WorldWideScience

Sample records for tests trochs shells

  1. Of tests, trochs, shells, and spicules: Development of the basal mollusk Wirenia argentea (Solenogastres) and its bearing on the evolution of trochozoan larval key features

    DEFF Research Database (Denmark)

    Todt, Christiane; Wanninger, Andreas

    2010-01-01

    ABSTRACT: BACKGROUND: The phylogenetic status of the aplacophoran mollusk taxon Solenogastres (Neomeniomorpha) is controversially discussed. Some authors propose the clade to represent the most basal branch within Mollusca, while others claim aplacophoran mollusks (Solenogastres and Caudofoveata)...

  2. The efficacy and safety of 50 mg penicillin G potassium troches for recurrent aphthous ulcers.

    Science.gov (United States)

    Kerr, A Ross; Drexel, Catherine A; Spielman, Andrew I

    2003-12-01

    To determine both the efficacy and safety of the topical application of 50 mg penicillin G potassium troches (Cankercillin) in the treatment of minor recurrent aphthous stomatitis (RAS). The investigation used a phase 2 double-blind, randomized placebo-controlled trial with a no-treatment arm. Subjects with minor aphthous ulcers of duration minor aphthous ulcers with minimal safety concerns. Larger phase 3 studies are necessary to confirm these findings.

  3. Hanford single shell tank saltcake cesium removal test plan

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B., Westinghouse Hanford

    1996-12-11

    This document provides the test preparation and conduct of a cesium removal test using Hanford Single Shell Tank Saltcake from tanks 241-BY-110, 241-U-108, 241 U 109, 241-A-101, and 241-S-102 in a benchscale column. The cesium sorbent to be tested is crystalline silicotitanate

  4. Estimation of source infrared spectra profiles of acetylspiramycin active components from troches using kernel independent component analysis

    Science.gov (United States)

    Wang, Guoqing; Ding, Qingzhu; Sun, Yu'an; He, Linghao; Sun, Xiaoli

    2008-08-01

    Kernel independent component analysis (KICA), a kind of independent component analysis (ICA) algorithms based on kernel, was preliminarily investigated for blind source separation (BSS) of source spectra profiles from troches. The robustness of different ICA algorithms (KICA, FastICA and Infomax) was first checked by using them in the retrieval of source infrared (IR), ultraviolet (UV) and mass spectra (MS) from synthetic mixtures. It was found that KICA is the most robust method for retrieval of source spectra profiles. KICA algorithm is subsequently adopted in the analysis of diffuse reflection IR of acetylspiramycin (ASPM) troches. It is observed that KICA is able to isolate the theoretically predicted spectral features corresponding to the ASPM active components, excipients and other minor components as different independent (spectral) component. A troche can be authenticated and semi-quantified using the estimated ICs. KICA is an useful method for estimation of source spectral features of molecules with different geometry and stoichiometry, while features belonging to very similar molecules remain grouped.

  5. Performance Tests of Shell and Plate Type Evaporator for OTEC

    Science.gov (United States)

    Nakaoka, Tsutomu; Uehara, Haruo

    Performance tests on a shell and plate type evaporator (total surface area = 21.95m2, length = 1450mm, width = 235mm, plate number = 100) for ocean thermal energy conversion (OTEC) plants. Freon 22 (R22) and ammonia (NH3) are used as working fluid. The empirical correlations are proporsed in order to predict the boiling heat transfer when using R22 and NH3 and water side heat transfer coefficients for a shell and plate type evaporator. The water side pressure drop is about 3 m at the warm water velocity of 0.7 m/s. The water side friction factor is obtained.

  6. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F

    2015-01-01

    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  7. Magnetic mirror structure for testing shell-type quadrupole coils

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  8. Shell

    OpenAIRE

    Harper, Catherine

    2006-01-01

    Susie MacMurray's Shell installation manifests in Pallant House Gallery, Chichester, like some pulsing exotica, a heavily-textured wall-paper, darkly decorative, heavily luxurious, broodingly present, with more than a hint of the uncanny or the gothic. A remarkable undertaking by an artist of significance, this work's life-span will be just one year, and then it will disappear, leaving no physical trace, but undoubtedly contributing in a much less tangible way to an already rich layering of n...

  9. Remote means of nondestructive testing of shell-type reactors of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, V.V.; Lebedev, N.E.

    1984-11-01

    Equipment for the remote nondestructive testing of the welds in the shell of a water-cooled, water-moderated power reactor vessel is described. Television equipment is used for inspection. Ultrasonic monitoring is done in order to detect cracks, peeling, and separation of the austenite hard facing in the shells.

  10. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  11. Testing techniques and comparisons between theory and test for vibration modes of ring stiffened truncated-cone shells.

    Science.gov (United States)

    Naumann, E. C.

    1972-01-01

    Vibration tests were carried out on truncated-cone shells with widely spaced ring stiffeners. The models were excited by an air shaker for LF modes and by small electrodynamic shakers for HF modes. The Novozhilov thin shell theory according to which a ring is an assembly of an arbitrary number of segments, each being a short truncated-cone shell of uniform thickness, is used in the analysis of the results. A mobile, noncontacting, displacement-sensitive sensor system developed by the author was used in the tests. Tests results are given for a free-free 60-deg cone and for a clamped-free 60-deg cone. The tests are characterized as having considerable value for the classification of prevalent multimode responses in shells of this type.

  12. Test procedures and instructions for single shell tank saltcake cesium removal with crystalline silicotitanate

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1997-01-07

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test, using Hanford Single Shell Tank Saltcake from tanks 24 t -BY- I 10, 24 1 -U- 108, 24 1 -U- 109, 24 1 -A- I 0 1, and 24 t - S-102, in a bench-scale column. The cesium sorbent to be tested is crystalline siticotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-024, Hanford Single Shell Tank Saltcake Cesium Removal Test Plan.

  13. Suppression of pro-inflammatory and pro-survival biomarkers in oral cancer patients consuming a black raspberry phytochemical-rich troche

    Science.gov (United States)

    Knobloch, Thomas J.; Uhrig, Lana K.; Pearl, Dennis K.; Casto, Bruce C.; Warner, Blake M.; Clinton, Steven K.; Sardo-Molmenti, Christine L.; Ferguson, Jeanette M.; Daly, Brett T.; Riedl, Kenneth; Schwartz, Steven J.; Vodovotz, Yael; Buchta, Anthony J.; Schuller, David E.; Ozer, Enver; Agrawal, Amit; Weghorst, Christopher M.

    2016-01-01

    Black raspberries (BRBs) demonstrate potent inhibition of aerodigestive tract carcinogenesis in animal models. However, translational clinical trials evaluating the ability of BRB phytochemicals to impact molecular biomarkers in the oral mucosa remain limited. The present phase 0 study addresses a fundamental question for oral cancer food-based prevention: Do BRB phytochemicals successfully reach the targeted oral tissues and reduce pro-inflammatory and anti-apoptotic gene expression profiles? Patients with biopsy-confirmed oral squamous cell carcinomas (OSCCs) administered oral troches containing freeze-dried BRB powder from the time of enrollment to the date of curative intent surgery (13.9 ± 1.27 days). Transcriptional biomarkers were evaluated in patient-matched OSCCs and non-involved high at-risk mucosa (HARM) for BRB-associated changes. Significant expression differences between baseline OSCC and HARM tissues were confirmed using a panel of genes commonly deregulated during oral carcinogenesis. Following BRB troche administration, the expression of pro-survival genes (AURKA, BIRC5, EGFR) and pro-inflammatory genes (NFKB1, PTGS2) were significantly reduced. There were no BRB-associated Grade 3–4 toxicities or adverse events and 79.2% (N = 30) of patients successfully completed the study with high levels of compliance (97.2%). The BRB phytochemicals cyanidin-3-rutinoside and cyanidin-3-xylosylrutinoside were detected in all OSCC tissues analyzed, demonstrating that bioactive components were successfully reaching targeted OSCC tissues. We confirmed that hallmark anti-apoptotic and pro-inflammatory molecular biomarkers were over-expressed in OSCCs and that their gene expression was significantly reduced following BRB troche administration. Since these molecular biomarkers are fundamental to oral carcinogenesis and are modifiable, they may represent emerging biomarkers of molecular efficacy for BRB-mediated oral cancer chemoprevention. PMID:26701664

  14. Core-shell column Tanaka characterization and additional tests using active pharmaceutical ingredients.

    Science.gov (United States)

    Ludvigsson, Jufang Wu; Karlsson, Anders; Kjellberg, Viktor

    2016-12-01

    In the last decade, core-shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub-2 μm particles and their significantly lower back pressure. Core-shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core-shell column market and use these columns in pharmaceutical analytical applications, 17 core-shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6-2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core-shell columns of particle size 2.6-2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6-2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core-shell particles as sub-2 μm fully porous particles, column performances of the selected core-shell columns were compared with BEH C18 , 1.7 μm, a fully porous column material as well. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Pre-Test Analysis Predictions for the Shell Buckling Knockdown Factor Checkout Tests - TA01 and TA02

    Science.gov (United States)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2011-01-01

    This report summarizes the pre-test analysis predictions for the SBKF-P2-CYL-TA01 and SBKF-P2-CYL-TA02 shell buckling tests conducted at the Marshall Space Flight Center (MSFC) in support of the Shell Buckling Knockdown Factor (SBKF) Project, NASA Engineering and Safety Center (NESC) Assessment. The test article (TA) is an 8-foot-diameter aluminum-lithium (Al-Li) orthogrid cylindrical shell with similar design features as that of the proposed Ares-I and Ares-V barrel structures. In support of the testing effort, detailed structural analyses were conducted and the results were used to monitor the behavior of the TA during the testing. A summary of predicted results for each of the five load sequences is presented herein.

  16. A Review of External Pressure Testing Techniques for Shells including a Novel Volume-Control Method

    NARCIS (Netherlands)

    Mackay, J.R.; Van Keulen, F.

    2009-01-01

    A review of conventional testing methods for applying external hydrostatic pressure to buckling-critical shells is presented. A new “volume-control” pressure testing method, aimed at preventing catastrophic specimen failures and improving control of specimen deformation near the critical load, is

  17. Buckling tests of sandwich cylindrical shells with and without cut-outs

    NARCIS (Netherlands)

    Bisagni, C.; Davidson, B.D.; Czabaj, M.W.; Ratcliffe, J.G.

    2016-01-01

    The results of buckling tests performed during the project DESICOS funded by the European Commission in the FP7 Programme are here presented. The tested structures are sandwich cylindrical shells that consist of reduced models of a component of the Ariane 5 launcher: the Dual Launch System. In

  18. Non-tenera Contamination and the Economic Impact of SHELL Genetic Testing in the Malaysian Independent Oil Palm Industry.

    Science.gov (United States)

    Ooi, Leslie C-L; Low, Eng-Ti L; Abdullah, Meilina O; Nookiah, Rajanaidu; Ting, Ngoot C; Nagappan, Jayanthi; Manaf, Mohamad A A; Chan, Kuang-Lim; Halim, Mohd A; Azizi, Norazah; Omar, Wahid; Murad, Abdul J; Lakey, Nathan; Ordway, Jared M; Favello, Anthony; Budiman, Muhammad A; Van Brunt, Andrew; Beil, Melissa; Leininger, Michael T; Jiang, Nan; Smith, Steven W; Brown, Clyde R; Kuek, Alex C S; Bahrain, Shabani; Hoynes-O'Connor, Allison; Nguyen, Amelia Y; Chaudhari, Hemangi G; Shah, Shivam A; Choo, Yuen-May; Sambanthamurthi, Ravigadevi; Singh, Rajinder

    2016-01-01

    Oil palm (Elaeis guineensis) is the most productive oil bearing crop worldwide. It has three fruit forms, namely dura (thick-shelled), pisifera (shell-less) and tenera (thin-shelled), which are controlled by the SHELL gene. The fruit forms exhibit monogenic co-dominant inheritance, where tenera is a hybrid obtained by crossing maternal dura and paternal pisifera palms. Commercial palm oil production is based on planting thin-shelled tenera palms, which typically yield 30% more oil than dura palms, while pisifera palms are female-sterile and have little to no palm oil yield. It is clear that tenera hybrids produce more oil than either parent due to single gene heterosis. The unintentional planting of dura or pisifera palms reduces overall yield and impacts land utilization that would otherwise be devoted to more productive tenera palms. Here, we identify three additional novel mutant alleles of the SHELL gene, which encode a type II MADS-box transcription factor, and determine oil yield via control of shell fruit form phenotype in a manner similar to two previously identified mutant SHELL alleles. Assays encompassing all five mutations account for all dura and pisifera palms analyzed. By assaying for these variants in 10,224 mature palms or seedlings, we report the first large scale accurate genotype-based determination of the fruit forms in independent oil palm planting sites and in the nurseries that supply them throughout Malaysia. The measured non-tenera contamination rate (10.9% overall on a weighted average basis) underscores the importance of SHELL genetic testing of seedlings prior to planting in production fields. By eliminating non-tenera contamination, comprehensive SHELL genetic testing can improve sustainability by increasing yield on existing planted lands. In addition, economic modeling demonstrates that SHELL gene testing will confer substantial annual economic gains to the oil palm industry, to Malaysian gross national income and to Malaysian

  19. Subscale and Full-Scale Testing of Buckling-Critical Launch Vehicle Shell Structures

    Science.gov (United States)

    Hilburger, Mark W.; Haynie, Waddy T.; Lovejoy, Andrew E.; Roberts, Michael G.; Norris, Jeffery P.; Waters, W. Allen; Herring, Helen M.

    2012-01-01

    New analysis-based shell buckling design factors (aka knockdown factors), along with associated design and analysis technologies, are being developed by NASA for the design of launch vehicle structures. Preliminary design studies indicate that implementation of these new knockdown factors can enable significant reductions in mass and mass-growth in these vehicles and can help mitigate some of NASA s launch vehicle development and performance risks by reducing the reliance on testing, providing high-fidelity estimates of structural performance, reliability, robustness, and enable increased payload capability. However, in order to validate any new analysis-based design data or methods, a series of carefully designed and executed structural tests are required at both the subscale and full-scale level. This paper describes recent buckling test efforts at NASA on two different orthogrid-stiffened metallic cylindrical shell test articles. One of the test articles was an 8-ft-diameter orthogrid-stiffened cylinder and was subjected to an axial compression load. The second test article was a 27.5-ft-diameter Space Shuttle External Tank-derived cylinder and was subjected to combined internal pressure and axial compression.

  20. Summary of Group Development and Testing for Single Shell Tank Closure at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Harbour, John, R.

    2005-04-28

    This report is a summary of the bench-scale and large scale experimental studies performed by Savannah River National Laboratory for CH2M HILL to develop grout design mixes for possible use in producing fill materials as a part of Tank Closure of the Single-Shell Tanks at Hanford. The grout development data provided in this report demonstrates that these design mixes will produce fill materials that are ready for use in Hanford single shell tank closure. The purpose of this report is to assess the ability of the proposed grout specifications to meet the current requirements for successful single shell tank closure which will include the contracting of services for construction and operation of a grout batch plant. The research and field experience gained by SRNL in the closure of Tanks 17F and 20F at the Savannah River Site was leveraged into the grout development efforts for Hanford. It is concluded that the three Hanford grout design mixes provide fill materials that meet the current requirements for successful placement. This conclusion is based on the completion of recommended testing using Hanford area materials by the operators of the grout batch plant. This report summarizes the regulatory drivers and the requirements for grout mixes as tank fill material. It is these requirements for both fresh and cured grout properties that drove the development of the grout formulations for the stabilization, structural and capping layers.

  1. Geodesic motions of test particles in a relativistic core-shell spacetime

    Science.gov (United States)

    Liu, Lei; Wu, Xin; Huang, Guoqing

    2017-02-01

    In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core-shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.

  2. Design and Testing of a Shell-Encapsulated Solar Collector with the Compound Surface Concentrators

    Directory of Open Access Journals (Sweden)

    Hongfei Zheng

    2015-01-01

    Full Text Available This paper presents design and testing of a shell-encapsulated solar collector which can be used in north area of China for wall-amounting installation. The designed solar collector is based on the combination of a novel compound curved surface concentrator and an aluminum concentric solar receiver, which is contained in a glass evacuated-tube. As there is no perforative joint between the double-skin glass evacuated-tube and the aluminum concentric solar receiver, the difficulty of vacuum keeping for a glass-metal joint is avoided. The cavity shell provides an additional thermal insulation to reduce heat loss of the designed solar collector. The working principle of the compound curved surface concentrator is described. The ray-tracing results are given to show the effect of deviation angle of the concentrator on its optical efficiency, hence determining its maximum acceptance angle. A prototype of the designed solar collector has been constructed and tested under the sunny winter weather condition. The experimental results indicate that the hot water temperature higher than 80°C with a daily average efficiency of about 45~50% has been achieved at the average ambient temperature below 0°C, so the designed solar collector can produce hot water at a useful temperature in winter.

  3. Testing of WS2 Nanoparticles Functionalized by a Humin-Like Shell as Lubricant Additives

    Directory of Open Access Journals (Sweden)

    Hagit Sade

    2018-01-01

    Full Text Available Nanoparticles of transition metal dichalcogenides (TMDC have been known to reduce friction and wear when added to oil-type liquid lubricants. Aggregation limits the ability of the nanoparticles to penetrate into the interface between the two rubbing surfaces—an important factor in friction reduction mechanisms. Doping has been successfully used to reduce agglomeration, but it must be done in the production process of the nanoparticles. The use of surface-functionalized nanoparticles is less common than doping. Nonetheless, it has the potential to reduce agglomeration and thereby improve the reduction of friction and wear. In this study, we present the results of preliminary tribological ball-on-flat tests performed with WS2 nanoparticles functionalized by a humin-like conformal shell, as additives to polyalphaolefin-4 (PAO-4 oil. We tested WS2 inorganic nanotubes (INTs and two grades of inorganic fullerene-like nanoparticles (IFs. The shell/coating was found to improve friction reduction for IFs but not for INTs through better dispersion in the oil. The thicker the coating on the IFs, the less agglomerated they were. Coated industrial-grade IFs were found, by far, to be the best additive for friction reduction. We suggest the combination between reduced agglomeration and poor crystallinity as the reason for this result.

  4. Scanning electron microscopy and swelling test of shrimp shell chitosan and chitosan-RGD scaffolds

    Science.gov (United States)

    Mandacan, M. C.; Yuniastuti, M.; Amir, L. R.; Idrus, E.; Suniarti, D. F.

    2017-08-01

    Shrimp shell chitosan and chitosan-RGD scaffold membranes are produced to be biocompatible with tissue engineering. Nonetheless, their architectural properties have not yet been studied. Analyze the architectural properties of chitosan and chitosan-RGD scaffolds. Analyze pore count and size, interpore distance, and porosity (using SEM testing and ImageJ analysis) and water absorption (using a swelling test). The properties of the chitosan and chitosan-RGD scaffolds were as follows, respectively. The pore counts were 225 and 153; pore size, 171.4 μam and 180.2 μam interpore distance, 105.7 μam and 101.4 μam porosity, 22% and 10.2%; and water absorption, 9.1 mgH2O/mgScaffold and 19.3 mgH2O/mgScaffold. The shrimp shell chitosan-RGD membrane scaffold was found to have architectural properties that make it more conducive to use in tissue engineering.

  5. Knockout reactions on p-shell nuclei for tests of structure and reaction models

    Science.gov (United States)

    Kuchera, A. N.; Bazin, D.; Babo, M.; Baumann, T.; Bowry, M.; Bradt, J.; Brown, J.; Deyoung, P. A.; Elman, B.; Finck, J. E.; Gade, A.; Grinyer, G. F.; Jones, M. D.; Lunderberg, E.; Redpath, T.; Rogers, W. F.; Stiefel, K.; Thoennessen, M.; Weisshaar, D.; Whitmore, K.

    2015-10-01

    A series of knockout reactions on p-shell nuclei were studied to extract exclusive cross sections and to investigate the neutron knockout mechanism. The measured cross sections provide stringent tests of shell model and ab initio calculations while measurements of neutron+residual coincidences test the accuracy and validity of reaction models used to predict cross sections. Six different beams ranging from A = 7 to 12 were produced at the NSCL totaling measurements of nine different reaction settings. The reaction settings were determined by the magnetic field of the Sweeper magnet which bends the residues into charged particle detectors. The reaction target was surrounded by the high efficiency CsI array, CAESAR, to tag gamma rays for cross section measurements of low-lying excited states. Additionally, knocked out neutrons were detected with MoNA-LISA in coincidence with the charged residuals. Preliminary results will be discussed. This work is partially supported by the National Science Foundation under Grant No. PHY11-02511 and the Department of Energy National Nuclear Security Administration under Award No. DE-NA0000979.

  6. Design, fabrication, and test of lightweight shell structure. [for application to the space tug design

    Science.gov (United States)

    1974-01-01

    A cylindrical shell skirt structure was subjected to a design and analysis study using a wide variety of structural materials and concepts. The design loading, axial compression, and torsion is representative of that expected on a typical space tug skirt section. Structural concepts evaluated included honeycomb sandwich, truss, isogrid, and skin/stringer/frame. The materials considered included a wide variety of structural metals as well as glass, graphite, and boron-reinforced composites. Honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiberglass meteoroid protection layers were the designs selected for further evaluation. Procurement of materials required for fabrication is reported and the structural test plan and fabrication drawings are included. Construction of the graphite/epoxy faceskins, chem mill of the aluminum faceskins, chem mill of aluminum truss components, and fabrication of the graphite/epoxy honeycomb sandwich development panel is also reported.

  7. Design, fabrication and test of lightweight shell structure. [axial compression loads and torsion stress

    Science.gov (United States)

    Lager, J. R.

    1975-01-01

    A cylindrical shell structure 3.66 m (144 in.) high by 4.57 m (180 in.) diameter was designed using a wide variety of materials and structural concepts to withstand design ultimate combined loading 1225.8 N/cm (700 lb/in.) axial compression and 245.2 N/cm (140 lb/in.) torsion. The overall cylinder geometry and design loading are representative of that expected on a high performance space tug vehicle. The relatively low design load level results in designs that use thin gage metals and fibrous-composite laminates. Fabrication and structural tests of small panels and components representative of many of the candidate designs served to demonstrate proposed fabrication techniques and to verify design and analysis methods. Three of the designs evaluated, honeycomb sandwich with aluminum faceskins, honeycomb sandwich with graphite/epoxy faceskins, and aluminum truss with fiber-glass meteoroid protection layers, were selected for further evaluation.

  8. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    CERN Document Server

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb3Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb3Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb3Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  9. Design, fabrication and test of a lightweight shell structure, phase 3

    Science.gov (United States)

    1977-01-01

    Progress is reported in the construction of lightweight orthogrid shells. Graphite/epoxy panels are being used in the fabrication. The shell structure is diagramed in detail. Panel laminates, and panel stiffener flanges are described while illustrations delineate panel assembly procedures.

  10. Vapor Space Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    As part of an integrated program to better understand corrosion in the high level waste tanks, Hanford has been investigating corrosion at the liquid/air interface (LAI) and at higher areas in the tank vapor space. This current research evaluated localized corrosion in the vapor space over Hanford double shell tank simulants to assess the impact of ammonia and new minimum nitrite concentration limits, which are part of the broader corrosion chemistry limits. The findings from this study showed that the presence of ammonia gas (550 ppm) in the vapor space is sufficient to reduce corrosion over the short-term (i.e. four months) for a Hanford waste chemistry (SY102 High Nitrate). These findings are in agreement with previous studies at both Hanford and SRS which showed ammonia gas in the vapor space to be inhibitive. The presence of ammonia in electrochemical test solution, however, was insufficient to inhibit against pitting corrosion. The effect of the ammonia appears to be a function of the waste chemistry and may have more significant effects in waste with low nitrite concentrations. Since high levels of ammonia were found beneficial in previous studies, additional testing is recommended to assess the necessary minimum concentration for protection of carbon steel. The new minimum R value of 0.15 was found to be insufficient to prevent pitting corrosion in the vapor space. The pitting that occurred, however, did not progress over the four-month test. Pits appeared to stop growing, which would indicate that pitting might not progress through wall.

  11. Shell concrete pavement.

    Science.gov (United States)

    1966-10-01

    This report describes the testing performed with reef shell, clam shell and a combination of reef and clam shell used as coarse aggregate to determine if a low modulus concrete could be developed for use as a base material as an alternate to the pres...

  12. Barrier function test: Laboratory evaluation of the protective function of some barrier creams against cashewnut shell oil

    Directory of Open Access Journals (Sweden)

    Pasricha J

    1991-01-01

    Full Text Available A barrier function test has been designed to screen the protective capacity of a cream against the cauterizing effect of cashew nut shell oil (CNSO on the skin. The test consists of applying the barrier cream on a 5 cm circular area of skin on the back of a human volunteer and then at its centre applying a 1 cm sq Whatman no. 3 paper disc soaked in the CNSO for 15 minutes and looking for the evidence of cauterization reaction after 48 hours. Of the various creams containing a variety of paraffins, bees wax, polyethylene glycols, methyl cellulose gel, and petrolatum, only polyethylene glycol (PEG cream was found to afford adequate protection against cashew nut shell oil. Addition of 10% zinc oxide or 10% kaolin to the PEG cream did not seem to afford any additional protection. Castor oil already being used by the workers was found to be inferior to the PEG cream.

  13. Design of 8-ft-Diameter Barrel Test Article Attachment Rings for Shell Buckling Knockdown Factor Project

    Science.gov (United States)

    Lovejoy, Andrew E.; Hilburger, Mark W.

    2010-01-01

    The Shell Buckling Knockdown Factor (SBKF) project includes the testing of sub-scale cylinders to validate new shell buckling knockdown factors for use in the design of the Ares-I and Ares-V launch vehicles. Test article cylinders represent various barrel segments of the Ares-I and Ares-V vehicles, and also include checkout test articles. Testing will be conducted at Marshall Space Flight Center (MSFC) for test articles having an eight-foot diameter outer mold line (OML) and having lengths that range from three to ten feet long. Both ends of the test articles will be connected to the test apparatus using attachment rings. Three multiple-piece and one single-piece design for the attachment rings were developed and analyzed. The single-piece design was chosen and will be fabricated from either steel or aluminum (Al) depending on the required safety factors (SF) for test hardware. This report summarizes the design and analysis of these attachment ring concepts.

  14. Waste characterization plan for the Hanford Site single-shell tanks. Appendix I, Test plan for sampling and analysis of ten single-shell tanks

    Energy Technology Data Exchange (ETDEWEB)

    Hill, J.G.; Winters, W.I.; Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States); Buck, J.W.; Chamberlain, P.J.; Hunter, V.L. [Pacific Northwest Lab., Richland, WA (United States)

    1991-09-01

    This appendix describes the sampling and analysis of the next ten single-shell tanks (SST) following the successful of SSTs B-201 and B-202. SST T-203 shall not be core sampled sequentially after B-201 and B-202, as originally planned, because this tank would not have provided information on tank safety issues and it contains an identical waste type as the previous two SSTs. Therefore, sampling and analysis of T-203 at the present time was considered repetitious and not an efficient utilization of the limited available resources. This test plan will outline methodology for characterization of the next ten SSTs, summarize lessons learned in the laboratory during Phase IA/IB, identify criteria for tank selection, and detail the analysis to be performed during the characterization of each tank. The sampling, analysis, and data collection, detailed by the this test plan, are being performed to support the final SST closure date of 2,018 identified in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement).

  15. Evaluating the sensitivity, reproducibility and flexibility of a method to test hard shell capsules intended for use in dry powder inhalers

    OpenAIRE

    Chong, Rosalind H.E.; Jones, Brian E.; Díez, Fernando; Birchall, James C.; Coulman, Sion A

    2016-01-01

    Pharmaceutical tests for hard shell capsules are designed for orally administered capsules. The use of capsules in dry powder inhalers is widespread and increasing and therefore more appropriate tests are required to ensure quality and determine if these capsules are fit for purpose. This study aims to determine the flexibility, reproducibility and sensitivity of a quantitative method that is designed to evaluate the puncture characteristics of different capsule shell formulations under diffe...

  16. Toxicity testing of chitosan from tiger prawn shell waste on cell culture

    Directory of Open Access Journals (Sweden)

    Maretaningtias Dwi Ariani

    2009-03-01

    Full Text Available Background: A biomaterial used in oral cavity should not become toxic, irritant, carcinogenic, and allergenic. Chitosan represents a new biomaterial in dentistry. Purpose: To examine the toxicity of chitosan from tiger prawn shell waste on cell culture with MTT assay. Methods: Chitosan with concentration of 0.25%, 0.5%, 0.75% and 1% was used in this experiment. Each sample was immersed on eppendorf microtubes containing media culture. After 24 hours, the immersion of media culture was used to examine the toxicity effects on BHK-21 cell based on MTT assay method. The density of optic formazan indicates the number of living cells. All data were then statistically analyzed by one-way Anava. Results: The number of living cells in chitosan from tiger prawn shell waste was 93.16%; 85.07%; 78.48%; 75.66%. Thus, there was no significant difference among groups. Conclusion: Chitosan with 0.25%, 0.5%, 0.75% and 1% concentrations from tiger prawn shell waste were not toxic for BHK-21 cell culture when using parameter CD50.

  17. Development of Mathematical Models and Computer Technologies for the Virtu al Destructive Testing of Shell Structures

    Directory of Open Access Journals (Sweden)

    Yu.N. Shevchenko

    2013-11-01

    Full Text Available The method for numerical investigation of the stress-strain state and the strength of thin-walled structural element in the process of loading by increasing internal pressure is elaborated. Constitutive equations of the theory of elasticplastic deformation of isotropic materials along the trajectories of small curvature, the relations of the theory of thin shells of revolution, the strength criteria, methods for solving of boundary value problems of plasticity and corresponding computer programs are used. Calculation results for the failure loading and experimental data confirmed the effectiveness of the developed mathematical model.

  18. Test Results of LARP Nb3Sn Quadrupole Magnets Using a Shell-based Support Structure (TQS)

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Dietderich, D. R.; Felice, H.; Ferracin, P.; Hafalia, R.; Hannaford, C. R.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Wang, X.; Ghosh, A.; Wanderer, P.; Ambrosio, G.; Barzi, E.; Bossert, R.; Chlachidze, G.; Feher, S.; Kashikhin, V. V.; Lamm, M.; Tartaglia, M. A.; Zlobin, A. V.; Bajko, M.; Bordini, B.; DeRijk, G.; Giloux, C.; Karppinen, M.; Perez, J. C.; Rossi, L.; Siemko, A.; Todesco, E.

    2008-08-17

    Among the magnet development program of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider luminosity upgrade, six quadrupole magnets were built and tested using a shell based key and bladder technology (TQS). The 1 m long 90 mm aperture magnets are part o fthe US LHC Accelerator Research Program (LARP) aimed at demonstrating Nb{sub 3}Sn technology by the year 2009, of a 3.6 m long magnet capable of achieving 200 T/m. In support of the LARP program the TQS magnets were tested at three different laboratories, LBNL, FNAL and CERN and while at CERN a technology-transfer and a four days magnet disassembly and reassembly were included. This paper summarizes the fabrication, assembly, cool-down and test results of the six magnets and compres measruements with design expectations.

  19. The effects of convection and oxygen presence on thermal testing of thin-shelled Celotex{trademark}-based packages

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, M.R.

    1994-06-01

    Several experiments were performed in an attempt to determine the effects of both convection and oxygen levels during hypothetical thermal accident testing of thin-shelled Celotex{trademark}-based packages in furnaces. Obsolete DT-22 packages were used and experiments were performed in two separate fumaces, one gas-fired and one electric, each of which has previously been used for this type of testing. Oxygen levels were varied and measured in the gas-fired furnace while the electric fumace was operated in a standard manner. The gas-fired fumace is constructed so as to induce a very strong convective field within. After testing, the packages were evaluated by several methods to determine the effects of the thermal testing on the package. In general, there were no differences found for the packages tested in the two different furnaces or for packages tested in the same furnace under different conditions. Therefore, after careful consideration, it is concluded that thermal testing can still be performed in electric furnaces in which the oxygen supply is not refurbished and there is no forced convection heat transfer.

  20. Evaluating the sensitivity, reproducibility and flexibility of a method to test hard shell capsules intended for use in dry powder inhalers.

    Science.gov (United States)

    Chong, Rosalind H E; Jones, Brian E; Díez, Fernando; Birchall, James C; Coulman, Sion A

    2016-03-16

    Pharmaceutical tests for hard shell capsules are designed for orally administered capsules. The use of capsules in dry powder inhalers is widespread and increasing and therefore more appropriate tests are required to ensure quality and determine if these capsules are fit for purpose. This study aims to determine the flexibility, reproducibility and sensitivity of a quantitative method that is designed to evaluate the puncture characteristics of different capsule shell formulations under different climatic conditions. A puncture testing method was used to generate force displacement curves for five capsule formulations that were stored and tested at two different temperatures (5°C and 19°C). Force-displacement puncture profiles were reproducible for individual capsule shell formulations. The methodology was able to discriminate between capsules produced using different primary materials i.e. gelatin versus hypromellose, as well as more minor changes to capsule formulation i.e. different material grades and excipients. Reduced temperature increased the forces required for capsule puncture however further work is required to confirm its significance. Results indicate the method provides a reproducible and sensitive means of evaluating capsule puncture. Future studies should validate the methodology at different test sites, using different operators and with different capsule shell formulations. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. SUMMARY AND RECOMMENDATIONS OF THE EXPERT PANEL OVERSIGHT COMMITTEE MEETING ON DOUBLE-SHELL TANK CORROSION MONITORING AND TESTING HELD AUGUST 4-5 2008

    Energy Technology Data Exchange (ETDEWEB)

    BOOMER KD

    2009-01-08

    The Expert Panel Oversight Committee (EPOC) on Double-Shell Tank Corrosion Monitoring and Testing has been overseeing the Fiscal Year FY 2008 experimental program being performed at CC Technologies (CCT) to optimize the chemistry control for corrosion limits in Double-Shell Tanks (DSTs). The EPOC met at the M & D Professional Services Conference Facility on August 4 and 5, 2008 to discuss various aspects of that responsibility including FY 2009 planning. Formal presentations were made to update the EPOC on the these subjects.

  2. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2014-01-30

    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.

  3. Tailings research at Shell's Muskeg River mine tailings testing facility

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J.; Masala, S. [Shell Canada Ltd., Calgary, AB (Canada). Oil Sands Division

    2009-07-01

    This presentation discussed a non-segregating tailings (NST) pilot program conducted at the Muskeg River Mine tailings test facility. NST deposition performance and deposit characteristics were evaluated. NST fines are stored in the pore spaces in sandy deposits. Coagulants are used to enhance the yield stress of fine mineral solids-water suspension and improve the retention of fines in sand deposit pores. High solids slurries reduce fine mineral solids separation from the granular matrix. The use of NST increases the maximum volumetric storage of sand and clay fines and reduces the fluid fine tailings inventory. Performance metrics for NST include deposit homogeneity, overall fines capture, the time to consolidation, and strength after consolidation. It was concluded that NST is an effective means of reducing the rate of production of fluid fine tailings at oil sands mining operations. A simplified NST process flowsheet was presented, as well as photographs of NST slurry depositions. tabs., figs.

  4. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.

    2012-09-24

    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  5. Shell supports

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2004-01-01

    A new statical and conceptual model for membrane shell structures - the stringer system - has been found. The principle was first published at the IASS conference in Copenhagen (OHL91), and later the theory has been further developed (ALMO3)(ALMO4). From the analysis of the stringer model it can...... be concluded that all membrane shells can be described by a limited number of basic configurations of which quite a few have free edges....

