tfp that pull cooperatively to generate forces in the nanonewton range. We propose that Tfp retraction can be synchronized through bundling, that Tfp bundle retraction can generate forces in the nanonewton range in vivo, and that such high forces could affect infection.

  1. Annual Report 2009 (Project Air Force) (United States)


    Through 60 years of collaboration, RAND Project AIR FORCE (PAF) has acquired unparalleled insight into Air Force strategy, forces, policy, resources, and manpower. We have developed a body of expertise and intellectual capital and are uniquely poised to provide policy recommendations on critical national security challenges. Working with the Air Force to translate these recommendations into decisions that have

  2. 22 CFR 130.3 - Armed forces. (United States)


    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Armed forces. 130.3 Section 130.3 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS POLITICAL CONTRIBUTIONS, FEES AND COMMISSIONS § 130.3 Armed forces. Armed forces means the army, navy, marine, air force, or coast guard, as...

  3. 77 FR 30875 - Armed Forces Day, 2012 (United States)


    ... Documents#0;#0; ] Proclamation 8823 of May 18, 2012 Armed Forces Day, 2012 By the President of the United... circumstances. On Armed Forces Day, we pay tribute to the unparalleled service of our Armed Forces and recall... Day. I direct the Secretary of Defense on behalf of the Army, Navy, Air Force, and Marine Corps, and...

  4. Wave Forces on Offshore Windturbine Foundations

    DEFF Research Database (Denmark)

    Larsen, Brian Juul; Frigaard, Peter

    The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations.......The present report on the wave forces is the first report on the Borkum Riff project. A testprogramme has been performed to dertermine the wave forces on windturbine foundations....

  5. Constructive consequences of leaders' forcing influence styles

    NARCIS (Netherlands)

    Emans, B.J.M.; Munduate, L; Klaver, E; Van de Vliert, E.

    In contrast to non-forcing influence styles used by leaders, their forcing influence styles are commonly found to be ineffective, evoking sheer resistance, rather than compliance. As a corollary of conglomerate conflict behavior theory, we state that forcing, if combined with non-forcing, may

  6. Force control deficits in individuals with Parkinson's disease, multiple systems atrophy, and progressive supranuclear palsy.

    Directory of Open Access Journals (Sweden)

    Kristina A Neely

    Full Text Available This study examined grip force and cognition in Parkinson's disease (PD, Parkinsonian variant of multiple system atrophy (MSAp, progressive supranuclear palsy (PSP, and healthy controls. PD is characterized by a slower rate of force increase and decrease and the production of abnormally large grip forces. Early-stage PD has difficulty with the rapid contraction and relaxation of hand muscles required for precision gripping. The first goal was to determine which features of grip force are abnormal in MSAp and PSP. The second goal was to determine whether a single variable or a combination of motor and cognitive measures would distinguish patient groups. Since PSP is more cognitively impaired relative to PD and MSAp, we expected that combining motor and cognitive measures would further distinguish PSP from PD and MSAp.We studied 44 participants: 12 PD, 12 MSAp, 8 PSP, and 12 controls. Patients were diagnosed by a movement disorders neurologist and were tested off anti-Parkinsonian medication. Participants completed a visually guided grip force task wherein force pulses were produced for 2 s, followed by 1 s of rest. We also conducted four cognitive tests.PD, MSAp, and PSP were slower at contracting and relaxing force and produced longer pulse durations compared to controls. PSP produced additional force pulses during the task and were more cognitively impaired relative to other groups. A receiver operator characteristic analysis revealed that the combination of number of pulses and Brief Test of Attention (BTA discriminated PSP from PD, MSAp, and controls with a high degree of sensitivity and specificity.Slowness in contracting and relaxing force represent general features of PD, MSAp, and PSP, whereas producing additional force pulses was specific to PSP. Combining motor and cognitive measures provides a robust method for characterizing behavioral features of PSP compared to MSAp and PD.

  7. Coffee Cup Atomic Force Microscopy (United States)

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.


    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  8. [Force platforms, a technological innovation]. (United States)

    Noël, Myriam; Dumez, Kévin; Cool, Gaëlle; Luyat, Marion


    Falls in the elderly constitute a public health issue due to the seriousness of the physical and psychological consequences as well as the resulting financial cost. Static posturography with the help of a force platform helps to guide therapeutic decisions and to rehabilitate patients who have fallen.

  9. Interaction Forces between Lipid Rafts. (United States)

    Kurniawan, James; Ventrici, João; Kittleson, Gregory; Kuhl, Tonya L


    Cellular membranes containing sphingolipids and cholesterol have been shown to self-organize into lipid rafts-specialized domains that host integral membrane proteins and modulate the bioactivity of cells. In this work, force-distance profiles between raft membranes in the liquid-ordered phase consisting of singly unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a complex mixture of brain sphingomyelin (BSM), and cholesterol were measured using the surface force apparatus (SFA). Two distinct force profiles were detected corresponding to uniform raft membranes and raft membranes with a higher level of topological membrane defects (heterogeneous) as corroborated by atomic force microscopy (AFM) scans. In all cases a weak, long-range electrostatic repulsion was observed with some variation in the surface charge density. The variation in electrostatic repulsion was attributed to charged lipid species primarily from the constituent lipids in the BSM mixture. The adhesion between the uniform raft membranes was comparable to our previous work with pure component, liquid-ordered POPC-DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine)-cholesterol membranes. Raft membranes with more topological defects adhered more strongly owing to hydrophobic attraction between exposed acyl chains. Even though the rafts were in the liquid-ordered phase and membrane defects were present in the contact region, the raft membranes were stable, and no structural rearrangement was observed throughout the measurements. Our findings demonstrate that liquid-ordered membranes are stable to mechanical loading and not particularly sensitive to compositional variation.

  10. Forcing Entry into the Nucleus. (United States)

    Lomakin, Alexis; Nader, Guilherme; Piel, Matthieu


    Nuclear pore complexes tightly regulate nucleo-cytoplasmic transport, controlling the nuclear concentration of several transcription factors. In a recent issue of Cell, Elosegui-Artola et al. (2017) show that nuclear deformation modulates the nuclear entry rates of YAP/TAZ via nuclear pore stretching, clarifying how forces affect gene transcription. Copyright © 2017. Published by Elsevier Inc.

  11. Fast evaluation of polarizable forces (United States)

    Wang, Wei; Skeel, Robert D.


    Polarizability is considered to be the single most significant development in the next generation of force fields for biomolecular simulations. However, the self-consistent computation of induced atomic dipoles in a polarizable force field is expensive due to the cost of solving a large dense linear system at each step of a simulation. This article introduces methods that reduce the cost of computing the electrostatic energy and force of a polarizable model from about 7.5 times the cost of computing those of a nonpolarizable model to less than twice the cost. This is probably sufficient for the routine use of polarizable forces in biomolecular simulations. The reduction in computing time is achieved by an efficient implementation of the particle-mesh Ewald method, an accurate and robust predictor based on least-squares fitting, and non-stationary iterative methods whose fast convergence is accelerated by a simple preconditioner. Furthermore, with these methods, the self-consistent approach with a larger timestep is shown to be faster than the extended Lagrangian approach. The use of dipole moments from previous timesteps to calculate an accurate initial guess for iterative methods leads to an energy drift, which can be made acceptably small. The use of a zero initial guess does not lead to perceptible energy drift if a reasonably strict convergence criterion for the iteration is imposed.

  12. Ranking the European armed forces

    NARCIS (Netherlands)

    Beeres, R.J.M.; Bogers, M.


    The degree of collectiveness aimed for in European defence policy raises issues such as burden sharing and relative performance measurement of the European Armed Forces (EAF). This paper compares EAF performance rates on three dimensions: input, throughput and output. In order to express

  13. The Air Force Handbook 2007 (United States)


    Hughes Space (CO); Boeing (FL); Contraves (PA); TRAK Microwave (FL); RT Logic (CO); ADC (MN); ENSCO (FL); Net Acquire (WA); Freescale ...ContrACtor THE AIR FORCE HANDBOOK 2007 Ford Aerospace AIM-9M Sidewinder Freescale Semiconductor Inc Launch & Test Range System (LTRS) GDE

  14. A Qualitative Force Structure Analysis of the Global Mobility Task Force (United States)


    Force GSTF Global Strike Task Force HLSTF Homeland Response Task Force HUMRO Humanitarian Relief Operation ISR Intelligence...Task Force (S&C4ISRTF) 3. Global Strike Task Force ( GSTF ) 4. Global Response Task Force (GRTF) 5. Homeland Security Task Force (HLSTF) 6. Global...enable the “ GSTF and GRTF to deploy and employ rapidly anywhere in the world at any time” (DAF, 2002:16). Therefore, the GMTF has three key

  15. The force on the flex: Global parallelism and portability (United States)

    Jordan, H. F.


    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment.

  16. Tidally-forced flow in a rotating, stratified, shoaling basin (United States)

    Winters, Kraig B.


    Baroclinic flow of a rotating, stratified fluid in a parabolic basin is computed in response to barotropic tidal forcing using the nonlinear, non-hydrostatic, Boussinesq equations of motion. The tidal forcing is derived from an imposed, boundary-enhanced free-surface deflection that advances cyclonically around a central amphidrome. The tidal forcing perturbs a shallow pycnocline, sloshing it up and down over the shoaling bottom. Nonlinearities in the near-shore internal tide produce an azimuthally independent 'set-up' of the isopycnals that in turn drives an approximately geostrophically balanced, cyclonic, near-shore, sub-surface jet. The sub-surface cyclonic jet is an example of a slowly evolving, nearly balanced flow that is excited and maintained solely by forcing in the fast, super-inertial frequency band. Baroclinic instability of the nearly balanced jet and subsequent interactions between eddies produce a weak transfer of energy back into the inertia-gravity band as swirling motions with super-inertial vorticity stir the stratified fluid and spontaneously emit waves. The sub-surface cyclonic jet is similar in many ways to the poleward flows observed along eastern ocean boundaries, particularly the California Undercurrent. It is conjectured that such currents may be driven by the surface tide rather than by winds and/or along-shore pressure gradients.

  17. Force on the flex: global parallelism and portability. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, H.F.


    A parallel programming methodology, called the force, supports the construction of programs to be executed in parallel by an unspecified, but potentially large, number of processes. The methodology was originally developed on a pipelined, shared memory multiprocessor, the Denelcor HEP, and embodies the primitive operations of the force in a set of macros which expand into multiprocessor Fortran code. A small set of primitives is sufficient to write large parallel programs, and the system has been used to produce 10,000 line programs in computational fluid dynamics. The level of complexity of the force primitives is intermediate. It is high enough to mask detailed architectural differences between multiprocessors but low enough to give the user control over performance. The system is being ported to a medium scale multiprocessor, the Flex/32, which is a 20 processor system with a mixture of shared and local memory. Memory organization and the type of processor synchronization supported by the hardware on the two machines lead to some differences in efficient implementations of the force primitives, but the user interface remains the same. An initial implementation was done by retargeting the macros to Flexible Computer Corporation's ConCurrent C language. Subsequently, the macros were caused to directly produce the system calls which form the basis for ConCurrent C. The implementation of the Fortran based system is in step with Flexible Computer Corporations's implementation of a Fortran system in the parallel environment.