  6. Validation of the Reveal(®) 2.0 Group D1 Salmonella Test for Detection of Salmonella Enteritidis in Raw Shell Eggs and Poultry-Associated Matrixes.

    Science.gov (United States)

    Mozola, Mark; Biswas, Preetha; Viator, Ryan; Feldpausch, Emily; Foti, Debra; Li, Lin; Le, Quynh-Nhi; Alles, Susan; Rice, Jennifer

    2016-07-01

    A study was conducted to assess the performance of the Reveal(®) 2.0 Group D1 Salmonella lateral flow immunoassay for use in detection of Salmonella Enteritidis (SE) in raw shell eggs and poultry-associated matrixes, including chicken carcass rinse and poultry feed. In inclusivity testing, the Reveal 2.0 test detected all 37 strains of SE tested. The test also detected all but one of 18 non-Enteritidis somatic group D1 Salmonella serovars examined. In exclusivity testing, none of 42 strains tested was detected. The exclusivity panel included Salmonella strains of somatic groups other than D1, as well as strains of other genera of Gram-negative bacteria. In matrix testing, performance of the Reveal 2.0 test was compared to that of the U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedure for chicken carcass rinse and to that of the U.S. Food and Drug Administration Bacteriological Analytical Manual for raw shell eggs and poultry feed. For all matrixes evaluated, there were no significant differences in the ability to detect SE when comparing the Reveal 2.0 method and the appropriate reference culture procedure as determined by probability of detection statistical analysis. The ability of the Reveal 2.0 test to withstand modest perturbations to normal operating parameters was examined in robustness experiments. Results showed that the test can withstand deviations in up to three operating parameters simultaneously without significantly affecting performance. Real-time stability testing of multiple lots of Reveal 2.0 devices established the shelf life of the test device at 16 months postmanufacture.

  7. (shell) nanoparticles

    Indian Academy of Sciences (India)

    equations for the scattering of electromagnetic radiation by particles with spherical or cylindrical symmetry. Aden and Kerker have published complete details of scattering from concentric spherical shells in 1951 [28]. In Mie theory, the harmonically oscillating electromagnetic fields are expressed in terms of a set of spherical ...

  8. Testing Noncollinear Spin-Flip, Collinear Spin-Flip, and Conventional Time-Dependent Density Functional Theory for Predicting Electronic Excitation Energies of Closed-Shell Atoms.

    Science.gov (United States)

    Xu, Xuefei; Yang, Ke R; Truhlar, Donald G

    2014-05-13

    Conventional time-dependent density functional theory (TDDFT) is based on a closed-shell Kohn-Sham (KS) singlet ground state with the adiabatic approximation, using either linear response (KS-LR) or the Tamm-Dancoff approximation (KS-TDA); these methods can only directly predict singly excited states. This deficiency can be overcome by using a triplet state as the reference in the KS-TDA approximation and "exciting" the singlet by a spin flip (SF) from the triplet; this is the method suggested by Krylov and co-workers, and we abbreviate this procedure as SF-KS-TDA. SF-KS-TDA can be applied either with the original collinear kernel of Krylov and co-workers or with a noncollinear kernel, as suggested by Wang and Ziegler. The SF-KS-TDA method does bring some new practical difficulties into play, but it can at least formally model doubly excited states and states with double-excitation character, so it might be more useful than conventional TDDFT (both KS-LR and KS-TDA) for photochemistry if these additional difficulties can be surmounted and if it is accurate with existing approximate exchange-correlation functionals. In the present work, we carried out calculations specifically designed to understand better the accuracy and limitations of the conventional TDDFT and SF-KS-TDA methods; we did this by studying closed-shell atoms and closed-shell monatomic cations because they provide a simple but challenging testing ground for what we might expect in studying the photochemistry of molecules with closed-shell ground states. To test their accuracy, we applied conventional KS-LR and KS-TDA and 18 versions of SF-KS-TDA (nine collinear and nine noncollinear) to the same set of vertical excitation energies (including both Rydberg and valence excitations) of Be, B(+), Ne, Na(+), Mg, and Al(+). We did this for 10 exchange-correlation functionals of various types, both local and nonlocal. We found that the GVWN5 and M06 functionals with nonlocal kernels in spin-flip calculations

  9. Experimental static and dynamic tests on a large-scale free-form Voronoi grid shell mock-up in comparison with finite-element method results

    Science.gov (United States)

    Froli, Maurizio; Laccone, Francesco

    2017-09-01

    Grid shells supporting transparent or opaque panels are largely used to cover long-spanned spaces because of their lightness, the easy setup, and economy. This paper presents the results of experimental static and dynamic investigations carried out on a large-scale free-form grid shell mock-up, whose geometry descended from an innovative Voronoi polygonal pattern. Accompanying finite-element method (FEM) simulations followed. To these purposes, a four-step procedure was adopted: (1) a perfect FEM model was analyzed; (2) using the modal shapes scaled by measuring the mock-up, a deformed unloaded geometry was built, which took into account the defects caused by the assembly phase; (3) experimental static tests were executed by affixing weights to the mock-up, and a simplified representative FEM model was calibrated, choosing the nodes stiffness and the material properties as parameters; and (4) modal identification was performed through operational modal analysis and impulsive tests, and then, a simplified FEM dynamical model was calibrated. Due to the high deformability of the mock-up, only a symmetric load case configuration was adopted.

  10. Shell worlds

    Science.gov (United States)

    Roy, Kenneth I.; Kennedy, Robert G., III; Fields, David E.

    2013-02-01

    The traditional concept of terraforming assumes ready availability of candidate planets with acceptable qualities: orbiting a star in its "Goldilocks zone", liquid water, enough mass, years longer than days, magnetic field, etc. But even stipulating affordable interstellar travel, we still might never find a good candidate elsewhere. Whatever we found likely would require centuries of heavy terraforming, just as Mars or Venus would here. Our increasing appreciation of the ubiquity of life suggests that any terra nova would already possess it. We would then face the dilemma of introducing alien life forms (us, our microbes) into another living world. Instead, we propose a novel method to create habitable environments for humanity by enclosing airless, sterile, otherwise useless planets, moons, and even large asteroids within engineered shells, which avoids the conundrum. These shells are subject to two opposing internal stresses: compression due to the primary's gravity, and tension from atmospheric pressure contained inside. By careful design, these two cancel each other resulting in zero net shell stress. Beneath the shell an Earth-like environment could be created similar in almost all respects to that of Home, except for gravity, regardless of the distance to the sun or other star. Englobing a small planet, moon, or even a dwarf planet like Ceres, would require astronomical amounts of material (quadrillions of tons) and energy, plus a great deal of time. It would be a quantum leap in difficulty over building Dyson Dots or industrializing our solar system, perhaps comparable to a mission across interstellar space with a living crew within their lifetime. But when accomplished, these constructs would be complete (albeit small) worlds, not merely large habitats. They could be stable across historic timescales, possibly geologic. Each would contain a full, self-sustaining ecology, which might evolve in curious directions over time. This has interesting implications

  11. Hispanos en la EPA: Luis Troche

    Science.gov (United States)

    La diversidad de la fuerza laboral es importante para la Agencia de Protección Ambiental de EE.UU. (EPA, por sus siglas en inglés). Los empleados hispanos de la EPA contribuyen diariamente hacia la protección de la salud y el medio ambiente.

  12. Biomechanics of turtle shells: how whole shells fail in compression.

    Science.gov (United States)

    Magwene, Paul M; Socha, John J

    2013-02-01

    Turtle shells are a form of armor that provides varying degrees of protection against predation. Although this function of the shell as armor is widely appreciated, the mechanical limits of protection and the modes of failure when subjected to breaking stresses have not been well explored. We studied the mechanical properties of whole shells and of isolated bony tissues and sutures in four species of turtles (Trachemys scripta, Malaclemys terrapin, Chrysemys picta, and Terrapene carolina) using a combination of structural and mechanical tests. Structural properties were evaluated by subjecting whole shells to compressive and point loads in order to quantify maximum load, work to failure, and relative shell deformations. The mechanical properties of bone and sutures from the plastral region of the shell were evaluated using three-point bending experiments. Analysis of whole shell structural properties suggests that small shells undergo relatively greater deformations before failure than do large shells and similar amounts of energy are required to induce failure under both point and compressive loads. Location of failures occurred far more often at sulci than at sutures (representing the margins of the epidermal scutes and the underlying bones, respectively), suggesting that the small grooves in the bone created by the sulci introduce zones of weakness in the shell. Values for bending strength, ultimate bending strain, Young's modulus, and energy absorption, calculated from the three-point bending data, indicate that sutures are relatively weaker than the surrounding bone, but are able to absorb similar amounts of energy due to higher ultimate strain values. Copyright © 2012 Wiley Periodicals, Inc.

  13. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  14. TESTING VAPOR SPACE AND LIQUID-AIR INTERFACE CORROSION IN SIMULATED ENVIRONMENTS OF HANFORD DOUBLE-SHELLED TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.

    2013-05-30

    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  15. (Oil Palm Shell) Lightweight Concrete

    African Journals Online (AJOL)

    The compressive strength as destructive test and, ultrasonic pulse velocity (UPV) and dynamic modulus of elasticity (Ed) as non-destructive tests have been carried out on a new lightweight concrete produced using oil palm shell (OPS) as coarse aggregate, as a way to establish the usefulness of these tests to determine the ...

  16. Evaluation of sampling plans used in the United States, United Kingdom, and The Netherlands to test raw shelled peanuts for aflatoxin.

    Science.gov (United States)

    Whitaker, T B; Springer, J; Defize, P R; deKoe, W J; Coker, R

    1995-01-01

    The United States is a large producer and exporter of peanuts. The United Kingdom and The Netherlands are major importers of U.S. peanuts. Each country has a different guideline or legal limit for peanut products containing aflatoxin. Peanuts are tested for aflatoxin in each country by using specifically designed aflatoxin sampling plans to determine if the aflatoxin concentration in a lot of raw shelled peanuts is less than the guideline or legal limit. For raw shelled peanuts, the U.S. plan has the highest sample acceptance limit of 15 ng total aflatoxin/g, the UK plan has a sample acceptance limit of 10 ng total aflatoxin/g, and the Dutch Code of Practice (called the Dutch plan) has the lowest sample acceptance limit at 3 ng aflatoxin B1/g. The U.S. plan uses a maximum of 3 sampling units, each weighing 21.8 kg; the UK plan uses a single sampling unit of 10 kg; and the Dutch plan uses 4 sampling units, each weighing 7.5 kg. The sampling variance is lowest for the U.S. plan and highest for the Dutch plan. The sample preparation variance is lowest for both the Dutch and UK plans and highest for the U.S. plan, primarily because of the mill type used to comminute the kernels in the sample. For a given distribution among lot concentrations, the U.S. plan accepts the greatest number of lots and the Dutch plan rejects the greatest number of lots. The average aflatoxin concentration among accepted lots is highest for the U.S. plan and lowest for the Dutch plan.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. MicroShell Minimalist Shell for Xilinx Microprocessors

    Science.gov (United States)

    Werne, Thomas A.

    2011-01-01

    MicroShell is a lightweight shell environment for engineers and software developers working with embedded microprocessors in Xilinx FPGAs. (MicroShell has also been successfully ported to run on ARM Cortex-M1 microprocessors in Actel ProASIC3 FPGAs, but without project-integration support.) Micro Shell decreases the time spent performing initial tests of field-programmable gate array (FPGA) designs, simplifies running customizable one-time-only experiments, and provides a familiar-feeling command-line interface. The program comes with a collection of useful functions and enables the designer to add an unlimited number of custom commands, which are callable from the command-line. The commands are parameterizable (using the C-based command-line parameter idiom), so the designer can use one function to exercise hardware with different values. Also, since many hardware peripherals instantiated in FPGAs have reasonably simple register-mapped I/O interfaces, the engineer can edit and view hardware parameter settings at any time without stopping the processor. MicroShell comes with a set of support scripts that interface seamlessly with Xilinx's EDK tool. Adding an instance of MicroShell to a project is as simple as marking a check box in a library configuration dialog box and specifying a software project directory. The support scripts then examine the hardware design, build design-specific functions, conditionally include processor-specific functions, and complete the compilation process. For code-size constrained designs, most of the stock functionality can be excluded from the compiled library. When all of the configurable options are removed from the binary, MicroShell has an unoptimized memory footprint of about 4.8 kB and a size-optimized footprint of about 2.3 kB. Since MicroShell allows unfettered access to all processor-accessible memory locations, it is possible to perform live patching on a running system. This can be useful, for instance, if a bug is

  18. Structural Assessment of Advanced Composite Tow-Steered Shells

    Science.gov (United States)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  19. Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid–structure interaction

    Directory of Open Access Journals (Sweden)

    Yunju Yan

    2015-02-01

    Full Text Available Aerodynamic force can lead to the strong structural vibration of flying aircraft at a high speed. This harmful vibration can bring damage or failure to the electronic equipment fixed in aircraft. It is necessary to predict the structural dynamic response in the design course. This paper presents a new numerical algorithm and scheme to solve the structural dynamics responses when considering fluid–structure interaction (FSI. Numerical simulation for a free-flying structural model in transonic speed is completed. Results show that the small elastic deformation of the structure can greatly affect the FSI. The FSI vibration tests are carried out in a transonic speed wind-tunnel for checking numerical theory and algorithms, and the wind-tunnel test results well accord with that of the numerical simulation. This indicates that the presented numerical method can be applied to predicting the structural dynamics responses when containing the FSI.

  20. Classification of soft-shell materials for leisure outdoor jackets by clo defined from thermal properties testing

    Science.gov (United States)

    Tesinova, P.; Steklova, P.; Duchacova, T.

    2017-10-01

    Materials for outdoor activities are produced in various combinations and lamination helps to combine two or more components for gaining high comfort properties and lighten the structure. Producers can choose exact suitable material for construction of part or set of so called layered clothing for expected activity. Decreasing the weight of materials when preserving of high quality of water-vapour permeability, wind resistivity and hydrostatic resistivity and other comfort and usage properties is a big task nowadays. This paper is focused on thermal properties as an important parameter for being comfort during outdoor activities. Softshell materials were chosen for testing and computation of clo. Results compared with standardised clo table helps us to classify thermal insulation of the set of fabrics when defining proper clothing category.

  1. Field Test Evaluation of Conservation Retrofits of Low-Income, Single-Family Buildings: Combined Building Shell and Heating System Retrofit Audit

    Energy Technology Data Exchange (ETDEWEB)

    McCold, L.N.

    1987-01-01

    Revised DOE regulations allow greater flexibility in conducting DOE-funded low-income weatherization programs. Certain retrofits to heating and cooling systems for these houses are now permitted, as well as the traditional insulation and infiltration control measures. Also, different amounts of money may be spent on different houses, as long as the average expenditure per house does not exceed $1600. The expanded list of retrofit options provides an opportunity for increased energy savings, but it also complicates the process of selecting the combination of retrofits, house-by-house, that will yield maximum savings for the weatherization program. DOE asked ORNL to devise a procedure for selecting an optimum combination of building shell and heating system retrofits for single-family dwellings. To determine the best retrofits for each house that would maximize program savings, ORNL staff members developed an approach that used information from a preretrofit energy audit of candidate houses. Audit results are used to estimate annual energy savings for various retrofits for each house. Life-cycle benefits (B) are calculated, as are the estimated installation costs (C) for given retrofits in given houses. The benefit-to-cost ratios (B/Cs) are then ranked for all possible retrofits to all candidate houses, and the top-ranking B/C retrofits are selected for installation. This process maximizes program savings, and it is adaptable to varied housing types in different climates. The Audit-Directed Retrofit Program (ADRP) was field tested in a low-income housing retrofit program in Wisconsin during the winter of 1985-86. Results of the field test are reported in a companion document. This report describes the ADRP for the benefit of potential users.

  2. Shell ontogeny in radiolarians

    Digital Repository Service at National Institute of Oceanography (India)

    Anderson, O.R.; Gupta, S.M.

    The ontogeny of the shells in modern and ancient radiolarian species, Acrosphaera cyrtodon were observed by scanning and transmission electron microscopy. The shells of A. cyrtodon were obtained from core samples collected from the Central Indian...

  3. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    Directory of Open Access Journals (Sweden)

    Schilthuizen Menno

    2003-06-01

    Full Text Available Abstract Background Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not previously been explored. Presentation of the hypothesis The hypothesis that is presented consists of two parts. First, that shell ornamentation is the result of sexual selection. Second, that such sexual selection has caused the divergence in shell shape in different species. Testing the hypothesis The first part of the hypothesis may be tested by searching for sexual dimorphism in shell ornamentation in gonochoristic snails, by searching for increased variance in shell ornamentation relative to other shell traits, and by mate choice experiments using individuals with experimentally enhanced ornamentation. The second part of the hypothesis may be tested by comparing sister groups and correlating shell diversity with degree of polygamy. Implications of the hypothesis If the hypothesis were true, it would provide an explanation for the many cases of allopatric evolutionary radiation in snails, where shell diversity cannot be related to any niche differentiation or environmental differences.

  4. Fluctuating shells under pressure

    Science.gov (United States)

    Paulose, Jayson; Vliegenthart, Gerard A.; Gompper, Gerhard; Nelson, David R.

    2012-01-01

    Thermal fluctuations strongly modify the large length-scale elastic behavior of cross-linked membranes, giving rise to scale-dependent elastic moduli. Whereas thermal effects in flat membranes are well understood, many natural and artificial microstructures are modeled as thin elastic shells. Shells are distinguished from flat membranes by their nonzero curvature, which provides a size-dependent coupling between the in-plane stretching modes and the out-of-plane undulations. In addition, a shell can support a pressure difference between its interior and its exterior. Little is known about the effect of thermal fluctuations on the elastic properties of shells. Here, we study the statistical mechanics of shape fluctuations in a pressurized spherical shell, using perturbation theory and Monte Carlo computer simulations, explicitly including the effects of curvature and an inward pressure. We predict novel properties of fluctuating thin shells under point indentations and pressure-induced deformations. The contribution due to thermal fluctuations increases with increasing ratio of shell radius to thickness and dominates the response when the product of this ratio and the thermal energy becomes large compared with the bending rigidity of the shell. Thermal effects are enhanced when a large uniform inward pressure acts on the shell and diverge as this pressure approaches the classical buckling transition of the shell. Our results are relevant for the elasticity and osmotic collapse of microcapsules. PMID:23150558

  5. Dipole and quadrupole moments of Cu-7873 as a test of the robustness of the Z =28 shell closure near 78Ni

    Science.gov (United States)

    de Groote, R. P.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Cocolios, T. E.; Day Goodacre, T.; Farooq-Smith, G. J.; Fedorov, D. V.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Koszorús, Á.; Lynch, K. M.; Neyens, G.; Nowacki, F.; Otsuka, T.; Rothe, S.; Stroke, H. H.; Tsunoda, Y.; Vernon, A. R.; Wendt, K. D. A.; Wilkins, S. G.; Xu, Z. Y.; Yang, X. F.

    2017-10-01

    Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground states of neutron-rich Cu-7873 isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the CERN On-Line Isotope Mass Separator (ISOLDE) facility. The nuclear moments of the less exotic Cu,7573 isotopes were remeasured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and 2978Cu (N =49 ) in particular, are used to investigate excitations of the assumed doubly magic 78Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the Z =28 shell gap between N ˜45 and N =50 , the magicity of Z =28 and N =50 is restored toward 78Ni. This is due to weakened dynamical correlations, as clearly probed by the present moment measurements.

  6. Shell-like structures

    CERN Document Server

    Altenbach, Holm

    2011-01-01

    In this volume, scientists and researchers from industry discuss the new trends in simulation and computing shell-like structures. The focus is put on the following problems: new theories (based on two-dimensional field equations but describing non-classical effects), new constitutive equations (for materials like sandwiches, foams, etc. and which can be combined with the two-dimensional shell equations), complex structures (folded, branching and/or self intersecting shell structures, etc.) and shell-like structures on different scales (for example: nano-tubes) or very thin structures (similar

  7. Impact Crater Morphology and the Structure of Europa's Ice Shell

    Science.gov (United States)

    Silber, Elizabeth A.; Johnson, Brandon C.

    2017-12-01

    We performed numerical simulations of impact crater formation on Europa to infer the thickness and structure of its ice shell. The simulations were performed using iSALE to test both the conductive ice shell over ocean and the conductive lid over warm convective ice scenarios for a variety of conditions. The modeled crater depth-diameter is strongly dependent on the thermal gradient and temperature of the warm convective ice. Our results indicate that both a fully conductive (thin) shell and a conductive-convective (thick) shell can reproduce the observed crater depth-diameter and morphologies. For the conductive ice shell over ocean, the best fit is an approximately 8 km thick conductive ice shell. Depending on the temperature (255-265 K) and therefore strength of warm convective ice, the thickness of the conductive ice lid is estimated at 5-7 km. If central features within the crater, such as pits and domes, form during crater collapse, our simulations are in better agreement with the fully conductive shell (thin shell). If central features form well after the impact, however, our simulations suggest that a conductive-convective shell (thick shell) is more likely. Although our study does not provide a firm conclusion regarding the thickness of Europa's ice shell, our work indicates that Valhalla class multiring basins on Europa may provide robust constraints on the thickness of Europa's ice shell.

  8. SHELL ISOTOPE GEOCHEMISTRY

    African Journals Online (AJOL)

    Valley. Although fossil specimens of this subspecies have been used in palaeoclimatic reconstruction, there have been no previous reports of living examples. Here We describe the local habitat, climate and some aspects of ecology and isotopic variation within the snail shell. If isotope data can be obtained for fossil shells, ...

  9. Learning the Bash Shell

    CERN Document Server

    Newham, Cameron

    2005-01-01

    This refreshed edition serves as the most valuable guide yet to the bash shell. It's full of practical examples of shell commands and programs guaranteed to make everyday use of Linux that much easier. Includes information on key bindings, command line editing and processing, integrated programming features, signal handling, and much more!

  10. Ocean acidification alters the material properties of Mytilus edulis shells.

    Science.gov (United States)

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-06

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Nuclear shell theory

    CERN Document Server

    de-Shalit, Amos; Massey, H S W

    1963-01-01

    Nuclear Shell Theory is a comprehensive textbook dealing with modern methods of the nuclear shell model. This book deals with the mathematical theory of a system of Fermions in a central field. It is divided into three parts. Part I discusses the single particle shell model. The second part focuses on the tensor algebra, two-particle systems. The last part covers three or more particle systems. Chapters on wave functions in a central field, tensor fields, and the m-Scheme are also presented. Physicists, graduate students, and teachers of nuclear physics will find the book invaluable.

  12. Shell selection of hermit crabs is influenced by fluid drag

    Science.gov (United States)

    Casillas, Barbara; Ledesma, Rene; Alcaraz, Guillermina; Zenit, Roberto

    2010-11-01

    The flow around gastropod shells used by hermit crabs (Calcinus californiensis) was visualized experimentally. These crabs choose their shells according to many factors; we found that the choice of shell (shape and weight) is directly related to the drag caused over them by the exposure to wave action. Tests were conducted in a wind tunnel to investigate flow differences for shells of various shapes. A particle image velocimetry (PIV) system was used to visualize the flow field. The images above show the flow field around two types of shells (Thais speciosa and Nerita scabircosta) for Reynolds numbers of O(10^5). Using a control volume analysis, the drag coefficient was inferred. Several shell geometries, orientations and mean flow velocities were tested. In this talk, the flow and drag force will be shown for the different arrangements. A discussion of the relation between drag and shape will be presented.

  13. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.

    Science.gov (United States)

    Haggren, Tuomas; Perros, Alexander Pyymaki; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-08

    A facile and scalable lithography-free technique(5) for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  14. Lithography-free shell-substrate isolation for core-shell GaAs nanowires

    Science.gov (United States)

    Haggren, Tuomas; Pyymaki Perros, Alexander; Jiang, Hua; Huhtio, Teppo; Kakko, Joona-Pekko; Dhaka, Veer; Kauppinen, Esko; Lipsanen, Harri

    2016-07-01

    A facile and scalable lithography-free technique5 for the rapid construction of GaAs core-shell nanowires incorporating shell isolation from the substrate is reported. The process is based on interrupting NW growth and applying a thin spin-on-glass (SOG) layer to the base of the NWs and resuming core-shell NW growth. NW growth occurred in an atmospheric pressure metalorganic vapour phase epitaxy (MOVPE) system with gold nanoparticles used as catalysts for the vapour-liquid-solid growth. It is shown that NW axial core growth and radial shell growth can be resumed after interruption and even exposure to air. The SOG residues and native oxide layer that forms on the NW surface are shown to prevent or perturb resumption of epitaxial NW growth if not removed. Both HF etching and in situ annealing of the air-exposed NWs in the MOVPE were shown to remove the SOG residues and native oxide layer. While both procedures are shown capable of removing the native oxide and enabling resumption of epitaxial NW growth, in situ annealing produced the best results and allowed construction of pristine core-shell NWs. No growth occurred on SOG and it was observed that axial NW growth was more rapid when a SOG layer covered the substrate. The fabricated p-core/n-shell NWs exhibited diode behaviour upon electrical testing. The isolation of the NW shells from the substrate was confirmed by scanning electron microscopy and electrical measurements. The crystal quality of the regrown core-shell NWs was verified with a high resolution transmission electron microscope. The reported technique potentially provides a pathway using MOVPE for scalable and high-throughput production of shell-substrate isolated core-shell NWs on an industrial scale.

  15. Atomic inner-shell transitions

    Science.gov (United States)

    Crasemann, B.; Chen, M. H.; Mark, H.

    1984-01-01

    Atomic inner-shell processes have quite different characteristics, in several important aspects, from processes in the optical regime. Energies are large, e.g., the 1s binding energy reaches 100 keV at Z = 87; relativistic and quantum-electrodynamic effects therefore are strong. Radiationless transitions vastly dominate over photon emission in most cases. Isolated inner-shell vacancies have pronounced single-particle character, with correlations generally contributing only approximately 1 eV to the 1s and 2p binding energies; the structure of such systems is thus well tractable by independent-particle self-consistent-field atomic models. For systems containing multiple deep inner-shell vacancies, or for highly stripped ions, the importance of relativistic intermediate coupling and configuration interaction becomes pronounced. Cancellation of the Coulomb interaction can lead to strong manifestations of the Breit interaction in such phenomena as multiplet splitting and hypersatellite X-ray shifts. Unique opportunities arise for the test of theory.

  16. Shells and Patterns

    Science.gov (United States)

    Sutley, Jane

    2009-01-01

    "Shells and Patterns" was a project the author felt would easily put smiles on the faces of her fifth-graders, and teach them about unity and the use of watercolor pencils as well. It was thrilling to see the excitement in her students as they made their line drawings of shells come to life. For the most part, they quickly got the hang of…

  17. Research on cracking mechanism of the thin shell mould in expendable pattern shell casting during pattern removal process

    Directory of Open Access Journals (Sweden)

    Jiang Wenming

    2010-08-01

    Full Text Available Aiming at the cracking phenomenon of the thin shell mould in the expendable pattern shell casting during the pattern removing process, some systemic researches are presented. The influence of the pattern removing method and temperature on the pattern removing were investigated. The shell mould cracking mechanism was analyzed by using thermo-gravimetric analysis (TGA, and combining the temperature field and the volume change of the expanded polystyrene (EPS foam pattern being tested. The results indicated that the shell mould was not easily cracked when the pattern removing process was carried out with the furnace being heated little by little because of the shell slowly shrinking with dehydration and shell strength gradually increasing. The shell mould was soon destroyed when it was set directly into the furnace at above 400 ℃ because of the thin shell mould rapidly shrinking and the foam pattern hindering. However, the shell mould had no cracking when it had been preheated for a long time even if the furnace temperature was above 400 篊 and the shell was put into the furnace directly. Moreover, when the shell mould was directly set into the furnace at lower temperatures, 250 to 300 ℃, the shell would shrink slowly and the foam pattern would stay at the maximum expansion stage temperature of 100 to 110 ℃ for a long time; and the shell mould would experience an expansion force from the foam pattern for a long time. The expansion force is related to the pattern removing temperature, holding time, foam pattern thickness and density. Therefore, the foam pattern with higher density could make the shell crack.

  18. From shell logs to shell scripts

    OpenAIRE

    Jacobs, Nico; Blockeel, Hendrik

    2001-01-01

    Analysing the use of a Unix command shell is one of the classic applications in the domain of adaptive user interfaces and user modelling. Instead of trying to predict the next command from a history of commands, we automatically produce scripts that automate frequent tasks. For this we use an ILP association rule learner. We show how to speedup the learning task by dividing it into smaller tasks, and the need for a preprocessing phase to detect frequent subsequences in the data. We illustrat...

  19. Palm kernel shell as aggregate for light weight concrete | Idah ...

    African Journals Online (AJOL)

    In this study, the effect of replacing the conventional gravel with palm. kernel shell as aggregates in making concrete was inquired into. Several . volumes of palm kernel shells were used in two (4) different proportions with the other constituents and the strength of the concretes produced were tested to ascertain the effect of ...

  20. an evalution of some mechanical methods for shelling melon seeds ...

    African Journals Online (AJOL)

    Dr Obe

    human consumption. Furthermore, there is a great potential for using the shells as livestock feed and litter, it is therefore preferable to leave the shells or hulls .... base the design of a device. Table 1: performance summary of the knurled roller machine. Table 2: Variance ratios for the results of the performance tests of the.

  1. Experimental investigations on buckling of cylindrical shells under ...

    Indian Academy of Sciences (India)

    This paper presents experimental studies on buckling of cylindrical shell models under axial and transverse shear loads. Tests are carried out using an experimental facility specially designed, fabricated and installed, with provision for in-situ measurement of the initial geometric imperfections. The shell models are made by ...

  2. Settlement pattern and survival of a shell-infesting sabellid ...

    African Journals Online (AJOL)

    This study tested whether abalone diet influences larval settlement success of the shell-dwelling sabellid polychaete Terebrasabella heterouncinata and their survival over the first 96h after settlement on host abalone. Shell area preferences of the sabellid were also investigated. Abalone diet (fresh kelp, Ecklonia maxima or ...

  3. Fabrication of diamond shells

    Science.gov (United States)

    Hamza, Alex V.; Biener, Juergen; Wild, Christoph; Woerner, Eckhard

    2016-11-01

    A novel method for fabricating diamond shells is introduced. The fabrication of such shells is a multi-step process, which involves diamond chemical vapor deposition on predetermined mandrels followed by polishing, microfabrication of holes, and removal of the mandrel by an etch process. The resultant shells of the present invention can be configured with a surface roughness at the nanometer level (e.g., on the order of down to about 10 nm RMS) on a mm length scale, and exhibit excellent hardness/strength, and good transparency in the both the infra-red and visible. Specifically, a novel process is disclosed herein, which allows coating of spherical substrates with optical-quality diamond films or nanocrystalline diamond films.

  4. Sensational spherical shells

    Science.gov (United States)

    Lee, M. C.; Kendall, J. M., Jr.; Bahrami, P. A.; Wang, T. G.

    1986-01-01

    Fluid-dynamic and capillary forces can be used to form nearly perfect, very small spherical shells when a liquid that can solidify is passed through an annular die to form an annular jet. Gravity and certain properties of even the most ideal materials, however, can cause slight asymmetries. The primary objective of the present work is the control of this shell formation process in earth laboratories rather than space microgravity, through the development of facilities and methods that minimize the deleterious effects of gravity, aerodynamic drag, and uncontrolled cooling. The spherical shells thus produced can be used in insulation, recyclable filter materials, fire retardants, explosives, heat transport slurries, shock-absorbing armor, and solid rocket motors.

  5. NIF Double Shell outer/inner shell collision experiments

    Science.gov (United States)

    Merritt, E. C.; Loomis, E. N.; Wilson, D. C.; Cardenas, T.; Montgomery, D. S.; Daughton, W. S.; Dodd, E. S.; Desjardins, T.; Renner, D. B.; Palaniyappan, S.; Batha, S. H.; Khan, S. F.; Smalyuk, V.; Ping, Y.; Amendt, P.; Schoff, M.; Hoppe, M.

    2017-10-01

    Double shell capsules are a potential low convergence path to substantial alpha-heating and ignition on NIF, since they are predicted to ignite and burn at relatively low temperatures via volume ignition. Current LANL NIF double shell designs consist of a low-Z ablator, low-density foam cushion, and high-Z inner shell with liquid DT fill. Central to the Double Shell concept is kinetic energy transfer from the outer to inner shell via collision. The collision determines maximum energy available for compression and implosion shape of the fuel. We present results of a NIF shape-transfer study: two experiments comparing shape and trajectory of the outer and inner shells at post-collision times. An outer-shell-only target shot measured the no-impact shell conditions, while an `imaging' double shell shot measured shell conditions with impact. The `imaging' target uses a low-Z inner shell and is designed to perform in similar collision physics space to a high-Z double shell but can be radiographed at 16keV, near the viable 2DConA BL energy limit. Work conducted under the auspices of the U.S. DOE by LANL under contract DE-AC52-06NA25396.

  6. FInal Report - Investment Casting Shell Cracking

    Energy Technology Data Exchange (ETDEWEB)

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  7. Temporal structures in shell models

    DEFF Research Database (Denmark)

    Okkels, F.

    2001-01-01

    The intermittent dynamics of the turbulent Gledzer, Ohkitani, and Yamada shell-model is completely characterized by a single type of burstlike structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell...

  8. Shell nu zelf onder vuur!

    NARCIS (Netherlands)

    ir.ing Ruud Thelosen

    2011-01-01

    Shell heeft zich in de Tweede Kamer moeten verantwoorden voor haar activiteiten in Nigeria. Daarnaast loopt er ook een rechtzaak tegen Shell aangespannen door Milieudefensie namens een groepje gedupeerde Nigeriaanse boeren en viseers. In de VS heeft Shell al een megaboete moeten betalen.

  9. Temporal Structures in Shell Models

    OpenAIRE

    Okkels, Fridolin

    2000-01-01

    The intermittent dynamics of the turbulent GOY shell-model is characterised by a single type of burst-like structure, which moves through the shells like a front. This temporal structure is described by the dynamics of the instantaneous configuration of the shell-amplitudes revealing a approximative chaotic attractor of the dynamics.

  10. Shell report 2001; Les personnes, la planete, les profits. Shell rapport 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In 2001, Shell saw mixed results across the social, environmental and economic spectrum. In order to contribute to the sustainable development, the Group is on track towards meeting its target to reduce greenhouse gas emissions to 10 % below 1990 levels by the end of 2002, although there was a significant increase in spill volumes and greenhouse gas emissions rose. Shell has articulated the business case and defined seven principles of sustainable development for use across the Group in business plans and daily operations: generating robust profitability; delivering value to customers; protecting the environment; managing resources; respecting and safeguarding people; benefiting communities; and working with stakeholders. Key points from the Shell Report include: in the framework of Managing, an independent review of the Shell Nigeria Community Development programme and testing of a human rights assessment tool in Shell South Africa and the implementing of a new Diversity and Inclusiveness Standard; in the framework of the economy the cost improvements of 5,1 billion dollars, ahead of target, the second highest earnings ever in difficult market conditions and the election of Shell top brand for fifth year running by motorists; in the framework of the Social, the safety performance, the avoidance of 100 contracts for incompatibility with Shell Business Principles; in the framework of the Environment, the publication of the Fresh water usage report for the first time, the Greenhouse gas emissions, the increase of spills as a result of a small number of incidents including a pipeline rupture in Nigeria and a well blow out in Oman. The economic, environmental and social data of the Shell Report are externally verified. (A.L.B.)

  11. Are Hadrons Shell-Structured?

    CERN Document Server

    Palazzi, Paolo

    2007-01-01

    A stability analysis of the mass spectrum indicates that hadrons, like atoms and nuclei, are shell-structured. The mesonic shells mass series, combined with the results of a mass quantization analysis, reveals striking similarities with the nuclear shells. In addition, the mesonic mass patterns suggest solid-phase partonic bound states on an fcc lattice, compatible with a model by A. O. Barut with stable leptons as constituents, bound by magnetism. Baryonic shells grow with a lower density, and only start at shell 3 with the nucleon.

  12. HST/ACS observations of shell galaxies: inner shells, shell colours and dust

    Science.gov (United States)

    Sikkema, G.; Carter, D.; Peletier, R. F.; Balcells, M.; Del Burgo, C.; Valentijn, E. A.

    2007-06-01

    Context: Shells in Elliptical Galaxies are faint, sharp-edged features, believed to provide evidence for a merger event. Accurate photometry at high spatial resolution is needed to learn on presence of inner shells, population properties of shells, and dust in shell galaxies. Aims: Learn more about the origin of shells and dust in early type galaxies. Methods: V-I colours of shells and underlying galaxies are derived, using HST Advanced Camera for Surveys (ACS) data. A galaxy model is made locally in wedges and subtracted to determine shell profiles and colours. We applied Voronoi binning to our data to get smoothed colour maps of the galaxies. Comparison with N-body simulations from the literature gives more insight to the origin of the shell features. Shell positions and dust characteristics are inferred from model galaxy subtracted images. Results: The ACS images reveal shells well within the effective radius in some galaxies (at 0.24 re = 1.7 kpc in the case of NGC 5982). In some cases, strong nuclear dust patches prevent detection of inner shells. Most shells have colours which are similar to the underlying galaxy. Some inner shells are redder than the galaxy. All six shell galaxies show out of dynamical equilibrium dust features, like lanes or patches, in their central regions. Our detection rate for dust in the shell ellipticals is greater than that found from HST archive data for a sample of normal early-type galaxies, at the 95% confidence level. Conclusions: The merger model describes better the shell distributions and morphologies than the interaction model. Red shell colours are most likely due to the presence of dust and/or older stellar populations. The high prevalence and out of dynamical equilibrium morphologies of the central dust features point towards external influences being responsible for visible dust features in early type shell galaxies. Inner shells are able to manifest themselves in relatively old shell systems. Based on observations made

  13. Determination of aflatoxin risk components for in-shell Brazil nuts.

    Science.gov (United States)

    Vargas, E A; dos Santos, E A; Whitaker, T B; Slate, A B

    2011-09-01

    A study was conducted on the risk from aflatoxins associated with the kernels and shells of Brazil nuts. Samples were collected from processing plants in Amazonia, Brazil. A total of 54 test samples (40 kg) were taken from 13 in-shell Brazil nut lots ready for market. Each in-shell sample was shelled and the kernels and shells were sorted in five fractions: good kernels, rotten kernels, good shells with kernel residue, good shells without kernel residue, and rotten shells, and analysed for aflatoxins. The kernel:shell ratio mass (w/w) was 50.2/49.8%. The Brazil nut shell was found to be contaminated with aflatoxin. Rotten nuts were found to be a high-risk fraction for aflatoxin in in-shell Brazil nut lots. Rotten nuts contributed only 4.2% of the sample mass (kg), but contributed 76.6% of the total aflatoxin mass (µg) in the in-shell test sample. The highest correlations were found between the aflatoxin concentration in in-shell Brazil nuts samples and the aflatoxin concentration in all defective fractions (R(2)=0.97). The aflatoxin mass of all defective fractions (R(2)=0.90) as well as that of the rotten nut (R(2)=0.88) were also strongly correlated with the aflatoxin concentration of the in-shell test samples. Process factors of 0.17, 0.16 and 0.24 were respectively calculated to estimate the aflatoxin concentration in the good kernels (edible) and good nuts by measuring the aflatoxin concentration in the in-shell test sample and in all kernels, respectively. © 2011 Taylor & Francis

  14. Multi-Shell Shell Model for Heavy Nuclei

    OpenAIRE

    Sun, Yang; Wu, Cheng-Li

    2003-01-01

    Performing a shell model calculation for heavy nuclei has been a long-standing problem in nuclear physics. Here we propose one possible solution. The central idea of this proposal is to take the advantages of two existing models, the Projected Shell Model (PSM) and the Fermion Dynamical Symmetry Model (FDSM), to construct a multi-shell shell model. The PSM is an efficient method of coupling quasi-particle excitations to the high-spin rotational motion, whereas the FDSM contains a successful t...

  15. Wrinkling of Pressurized Elastic Shells

    Science.gov (United States)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells.

  16. Wrinkling of Pressurized Elastic Shells

    KAUST Repository

    Vella, Dominic

    2011-10-01

    We study the formation of localized structures formed by the point loading of an internally pressurized elastic shell. While unpressurized shells (such as a ping-pong ball) buckle into polygonal structures, we show that pressurized shells are subject to a wrinkling instability. We study wrinkling in depth, presenting scaling laws for the critical indentation at which wrinkling occurs and the number of wrinkles formed in terms of the internal pressurization and material properties of the shell. These results are validated by numerical simulations. We show that the evolution of the wrinkle length with increasing indentation can be understood for highly pressurized shells from membrane theory. These results suggest that the position and number of wrinkles may be used in combination to give simple methods for the estimation of the mechanical properties of highly pressurized shells. © 2011 American Physical Society.

  17. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  18. Stability Landscape of Shell Buckling

    Science.gov (United States)

    Virot, Emmanuel; Kreilos, Tobias; Schneider, Tobias M.; Rubinstein, Shmuel M.

    2017-12-01

    We measure the response of cylindrical shells to poking and identify a stability landscape, which fully characterizes the stability of perfect shells and imperfect ones in the case where a single defect dominates. We show that the landscape of stability is independent of the loading protocol and the poker geometry. Our results suggest that the complex stability of shells reduces to a low dimensional description. Tracking ridges and valleys of this landscape defines a natural phase-space coordinates for describing the stability of shells.

  19. Windows PowerShell Cookbook The Complete Guide to Scripting Microsoft's New Command Shell

    CERN Document Server

    Holmes, Lee

    2010-01-01

    Do you know how to use Windows PowerShell to navigate the filesystem and manage files and folders? Or how to retrieve a web page? This introduction to the PowerShell language and scripting environment provides more than 430 task-oriented recipes to help you solve the most complex and pressing problems, and includes more than 100 tried-and-tested scripts that intermediate to advanced system administrators can copy and use immediately. You'll find hands-on tutorials on fundamentals, common tasks, and administrative jobs that you can apply whether you're on a client or server version of Windows

  20. Automated shell theory for rotating structures (ASTROS)

    Science.gov (United States)

    Foster, B. J.; Thomas, J. M.

    1971-01-01

    A computer program for analyzing axisymmetric shells with inertial forces caused by rotation about the shell axis is developed by revising the STARS II shell program. The basic capabilities of the STARS II shell program, such as the treatment of the branched shells, stiffened wall construction, and thermal gradients, are retained.

  1. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    Science.gov (United States)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  2. Composite fuselage shell structures research at NASA Langley Research Center

    Science.gov (United States)

    Starnes, James H., Jr.; Shuart, Mark J.

    1992-01-01

    Fuselage structures for transport aircraft represent a significant percentage of both the weight and the cost of these aircraft primary structures. Composite materials offer the potential for reducing both the weight and the cost of transport fuselage structures, but only limited studies of the response and failure of composite fuselage structures have been conducted for transport aircraft. The behavior of these important primary structures must be understood, and the structural mechanics methodology for analyzing and designing these complex stiffened shell structures must be validated in the laboratory. The effects of local gradients and discontinuities on fuselage shell behavior and the effects of local damage on pressure containment must be thoroughly understood before composite fuselage structures can be used for commercial aircraft. This paper describes the research being conducted and planned at NASA LaRC to help understand the critical behavior or composite fuselage structures and to validate the structural mechanics methodology being developed for stiffened composite fuselage shell structure subjected to combined internal pressure and mechanical loads. Stiffened shell and curved stiffened panel designs are currently being developed and analyzed, and these designs will be fabricated and then tested at Langley to study critical fuselage shell behavior and to validate structural analysis and design methodology. The research includes studies of the effects of combined internal pressure and mechanical loads on nonlinear stiffened panel and shell behavior, the effects of cutouts and other gradient-producing discontinuities on composite shell response, and the effects of local damage on pressure containment and residual strength. Scaling laws are being developed that relate full-scale and subscale behavior of composite fuselage shells. Failure mechanisms are being identified and advanced designs will be developed based on what is learned from early results from

  3. A study on eggshell pigmentation: biliverdin in blue-shelled chickens.

    Science.gov (United States)

    Zhao, R; Xu, G Y; Liu, Z Z; Li, J Y; Yang, N

    2006-03-01

    Biliverdin is an important pigment in the eggshell of chickens and other avian species. Determination of the biosynthesis site for biliverdin is essential for understanding the biochemical process and genetic basis of eggshell pigmentation. Either blood or the shell gland could be the biosynthesis site of eggshell biliverdin. A segregation population with full-sib sisters genotyped Oo and oo, which laid blue-shelled eggs and light brown eggs, respectively, was constructed in a native Chinese chicken breed. Ultraviolet spectrophotometry and HPLC were used to determine the biliverdin concentration in eggshells, blood, bile, excreta, and shell gland of both groups of chickens. Biliverdin content was significantly different between egg shells of blue-shelled and brown-shelled chickens (P < 0.01). Blood and bile were tested 3 to 4 h before oviposition, and excreta was tested randomly. Results showed no significant difference in biliverdin concentration in blood, bile, and excreta between the 2 groups. In the shell gland, the biliverdin contents for the blue-shelled and brown-shelled chickens were 8.25 +/- 2.55 and 1.29 +/- 0.12 nmol/g, respectively, which showed a significant difference (P < 0.01). Our results demonstrated that blood is not the biosynthesis site of the shell biliverdin. Biliverdin is most likely synthesized in the shell gland and then deposited onto the eggshell of chickens.

  4. Gravity balanced compliant shell mechanisms

    NARCIS (Netherlands)

    Radaelli, G.; Herder, J.L.

    2017-01-01

    The research on compliant shell mechanisms is a new and promising expansion of the well established compliant mechanisms research area. Benefits of compliant shell mechanisms include being spatial and slender, having organic shapes and their high tailorability of the load-displacement response.

  5. Shell architecture: a novel proxy for paleotemperature reconstructions?

    Science.gov (United States)

    Milano, Stefania; Nehrke, Gernot; Wanamaker, Alan D., Jr.; Witbaard, Rob; Schöne, Bernd R.

    2017-04-01

    Mollusk shells are unique high-resolution paleoenvironmental archives. Their geochemical properties, such as oxygen isotope composition (δ18Oshell) and element-to-calcium ratios, are routinely used to estimate past environmental conditions. However, the existing proxies have certain drawbacks that can affect paleoreconstruction robustness. For instance, the estimation of water temperature of brackish and near-shore environments can be biased by the interdependency of δ18Oshell from multiple environmental variables (water temperature and δ18Owater). Likely, the environmental signature can be masked by physiological processes responsible for the incorporation of trace elements into the shell. The present study evaluated the use of shell structural properties as alternative environmental proxies. The sensitivity of shell architecture at µm and nm-scale to the environment was tested. In particular, the relationship between water temperature and microstructure formation was investigated. To enable the detection of potential structural changes, the shells of the marine bivalves Cerastoderma edule and Arctica islandica were analyzed with Scanning Electron Microscopy (SEM), nanoindentation and Confocal Raman Microscopy (CRM). These techniques allow a quantitative approach to the microstructural analysis. Our results show that water temperature induces a clear response in shell microstructure. A significant alteration in the morphometric characteristics and crystallographic orientation of the structural units was observed. Our pilot study suggests that shell architecture records environmental information and it has potential to be used as novel temperature proxy in near-shore and open ocean habitats.

  6. Core-shell nanostructured catalysts.

    Science.gov (United States)

    Zhang, Qiao; Lee, Ilkeun; Joo, Ji Bong; Zaera, Francisco; Yin, Yadong

    2013-08-20

    Novel nanotechnologies have allowed great improvements in the syn-thesis of catalysts with well-controlled size, shape, and surface properties. Transition metal nanostructures with specific sizes and shapes, for instance, have shown great promise as catalysts with high selectivities and relative ease of recycling. Researchers have already demonstrated new selective catalysis with solution-dispersed or supported-metal nanocatalysts, in some cases applied to new types of reactions. Several challenges remain, however, particularly in improving the structural stability of the catalytic active phase. Core-shell nanostructures are nanoparticles encapsulated and protected by an outer shell that isolates the nanoparticles and prevents their migration and coalescence during the catalytic reactions. The synthesis and characterization of effective core-shell catalysts has been at the center of our research efforts and is the focus of this Account. Efficient core-shell catalysts require porous shells that allow free access of chemical species from the outside to the surface of nanocatalysts. For this purpose, we have developed a surface-protected etching process to prepare mesoporous silica and titania shells with controllable porosity. In certain cases, we can tune catalytic reaction rates by adjusting the porosity of the outer shell. We also designed and successfully applied a silica-protected calcination method to prepare crystalline shells with high surface area, using anatase titania as a model system. We achieved a high degree of control over the crystallinity and porosity of the anatase shells, allowing for the systematic optimization of their photocatalytic activity. Core-shell nanostructures also provide a great opportunity for controlling the interaction among the different components in ways that might boost structural stability or catalytic activity. For example, we fabricated a SiO₂/Au/N-doped TiO₂ core-shell photocatalyst with a sandwich structure that showed

  7. Shell galaxies as laboratories for testing MOND

    Czech Academy of Sciences Publication Activity Database

    Bílek, Michal; Ebrová, Ivana; Jungwiert, Bruno; Jílková, L.; Bartošková, Kateřina

    2015-01-01

    Roč. 93, č. 2 (2015), s. 203-212 ISSN 0008-4204 Grant - others:GA MŠk(CZ) LM2010005; Operational Program Research and Development for Innovations(XE) CZ. 1.05/3.2.00/08.0144 Institutional support: RVO:67985815 Keywords : modified newtonian dynamics * dwarf spheroidal galaxy * elliptic galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.724, year: 2015

  8. Composite shell spacecraft seat

    Science.gov (United States)

    Barackman, Victor J. (Inventor); Pulley, John K. (Inventor); Simon, Xavier D. (Inventor); McKee, Sandra D. (Inventor)

    2008-01-01

    A two-part seat (10) providing full body support that is specific for each crew member (30) on an individual basis. The two-part construction for the seat (10) can accommodate many sizes and shapes for crewmembers (30) because it is reconfigurable and therefore reusable for subsequent flights. The first component of the two-part seat construction is a composite shell (12) that surrounds the crewmember's entire body and is generically fitted to their general size in height and weight. The second component of the two-part seat (10) is a cushion (20) that conforms exactly to the specific crewmember's entire body and gives total body support in more complex environment.

  9. Electrochemical synthesis of CORE-shell magnetic nanowires

    KAUST Repository

    Ovejero, Jesús G.

    2015-04-16

    (Fe, Ni, CoFe) @ Au core-shell magnetic nanowires have been synthesized by optimized two-step potentiostatic electrodeposition inside self-assembled nanopores of anodic aluminium templates. The optimal electrochemical parameters (e.g., potential) have been firstly determined for the growth of continuous Au nanotubes at the inner wall of pores. Then, a magnetic core was synthesized inside the Au shells under suitable electrochemical conditions for a wide spectrum of single elements and alloy compositions (e.g., Fe, Ni and CoFe alloys). Novel opportunities offered by such nanowires are discussed particularly the magnetic behavior of (Fe, Ni, CoFe) @ Au core-shell nanowires was tested and compared with that of bare TM nanowires. These core-shell nanowires can be released from the template so, opening novel opportunities for biofunctionalization of individual nanowires.

  10. Functional buckling behavior of silicone rubber shells for biomedical use.

    Science.gov (United States)

    van der Houwen, E B; Kuiper, L H; Burgerhof, J G M; van der Laan, B F A M; Verkerke, G J

    2013-12-01

    The use of soft elastic biomaterials in medical devices enables substantial function integration. The consequent increased simplification in design can improve reliability at a lower cost in comparison to traditional (hard) biomaterials. Functional bi-stable buckling is one of the many new mechanisms made possible by soft materials. The buckling behavior of shells, however, is typically described from a structural failure point of view: the collapse of arches or rupture of steam vessels, for example. There is little or no literature about the functional elastic buckling of small-sized silicone rubber shells, and it is unknown whether or not theory can predict their behavior. Is functional buckling possible within the scale, material and pressure normally associated with physiological applications? An automatic speech valve is used as an example application. Silicone rubber spherical shells (diameter 30mm) with hinged and double-hinged boundaries were subjected to air pressure loading. Twelve different geometrical configurations were tested for buckling and reverse buckling pressures. Data were compared with the theory. Buckling pressure increases linearly with shell thickness and shell height. Reverse buckling shows these same relations, with pressures always below normal buckling pressure. Secondary hinges change normal/reverse buckling pressure ratios and promote symmetrical buckling. All tested configurations buckled within or closely around physiological pressures. Functional bi-stable buckling of silicone rubber shells is possible with adjustable properties in the physiological pressure range. Results can be predicted using the proposed relations and equations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Strontium and barium incorporation into freshwater bivalve shells

    Science.gov (United States)

    Zhao, Liqiang; Schöne, Bernd R.

    2015-04-01

    temperature on shell Sr/Ca and Ba/Ca were also detected. Considering the freshwater element composition is highly variable, great caution should be taken in the interpretation of these proxy data. Specifically, partition coefficients of Sr and Ba were much lower than 1, confirming the existence of strong vital effects on the incorporation of Sr and Ba into shells. However, the influence of sediment on shell Sr/Ca and Ba/Ca can be negligible at 22 ° C. Levels of these environmental variables manipulated in our study encompassed the broad range of natural conditions that C. fluminea may experience in the wild and hence, the data presented here provide a realistic test for validating factors influencing trace element incorporation into shells. Furthermore, our results highlight the potential of shell Sr/Ca of C. fluminea shells as a paleothermometer, while the interpretation of shell Ba/Ca must remain very cautious.

  12. Capsule shells adulterated with tadalafil.

    Science.gov (United States)

    Venhuis, Bastiaan J; Tan, Jing; Vredenbregt, Marjo J; Ge, Xiaowei; Low, Min-Yong; de Kaste, Dries

    2012-01-10

    Following a health complaint a food supplement was brought in for analysis on the suspicion of being adulterated with a synthetic drug substance. When the capsule content did not show evidence of adulteration, the capsule shell was investigated. Using HPLC-DAD and HPLC-MS the capsule shell was found to contain 2.85 mg of the erectile dysfunction drug tadalafil. Using microscopy and RAMAN spectroscopy the presence of tadalafil was shown throughout the gelatine matrix as particles and dissolved into the matrix. The adulteration is probably carried out by adding tadalafil powder to a gelatine jelly in the manufacturing of the capsules shells. Because this technique may also be used for other drug substances, capsules shells should be considered a vehicle for hiding drug substances in general. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Instant Windows PowerShell

    CERN Document Server

    Menon, Vinith

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A practical, hands-on tutorial approach that explores the concepts of PowerShell in a friendly manner, taking an adhoc approach to each topic.If you are an administrator who is new to PowerShell or are looking to get a good grounding in these new features, this book is ideal for you. It's assumed that you will have some experience in PowerShell and Windows Server, as well being familiar with the PowerShell command-line.

  14. STUDY ON IMPACT AND TENSILE PROPERTIES OF CONCRETE WITH COCONUT SHELL AS COARSE AGGREGATE

    OpenAIRE

    Ranjith, R

    2017-01-01

    The mechanical properties of coconut shell aggregate concrete (CSAC) namely splitting tensile strength, impact strength have been determined and a comparison is made with conventional granite aggregate concrete (CGAC) in the 30 days short-term experimental investigation. From the test results it is observed that coconut shell aggregate concrete has considerably sufficient strength. But the splitting tensile strength of coconut shell aggregate concrete is 50 % less than that of conventional gr...

  15. Stellar populations of shell galaxies

    Science.gov (United States)

    Carlsten, S. G.; Hau, G. K. T.; Zenteno, A.

    2017-12-01

    We present a study of the inner (out to ∼1 Reff) stellar populations of nine shell galaxies. We derive stellar population parameters from long-slit spectra by both analysing the Lick indices of the galaxies and by fitting single stellar population model spectra to the full galaxy spectra. The results from the two methods agree reasonably well. A few of the shell galaxies appear to have lower central Mg2 index values than the general population of galaxies of the same central velocity dispersion, which is possibly due to a past interaction event. Our sample shows a relation between central metallicity and velocity dispersion that is consistent with previous samples of non-shell galaxies. Analysing the metallicity gradients in our sample, we find an average gradient of -0.16 ± 0.10 dex decade-1 in radius. We compare this with formation models to constrain the merging history of shell galaxies. We argue that our galaxies likely have undergone major mergers but it is unclear whether the shells formed from these events or from separate minor mergers. Additionally, we find evidence for young stellar populations ranging in age from 500 Myr to 4-5 Gyr in four of the galaxies, allowing us to speculate on the age of the shells. For NGC 5670, we use a simple dynamical model to find the time required to produce the observed distribution of shells to be roughly consistent with the age of the young subpopulation, suggesting that the shells and subpopulation possibly formed from the same event.

  16. 40 Years of Shell Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-02-15

    Shell has been using scenario planning for four decades. During that time these scenarios have helped the company and governments across the world to make better strategic choices. Scenarios provide lenses that help see future prospects more clearly, make richer judgments and be more sensitive to uncertainties. Discover how the Shell Scenarios team has helped guide decision makers at major moments in history and get a peek at the team future focus, including the intricate relationship between energy, water and food.

  17. Association between shell morphology of micro-land snails (genus Plectostoma and their predator’s predatory behaviour

    Directory of Open Access Journals (Sweden)

    Thor-Seng Liew

    2014-04-01

    Full Text Available Predator–prey interactions are among the main ecological interactions that shape the diversity of biological form. In many cases, the evolution of the mollusc shell form is presumably driven by predation. However, the adaptive significance of several uncommon, yet striking, shell traits of land snails are still poorly known. These include the distorted coiled “tuba” and the protruded radial ribs that can be found in micro-landsnails of the genus Plectostoma. Here, we experimentally tested whether these shell traits may act as defensive adaptations against predators. We characterised and quantified the possible anti-predation behaviour and shell traits of Plectostoma snails both in terms of their properties and efficiencies in defending against the Atopos slug predatory strategies, namely, shell-apertural entry and shell-drilling. The results showed that Atopos slugs would first attack the snail by shell-apertural entry, and, should this fail, shift to the energetically more costly shell-drilling strategy. We found that the shell tuba of Plectostoma snails is an effective defensive trait against shell-apertural entry attack. None of the snail traits, such as resting behaviour, shell thickness, shell tuba shape, shell rib density and intensity can fully protect the snail from the slug’s shell-drilling attack. However, these traits could increase the predation costs to the slug. Further analysis on the shell traits revealed that the lack of effectiveness in these anti-predation shell traits may be caused by a functional trade-off between shell traits under selection of two different predatory strategies.

  18. Isogeometric shell formulation based on a classical shell model

    KAUST Repository

    Niemi, Antti

    2012-09-04

    This paper constitutes the first steps in our work concerning isogeometric shell analysis. An isogeometric shell model of the Reissner-Mindlin type is introduced and a study of its accuracy in the classical pinched cylinder benchmark problem presented. In contrast to earlier works [1,2,3,4], the formulation is based on a shell model where the displacement, strain and stress fields are defined in terms of a curvilinear coordinate system arising from the NURBS description of the shell middle surface. The isogeometric shell formulation is implemented using the PetIGA and igakit software packages developed by the authors. The igakit package is a Python package used to generate NURBS representations of geometries that can be utilised by the PetIGA finite element framework. The latter utilises data structures and routines of the portable, extensible toolkit for scientific computation (PETSc), [5,6]. The current shell implementation is valid for static, linear problems only, but the software package is well suited for future extensions to geometrically and materially nonlinear regime as well as to dynamic problems. The accuracy of the approach in the pinched cylinder benchmark problem and present comparisons against the h-version of the finite element method with bilinear elements. Quadratic, cubic and quartic NURBS discretizations are compared against the isoparametric bilinear discretization introduced in [7]. The results show that the quadratic and cubic NURBS approximations exhibit notably slower convergence under uniform mesh refinement as the thickness decreases but the quartic approximation converges relatively quickly within the standard variational framework. The authors future work is concerned with building an isogeometric finite element method for modelling nonlinear structural response of thin-walled shells undergoing large rigid-body motions. The aim is to use the model in a aeroelastic framework for the simulation of flapping wings.

  19. Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts

    Science.gov (United States)

    Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.

    2015-01-01

    The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.

  20. Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.

    Science.gov (United States)

    Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G

    2010-08-22

    As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.

  1. Impact damage and repair in shells of the limpet Patella vulgata.

    Science.gov (United States)

    Taylor, David

    2016-12-15

    Experiments and observations were carried out to investigate the response of the Patella vulgata limpet shell to impact. Dropped-weight impact tests created damage that usually took the form of a hole in the shell's apex. Similar damage was found to occur naturally, presumably as a result of stones propelled by the sea during storms. Apex holes were usually fatal, but small holes were sometimes repaired, and the repaired shell was as strong as the original, undamaged shell. The impact strength (energy to failure) of shells tested in situ was found to be 3.4-times higher than that of empty shells found on the beach. Surprisingly, strength was not affected by removing the shell from its home location, or by removing the limpet from the shell and allowing the shell to dry out. Sand abrasion, which removes material from the apex, was found to have a strong effect. Shells were also subjected to repeated impacts, which caused failure after 2-120 repetitions. In situ shells performed poorly in this test. It is proposed that the apex acts as a kind of sacrificial feature, which confers increased resistance but only for a small number of impacts. Microscopy showed that damage initiates internally as delamination cracks on low-energy interfaces, leading to loss of material by spalling. This mode of failure is a consequence of the layered structure of the shell, which makes it vulnerable to the tensile and shear stresses in the impact shock wave. © 2016. Published by The Company of Biologists Ltd.

  2. Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics

    Science.gov (United States)

    McClelland, Ryan S.

    2016-01-01

    Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.

  3. Understanding to Hierarchical Microstructures of Crab (Chinese hairy) Shell as a Natural Architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chuanqiang, Zhou [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); Xiangxiang, Gong [Testing Center, Yangzhou University, No. 48 Wenhui East Road, Yangzhou (China); School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China); Jie, Han [School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou (China)

    2016-03-07

    This work was done to better understand the microstructures, composition and mechanical properties of Chinese hairy crab shell. For fully revealing its hierarchical microstructure, the crab shell was observed with electron microscope under different magnifications from different facets. XRD, EDS, FTIR and TGA techniques have been used to characterize the untreated and chemically-treated crab shells, which provided enough information to determine the species and relative content of components in this biomaterial. Combined the microstructures with constituents analysis, the structural principles of crab shell was detailedly realized from different structural levels beyond former reports. To explore the relationship between structure and function, the mechanical properties of shell have been measured through performing tensile tests. The contributions of organics and minerals in shell to the mechanical properties were also discussed by measuring the tensile strength of de-calcification samples treated with HCl solution.

  4. Influence Analysis of Shell Material and Charge on Shrapnel Lethal Power

    Directory of Open Access Journals (Sweden)

    Wang Lin

    2015-01-01

    Full Text Available To compare the shrapnel lethal power with different shell material and charge, LS-DYNA was used to numerically simulate four kinds of shrapnel lethal power. The shell material was 58SiMn, 50SiMnVB or 40Cr, whereas the charge was RL-F. And the shell material was 58SiMn, whereas the charge was TNT. The shell rupture process and lethal power test were analyzed. The results show that, the lethal power of RL-F charge increase by 25%, 45%, 14% compared with the TNT charge, whereas the shell material was 58SiMn, 50SiMnVB, 40Cr. And then the guarantee range and lethal power can be improved by using the high explosive and changing shell material, whereas the projectile shape coefficient is invariable.

  5. Active vibration control of ring-stiffened cylindrical shell structure using macro fiber composite actuators.

    Science.gov (United States)

    Sohn, Jung Woo; Jeon, Juncheol; Choi, Seung-Bok

    2014-10-01

    Vibration control performance of the ring-stiffened cylindrical shell structure is experimentally evaluated in this work. In order to achieve high control performance, advanced flexible piezoelectric actuator whose commercial name is Macro-Fiber Composite (MFC) is adapted to the shell structure. Governing equation is derived by finite element method and dynamic characteristics are investigated from the modal analysis results. Ring-stiffened cylindrical shell structure is then manufactured and modal test is conducted to verify modal analysis results. An optimal controller is designed and experimentally realized to the proposed shell structure system. Vibration control performance is experimentally evaluated in time domain and verified by simulated control results.

  6. The shell dissolution of various empty hard capsules.

    Science.gov (United States)

    Chiwele, I; Jones, B E; Podczeck, F

    2000-07-01

    The shell dissolution properties of gelatine, gelatine/polyethylene glycol (PEG) and hydroxypropyl methylcellulose (HPMC) capsules were studied as a function of temperature, dissolution medium, and after different storage conditions. In any dissolution medium with a pH below or equal to 5.8, HPMC capsule shells dissolved rapidly, and there was no difference in the time in which dissolution occurred in the tested temperature interval of 10 to 55 degrees C. Gelatine and gelatine/PEG capsule shells, generally, did not dissolve at temperatures below 30 degrees C. The shell dissolution time of all capsules tested was prolonged and more variable in mixed phosphate buffer pH = 6.8. The addition of enzymes (pepsin, pancreatin) to any dissolution medium was found not to enhance the differences between the different types of capsules investigated. In practical terms, the results indicated that capsule formulations should not be taken with drinks from the carbonated Cola-type. Gelatine containing capsules should preferably be administered with a warm drink, whereas HPMC capsules could be given with cold or warm drinks. The latter type of capsules should also be preferred for preparations to be taken in the fasted state. A short storage of gelatine containing capsules under hot humid tropical conditions appeared not to alter the dissolution properties of the shells, and changes in disintegration times and dissolution times of formulations filled in such capsules might be a reflection of changes of the powders incorporated rather than of the capsule shells. However, a short storage of HPMC capsules under such conditions appeared to influence the capsule shell matrix.

  7. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    Science.gov (United States)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  8. Shell-model calculations for p-shell hypernuclei

    OpenAIRE

    Millener, D. J.

    2012-01-01

    The interpretation of hypernuclear gamma-ray data for p-shell hypernuclei in terms of shell-model calculations that include the coupling of Lambda- and Sigma-hypernuclear states is briefly reviewed. Next, Lambda 8Li, Lambda 8Be, and Lambda 9Li are considered, both to exhibit features of Lambda-Sigma coupling and as possible source of observed, but unassigned, hypernuclear gamma rays. Then, the feasibility of measuring the ground-state doublet spacing of Lambda 10Be, which, like Lambda 9Li, co...

  9. Study Added of Waste Chicken Egg Shell in Soils

    Directory of Open Access Journals (Sweden)

    Keng Wong Irwan Lie

    2016-01-01

    Full Text Available Soil is the foundation of structure or construction that will receive the load transfer through to foundation. If the soil has a carrying capacity of small and cannot withstand the load transfer can result in the failure of construction. If the soil has a carrying capacity of small ground it is necessary to stabilize or improve the soil so that an increase in the carrying capacity of the land so that it can be used for construction. One material is commonly used for soil stabilization with the addition of lime. Waste chicken egg shell is waste that is still rarely used, the results of research [1], states that composition egg shell broadly consists of water (1,6% and dry material (98,4%. The total dry ingredients are there, in shell eggs contained mineral elements (95,1% and protein (3,3%. Based on the existing mineral composition, then the egg shells are composed of crystalline CaCO3 (98,43%, MgCO3 (0,84% and Ca3(PO42 (0,75%. This research was done by adding powdered chicken egg shell waste in clay with a composition of 5%, 7,5%, 10% and 14% with physical properties test and soil compaction test.

  10. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    Science.gov (United States)

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  11. RAPID DETECTION OF RESPIRATORY VIRUSES USING MIXTURES OF MONOCLONAL-ANTIBODIES ON SHELL VIAL CULTURES

    NARCIS (Netherlands)

    SCHIRM, J; LUIJT, DS; PASTOOR, GW; MANDEMA, JM; SCHRODER, FP

    1992-01-01

    Eleven hundred and thirty-three clinical specimens submitted to the laboratory for diagnosis of respiratory virus infections were tested by direct immunofluorescence (DIF) for respiratory syncytial virus (RSV), by shell vial culture, and by conventional cell culture. The shell vial cultures were

  12. Windows PowerShell 20 Bible

    CERN Document Server

    Lee, Thomas; Schill, Mark E; Tanasovski, Tome

    2011-01-01

    Here's the complete guide to Windows PowerShell 2.0 for administrators and developers Windows PowerShell is Microsoft's next-generation scripting and automation language. This comprehensive volume provides the background that IT administrators and developers need in order to start using PowerShell automation in exciting new ways. It explains what PowerShell is, how to use the language, and specific ways to apply PowerShell in various technologies. Windows PowerShell is Microsoft's standard automation tool and something that every Windows administrator will eventually have to understand; this b

  13. Tailored Core Shell Cathode Powders for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, Scott [NexTech Materials, Ltd.,Lewis Center, OH (United States)

    2015-03-23

    In this Phase I SBIR project, a “core-shell” composite cathode approach was evaluated for improving SOFC performance and reducing degradation of lanthanum strontium cobalt ferrite (LSCF) cathode materials, following previous successful demonstrations of infiltration approaches for achieving the same goals. The intent was to establish core-shell cathode powders that enabled high performance to be obtained with “drop-in” process capability for SOFC manufacturing (i.e., rather than adding an infiltration step to the SOFC manufacturing process). Milling, precipitation and hetero-coagulation methods were evaluated for making core-shell composite cathode powders comprised of coarse LSCF “core” particles and nanoscale “shell” particles of lanthanum strontium manganite (LSM) or praseodymium strontium manganite (PSM). Precipitation and hetero-coagulation methods were successful for obtaining the targeted core-shell morphology, although perfect coverage of the LSCF core particles by the LSM and PSM particles was not obtained. Electrochemical characterization of core-shell cathode powders and conventional (baseline) cathode powders was performed via electrochemical impedance spectroscopy (EIS) half-cell measurements and single-cell SOFC testing. Reliable EIS testing methods were established, which enabled comparative area-specific resistance measurements to be obtained. A single-cell SOFC testing approach also was established that enabled cathode resistance to be separated from overall cell resistance, and for cathode degradation to be separated from overall cell degradation. The results of these EIS and SOFC tests conclusively determined that the core-shell cathode powders resulted in significant lowering of performance, compared to the baseline cathodes. Based on the results of this project, it was concluded that the core-shell cathode approach did not warrant further investigation.