  18. Forces and moments generated by the human arm: Variability and control (United States)

    Xu, Y; Terekhov, AV; Latash, ML; Zatsiorsky, VM


    This is an exploratory study of the accurate endpoint force vector production by the human arm in isometric conditions. We formulated three common-sense hypotheses and falsified them in the experiment. The subjects (n=10) exerted static forces on the handle in eight directions in a horizontal plane for 25 seconds. The forces were of 4 magnitude levels (10 %, 20%, 30% and 40% of individual MVC). The torsion moment on the handle (grasp moment) was not specified in the instruction. The two force components and the grasp moment were recorded, and the shoulder, elbow, and wrist joint torques were computed. The following main facts were observed: (a) While the grasp moment was not prescribed by the instruction, it was always produced. The moment magnitude and direction depended on the instructed force magnitude and direction. (b) The within-trial angular variability of the exerted force vector (angular precision) did not depend on the target force magnitude (a small negative correlation was observed). (c) Across the target force directions, the variability of the exerted force magnitude and directional variability exhibited opposite trends: In the directions where the variability of force magnitude was maximal, the directional variability was minimal and vice versa. (d) The time profiles of joint torques in the trials were always positively correlated, even for the force directions where flexion torque was produced at one joint and extension torque was produced at the other joint. (e) The correlations between the grasp moment and the wrist torque were negative across the tasks and positive within the individual trials. (f) In static serial kinematic chains, the pattern of the joint torques distribution could not be explained by an optimization cost function additive with respect to the torques. Plans for several future experiments have been suggested. PMID:23080084

  19. Functional role of muscle reflexes for force generation in the decerebrate walking cat (United States)

    Stein, Richard B; Misiaszek, John E; Pearson, Keir G


    To quantify the importance of reflexes due to muscle length changes in generating force during walking, we studied high decerebrate cats that walked on a treadmill. One leg was denervated except for the triceps surae and a few other selected muscles. The triceps surae muscles are ankle extensor muscles that attach to the Achilles' tendon which was cut and connected to a muscle puller. In some steps the EMG activity triggered the puller to move the muscle through the pattern of length changes that are normally produced by ankle movements in intact cats walking over ground (simulated walking). In other steps the muscles were held isometrically. The EMG and force produced during the two types of steps were compared. On average about 50% more EMG was generated during the E2 part of the simulated stance phase in the triceps surae muscles, but not in other muscles studied.Force was increased significantly over the entire stance phase by about 20%, when muscle stretches simulating walking were applied. However, during much of the stance phase the triceps surae muscles are shortening and so would produce less force. The effect of shortening was assessed in control experiments in which these muscles were stimulated at a constant frequency, either isometrically or during simulated walking movements.By combining data from the walking and control experiments, we estimate that about 35 % of the force produced in the cat ankle extensors during stance is produced by reflexes due to muscle length changes. Other sensory inputs may also contribute to force production, but the total reflex contribution will vary under different conditions of speed, length, loading, task difficulty, etc. Since a substantial percentage of the force in the stance phase of walking is normally produced by muscle reflexes, this force can be continuously adjusted up or down, if the muscles receive extra stretch or unloading during a particular step cycle. PMID:10856129

  20. Fuel oil quality task force

    Energy Technology Data Exchange (ETDEWEB)

    Laisy, J.; Turk, V. [R.W. Beckett Corp., Elyria, OH (United States)


    In April, 1996, the R.W. Beckett Corporation became aware of a series of apparently unrelated symptoms that made the leadership of the company concerned that there could be a fuel oil quality problem. A task force of company employees and industry consultants was convened to address the topic of current No. 2 heating oil quality and its effect on burner performance. The task force studied changes in fuel oil specifications and trends in properties that have occurred over the past few years. Experiments were performed at Beckett and Brookhaven National Laboratory to understand the effect of changes in some fuel oil properties. Studies by other groups were reviewed, and field installations were inspected to gain information about the performance of fuel oil that is currently being used in the U.S. and Canada. There was a special concern about the use of red dye in heating oils and the impact of sulfur levels due to the October, 1993 requirement of low sulfur (<0.05%) for on-highway diesel fuel. The results of the task force`s efforts were published in July, 1996. The primary conclusion of the task force was that there is not a crisis or widespread general problem with fuel oil quality. Localized problems that were seen may have been related to refinery practices and/or non-traditional fuel sources. System cleanliness is very important and the cause of many oil burner system problems. Finally, heating oil quality should get ongoing careful attention by Beckett engineering personnel and heating oil industry groups.

  1. Measuring of beat up force on weaving machines

    Directory of Open Access Journals (Sweden)

    Bílek Martin


    Full Text Available The textile material (warp is stressed cyclically at a relative high frequency during the weaving process. Therefore, the special measuring device for analysis of beat up force in the textile material during the weaving process, has been devised in the Weaving Laboratory of the TUL. This paper includes a description of this measuring device. The experimental part includes measurements results for various materials (PES and VS and various warp thread densities of the produced fabric.

  2. Manual muscle test score and force comparisons after cervical spinal cord injury. (United States)

    Needham-Shropshire, B M; Klose, K J; Tucker, M E; Thomas, C K


    Manual muscle test scores (MMTS) and maximum voluntary contraction (MVC) force measurements were made from triceps brachii muscles of 70 individuals with chronic cervical spinal cord injury (SCI). Both MMTS and strength assessments showed that asymmetrical motor deficits were common. Muscles with MMTS of 3 generated an average of nine percent MVC force produced by control muscles. In this SCI population, little residual voluntary force is apparently needed for triceps brachii to work against gravity. Only 24 percent of muscles tested had this strength, however, indicating the need to develop strategies to alleviate this muscle weakness. MMTS and force were related positively but each MMTS was not associated with a unique force range. MVC force generating capacity is therefore only one factor that determines whether or not a muscle can work with or against gravity and against resistance.

  3. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy (United States)

    Guo, Ming; Ehrlicher, Allen J.; Jensen, Mikkel H.; Renz, Malte; Moore, Jeffrey R.; Goldman, Robert D.; Lippincott-Schwartz, Jennifer; Mackintosh, Frederick C.; Weitz, David A.


    SUMMARY Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, non-thermal motion. Here we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states. PMID:25126787

  4. Weight-specific anticipatory coding of grip force in human dorsal premotor cortex

    DEFF Research Database (Denmark)

    van Nuenen, Bart F L; Kuhtz-Buschbeck, Johann; Schulz, Christian


    ). An additional pre-cue (S1) correctly predicted the weight in 75% of the trials. Participants were asked to use this prior information to prepare for the lift. In the sham condition, grip force showed a consistent undershoot, if the S1 incorrectly prompted the preparation of a light lift. Likewise, an S1...... that falsely announced a heavy weight produced a consistent overshoot in grip force. In trials with incorrect S1, preparatory activity in left PMd during the S1-S2 delay period predicted grip force undershoot but not overshoot. Real cTBS selectively abolished this undershoot in grip force. Furthermore......, preparatory S1-S2 activity in left PMd no longer predicted the individual undershoot after real cTBS. Our results provide converging evidence for a causal involvement of PMd in anticipatory downscaling but not upscaling of grip force, suggesting an inhibitory role of PMd in anticipatory grip force control...

  5. Hydrodynamic Instabilities Produced by Evaporation (United States)

    Romo-Cruz, Julio Cesar Ruben; Hernandez-Zapata, Sergio; Ruiz-Chavarria, Gerardo


    When a liquid layer (alcohol in the present work) is in an environment where its relative humidity is less than 100 percent evaporation appears. When RH is above a certain threshold the liquid is at rest. If RH decreases below this threshold the flow becomes unstable, and hydrodynamic cells develop. The aim of this work is to understand the formation of those cells and its main features. Firstly, we investigate how the cell size depends on the layer width. We also study how temperature depends on the vertical coordinate when the cells are present. An inverse temperature gradient is found, that is, the bottom of liquid layer is colder than the free surface. This shows that the intuitive idea that the cells are due to a direct temperature gradient, following a Marangoni-like process, does not work. We propose the hypothesis that the evaporation produce a pressure gradient that is responsible of the cell development. On the other hand, using a Schlieren technique we study the topography of the free surface when cells are present. Finally the alcohol vapor layer adjacent to the liquid surface is explored using scattering experiments, giving some insight on the plausibility of the hypothesis described previously. Authors acknowledge support by DGAPA-UNAM under project IN116312 ``Vorticidad y ondas no lineales en fluidos.''

  6. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios


    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  7. Human kidney pericytes produce renin. (United States)

    Stefanska, Ania; Kenyon, Christopher; Christian, Helen C; Buckley, Charlotte; Shaw, Isaac; Mullins, John J; Péault, Bruno


    Pericytes, perivascular cells embedded in the microvascular wall, are crucial for vascular homeostasis. These cells also play diverse roles in tissue development and regeneration as multi-lineage progenitors, immunomodulatory cells and as sources of trophic factors. Here, we establish that pericytes are renin producing cells in the human kidney. Renin was localized by immunohistochemistry in CD146 and NG2 expressing pericytes, surrounding juxtaglomerular and afferent arterioles. Similar to pericytes from other organs, CD146(+)CD34(-)CD45(-)CD56(-) renal fetal pericytes, sorted by flow cytometry, exhibited tri-lineage mesodermal differentiation potential in vitro. Additionally, renin expression was triggered in cultured kidney pericytes by cyclic AMP as confirmed by immuno-electron microscopy, and secretion of enzymatically functional renin, capable of generating angiotensin I. Pericytes derived from second trimester human placenta also expressed renin in an inducible fashion although the renin activity was much lower than in renal pericytes. Thus, our results confirm and extend the recently discovered developmental plasticity of microvascular pericytes, and may open new perspectives to the therapeutic regulation of the renin-angiotensin system. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  8. Scrambled eggs: mechanical forces as ecological factors in early development. (United States)

    Moore, Steven W


    Many ecological interactions involve, at some level, mechanical forces and the movements or structural deformations they produce. Although the most familiar examples involve the functional morphology of adult structures, all life history stages (not just the adults) are subject to the laws of physics. Moreover, the success of every lineage depends on the success of every life history stage (again, not just the adults). Therefore, insights gained by using mechanical engineering principles and techniques to study ecological interactions between gametes, embryos, larvae, and their environment are essential to a well-rounded understanding of development, ecology, and evolution. Here I draw on examples from the literature and my own research to illustrate ways in which mechanical forces in the environment shape development. These include mechanical forces acting as selective factors (e.g., when coral gamete size and shape interact with turbulent water flow to determine fertilization success) and as developmental cues (e.g., when plant growth responds to gravity or bone growth responds to mechanical loading). I also examine the opposite cause-and-effect relationship by considering examples in which the development of organisms impacts ecologically relevant mechanical forces. Finally, I discuss the potential for ecological pattern formation as a result of feedback loops created by such bidirectional interactions between developmental processes and mechanical forces in the environment.

  9. Jump Shrug Height and Landing Forces Across Various Loads. (United States)

    Suchomel, Timothy J; Taber, Christopher B; Wright, Glenn A


    The purpose of this study was to examine the effect that load has on the mechanics of the jump shrug. Fifteen track and field and club/intramural athletes (age 21.7 ± 1.3 y, height 180.9 ± 6.6 cm, body mass 84.7 ± 13.2 kg, 1-repetition-maximum (1RM) hang power clean 109.1 ± 17.2 kg) performed repetitions of the jump shrug at 30%, 45%, 65%, and 80% of their 1RM hang power clean. Jump height, peak landing force, and potential energy of the system at jump-shrug apex were compared between loads using a series of 1-way repeated-measures ANOVAs. Statistical differences in jump height (P .05). The greatest magnitudes of jump height, peak landing force, and potential energy of the system at the apex of the jump shrug occurred at 30% 1RM hang power clean and decreased as the external load increased from 45% to 80% 1RM hang power clean. Relationships between peak landing force and potential energy of the system at jump-shrug apex indicate that the landing forces produced during the jump shrug may be due to the landing strategy used by the athletes, especially at lighter loads. Practitioners may prescribe heavier loads during the jump-shrug exercise without viewing landing force as a potential limitation.

  10. Influence of temperature and salinity on hydrodynamic forces

    Directory of Open Access Journals (Sweden)

    A. Escobar


    Full Text Available The purpose of this study is to introduce an innovative approach to offshore engineering so as to take variations in sea temperature and salinity into account in the calculation of hydrodynamic forces. With this in mind, a thorough critical analysis of the influence of sea temperature and salinity on hydrodynamic forces on piles like those used nowadays in offshore wind farms will be carried out. This influence on hydrodynamic forces occurs through a change in water density and viscosity due to temperature and salinity variation. Therefore, the aim here is to observe whether models currently used to estimate wave forces on piles are valid for different ranges of sea temperature and salinity apart from observing the limit when diffraction or nonlinear effects arise combining both effects with the magnitude of the pile diameter. Hence, specific software has been developed to simulate equations in fluid mechanics taking into account nonlinear and diffraction effects. This software enables wave produced forces on a cylinder supported on the sea bed to be calculated. The study includes observations on the calculation model's sensitivity as to a variation in the cylinder's diameter, on the one hand and, on the other, as to temperature and salinity variation. This software will enable an iterative calculation to be made for finding out the shape the pressure wave caused when a wave passes over will have for different pile diameters and water with different temperature and salinity.