  14. Summary compilation of shell element performance versus formulation.

    Energy Technology Data Exchange (ETDEWEB)

    Heinstein, Martin Wilhelm; Hales, Jason Dean (Idaho National Laboratory, Idaho Falls, ID); Breivik, Nicole L.; Key, Samuel W. (FMA Development, LLC, Great Falls, MT)

    2011-07-01

    This document compares the finite element shell formulations in the Sierra Solid Mechanics code. These are finite elements either currently in the Sierra simulation codes Presto and Adagio, or expected to be added to them in time. The list of elements are divided into traditional two-dimensional, plane stress shell finite elements, and three-dimensional solid finite elements that contain either modifications or additional terms designed to represent the bending stiffness expected to be found in shell formulations. These particular finite elements are formulated for finite deformation and inelastic material response, and, as such, are not based on some of the elegant formulations that can be found in an elastic, infinitesimal finite element setting. Each shell element is subjected to a series of 12 verification and validation test problems. The underlying purpose of the tests here is to identify the quality of both the spatially discrete finite element gradient operator and the spatially discrete finite element divergence operator. If the derivation of the finite element is proper, the discrete divergence operator is the transpose of the discrete gradient operator. An overall summary is provided from which one can rank, at least in an average sense, how well the individual formulations can be expected to perform in applications encountered year in and year out. A letter grade has been assigned albeit sometimes subjectively for each shell element and each test problem result. The number of A's, B's, C's, et cetera assigned have been totaled, and a grade point average (GPA) has been computed, based on a 4.0-system. These grades, combined with a comparison between the test problems and the application problem, can be used to guide an analyst to select the element with the best shell formulation.

  15. Shell model Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, S.E. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.; Dean, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    We review quantum Monte Carlo methods for dealing with large shell model problems. These methods reduce the imaginary-time many-body evolution operator to a coherent superposition of one-body evolutions in fluctuating one-body fields; resultant path integral is evaluated stochastically. We first discuss the motivation, formalism, and implementation of such Shell Model Monte Carlo methods. There then follows a sampler of results and insights obtained from a number of applications. These include the ground state and thermal properties of pf-shell nuclei, thermal behavior of {gamma}-soft nuclei, and calculation of double beta-decay matrix elements. Finally, prospects for further progress in such calculations are discussed. 87 refs.

  16. Electroless nickel – phosphorus coating on crab shell particles and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Arulvel, S., E-mail: gs.arulvel.research@gmail.com; Elayaperumal, A.; Jagatheeshwaran, M.S.

    2017-04-15

    Being hydrophilic material, crab shell particles have only a limited number of applications. It is, therefore, necessary to modify the surface of the crab shell particles. To make them useful ever for the applications, the main theme we proposed in this article is to utilize crab shell particles (CSP) with the core coated with nickel phosphorus (NiP) as a shell using the electroless coating process. For dealing with serious environmental problems, utilization of waste bio-shells is always an important factor to be considered. Chelating ability of crab shell particles eliminates the surface activation in this work proceeding to the coating process. The functional group, phase structure, microstructure, chemical composition and thermal analysis of CSP and NiP/CSP were characterized using Fourier transform infra-red spectroscopy (FTIR), x-ray diffraction analyzer (XRD), scanning electron microscope (SEM), energy-dispersive x-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The combination of an amorphous and crystalline structure was exhibited by CSP and NiP/CSP. NiP/CSP has shown a better thermal stability when compared to uncoated CSP. Stability test, adsorption test, and conductivity test were conducted for the study of adsorption behavior and conductivity of the particles. CSP presented a hydrophilic property in contrast to hydrophobic NiP/CSP. NiP/CSP presented a conductivity of about 44% greater compared to the CSP without any fluctuations. - Highlights: • Utilization of crab shell waste is focused on. • NiP coating on crab shell particle is fabricated using electroless process. • Thermal analysis, stability test, adsorption test and conductivity test were done. • Organic matrix of crab shell particle favors the coating process. • Results demonstrate the characterization of CSP core – NiP shell structure.

  17. Learning Shell scripting with Zsh

    CERN Document Server

    Festari, Gaston

    2014-01-01

    A step-by-step tutorial that will teach you, through real-world examples, how to configure and use Zsh and its various features. If you are a system administrator, developer, or computer professional involved with UNIX who are looking to improve on their daily tasks involving the UNIX shell, ""Learning Shell Scripting with Zsh"" will be great for you. It's assumed that you have some familiarity with an UNIX command-line interface and feel comfortable with editors such as Emacs or vi.

  18. Stability of facetted translation shells

    DEFF Research Database (Denmark)

    Almegaard, Henrik; Vanggaard, Ole

    2004-01-01

    This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a).......This article is discussing the spatial stability i.e. rigidity of double curved shell surfaces under different support conditions. It is based upon a method developed by Henrik Almegaard, as part of the theory concerning the stringer system (ALM04a)....

  19. The Shell-Model Code NuShellX@MSU

    Science.gov (United States)

    Brown, B. A.; Rae, W. D. M.

    2014-06-01

    Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.

  20. The Shell-Model Code NuShellX@MSU

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A., E-mail: brown@nscl.msu.edu [Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Rae, W.D.M. [Garsington, Oxfordshire, OX44 (United Kingdom)

    2014-06-15

    Use of the code NuShellX@MSU is outlined. It connects to the ENSDF data files for automatic comparisons to energy level data. Operator overlaps provide predictions for spectroscopic factors, two-nucleon transfer amplitudes, nuclear moments, gamma decay and beta decay.

  1. Statistical mechanics of thin spherical shells

    CERN Document Server

    Kosmrlj, Andrej

    2016-01-01

    We explore how thermal fluctuations affect the mechanics of thin amorphous spherical shells. In flat membranes with a shear modulus, thermal fluctuations increase the bending rigidity and reduce the in-plane elastic moduli in a scale-dependent fashion. This is still true for spherical shells. However, the additional coupling between the shell curvature, the local in-plane stretching modes and the local out-of-plane undulations, leads to novel phenomena. In spherical shells thermal fluctuations produce a radius-dependent negative effective surface tension, equivalent to applying an inward external pressure. By adapting renormalization group calculations to allow for a spherical background curvature, we show that while small spherical shells are stable, sufficiently large shells are crushed by this thermally generated "pressure". Such shells can be stabilized by an outward osmotic pressure, but the effective shell size grows non-linearly with increasing outward pressure, with the same universal power law expone...

  2. Mesoscale structure of chiral nematic shells.

    Science.gov (United States)

    Zhou, Ye; Guo, Ashley; Zhang, Rui; Armas-Perez, Julio C; Martínez-González, José A; Rahimi, Mohammad; Sadati, Monirosadat; de Pablo, Juan J

    2016-11-09

    There is considerable interest in understanding and controlling topological defects in nematic liquid crystals (LCs). Confinement, in the form of droplets, has been particularly effective in that regard. Here, we employ a Landau-de Gennes formalism to explore the geometrical frustration of nematic order in shell geometries, and focus on chiral materials. By varying the chirality and thickness in uniform shells, we construct a phase diagram that includes tetravalent structures, bipolar structures (BS), bent structures and radial spherical structures (RSS). It is found that, in uniform shells, the BS-to-RSS structural transition, in response to both chirality and shell geometry, is accompanied by an abrupt change of defect positions, implying a potential use for chiral nematic shells as sensors. Moreover, we investigate thickness heterogeneity in shells and demonstrate that non-chiral and chiral nematic shells exhibit distinct equilibrium positions of their inner core that are governed by shell chirality c.

  3. Soil calcium availability influences shell ecophenotype formation in the sub-antarctic land snail, Notodiscus hookeri.

    Directory of Open Access Journals (Sweden)

    Maryvonne Charrier

    Full Text Available Ecophenotypes reflect local matches between organisms and their environment, and show plasticity across generations in response to current living conditions. Plastic responses in shell morphology and shell growth have been widely studied in gastropods and are often related to environmental calcium availability, which influences shell biomineralisation. To date, all of these studies have overlooked micro-scale structure of the shell, in addition to how it is related to species responses in the context of environmental pressure. This study is the first to demonstrate that environmental factors induce a bi-modal variation in the shell micro-scale structure of a land gastropod. Notodiscus hookeri is the only native land snail present in the Crozet Archipelago (sub-Antarctic region. The adults have evolved into two ecophenotypes, which are referred to here as MS (mineral shell and OS (organic shell. The MS-ecophenotype is characterised by a thick mineralised shell. It is primarily distributed along the coastline, and could be associated to the presence of exchangeable calcium in the clay minerals of the soils. The Os-ecophenotype is characterised by a thin organic shell. It is primarily distributed at high altitudes in the mesic and xeric fell-fields in soils with large particles that lack clay and exchangeable calcium. Snails of the Os-ecophenotype are characterised by thinner and larger shell sizes compared to snails of the MS-ecophenotype, indicating a trade-off between mineral thickness and shell size. This pattern increased along a temporal scale; whereby, older adult snails were more clearly separated into two clusters compared to the younger adult snails. The prevalence of glycine-rich proteins in the organic shell layer of N. hookeri, along with the absence of chitin, differs to the organic scaffolds of molluscan biominerals. The present study provides new insights for testing the adaptive value of phenotypic plasticity in response to spatial

  4. Cashew nut shell liquid as an alternative corrosion inhibitor for ...

    African Journals Online (AJOL)

    Cashew Nut Shell Liquid (CNSL) has been tested as a corrosion inhibitor for carbon steel in 3% aqueous NaCl solution (pH 6) saturated with carbon dioxide gas at 30°C under static conditions using ac-impedance and potentiodynamic polarisation techniques. It was found that CNSL reduces the extent of the ...

  5. Microwave moisture meter for in-shell peanut kernels

    Science.gov (United States)

    . A microwave moisture meter built with off-the-shelf components was developed, calibrated and tested in the laboratory and in the field for nondestructive and instantaneous in-shell peanut kernel moisture content determination from dielectric measurements on unshelled peanut pod samples. The meter ...

  6. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  7. Shell morphology of core-shell latexes based on conductive polymers

    NARCIS (Netherlands)

    Huijs, F.M; Vercauteren, F.F.; de Ruiter, B.; Kalicharan, D; Hadziioannou, G

    Core-shell latexes with a conductive shell can be used to prepare transparent conducting layers. We have focussed on the relation between the conducting polymer content and the shell morphology and on its influence on conductivity. At low polypyrrole (PPy) concentrations the shell has a smooth

  8. Austromegabalanus psittacus barnacle shell structure and proteoglycan localization and functionality.

    Science.gov (United States)

    Fernández, M S; Arias, J I; Neira-Carrillo, A; Arias, J L

    2015-09-01

    Comparative analyzes of biomineralization models have being crucial for the understanding of the functional properties of biominerals and the elucidation of the processes through which biomacromolecules control the synthesis and structural organization of inorganic mineral-based biomaterials. Among calcium carbonate-containing bioceramics, egg, mollusk and echinoderm shells, and crustacean carapaces, have being fairly well characterized. However, Thoraceca barnacles, although being crustacea, showing molting cycle, build a quite stable and heavily mineralized shell that completely surround the animal, which is for life firmly cemented to the substratum. This makes barnacles an interesting model for studying processes of biomineralization. Here we studied the main microstructural and ultrastructural features of Austromegabalanus psittacus barnacle shell, characterize the occurrence of specific proteoglycans (keratan-, dermatan- and chondroitin-6-sulfate proteoglycans) in different soluble and insoluble organic fractions extracted from the shell, and tested them for their ability to crystallize calcium carbonate in vitro. Our results indicate that, in the barnacle model, proteoglycans are good candidates for the modification of the calcite crystal morphology, although the cooperative effect of some additional proteins in the shell could not be excluded. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Shell formation and nuclear masses

    Energy Technology Data Exchange (ETDEWEB)

    Zuker, A. P. [IPHC, IN2P3-CNRS, Universite Louis Pasteur, F-67037 Strasbourg (France)]. e-mail: Andres.Zuker@IReS.in2p3.fr

    2008-12-15

    We describe the basic mechanisms responsible for nuclear bulk properties and shell formation incorporated in the Duflo Zuker models. The emphasis is put on explaining why functionals of the occupancies can be so efficient in accounting for data with minimal computational effort. (Author)

  10. Shell theorem for spontaneous emission

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Mortensen, Jakob Egeberg; Lodahl, Peter

    2013-01-01

    and therefore is given exactly by the dipole approximation theory. This surprising result is a spontaneous emission counterpart to the shell theorems of classical mechanics and electrostatics and provides insights into the physics of mesoscopic emitters as well as great simplifications in practical calculations....

  11. Electrochemical behavior of different shelled microcapsule composite copper coatings

    Science.gov (United States)

    Xu, Xiu-Qing; Guo, Yan-Hong; Li, Wei-Ping; Zhu, Li-Qun

    2011-06-01

    Copper/liquid microcapsule composite coatings with polyvinyl alcohol (PVA), gelatin or methyl cellulose (MC) as shell materials were prepared by electrodeposition. The influence of shell materials on the corrosion resistance of the composite coatings in 0.1 M H2SO4 was investigated by means of electrochemical techniques, scanning electron microscopy (SEM), and energy dispersion spectrometry (EDS). The results show that the participation of microcapsules can enhance the corrosion resistance of the composite coatings compared with the traditional copper layer. Based on the analysis of electrochemical test results, the release ways of microcapsules were deduced. Gelatin and MC as the shell materials of microcapsules are easy to release quickly in the composite coating. On the contrary, the releasing speed of PVA microcapsules is relatively slow due to their characteristics.

  12. Synthesis of PMMA/Polysiloxane Core-Shell Latex

    Directory of Open Access Journals (Sweden)

    Yu Chengbing

    2015-01-01

    Full Text Available In this study, silicon-acrylic latex, consisting of poly (methyl methacrylate (PMMA as the core and modified polysiloxane as the shell, had been successfully synthesized via cationic emulsion polymerization. The structure of the silicon-acrylic latex was confirmed by means of DLS, FTIR and TGA. There was an increase of 24.74 nm in average particle size and a shift of the size distribution to large sizes for core-shell particles in comparison with the original PMMA core particles, which indicated the formation of core-shell structure. The typical absorption peaks of Si-O-Si and Si-O-C in infrared spectrum indicated that the hydroxyl groups on the PMMA surface had reacted with the silanol groups, which could be confirmed by heterogeneous two-component system form TGA test.

  13. Stress Recovery and Error Estimation for Shell Structures

    Science.gov (United States)

    Yazdani, A. A.; Riggs, H. R.; Tessler, A.

    2000-01-01

    The Penalized Discrete Least-Squares (PDLS) stress recovery (smoothing) technique developed for two dimensional linear elliptic problems is adapted here to three-dimensional shell structures. The surfaces are restricted to those which have a 2-D parametric representation, or which can be built-up of such surfaces. The proposed strategy involves mapping the finite element results to the 2-D parametric space which describes the geometry, and smoothing is carried out in the parametric space using the PDLS-based Smoothing Element Analysis (SEA). Numerical results for two well-known shell problems are presented to illustrate the performance of SEA/PDLS for these problems. The recovered stresses are used in the Zienkiewicz-Zhu a posteriori error estimator. The estimated errors are used to demonstrate the performance of SEA-recovered stresses in automated adaptive mesh refinement of shell structures. The numerical results are encouraging. Further testing involving more complex, practical structures is necessary.

  14. 21 CFR 886.3800 - Scleral shell.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scleral shell. 886.3800 Section 886.3800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Prosthetic Devices § 886.3800 Scleral shell. (a) Identification. A scleral shell is a device made of glass or plastic that is...

  15. Protein profiles of hatchery egg shell membrane

    Science.gov (United States)

    Background: Eggshells, which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of m...

  16. Effect of a cylindrical thin-shell of matter on the electrostatic self-force on a charge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin de Celis, Emilio [Universidad de Buenos Aires y IFIBA, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-02-15

    The electrostatic self-force on a point charge in cylindrical thin-shell space-times is interpreted as the sum of a bulk field and a shell field. The bulk part corresponds to a field sourced by the test charge placed in a space-time without the shell. The shell field accounts for the discontinuity of the extrinsic curvature κ{sup p}{sub q}. An equivalent electric problem is stated, in which the effect of the shell of matter on the field is reconstructed with the electric potential produced by a non-gravitating charge distribution of total image charge Q, to interpret the shell field in both the interior and exterior regions of the space-time. The self-force on a point charge q in a locally flat geometry with a cylindrical thin-shell of matter is calculated. The charge is repelled from the shell if κ{sup p}{sub q} = κ < 0 (ordinarymatter) and attracted toward the shell if κ > 0 (exotic matter). The total image charge is zero for exterior problems, while for interior problems Q/q = κr{sub e}, with re the external radius of the shell. The procedure is general and can be applied to interpret self-forces in other space-times with shells, e.g., for locally flat wormholes we found Q{sub -+}{sup wh}/q = -1/(κ{sub wh}r{sub ±}). (orig.)

  17. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  18. Core-shell diodes for particle detectors

    Science.gov (United States)

    Jia, Guobin; Plentz, Jonathan; Höger, Ingmar; Dellith, Jan; Dellith, Andrea; Falk, Fritz

    2016-02-01

    High performance particle detectors are needed for fundamental research in high energy physics in the exploration of the Higgs boson, dark matter, anti-matter, gravitational waves and proof of the standard model, which will extend the understanding of our Universe. Future particle detectors should have ultrahigh radiation hardness, low power consumption, high spatial resolution and fast signal response. Unfortunately, some of these properties are counter-influencing for the conventional silicon drift detectors (SDDs), so that they cannot be optimized simultaneously. In this paper, the main issues of conventional SDDs have been analyzed, and a novel core-shell detector design based on micro- and nano-structures etched into Si-wafers is proposed. It is expected to simultaneously reach ultrahigh radiation hardness, low power consumption, fast signal response and high spatial resolution down to the sub-micrometer range, which will probably meet the requirements for the most powerful particle accelerators in the near future. A prototype core-shell detector was fabricated using modern silicon nanotechnology and the functionality was tested using electron-beam-induced current measurements. Such a high performance detector will open many new applications in extreme radiation environments such as high energy physics, astrophysics, high resolution (bio-) imaging and crystallography, which will push these fields beyond their current boundaries.

  19. Atomic force microscopy of virus shells.

    Science.gov (United States)

    de Pablo, Pedro J

    2017-08-26

    Microscopes are used to characterize small specimens with the help of probes, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM) the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study as a blind person manages a white cane to explore the surrounding. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in liquid milieu. Beyond imaging, AFM also enables the manipulation of single protein cages, and the characterization of every physico-chemical property able of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. Here we describe several AFM approaches to study individual protein cages, including imaging and spectroscopic methodologies for extracting mechanical and electrostatic properties. In addition, AFM allows discovering and testing the self-healing capabilities of protein cages because occasionally they may recover fractures induced by the AFM tip. Beyond the protein shells, AFM also is able of exploring the genome inside, obtaining, for instance, the condensation state of dsDNA and measuring its diffusion when the protein cage breaks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Pyrolysis of Coconut Shell: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    E. Ganapathy Sundaram

    2009-12-01

    Full Text Available Fixed-bed slow pyrolysis experiments of coconut shell have been conducted to determine the effect of pyrolysis temperature, heating rate and particle size on the pyrolysis product yields. The effect of vapour residence time on the pyrolysis yield was also investigated by varying the reactor length. Pyrolysis experiments were performed at pyrolysis temperature between 400 and 600°C with a constant heating rate of 60°C/min and particle sizes of 1.18-1.80 mm. The optimum process conditions for maximizing the liquid yield from the coconut shell pyrolysis in a fixed bed reactor were also identified. The highest liquid yield was obtained at a pyrolysis temperature of 550 °C, particle size of 1.18-1.80 mm, with a heating rate of 60 °C/min in a 200 mm length reactor. The yield of obtained char, liquid and gas was 22-31 wt%, 38-44 wt% and 30-33 wt% respectively at different pyrolysis conditions. The results indicate that the effects of pyrolysis temperature and particle size on the pyrolysis yield are more significant than that of heating rate and residence time. The various characteristics of pyrolysis oil obtained under the optimum conditions for maximum liquid yield were identified on the basis of standard test methods.

  1. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  2. Indentation of ellipsoidal and cylindrical elastic shells.

    Science.gov (United States)

    Vella, Dominic; Ajdari, Amin; Vaziri, Ashkan; Boudaoud, Arezki

    2012-10-05

    Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus et al. [following paper, Phys. Rev. Lett. 109, 144301 (2012)] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells.

  3. Indentation of Ellipsoidal and Cylindrical Elastic Shells

    KAUST Repository

    Vella, Dominic

    2012-10-01

    Thin shells are found in nature at scales ranging from viruses to hens\\' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findings of Lazarus etal. [following paper, Phys. Rev. Lett. 109, 144301 (2012)PRLTAO0031-9007] and for previous work inferring the turgor pressure of bacteria from measurements of their indentation stiffness; we also identify a new regime at large indentation. We show that the indentation stiffness of convex shells is dominated by either the mean or Gaussian curvature of the shell depending on the pressurization and indentation depth. Our results reveal how geometry rules the rigidity of shells. © 2012 American Physical Society.

  4. Turbine blade with spar and shell

    Science.gov (United States)

    Davies, Daniel O [Palm City, FL; Peterson, Ross H [Loxahatchee, FL

    2012-04-24

    A turbine blade with a spar and shell construction in which the spar and the shell are both secured within two platform halves. The spar and the shell each include outward extending ledges on the bottom ends that fit within grooves formed on the inner sides of the platform halves to secure the spar and the shell against radial movement when the two platform halves are joined. The shell is also secured to the spar by hooks extending from the shell that slide into grooves formed on the outer surface of the spar. The hooks form a serpentine flow cooling passage between the shell and the spar. The spar includes cooling holes on the lower end in the leading edge region to discharge cooling air supplied through the platform root and into the leading edge cooling channel.

  5. From middens to modern estuaries, oyster shells sequester source-specific nitrogen

    Science.gov (United States)

    Darrow, Elizabeth S.; Carmichael, Ruth H.; Andrus, C. Fred T.; Jackson, H. Edwin

    2017-04-01

    Oysters (Crassostrea virginica) were an important food resource for native peoples of the northern Gulf of Mexico, who deposited waste shells in middens. Nitrogen (N) stable isotopes (δ15N) in bivalve shells have been used as modern proxies for estuarine N sources because they approximate δ15N in suspended particulate matter. We tested the use of midden shell δ15N as a proxy for ancient estuarine N sources. We hypothesized that isotopic signatures in ancient shells from coastal Mississippi would differ from modern shells due to increased anthropogenic N sources, such as wastewater, through time. We decalcified shells using an acidification technique previously developed for modern bivalves, but modified to determine δ15N, δ13C, %N, and % organic C of these low-N, high-C specimens. The modified method resulted in the greatest percentage of usable data from midden shells. Our results showed that oyster shell δ15N did not significantly differ between ancient (500-2100 years old) and modern oysters from the same locations where the sites had undergone relatively little land-use change. δ15N values in modern shells, however, were positively correlated with water column nitrate concentrations associated with urbanization. When N content and total shell mass were combined, we estimated that middens sequestered 410-39,000 kg of relic N, buried at a rate of up to 5 kg N m-2 yr-1. This study provides a relatively simple technique to assess baseline conditions in ecosystems over long time scales by demonstrating that midden shells can be an indicator of pre-historic N source to estuaries and are a potentially significant but previously uncharacterized estuarine N sink.

  6. Effect of damage on the modal parameters of a cylindrical shell

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.

    1992-01-01

    The objective of the study was to investigate the feasibility of assessing damage to structural systems by measuring the changes in the dynamic characteristics of a thin circular cylindrical shell with both ends open. Theoretical and experimental modal analyses were performed for the shell. Subsequently, a notch was machined into the shell simulating a small amount of damage. The shell with the notch was again subjected to experimental modal analysis. A comparison of the modal parameters determined from the tests before and after the shell was damaged showed that the natural frequencies were not sensitive to the crack introduced. However, some of the mode shapes showed significant changes, establishing that the mode shapes were the more sensitive parameters for damage detection.

  7. Effect of damage on the modal parameters of a cylindrical shell

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.G.; Kot, C.A.

    1992-02-01

    The objective of the study was to investigate the feasibility of assessing damage to structural systems by measuring the changes in the dynamic characteristics of a thin circular cylindrical shell with both ends open. Theoretical and experimental modal analyses were performed for the shell. Subsequently, a notch was machined into the shell simulating a small amount of damage. The shell with the notch was again subjected to experimental modal analysis. A comparison of the modal parameters determined from the tests before and after the shell was damaged showed that the natural frequencies were not sensitive to the crack introduced. However, some of the mode shapes showed significant changes, establishing that the mode shapes were the more sensitive parameters for damage detection.

  8. Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements

    Science.gov (United States)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  9. Læren fra Shell

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    2017-01-01

    Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst......Hvad kan afsløringerne om Shells mere end 25 år gamle viden om klimaforandringer lære virksomheder om disruption og strategi? Først og fremmest at undgå at se disruption som en mulig trussel, men i stedet som en fremtidig realitet og chance for vækst...

  10. Shell Evolutions and Nuclear Forces

    Science.gov (United States)

    Sorlin, O.

    2014-03-01

    During the last 30 years, and more specifically during the last 10 years, many experiments have been carried out worldwide using different techniques to study the shell evolution of nuclei far from stability. What seemed not conceivable some decades ago became rather common: all known magic numbers that are present in the valley of stability disappear far from stability and are replaced by new ones at the drip line. By gathering selected experimental results, beautifully consistent pictures emerge, that very likely take root in the properties of the nuclear forces.The present manuscript describes some of these discoveries and proposes an intuitive understanding of these shell evolutions derived from observations. Extrapolations to yet unstudied regions, as where the explosive r-process nucleosynthesis occurs, are proposed. Some remaining challenges and puzzling questions are also addressed.

  11. The shell coal gasification process

    Energy Technology Data Exchange (ETDEWEB)

    Koenders, L.O.M.; Zuideveld, P.O. [Shell Internationale Petroleum Maatschappij B.V., The Hague (Netherlands)

    1995-12-01

    Future Integrated Coal Gasification Combined Cycle (ICGCC) power plants will have superior environmental performance and efficiency. The Shell Coal Gasification Process (SCGP) is a clean coal technology, which can convert a wide range of coals into clean syngas for high efficiency electricity generation in an ICGCC plant. SCGP flexibility has been demonstrated for high-rank bituminous coals to low rank lignites and petroleum coke, and the process is well suited for combined cycle power generation, resulting in efficiencies of 42 to 46% (LHV), depending on choice of coal and gas turbine efficiency. In the Netherlands, a 250 MWe coal gasification combined cycle plant based on Shell technology has been built by Demkolec, a development partnership of the Dutch Electricity Generating Board (N.V. Sep). The construction of the unit was completed end 1993 and is now followed by start-up and a 3 year demonstration period, after that the plant will be part of the Dutch electricity generating system.

  12. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  13. 3D CENTRAL LINE EXTRACTION OF FOSSIL OYSTER SHELLS

    Directory of Open Access Journals (Sweden)

    A. Djuricic

    2016-06-01

    Full Text Available Photogrammetry provides a powerful tool to digitally document protected, inaccessible, and rare fossils. This saves manpower in relation to current documentation practice and makes the fragile specimens more available for paleontological analysis and public education. In this study, high resolution orthophoto (0.5 mm and digital surface models (1 mm are used to define fossil boundaries that are then used as an input to automatically extract fossil length information via central lines. In general, central lines are widely used in geosciences as they ease observation, monitoring and evaluation of object dimensions. Here, the 3D central lines are used in a novel paleontological context to study fossilized oyster shells with photogrammetric and LiDAR-obtained 3D point cloud data. 3D central lines of 1121 Crassostrea gryphoides oysters of various shapes and sizes were computed in the study. Central line calculation included: i Delaunay triangulation between the fossil shell boundary points and formation of the Voronoi diagram; ii extraction of Voronoi vertices and construction of a connected graph tree from them; iii reduction of the graph to the longest possible central line via Dijkstra’s algorithm; iv extension of longest central line to the shell boundary and smoothing by an adjustment of cubic spline curve; and v integration of the central line into the corresponding 3D point cloud. The resulting longest path estimate for the 3D central line is a size parameter that can be applied in oyster shell age determination both in paleontological and biological applications. Our investigation evaluates ability and performance of the central line method to measure shell sizes accurately by comparing automatically extracted central lines with manually collected reference data used in paleontological analysis. Our results show that the automatically obtained central line length overestimated the manually collected reference by 1.5% in the test set, which

  14. Sound Radiation of Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    B Alzahabi

    2016-09-01

    Full Text Available The acoustic signature of submarines is very critical in such high performance structure. Submarines are not only required to sustain very high dynamic loadings at all time, but also being able maneuver and perform their functions under sea without being detected by sonar systems. Submarines rely on low acoustic signature level to remain undetected. Reduction of sound radiation is most efficiently achieved at the design stage. Acoustic signatures may be determined by considering operational scenarios, and modal characteristics. The acoustic signature of submarines is generally of two categories; broadband which has a continuous spectrum; and a tonal noise which has discrete frequencies. The nature of sound radiation of submarine is fiction of its speed. At low speed the acoustic signature is dominated by tonal noise, while at high speed, the acoustic signature is mainly dominated by broadband noise. Submarine hulls are mainly constructed of circular cylindrical shells. Unlike that of simpler structures such as beams and plates, the modal spectrum of cylindrical shell exhibits very unique characteristics. Mode crossing, the uniqueness of modal spectrum, and the redundancy of modal constraints are just to name a few. In cylindrical shells, the lowest natural frequency is not necessarily associated with the lowest wave index. In fact, the natural frequencies do not fall in ascending order of the wave index either. Solution of the vibration problem of cylindrical shells also indicates repeated natural frequencies. These modes are referred to as double peak frequencies. Mode shapes associated with each one of the natural frequencies are usually a combination of Radial (flexural, Longitudinal (axial, and Circumferential (torsional modes. In this paper, the wave equation will be set up in terms of the pressure fluctuations, p(x, t. It will be demonstrated that the noise radiation is a fluctuating pressure wave.

  15. Parameter identification of material constants in a composite shell structure

    Science.gov (United States)

    Martinez, David R.; Carne, Thomas G.

    1988-01-01

    One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.

  16. Antioxidant and Anti-Adipogenic Activities of Trapa japonica Shell Extract Cultivated in Korea.

    Science.gov (United States)

    Lee, DooJin; Lee, Ok-Hwan; Choi, Geunpyo; Kim, Jong Dai

    2017-12-01

    Trapa japonica shell contains phenolic compounds such as tannins. Studies regarding the antioxidant and anti-adipogenic effects of Trapa japonica shell cultivated in Korea are still unclear. Antioxidant and anti-adipogenic activities were measured by in vitro assays such as 2,2-diphenyl-1-picrylhydrazy (DPPH) radical scavenging activity, 2,2'-azinobis( 3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activity, ferric reducing ability of plasma assay, reducing power, superoxide dismutase-like activity, and iron chelating ability in 3T3-L1 cells. We also measured the total phenol and flavonoids contents (TPC and TFC, respectively) in Trapa japonica shell extract. Our results show that TPC and TFC of Trapa japonica shell extract were 157.7±0.70 mg gallic acid equivalents/g and 25.0±1.95 mg quercetin equivalents/g, respectively. Trapa japonica shell extract showed strong antioxidant activities in a dose-dependent manner in DPPH and ABTS radical scavenging activities and other methods. Especially, the whole antioxidant activity test of Trapa japonica shell extract exhibited higher levels than that of butylated hydroxytoluene as a positive control. Furthermore, Trapa japonica shell extract inhibited lipid accumulation and reactive oxygen species production during the differentiation of 3T3-L1 preadipocytes. Trapa japonica shell extract possessed a significant antioxidant and anti-adipogenic property, which suggests its potential as a natural functional food ingredient.

  17. Brazil nut sorting for aflatoxin prevention: a comparison between automatic and manual shelling methods

    Directory of Open Access Journals (Sweden)

    Ariane Mendonça Pacheco

    2013-06-01

    Full Text Available The impact of automatic and manual shelling methods during manual/visual sorting of different batches of Brazil nuts from the 2010 and 2011 harvests was evaluated in order to investigate aflatoxin prevention.The samples were tested as follows: in-shell, shell, shelled, and pieces in order to evaluate the moisture content (mc, water activity (Aw, and total aflatoxin (LOD = 0.3 µg/kg and LOQ 0.85 µg/kg at the Brazil nut processing plant. The results of aflatoxins obtained for the manually shelled nut samples ranged from 3.0 to 60.3 µg/g and from 2.0 to 31.0 µg/g for the automatically shelled samples. All samples showed levels of mc below the limit of 15%; on the other hand, shelled samples from both harvests showed levels of Aw above the limit. There were no significant differences concerning the manual or automatic shelling results during the sorting stages. On the other hand, the visual sorting was effective in decreasing the aflatoxin contamination in both methods.

  18. Organic Stable Isotopes in Ancient Oyster Shell Trace Pre-colonial Nitrogen Sources

    Science.gov (United States)

    Darrow, E. S.; Carmichael, R. H.; Andrus, C. F. T.; Jackson, H. E.

    2016-02-01

    Oysters (Crassostrea virginica) were an important food resource for native peoples of the northern Gulf of Mexico, who harvested oysters and deposited waste shell and other artifacts in middens. Shell δ15N is a proxy for oyster tissue δ15N that reflects nitrogen (N) in food sources of bivalves. We tested the use of shell δ15N as a paleo proxy of ancient N sources, which to our knowledge has not been previously done for archeological bivalve specimens. To determine δ15N of the very low-N and high-carbonate ancient specimens, we tested established and modified acidification techniques developed for modern clams and oysters to decalcify organic shell matrix and extract sufficient N for analyses. Centrifugation following acidification better concentrated N from ancient shells for stable isotope analysis. Careful screening was required to detect effects of diagenesis, incomplete acidification, and sample contamination. Modern oyster shells did not require acidification and bulk shell material was directly analyzed for δ15N using an EA-IRMS coupled to a CO2 trap. δ15N values in ancient oyster shells did not differ from modern oyster shells from the same sites, but %N and % organic carbon (C) were lower in ancient than in modern shells. Organic δ13C in ancient shells had a significant negative relationship with shell age, possibly due to an effect of sea level rise increasing marine suspended particulate matter (SPM) sources to oysters. In modern oysters, δ15N had a significant relationship with soft tissue δ15N, and predicted by SPM δ15N, water column nitrate, and water column dissolved organic nitrogen (DON) concentrations, demonstrating the effectiveness of oyster shell δ15N to identify N sources to bivalves such as oysters. Our study has demonstrated the usefulness of δ15N from midden oyster shells as a proxy for N sources in an estuary that has undergone relatively light impacts from human land-use change through the past 2000 years.

  19. Topological defects in cholesteric liquid crystal shells.

    Science.gov (United States)

    Darmon, Alexandre; Benzaquen, Michael; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-11-23

    We investigate experimentally and numerically the defect configurations emerging when a cholesteric liquid crystal is confined to a spherical shell. We uncover a rich scenario of defect configurations, some of them non-existent in nematic shells, where new types of defects are stabilized by the helical ordering of the liquid crystal. In contrast to nematic shells, here defects are not simple singular points or lines, but have a large structured core. Specifically, we observe five different types of cholesteric shells. We study the statistical distribution of the different types of shells as a function of the two relevant geometrical dimensionless parameters of the system. By playing with these parameters, we are able to induce transitions between different types of shells. These transitions involve interesting topological transformations in which the defects recombine to form new structures. Surprisingly, the defects do not approach each other by taking the shorter distance route (geodesic), but by following intricate paths.

  20. Mussel Shell Impaction in the Esophagus

    Directory of Open Access Journals (Sweden)

    Sunmin Kim

    2013-03-01

    Full Text Available Mussels are commonly used in cooking around the world. The mussel shell breaks more easily than other shells, and the edge of the broken mussel shell is sharp. Impaction can ultimately cause erosion, perforation and fistula. Aside from these complications, the pain can be very intense. Therefore, it is essential to verify and remove the shell as soon as possible. In this report we describe the process of diagnosing and treating mussel shell impaction in the esophagus. Physicians can overlook this unusual foreign body impaction due to lack of experience. When physicians encounter a patient with severe chest pain after a meal with mussels, mussel shell impaction should be considered when diagnosing and treating the patient.