  11. Force 2025 and Beyond Strategic Force Design Analytic Model (United States)


    type has characteristics that give it capabilities for completing different tasks, as described in our unit type task list, which is initially derived... initial work in using this type of methodology to construct force design models using a mission-focused, task-based, capability architecture. We... DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response

  12. Keeping Special Forces Special: Regional Proficiency in Special Forces (United States)


    Poole for their support in this project. I would also like to thank the many people (too many to list) who took precious time out of their day to...Soldier may be required to translate documents or listen to intercepted conversations. This education is merely a stepping stone as Special Forces...North Africa (MENA) Algeria Bahrain Egypt Iran (Islamic Republic of) Iraq Israel Jordan Kuwait Lebanon Libyan Arab Jamahiriya Morocco Oman Qatar

  13. Transition from wing to leg forces during landing in birds. (United States)

    Provini, Pauline; Tobalske, Bret W; Crandell, Kristen E; Abourachid, Anick


    Transitions to and from the air are critical for aerial locomotion and likely shaped the evolution of flying animals. Research on take-off demonstrates that legs generate greater body accelerations compared with wings, and thereby contribute more to initial flight velocity. Here, we explored coordination between wings and legs in two species with different wingbeat styles, and quantified force production of these modules during the final phase of landing. We used the same birds that we had previously studied during take-off: zebra finch (Taeniopygia guttata, N=4) and diamond dove (Geopelia cuneata, N=3). We measured kinematics using high-speed video, aerodynamics using particle image velocimetry, and ground-reaction forces using a perch mounted on a force plate. In contrast with the first three wingbeats of take-off, the final four wingbeats during landing featured ~2 times greater force production. Thus, wings contribute proportionally more to changes in velocity during the last phase of landing compared with the initial phase of take-off. The two species touched down at the same velocity (~1 m s(-1)), but they exhibited significant differences in the timing of their final wingbeat relative to touchdown. The ratio of average wing force to peak leg force was greater in diamond doves than in zebra finches. Peak ground reaction forces during landing were ~50% of those during take-off, consistent with the birds being motivated to control landing. Likewise, estimations of mechanical energy flux for both species indicate that wings produce 3-10 times more mechanical work within the final wingbeats of flight compared with the kinetic energy of the body absorbed by legs during ground contact. © 2014. Published by The Company of Biologists Ltd.

  14. Stationary Apparatus Would Apply Forces of Walking to Feet (United States)

    Hauss, Jessica; Wood, John; Budinoff, Jason; Correia, Michael; Albrecht, Rudolf


    A proposed apparatus would apply controlled cyclic forces to both feet for the purpose of preventing the loss of bone density in a human subject whose bones are not subjected daily to the mechanical loads of normal activity in normal Earth gravitation. The apparatus was conceived for use by astronauts on long missions in outer space; it could also be used by bedridden patients on Earth, including patients too weak to generate the necessary forces by their own efforts. The apparatus (see figure) would be a modified version of a bicycle-like exercise machine, called the cycle ergometer with vibration isolation system (CEVIS), now aboard the International Space Station. Attached to each CEVIS pedal would be a computer-controlled stress/ vibration exciter connected to the heel portion of a special-purpose pedal. The user would wear custom shoes that would amount to standard bicycle shoes equipped with cleats for secure attachment of the balls of the feet to the special- purpose pedals. If possible, prior to use of the apparatus, the human subject would wear a portable network of recording accelerometers, while walking, jogging, and running. The information thus gathered would be fed to the computer, wherein it would be used to make the exciters apply forces and vibrations closely approximating the forces and vibrations experienced by that individual during normal exercise. It is anticipated that like the forces applied to bones during natural exercise, these artificial forces would stimulate the production of osteoblasts (bone-forming cells), as needed to prevent or retard loss of bone mass. In addition to helping to prevent deterioration of bones, the apparatus could be used in treating a person already suffering from osteoporosis. For this purpose, the magnitude of the applied forces could be reduced, if necessary, to a level at which weak hip and leg bones would still be stimulated to produce osteoblasts without exposing them to the full stresses of walking and

  15. Observation of Microhollows Produced by Bubble Cloud Cavitation (United States)

    Yamakoshi, Yoshiki; Miwa, Takashi


    When an ultrasonic wave with sound pressure less than the threshold level of bubble destruction irradiates microbubbles, the microbubbles aggregate by an acoustic radiation force and form bubble clouds. The cavitation of bubble clouds produces a large number of microhollows (microdips) on the flow channel wall. In this study, microhollow production by bubble cloud cavitation is evaluated using a blood vessel phantom made of N-isopropylacrylamide (NIPA) gel. Microbubble dynamics in bubble cloud cavitation is observed by a microscope with a short pulse light emitted diode (LED) light source. Microhollows produced on the flow channel wall are evaluated by a confocal laser microscope with a water immersion objective. It is observed that a mass of low-density bubbles (bubble mist) is formed by bubble cloud cavitation. The spatial correlation between the bubble mist and the microhollows shows the importance of the bubble mist in microhollow production by bubble cloud cavitation.

  16. Stride Leg Ground Reaction Forces Predict Throwing Velocity in Adult Recreational Baseball Pitchers. (United States)

    McNally, Michael P; Borstad, John D; Oñate, James A; Chaudhari, Ajit M W


    Ground reaction forces produced during baseball pitching have a significant impact in the development of ball velocity. However, the measurement of only one leg and small sample sizes in these studies curb the understanding of ground reaction forces as they relate to pitching. This study aimed to further clarify the role ground reaction forces play in developing pitching velocity. Eighteen former competitive baseball players with previous high school or collegiate pitching experience threw 15 fastballs from a pitcher's mound instrumented to measure ground reaction forces under both the drive and stride legs. Peak ground reaction forces were recorded during each phase of the pitching cycle, between peak knee height and ball release, in the medial/lateral, anterior/posterior, and vertical directions, and the peak resultant ground reaction force. Stride leg ground reaction forces during the arm-cocking and arm-acceleration phases were strongly correlated with ball velocity (r2 = 0.45-0.61), whereas drive leg ground reaction forces showed no significant correlations. Stepwise linear regression analysis found that peak stride leg ground reaction force during the arm-cocking phase was the best predictor of ball velocity (r2 = 0.61) among drive and stride leg ground reaction forces. This study demonstrates the importance of ground reaction force development in pitching, with stride leg forces being strongly predictive of ball velocity. Further research is needed to further clarify the role of ground reaction forces in pitching and to develop training programs designed to improve upper extremity mechanics and pitching performance through effective force development.

  17. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier


    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from −0.79 to −0.53 W m−2 (33% and all-sky from −0.47 to −0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  18. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property (United States)


    ... Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it... under the administrative jurisdiction of the Air Force. FOR FURTHER INFORMATION CONTACT: Mr. Arthur...

  19. Force Reproduction Error Depends on Force Level, whereas the Position Reproduction Error Does Not

    NARCIS (Netherlands)

    Onneweer, B.; Mugge, W.; Schouten, Alfred Christiaan


    When reproducing a previously perceived force or position humans make systematic errors. This study determined the effect of force level on force and position reproduction, when both target and reproduction force are self-generated with the same hand. Subjects performed force reproduction tasks at

  20. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing (United States)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  1. Producing song: the vocal apparatus. (United States)

    Suthers, Roderick A; Zollinger, Sue Anne


    In order to achieve the goal of understanding the neurobiology of birdsong, it is necessary to understand the peripheral mechanisms by which song is produced. This paper reviews recent advances in the understanding of syringeal and respiratory motor control and how birds utilize these systems to create their species-typical sounds. Songbirds have a relatively homogeneous duplex vocal organ in which sound is generated by oscillation of a pair of thickened labia on either side of the syrinx. Multiple pairs of syringeal muscles provide flexible, independent control of sound frequency and amplitude, and each side of the syrinx exhibits a degree of acoustic specialization. This is in contrast to many non-songbirds, including vocal learners such as parrots, which have fewer syringeal muscles and use syringeal membranes to generate sound. In doves, at least, these membranes generate a harmonic signal in which the fundamental frequency is regulated by respiratory pressure in the air sac surrounding the syrinx and the overtones are filtered out by the vocal tract. The songs of adult songbirds are generally accompanied by precisely coordinated respiratory and syringeal motor patterns that, despite their relative stereotypy, are modulated in real time by somatosensory feedback. Comparative studies indicate songbirds have evolved species-specific motor patterns that utilize the two sides of the syrinx in specific ways and enhance the particular acoustic effects characterizing the species song. A vocal mimic tutored with heterospecific song uses the same motor pattern as the tutor species when he accurately copies the song, suggesting that physical or physiological constraints on sound production have had a prominent role in the evolution of species-specific motor patterns. An understanding of the relationship between the central processing and peripheral performance of song motor programs is essential for an understanding of the development, function, and evolution of these

  2. Twitch and Tetanic Tension during Culture of Mature Xenopus laevis Single Muscle Fibres

    NARCIS (Netherlands)

    Jaspers, R.T.; Feenstra, Hiske; Lee-de Groot, M.B.E.; Huijing, P.A.J.B.M.; van der Laarse, W.J.


    Investigation of the mechanisms of muscle adaptation requires independent control of the regulating factors. The aim of the present study was to develop a serum-free medium to culture mature single muscle fibres of Xenopus laevis. As an example, we used the culture system to study adaptation of

  3. Multistage Force Amplification of Piezoelectric Stacks (United States)

    Xu, Tian-Bing (Inventor); Siochi, Emilie J. (Inventor); Zuo, Lei (Inventor); Jiang, Xiaoning (Inventor); Kang, Jin Ho (Inventor)


    Embodiments of the disclosure include an apparatus and methods for using a piezoelectric device, that includes an outer flextensional casing, a first cell and a last cell serially coupled to each other and coupled to the outer flextensional casing such that each cell having a flextensional cell structure and each cell receives an input force and provides an output force that is amplified based on the input force. The apparatus further includes a piezoelectric stack coupled to each cell such that the piezoelectric stack of each cell provides piezoelectric energy based on the output force for each cell. Further, the last cell receives an input force that is the output force from the first cell and the last cell provides an output apparatus force In addition, the piezoelectric energy harvested is based on the output apparatus force. Moreover, the apparatus provides displacement based on the output apparatus force.

  4. Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse

    Directory of Open Access Journals (Sweden)

    T. C. Bond


    12 additional models. We outline a framework for combining a large number of simple models with a smaller number of enhanced models that have greater complexity. Adjustments for black carbon internal mixing and for regional variability are discussed. Emitting regions with more deep convection have greater model diversity. Our best estimate of global-mean SFP is +1.03 ± 0.52 GJ g−1 for direct atmosphere forcing of black carbon, +1.15 ± 0.53 GJ g−1 for black carbon including direct and cryosphere forcing, and −0.064 (−0.02, −0.13 GJ g−1 for organic matter. These values depend on the region and timing of emission. The lowest OM:BC mass ratio required to produce a neutral effect on top-of-atmosphere direct forcing is 15:1 for any region. Any lower ratio results in positive direct forcing. However, important processes, particularly cloud changes that tend toward cooling, have not been included here.

    Global-average SFP for energy-related emissions can be converted to a 100-year GWP of about 740 ± 370 for BC without snow forcing, and 830 ± 440 with snow forcing. 100-year GWP for OM is −46 (−18, −92. Best estimates of atmospheric radiative impact (without snow forcing by black and organic matter are +0.47 ± 0.26 W m−2 and −0.17 (−0.07, −0.35 W m−2 for BC and OM, respectively, assuming total emission rates of 7.4 and 45 Tg yr−1. Anthropogenic forcing is +0.40 ± 0.18 W m−2 and −0.13 (−0.05, −0.25 W m−2 for BC and OM, respectively, assuming anthropogenic emission rates of 6.3 and 32.6 Tg yr−1. Black carbon forcing is only 18% higher than that given by the Intergovernmental Panel on Climate Change (IPCC, although the value presented here includes enhanced absorption due to internal mixing.

  5. The nature of motive force

    CERN Document Server

    Pramanick, Achintya Kumar


    In this monograph Prof. Pramanick explicates the law of motive force, a fundamental law of nature that can be observed and appreciated as an addition to the existing laws of thermodynamics. This unmistakable and remarkable tendency of nature is equally applicable to all other branches of studies. He first conceptualized the law of motive force in 1989, when he was an undergraduate student. Here he reports various applications of the law in the area of  thermodynamics, heat transfer, fluid mechanics and solid mechanics, and shows how it is possible to solve analytically century-old unsolved problems through its application. This book offers a comprehensive account of the law and its relation to other laws and principles, such as the generalized conservation principle, variational formulation, Fermat’s principle, Bejan’s constructal law, entropy generation minimization, Bejan’s method of intersecting asymptotes and equipartition principle. Furthermore, the author addresses some interrelated fundamental p...