  1. Fossorial origin of the turtle shell

    OpenAIRE

    Lyson, Tyler R.; Rubidge, Bruce S.; Torsten M Scheyer; de Queiroz, Kevin; Schachner, Emma R.; Smith, Roger M.H; Botha-Brink, Jennifer; Bever, G.S.

    2016-01-01

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decrea...

  2. Clustering aspects and the shell model

    OpenAIRE

    Arima, Akito

    2004-01-01

    In this talk I shall discuss the clustering aspect and the shell model. I shall first discuss the $\\alpha$-cluster aspects based on the shell model calculations. Then I shall discuss the spin zero ground state dominance in the presence of random interactions and a new type of cluster structure for fermions in a single-$j$ shell in the presence of only pairing interaction with the largest multiplicity.

  3. Indentation of pressurized viscoplastic polymer spherical shells

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Needleman, A.

    2016-01-01

    The indentation response of polymer spherical shells is investigated. Finite deformation analyses are carried out with the polymer characterized as a viscoelastic/viscoplastic solid. Both pressurized and unpressurized shells are considered. Attention is restricted to axisymmetric deformations...... large strains are attained. The transition from an indentation type mode of deformation to a structural mode of deformation involving bending that occurs as the indentation depth increases is studied. The results show the effects of shell thickness, internal pressure and polymer constitutive...

  4. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  5. Evolutionary tradeoffs, Pareto optimality and the morphology of ammonite shells.

    Science.gov (United States)

    Tendler, Avichai; Mayo, Avraham; Alon, Uri

    2015-03-07

    Organisms that need to perform multiple tasks face a fundamental tradeoff: no design can be optimal at all tasks at once. Recent theory based on Pareto optimality showed that such tradeoffs lead to a highly defined range of phenotypes, which lie in low-dimensional polyhedra in the space of traits. The vertices of these polyhedra are called archetypes- the phenotypes that are optimal at a single task. To rigorously test this theory requires measurements of thousands of species over hundreds of millions of years of evolution. Ammonoid fossil shells provide an excellent model system for this purpose. Ammonoids have a well-defined geometry that can be parameterized using three dimensionless features of their logarithmic-spiral-shaped shells. Their evolutionary history includes repeated mass extinctions. We find that ammonoids fill out a pyramid in morphospace, suggesting five specific tasks - one for each vertex of the pyramid. After mass extinctions, surviving species evolve to refill essentially the same pyramid, suggesting that the tasks are unchanging. We infer putative tasks for each archetype, related to economy of shell material, rapid shell growth, hydrodynamics and compactness. These results support Pareto optimality theory as an approach to study evolutionary tradeoffs, and demonstrate how this approach can be used to infer the putative tasks that may shape the natural selection of phenotypes.

  6. Electrostatics-driven shape transitions in soft shells.

    Science.gov (United States)

    Jadhao, Vikram; Thomas, Creighton K; Olvera de la Cruz, Monica

    2014-09-02

    Manipulating the shape of nanoscale objects in a controllable fashion is at the heart of designing materials that act as building blocks for self-assembly or serve as targeted drug delivery carriers. Inducing shape deformations by controlling external parameters is also an important way of designing biomimetic membranes. In this paper, we demonstrate that electrostatics can be used as a tool to manipulate the shape of soft, closed membranes by tuning environmental conditions such as the electrolyte concentration in the medium. Using a molecular dynamics-based simulated annealing procedure, we investigate charged elastic shells that do not exchange material with their environment, such as elastic membranes formed in emulsions or synthetic nanocontainers. We find that by decreasing the salt concentration or increasing the total charge on the shell's surface, the spherical symmetry is broken, leading to the formation of ellipsoids, discs, and bowls. Shape changes are accompanied by a significant lowering of the electrostatic energy and a rise in the surface area of the shell. To substantiate our simulation findings, we show analytically that a uniformly charged disc has a lower Coulomb energy than a sphere of the same volume. Further, we test the robustness of our results by including the effects of charge renormalization in the analysis of the shape transitions and find the latter to be feasible for a wide range of shell volume fractions.

  7. Sexual dimorphism in shells of Cochlostoma septemspirale (Caenogastropoda, Cyclophoroidea, Diplommatinidae, Cochlostomatinae

    Directory of Open Access Journals (Sweden)

    Fabian Reichenbach

    2012-07-01

    Full Text Available Sexual dimorphisms in shell-bearing snails expressed by characteristic traits of their respective shells would offer the possibility for a lot of studies about gender distribution in populations, species, etc. In this study, the seven main shell characters of the snail Cochlostoma septemspirale were measured in both sexes: (1 height and (2 width of the shell, (3 height and (4 width of the aperture, (5 width of the last whorl, (6 rib density on the last whorl, and (7 intensity of the reddish or brown pigments forming three bands over the shell. The variation of size and shape was explored with statistical methods adapted to principal components analysis (PCA and linear discriminant analysis (LDA. In particular, we applied some multivariate morphometric tools for the analysis of ratios that have been developed only recently, that is, the PCA ratio spectrum, allometry ratio spectrum, and LDA ratio extractor. The overall separation of the two sexes was tested with LDA cross validation.The results show that there is a sexual dimorphism in the size and shape of shells. Females are more slender than males and are characterised by larger size, a slightly reduced aperture height but larger shell height and whorl width. Therefore they have a considerable larger shell volume (about one fifth in the part above the aperture. Furthermore, the last whorl of females is slightly less strongly pigmented and mean rib density slightly higher. All characters overlap quite considerably between sexes. However, by using cross validation based on the 5 continuous shell characters more than 90% of the shells can be correctly assigned to each sex.

  8. OPTIMAL THICKNESS OF A CYLINDRICAL SHELL

    Directory of Open Access Journals (Sweden)

    Paul Ziemann

    2015-01-01

    Full Text Available In this paper an optimization problem for a cylindrical shell is discussed. The aim is to look for an optimal thickness of a shell to minimize the deformation under an applied external force. As a side condition, the volume of the shell has to stay constant during the optimization process. The deflection is calculated using an approach from shell theory. The resulting control-to-state operator is investigated analytically and a corresponding optimal control problem is formulated. Moreover, necessary conditions for an optimal solution are stated and numerical solutions are presented for different examples.

  9. Material with core-shell structure

    Science.gov (United States)

    Luhrs, Claudia [Rio Rancho, NM; Richard, Monique N [Ann Arbor, MI; Dehne, Aaron [Maumee, OH; Phillips, Jonathan [Rio Rancho, NM; Stamm, Kimber L [Ann Arbor, MI; Fanson, Paul T [Brighton, MI

    2011-11-15

    Disclosed is a material having a composite particle, the composite particle including an outer shell and a core. The core is made from a lithium alloying material and the outer shell has an inner volume that is greater in size than the core of the lithium alloying material. In some instances, the outer mean diameter of the outer shell is less than 500 nanometers and the core occupies between 5 and 99% of the inner volume. In addition, the outer shell can have an average wall thickness of less than 100 nanometers.

  10. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  11. Penetration testing with Perl

    CERN Document Server

    Berdeaux, Douglas

    2014-01-01

    If you are an expert Perl programmer interested in penetration testing or information security, this guide is designed for you. However, it will also be helpful for you even if you have little or no Linux shell experience.

  12. Voronoi Grid-Shell Structures

    OpenAIRE

    Pietroni, Nico; Tonelli, Davide; Puppo, Enrico; Froli, Maurizio; Scopigno, Roberto; Cignoni, Paolo

    2014-01-01

    We introduce a framework for the generation of grid-shell structures that is based on Voronoi diagrams and allows us to design tessellations that achieve excellent static performances. We start from an analysis of stress on the input surface and we use the resulting tensor field to induce an anisotropic non-Euclidean metric over it. Then we compute a Centroidal Voronoi Tessellation under the same metric. The resulting mesh is hex-dominant and made of cells with a variable density, which depen...

  13. Generic thin-shell gravastars

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Moruno, Prado; Visser, Matt [School of Mathematics, Statistics, and Operations Research, Victoria University of Wellington, PO Box 600, Wellington 6140 (New Zealand); Garcia, Nadiezhda Montelongo [Departamento de Física, Centro de Investigación y Estudios avanzados del I.P.N., A.P. 14-700,07000 México, DF (Mexico); Lobo, Francisco S.N., E-mail: prado@msor.vuw.ac.nz, E-mail: nmontelongo@fis.cinvestav.mx, E-mail: flobo@cii.fc.ul.pt, E-mail: matt.visser@msor.vuw.ac.nz [Centro de Astronomia e Astrofísica da Universidade de Lisboa, Campo Grande, Edifício C8 1749-016 Lisboa (Portugal)

    2012-03-01

    We construct generic spherically symmetric thin-shell gravastars by using the cut-and-paste procedure. We take considerable effort to make the analysis as general and unified as practicable; investigating both the internal physics of the transition layer and its interaction with 'external forces' arising due to interactions between the transition layer and the bulk spacetime. Furthermore, we discuss both the dynamic and static situations. In particular, we consider 'bounded excursion' dynamical configurations, and probe the stability of static configurations. For gravastars there is always a particularly compelling configuration in which the surface energy density is zero, while surface tension is nonzero.

  14. Celestial mechanics of planet shells

    Science.gov (United States)

    Barkin, Yu V.; Vilke, V. G.

    2004-06-01

    The motion of a planet consisting of an external shell (mantle) and a core (rigid body), which are connected by a visco-elastic layer and mutually gravitationally interact with each other and with an external celestial body (considered as a material point), is studied (Barkin, 1999, 2002a,b; Vilke, 2004). Relative motions of the core and mantle are studied on the assumption that the centres of mass of the planet and external body move on unperturbed Keplerian orbits around the general centre of mass of the system. The core and mantle of the planet have axial symmetry and have different principal moments of inertia. The differential action of the external body on the core and mantle cause the periodic relative displacements of their centres of mass and their relative turns. An approximate solution of the problem was obtained on the basis of the linearization, averaging and small-parameter methods. The obtained analytical results are applied to the study of the possible relative displacements of the core and mantle of the Earth under the gravitational action of the Moon. For the suggested two-body Earth model and in the simple case of a circular (model) lunar orbit the new phenomenon of periodic translatory-rotary oscillations of the core with a fortnightly period the mantle was observed. The more remarkable phenomenon is the cyclic rotation with the same period (13.7 days) of the core relative to the mantle with a ‘large’ amplitude of 152 m (at the core surface).The results obtained confirm the general concept described by Barkin (1999, 2002a,b) that induced relative shell oscillations can control and dictate the cyclic and secular processes of energization of the planets and satellites in definite rhythms and on different time scales.The results obtained mean that giant moments and forces produce energy which causes in particular deformations of the viscoelastic layer between planet shells. This process is realized with different intensities on different time

  15. Shell Structure of Exotic Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dobaczewski, J. [Warsaw University; Michel, N. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Nazarewicz, Witold [ORNL; Ploszajczak, M. [Grand Accelerateur National d' Ions Lourds (GANIL); Rotureau, J. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2007-01-01

    Theoretical predictions and experimental discoveries for neutron-rich, short-lived nuclei far from stability indicate that the familiar concept of nucleonic shell structure should be considered as less robust than previously thought. The notion of single-particle motion in exotic nuclei is reviewed with a particular focus on three aspects: (i) variations of nuclear mean field with neutron excess due to tensor interactions; (ii) importance of many-body correlations; and (iii) influence of open channels on properties of weakly bound and unbound nuclear states.

  16. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities

    Science.gov (United States)

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-01-01

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested. PMID:26389925

  17. Bifurcation and Localization Instabilities in Cylindrical Shells under Bending. Part 1. Experiments

    Science.gov (United States)

    1991-01-01

    bending specimens. The stress-strain curves obtained were fitted with the Ramberg - Osgood fit given by The fit parameters calculated from each test...Dm, Dmi,, maximum and minimum shell diameter Do shell mean diameter E Young’s modulus L shell half length M moment Mo aoD0t n Ramberg - Osgood ...axial ripple half-wave length AD half-wave length of predicted ripples (J 2 def. Theory) ay Ramberg - Osgood yield parameter ao yield stress -E0 thickness

  18. Polysaccharide Constituents of Three Types of Sea Urchin Shells and Their Anti-Inflammatory Activities.

    Science.gov (United States)

    Jiao, Heng; Shang, Xiaohui; Dong, Qi; Wang, Shuang; Liu, Xiaoyu; Zheng, Heng; Lu, Xiaoling

    2015-09-16

    As a source of potent anti-inflammatory traditional medicines, the quantitative chromatographic fingerprints of sea urchin shell polysaccharides were well established via pre-column derivatization high performance liquid chromatography (HPLC) analysis. Based on the quantitative results, the content of fucose and glucose could be used as preliminary distinguishing indicators among three sea urchin shell species. Besides, the anti-inflammatory activities of the polysaccharides from sea urchin shells and their gonads were also determined. The gonad polysaccharide of Anthocidaris crassispina showed the most potent anti-inflammatory activity among all samples tested.

  19. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal triads, and small for local triads. However, the shell-to-shell energy transfer ...

  20. Integration of textile fabric and coconut shell in particleboard

    Science.gov (United States)

    Misnon, M. I.; Bahari, S. A.; Islam, M. M.; Epaarachchi, J. A.

    2013-08-01

    In this study, cotton fabric and coconut shell were integrated in particleboard to reduce the use of wood. Particleboards containing mixed rubberwood and coconut shell with an equal weight ratio have been integrated with various layers of cotton fabric. These materials were bonded by urea formaldehyde with a content level of 12% by weight. Flexural and water absorption tests were conducted to analyze its mechanical properties and dimensional stability. Results of flexural test showed an increment at least double strength values in fabricated materials as compared to control sample. The existence of fabric in the particleboard system also improved the dimensional stability of the produced material. Enhancement of at least 39% of water absorption could help the dimensional stability of the produced material. Overall, these new particleboards showed better results with the incorporation of cotton fabric layers and this study provided better understanding on mechanical and physical properties of the fabricated particleboard.

  1. Efficacy of antimicrobials extracted from organic pecan shell for inhibiting the growth of Listeria spp.

    Science.gov (United States)

    Babu, Dinesh; Crandall, Philip G; Johnson, Casey L; O'Bryan, Corliss A; Ricke, Steven C

    2013-12-01

    Growers and processors of USDA certified organic foods are in need of suitable organic antimicrobials. The purpose of the research reported here was to develop and test natural antimicrobials derived from an all-natural by-product, organic pecan shells. Unroasted and roasted organic pecan shells were subjected to solvent free extraction to produce antimicrobials that were tested against Listeria spp. and L. monocytogenes serotypes to determine the minimum inhibitory concentrations (MIC) of antimicrobials. The effectiveness of pecan shell extracts were further tested using a poultry skin model system and the growth inhibition of the Listeria cells adhered onto the skin model were quantified. The solvent free extracts of pecan shells inhibited Listeria strains at MICs as low as 0.38%. The antimicrobial effectiveness tests on a poultry skin model exhibited nearly a 2 log reduction of the inoculated cocktail mix of Listeria strains when extracts of pecan shell powder were used. The extracts also produced greater than a 4 log reduction of the indigenous spoilage bacteria on the chicken skin. Thus, the pecan shell extracts may prove to be very effective alternative antimicrobials against food pathogens and supplement the demand for effective natural antimicrobials for use in organic meat processing. © 2013 Institute of Food Technologists®

  2. Structural Concrete Using Oil Palm Shell (OPS) as Lightweight Aggregate

    OpenAIRE

    TEO, D. C. L.; M. A. Mannan; V.J. Kurian

    2014-01-01

    This paper presents part of the experimental results of an on-going research project to produce structural lightweight concrete using solid waste, oil palm shell (OPS), as a coarse aggregate. Reported in the paper are the compressive strength, bond strength, modulus of elasticity, and flexural behaviour of OPS concrete. It was found that although OPS concrete has a low modulus of elasticity, full-scale beam tests revealed that deflection under the design service loads is acceptable a...

  3. Artificially evolved functional shell morphology of burrowing bivalves

    DEFF Research Database (Denmark)

    Germann, D. P.; Schatz, W.; Hotz, Peter Eggenberger

    2014-01-01

    , there are almost no studies experimentally testing their dynamic properties. To investigate the functional morphology of the bivalve shell, we employed a synthetic methodology and built an experimental setup to simulate the burrowing process. Using an evolutionary algorithm and a printer that prints three....... Nevertheless, it is demonstrated that systematic palaeontological research may substantially profit from synthetic methods. We suggest investigating functional morphologies not only by emulating the dynamical processes but also evolutionary pressure using evolutionary algorithms....

  4. AMS Radiocarbon Dating of Shell Beads and Ornaments from CA-ORA-378

    OpenAIRE

    Gibson, Robert O; Koerper, Henry C.

    2000-01-01

    Accelerator mass spectrometry (AMS) dates for nine shell beads and two shell ornaments are used to test the application to Orange County of a temporal sequence developed for the Santa Barbara Channel region. Olivella cupped, Olivella oblique spire-removed, Olivella end-removed, Mytilus disc, and Megathura small square ring and Megathura oval ring beads/ornaments fell within time ranges predicted by the bead/ornament chronology developed by Chester King (1981, 1990) for the Chumash area. Olive...

  5. Localized versus shell-model-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Cseh, J.; Algora, A. [Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen, Pf. 51, 4001 Hungary (Hungary); Darai, J. [Institute of Experimental Physics, University of Debrecen, Debrecen, Bem ter 18/A, 4026 Hungary (Hungary); Yepez M, H. [Universidad Autonoma de la Ciudad de Mexico, Prolongacion San Isidro 151, Col. San Lorenzo Tezonco, 09790 Mexico D. F. (Mexico); Hess, P. O. [Instituto de Ciencias Nucleares, UNAM, Apartado Postal 70-543, 04510 Mexico D. F. (Mexico)]. e-mail: cseh@atomki.hu

    2008-12-15

    In light of the relation of the shell model and the cluster model, the concepts of localized and shell-model-like clusters are discussed. They are interpreted as different phases of clusterization, which may be characterized by quasi-dynamical symmetries, and are connected by a phase-transition. (Author)

  6. Thick-shell nanocrystal quantum dots

    Science.gov (United States)

    Hollingsworth, Jennifer A [Los Alamos, NM; Chen, Yongfen [Eugene, OR; Klimov, Victor I [Los Alamos, NM; Htoon, Han [Los Alamos, NM; Vela, Javier [Los Alamos, NM

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  7. Periodic Orbits and Deformed Shell Structure

    OpenAIRE

    Arita, K.; Magner, A. G.; Matsuyanagi, K.

    2002-01-01

    Relationship between quantum shell structure and classical periodic orbits is briefly reviewed on the basis of semi-classical trace formula. Using the spheroidal cavity model, it is shown that three-dimensional periodic orbits, which are born out of bifurcation of planar orbits at large prolate deformations, generate the superdeformed shell structure.

  8. Measuring galaxy potentials using shell kinematics

    NARCIS (Netherlands)

    Merrifield, MR; Kuijken, K

    1998-01-01

    We show that the kinematics of the shells seen around some elliptical galaxies provide a new, independent means for measuring the gravitational potentials of elliptical galaxies out to large radii. A numerical simulation of a set of shells formed in the merger between an elliptical and a smaller

  9. CORROSION INHIBITION BY CASHEW NUT SHELL LIQUID

    African Journals Online (AJOL)

    MECHANISTIC STUDIES OF CARBON STEEL. CORROSION INHIBITION BY CASHEW NUT SHELL. LIQUID. JYN Philip, J Buchweishaija and LL Mkayula. Department of Chemistry, University of Dar es Salaam,. P. O. Box 35061, Dar es Salaam, Tanzania. ABSTRACT. The inhibition mechanism of the Cashew Nut Shell ...

  10. Dynamic analysis of conical shells conveying fluid

    Science.gov (United States)

    Senthil Kumar, D.; Ganesan, N.

    2008-02-01

    A formulation, based on the semi-analytical finite element method, is proposed for elastic conical shells conveying fluids. The structural equations are based on the shell element proposed by Ramasamy and Ganesan [Finite element analysis of fluid-filled isotropic cylindrical shells with constrained viscoelastic damping, Computers & Structures 70 (1998) 363-376] while the fluid model is based on velocity potential formulation used by Jayaraj et al. [A semi-analytical coupled finite element formulation for composite shells conveying fluids, Journal of Sound and Vibration 258(2) (2002) 287-307]. Dynamic pressure acting on the walls is derived from Bernoulli's equation. By imposing the requirement that the normal component of velocity of the solid and fluid are equal leads to fluid-structure coupling. The computer code developed has been validated using results available in the literature for cylindrical shells conveying fluid. The study has been carried out for conical shells of different cone angles and for boundary condition like clamped-clamped, simply supported and clamped free. In general, instability occurs at a critical fluid velocity corresponding to the shell circumferential mode with the lowest natural frequency. Critical fluid velocities are lower than that of equivalent cylindrical shells. This result holds good for all boundary conditions.

  11. Strength Calculation of Locally Loaded Orthotropic Shells

    Directory of Open Access Journals (Sweden)

    Yu. I. Vinogradov

    2015-01-01

    Full Text Available The article studies laminated orthotropic cylindrical, conic, spherical, and toroidal shells, which are often locally loaded in the aircraft designs over small areas of their surfaces.The aim of this work is to determine stress concentration in shells versus structure of orthotropic composite material, shell form and parameters, forms of loading areas, which borders do not coincide with lines of main curvatures of shells. For this purpose, an analytical computing algorithm to estimate strength of shells in terms of stress is developed. It enables us to have solution results of the boundary value problem with a controlled error. To solve differential equations an analytical method is used. An algorithm of the boundary value problem solution is multiplicative.The main results of researches are graphs of stress concentration in the orthotropic shells versus their parameters and areas of loading lineated by circles and ellipses.Among the other works aimed at determination of stress concentration in shells, the place of this one is defined by the analytical solution of applied problems for strength estimation in terms of shell stresses of classical forms.The developed effective analytical algorithm to solve the boundary value problem and received results are useful in research and development.

  12. Intershell correlations in photoionization of outer shells

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Chernysheva, L.V. [A.F. Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Drukarev, E.G. [National Research Center “Kurchatov Institute”, Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg 188300 (Russian Federation)

    2016-02-15

    We demonstrate that the cross sections for photoionization of the outer shells are noticeably modified at the photon energies close to the thresholds of ionization of the inner shells due to correlations with the latter. The correlations may lead to increase or to decrease of the cross sections just above the ionization thresholds.

  13. Microsoft Exchange Server PowerShell cookbook

    CERN Document Server

    Andersson, Jonas

    2015-01-01

    This book is for messaging professionals who want to build real-world scripts with Windows PowerShell 5 and the Exchange Management Shell. If you are a network or systems administrator responsible for managing and maintaining Exchange Server 2013, you will find this highly useful.

  14. Collapsing spherical null shells in general relativity

    Directory of Open Access Journals (Sweden)

    S Khakshournia

    2011-03-01

    Full Text Available In this work, the gravitational collapse of a spherically symmetric null shell with the flat interior and a charged Vaidya exterior spacetimes is studied. There is no gravitational impulsive wave present on the null hypersurface which is shear-free and contracting. It follows that there is a critical radius at which the shell bounces and starts expanding.

  15. Deformation analysis of horizontal stiffened cylindrical shells under the effects of gravity

    Directory of Open Access Journals (Sweden)

    LIU Dong

    2017-01-01

    Full Text Available In order to study the deformation of submarine pressure hulls under the effects of gravity,a sim-ple calculation formula of the deformation of the free ends of stiffened cylindrical shells is derived based on moment theory and non-moment theory,and the calculated results are compared with the results of Finite Element Analysis(FEAwhich tests the reliability of the formula. The results show that when a thin-wall cylindrical shell simply supported at the bottom is affected by its own gravity,the deformation degree at the free end is directly proportional to the fourth power of the inner diameter of the cylindrical shell,and in-versely proportional to the square of the wall thickness;for cantilever cylindrical shells,the gravity load has little effect on the roundness of the free end plane. With the nonlinear increase of distance between the free end and fixed supporting end,the increase rate increases gradually. With the increase of the inner di-ameter of the cylindrical shell,the deformation degree of the free end decreases gradually. When the inner diameter of the cylindrical shell is 0.75 times its longitudinal length,the deformation degree of the free end is at a minimum,then increases gradually as the inner diameter increases. The gravity deformation calcula-tion of ring stiffened cylindrical shells in a horizontal state and the strengthening measures can provide ref-erences for further study.

  16. Dynamic hydration shell restores Kauzmann's 1959 explanation of how the hydrophobic factor drives protein folding

    Science.gov (United States)

    Baldwin, Robert L.

    2014-01-01

    Kauzmann's explanation of how the hydrophobic factor drives protein folding is reexamined. His explanation said that hydrocarbon hydration shells are formed, possibly of clathrate water, and they explain why hydrocarbons have uniquely low solubilities in water. His explanation was not universally accepted because of skepticism about the clathrate hydration shell. A revised version is given here in which a dynamic hydration shell is formed by van der Waals (vdw) attraction, as proposed in 1985 by Jorgensen et al. [Jorgensen WL, Gao J, Ravimohan C (1985) J Phys Chem 89:3470–3473]. The vdw hydration shell is implicit in theories of hydrophobicity that contain the vdw interaction between hydrocarbon C and water O atoms. To test the vdw shell model against the known hydration energetics of alkanes, the energetics should be based on the Ben-Naim standard state (solute transfer between fixed positions in the gas and liquid phases). Then the energetics are proportional to n, the number of water molecules correlated with an alkane by vdw attraction, given by the simulations of Jorgensen et al. The energetics show that the decrease in entropy upon hydration is the root cause of hydrophobicity; it probably results from extensive ordering of water molecules in the vdw shell. The puzzle of how hydrophobic free energy can be proportional to nonpolar surface area when the free energy is unfavorable and the only known interaction (the vdw attraction) is favorable, is resolved by finding that the unfavorable free energy is produced by the vdw shell. PMID:25157156

  17. Core-shell structure microcapsules with dual pH-responsive drug release function.

    Science.gov (United States)

    Yang, Chih-Hui; Wang, Chih-Yu; Grumezescu, Alexandru Mihai; Wang, Andrew H-J; Hsiao, Ching-Ju; Chen, Zu-Yu; Huang, Keng-Shiang

    2014-09-01

    We report dual pH-responsive microcapsules manufactured by combining electrostatic droplets (ESD) and microfluidic droplets (MFD) techniques to produce monodisperse core (alginate)-shell (chitosan) structure with dual pH-responsive drug release function. The fabricated core-shell microcapsules were size controllable by tuning the synthesis parameters of the ESD and MFD systems, and were responsive in both acidic and alkaline environment, We used two model drugs (ampicillin loaded in the chitosan shell and diclofenac loaded in the alginate core) for drug delivery study. The results show that core-shell structure microcapsules have better drug release efficiency than respective core or shell particles. A biocompatibility test showed that the core-shell structure microcapsules presented positive cell viability (above 80%) when evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results indicate that the synthesized core-shell microcapsules were a potential candidate of dual-drug carriers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of hydrophobic zeolite X-SiO{sub 2} core-shell composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu Liying [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Singh, Ranjeet; Li Gang; Xiao Gongkui [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical Engineering, Monash University, Clayton, Victoria 3800 (Australia); Webley, Paul A., E-mail: paul.webley@eng.monash.edu.au [Cooperative Research Centre for Greenhouse Gas Technologies (CO-2CRC) (Australia); Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Zhai Yuchun [School of Material and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Hydrophobic 13X zeolite composites with silicalite and mesoporous silica shells are designed. Black-Right-Pointing-Pointer These core-shell composites are silynated and their hydrophobicity is tested. Black-Right-Pointing-Pointer Addition of silica layer increases the density of surface hydroxyl groups which makes the improvement of the hydrophobicity possible by further silynation. - Abstract: Core-shell structures of zeolite X coated with silicalite as well as mesoporous (MCM-41) have been synthesized. Furthermore, the surfaces of the silicalite and mesoporous silica shells were silylated using organosilanes. The materials were characterized by X-ray diffraction, nitrogen adsorption/desorption, scanning and transmission electron microscopy. The results show that the properties of zeolite 13X-silicalite and zeolite 13X-mesoporous silica core-shells composite structures are well maintained even after the modification. As expected, the shell thickness increased with increase in synthesis time, however, the micropore volume decreased. Silylation with smaller organosilanes (trimethyl chlorosilane) resulted in decrease in surface area as they diffused through the pores; however, bulkier silane reacted with surface hydroxyl groups and maintained the pore structure. Contact angle measurements revealed that hydrophobicity of zeolite 13X was enhanced by the microporous and mesoporous shell coating and was further improved by silylation.

  19. Faraday Wave Turbulence on a Spherical Liquid Shell

    Science.gov (United States)

    Holt, R. Glynn; Trinh, Eugene H.

    1996-01-01

    Millimeter-radius liquid shells are acoustically levitated in an ultrasonic field. Capillary waves are observed on the shells. At low energies (minimal acoustic amplitude, thick shell) a resonance is observed between the symmetric and antisymmetric thin film oscillation modes. At high energies (high acoustic pressure, thin shell) the shell becomes fully covered with high-amplitude waves. Temporal spectra of scattered light from the shell in this regime exhibit a power-law decay indicative of turbulence.

  20. Alternating current dielectrophoresis of core-shell nanoparticles: Experiments and comparison with theory

    Science.gov (United States)

    Yang, Chungja

    3D particle-assemblies. Chitosan (amino sugar) and poly-L-lysine (amino acid, PLL) CSnp shell materials were custom synthesized around a hollow (gas) core by utilizing a phospholipid micelle around a volatile fluid templating for the shell material; this approach proves to be novel and distinct from conventional core-shell models wherein a conductive core is coated with an insulative shell. Experiments were conducted within a 100 nl chamber housing 100 um wide Ti/Au quadrapole electrodes spaced 25 um apart. Frequencies from 100kHz to 80MHz at fixed local field of 5Vpp were tested with 10-5 and 10-3 S/m medium conductivities for 25 seconds. Dielectrophoretic responses of ~220 and 340(or ~400) nm chitosan or PLL CSnp were compiled as a function of medium conductivity, size and shell material. Experiments further examined shell thickness and particle concentration (chapter 6) dependencies on ~530 nm CSnp dielectrophoretic and electrorotational responses with ~30nm and ~80 nm shell thicknesses and at particle concentration count rates of 5000 +/- 500, 10000 +/- 500, and 15000 +/- 500 counts per second. Using similar experimental conditions, both dielectrophoretic and electrorotational CSnp responses were compiled versus frequency, shell thickness, and particle concentration. Knowledge gained from this study includes a unique resonance-like dielectrophoretic and electrorotational spectrum, which is significantly distinct from other cells and particles. CSnp dielectric properties were then calculated by parametrically fitting parameters to an existing core-shell model. The optimum conductivity and relative permittivity for the core and the shell are 1E-15 S/m, 1, 0.6 S/m, and 90, respectively. These properties can be exploited to rapidly assemble these unique core-shell particles for future structural color production in fabrics, vehicle, and wall painting.

  1. A peridynamic theory for linear elastic shells

    CERN Document Server

    Chowdhury, Shubhankar Roy; Roy, Debasish; Reddy, J N

    2015-01-01

    A state-based peridynamic formulation for linear elastic shells is presented. The emphasis is on introducing, possibly for the first time, a general surface based peridynamic model to represent the deformation characteristics of structures that have one physical dimension much smaller than the other two. A new notion of curved bonds is exploited to cater for force transfer between the peridynamic particles describing the shell. Starting with the three dimensional force and deformation states, appropriate surface based force, moment and several deformation states are arrived at. Upon application on the curved bonds, such states beget the necessary force and deformation vectors governing the motion of the shell. Correctness of our proposal on the peridynamic shell theory is numerically assessed against static deformation of spherical and cylindrical shells and flat plates.

  2. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  3. Variability in shell models of GRBs

    Science.gov (United States)

    Sumner, M. C.; Fenimore, E. E.

    1997-01-01

    Many cosmological models of gamma-ray bursts (GRBs) assume that a single relativistic shell carries kinetic energy away from the source and later converts it into gamma rays, perhaps by interactions with the interstellar medium or by internal shocks within the shell. Although such models are able to reproduce general trends in GRB time histories, it is difficult to reproduce the high degree of variability often seen in GRBs. The authors investigate methods of achieving this variability using a simplified external shock model. Since the model emphasizes geometric and statistical considerations, rather than the detailed physics of the shell, it is applicable to any theory that relies on relativistic shells. They find that the variability in GRBs gives strong clues to the efficiency with which the shell converts its kinetic energy into gamma rays.

  4. Strain-induced structural defects and their effects on the electrochemical performances of silicon core/germanium shell nanowire heterostructures.

    Science.gov (United States)

    Lin, Yung-Chen; Kim, Dongheun; Li, Zhen; Nguyen, Binh-Minh; Li, Nan; Zhang, Shixiong; Yoo, Jinkyoung

    2017-01-19

    We report on strain-induced structural defect formation in core Si nanowires of a Si/Ge core/shell nanowire heterostructure and the influence of the structural defects on the electrochemical performances in lithium-ion battery anodes based on Si/Ge core/shell nanowire heterostructures. The induced structural defects consisting of stacking faults and dislocations in the core Si nanowire were observed for the first time. The generation of stacking faults in the Si/Ge core/shell nanowire heterostructure is observed to prefer settling in either only the Ge shell region or in both the Ge shell and Si core regions and is associated with the increase of the shell volume fraction. The relaxation of the misfit strain in the [112] oriented core/shell nanowire heterostructure leads to subsequent gliding of Shockley partial dislocations, preferentially forming the twins. The observation of crossover of defect formation is of great importance for understanding heteroepitaxy in radial heterostructures at the nanoscale and for building three dimensional heterostructures for the various applications. Furthermore, the effect of the defect formation on the nanomaterial's functionality is investigated using electrochemical performance tests. The Si/Ge core/shell nanowire heterostructures enhance the gravimetric capacity of lithium ion battery anodes under fast charging/discharging rates compared to Si nanowires. However, the induced structural defects hamper lithiation of the Si/Ge core/shell nanowire heterostructure.

  5. Impact of high pCO2 on shell structure of the bivalve Cerastoderma edule.

    Science.gov (United States)

    Milano, Stefania; Schöne, Bernd R; Wang, Schunfeng; Müller, Werner E

    2016-08-01

    Raised atmospheric emissions of carbon dioxide (CO2) result in an increased ocean pCO2 level and decreased carbonate saturation state. Ocean acidification potentially represents a major threat to calcifying organisms, specifically mollusks. The present study focuses on the impact of elevated pCO2 on shell microstructural and mechanical properties of the bivalve Cerastoderma edule. The mollusks were collected from the Baltic Sea and kept in flow-through systems at six different pCO2 levels from 900 μatm (control) to 24,400 μatm. Extreme pCO2 levels were used to determine the effects of potential leaks from the carbon capture and sequestration sites where CO2 is stored in sub-seabed geological formations. Two approaches were combined to determine the effects of the acidified conditions: (1) Shell microstructures and dissolution damage were analyzed using scanning electron microscopy (SEM) and (2) shell hardness was tested using nanoindentation. Microstructures of specimens reared at different pCO2 levels do not show significant changes in their size and shape. Likewise, the increase of pCO2 does not affect shell hardness. However, dissolution of ontogenetically younger portions of the shell becomes more severe with the increase of pCO2. Irrespective of pCO2, strong negative correlations exist between microstructure size and shell mechanics. An additional sample from the North Sea revealed the same microstructural-mechanical interdependency as the shells from the Baltic Sea. Our findings suggest that the skeletal structure of C. edule is not intensely influenced by pCO2 variations. Furthermore, our study indicates that naturally occurring shell mechanical property depends on the shell architecture at μm-scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Expanding the Notion of Assessment Shell: From Task Development Tool to Instrument for Guiding the Process of Science Assessment Development

    Directory of Open Access Journals (Sweden)

    Guillermo Solano-Flores

    2001-05-01

    Full Text Available We discuss the limitations and possibilities of shells (blueprints with directions for test developers intended to reduce test development costs and time. Although shells cannot be expected to generate statistically exchangeable exercises, they can generate exercises with similar structures and appearances when they are highly specific and test developers are properly trained to use them. Based on our research and experience developing a wide variety of assessments, we discuss the advantages of conceiving shells as: (a tools for effective development of constructed-response items, (b formal specifications of the structural properties of items; (c task-authoring environments that help test developers standardize and simplify user (examinee interfaces; and (d conceptual tools that guide the process of assessment development by enabling test developers to work systematically. We also caution against possible misuses of shells.