  6. FY11 Force Structure Announcement (United States)


    FY11 N/A N/A 6 - MARIETTA RegAF Military Reserve AGR Guard AGR Civilians Reserve Drill Guard Drill -2 0 0 +1 0 0 FY10 FY11 N/A N/A I n t e g r i t...A I n t e g r i t y - S e r v i c e - E x c e l l e n c e Legend: AD Air Force Base Reserve Base Guard Base Other 85 FY11 Ohio Fact Sheet...5 C-5A I n t e g r i t y - S e r v i c e - E x c e l l e n c e Legend: AD Air Force Base Reserve Base Guard Base Other 86 FY11 Ohio Fact

  7. Physicists' Forced Migrations under Hitler (United States)

    Beyerchen, Alan


    When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.

  8. Forced wetting and hydrodynamic assist (United States)

    Blake, Terence D.; Fernandez-Toledano, Juan-Carlos; Doyen, Guillaume; De Coninck, Joël


    Wetting is a prerequisite for coating a uniform layer of liquid onto a solid. Wetting failure and air entrainment set the ultimate limit to coating speed. It is well known in the coating art that this limit can be postponed by manipulating the coating flow to generate what has been termed "hydrodynamic assist," but the underlying mechanism is unclear. Experiments have shown that the conditions that postpone air entrainment also reduce the apparent dynamic contact angle, suggesting a direct link, but how the flow might affect the contact angle remains to be established. Here, we use molecular dynamics to compare the outcome of steady forced wetting with previous results for the spontaneous spreading of liquid drops and apply the molecular-kinetic theory of dynamic wetting to rationalize our findings and place them on a quantitative footing. The forced wetting simulations reveal significant slip at the solid-liquid interface and details of the flow immediately adjacent to the moving contact line. Our results confirm that the local, microscopic contact angle is dependent not simply only on the velocity of wetting but also on the nature of the flow that drives it. In particular, they support an earlier suggestion that during forced wetting, an intense shear stress in the vicinity of the contact line can assist surface tension forces in promoting dynamic wetting, thus reducing the velocity-dependence of the contact angle. Hydrodynamic assist then appears as a natural consequence of wetting that emerges when the contact line is driven by a strong and highly confined flow. Our theoretical approach also provides a self-consistent model of molecular slip at the solid-liquid interface that enables its magnitude to be estimated from dynamic contact angle measurements. In addition, the model predicts how hydrodynamic assist and slip may be influenced by liquid viscosity and solid-liquid interactions.

  9. Quantum state atomic force microscopy


    Passian, Ali; Siopsis, George


    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the paramete...

  10. Air Force Pilot Retention-1988. (United States)


    Politica l Science from Texas A&M University in 1973. He earned his commission S’- ,t the same time. This project will fulfill partial r(,quir(,m,nts...12 years of Air Force pilot retention rates , (2:12: 5:2). 0>. _ , FISCAL YEAR PILOT RETENTION RATES 1976 50.6% 1977 47.9% 1978 39.6% 1979 26.0% 1980

  11. Finger Forces in Clarinet Playing


    Hofmann, Alex; Goebl, Werner


    Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excer...

  12. Pseudorandomness in Central Force Optimization


    Formato, Richard A.


    Central Force Optimization is a deterministic metaheuristic for an evolutionary algorithm that searches a decision space by flying probes whose trajectories are computed using a gravitational metaphor. CFO benefits substantially from the inclusion of a pseudorandom component (a numerical sequence that is precisely known by specification or calculation but otherwise arbitrary). The essential requirement is that the sequence is uncorrelated with the decision space topology, so that its effect i...

  13. Performance contracts for police forces


    Ben Vollaard


    In 2003, the government will enter into performance contracts with each of the 25 regional police forces. The performance contracts establish a direct link between meeting a number of quantitative performance targets and financial incentives. A major improvement in police performance is necessary to meet the objective of 20 to 25 percent less criminal and disorderly behavior by 2006. A closer look at the performance contracts learns that they may not be the most appropriate policy instrument ...

  14. Effective forcing with Cantor manifolds


    Kihara, Takayuki


    A set $A$ of integers is called total if there is an algorithm which, given an enumeration of $A$, enumerates the complement of $A$, and called cototal if there is an algorithm which, given an enumeration of the complement of $A$, enumerates $A$. Many variants of totality and cototality have been studied in computability theory. In this note, by an effective forcing construction with strongly infinite dimensional Cantor manifolds, which can be viewed as an effectivization of Zapletal's "half-...

  15. Friction forces in cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Bini, Donato [Istituto per le Applicazioni del Calcolo ' ' M. Picone,' ' CNR, Rome (Italy); University of Rome ' ' La Sapienza' ' , ICRA, Rome (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy); INAF, Astronomical Observatory of Torino, Pino Torinese (Italy); Geralico, Andrea [University of Rome ' ' La Sapienza' ' , ICRA, Rome (Italy); University of Rome ' ' La Sapienza' ' , Physics Department, Rome (Italy); Gregoris, Daniele [University of Stockholm, Physics Department, Stockholm (Sweden); Max-Planck-Institut fuer Gravitationsphysik (Albert-Einstein-Institut), Potsdam (Germany); Succi, Sauro [Istituto per le Applicazioni del Calcolo ' ' M. Picone,' ' CNR, Rome (Italy); INFN, Sezione di Firenze, Sesto Fiorentino (Italy)


    We investigate the dynamics of test particles undergoing friction forces in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction with the background fluid is modeled by introducing a Poynting-Robertson-like friction force in the equations of motion, leading to measurable (at least in principle) deviations of the particle trajectories from geodesic motion. The effect on the peculiar velocities of the particles is investigated for various equations of state of the background fluid and different standard cosmological models. The friction force is found to have major effects on particle motion in closed FRW universes, where it turns the time-asymptotic value (approaching the recollapse) of the peculiar particle velocity from ultra-relativistic (close to light speed) to a co-moving one, i.e., zero peculiar speed. On the other hand, for open or flat universes the effect of the friction is not so significant, because the time-asymptotic peculiar particle speed is largely non-relativistic also in the geodesic case. (orig.)

  16. Influence of fatigue on EMG/force ratio and cocontraction in cycling. (United States)

    Hautier, C A; Arsac, L M; Deghdegh, K; Souquet, J; Belli, A; Lacour, J R


    The purpose of the present study was to observe force and power losses and electromyographic manifestations of fatigue during repeated sprints performed on a friction-loaded cycle ergometer. Ten subjects performed 15 maximal 5-s sprints with 25-s rests between them. Power, velocity, and torque were measured during sprints 1 and 13 and during two submaximal constant-velocity (50 rpm) periods of cycling performed before and after the sprints. The EMG signals of five leg muscles were stored to determine the EMG/force ratio of power producer muscles and the coactivation of antagonist muscles. The power producer muscles were activated to the same level during sprints 1 and 13, despite a loss of force, whereas the vastus lateralis muscle was recruited more during the submaximal cycling period under fatigue conditions. This led to an increased EMG/force ratio for the power producer muscles, indicating the peripheral fatigue status of these muscles. Antagonist muscles were less activated during the sprints after fatigue; whereas they stayed unchanged during the last submaximal cycling period. This suggests that there is a decrease in coactivation as agonist force is lost. This decrease in coactivation under fatigue conditions has not been previously reported and is probably due to the training status of the subjects. Subjects may have learned to better use their antagonist muscles to efficiently transfer force and power to the rotating pedal. This coordination can be adapted to cope with fatigue of the power producer muscles.

  17. Origin of Knudsen forces on heated microbeams

    KAUST Repository

    Zhu, Taishan


    The presented work probes the fundamentals of Knudsen forces. Using the direct simulation Monte Carlo (DSMC) method, the flows induced by temperature inhomogeneity within a representative configuration and the Knudsen force acting on a heated microbeam are captured as functions of Knudsen number in the entire flow regime. Both flow strength and Knudsen force peak in the transition regime and negative Knudsen force absent in experimental data is observed. The mechanisms of the thermally induced flows and Knudsen forces are studied. It has been found that thermal edge flow is the main driven source for the formation of the Knudsen force on microbeams and domain configuration plays an important role in the process.

  18. In vacuum undulator task force report

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, J.B.; Kao, C.C.; Stefan, P. [and others


    Historically the NSLS has been active in R&D for state-of-the-art electron beams, photon beams and x-ray optics. One of the available straight sections has therefore been dedicated to insertion device R&D. Over the past five to seven years a program aimed at exploiting the very small vertical {beta} function in the straight sections has yielded first a prototype small gap undulator (PSGU) and then an in-vacuum undulator (IVUN). The IVUN sources attain a brightness similar to the existing hybrid wigglers in X21 and X25. They radiate significantly lower total power than the wigglers but produce higher power densities. They provide undulator rather than wiggler spectra. Because of the small gaps and small periods there is not much tunability in these devices and they will have to be purpose-built for a specific scientific program. The original IVUN parameters were chosen for in-elastic x-ray scattering, similar to the scientific program on X21. This put the fundamental at 4.6 keV and the third harmonic at 13.8 keV. The question that this new possible insertion device poses is what science programs can best take advantage of this new insertion device source? To answer this, a task force was formed by M. Hart, NSLS Department Chair and charged with identifying viable scientific programs that could seek outside funding to construct IVUN beamlines. The task force concentrated on experimental programs that are presently being pursued on new insertion devices worldwide. For example, x-ray photon correlation spectroscopy, which takes advantage of the large coherent flux from undulator sources, was considered. However, this program was not considered as the highest priority. The general area of protein crystallography, however, is ideal for the IVUN source. The unique electron beam optics that makes the IVUN possible in the first place also makes the IVUN ideal as a source for microdiffraction.

  19. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement. (United States)

    Campbell, Stuart G; Hatfield, P Chris; Campbell, Kenneth S


    A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed) was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  20. Bidirectional transfer between joint and individual actions in a task of discrete force production. (United States)

    Masumoto, Junya; Inui, Nobuyuki


    The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.

  1. A mathematical model of muscle containing heterogeneous half-sarcomeres exhibits residual force enhancement.

    Directory of Open Access Journals (Sweden)

    Stuart G Campbell


    Full Text Available A skeletal muscle fiber that is stimulated to contract and then stretched from L₁ to L₂ produces more force after the initial transient decays than if it is stimulated at L₂. This behavior has been well studied experimentally, and is known as residual force enhancement. The underlying mechanism remains controversial. We hypothesized that residual force enhancement could reflect mechanical interactions between heterogeneous half-sarcomeres. To test this hypothesis, we subjected a computational model of interacting heterogeneous half-sarcomeres to the same activation and stretch protocols that produce residual force enhancement in real preparations. Following a transient period of elevated force associated with active stretching, the model predicted a slowly decaying force enhancement lasting >30 seconds after stretch. Enhancement was on the order of 13% above isometric tension at the post-stretch muscle length, which agrees well with experimental measurements. Force enhancement in the model was proportional to stretch magnitude but did not depend strongly on the velocity of stretch, also in agreement with experiments. Even small variability in the strength of half-sarcomeres (2.1% standard deviation, normally distributed was sufficient to produce a 5% force enhancement over isometric tension. Analysis of the model suggests that heterogeneity in half-sarcomeres leads to residual force enhancement by storing strain energy introduced during active stretch in distributions of bound cross-bridges. Complex interactions between the heterogeneous half-sarcomeres then dissipate this stored energy at a rate much slower than isolated cross-bridges would cycle. Given the variations in half-sarcomere length that have been observed in real muscle preparations and the stochastic variability inherent in all biological systems, half-sarcomere heterogeneity cannot be excluded as a contributing source of residual force enhancement.

  2. Kelvin probe force microscopy in liquid using electrochemical force microscopy

    Directory of Open Access Journals (Sweden)

    Liam Collins


    Full Text Available Conventional closed loop-Kelvin probe force microscopy (KPFM has emerged as a powerful technique for probing electric and transport phenomena at the solid–gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe–sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present. Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q water and aqueous NaCl and ionically-inactive (non-polar decane liquids by electrochemical force microscopy (EcFM, a multidimensional (i.e., bias- and time-resolved spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids, KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions. EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.