  7. Symmetry Based No Core Shell Model in a Deformed Basis

    Science.gov (United States)

    Kekejian, David; Draayer, Jerry; Launey, Kristina

    2017-01-01

    To address current limitations of shell-model descriptions of large spatial deformation and cluster structures, we adopt a no-core shell model with a deformed harmonic oscillator basis and implement an angular momentum projection in a symmetry-adapted scheme. This approach allows us to reach larger model spaces as a result of computational memory savings for calculations of highly deformed states, such as the Hoyle state in C-12. The method is first tested with schematic interactions, but the ultimate goal is to carry forward calculations with realistic nucleon-nucleon interactions in future work. Supported by the U.S. NSF (OCI-0904874, ACI-1516338) and the U.S. DOE (DE-SC0005248), and benefitted from computing resources provided by Blue Waters and LSU's Center for Computation & Technology.

  8. A study on the nonlinear finite element analysis of reinforced concrete structures: shell finite element formulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Seo, Jeong Moon

    2000-08-01

    The main goal of this research is to establish a methodology of finite element analysis of containment building predicting not only global behaviour but also local failure mode. In this report, we summerize some existing numerical analysis techniques to be improved for containment building. In other words, a complete description of the standard degenerated shell finite element formulation is provided for nonlinear stress analysis of nuclear containment structure. A shell finite element is derived using the degenerated solid concept which does not rely on a specific shell theory. Reissner-Mindlin assumptions are adopted to consider the transverse shear deformation effect. In order to minimize the sensitivity of the constitutive equation to structural types, microscopic material model is adopted. The four solution algorithms based on the standard Newton-Raphson method are discussed. Finally, two numerical examples are carried out to test the performance of the adopted shell medel.

  9. Metal shell technology based upon hollow jet instability. [for inertial confinement fusion

    Science.gov (United States)

    Kendall, J. M.; Lee, M. C.; Wang, T. G.

    1982-01-01

    Spherical shells of submillimeter size are sought as ICF targets. Such shells must be dimensionally precise, smooth, of high strength, and composed of a high atomic number material. A technology for the production of shells based upon the hydrodynamic instability of an annular jet of molten metal is described. Shells in the 0.7-2.0 mm size range have been produced using tin as a test material. Specimens exhibit good sphericity, fair concentricity, and excellent finish over most of the surface. Work involving a gold-lead-antimony alloy is in progress. Droplets of this are amorphous and possess superior surface finish. The flow of tin models that of the alloy well; experiments on both metals show that the technique holds considerable promise.

  10. Silica-shell/oil-core microcapsules with controlled shell thickness and their breakage stress.

    Science.gov (United States)

    O'Sullivan, Michael; Zhang, Zhibing; Vincent, Brian

    2009-07-21

    The encapsulation of one material by another, to form core-shell particles (microcapsules), has many applications, principally the containment, protection, and distribution of an active material. This work describes the development of core-shell particles with silicone oil cores and solid silica-like shells of controlled thickness. Oligomeric polydimethylsiloxane (PDMS) emulsions are employed as the core templates for the formation of the solid shells. The core templates are prepared by the surfactant-free, condensation polymerization of diethoxydimethylsilane (DEODMS) that leads to the formation of monodisperse silicone oil/water emulsions. Solid silica-like, composite shells were formed through condensation of tetraethoxysilane (TEOS) and DEODMS onto the core templates. The shell thickness may be controlled by manipulation of relative TEOS and DEODMS concentrations or by quenching the shell development step. It is possible to incorporate a dye into the core prior to shell formation, which does not seem to permeate the shell. The coated PDMS particles were subjected to a controlled compression stress using a micromanipulation technique. The capsule breaking force was found to be proportional to the shell thickness, as quantified using scanning electron microscopy (SEM) ultramicrotomy.

  11. Photon upconversion in core-shell nanoparticles.

    Science.gov (United States)

    Chen, Xian; Peng, Denfeng; Ju, Qiang; Wang, Feng

    2015-03-21

    Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications.

  12. RESPON SEISMIK STRUKTUR RANGKA DINDING PENGISI YANG DIMODEL DENGAN ELEMEN SHELL PENUH DAN PARSIAL

    Directory of Open Access Journals (Sweden)

    Putu Ratna Suryantini

    2017-01-01

    Full Text Available Abstract: Research on the seismic response of in-filled frame structure has been done with in-filled frame model as full and partial shell elements. The wall is considered active until the maximum load on the full shell models, while the partial shell model using the gradual load with the strength of the wall is considered inactive if the stress of the wall exceeded the wall strength The 4 storey hotel building with full wall in x-direction and wall with opening in y-direction were modeled in SAP 2000 as 3D infilled-frame using full and partial shell element. In Mxy models, both wall were included in the model, while in My models, only the wall in y-direction included. Therefore, 4 models were obtained, there are full shell model MxyShPn and MyShPn and partial shell model MyShPar and MyShPar. In addition, 2 diagonal strut models MxyS and MyS  and an open frame model MOF were made as comparison. Prior to model 3D structure, validation models were created using test result condited by other as reference. For that purphose 5 2D models were created there are open frame model MOF, single strut model MST, multiple strut model MSG, full shell model MShPn and  partial shell model MShPar. From validation models, it is apparent that the MxyShPar model mimic the behavior of tested structure better than the other models. From the 3D models analysis result show that the displacement in x-direction of MxyShPn, MxyShPar, MxyS were 89%, 85%, 84% smaller than those of MOF, respectively inclusion of wall in the models, also reduce the internal forces and reduse the natural period of the sctructure.

  13. Bending stresses in Facetted Glass Shells

    DEFF Research Database (Denmark)

    Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik

    2008-01-01

    A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...

  14. Thin shells joining local cosmic string geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F. [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Rubin de Celis, Emilio; Simeone, Claudio [Universidad de Buenos Aires, Ciudad Universitaria Pabellon I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Ciudad Universitaria Pabellon I, IFIBA-CONICET, Buenos Aires (Argentina)

    2016-10-15

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a thin shell surrounding a cosmic string or an empty region with Minkowski metric, and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters. (orig.)

  15. Windows PowerShell Quick Reference

    CERN Document Server

    Holmes, Lee

    2006-01-01

    For years, support for scripting and command-line administration on the Windows platform has paled in comparison to the support offered by the Unix platform. Unix administrators enjoyed the immense power and productivity of their command shells, while Windows administrators watched in envy. Windows PowerShell, Microsoft's next-generation command shell and scripting language, changes this landscape completely. This Short Cut contains the essential reference material to help you get your work done-including the scripting language syntax, a regular-expression reference, useful .NET classes, an

  16. Thin shells joining local cosmic string geometries

    CERN Document Server

    Eiroa, Ernesto F; Simeone, Claudio

    2016-01-01

    In this article we present a theoretical construction of spacetimes with a thin shell that joins two different local cosmic string geometries. We study two types of global manifolds, one representing spacetimes with a standard thin shell and the other corresponding to wormholes which are not symmetric across the throat located at the shell. We analyze the stability of the static configurations under perturbations preserving the cylindrical symmetry. For both types of geometries we find that the static configurations can be stable for suitable values of the parameters.

  17. A theory of latticed plates and shells

    CERN Document Server

    Pshenichnon, Gi

    1993-01-01

    The book presents the theory of latticed shells as continual systems and describes its applications. It analyses the problems of statics, stability and dynamics. Generally, a classical rod deformation theory is applied. However, in some instances, more precise theories which particularly consider geometrical and physical nonlinearity are employed. A new effective method for solving general boundary value problems and its application for numerical and analytical solutions of mathematical physics and reticulated shell theory problems is described. A new method of solving the shell theory's nonli

  18. Oyster Shell Proteins Originate from Multiple Organs and Their Probable Transport Pathway to the Shell Formation Front.

    Directory of Open Access Journals (Sweden)

    Xiaotong Wang

    Full Text Available Mollusk shell is one kind of potential biomaterial, but its vague mineralization mechanism hinders its further application. Mollusk shell matrix proteins are important functional components that are embedded in the shell, which play important roles in shell formation. The proteome of the oyster shell had been determined based on the oyster genome sequence by our group and gives the chance for further deep study in this area. The classical model of shell formation posits that the shell proteins are mantle-secreted. But, in this study, we further analyzed the shell proteome data in combination with organ transcriptome data and we found that the shell proteins may be produced by multiple organs though the mantle is still the most important organ for shell formation. To identify the transport pathways of these shell proteins not in classical model of shell formation, we conducted a shell damage experiment and we determined the shell-related gene set to identify the possible transport pathways from multiple organs to the shell formation front. We also found that there may exist a remodeling mechanism in the process of shell formation. Based on these results along with some published results, we proposed a new immature model, which will help us think about the mechanism of shell formation in a different way.

  19. An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates

    Science.gov (United States)

    McElroy, Mark Wayne, Jr.

    A new formulation is presented for an enriched shell finite element capable of progressive damage simulation in composite laminates referred to as the Adaptive Fidelity Shell element. The element enrichment is based on a combination of the Floating Node Method to enable discrete representation of damage and a novel damage algorithm featuring the Virtual Crack Closure Technique. The element enrichment enables an adaptive mesh fidelity type approach where an initial single layer of shell elements increases in fidelity locally as needed to suit an evolving progressive damage process composed of multiple delaminations and transverse matrix cracks. Compared to alternative existing simulation techniques, use of the Adaptive Fidelity Shell is more computationally efficient and demands less time and expertise from the user. The Adaptive Fidelity Shell element was verified for a number of delamination problems using numerical benchmark data. These include Mode I, Mode II, mixed-mode, and multiple crack problems. Initial experimental validation was performed using a previous delamination-migration experiment. After the initial verification and validation, a new test method was developed where specimens were loaded using both quasi-static and dynamic loads to generate damage processes slightly more complex than those of the initial delamination and delamination-migration studies. The test had a dual purpose of (1) investigating in detail some of the damage mechanisms that occur during low-velocity impact and (2) using the experimental data for model validation. The Adaptive Fidelity Shell model was used to simulate the quasi-static and dynamic tests and in doing so provide some validation as well as highlighting areas that need improvement. Finally, the Adaptive Fidelity Shell was used in a blind prediction to simulate a realistic low-velocity impact test. The blind prediction was partially successful although some areas for future improvement and research were identified.

  20. Design aids for fixed support reinforced concrete cylindrical shells ...

    African Journals Online (AJOL)

    Shells are objects considered as materialization of the curved surface. Despite structural advantages and architectural aesthetics possessed by shells, relative degree of unacquaintance with shell behavior and design is high. Thin shells are examples of strength through form as opposed to strength through mass; their thin ...

  1. Particle production from off-shell nucleons

    OpenAIRE

    Bozek, P

    1998-01-01

    Particle production in equilibrium and nonequilibrium quantum systems is calculated. The effects of the off-shell propagation of nucleons in medium on the particle production are discussed. Comparision to the semiclassical production rate is given.

  2. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells....... In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  3. Core-shell silicon nanowire solar cells.

    Science.gov (United States)

    Adachi, M M; Anantram, M P; Karim, K S

    2013-01-01

    Silicon nanowires can enhance broadband optical absorption and reduce radial carrier collection distances in solar cell devices. Arrays of disordered nanowires grown by vapor-liquid-solid method are attractive because they can be grown on low-cost substrates such as glass, and are large area compatible. Here, we experimentally demonstrate that an array of disordered silicon nanowires surrounded by a thin transparent conductive oxide has both low diffuse and specular reflection with total values as low as nanowire facilitates enhancement in external quantum efficiency using two different active shell materials: amorphous silicon and nanocrystalline silicon. As a result, the core-shell nanowire device exhibits a short-circuit current enhancement of 15% with an amorphous Si shell and 26% with a nanocrystalline Si shell compared to their corresponding planar devices.

  4. CO2 Hydration Shell Structure and Transformation.

    Science.gov (United States)

    Zukowski, Samual R; Mitev, Pavlin D; Hermansson, Kersti; Ben-Amotz, Dor

    2017-07-06

    The hydration-shell of CO2 is characterized using Raman multivariate curve resolution (Raman-MCR) spectroscopy combined with ab initio molecular dynamics (AIMD) vibrational density of states simulations, to validate our assignment of the experimentally observed high-frequency OH band to a weak hydrogen bond between water and CO2. Our results reveal that while the hydration-shell of CO2 is highly tetrahedral, it is also occasionally disrupted by the presence of entropically stabilized defects associated with the CO2-water hydrogen bond. Moreover, we find that the hydration-shell of CO2 undergoes a temperature-dependent structural transformation to a highly disordered (less tetrahedral) structure, reminiscent of the transformation that takes place at higher temperatures around much larger oily molecules. The biological significance of the CO2 hydration shell structural transformation is suggested by the fact that it takes place near physiological temperatures.

  5. Nuclear Quadrupole Moments and Nuclear Shell Structure

    Science.gov (United States)

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  6. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  7. Closed Axisymmetric Shells as Flat Jacks

    Science.gov (United States)

    Yudin, S. A.; Sigaeva, T. V.

    Buildings during exploitation can be subjected to the external loadings leading to various kinds of heterogeneous strains or tilts. There is engineering technologies of uplift and flattening of multistory buildings by means of steel shells of the closed volume which are named as flat jacks (FJs) [1]. FJ represents two circular close plates which at the outer contour are joined to torus shell. The oil could be introduced into volume by hydraulic station creating a high pressure. As a result the plates diverge and through inserts from thick plywood create powerful force. The construction and working conditions of flat lifting jacks generates a set of problems of the mathematical modeling which are interesting to study. One of the directions is the geometry optimization. In the paper, we analyze variants of the axisymmetric shells modeling FJs. Stress states of shells with different shapes are compared at the initial loading stage.

  8. Single Shell Tank (SST) Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    HAASS, C.C.

    2000-03-21

    This document provides an initial program plan for retrieval of the single-shell tank waste. Requirements, technical approach, schedule, organization, management, and cost and funding are discussed. The program plan will be refined and updated in fiscal year 2000.

  9. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2017-05-01

    Full Text Available We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM mode to the Stranski-Krastanow (SK mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  10. Physical mechanism of surface roughening on the radial core-shell nanowire heterostructure with alloy shell

    Science.gov (United States)

    Cao, Yuanyuan; Diao, Dongfeng

    2017-05-01

    We proposed a quantitative thermodynamic theory to address the physical process of surface roughening during the epitaxial growth of core-shell NW with alloy layer. The surface roughening origins from the transformation of the Frank-van der Merwe (FM) mode to the Stranski-Krastanow (SK) mode. In addition to the radius of NW core, the composition and thickness of alloy shell could determine the growth behaviors due to their modulation to the strain. The established theoretical model not only explains the surface roughening caused by the alloy shell layer, but also provides a new way to control the growth of core-shell NW.

  11. Towards gold shells shaped by carbon cores: From a gold cage to a core shell aurocarbon

    Science.gov (United States)

    Naumkin, Fedor Y.

    2008-11-01

    A new aurocarbon species, C 10Au 18, is investigated in terms of its geometry, stability, charge distribution and properties involving changes of the electronic and charge state. The system consists of a carbon-radical core inside a gold shell. The property variations upon adding the carbon molecular 'dopant' to the gold cage cluster of equivalent geometry are analyzed via isolating the effects of the shell shape change and core influence. The charge distribution in the system exhibits interesting, sometimes counterintuitive features. An approximate splitting of the total binding energy into the in-shell and core-shell components is attempted, indicating comparable values for both.

  12. Membrane Shell Reflector Segment Antenna

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Moore, James

    2012-01-01

    The mesh reflector is the only type of large, in-space deployable antenna that has successfully flown in space. However, state-of-the-art large deployable mesh antenna systems are RF-frequency-limited by both global shape accuracy and local surface quality. The limitations of mesh reflectors stem from two factors. First, at higher frequencies, the porosity and surface roughness of the mesh results in loss and scattering of the signal. Second, the mesh material does not have any bending stiffness and thus cannot be formed into true parabolic (or other desired) shapes. To advance the deployable reflector technology at high RF frequencies from the current state-of-the-art, significant improvements need to be made in three major aspects: a high-stability and highprecision deployable truss; a continuously curved RF reflecting surface (the function of the surface as well as its first derivative are both continuous); and the RF reflecting surface should be made of a continuous material. To meet these three requirements, the Membrane Shell Reflector Segment (MSRS) antenna was developed.

  13. Adaptive Through-Thickness Integration Strategy for Shell Elements

    Science.gov (United States)

    Burchitz, I. A.; Meinders, T.; Huétink, J.

    2007-05-01

    Reliable numerical prediction of springback in sheet metal forming is essential for the automotive industry. There are numerous factors that influence the accuracy of springback prediction by using the finite element method. One of the reasons is the through-thickness numerical integration of shell elements. It is known that even for simple problems the traditional integration schemes may require up to 50 integration points to achieve a high accuracy of springback analysis. An adaptive through-thickness integration strategy can be a good alternative. The strategy defines abscissas and weights depending on the integrand's properties and, thus, can adapt itself to improve the accuracy of integration. A concept of the adaptive through-thickness integration strategy for shell elements is presented. It is tested using a simple problem of bending of a beam under tension. Results show that for a similar set of material and process parameters the adaptive Simpson's rule with 7 integration points performs better than the traditional trapezoidal rule with 50 points. The adaptive through-thickness integration strategy for shell elements can improve the accuracy of springback prediction at minimal costs.

  14. Cellulose nanocrystals/cellulose core-in-shell nanocomposite assemblies.

    Science.gov (United States)

    Magalhães, Washington Luiz Esteves; Cao, Xiaodong; Lucia, Lucian A

    2009-11-17

    We report herein for the first time how a co-electrospinning technique can be used to overcome the issue of orienting cellulose nanocrystals within a neat cellulose matrix. A home-built co-electrospinning apparatus was fabricated that was comprised of a high-voltage power supply, two concentric capillary needles, and one screw-type pump syringe. Eucalyptus-derived cellulose was dissolved in N-methylmorpholine oxide (NMMO) at 120 degrees C and diluted with dimethyl sulfoxide (DMSO) which was used in the external concentric capillary needle as the shell solution. A cellulose nanocrystal suspension obtained by the sulfuric acid hydrolysis of bleached sisal and cotton fibers was used as the core liquid in the internal concentric capillary needle. Three flow rate ratios between the shell and core, four flow rates for the shell dope solution, and four high voltages were tested. The resultant co-electrospun composite fibers were collected onto a grounded metal screen immersed in cold water. Micrometer and submicrometer cellulose fiber assemblies were obtained which were reinforced with cellulose nanocrystals and characterized by FESEM, FTIR, TGA, and XRD. Surprisingly, it was determined that the physical properties for the cellulose controls are superior to the composites; in addition, the crystallinity of the controls was slightly greater.

  15. Nucleus accumbens shell moderates preference bias during voluntary choice behavior.

    Science.gov (United States)

    Jang, Hyeran; Jung, Kanghoon; Jeong, Jaehoon; Park, Sang Ki; Kralik, Jerald D; Jeong, Jaeseung

    2017-09-01

    The nucleus accumbens (NAc) shell lies anatomically at a critical intersection within the brain's reward system circuitry, however, its role in voluntary choice behavior remains unclear. Rats with electrolytic lesions in the NAc shell were tested in a novel foraging paradigm. Over a continuous two-week period they freely chose among four nutritionally identical but differently flavored food pellets by pressing corresponding levers. We examined the lesion's effects on three behavioral dynamics components: motivation (when to eat), preference bias (what to choose) and persistence (how long to repeat the same choice). The lesion led to a marked increase in the preference bias: i.e., increased selection of the most-preferred choice option, and decreased selection of the others. We found no effects on any other behavioral measures, suggesting no effect on motivation or choice persistence. The results implicate the NAc shell in moderating the instrumental valuation process by inhibiting excessive bias toward preferred choice options. © The Author (2017). Published by Oxford University Press.

  16. Fluid-structure coupled analysis of underwater cylindrical shells

    Science.gov (United States)

    Ai, Shang-Mao; Sun, Li-Ping

    2008-06-01

    Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.

  17. Nucleus accumbens shell moderates preference bias during voluntary choice behavior

    Science.gov (United States)

    Jang, Hyeran; Jung, Kanghoon; Jeong, Jaehoon; Park, Sang Ki; Kralik, Jerald D.

    2017-01-01

    Abstract The nucleus accumbens (NAc) shell lies anatomically at a critical intersection within the brain’s reward system circuitry, however, its role in voluntary choice behavior remains unclear. Rats with electrolytic lesions in the NAc shell were tested in a novel foraging paradigm. Over a continuous two-week period they freely chose among four nutritionally identical but differently flavored food pellets by pressing corresponding levers. We examined the lesion’s effects on three behavioral dynamics components: motivation (when to eat), preference bias (what to choose) and persistence (how long to repeat the same choice). The lesion led to a marked increase in the preference bias: i.e., increased selection of the most-preferred choice option, and decreased selection of the others. We found no effects on any other behavioral measures, suggesting no effect on motivation or choice persistence. The results implicate the NAc shell in moderating the instrumental valuation process by inhibiting excessive bias toward preferred choice options. PMID:28992274

  18. Plate shell structures - statics and stability

    DEFF Research Database (Denmark)

    Almegaard, Henrik

    2008-01-01

    This paper describes the basic structural system, statics and spatial stability of plate shells. The structural system can be considered as a single layer of planar elements, where each element only transfers in-plane (membrane) forces to its neighbouring elements. External out-of-plane loads...... system is dual to that of a spatial truss system, which means the stringer system [1] can be applied to plate-shell structures....

  19. Antimicrobial activity of coconut shell liquid smoke

    Science.gov (United States)

    Kailaku, SI; Syakir, M.; Mulyawanti, I.; Syah, ANA

    2017-06-01

    Coconut shell liquid smoke is produced from the pyrolysis and condensation of smoke from the burning process of coconut shell. It is known to have considerably high content of polyphenol. Beside acting as antioxidant, polyphenol is also a good antimicrobial. This research was conducted in order to study the antimicrobial activity of coconut shell liquid smoke. Coconut shell liquid smoke used in this study was produced from three different processing stages, which obtained three different grades of liquid smoke (grade 1, 2 and 3). Each sample of coconut shell liquid smoke was extracted using ethyl alcohol and petroleum ether. The extract was then analyzed for its antimicrobial activity against S. aereus, E. coli and C. albicans using well diffusion method. Total phenol and microbial microscopic structure of the liquid smoke were also examined. The results showed that there was influence of coconut shell liquid smoke on the inhibition of S. aureus, E. coli and C. albican growth. This fact was marked by the forming of clear area surrounding the well on the dish agar media. The highest percentage of inhibition showed by the extract of grade 3 coconut shell liquid smoke. This may be explained by the highest total phenol content in grade 3 liquid smoke. Microscopic examination showed that there was a breakage of microbial cell walls caused by the antimicrobial property of the liquid smoke. It was concluded that coconut shell liquid smoke was beneficial as antimicrobial agent, and while all grades of liquid smoke contains polyphenol, the content was influenced by the processing stage and thus influenced its level of microbial growth inhibition.

  20. Shell effects in the superasymmetric fission

    CERN Document Server

    Mirea, M

    2002-01-01

    A new formalism based on the Landau-Zener promotion mechanism intends to explain the fine structure of alpha and cluster decay. The analysis of this phenomenon is accomplished by following the modality in which the shells are reorganized during the decay process beginning with the initial ground state of the parent towards the final configuration of two separated nuclei. A realistic level scheme is obtained in the framework of the superasymmetric two-center shell model. (author)

  1. Morphology of the shell of Happiella cf. insularis (Gastropoda: Heterobranchia: Systrophiidae from three forest areas on Ilha Grande, Southeast Brazil

    Directory of Open Access Journals (Sweden)

    Amilcar Brum Barbosa

    2014-06-01

    Full Text Available We conducted a study on shell morphology variation among three populations of Happiella cf. insularis (Boëttger, 1889 inhabiting different areas (Jararaca, Caxadaço, and Parnaioca trails at Vila Dois Rios, Ilha Grande, Angra dos Reis, state of Rio de Janeiro, Brazil. Linear and angular measurements, shell indices representing shell shape, and whorl counts were obtained from images drawn using a stereomicroscope coupled with a camera lucida. The statistical analysis based on ANOVA (followed by Bonferroni's test, Pearson's correlation matrix, and discriminant analysis enabled discrimination among the populations studied. The variable that most contributed to discriminate among groups was shell height. Mean shell height was greatest for specimens collected from Jararaca, probably reflecting the better conservation status of that area. Good conservation is associated with enhanced shell growth. Mean measurements were smallest for specimens from Parnaioca, the most disturbed area surveyed. Mean aperture height was smallest for specimens from Parnaioca, which may represent a strategy to prevent excessive water loss. Discriminant analysis revealed that the snails from Jararaca differ the most from snails collected in the two other areas, reflecting the different conservation status of these areas: shells reach larger sizes in the localities where the humidity is higher. The similarities in shell morphology were greater between areas that are more similar environmentally (Caxadaço and Parnaioca, suggesting that conchological differences may correspond to adaptations to the environment.

  2. Proceedings of a symposium on the occasion of the 40th anniversary of the nuclear shell model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Wiringa, R.B. (eds.)

    1990-03-01

    This report contains papers on the following topics: excitation of 1p-1h stretched states with the (p,n) reaction as a test of shell-model calculations; on Z=64 shell closure and some high spin states of {sup 149}Gd and {sup 159}Ho; saturating interactions in {sup 4}He with density dependence; are short-range correlations visible in very large-basis shell-model calculations ; recent and future applications of the shell model in the continuum; shell model truncation schemes for rotational nuclei; the particle-hole interaction and high-spin states near A-16; magnetic moment of doubly closed shell +1 nucleon nucleus {sup 41}Sc(I{sup {pi}}=7/2{sup {minus}}); the new magic nucleus {sup 96}Zr; comparing several boson mappings with the shell model; high spin band structures in {sup 165}Lu; optical potential with two-nucleon correlations; generalized valley approximation applied to a schematic model of the monopole excitation; pair approximation in the nuclear shell model; and many-particle, many-hole deformed states.

  3. Core-Shell Structured Magnetic Ternary Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  4. Aqueous-Based Coaxial Electrospinning of Genetically Engineered Silk Elastin Core-Shell Nanofibers

    Directory of Open Access Journals (Sweden)

    Jingxin Zhu

    2016-03-01

    Full Text Available A nanofabrication method for the production of flexible core-shell structured silk elastin nanofibers is presented, based on an all-aqueous coaxial electrospinning process. In this process, silk fibroin (SF and silk-elastin-like protein polymer (SELP, both in aqueous solution, with high and low viscosity, respectively, were used as the inner (core and outer (shell layers of the nanofibers. The electrospinnable SF core solution served as a spinning aid for the nonelectrospinnable SELP shell solution. Uniform nanofibers with average diameter from 301 ± 108 nm to 408 ± 150 nm were obtained through adjusting the processing parameters. The core-shell structures of the nanofibers were confirmed by fluorescence and electron microscopy. In order to modulate the mechanical properties and provide stability in water, the as-spun SF-SELP nanofiber mats were treated with methanol vapor to induce β-sheet physical crosslinks. FTIR confirmed the conversion of the secondary structure from a random coil to β-sheets after the methanol treatment. Tensile tests of SF-SELP core-shell structured nanofibers showed good flexibility with elongation at break of 5.20% ± 0.57%, compared with SF nanofibers with an elongation at break of 1.38% ± 0.22%. The SF-SELP core-shell structured nanofibers should provide useful options to explore in the field of biomaterials due to the improved flexibility of the fibrous mats and the presence of a dynamic SELP layer on the outer surface.

  5. Extreme ocean acidification reduces the susceptibility of eastern oyster shells to a polydorid parasite.

    Science.gov (United States)

    Clements, J C; Bourque, D; McLaughlin, J; Stephenson, M; Comeau, L A

    2017-11-01

    Ocean acidification poses a threat to marine organisms. While the physiological and behavioural effects of ocean acidification have received much attention, the effects of acidification on the susceptibility of farmed shellfish to parasitic infections are poorly understood. Here we describe the effects of moderate (pH 7.5) and extreme (pH 7.0) ocean acidification on the susceptibility of Crassostrea virginica shells to infection by a parasitic polydorid, Polydora websteri. Under laboratory conditions, shells were exposed to three pH treatments (7.0, 7.5 and 8.0) for 3- and 5-week periods. Treated shells were subsequently transferred to an oyster aquaculture site (which had recently reported an outbreak of P. websteri) for 50 days to test for effects of pH and exposure time on P. websteri recruitment to oyster shells. Results indicated that pH and exposure time did not affect the length, width or weight of the shells. Interestingly, P. websteri counts were significantly lower under extreme (pH 7.0; ~50% reduction), but not moderate (pH 7.5; ~20% reduction) acidification levels; exposure time had no effect. This study suggests that extreme levels - but not current and projected near-future levels - of acidification (∆pH ~1 unit) can reduce the susceptibility of eastern oyster shells to P. websteri infections. © 2017 John Wiley & Sons Ltd.

  6. Facile synthesis and excellent microwave absorption properties of FeCo-C core-shell nanoparticles.

    Science.gov (United States)

    Liang, Bingbing; Wang, Shiliang; Kuang, Daitao; Hou, Lizhen; Yu, Bowen; Lin, Liangwu; Deng, Lianwen; Huang, Han; He, Jun

    2018-02-23

    FeCo-C core-shell nanoparticles (NPs) with diameters of 10-50 nm have been fabricated on a large scale by one-step metal-organic chemical vapor deposition using the mixture of cobalt acetylacetonate and iron acetylacetonate as the precursor. The Fe/Co molar ratio of the alloy nanocores and graphitization degree of C shells, and thus the magnetic and electric properties of the core-shell NPs, can be tuned by the deposition temperature ranging from 700 °C to 900 °C. Comparative tests reveal that a relatively high Fe/Co molar ratio and low graphitization degree benefit the microwave absorption (MA) performance of the core-shell NPs. The composite with 20 wt% core-shell NP obtained at 800 °C and 80 wt% paraffin exhibits an optimal reflection loss [Formula: see text] of -60.4 dB at 7.5 GHz with a thickness of 3.3 mm, and an effective absorption bandwidth (frequency range for RL ≤10 dB) of 9.2 GHz (8.8-18.0 GHz) under an absorber thickness of 2.5 mm. Our study provides a facile route for the fabrication of alloy-C core-shell nanostructures with high MA performance.

  7. The influence of HCl concentration and demineralization temperature of Atrina pectinata shells on quality of chitin

    Science.gov (United States)

    Nugroho, Intan Lazuardi; Pursetyo, Kustiawan Tri; Masithah, Endang Dewi

    2017-02-01

    Atrina pectinata is one of shells species widely consumed by people, which means the high consumption will generate the availability of shells in the environment as waste. Chitin can be produced from the shells. Shells contain quite high minerals that it should be demineralized to reduce the mineral content from the shells. This study aimed to determine the effect of HCl concentration and temperature affect chitin characteristics as the result of demineralization process from pen shells. The method based on two steps, there were demineralization and deproteination. This study used Completely Randomized Design (CRD) with two factors, including HCl concentration (2N, 4N, and 6N) and temperature (33°C and 60°C) which consists six combination treatments and three replications. Data was analyzed by using Analysis of Variance (ANOVA) and followed by Duncan's Multiple Range Test. The results showed that interaction of HCl concentration and temperature has significant effect (p<0.05) to ash content of chitin. The use concentration of 6N and 33°C produced the lowest ash content. Characteristics chitin resulted from the treatment of 6N and 33°C produced ash content 25.33% ± 6.82, moisture content 3.67% ± 1.10, yield 0.72% ± 0.12 and protein content 5.86%.

  8. Facile synthesis and excellent microwave absorption properties of FeCo-C core–shell nanoparticles

    Science.gov (United States)

    Liang, Bingbing; Wang, Shiliang; Kuang, Daitao; Hou, Lizhen; Yu, Bowen; Lin, Liangwu; Deng, Lianwen; Huang, Han; He, Jun

    2018-02-01

    FeCo-C core–shell nanoparticles (NPs) with diameters of 10–50 nm have been fabricated on a large scale by one-step metal-organic chemical vapor deposition using the mixture of cobalt acetylacetonate and iron acetylacetonate as the precursor. The Fe/Co molar ratio of the alloy nanocores and graphitization degree of C shells, and thus the magnetic and electric properties of the core–shell NPs, can be tuned by the deposition temperature ranging from 700 °C to 900 °C. Comparative tests reveal that a relatively high Fe/Co molar ratio and low graphitization degree benefit the microwave absorption (MA) performance of the core–shell NPs. The composite with 20 wt% core–shell NP obtained at 800 °C and 80 wt% paraffin exhibits an optimal reflection loss ({{R}}{{L}}) of ‑60.4 dB at 7.5 GHz with a thickness of 3.3 mm, and an effective absorption bandwidth (frequency range for RL ≤10 dB) of 9.2 GHz (8.8–18.0 GHz) under an absorber thickness of 2.5 mm. Our study provides a facile route for the fabrication of alloy-C core–shell nanostructures with high MA performance.