  3. A device for testing the dynamic performance of in situ force plates. (United States)

    East, Rebecca H; Noble, Jonathan J; Arscott, Richard A; Shortland, Adam P


    Force plates are often incorporated into motion capture systems for the calculation of joint kinetic variables and other data. This project aimed to create a system that could be used to check the dynamic performance of force plate in situ. The proposed solution involved the design and development of an eccentrically loaded wheel mounted on a weighted frame. The frame was designed to hold a wheel mounted in two orthogonal positions. The wheel was placed on the force plate and spun. A VICON™ motion analysis system captured the positional data of the markers placed around the rim of the wheel which was used to create a simulated force profile, and the force profile was dependent on spin speed. The root mean square error between the simulated force profile and the force plate measurement was calculated. For nine trials conducted, the root mean square error between the two simultaneous measures of force was calculated. The difference between the force profiles in the x- and y-directions is approximately 2%. The difference in the z-direction was under 0.5%. The eccentrically loaded wheel produced a predictable centripetal force in the plane of the wheel which varied in direction as the wheel was spun and magnitude dependent on the spin speed. There are three important advantages to the eccentrically loaded wheel: (1) it does not rely on force measurements made from other devices, (2) the tests require only 15 min to complete per force plate and (3) the forces exerted on the plate are similar to those of paediatric gait.

  4. A new orthodontic force system for moment control utilizing the flexibility of common wires: Evaluation of the effect of contractile force and hook length. (United States)

    Lai, Wei-Jen; Midorikawa, Yoshiyuki; Kanno, Zuisei; Takemura, Hiroshi; Suga, Kazuhiro; Soga, Kohei; Ono, Takashi; Uo, Motohiro


    The application of an appropriate force system is indispensable for successful orthodontic treatments. Second-order moment control is especially important in many clinical situations, so we developed a new force system composed of a straight orthodontic wire and two crimpable hooks of different lengths to produce the second-order moment. The objective of this study was to evaluate this new force system and determine an optimum condition that could be used in clinics. We built a premolar extraction model with two teeth according to the concept of a modified orthodontic simulator. This system was activated by applying contractile force from two hooks that generated second-order moment and force. The experimental device incorporated two sensors, and forces and moments were measured along six axes. We changed the contractile force and hook length to elucidate their effects. Three types of commercial wires were tested. The second-order moment was greater on the longer hook side of the model. Vertical force balanced the difference in moments between the two teeth. Greater contractile force generated a greater second-order moment, which reached a limit of 150 g. Excessive contractile force induced more undesired reactions in the other direction. Longer hooks induced greater moment generation, reaching their limit at 10 mm in length. The system acted similar to an off-center V-bend and can be applied in clinical practice as an unconventional loop design. We suggest that this force system has the potential for second-order moment control in clinical applications. Copyright © 2017. Published by Elsevier B.V.

  5. University of Amsterdam selects Force10 Networks

    CERN Multimedia


    "Force10 Networks Inc. today announced the University of Amsterdam has selected Force10 E-Series switch/routers to provide a high performance network infra- structure for next-generation grid computing applications" (1/2 page).

  6. Elite Forces - The Army of the Future

    National Research Council Canada - National Science Library

    Floca, Mihai


    ...) information warfare; (f) foreign internal defense; (g) counter- proliferation of weapons of mass destruction; (h) civil affairs; (i) war by proxy. This paper will demonstrate that activities 'c-i' need elite forces or/and Special Operation Forces.

  7. Special Forces Command and Control in Afghanistan

    National Research Council Canada - National Science Library

    Rhyne, Richard


    .... The author examines how Special Forces and conventional forces worked together in the past in Vietnam, Panama, Somalia, Haiti, Bosnia-Herzegovina, and Operations Desert Storm and Desert Shield...

  8. The Radiation Magnetic Force (FmR) (United States)

    Yousif, Mahmoud


    The detection of Circular Magnetic Field (CMF), associated with electrons movement, not incorporated in theoretical works; is introduced as elements of attraction and repulsion for magnetic force between two conductors carrying electric currents; it also created magnetic force between charged particles and magnetic field, or Lorentz force; CMF contain energy of Electromagnetic Radiation (EM-R); a relationship has been established between the magnetic part of the EM-R, and radiation force, showing the magnetic force as a frequency controlled entity, in which a Radiation Magnetic Force formula is derived, the force embedded EM-Wave, similar to Electromagnetic Radiation Energy given by Planck's formula; the force is accountable for electron removal from atom in the Photoelectric Effects, stabilizing orbital atoms, excitation and ionization atoms, initiating production of secondary EM-R in Compton Effect mechanism; the paper aimed at reviving the wave nature of EM-R, which could reflects in a better understanding of the microscopic-world.

  9. Computer-Controlled Force Generator Project (United States)

    National Aeronautics and Space Administration — TDA Research, Inc proposes to develop a compact, low power, high life-cycle computer controlled Programmable Force Generator (PFG) that can generate any force...

  10. Magnetic force microscopy of atherosclerotic plaque

    National Research Council Canada - National Science Library

    T A Alexeeva; S V Gorobets; O Yu Gorobets; I V Demianenko; O M Lazarenko


    In this work by methods of scanning probe microscopy, namely by atomic force microscopy and magnetic force microscopy the fragments of atherosclerotic plaque section of different nature were investigated...

  11. Physical Fitness and the Expeditionary Air Force

    National Research Council Canada - National Science Library

    Lewis, Elizabeth


    ... that the Air Force bas a physical fitness program to keep its members healthy and productive. By doing this, it can ensure success in completing the Air Force mission while keeping the organization at the highest level of readiness possible...

  12. The current and potential relevance of producer organizations : a case of Nyeri Branch Dairy Goat Association of Kenya

    NARCIS (Netherlands)

    Wanjiru, J


    Small scale producers face many opportunities and also huge challenges in today’s markets. Market liberalization since the 1980s has cut back the support services provided by the state and forced producer to face the risks of often weak and volatile markets. Further more those who are able to access

  13. Single molecule atomic force microscopy and force spectroscopy of chitosan. (United States)

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A


    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Unexpected climatic impacts of orbital forcing out of the Quaternary (United States)

    Ramstein, G.; Zhang, Z.; Le Hir, G.; Contoux, C.; Donnadieu, Y.; Dumas, C.; Schuster, M.; Li, C.


    For Quaternary, the impact of orbital variations on climate is huge and well documented. Especially, during the last million years, drastic climate changes occurred, consisting in transitions from glacial to interglacial periods driven by changes in 65°N summer insolation with 100 kyrs periodicity. Nevertheless, the imprint of so-called Milankovic forcings has also been found for Tertiary and Secondary. For both periods, the climatic imprints of orbital forcings are recorded in a warm world without ice sheet. Here, we show through simulation studies the large impact of orbital forcing in very different geological contexts. The first and most striking result depicts the role of insolation changes during the melting of the Marinoan snowball [635 Ma] (Benn et al, Nature Geoscience 2015). This is one of the oldest imprints of orbital forcing on climate. Our result solved a long lasting controversy concerning the melting of the last snowball episode between a huge deglaciation at very high CO2 level and data showing glacial/interglacial cycles occurring during that melting. Our modelling studies focusing on Svalbard high resolution records demonstrate that the glacial/fluvial oscillation was related to orbital forcing in a context of very high CO2 level. Much more recently, during the Tortonian period [11-7 Ma], the orbital cycles shaped the environment and drove the hominin dispersal in Africa. During Tortonian, the ultimate shrinkage of a huge epicontinental sea, that extended from Eastern Europe to Western Asia, has been shown to produce major changes on Asian monsoon (Ramstein et al, Nature, 1997) and triggered the onset of Sahara desert (Zhang et al, Nature 2014). Moreover, this shrinkage drastically enhanced the climate response to orbital changes at the emergence of early hominins in North Africa. Through these two illustrations,we pointed out very different climatic impacts of orbital forcing out of Quaternary.

  15. Air Force Civilian Senior Leadership Development Challenges (United States)


    Air Force Civilian Leadership Developmental Challenges Although the Air Force has an approved and codified process for developing its future civilian...AIR WAR COLLEGE AIR UNIVERSITY AIR FORCE CIVILIAN SENIOR LEADERSHIP DEVELOPMENT CHALLENGES by Billy P. Webb, DAF A Research Report 00-00-2008 4. TITLE AND SUBTITLE Air Force Civilian Senior Leadership Development Challenges 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  16. Grasp force sensor for robotic hands (United States)

    Scheinman, Victor D. (Inventor); Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)


    A grasp force sensor for robotic hands is disclosed. A flexible block is located in the base of each claw through which the grasp force is exerted. The block yields minute parallelogram deflection when the claws are subjected to grasping forces. A parallelogram deflection closely resembles pure translational deflection, whereby the claws remain in substantial alignment with each other during grasping. Strain gauge transducers supply signals which provide precise knowledge of and control over grasp forces.

  17. Reducing Air Force Fighter Pilot Shortages (United States)


    FORCE as part of a fiscal year 2014 study “Rated Requirements Assessment.” RAND Project AIR FORCE RAND Project AIR FORCE ( PAF ), a division of the...RAND Corporation, is the U.S. Air Force’s federally funded research and development center for studies and analyses. PAF provides the Air Force with...and Strategy and Doctrine. Additional information about PAF is available on our website: paf This report documents work

  18. Collective light forces on atoms in resonators

    Energy Technology Data Exchange (ETDEWEB)

    Black, Adam T; Thompson, James K; Vuletic, Vladan [Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)


    We study resonator-induced light forces arising from cooperative atom-light interaction. For such collective processes, the force on the sample can be orders of magnitude larger than the sum of conventional light forces on individual atoms. Since resonator-induced light forces can be dissipative even when the incident light is far detuned from atomic transitions, they may be applicable to target particles with a complex level structure.

  19. Competitiveness as the Factor of Settlements Terms Forming at the Market of Chocolate Producers (United States)

    Kandrashina, Elena A.; Zotova, Anna S.; Smolina, Ekaterina S.; Dorozhkin, Vladimir E.; Dneprov, Sergey A.


    The relevance of the investigated problem is caused by increasing levels of competition in the industry markets of chocolate producers in Russia and the need to maintain the profitability of the companies' activities in the unstable macroeconomic conditions. The aim of the article is to assess the impact of competitive forces on settlements terms…

  20. Trapping of a microsphere pendulum through cavity-enhanced optical forces

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yuqiang; Chormaic, Sile Nic [Physics Department, University College Cork, Cork (Ireland); M Ward, Jonathan [Photonics Centre, Tyndall National Institute, Prospect Row, Cork (Ireland); Minogin, Vladimir G, E-mail: yuqiang.wu@tyndall.i [Institute of Spectroscopy, Russian Academy of Sciences, 142190 Troitsk, Moscow Region (Russian Federation)


    Optical forces resulting from evanescently coupled microcavities can produce remarkable mechanical effects on micro- and nanoscale systems. Excitation of the symmetric and antisymmetric modes of the interacting whispering gallery modes (WGM) leads to significant attractive and repulsive forces. Here, we propose a method to spatially trap a microspherical resonator pendulum via the optical forces produced by two simultaneously excited WGMs of a photonic molecule, comprising two microspherical cavities. We discuss how the cavity-enhanced optical force generated in the photonic molecule can create an optomechanical potential of about 5 eV deep and 10 pm wide, which can be used to trap the pendulum at any given equilibrium position by a simple choice of laser frequencies. This result presents opportunities for very precise all-optical self-alignment of microsystems. Frequency splitting of a co-resonant mode from two similar-sized microspheres was observed experimentally and the mechanical characteristics of a microsphere pendulum were also studied.

  1. SOF: A Joint Force Integrator (United States)


    11, it didn’t matter. The enemy quickly made clear that the United States not only had a bulls -eye on it, but they struck dead center. The’ soccer game in which everyone on the field congregates around the ball. In the mid to late 1970s, one couldn’t shake a tree without COIN...military organization is more uniquely suited for this than the men and women of US Special Operations Command. Since Vietnam, Special Forces 32

  2. Interfacial forces in aqueous media

    CERN Document Server

    van Oss, Carel J


    Thoroughly revised and reorganized, the second edition of Interfacial Forces in Aqueous Media examines the role of polar interfacial and noncovalent interactions among biological and nonbiological macromolecules as well as biopolymers, particles, surfaces, cells, and both polar and apolar polymers. The book encompasses Lifshitz-van der Waals and electrical double layer interactions, as well as Lewis acid-base interactions between colloidal entities in polar liquids such as water. New in this Edition: Four previously unpublished chapters comprising a new section on interfacial propertie

  3. Labour Force Activity after 65:

    DEFF Research Database (Denmark)

    Larsen, Mona; Pedersen, Peder J.


    in Denmark is rather small in this age group. While the increase in Germany mainly seems to be a result of policy reforms, the increase in Sweden appear to be a result of a combination of policy changes and an increasing educational level. Financial incentives seem most important in Germany and only of minor...... group and cohort relevant changes in education and health is examined and discussed. Further, country differences in the impact from education and health is examined. Results show that the largest increase in labour force participation has taken place in Sweden following by Germany, while the increase...

  4. The Chinese Communist Armed Forces. (United States)


    According to the Coin- and the First Front Army was able to cross the Tatu, munist accounts, the Long Marchers "had to sleep thus avoiding a long detour...people in- China and the northeast, the inertia generated by volved and is, therefore, extremely dubious as a the strategy of confining his forces to the...Liberation Army (New Śen-minioh- pfo . 6 September 1963. or Peking Review. 13 September York. McGraw-Hill. 1967). p. 228, General Griffith’s Iook is the

  5. Propulsive force in front crawl swimming

    NARCIS (Netherlands)

    Berger, M.A.M.; de Groot, G.; Hollander, A.P.


    To evaluate the propulsive forces in front crawl arm swimming, derived from a three-dimensional kinematic analysis, these values were compared with mean drag forces. The propulsive forces during front crawl swimming using the arms only were calculated using three-dimensional kinematic analysis

  6. 18 CFR 701.58 - Task forces. (United States)


    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Task forces. 701.58... Headquarters Organization § 701.58 Task forces. The Director with Council concurrence or the Council may establish task forces from time to time to aid in the preparation of issues for presentation to the Council...

  7. 49 CFR 193.2067 - Wind forces. (United States)


    ... 49 Transportation 3 2010-10-01 2010-10-01 false Wind forces. 193.2067 Section 193.2067...: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2067 Wind forces. (a) LNG facilities must be designed to withstand without loss of structural or functional integrity: (1) The direct effect of wind forces...

  8. Forces on Architecture Decisions – A Viewpoint

    NARCIS (Netherlands)

    Heesch, Uwe van; Avgeriou, Paris; Hilliard, Rich


    In this paper, the notion of forces as influences upon architecture decisions is introduced. To facilitate the documentation of forces as a part of architecture descriptions, we specify a decision forces viewpoint, which extends our existing framework for architecture decisions, following the

  9. Hydrodynamic forces on inundated bridge decks (United States)


    The hydrodynamic forces experienced by an inundated bridge deck have great importance in the design of bridges. Specifically, the drag force, lift force, and the moment acting on the bridge deck under various levels of inundation and a range of flow ...

  10. Interaction Force Estimation During Manipulation of Microparticles

    NARCIS (Netherlands)

    Khalil, I.S.M.; Metz, R.M.P.; Abelmann, Leon; Misra, Sarthak


    This work investigates the utilization of microparticles for the wireless sensing of interaction forces in magneticbased manipulation systems. The proposed force estimation approach allows for using microparticles in sensing the interaction forces at hard-to-reach regions to avoid the mechanical and

  11. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    of during the latter part of the 1990s. The ideas generated by the Danish Air Force later came to good use when Danish air force officers participated in the work that led to the formulation of the NATO Air Power Doctrine (AJP 3.3). During the latter part of the 2000s, the Danish Air Force found...

  12. 24 CFR 968.120 - Force account. (United States)


    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the CIAP...

  13. Crystal morphology change by magnetic susceptibility force


    Katsuki, Aiko; Aibara, Shigeo; Tanimoto, Yoshifumi


    We found a change in morphology when lysozyme crystals were grown in a magnetic field. The phenomenon was caused by the magnetic force derived from the magnetic susceptibility gradient. We propose that this force should be called the “magnetic susceptibility force".

  14. Grip force and force sharing in two different manipulation tasks with bottles. (United States)

    Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L


    Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.

  15. Genetic engineering of to produce Bacterial Polyhydroxyalkanotes ...

    African Journals Online (AJOL)

    PHAs), in the sense of an environmental precaution appears meaningful and necessary. In order to more economically produce microbial products, this investigation was focused on suitable producers, like the yeast Schizosaccharomyces pombe ...


    Segre, E.; Kennedy, J.W.; Seaborg, G.T.


    This patent broadly discloses the production of plutonium by the neutron bombardment of uranium to produce neptunium which decays to plutonium, and the fissionability of plutonium by neutrons, both fast and thermal, to produce energy and fission products.

  17. Quark Confinement and Force Unification

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.


    Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.

  18. Force and Directional Force Modulation Effects on Accuracy and Variability in Low-Level Pinch Force Tracking. (United States)

    Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence


    The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.

  19. Altered diaphragm contractile properties with controlled mechanical ventilation. (United States)

    Sassoon, Catherine S H; Caiozzo, Vincent J; Manka, Albana; Sieck, Gary C


    This study shows that, over time, diaphragm inactivity with controlled mechanical ventilation (CMV) decreases diaphragm force and produces myofibril damage contributing to the reduced force. We measured in vivo and in vitro diaphragm contractile and morphological properties in 30 sedated rabbits grouped (n = 6) as follows: 1 or 3 days of CMV, 1 or 3 days of 0 cmH(2)O continuous positive airway pressure, and control. The CMV rate was set sufficient to suppress diaphragm electrical activity. Compared with the control group, phrenic-stimulated maximum transdiaphragmatic pressure did not decrease with continuous positive airway pressure but decreased to 63% after 1 day of CMV and to 49% after 3 days of CMV. The in vitro tetanic force decreased to 86% after 1 day of CMV and to 44% after 3 days of CMV. After 3 days of CMV, significant myofibril damage occurred in the diaphragm but not in the soleus. The decrease in tetanic force correlated with the volume density of abnormal myofibrils. We conclude that CMV had a detrimental effect on diaphragm contractile properties.

  20. Elastic Energy Storage and Radial Forces in the Myofilament Lattice Depend on Sarcomere Length (United States)

    Williams, C. David; Regnier, Michael; Daniel, Thomas L.


    We most often consider muscle as a motor generating force in the direction of shortening, but less often consider its roles as a spring or a brake. Here we develop a fully three-dimensional spatially explicit model of muscle to isolate the locations of forces and energies that are difficult to separate experimentally. We show the strain energy in the thick and thin filaments is less than one third the strain energy in attached cross-bridges. This result suggests the cross-bridges act as springs, storing energy within muscle in addition to generating the force which powers muscle. Comparing model estimates of energy consumed to elastic energy stored, we show that the ratio of these two properties changes with sarcomere length. The model predicts storage of a greater fraction of energy at short sarcomere lengths, suggesting a mechanism by which muscle function shifts as force production declines, from motor to spring. Additionally, we investigate the force that muscle produces in the radial or transverse direction, orthogonal to the direction of shortening. We confirm prior experimental estimates that place radial forces on the same order of magnitude as axial forces, although we find that radial forces and axial forces vary differently with changes in sarcomere length. PMID:23166482

  1. Bacteriocin producers from traditional food products


    Thonart P.; Destain J.; Tine E.; Ngom A.; Diop MB.; Dubois-Dauphin R.


    A total of 220 strains of LAB isolated from 32 samples of traditional fermented food from Senegal were screened for bacteriocin production. Two bacteriocin producers, Lactococcus lactis subsp. lactis and Enterococcus faecium, were identifi ed from 12 bacteriocin-producing isolates on the basis of phenotypic analyses and 16S rDNA sequence. Both bacteriocins produced by new isolates show antimicrobial activity against Listeria monocytogenes and Bacillus coagulans whereas only that produced by L...

  2. Ultrastructural analysis of buckwheat starch components using atomic force microscopy. (United States)

    Neethirajan, Suresh; Tsukamoto, Kazumi; Kanahara, Hiroko; Sugiyama, Shigeru


    Morphological and structural features of buckwheat starch granules and nanocrystals were examined using atomic force microscopy and dynamic light scattering. Partially digested starch granules revealed a clear pattern of growth rings with the central core revealing lamellar structure. Atomic force microscopy and dynamic light scattering experiments revealed that the buckwheat starch granules were polygonal in shape and were in the range of 2 to 19 μm in diameter. The optimized acid hydrolysis process produced nanocrystals with the shape of spherical structure with lengths ranging from 120 to 200 nm, and the diameter from 4 to 30 nm from aqueous suspensions of buckwheat starch solution. The sorption isotherms on buckwheat starch nanocrystal/glycerol composite exhibited a 3-stage transition of moisture in the blending. The biocompatible nature of buckwheat starch nanocrystals and their structural properties make them a promising green nanocomposite material. Buckwheat starches had never been studied on a nanoscale, but we have achieved new understanding of starch granule morphology and concentric growth rings using nanoscale imaging. Since buckwheat is an underutilized crop, we foresee the potential application of buckwheat starch, starch-based nanocrystals, and nanoparticles, to expand markets and encourage producers to expand their buckwheat acreage. The atomic force image analysis suggests that buckwheat starch could be used as a new biopolymer material in food industries. © 2011 Institute of Food Technologists®

  3. Off shore produced water treatment with pertraction

    NARCIS (Netherlands)

    Klaassen, R.


    During the production of oil and gas also water is produced. This produced water contains dispersed and dissolved oil components. The impact of offshore emissions of produced water on the environment and the treatment of technologies for it are currently under discussion. Emission limits tend to

  4. 7 CFR 1126.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1126.13 Section 1126.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE SOUTHWEST MARKETING AREA Order Regulating Handling Definitions § 1126.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  5. 7 CFR 1131.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1131.13 Section 1131.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE ARIZONA MARKETING AREA Order Regulating Handling Definitions § 1131.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  6. 7 CFR 1001.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1001.13 Section 1001.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE NORTHEAST MARKETING AREA Order Regulating Handling Definitions § 1001.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  7. 7 CFR 1032.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1032.13 Section 1032.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE CENTRAL MARKETING AREA Order Regulating Handling Definitions § 1032.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  8. 7 CFR 1006.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1006.13 Section 1006.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE FLORIDA MARKETING AREA Order Regulating Handling Definitions § 1006.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  9. 7 CFR 1033.13 - Producer milk. (United States)


    ... 7 Agriculture 9 2010-01-01 2009-01-01 true Producer milk. 1033.13 Section 1033.13 Agriculture... and Orders; Milk), DEPARTMENT OF AGRICULTURE MILK IN THE MIDEAST MARKETING AREA Order Regulating Handling Definitions § 1033.13 Producer milk. Producer milk means the skim milk (or the skim equivalent of...

  10. 29 CFR 780.213 - Produce business. (United States)


    ... 29 Labor 3 2010-07-01 2010-07-01 false Produce business. 780.213 Section 780.213 Labor Regulations... Specific Situations Hatchery Operations § 780.213 Produce business. In some instances, hatcheries also engage in the produce business as such and commingle with the culled eggs and chickens other eggs and...

  11. General method for calculating the self-induced magnetic force of an axisymmetric toroidal current

    Energy Technology Data Exchange (ETDEWEB)

    Bobbio, S.; Rubinacci, G. (Naples Univ. (Italy). Ist. Elettrotecnico)


    A method is presented for computing the class of axisymmetric current distributions flowing in a torus whose peripheral surface is a flux surface for the magnetic field produced by the current itself. The method allows the correct calculation of the 'self-induced' magnetic forces arising from the interaction between these currents and their own field. The general expression for the self-induced force is given and an approximate formula is presented in the large aspect-ratio limit.

  12. Elasticity Maps of Living Neurons Measured by Combined Fluorescence and Atomic Force Microscopy


    Spedden, Elise; White, James D.; Naumova, Elena N.; Kaplan, David L.; Staii, Cristian


    Detailed knowledge of mechanical parameters such as cell elasticity, stiffness of the growth substrate, or traction stresses generated during axonal extensions is essential for understanding the mechanisms that control neuronal growth. Here, we combine atomic force microscopy-based force spectroscopy with fluorescence microscopy to produce systematic, high-resolution elasticity maps for three different types of live neuronal cells: cortical (embryonic rat), embryonic chick dorsal root ganglio...