  9. Core-shell structured mZVI/Ca(OH)2 particle: Morphology, aggregation and corrosion.

    Science.gov (United States)

    Wei, Cai-Jie; Wang, Xiao-Mao; Li, Xiao-Yan

    2018-01-15

    A calcium hydroxide shell was coated onto the surface of micro-sized zero valent iron (mZVI) particles by hydrothermal approach in oversaturated Ca(OH)2 solution. The heterogeneous nucleation of nano-scale Ca(OH)2 particle on micro-scale spherical ZVI surface was clearly observed by scanning electronic microscope (SEM). The moderate solubility of Ca(OH)2 was demonstrated as the crucial factor in inducing slow nucleation rate and in facilitating the abundant growth of Ca(OH)2 nuclei on mZVI surface. The growth of shell thickness was found to obey the zero order kinetics with the rate constant at about 15nm/h. The Ca(OH)2 shell was demonstrated to be anticorrosive to protect reactive Fe0 from oxidation based on standard corrosion test. In addition, the instant aggregation process of mZVI within 120s was slowed down after Ca(OH)2 shell coating. The saturation magnetization of mZVI, measured by a vibrating sample magnetometer (VSM), was gradually diminished along with the shell formation with a 32% reduction after excluding the Fe0 content change effect. This indicated that Ca(OH)2 shell coating can partially eliminated particle-particle or cluster-cluster magnetic attraction force to enhance the dispersion stability and resultantly facilitate the transportation. The dissolution of Ca(OH)2 shell was greatly dependent on the pH value of the background water environment. The pH gradient change resulted from the Ca(OH)2 shell dissolution along mZVI particle transport was illustrated by a conceptual model. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Fluoxetine Alleviates Behavioral Depression while Decreasing Acetylcholine Release in the Nucleus Accumbens Shell

    Science.gov (United States)

    Chau, David T; Rada, Pedro V; Kim, Kay; Kosloff, Rebecca A; Hoebel, Bartley G

    2011-01-01

    Selective serotonin reuptake inhibitors, such as fluoxetine, have demonstrated the ability to alleviate behavioral depression in the forced swim test; however, the sites and mechanisms of their actions remain to be further elucidated. Previous studies have suggested that behavioral depression in the swim test is mediated in part by acetylcholine (ACh) stimulating the cholinergic M1 receptors in the nucleus accumbens (NAc) shell. The current study tested whether acute, local, and chronic, subcutaneous fluoxetine treatments increase escape motivation during the swim test while simultaneously lowering extracellular ACh in the NAc shell. Experiment 1: Fluoxetine (1.0 mM) infused unilaterally in the NAc shell for 40 min reduced extracellular ACh while simultaneously increasing swimming time. Experiment 2: Fluoxetine (0.2, 0.5, and 0.75 mM) infused bilaterally in the NAc shell on day 3 dose-dependently decreased immobility and increased the total escape attempts (swimming and climbing) compared with Ringer given on day 2. Experiment 3: Fluoxetine (0.5 mM) infused bilaterally in the NAc for 40 min did not affect activities in an open field. Experiment 4: Chronic systemic fluoxetine treatment decreased immobility scores and increased total escape attempt scores compared with control saline treatment. In all, 14 days after the initial swim test, basal extracellular ACh in the shell was still elevated in the saline-treated group, but not in the fluoxetine-treated group. In summary, these data suggest that one of the potential mechanisms by which fluoxetine alleviates behavioral depression in the forced swim test may be to suppress cholinergic activities in the NAc shell. PMID:21525864

  11. Comparative study of the shell development of hard- and soft-shelled turtles.

    Science.gov (United States)

    Nagashima, Hiroshi; Shibata, Masahiro; Taniguchi, Mari; Ueno, Shintaro; Kamezaki, Naoki; Sato, Noboru

    2014-07-01

    The turtle shell provides a fascinating model for the investigation of the evolutionary modifications of developmental mechanisms. Different conclusions have been put forth for its development, and it is suggested that one of the causes of the disagreement could be the differences in the species of the turtles used - the differences between hard-shelled turtles and soft-shelled turtles. To elucidate the cause of the difference, we compared the turtle shell development in the two groups of turtle. In the dorsal shell development, these two turtle groups shared the gene expression profile that is required for formation, and shared similar spatial organization of the anatomical elements during development. Thus, both turtles formed the dorsal shell through a folding of the lateral body wall, and the Wnt signaling pathway appears to have been involved in the development. The ventral portion of the shell, on the other hand, contains massive dermal bones. Although expression of HNK-1 epitope has suggested that the trunk neural crest contributed to the dermal bones in the hard-shelled turtles, it was not expressed in the initial anlage of the skeletons in either of the types of turtle. Hence, no evidence was found that would support a neural crest origin. © 2014 Anatomical Society.

  12. Core-shell microspheres with porous nanostructured shells for liquid chromatography.

    Science.gov (United States)

    Ahmed, Adham; Skinley, Kevin; Herodotou, Stephanie; Zhang, Haifei

    2018-01-01

    The development of new stationary phases has been the key aspect for fast and efficient high-performance liquid chromatography separation with relatively low backpressure. Core-shell particles, with a solid core and porous shell, have been extensively investigated and commercially manufactured in the last decade. The excellent performance of core-shell particles columns has been recorded for a wide range of analytes, covering small and large molecules, neutral and ionic (acidic and basic), biomolecules and metabolites. In this review, we first introduce the advance and advantages of core-shell particles (or more widely known as superficially porous particles) against non-porous particles and fully porous particles. This is followed by the detailed description of various methods used to fabricate core-shell particles. We then discuss the applications of common silica core-shell particles (mostly commercially manufactured), spheres-on-sphere particles and core-shell particles with a non-silica shell. This review concludes with a summary and perspective on the development of stationary phase materials for high-performance liquid chromatography applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  14. Sexual selection on land snail shell ornamentation: a hypothesis that may explain shell diversity

    NARCIS (Netherlands)

    Schilthuizen, M.

    2003-01-01

    Background: Many groups of land snails show great interspecific diversity in shell ornamentation, which may include spines on the shell and flanges on the aperture. Such structures have been explained as camouflage or defence, but the possibility that they might be under sexual selection has not

  15. On-shell and half-shell effects of the coulomb potential in quantum mechanics

    NARCIS (Netherlands)

    Maag, Jan Willem de

    1984-01-01

    In dit proefschrift wordt de Coulomb potentiaal in de nietrelativistische quantummechanica bestudeerd. Met gebruik van een streng wiskundige beschrijving onderzoeken we, in het bijzonder, on-shell en off-shell eigenschappen. De overeenkomsten en de verschillen met het geval van een glad afgeschermde

  16. Analytical and experimental studies of natural vibrations modes of ring-stiffened truncated-cone shells with variable theoretical ring fixity

    Science.gov (United States)

    Naumann, E. C.; Catherines, D. S.; Walton, W. C., Jr.

    1971-01-01

    Experimental and analytical investigations of the vibratory behavior of ring-stiffened truncated-cone shells are described. Vibration tests were conducted on 60 deg conical shells having up to four ring stiffeners and for free-free and clamped-free edge constraints and 9 deg conical shells, for two thicknesses, each with two angle rings and for free-free, free-clamped, and clamped-clamped edge constraints. The analytical method is based on linear thin shell theory, employing the Rayleigh-Ritz method. Discrete rings are represented as composed of one or more segments, each of which is a short truncated-cone shell of uniform thickness. Equations of constraint are used to join a ring and shell along a circumferential line connection. Excellent agreement was obtained for comparisons of experimental and calculated frequencies.

  17. Polymer-inorganic core-shell nanofibers by electrospinning and atomic layer deposition: flexible nylon-ZnO core-shell nanofiber mats and their photocatalytic activity.

    Science.gov (United States)

    Kayaci, Fatma; Ozgit-Akgun, Cagla; Donmez, Inci; Biyikli, Necmi; Uyar, Tamer

    2012-11-01

    Polymer-inorganic core-shell nanofibers were produced by two-step approach; electrospinning and atomic layer deposition (ALD). First, nylon 6,6 (polymeric core) nanofibers were obtained by electrospinning, and then zinc oxide (ZnO) (inorganic shell) with precise thickness control was deposited onto electrospun nylon 6,6 nanofibers using ALD technique. The bead-free and uniform nylon 6,6 nanofibers having different average fiber diameters (∼80, ∼240 and ∼650 nm) were achieved by using two different solvent systems and polymer concentrations. ZnO layer about 90 nm, having uniform thickness around the fiber structure, was successfully deposited onto the nylon 6,6 nanofibers. Because of the low deposition temperature utilized (200 °C), ALD process did not deform the polymeric fiber structure, and highly conformal ZnO layer with precise thickness and composition over a large scale were accomplished regardless of the differences in fiber diameters. ZnO shell layer was found to have a polycrystalline nature with hexagonal wurtzite structure. The core-shell nylon 6,6-ZnO nanofiber mats were flexible because of the polymeric core component. Photocatalytic activity of the core-shell nylon 6,6-ZnO nanofiber mats were tested by following the photocatalytic decomposition of rhodamine-B dye. The nylon 6,6-ZnO nanofiber mat, having thinner fiber diameter, has shown better photocatalytic efficiency due to higher surface area of this sample. These nylon 6,6-ZnO nanofiber mats have also shown structural stability and kept their photocatalytic activity for the second cycle test. Our findings suggest that core-shell nylon 6,6-ZnO nanofiber mat can be a very good candidate as a filter material for water purification and organic waste treatment because of their photocatalytic properties along with structural flexibility and stability.

  18. Land snails of Leptopoma Pfeiffer, 1847 in Sabah, Northern Borneo (Caenogastropoda: Cyclophoridae: an analysis of molecular phylogeny and geographical variations in shell form

    Directory of Open Access Journals (Sweden)

    Chee-Chean Phung

    2017-10-01

    Full Text Available Leptopoma is a species rich genus with approximately 100 species documented. Species-level identification in this group has been based on shell morphology and colouration, as well as some anatomical features based on small sample sizes. However, the implications of the inter- and intra-species variations in shell form to the taxonomy of Leptopoma species and the congruency of its current shell based taxonomy with its molecular phylogeny are still unclear. There are four Leptopoma species found in Sabah, Borneo, and their taxonomy status remains uncertain due to substantial variation in shell forms. This study focuses on the phylogenetic relationships and geographical variation in shell form of three Leptopoma species from Sabah. The phylogenetic relationship of these species was first estimated by performing Maximum Likelihood and Bayesian analysis based on mitochondrial genes (16S rDNA and COI and nuclear gene (ITS-1. Then, a total of six quantitative shell characters (i.e., shell height, shell width, aperture height, aperture width, shell spire height, and ratio of shell height to width and three qualitative shell characters (i.e., shell colour patterns, spiral ridges, and dark apertural band of the specimens were mapped across the phylogenetic tree and tested for phylogenetic signals. Data on shell characters of Leptopoma sericatum and Leptopoma pellucidum from two different locations (i.e., Balambangan Island and Kinabatangan where both species occurred sympatrically were then obtained to examine the geographical variations in shell form. The molecular phylogenetic analyses suggested that each of the three Leptopoma species was monophyletic and indicated congruence with only one of the shell characters (i.e., shell spiral ridges in the current morphological-based classification. Although the geographical variation analyses suggested some of the shell characters indicating inter-species differences between the two Leptopoma species, these

  19. Silica-silver core-shell particles for antibacterial textile application.

    Science.gov (United States)

    Nischala, K; Rao, Tata N; Hebalkar, Neha

    2011-01-01

    The silica-silver core-shell particles were synthesized by simple one pot chemical method and were employed on the cotton fabric as an antibacterial agent. Extremely small (1-2 nm) silver nanoparticles were attached on silica core particles of average 270 nm size. The optimum density of the nano silver particles was found which was sufficient to show good antibacterial activity as well as the suppression in their surface plasmon resonance responsible for the colour of the core-shell particle for antibacterial textile application. The change in the density and size of the particles in the shell were monitored and confirmed by direct evidence of their transmission electron micrographs and by studying surface plasmon resonance characteristics. The colony counting method of antibacterial activity testing showed excellent results and even the least silver containing core-shell particles showed 100% activity against bacterial concentration of 10(4) colony counting units (cfu). The bonding between core-shell particles and cotton fabric was examined by X-ray photoelectron spectroscopy. The antibacterial activity test confirmed the firm attachment of core-shell particles to the cotton fabric as a result 10 times washed sample was as good antibacterial as that of unwashed sample. The bacterial growth was inhibited on and beneath the coated fabric, at the same time no zone of inhibition which occurs due to the migration of silver ions into the medium was observed indicating immobilization of silver nanoparticles on silica and core-shell particles on fabric by strong bonding. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Post-harvest control of aflatoxin production in in-shell moist peanuts with sodium ortho-phenylphenate: III. Storage tests Controle da produção de aflatoxinas no amendoim em casca úmido com ortofenilfenato de sódio: III. Testes no armazém

    Directory of Open Access Journals (Sweden)

    H. Fonseca

    1994-08-01

    Full Text Available The present experiment aimed to evaluate the effect of sodium ortho-phenylphenate (SOP application to in-shell moist peanuts for the control of aflatoxin production. Previous studies showed the need to improve the SOP solution distribution on peanut pods to evaluate the product. Thus, in this experiment the place of the spray system was the bag filler pipe of the pre-cleaning machine in the warehouse. In the 1989 rainy season two lots of 120 bags of in-shell moist peanuts were sprayed with 0.5 and 1% SOP solutions and aflatoxin production was not controlled. In the dry season of 1989 and in the rainy season of 1990, in-shell moist peanuts were sprayed with 5% SOP solution. The coverage of pods with the solution was efficient, allowing a uniform distribution of SOP solution on the pods. The results showed that only the 5.0% concentration of SOP solution utilized controlled the external fungal growth when a naked eye observation was made, however did not control aflatoxin production when applied to in-shell moist peanuts, probably due to the internal presence of Aspergillus flavus and because the fungicide could not penetrate inside to reach the kernels.O presente trabalho teve por objetivo avaliar a eficiência da solução de ortofenilfenato de sódio (OFS, no controle da produção de aflatoxinas quando aplicada no amendoim em casca, úmido. Trabalhos anteriormente realizados, em condições de campo, indicaram a necessidade de otimizar a aplicação da solução, para se poder avaliar a real eficiência dessa substância. Assim, neste experimento, o sistema de pulverização foi adaptado na bica de saída da máquina de pré-limpeza, no armazém. Na safra das águas de 1989, dois lotes de 120 sacos de amendoim em casca úmido foram pulverizados com solução de OFS em concentrações de 0,5 e 1,0 % e verificou-se que não houve controle da produção de aflatoxinas em ambas as concentrações utilizadas. Nas safras da seca de 1989 e das

  1. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis.

    Directory of Open Access Journals (Sweden)

    Frank Melzner

    Full Text Available Progressive ocean acidification due to anthropogenic CO(2 emissions will alter marine ecosystem processes. Calcifying organisms might be particularly vulnerable to these alterations in the speciation of the marine carbonate system. While previous research efforts have mainly focused on external dissolution of shells in seawater under saturated with respect to calcium carbonate, the internal shell interface might be more vulnerable to acidification. In the case of the blue mussel Mytilus edulis, high body fluid pCO(2 causes low pH and low carbonate concentrations in the extrapallial fluid, which is in direct contact with the inner shell surface. In order to test whether elevated seawater pCO(2 impacts calcification and inner shell surface integrity we exposed Baltic M. edulis to four different seawater pCO(2 (39, 142, 240, 405 Pa and two food algae (310-350 cells mL(-1 vs. 1600-2000 cells mL(-1 concentrations for a period of seven weeks during winter (5°C. We found that low food algae concentrations and high pCO(2 values each significantly decreased shell length growth. Internal shell surface corrosion of nacreous ( = aragonite layers was documented via stereomicroscopy and SEM at the two highest pCO(2 treatments in the high food group, while it was found in all treatments in the low food group. Both factors, food and pCO(2, significantly influenced the magnitude of inner shell surface dissolution. Our findings illustrate for the first time that integrity of inner shell surfaces is tightly coupled to the animals' energy budget under conditions of CO(2 stress. It is likely that under food limited conditions, energy is allocated to more vital processes (e.g. somatic mass maintenance instead of shell conservation. It is evident from our results that mussels exert significant biological control over the structural integrity of their inner shell surfaces.

  2. Do freshwater mussel shells record road-salt pollution?

    Science.gov (United States)

    O'Neil, Dane D; Gillikin, David P

    2014-11-24

    Road-salt pollution in streams in the Northeastern United States has become a major concern, but historical data are scarce. Freshwater bivalve shells have the ability to record past environmental information, and may act as archives of road-salt pollution. We sampled Elliptio complanata shells from four streams, as well as specimens collected in 1877. Average [Na/Ca]shell was highest in modern shells from the stream with the highest sodium concentrations, and low in shells collected from this same stream in 1877 as well as in the shells from other streams, suggesting that [Na/Ca]shell serves as a proxy for road-salt pollution. We expected higher [Na/Ca]shell in winter and spring. However, high-resolution [Na/Ca]shell analyses along the growth axis of one shell did not reveal any clear subannual patterns, which could be the result of shell growth cessation in winter and/or during periods of high stream sodium concentrations. Therefore, bulk [Na/Ca]shell analysis from multiple shells can be used as a proxy of large changes in stream sodium concentrations, but high-resolution variations in stream sodium concentrations do not seem to be recorded in the shells.

  3. Shell-based support structures for Nb$_{3}$Sn accelerator quadrupole magnets

    CERN Document Server

    Ferracin, P

    2009-01-01

    Shell-based support structures are being fabricated and tested as part of the development of large-aperture Nb3Sn superconducting quadrupoles for future upgrades of the LHC Interaction Regions. These structures utilize water pressurized bladders for room-temperature pre-load control, and rely on a pre-tensioned aluminum shell to deliver a substantial part of the coil pre-stress during cooldown. The coil final pre-load is therefore monotonically approached from below, without overstressing the strainsensitive conductor. This method has been adopted by the US LARP collaboration to test subscale racetrack coils (SQ series), 1 m long cos-theta coils (TQS series), and 4 m long magnets (LRS and LQS series). We present recent progress in the development of shell-based support structures, with a description of the principles of operations and the future plans.

  4. Study of CRFP Shell Structures under Dynamic Loading in Shock Tube Setup

    Directory of Open Access Journals (Sweden)

    H. A. Khawaja

    2014-01-01

    Full Text Available The paper gives the study of the response of carbon fiber reinforced polymers (CRFP quasi-isotropic shell structures under the influence of dynamic loading. The quasi-isotropic CRFP shell specimens are fabricated using Multipreg E720 laminates. These laminates are laid in such a way that shell structure has equal strength and mechanical properties in the two-dimensional (2D plane and hence can be regarded as quasi-isotropic. In this study, the dynamic loading is generated using shock waves in a shock tube experimental setup. The strain and pressure data is collected from the experiments. Additional tests are carried out using Material Test System (MTS for both tensile and flexural response of CRFP. Results obtained from experiments are compared with numerical simulations using ANSYS Multiphysics 14.0 finite element method (FEM package. The numerical simulation and experimental results are found to be in good agreement.

  5. Multimode interaction in axially excited cylindrical shells

    Directory of Open Access Journals (Sweden)

    Silva F. M. A.

    2014-01-01

    Full Text Available Cylindrical shells exhibit a dense frequency spectrum, especially near the lowest frequency range. In addition, due to the circumferential symmetry, frequencies occur in pairs. So, in the vicinity of the lowest natural frequencies, several equal or nearly equal frequencies may occur, leading to a complex dynamic behavior. So, the aim of the present work is to investigate the dynamic behavior and stability of cylindrical shells under axial forcing with multiple equal or nearly equal natural frequencies. The shell is modelled using the Donnell nonlinear shallow shell theory and the discretized equations of motion are obtained by applying the Galerkin method. For this, a modal solution that takes into account the modal interaction among the relevant modes and the influence of their companion modes (modes with rotational symmetry, which satisfies the boundary and continuity conditions of the shell, is derived. Special attention is given to the 1:1:1:1 internal resonance (four interacting modes. Solving numerically the governing equations of motion and using several tools of nonlinear dynamics, a detailed parametric analysis is conducted to clarify the influence of the internal resonances on the bifurcations, stability boundaries, nonlinear vibration modes and basins of attraction of the structure.

  6. Double shell planar experiments on OMEGA

    Science.gov (United States)

    Dodd, E. S.; Merritt, E. C.; Palaniyappan, S.; Montgomery, D. S.; Daughton, W. S.; Schmidt, D. W.; Cardenas, T.; Wilson, D. C.; Loomis, E. N.; Batha, S. H.; Ping, Y.; Smalyuk, V. A.; Amendt, P. A.

    2017-10-01

    The double shell project is aimed at fielding neutron-producing capsules at the National Ignition Facility (NIF), in which an outer low-Z ablator collides with an inner high-Z shell to compress the fuel. However, understanding these targets experimentally can be challenging when compared with conventional single shell targets. Halfraum-driven planar targets at OMEGA are being used to study physics issues important to double shell implosions outside of a convergent geometry. Both VISAR and radiography through a tube have advantages over imaging through the hohlraum and double-shell capsule at NIF. A number physics issues are being studied with this platform that include 1-d and higher dimensional effects such as defect-driven hydrodynamic instabilities from engineering features. Additionally, the use of novel materials with controlled density gradients require study in easily diagnosed 1-d systems. This work ultimately feeds back into the NIF capsule platform through manufacturing tolerances set using data from OMEGA. Supported under the US DOE by the LANS, LLC under contract DE-AC52-06NA25396. LA-UR-17-25386.

  7. Hollow Pollen Shells to Enhance Drug Delivery

    Science.gov (United States)

    Diego-Taboada, Alberto; Beckett, Stephen T.; Atkin, Stephen L.; Mackenzie, Grahame

    2014-01-01

    Pollen grain and spore shells are natural microcapsules designed to protect the genetic material of the plant from external damage. The shell is made up of two layers, the inner layer (intine), made largely of cellulose, and the outer layer (exine), composed mainly of sporopollenin. The relative proportion of each varies according to the plant species. The structure of sporopollenin has not been fully characterised but different studies suggest the presence of conjugated phenols, which provide antioxidant properties to the microcapsule and UV (ultraviolet) protection to the material inside it. These microcapsule shells have many advantageous properties, such as homogeneity in size, resilience to both alkalis and acids, and the ability to withstand temperatures up to 250 °C. These hollow microcapsules have the ability to encapsulate and release actives in a controlled manner. Their mucoadhesion to intestinal tissues may contribute to the extended contact of the sporopollenin with the intestinal mucosa leading to an increased efficiency of delivery of nutraceuticals and drugs. The hollow microcapsules can be filled with a solution of the active or active in a liquid form by simply mixing both together, and in some cases operating a vacuum. The active payload can be released in the human body depending on pressure on the microcapsule, solubility and/or pH factors. Active release can be controlled by adding a coating on the shell, or co-encapsulation with the active inside the shell. PMID:24638098

  8. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  9. Shell rinse and shell crush methods for the recovery of aerobic microorganisms and enterobacteriaceae from shell eggs.

    Science.gov (United States)

    Musgrove, M T; Jones, D R; Northcutt, J K; Cox, N A; Harrison, M A

    2005-10-01

    Recovery of bacteria from shell eggs is important for evaluating the efficacy of processing and the quality and safety of the final product. Shell rinse (SR) techniques are easy to perform and widely used. An alternative sampling method involves crushing and rubbing the shell (CR). To determine the most appropriate method for recovering microorganisms from shell eggs, 358 shell eggs were collected from a commercial egg processor and sampled by SR and CR techniques. Total aerobic mesophiles and Enterobacteriaceae were enumerated on plate count and violet red bile glucose agar plates, respectively. Unwashed, in process, and postprocess eggs were evaluated in the study. Aerobic microorganism prevalence for eggshells sampled was similar for both methods (approximately 100%), but the log CFU per milliliter values were higher in the SR than the CR samples (3.2 and 2.2, respectively). Average Enterobacteriaceae recovery was similar for both methods (45 versus 40% for the SR and CR methods, respectively) when all eggs were considered together. This population was detected more often by SR when unwashed eggs were sampled (90 versus 56% for the SR and CR methods, respectively), equally by SR and CR for in-process eggs (30 versus 29.3% for the SR and CR methods, respectively), but more often by CR for postprocess eggs (10 versus 36% for the SR and CR methods, respectively). The SR technique was easier to perform and recovered larger numbers of aerobic organisms, particularly for unwashed eggs. However, the CR technique was more efficient for recovery of Enterobacteriaceae from postprocess eggs. Stage of shell egg processing may be an important consideration when choosing egg sampling methods.

  10. Multi-parameter actuation of a neutrally stable shell: a flexible gear-less motor.

    Science.gov (United States)

    Hamouche, W; Maurini, C; Vidoli, S; Vincenti, A

    2017-08-01

    We have designed and tested experimentally a morphing structure consisting of a neutrally stable thin cylindrical shell driven by a multi-parameter piezoelectric actuation. The shell is obtained by plastically deforming an initially flat copper disc, so as to induce large isotropic and almost uniform inelastic curvatures. Following the plastic deformation, in a perfectly isotropic system, the shell is theoretically neutrally stable, having a continuous set of stable cylindrical shapes corresponding to the rotation of the axis of maximal curvature. Small imperfections render the actual structure bistable, giving preferred orientations. A three-parameter piezoelectric actuation, exerted through micro-fibre-composite actuators, allows us to add a small perturbation to the plastic inelastic curvature and to control the direction of maximal curvature. This actuation law is designed through a geometrical analogy based on a fully nonlinear inextensible uniform-curvature shell model. We report on the fabrication, identification and experimental testing of a prototype and demonstrate the effectiveness of the piezoelectric actuators in controlling its shape. The resulting motion is an apparent rotation of the shell, controlled by the voltages as in a 'gear-less motor', which is, in reality, a precession of the axis of principal curvature.

  11. Anticavitation and Differential Growth in Elastic Shells

    KAUST Repository

    Moulton, Derek E.

    2010-07-22

    Elastic anticavitation is the phenomenon of a void in an elastic solid collapsing on itself. Under the action of mechanical loading alone typical materials do not admit anticavitation. We study the possibility of anticavitation as a consequence of an imposed differential growth. Working in the geometry of a spherical shell, we seek radial growth functions which cause the shell to deform to a solid sphere. It is shown, surprisingly, that most material models do not admit full anticavitation, even when infinite growth or resorption is imposed at the inner surface of the shell. However, void collapse can occur in a limiting sense when radial and circumferential growth are properly balanced. Growth functions which diverge or vanish at a point arise naturally in a cumulative growth process. © 2010 Springer Science+Business Media B.V.

  12. Core/shell nanoparticles in biomedical applications.

    Science.gov (United States)

    Chatterjee, Krishnendu; Sarkar, Sreerupa; Jagajjanani Rao, K; Paria, Santanu

    2014-07-01

    Nanoparticles have several exciting applications in different areas and biomedial field is not an exception of that because of their exciting performance in bioimaging, targeted drug and gene delivery, sensors, and so on. It has been found that among several classes of nanoparticles core/shell is most promising for different biomedical applications because of several advantages over simple nanoparticles. This review highlights the development of core/shell nanoparticles-based biomedical research during approximately past two decades. Applications of different types of core/shell nanoparticles are classified in terms of five major aspects such as bioimaging, biosensor, targeted drug delivery, DNA/RNA interaction, and targeted gene delivery. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Spectrophotometry of the shell around AG Carinae

    Science.gov (United States)

    Mitra, P. Mila; Dufour, Reginald J.

    1990-01-01

    Spatially-resolved long-slit spectrophotometry are presented for two regions of the shell nebula around the P-Cygni variable star AG Carinae. The spectra cover the 3700-6800 A wavelength range. Emission-line diagnostics are used to derive extinction, electron temperatures, and densities for various positions in the nebula. The chemical abundances and ionization structure are calculated and compared with other types of planetary nebulae and shells around other luminous stars. It is found that the N/O and N/S ratios of Ag Car are high compared to solar neighborhood ISM values. The O/H depletion found for the AG Car shell approaches that found in the condensations of the Eta Car system.

  14. Damage Tolerance of Large Shell Structures

    Science.gov (United States)

    Minnetyan, L.; Chamis, C. C.

    1999-01-01

    Progressive damage and fracture of large shell structures is investigated. A computer model is used for the assessment of structural response, progressive fracture resistance, and defect/damage tolerance characteristics. Critical locations of a stiffened conical shell segment are identified. Defective and defect-free computer models are simulated to evaluate structural damage/defect tolerance. Safe pressurization levels are assessed for the retention of structural integrity at the presence of damage/ defects. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Damage propagation and burst pressures for defective and defect-free shells are compared to evaluate damage tolerance. Design implications with regard to defect and damage tolerance of a large steel pressure vessel are examined.

  15. Self-gravitating splitting thin shells

    Science.gov (United States)

    Ramirez, Marcos A.

    2015-04-01

    In this paper we show that thin shells in spherically symmetric spacetimes, whose matter content is described by a pair of non-interacting spherically symmetric matter fields, generically exhibit instability against an infinitesimal separation of its constituent fields. We give explicit examples and construct solutions that represent a shell that splits into two shells. Then we extend those results for five-dimensional Schwarzschild-AdS bulk spacetimes, which is a typical scenario for brane-world models, and show that the same kind of stability analysis and splitting solution can be constructed. We find that a widely proposed family of brane-world models are extremely unstable in this sense. Finally, we discuss possible interpretations of these features and their relation to the initial value problem for concentrated sources.

  16. Reconstructing Paleoclimate from Oxygen Isotopes and Trace Element Ratios in Olivella biplicata shells

    Science.gov (United States)

    Nye, J. W.; Ferguson, J. E.; Johnson, K. R.; Kennett, D. J.

    2011-12-01

    High resolution records of past sea surface temperature (SST) are not as common in mid to high latitudes as they are in tropical areas. In higher latitude regions, proxy data preserved in marine mollusk shells, often found in archaeological shell middens, could potentially provide these critical records. One promising candidate is the Purple Olive Snail Olivella biplicata, a marine mollusk with an aragonite shell that occurs in subtidal to shallow intertidal zones along the eastern Pacific coast in large quantities. The ubiquity of the snail spatially (from Baja California to British Colombia) and temporally makes it an ideal candidate for study. Previous studies have shown seasonal changes in isotopic signatures from O. biplicata (Eerkens et al 2005, 2007, 2010), however high resolution trace elemental analysis has not been conducted. We measured stable isotope (δ18O and δ13C) and trace element (Sr/Ca, Mg/Ca) composition in two modern shells collected in La Jolla, California and two archaeological shells from ~AD1410 to AD1500 excavated on San Miguel Island (Channel Islands, California). The shells were micromilled along growth lines at 100-150 μm intervals. The resulting powder was analyzed for stable isotopes and trace elements by IRMS and HR-ICPMS respectively. The modern shell data was compared to instrumental SST records from the Scripps Pier. δ18O data from modern O. biplicata follows monthly trends in SST, though fractionation due to biological effects leads to an offset from isotopic equilibrium values. Mg/Ca and Sr/Ca measurements on modern shells allow us to test the viability of these as additional proxies that could help us deconvolve SST from salinity effects. Archaeological sample measurements are utilized to assess the possible effects of early diagenesis on shell geochemistry. Given that a single shell can record nearly a decade of SSTs at monthly resolution and that the species can be found in archaeological sites dating back 10,000 years B

  17. Microfluidic synthesis of Ag@Cu2O core-shell nanoparticles with enhanced photocatalytic activity.

    Science.gov (United States)

    Tao, Sha; Yang, Mei; Chen, Huihui; Ren, Mingyue; Chen, Guangwen

    2017-01-15

    A microfluidic-based method for the continuous synthesis of Ag@Cu2O core-shell nanoparticles (NPs) has been developed. It only took 32s to obtain Ag@Cu2O core-shell NPs, indicating a high efficiency of this microfluidic-based method. Triangular Ag nanoprisms were employed as the cores for the overgrowth of Cu2O through the reduction of Cu(OH)42- with ascorbic acid. The as-synthesized samples were characterized by XRD, TEM, SEM, HAADF-STEM, EDX, HRTEM, UV-vis spectra and N2 adsorption-desorption. The characterization results revealed that the as-synthesized Ag@Cu2O core-shell NPs exhibited a well-defined core-shell nanostructure with a polycrystalline shell, which was composed of numbers of Cu2O domains epitaxially growing on the triangular Ag nanoprism. It was concluded that the synthesis parameters such as the molar ratio of trisodium citrate to AgNO3, H2O2 to AgNO3, NaOH to CuSO4, ascorbic acid to CuSO4 and AgNO3 to CuSO4 had significant effect on the synthesis of Ag@Cu2O core-shell NPs. Moreover, Ag@Cu2O core-shell NPs exhibited superior catalytic activity in comparison with pristine Cu2O NPs towards the visible light-driven degradation of methyl orange. This enhanced photocatalytic activity of Ag@Cu2O core-shell NPs was attributed to the larger BET surface area and improved charge separation efficiency. The trapping experiment indicated that holes and superoxide anion radicals were the major reactive species in the photodegradation of methyl orange over Ag@Cu2O core-shell NPs. In addition, Ag@Cu2O core-shell NPs showed no obvious deactivation in the cyclic test. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Retention Models on Core-Shell Columns.

    Science.gov (United States)

    Jandera, Pavel; Hájek, Tomáš; Růžičková, Marie

    2017-07-13

    A thin, active shell layer on core-shell columns provides high efficiency in HPLC at moderately high pressures. We revisited three models of mobile phase effects on retention for core-shell columns in mixed aqueous-organic mobile phases: linear solvent strength and Snyder-Soczewiński two-parameter models and a three-parameter model. For some compounds, two-parameter models show minor deviations from linearity due to neglect of possible minor retention in pure weak solvent, which is compensated for in the three-parameter model, which does not explicitly assume either the adsorption or the partition retention mechanism in normal- or reversed-phase systems. The model retention equation can be formulated as a function of solute retention factors of nonionic compounds in pure organic solvent and in pure water (or aqueous buffer) and of the volume fraction of an either aqueous or organic solvent component in a two-component mobile phase. With core-shell columns, the impervious solid core does not participate in the retention process. Hence, the thermodynamic retention factors, defined as the ratio of the mass of the analyte mass contained in the stationary phase to its mass in the mobile phase in the column, should not include the particle core volume. The values of the thermodynamic factors are lower than the retention factors determined using a convention including the inert core in the stationary phase. However, both conventions produce correct results if consistently used to predict the effects of changing mobile phase composition on retention. We compared three types of core-shell columns with C18-, phenyl-hexyl-, and biphenyl-bonded phases. The core-shell columns with phenyl-hexyl- and biphenyl-bonded ligands provided lower errors in two-parameter model predictions for alkylbenzenes, phenolic acids, and flavonoid compounds in comparison with C18-bonded ligands.

  19. Monodisperse magnetic core/shell microspheres with Pd nanoparticles-incorporated-carbon shells.

    Science.gov (United States)

    Fang, Qunling; Cheng, Qing; Xu, Huajian; Xuan, Shouhu

    2014-02-14

    This work reports a hard self-template method to synthesize core/shell like Fe3O4@C microparticles, in which the Pd nanocrystals can be alternatively incorporated into the carbon shells. The Fe3O4@polyaniline core/shell microspheres were first synthesized as the precursor by in situ polymerization of aniline onto the surface of the Fe3O4 microspheres. In a subsequent carbonization of the precursor under a vacuum oven, the Fe3O4 core was preserved and the polyaniline shell transferred into carbon shells enveloping the magnetic sphere, forming magnetic Fe3O4@C microspheres. The Pd ions could be impregnated into the polyaniline shell, and thus the obtained composites were transformed into Fe3O4@C/Pd microspheres under the same vacuum heating progress. The as-obtained system demonstrates superparamagnetic characteristics, which would benefit its potential application in nanocatalysts. This strategy provides an efficient approach for tailoring core/shell materials with desired functionalities and structures by adjusting the precursors and structure-directing agents.

  20. Projected shell model description for nuclear isomers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, Popular Republic (China)

    2008-12-15

    The study of nuclear isomer properties is a current research focus. To describe isomers, we present a method based on the Projected Shell Model. Two kinds of isomers, {kappa}-isomers and shape isomers, are discussed. For the {kappa}-isomer treatment, {kappa}-mixing is properly implemented in the model. It is found however that in order to describe the strong {kappa}-violation more efficiently, it may be necessary to further introduce triaxiality into the shell model basis. To treat shape isomers, a scheme is outlined which allows mixing those configurations belonging to different shapes. (Author)

  1. Linux command line and shell scripting bible

    CERN Document Server

    Blum, Richard

    2014-01-01

    Talk directly to your system for a faster workflow with automation capability Linux Command Line and Shell Scripting Bible is your essential Linux guide. With detailed instruction and abundant examples, this book teaches you how to bypass the graphical interface and communicate directly with your computer, saving time and expanding capability. This third edition incorporates thirty pages of new functional examples that are fully updated to align with the latest Linux features. Beginning with command line fundamentals, the book moves into shell scripting and shows you the practical application

  2. Translational invariant shell model for Λ hypernuclei

    Directory of Open Access Journals (Sweden)

    Jolos R.V.