    Ramona Frunză; Liviu George Maha; Claudiu Gabriel Mursa


    In the European Union countries and neighboring regions, the expansion will produce a redistribution of the labour force between industries and countries. After the Romania’s adhesion to theEuropean Union, the need for an increased productivity, the lack of capital, the competition on the EU market and the low wages have concurred to the intensification of the migration process of the labour force, especially to the West European countries. As example, from over two millions of Romanians work...

  14. Investigating the relationship between pressure force and acoustic waveform in footstep sounds

    DEFF Research Database (Denmark)

    Grani, Francesco; Serafin, Stefania; Götzen, Amalia De


    In this paper we present an inquiry into of the relationships between audio waveforms and ground reaction force in recorded footstep sounds. In an anechoic room, we recorded several footstep sounds produced while walking on creaking wood and gravel. The recordings were performed by using a pair...... of sandals embedded with six pressure sensors each. Investigations of the relationships between recorded force and footstep sounds is presented, together with several possible applications of the system....

  15. AFM-based force spectroscopy measurements of mature amyloid fibrils of the peptide glucagon

    DEFF Research Database (Denmark)

    Dong, M. D.; Hovgaard, M. B.; Mamdouh, W.


    We report on the mechanical characterization of individual mature amyloid fibrils by atomic force microscopy (AFM) and AFM-based single-molecule force spectroscopy (SMFS). These self-assembling materials, formed from the 29-residue amphiphatic peptide hormone glucagon, were found to display a rev....... In addition, such biological amyloid fibril structures with highly stable mechanical properties can potentially be used to produce nanofibres (nanowires) that may be suitable for nanotechnological applications....

  16. Upper limb joint forces and moments during underwater cyclical movements. (United States)

    Lauer, Jessy; Rouard, Annie Hélène; Vilas-Boas, João Paulo


    Sound inverse dynamics modeling is lacking in aquatic locomotion research because of the difficulty in measuring hydrodynamic forces in dynamic conditions. Here we report the successful implementation and validation of an innovative methodology crossing new computational fluid dynamics and inverse dynamics techniques to quantify upper limb joint forces and moments while moving in water. Upper limb kinematics of seven male swimmers sculling while ballasted with 4kg was recorded through underwater motion capture. Together with body scans, segment inertial properties, and hydrodynamic resistances computed from a unique dynamic mesh algorithm capable to handle large body deformations, these data were fed into an inverse dynamics model to solve for joint kinetics. Simulation validity was assessed by comparing the impulse produced by the arms, calculated by integrating vertical forces over a stroke period, to the net theoretical impulse of buoyancy and ballast forces. A resulting gap of 1.2±3.5% provided confidence in the results. Upper limb joint load was within 5% of swimmer׳s body weight, which tends to supports the use of low-load aquatic exercises to reduce joint stress. We expect this significant methodological improvement to pave the way towards deeper insights into the mechanics of aquatic movement and the establishment of practice guidelines in rehabilitation, fitness or swimming performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Force feedback reinforces muscle synergies in insect legs. (United States)

    Zill, Sasha N; Chaudhry, Sumaiya; Büschges, Ansgar; Schmitz, Josef


    The nervous system solves complex biomechanical problems by activating muscles in modular, synergist groups. We have studied how force feedback in substrate grip is integrated with effects of sense organs that monitor support and propulsion in insects. Campaniform sensilla are mechanoreceptors that encode forces as cuticular strains. We tested the hypothesis that integration of force feedback from receptors of different leg segments during grip occurs through activation of specific muscle synergies. We characterized the effects of campaniform sensilla of the feet (tarsi) and proximal segments (trochanter and femur) on activities of leg muscles in stick insects and cockroaches. In both species, mechanical stimulation of tarsal sensilla activated the leg muscle that generates substrate grip (retractor unguis), as well as proximal leg muscles that produce inward pull (tibial flexor) and support/propulsion (trochanteral depressor). Stimulation of campaniform sensilla on proximal leg segments activated the same synergistic group of muscles. In stick insects, the effects of proximal receptors on distal leg muscles changed and were greatly enhanced when animals made active searching movements. In insects, the task-specific reinforcement of muscle synergies can ensure that substrate adhesion is rapidly established after substrate contact to provide a stable point for force generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Neuroses among Armed Forces Personnel. (United States)

    Dhir, C; Banerjee, A; Chaudhary, S; Singh, Z


    The phenomenon of "Military Family Syndrome" has been hotly debated. Mental disorders are however, important causes of morbidity in the armed forces. A cross sectional study was carried out on 600 randomly selected troops and families in a large military station. General Health Questionnaire 12 (GHQ-12) was used as a screening test for neuroses. Neuroses was defined as score of three and above on the GHQ-12. Overall prevalence of neuroses was 31.34% with 95% confidence interval between 27.41% and 35.55%. Gender did not have any effect on prevalence of neuroses nor did marital status. The soldiers in the age group of 25-36 years were most affected. Neuroses was more common in the lower ranks and among troops who belonged to arms. Among wives, age, rank and type of service (whether from arms or services) of husband were not associated with neuroses. There is a need for preventive psychological services in the armed forces. Leadership and man-management sensitive to changing needs of the soldier should be promoted.

  19. Optical forces in nanorod metamaterial. (United States)

    Bogdanov, Andrey A; Shalin, Alexander S; Ginzburg, Pavel


    Optomechanical manipulation of micro and nano-scale objects with laser beams finds use in a large span of multidisciplinary applications. Auxiliary nanostructuring could substantially improve performances of classical optical tweezers by means of spatial localization of objects and intensity required for trapping. Here we investigate a three-dimensional nanorod metamaterial platform, serving as an auxiliary tool for the optical manipulation, able to support and control near-field interactions and generate both steep and flat optical potential profiles. It was shown that the 'topological transition' from the elliptic to hyperbolic dispersion regime of the metamaterial, usually having a significant impact on various light-matter interaction processes, does not strongly affect the distribution of optical forces in the metamaterial. This effect is explained by the predominant near-fields contributions of the nanostructure to optomechanical interactions. Semi-analytical model, approximating the finite size nanoparticle by a point dipole and neglecting the mutual re-scattering between the particle and nanorod array, was found to be in a good agreement with full-wave numerical simulation. In-plane (perpendicular to the rods) trapping regime, saddle equilibrium points and optical puling forces (directed along the rods towards the light source), acting on a particle situated inside or at the nearby the metamaterial, were found.


    Directory of Open Access Journals (Sweden)

    E.F. Fielding


    Full Text Available Traditionally the grinding process has been a finishing process and the operating parameters and the resuns obtained in this mode are well known. However, wHh the advent of more modern techniques in grinding, there is a need for a greater understanding of the process and in particular a need to be able to predict the forces in grinding. The work reported here is part of an overall programme to study the effects of different dress leads, wheel formulations and metal removal rates on grinding ratios, surlace finish and grinding forces. The work so far has led to the development of empirical relationships based on the various factors in the dressing and grinding operations, these empirical relationships are more easily applied than the relationships developed by other researchers that rely on measurements obtained during testing. The work is now being extended to develop a theoretical derivation on the same principles, the implications of which will be discussed in the paper.

  1. Forced Marriage and Birth Outcomes. (United States)

    Becker, Charles M; Mirkasimov, Bakhrom; Steiner, Susan


    We study the impact of marriages resulting from bride kidnapping on infant birth weight. Bride kidnapping-a form of forced marriage-implies that women are abducted by men and have little choice other than to marry their kidnappers. Given this lack of choice over the spouse, we expect adverse consequences for women in such marriages. Remarkable survey data from the Central Asian nation of Kyrgyzstan enable exploration of differential birth outcomes for women in kidnap-based and other types of marriage using both OLS and IV estimation. We find that children born to mothers in kidnap-based marriages have lower birth weight compared with children born to other mothers. The largest difference is between kidnap-based and arranged marriages: the magnitude of the birth weight loss is in the range of 2 % to 6 % of average birth weight. Our finding is one of the first statistically sound estimates of the impact of forced marriage and implies not only adverse consequences for the women involved but potentially also for their children.

  2. The effect of resultant force at the pushrim on shoulder kinetics during manual wheelchair propulsion: a simulation study. (United States)

    Desroches, Guillaume; Aissaoui, Rachid; Bourbonnais, Daniel


    The aim of this study was to determine, by simulation on real data, the effect of modifying the direction or effectiveness of a given force amplitude on the load sustained by the shoulder estimated by joint forces and moments. Kinematics and kinetics data were recorded on 14 manual wheelchair users 68.2+/-5.2 years for 10 s at sub-maximal speed (0.96-1.01 m/s). The simulation consisted in modifying force effectiveness at the pushrim while maintaining the same initial force amplitude. Shoulder kinetics were computed for simulated resultant forces from radial to tangent directions and also for initial force effectiveness. The results show that as the force was simulated tangent to the wheel, there was a significant increase in the average proximal and anterior shoulder joint forces. Also, significant increases in average internal rotation, flexion in the sagittal and horizontal plane moments were reported. Higher shoulder kinetics could accelerate the onset of fatigue and increase the risk of injury. A single-case analysis revealed an improvement window for force effectiveness ( approximately 10%) in which shoulder kinetics were not substantially increased. Our results provide useful information on what would happen to shoulder kinetics if we were able to teach manual wheelchair users to modify their force pattern at the pushrim. The results suggest that for an elderly population, it is not wise to aim at producing a mechanically optimal resultant force at the pushrim (i.e., tangent). Smaller increases of the initial force effectiveness would be preferable.

  3. Photonic forces in the near field of statistically homogeneous fluctuating sources

    CERN Document Server

    Aunon, Juan Miguel


    Electromagnetic sources, as e.g. lasers, antennas, diffusers or thermal sources, produce a wavefield that interacts with objects to transfer them its momentum. We show that the photonic force exerted on a small particle in the near field of a planar statistically homogeneous fluctuating source uniquely depends and acts along the coordinate perpendicular to its surface. The gradient part of this force is contributed by only the evanescent components of the emitted field, its sign being opposite to that of the real part of the particle polarizability. The non-conservative force part is uniquely due to the propagating components, being repulsive and constant. Also, the source coherence length adds a degree of freedom since it largely affects these forces. The excitation of plasmons in the source surface drastically enhances the gradient force. Hence, partially coherent wavefields from fluctuating sources constitute new concepts for particle manipulation at the subwavelength scale

  4. Thermal imbalance force modelling for a GPS satellite using the finite element method (United States)

    Vigue, Yvonne; Schutz, Bob E.


    Methods of analyzing the perturbation due to thermal radiation and determining its effects on the orbits of GPS satellites are presented, with emphasis on the FEM technique to calculate satellite solar panel temperatures which are used to determine the magnitude and direction of the thermal imbalance force. Although this force may not be responsible for all of the force mismodeling, conditions may work in combination with the thermal imbalance force to produce such accelerations on the order of 1.e-9 m/sq s. If submeter accurate orbits and centimeter-level accuracy for geophysical applications are desired, a time-dependent model of the thermal imbalance force should be used, especially when satellites are eclipsing, where the observed errors are larger than for satellites in noneclipsing orbits.

  5. Links between the charge model and bonded parameter force constants in biomolecular force fields (United States)

    Cerutti, David S.; Debiec, Karl T.; Case, David A.; Chong, Lillian T.


    The ff15ipq protein force field is a fixed charge model built by automated tools based on the two charge sets of the implicitly polarized charge method: one set (appropriate for vacuum) for deriving bonded parameters and the other (appropriate for aqueous solution) for running simulations. The duality is intended to treat water-induced electronic polarization with an understanding that fitting data for bonded parameters will come from quantum mechanical calculations in the gas phase. In this study, we compare ff15ipq to two alternatives produced with the same fitting software and a further expanded data set but following more conventional methods for tailoring bonded parameters (harmonic angle terms and torsion potentials) to the charge model. First, ff15ipq-Qsolv derives bonded parameters in the context of the ff15ipq solution phase charge set. Second, ff15ipq-Vac takes ff15ipq's bonded parameters and runs simulations with the vacuum phase charge set used to derive those parameters. The IPolQ charge model and associated protocol for deriving bonded parameters are shown to be an incremental improvement over protocols that do not account for the material phases of each source of their fitting data. Both force fields incorporating the polarized charge set depict stable globular proteins and have varying degrees of success modeling the metastability of short (5-19 residues) peptides. In this particular case, ff15ipq-Qsolv increases stability in a number of α -helices, correctly obtaining 70% helical character in the K19 system at 275 K and showing appropriately diminishing content up to 325 K, but overestimating the helical fraction of AAQAA3 by 50% or more, forming long-lived α -helices in simulations of a β -hairpin, and increasing the likelihood that the disordered p53 N-terminal peptide will also form a helix. This may indicate a systematic bias imparted by the ff15ipq-Qsolv parameter development strategy, which has the hallmarks of strategies used to develop

  6. Evaluating the influence of ventilation and ventilation-compression synchronization on chest compression force and depth during simulated neonatal resuscitation. (United States)

    Dellimore, K H; Scheffer, C; Smith, J; Van Den Heever, D J; Lloyd, D L


    To investigate the influence of ventilation and ventilation-compression synchronization on compression force and sternal displacement during simulated neonatal cardiopulmonary resuscitation (NCPR) on an infant manikin. Five Neonatal Resuscitation Program trained clinicians were recruited to perform simulated NCPR on an infant manikin using two-finger (TF) and two-thumb (TT) compression, with synchronous and asynchronous ventilation, as well as without ventilation. The sternal displacement and force were recorded and analyzed. Synchronous ventilation and compression yielded sternal displacements and forces in the range of 22.8-32.4 mm and 15.0-29.8 N, respectively, while asynchronous ventilation and compression produced depths and forces in the range of 21.2-32.4 mm and 14.0-28.8 N, respectively. Ventilation exerts a significant influence on sternal displacement and force during simulated NCPR, regardless of the compression method used. Ventilation-compression synchronization, however, is only significant during TF compression with lower compression forces measured during synchronous ventilation than in asynchronous ventilation. This occurs for two reasons: (i) the strong influence of ventilation forces on the lower magnitude compression forces produced during TF compression relative to TT compression and (ii) in asynchronous ventilation, compression and ventilation may occur simultaneously, with inflation and deflation providing an opposing force to the applied compression force.

  7. Improved grasp force sensitivity for prosthetic hands through force-derivative feedback. (United States)

    Engeberg, Erik D; Meek, Sanford


    Sensitivity of applied grasp force is improved for a myoelectrically controlled prosthetic hand under force control through normal force-derivative feedback. Benchtop experiments and results from 12 human test subjects indicate that normal force-derivative feedback can be used in prosthetic hands to help prevent accidental damage to delicate objects.

  8. Multifunctional Battalion Task Force Training: Slovenian Armed Forces Battalion Training Cycle (United States)


    MULTIFUNCTIONAL BATTALION TASK FORCE TRAINING: SLOVENIAN ARMED FORCES BATTALION TRAINING CYCLE A thesis presented to...AND SCIENCE General Studies by ALES AVSEC, MAJOR, SLOVENIAN ARMED FORCES Bachelors , University of Ljubljana, Ljubljana, Slovenia, 2002...Master’s Thesis 3. DATES COVERED (From - To) AUG 2015 – JUN 2016 4. TITLE AND SUBTITLE Multifunctional Battalion Task Force Training: Slovenian Armed

  9. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy (United States)

    Neuman, Keir C.; Nagy, Attila


    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  10. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. (United States)

    Neuman, Keir C; Nagy, Attila


    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  11. Uniting Forces for Urban Schools. (United States)

    Penning, Nick


    Describes results of the Work in America Institute's 1986 study of school problems. Urban schools are plagued by overspecialization and excessive responsibility division that can incarcerate teachers in the classroom. Curriculum and learning problems receive little attention. Management/teacher alliances are the only way to produce systematic…

  12. Predicting propulsive forces using distributed sensors in a compliant, high DOF, robotic fin. (United States)

    Kahn, Jeff C; Peretz, David J; Tangorra, James L


    Engineered robotic fins have adapted principles of propulsion from bony-finned fish, using spatially-varying compliance and complex kinematics to produce and control the fin's propulsive force through time. While methods of force production are well understood, few models exist to predict the propulsive forces of a compliant, high degree of freedom, robotic fin as it moves through fluid. Inspired by evidence that the bluegill sunfish (Lepomis macrochirus) has bending sensation in its pectoral fins, the objective of this study is to understand how sensors distributed within a compliant robotic fin can be used to estimate and predict the fin's propulsive force. A biorobotic model of a bluegill sunfish pectoral fin was instrumented with pressure and bending sensors at multiple locations. Experiments with the robotic fin were executed that varied the swimming gait, flapping frequency, stroke phase, and fin stiffness to understand the forces and sensory measures that occur during swimming. A convolution-based, multi-input-single-output (MISO) model was selected to model and study the relationships between sensory data and propulsive force. Subsets of sensory data were studied to determine which sensor modalities and sensor placement locations resulted in the best force predictions. The propulsive forces of the fin were accurately predicted using the linear MISO model on intrinsic sensory data. Bending sensation was more effective than pressure sensation for predicting propulsive forces, and the importance of bending sensation was consistent with several results in biology and engineering studies. It was important to have a spatial distribution of sensors and multiple sensory modalities in order to predict forces across large changes to dynamics. The relationship between propulsive forces and intrinsic sensory measures is complex, and good models should allow for temporal lags between forces and sensory data, changes to the model within a fin stroke, and changes to the

  13. Motor unit recruitment strategies and muscle properties determine the influence of synaptic noise on force steadiness (United States)

    Dideriksen, Jakob L.; Negro, Francesco; Enoka, Roger M.


    Motoneurons receive synaptic inputs from tens of thousands of connections that cause membrane potential to fluctuate continuously (synaptic noise), which introduces variability in discharge times of action potentials. We hypothesized that the influence of synaptic noise on force steadiness during voluntary contractions is limited to low muscle forces. The hypothesis was examined with an analytical description of transduction of motor unit spike trains into muscle force, a computational model of motor unit recruitment and rate coding, and experimental analysis of interspike interval variability during steady contractions with the abductor digiti minimi muscle. Simulations varied contraction force, level of synaptic noise, size of motor unit population, recruitment range, twitch contraction times, and level of motor unit short-term synchronization. Consistent with the analytical derivations, simulations and experimental data showed that force variability at target forces above a threshold was primarily due to low-frequency oscillations in neural drive, whereas the influence of synaptic noise was almost completely attenuated by two low-pass filters, one related to convolution of motoneuron spike trains with motor unit twitches (temporal summation) and the other attributable to summation of single motor unit forces (spatial summation). The threshold force above which synaptic noise ceased to influence force steadiness depended on recruitment range, size of motor unit population, and muscle contractile properties. This threshold was low (motor unit recruitment and muscle properties of a typical muscle are tuned to limit the influence of synaptic noise on force steadiness to low forces and that the inability to produce a constant force during stronger contractions is mainly attributable to the common low-frequency oscillations in motoneuron discharge rates. PMID:22423000

  14. Grip-force modulation in multi-finger prehension during wrist flexion and extension (United States)

    Ambike, Satyajit S.; Paclet, Florent; Latash, Mark L.; Zatsiorsky, Vladimir M.


    Extrinsic digit muscles contribute to both fingertip forces and wrist movements (FDP and FPL – flexion, EDC - extension). Hence it is expected that finger forces depend on the wrist movement and position. We investigated the relation between grip force and wrist kinematics to examine whether and how the force: (1) scales with wrist flexion-extension (FE) angle; (2) can be predicted from accelerations induced during FE movement. In one experiment subjects naturally held an instrumented handle using a prismatic grasp and performed very slow FE movements. In another experiment, the same movement was performed cyclically at three prescribed frequencies. In quasistatic conditions, the grip force remained constant over the majority of the wrist range of motion. During the cyclic movements, the grip force changed. The changes were described with a linear regression model that represents the thumb and virtual finger (VF = four fingers combined) normal forces as the sum of the effects of the object’s tangential and radial accelerations and an object-weight-dependent constant term. The model explained 99% of the variability in the data. The independence of the grip force from wrist position agrees with the theory that that the thumb and VF forces are controlled with two neural variables that encode referent coordinates for each digit while accounting for changes in the position dependence of muscle forces, rather than a single neural variable like referent aperture. The results of the cyclical movement study extend the principle of superposition (some complex actions can be decomposed into independently controlled elemental actions) for a motor task involving simultaneous grip force exertion and wrist motion with significant length changes of the grip-force producing muscles. PMID:23625077

  15. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. (United States)

    Seth, Ajay; Pandy, Marcus G


    A neuromusculoskeletal tracking (NMT) method was developed to estimate muscle forces from observed motion data. The NMT method combines skeletal motion tracking and optimal neuromuscular tracking to produce forward simulations of human movement quickly and accurately. The skeletal motion tracker calculates the joint torques needed to actuate a skeletal model and track observed segment angles and ground forces in a forward simulation of the motor task. The optimal neuromuscular tracker resolves the muscle redundancy problem dynamically and finds the muscle excitations (and muscle forces) needed to produce the joint torques calculated by the skeletal motion tracker. To evaluate the accuracy of the NMT method, kinematics and ground forces obtained from an optimal control (parameter optimization) solution for maximum-height jumping were contaminated with both random and systematic noise. These data served as input observations to the NMT method as well as an inverse dynamics analysis. The NMT solution was compared to the input observations, the original optimal solution, and a simulation driven by the inverse dynamics torques. The results show that, in contrast to inverse dynamics, the NMT method is able to produce an accurate forward simulation consistent with the optimal control solution. The NMT method also requires 3 orders-of-magnitude less CPU time than parameter optimization. The speed and accuracy of the NMT method make it a promising new tool for estimating muscle forces using experimentally obtained kinematics and ground force data.

  16. Non-contact lateral force microscopy (United States)

    Weymouth, A. J.


    The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.

  17. Knee joint forces: prediction, measurement, and significance (United States)

    D’Lima, Darryl D.; Fregly, Benjamin J.; Patil, Shantanu; Steklov, Nikolai; Colwell, Clifford W.


    Knee forces are highly significant in osteoarthritis and in the survival and function of knee arthroplasty. A large number of studies have attempted to estimate forces around the knee during various activities. Several approaches have been used to relate knee kinematics and external forces to internal joint contact forces, the most popular being inverse dynamics, forward dynamics, and static body analyses. Knee forces have also been measured in vivo after knee arthroplasty, which serves as valuable validation of computational predictions. This review summarizes the results of published studies that measured knee forces for various activities. The efficacy of various methods to alter knee force distribution, such as gait modification, orthotics, walking aids, and custom treadmills are analyzed. Current gaps in our knowledge are identified and directions for future research in this area are outlined. PMID:22468461

  18. Size Dependent Orientation of Knudsen Force

    KAUST Repository

    Zhu, Taishan


    Knudsen force acting on a heated microbeam adjacent to a cold substrate in a rarefied gas is a mechanical force created by unbalanced thermal gradients. The measured force has its direction pointing towards the side with a lower thermal gradient and its magnitude vanishes in both continuum and free-molecule limits. In our previous study, negative Knudsen forces were discovered at the high Knudsen regime before diminishing in the free-molecule limit. Such a phenomenon was however not observed in the experiment. In this paper, the existence of such a negative Knudsen force is further confirmed using both numerical simulation and theoretical analysis. The asymptotic order of the Knudsen force near the collisionless limit is analyzed and the analytical expression of its leading term is provided, from which approaches for the enhancement of negative Knudsen forces are proposed. Copyright © 2012 by ASME.

  19. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li


    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  20. Towards measuring the Archimedes force of vacuum

    CERN Document Server

    Calloni, Enrico; De Rosa, Rosario; Di Fiore, Luciano; Esposito, Giampiero; Garufi, Fabio; Rosa, Luigi; Rovelli, Carlo; Ruggi, Paolo; Tafuri, Francesco


    We discuss the force exerted by the gravitational field on a Casimir cavity in terms of Archimedes' force of vacuum, we identify the force that can be tested against observation and we show that the present technology makes it possible to perform the first experimental tests. We motivate the use of suitable high-Tc superconductors as modulators of Archimedes' force. We analyze the possibility of using gravitational wave interferometers as detectors of the force, transported through an optical spring from the Archimedes vacuum force apparatus to the gravitational interferometers test masses to maintain the two systems well separated. We also analyze the use of balances to actuate and detect the force, we compare different solutions and discuss the most important experimental issues.