    2016-01-01

    Full Text Available We extend shell model for Λ hypernuclei suggested by Gal and Millener by including 2ћω excitations in the translation invariant version to estimate yields of different hyperfragments from primary p-shell hypernuclei. We are inspired by the first successful experiment done at MAMI which opens way to study baryon decay of hypernuclei. We use quantum numbers of group SU(4, [f], and SU(3, (λμ, to classify basis wave functions and calculate coefficients of fractional parentage.

  3. Nitride stabilized core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  4. A new shell element taking thickness-stretchability into account for mechanics-based springback compensation system

    Directory of Open Access Journals (Sweden)

    Arashiyama Hibiki

    2016-01-01

    Full Text Available To reduce springback, the coining process is often applied in sheet metal forming. However, the finite element method with a conventional shell element cannot formulate this process because of the plane stress condition. Therefore, in this study, a new shell element, which has extra nodes called pseudo-nodes, was developed to calculate the through-thickness stress. Using this element, a mechanics-based springback compensation system was constructed and tested.

  5. Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells.

    Directory of Open Access Journals (Sweden)

    Jun Xu

    Full Text Available Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young's modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials.

  6. Radiocarbon dating loess deposits in the Mississippi Valley using terrestrial gastropod shells (Polygyridae, Helicinidae, and Discidae)

    Science.gov (United States)

    Pigati, Jeffery S.; McGeehin, John P.; Muhs, Daniel; Grimley, David A.; Nekola, Jeffery C.

    2014-01-01

    Small terrestrial gastropod shells (mainly Succineidae) have been used successfully to date late Quaternary loess deposits in Alaska and the Great Plains. However, Succineidae shells are less common in loess deposits in the Mississippi Valley compared to those of the Polygyridae, Helicinidae, and Discidae families. In this study, we conducted several tests to determine whether shells of these gastropods could provide reliable ages for loess deposits in the Mississippi Valley. Our results show that most of the taxa that we investigated incorporate small amounts (1–5%) of old carbon from limestone in their shells, meaning that they should yield ages that are accurate to within a few hundred years. In contrast, shells of the genus Mesodon(Mesodon elevatus and Mesodon zaletus) contain significant and variable amounts of old carbon, yielding ages that are up to a couple thousand 14C years too old. Although terrestrial gastropod shells have tremendous potential for 14C dating loess deposits throughout North America, we acknowledge that accuracy to within a few hundred years may not be sufficient for those interested in developing high-resolution loess chronologies. Even with this limitation, however, 14C dating of terrestrial gastropod shells present in Mississippi Valley loess deposits may prove useful for researchers interested in processes that took place over multi-millennial timescales or in differentiating stratigraphic units that have significantly different ages but similar physical and geochemical properties. The results presented here may also be useful to researchers studying loess deposits outside North America that contain similar gastropod taxa..

  7. Fabrication of polyimide shells by vapor phase deposition for use as ICF targets

    Energy Technology Data Exchange (ETDEWEB)

    Alfonso, E.L.; Tsai, F.Y.; Chen, S.H.; Gram, R.Q.; Harding, D.R. [Univ. of Rochester, NY (United States). Lab. for Laser Energetics

    1999-03-01

    Hollow polyimide shells, for use as ICF targets, were fabricated by co-depositing monomer precursors from the vapor phase onto bounced spherical mandrels. The process involved two stages: first, the deposited monomers (pyromellitic dianhydride and 4,4{prime}-oxydianiline) reacted on the mandrel surface to form polyamic acid; second, the mandrel was heated to 300 C to imidize the polyamic acid and to decompose the mandrel. During this latter process the decomposed mandrel diffused through the thermally stable coating, leaving a polyimide shell. Depositions were performed under low ({approximately}10{sup {minus}3} Torr) and high ({approximately}10{sup {minus}6} Torr) vacuum. Also, flat witness films of polyimide deposited on Si wafers and NaCl allowed the mechanical properties and chemical composition of the film during the heating cycle to be measured. Polyimide shells with diameters ranging from 700 to 950 {micro}m and wall thicknesses ranging from 2 to 13 {micro}m were produced. The shell`s sphericity was greater than 99%. Burst and buckle pressure tests on these shells yielded the estimated mechanical strength properties. The elastic modulus and tensile strength were {approximately}15 GPa and {approximately}300 MPa, respectively. The permeability of D{sub 2} through polyamic acid at 25 C was 7.4 {times} 10{sup {minus}17} mol{center_dot}m/m{sup 2}{center_dot}Pa{center_dot}s and increased to 6.4 {times} 10{sup {minus}16} mol{center_dot}m/m{sup 2}{center_dot}Pa{center_dot}s at 25 C upon curing the shell to 150 C. The permeability of D{sub 2} at 25 C through vapor-deposited polyimide flat films was measured to be 240 times greater than through the as-deposited polyamic acid, and about 7 times greater than through commercially available solution-cast Kapton.

  8. Deep-sea ostracode shell chemistry (Mg:Ca ratios) and late Quaternary Arctic Ocean history

    Science.gov (United States)

    Cronin, T. M.; Dwyer, Gary S.; Baker, P.A.; Rodriguez-Lazaro, J.; Briggs, W.M.; ,

    1996-01-01

    The magnesium:calcium (Mg:Ca) and strontium:calcium (Sr:Ca) ratios were investigated in shells of the benthic ostracode genus Krithe obtained from 64 core-tops from water depths of 73 to 4411 m in the Arctic Ocean and Nordic seas to determine the potential of ostracode shell chemistry for palaeoceanographic study. Shells from the Polar Surface Water (−1 to −1.5°C) had Mg:Ca molar ratios of about 0.006–0.008; shells from Arctic Intermediate Water (+0.3 to +2.0°C) ranged from 0.09 to 0.013. Shells from the abyssal plain and ridges of the Nansen, Amundsen and Makarov basins and the Norwegian and Greenland seas had a wide scatter of Mg:Ca ratios ranging from 0.007 to 0.012 that may signify post-mortem chemical alteration of the shells from Arctic deep-sea environments below about 1000 m water depth. There is a positive correlation (r2 = 0.59) between Mg:Ca ratios and bottom-water temperature in Krithe shells from Arctic and Nordic seas from water depths <900 m. Late Quaternary Krithe Mg:Ca ratios were analysed downcore using material from the Gakkel Ridge (water depths 3047 and 3899 m), the Lomonosov Ridge (water depth 1051 m) and the Amundsen Basin (water depth 4226 m) to test the core-top Mg:Ca temperature calibration. Cores from the Gakkel and Lomonosov ridges display a decrease in Mg:Ca ratios during the interval spanning the last glacial/deglacial transition and the Holocene, perhaps related to a decrease in bottom water temperatures or other changes in benthic environments.

  9. Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Eryun; Fan, Yingmei [College of Material Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Sun, Zhiyao [Key Laboratory of Polymer Functional Materials, Heilongjiang University, Harbin 150080 (China); Gao, Jianwei [College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 (China); Hao, Xiaoyuan [College of Material Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Pei, Shichun [College of Food and Biological Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, Cheng, E-mail: wangc_93@163.com [Key Laboratory of Polymer Functional Materials, Heilongjiang University, Harbin 150080 (China); Sun, Liguo [Key Laboratory of Polymer Functional Materials, Heilongjiang University, Harbin 150080 (China); Zhang, Deqing, E-mail: zhdqing@163.com [College of Material Science and Engineering, Qiqihar University, Qiqihar 161006 (China)

    2014-08-01

    Polyvinyl alcohol/chitosan (PVA/CS) core–shell nanofibers are successfully fabricated by a simple coaxial electrospinning method, in which PVA forms the core layer and CS forms the shell layer. With the change of the feed ratio between PVA and CS, the surface morphology and the microstructures of the nanofibers are largely changed. The as-prepared core–shell fibers can be used as a carrier for doxorubicin (DOX) delivery. FT-IR analysis demonstrates that hydrogen bond between CS and PVA chains forms. The results of in vitro cytotoxicity test indicate that the core–shell fibers are completely biocompatible and the free DOX shows higher cytotoxicity than the DOX loaded nanofibers. The standing PVA/CS core–shell fibers remarkably promote the attachment, proliferation and spreading of human ovary cancer cells (SKOV3). Via observing by confocal laser scanning microscopy (CLSM), the DOX released from the fibers can be delivered into SKOV3 cell nucleus, which is significant for the future tumor therapy. And, the as-prepared fibers exhibit controlled release for loaded DOX via adjusting the feed ratio between PVA and CS, and the DOX loaded nanofibers are quite effective in prohibiting the SKOV3 ovary cells attachment and proliferation, which are potential for chemotherapy of ovary cancer. - Highlights: • PVA/CS core–shell fibers were prepared by coaxial electrospinning. • The core–shell fibers were completely biocompatible. • In vitro release experiments indicated that the drug release rate was controllable. • The free DOX showed higher cytotoxicity than the DOX loaded nanofibers. • DOX loaded fibers were potential for chemotherapy of ovary cancer.

  10. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  11. Enhancing oxidative stability in heated oils using core/shell structures of collagen and α-tocopherol complex.

    Science.gov (United States)

    Gim, Seo Yeong; Hong, Seungmi; Kim, Jisu; Kwon, YongJun; Kim, Mi-Ja; Kim, GeunHyung; Lee, JaeHwan

    2017-11-15

    In this study, collagen mesh structure was prepared by carrying α-tocopherol in the form of core/shell complex. Antioxidant properties of α-tocopherol loaded carriers were tested in moisture added bulk oils at 140°C. From one gram of collagen core/shell complex, 138mg α-tocopherol was released in medium chain triacylglycerol (MCT). α-Tocopherol was substantially protected against heat treatment when α-tocopherol was complexed in collagen core/shell. Oxidative stability in bulk oil was significantly enhanced by added collagen mesh structure or collagen core/shell complex with α-tocopherol compared to that in control bulk oils (pstructure and collagen core/shell with α-tocopherol (p>0.05). Results of DPPH loss in methanol demonstrated that collagen core/shell with α-tocopherol had significantly (pstructure up to a certain period. Therefore, collagen core/shell complex is a promising way to enhance the stability of α-tocopherol and oxidative stability in oil-rich foods prepared at high temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling plate shell structures using pyFormex

    DEFF Research Database (Denmark)

    Bagger, Anne; Verhegghe, Benedict; Hertz, Kristian Dahl

    2009-01-01

    A shell structure made of glass combines a light-weight structural concept with glass’ high permeability to light. If the geometry of the structure is plane-based facetted (plate shell structure), the glass elements will be plane panes, and these glass panes will comprise the primary load......-bearing structure. A plate shell structure is contrary to a triangulated facetted shell structure, where the shell action is concentrated in the edges and vertices of the geometry, thereby resulting in the need for a triangulated lattice structure outlining the edges of the geometry. These two structural principles...... (plate shells and triangulated lattice shells) may not differ in complexity regarding the topology, but when it comes to the practical generation of the geometry, e.g. in CAD, the plate shell is far more troublesome to handle than the triangulated geometry. The free software tool “pyFormex”, developed...

  13. Voids characteristics of asphaltic concrete containing coconut shell

    Science.gov (United States)

    Ezree Abdullah, Mohd; Hannani Madzaili, Amirah; Putra Jaya, Ramadhansyah; Yaacob, Haryati; Hassan, Norhidayah Abdul; Nazri, Fadzli Mohamed

    2017-07-01

    Asphalt durability is often linked to the thickness of the asphalt coating on the aggregate particles. In order to have adequate film thickness in asphaltic concrete, there must be sufficient space between the aggregate particles in the compacted pavement. This void space is referred to as voids in total mix (VTM), voids with filled bitumen (VFB), and voids in mineral aggregate (VMA). Hence, this study investigates the performance of coconut shell (CS) as coarse aggregate replacement on voids characteristics of asphaltic concrete. Four CS were used as coarse aggregates replacement in asphalt mixture namely 0%, 10%, 20%, 30%, and 40% (by weight volume). The voids properties of asphalt mixture were determined based on Marshall Mix design test. Test results show that VTM and VMA values were decrease with the increasing bitumen content where VFB was increase with increasing bitumen content. Furthermore, increasing the percentage of coconut shell in asphalt mixture was found to increases the voids value up to a peak level and then decreases with further additions of CS.

  14. Testing MOND gravity in the shell galaxy NGC 3923

    Czech Academy of Sciences Publication Activity Database

    Bílek, Michal; Jungwiert, Bruno; Jílková, L.; Ebrová, Ivana; Bartošková, Kateřina; Křížek, Miroslav

    2013-01-01

    Roč. 559, November (2013), A110/1-A110/8 ISSN 0004-6361 Institutional support: RVO:67985815 Keywords : gravitation * elliptical and lenticular galaxies Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.479, year: 2013

  15. ELECTROCHEMICAL STUDIES OF CARBON STEEL CORROSION IN HANFORD DOUBLE SHELL TANK (DST) WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, J.B.; WINDISCH, C.F.

    2006-10-13

    This paper reports on the electrochemical scans for the supernatant of Hanford double-shell tank (DST) 241-SY-102 and the electrochemical scans for the bottom saltcake layer for Hanford DST 241-AZ-102. It further reports on the development of electrochemical test cells adapted to both sample volume and hot cell constraints.

  16. Palm-Kernel Shell Concrete For Structural Use – A Preliminary ...

    African Journals Online (AJOL)

    The paper reports on the results of an investigation into the physical and strength characteristics of concrete (norminal mixes), which contains crushed palm-kernel shell as fine aggregates instead of normal river sand. 66 No beams of 100mm x 100mm x 500mm sizes and 396 No 100mm cubes as well were tested with ...

  17. Effect of diets containing cocoa bean shell and coconut oil cake on ...

    African Journals Online (AJOL)

    Formulated diets were designated as D1 (cocoa bean shell, corn bran, soybean oil cake and cottonseeds oil cake) and D2 (coconut oil cake, corn bran, soybean oil cake and cottonseeds oil cake). All the tested diets contain around 28% protein and each diet was randomly assigned to triplicate ponds to evaluate growth, ...

  18. Fabrication of magnetite-based core-shell coated nanoparticles with antibacterial properties.

    Science.gov (United States)

    Grumezescu, A M; Cristescu, R; Chifiriuc, M C; Dorcioman, G; Socol, G; Mihailescu, I N; Mihaiescu, D E; Ficai, A; Vasile, O R; Enculescu, M; Chrisey, D B

    2015-03-23

    We report the fabrication of biofunctionalized magnetite core/sodium lauryl sulfate shell/antibiotic adsorption-shell nanoparticles assembled thin coatings by matrix assisted pulsed laser evaporation for antibacterial drug-targeted delivery. Magnetite nanoparticles have been synthesized and subsequently characterized by transmission electron microscopy and x-ray diffraction. The obtained thin coatings have been investigated by FTIR and scanning electron microscope, and tested by in vitro biological assays, for their influence on in vitro bacterial biofilm development and cytotoxicity on human epidermoid carcinoma (HEp2) cells.

  19. Models of spherical shells as sources of Majumdar-Papapetrou type spacetimes

    CERN Document Server

    García-Reyes, Gonzalo

    2016-01-01

    By starting with a seed Newtonian potential-density pair we construct relativistic thick spherical shell models for a Majumdar-Papapetrou type conformastatic spacetime. As simple example, we considerer a family of Plummer type relativistic spherical shells. These objects are then used to model a system composite by a dust disk and a halo of matter. We study the equatorial circular motion of test particles around the structures. Also the stability of the orbits is analyzed for radial perturbation using an extension of the Rayleigh criterion. The models considered satisfying all the energy conditions.

  20. Preparation of sodium dodecyl sulphate-functionalized activated carbon from Gnetum gnemon shell for dye adsorption

    Science.gov (United States)

    Fatimah, Is; Yahya, Amri; Sasti, Rilis Akista Tria

    2017-03-01

    Preparation of functionalized activated carbon from Gnetum gnemon shell was investigated. This work aimed to prepare highly active adsorbent for dye adsorption process by carbonization of Gnetum gnemon shell followed by functionalization using sodium dodecyl sulphate (SDS) to form SDS-modified activated carbon (SDS-AC). The study of physicochemical character change was performed by SEM and FTIR analysis while the adsorptivity of the materials was tested in methylene blue adsorption. According to the results, it is found that SDS-AC exhibits the greater adsorptivity compared to AC.

  1. NURBS-Based Collocation Methods for the Structural Analysis of Shells of Revolution

    Directory of Open Access Journals (Sweden)

    Maria Laura De Bellis

    2016-03-01

    Full Text Available In this work we present a collocation method for the structural analysis of shells of revolution based on Non-Uniform Rational B-Spline (NURBS interpolation. The method is based on the strong formulation of the equilibrium equations according to Reissner-Mindlin theory, with Fourier series expansion of dependent variables, which makes the problem 1D. Several numerical tests validate convergence, accuracy, and robustness of the proposed methodology, and its feasibility as a tool for the analysis and design of complex shell structures.

  2. Communication: new insight into electronic shells of metal clusters: analogues of simple molecules.

    Science.gov (United States)

    Cheng, Longjiu; Yang, Jinlong

    2013-04-14

    A new concept of super valence bond is proposed, of which superatoms can share both valence pairs and nuclei for shell closure thus forming delocalized super bonding. Using Li clusters as a test case, we theoretically find that metal clusters can mimic the behavior of simple molecules in electronic shells. It is found that Li14, Li10, and Li8 clusters are analogues of F2, N2, and CH4 molecules, respectively, in molecular orbital diagrams and bonding patterns. This new concept shows new insights in understanding the stability of clusters and designing the cluster-assembling materials.

  3. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this shell theory for a cylindrical shell with clamped ends with the results of a solution to the three......-dimensional problem. The results are also compared with those of some commonly used engineering shell theories....

  4. NONLINEAR STABILITY ANALYIS OF THIN SHELL WITH INITIAL SHAPE IMPERFECTIONS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2015-12-01

    Full Text Available A numerical technique for nonlinear stability analysis of thin-walled shells with geometrical imperfections is presented. Mathematical models of imperfect shells stability are built using the modern finite element method software. The nonlinear stability analysis of a real cylindrical shell with shape imperfections was carried out. Stability domains and reliability of the imperfect shell-bearing under the combined loading were determined.

  5. Robustness of Hierarchical Laminated Shell Element Based on Equivalent Single-Layer Theory

    Directory of Open Access Journals (Sweden)

    Jae S. Ahn

    2015-01-01

    Full Text Available This paper deals with the hierarchical laminated shell elements with nonsensitivity to adverse conditions for linear static analysis of cylindrical problems. Displacement approximation of the elements is established by high-order shape functions using the integrals of Legendre polynomials to ensure C0 continuity at the interface between adjacent elements. For exact linear mapping of cylindrical shell problems, cylindrical coordinate is adopted. To find global response of laminated composite shells, equivalent single-layer theory is also considered. Thus, the proposed elements are formulated by the dimensional reduction from three-dimensional solid to two-dimensional plane which allows the first-order shear deformation and considers anisotropy due to fiber orientation. The sensitivity tests are implemented to show robustness of the present elements with respect to severe element distortions, very high aspect ratios of elements, and very large radius-to-thickness ratios of shells. In addition, this element has investigated whether material conditions such as isotropic and orthotropic properties may affect the accuracy as the element distortion ratio is increased. The robustness of present element has been compared with that of several shell elements available in ANSYS program.

  6. Effect of temperature on energy potential of pyrolysis products from oil palm shells

    Directory of Open Access Journals (Sweden)

    Lina María Romero Millán

    2016-06-01

    Full Text Available Context: Taking into account that near 220 000 tons of oil palm shells are produced every year in Colombia, as a waste of the Elaeis Guineensis palm oil transformation process, the aim of this work is to determine the energy potential of oil palm shells, when transformed through slow pyrolysis process. Methods: Using a fixed bed lab scale reactor, different oil palm shells pyrolysis tests were performed between 300°C and 500°C. The effect of the temperature in the process product yield and in the energy content of produced solids and gases were analyzed. Results: With a maximum mass yield of 50%, the char is considered the main product of oil palm shells pyrolysis, containing up to 73% of the raw biomass energy. The heating value of char raised with the temperature, from 29,6 MJ/kg at 300°C to 31,34 MJ/kg at 500°C. Moreover, the gas produced in the established temperature range had up to 13% of the energy content of the raw biomass, with a heating value near 12,5 MJ/m3. Conclusions: According to the results, slow pyrolysis can be considered an interesting process for the valorization of residual biomass as oil palm shells, through the production of solids and gases that can be used as fuels, or as precursor of other value-added products.

  7. Acoustical contribution calculation and analysis of compressor shell based on acoustic transfer vector method

    Science.gov (United States)

    Chen, Xiaol; Guo, Bei; Tuo, Jinliang; Zhou, Ruixin; Lu, Yang

    2017-08-01

    Nowadays, people are paying more and more attention to the noise reduction of household refrigerator compressor. This paper established a sound field bounded by compressor shell and ISO3744 standard field points. The Acoustic Transfer Vector (ATV) in the sound field radiated by a refrigerator compressor shell were calculated which fits the test result preferably. Then the compressor shell surface is divided into several parts. Based on Acoustic Transfer Vector approach, the sound pressure contribution to the field points and the sound power contribution to the sound field of each part were calculated. To obtain the noise radiation in the sound field, the sound pressure cloud charts were analyzed, and the contribution curves in different frequency of each part were acquired. Meanwhile, the sound power contribution of each part in different frequency was analyzed, to ensure those parts where contributes larger sound power. Through the analysis of acoustic contribution, those parts where radiate larger noise on the compressor shell were determined. This paper provides a credible and effective approach on the structure optimal design of refrigerator compressor shell, which is meaningful in the noise and vibration reduction.

  8. Antibacterial activity of different extracts of prawn shell (Macrobrachium nipponense against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Katayoon Karimzadeh

    2017-01-01

    Full Text Available Aims: Bioactive compounds existing in crustacean shells have the potential to inhibit the growth of some pathogenic microorganism. The purpose of this study is to evaluate the antibacterial effects of different extracts of prawn shells (Macrobrachium nipponense on some human pathogenic bacteria. Materials and Methods: Sampling (prawn was conducted in summer 2014 from Anzali wetland in southern coast of Caspian Sea. Then, the hydroalcoholic, methanolic, and acetone extracts of prawn shells were applied for this purpose. Two Gram-positive (Bacillus subtilis Staphylococcus aureus and three Gram-negative (Klebsiella pneumoniae, Vibrio cholerae, and Escherichia coli were used as test organisms. The antibacterial activity was determined by paper disk diffusion. Results: The prawn shell extracts showed activity against pathogenic bacteria. The highest antibacterial activities were measured in B. subtilis, S. aureus, and V. cholerae with the zone of inhibition being 12.12 ± 0.32 mm, 12.51 ± 0.14 mm, and 12.35 ± 0.27 mm, respectively. Among all the strains, S. aureus exhibits a significant zone of inhibition against all extracts (P < 0.05. Conclusion: The findings of this research showed that different prawn shell extracts, particularly hydroalcoholic, have bactericidal effect on B. subtilis, S. aureus, and V. cholerae species.

  9. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

    Science.gov (United States)

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-03-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  10. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    Directory of Open Access Journals (Sweden)

    Ying Nie

    2008-03-01

    Full Text Available Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA, butyl acrylate (BA, 2-ethylhexyl acrylate (EHA and glycidyl methacrylate (GMA as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA component as the core and P(EHA-co-GMA component as the shell. Results of Transmission Electron Microscopy (TEM and Dynamics Light Scattering (DLS tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF or urea-formaldehyde resin (UF. It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment.

  11. Rupture threshold characterization of polymer-shelled ultrasound contrast agents subjected to static overpressure

    Science.gov (United States)

    Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.

    2011-04-01

    Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.

  12. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting.

    Science.gov (United States)

    Zhang, Jianming; Huang, Yue; Jin, Lei; Rosei, Federico; Vetrone, Fiorenzo; Claverie, Jerome P

    2017-03-08

    We report the two-step synthesis of a core@shell nanohybrid material for visible-to-near-infrared (NIR) photocatalysis. The core is constituted of NaGdF4:Er3+, Yb3+ upconverting nanoparticles (UCNPs). A bismuth ferrite (BFO) shell is assembled around the UCNPs via a hydrothermal process. The photocatalytic degradation assays of methylene orange and 4-chlorophenol reveal that these core@shell nanostructures possess remarkably enhanced reaction activity under visible and NIR irradiation, compared to the BFO powder alone and the BFO-UCNP mixture. Photo-charge scavenger tests and fluorescent assays indicate that hydroxyl radicals play a pivotal role in the photodegradation mechanism. The enhanced photoactivity of the core@shell structure is attributed to the NIR radiation which is converted into visible light by UCNPs, and which is then captured by BFO via a nonradiative luminescence resonance energy transfer process. Therefore, this core@shell architecture optimizes solar energy use by efficiently harvesting visible and NIR photons.

  13. Conical shell edge disturbance : An engineer's derivation

    NARCIS (Netherlands)

    Blaauwendraad, J.; Hoefakker, JH

    2016-01-01

    Because a rigorous bending theory for thin shells of revolution is complicated, attempts have been made for reliable approximations of the edge disturbance problem under axisymmetric loading. A well-known one was published by Geckeler [1, 2], who obtained his approximation by mathematical

  14. UHPFRC in large span shell structures

    NARCIS (Netherlands)

    Ter Maten, R.N.; Grunewald, S.; Walraven, J.C.

    2013-01-01

    Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC) is an innovative concrete type with a high compressive strength and a far more durable character compared to conventional concrete. UHPFRC can be applied in structures with aesthetic appearance and high material efficiency. Shell structures

  15. Are Pericentric Inversions Reorganizing Wedge Shell Genomes?

    Directory of Open Access Journals (Sweden)

    Daniel García-Souto

    2017-12-01

    Full Text Available Wedge shells belonging to the Donacidae family are the dominant bivalves in exposed beaches in almost all areas of the world. Typically, two or more sympatric species of wedge shells differentially occupy intertidal, sublittoral, and offshore coastal waters in any given locality. A molecular cytogenetic analysis of two sympatric and closely related wedge shell species, Donax trunculus and Donax vittatus, was performed. Results showed that the karyotypes of these two species were both strikingly different and closely alike; whilst metacentric and submetacentric chromosome pairs were the main components of the karyotype of D. trunculus, 10–11 of the 19 chromosome pairs were telocentric in D. vittatus, most likely as a result of different pericentric inversions. GC-rich heterochromatic bands were present in both species. Furthermore, they showed coincidental 45S ribosomal RNA (rRNA, 5S rRNA and H3 histone gene clusters at conserved chromosomal locations, although D. trunculus had an additional 45S rDNA cluster. Intraspecific pericentric inversions were also detected in both D. trunculus and D. vittatus. The close genetic similarity of these two species together with the high degree of conservation of the 45S rRNA, 5S rRNA and H3 histone gene clusters, and GC-rich heterochromatic bands indicate that pericentric inversions contribute to the karyotype divergence in wedge shells.

  16. Karyotype differentiation in tellin shells (Bivalvia: Tellinidae).

    Science.gov (United States)

    García-Souto, Daniel; Ríos, Gonzalo; Pasantes, Juan J

    2017-07-14

    Although Tellinidae is one of the largest and most diverse families of bivalves, its taxonomy is utterly chaotic. This is mainly due to the morphological diversity and homoplasy displayed by their shells and to the scarcity of the molecular phylogenetic studies performed on them. A molecular cytogenetic analysis of four tellin shell species, Bosemprella incarnata, Macomangulus tenuis, Moerella donacina and Serratina serrata, was performed. To molecularly characterize the analyzed specimens, the sequence of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) was also studied. The karyotypes of the four species were composed of different amounts of bi-armed and telocentric chromosomes. The chromosomal mapping of 45S and 5S rDNA and H3 histone gene clusters by fluorescent in situ hybridization also revealed conspicuous differences on the distribution of these DNA sequences on their karyotypes. Vertebrate type telomeric sequences were located solely on both ends of each chromosome in all four tellin shells. We present clear evidence of the valuable information provided by FISH signals in both analyzing chromosome evolution in Tellinidae and as a further tool in identifying tellin shell specimens for molecular phylogenies.

  17. Torrefaction of pomaces and nut shells

    Science.gov (United States)

    Technical: Apple, grape, olive, and tomato pomaces as well as almond and walnut shells were torrefied at different temperatures and times in a muffle furnace. The fiber content and thermal stability of the raw byproducts were examined using fiber analysis and thermogravimetric analysis (TGA), respec...

  18. Assessment Of Shell Petroleum Development Company Extension ...

    African Journals Online (AJOL)

    The study assessed Shell Petroleum Development Company Extension Services in Etche Local Government Area of Rivers State, Nigeria. Data were gathered form four categories of respondents drawn from the Company\\'s staff and the communities. A total of 180 respondents participated in the study. means scores and ...

  19. assessment of shell petroleum development company extension ...

    African Journals Online (AJOL)

    ABSTRACT. The study assessed Shell Petroleum DeVelopment Company Extension. Services in Etche Local Government Area of Rivers State, Nigeria. Data were gathered form four categories of respondents drawn from the. Company's staff and the communities. A total of 180 respondents participated in the study. means ...

  20. 7 CFR 51.2289 - Shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Shell. 51.2289 Section 51.2289 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER...

  1. Conceptual Design Tool for Concrete Shell Structures

    DEFF Research Database (Denmark)

    Holst, Malene Kirstine; Kirkegaard, Poul Henning

    2011-01-01

    This paper focuses on conceptual tools for concrete shell structures when working within the span of performance-based design and computational morphogenesis. The designer, referred to as the Architect-Engineer, works through several iterations parallel with aesthetic, functional and technical...

  2. 7 CFR 51.2002 - Split shell.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 FRESH FRUITS, VEGETABLES AND OTHER...

  3. Magnetic core-shell silica particles

    NARCIS (Netherlands)

    Claesson, E.M.

    2007-01-01

    This thesis deals with magnetic silica core-shell colloids and related functionalized silica structures. Synthesis routes have been developed and optimized. The physical properties of these colloids have been investigated, such as the magnetic dipole moment, dipolar structure formation and

  4. Palaeontology: pterosaur egg with a leathery shell.

    Science.gov (United States)

    Ji, Qiang; Ji, Shu-An; Cheng, Yen-Nien; You, Hai-Lu; Lü, Jun-Chang; Liu, Yong-Qing; Yuan, Chong-Xi

    2004-12-02

    The recent discovery of a pterosaur egg with embryonic skeleton and soft tissues from the Yixian Formation confirmed that the flying pterosaurs were oviparous. Here we describe another pterosaur egg whose exquisite preservation indicates that the shell structure was soft and leathery.

  5. William Hayes and His Pallanza Bomb Shell

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 10. William Hayes and His Pallanza Bomb Shell. R Jayaraman. General Article Volume 16 Issue 10 October 2011 pp 911-921. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/016/10/0911-0921 ...

  6. Crushing Analysis of Rotationally Symmetric Plastic Shells.

    Science.gov (United States)

    1981-06-30

    the material behind the circle C to be rigid, the shell should translate rather than rotate. Hence, there must be at C a counterrotation C of the...the hinge circle B the straight line generator of the cylinder is bent into the curvature 1 and at the hinge circle C the curvature is re-r moved, Fig

  7. Inner-shell excitation spectroscopy of peroxides

    NARCIS (Netherlands)

    Harding, K. L.; Kalirai, S.; Hayes, R.; Ju, V.; Cooper, G.; Hitchcock, A. P.; Thompson, M. R.

    2015-01-01

    O 1s inner-shell excitation spectra of a number of vapor phase molecules containing peroxide bonds - hydrogen peroxide (H2O2), di-t-butylperoxide ((BuOBu)-Bu-t-Bu-t), benzoyl peroxide, ((C6H5(CO)O)(2)), luperox-F [1,3(4)-bis(tertbutylperoxyisopropyl)benzene], and analogous, non-peroxide compounds -

  8. Symplectic symmetry in the nuclear shell model

    NARCIS (Netherlands)

    French, J.B.

    The nature of the general two-particle interaction which is compatible with symplectic symmetry in the jj coupling shell model is investigated. The essential result is that, to within an additive constant and an additive multiple of T2, the interaction should have the form of a sum of scalar

  9. Early shell crack detection technique using acoustic emission energy parameter blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Lee, Sang Bum [RECTUSON Co.,Ltd., Changwon (Korea, Republic of); Bae, Dong Myung; Yang, Bo Suk [Pukyong National University, Busan (Korea, Republic of)

    2016-02-15

    Blast furnaces are crucial equipment for steel production. A typical furnace risks unexpected accidents caused by contraction and expansion of the walls under an environment of high temperature and pressure. In this study, an acoustic emission (AE) monitoring system was tested for evaluating the large-scale structural health of a blast furnace. Based on the growth of shell cracks with the emission of high energy levels, severe damage can be detected by monitoring increases in the AE energy parameter. Using this monitoring system, steel mill operators can establish a maintenance period, in which actual shell cracks can be verified by cross-checking the UT. From this study, we expect that AE systems permit early fault detection for structural health monitoring by establishing evaluation criteria based on the severity of shell cracking.

  10. Study on the Ingredient Proportions and After-Treatment of Laser Sintering Walnut Shell Composites

    Directory of Open Access Journals (Sweden)

    Yueqiang Yu

    2017-12-01

    Full Text Available To alleviate resource shortage, reduce the cost of materials consumption and the pollution of agricultural and forestry waste, walnut shell composites (WSPC consisting of walnut shell as additive and copolyester hot melt adhesive (Co-PES as binder was developed as the feedstock of selective laser sintering (SLS. WSPC parts with different ingredient proportions were fabricated by SLS and processed through after-treatment technology. The density, mechanical properties and surface quality of WSPC parts before and after post processing were analyzed via formula method, mechanical test and scanning electron microscopy (SEM, respectively. Results show that, when the volume fraction of the walnut shell powder in the WSPC reaches the maximum (40%, sintered WSPC parts have the smallest warping deformation and the highest dimension precision, although the surface quality, density, and mechanical properties are low. However, performing permeating resin as the after-treatment technology could considerably increase the tensile, bending and impact strength by 496%, 464%, and 516%, respectively.

  11. Spatial distribution of dust in the shell elliptical NGC 5982

    NARCIS (Netherlands)

    del Burgo, C.; Carter, D.; Sikkema, G.

    Aims. Shells in Ellipticals are peculiar faint sharp edged features that are thought to be formed by galaxy mergers. We determine the shell and dust distributions, and colours of a well-resolved shell and the underlying galaxy in NGC 5982, and compare the spatial distributions of the dust and gas

  12. Mollusc evolution: seven shells on the sea shore.

    Science.gov (United States)

    Telford, Maximilian J

    2013-11-04

    Recent phylogenies unite two seemingly very different groups of mollusc: the Polyplacophora with multiple shells and the shell-less Aplacophora. The finding of seven muscle rows in larvae of both classes suggests that polyplacophoran-like shell rows have been lost in adult Aplacophora. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 41 CFR 102-85.120 - What is shell Rent?

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What is shell Rent? 102-85.120 Section 102-85.120 Public Contracts and Property Management Federal Property Management... GSA SPACE Rent Charges § 102-85.120 What is shell Rent? Shell Rent is that portion of GSA Rent charged...

  14. Imperfection sensitivity of pressured buckling of biopolymer spherical shells.

    Science.gov (United States)

    Zhang, Lei; Ru, C Q

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  15. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    In this paper we consider the eigenvalue problem for piezoelectric shallow shells and we show that, as the thickness of the shell goes to zero, the eigensolutions of the three-dimensional piezoelectric shells converge to the eigensolutions of a two-dimensional eigenvalue problem.

  16. Vibrations of thin piezoelectric shallow shells: Two-dimensional ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    of the three-dimensional piezoelectric shells converge to the eigensolutions of a two- dimensional eigenvalue problem. Keywords. Vibrations; piezoelectricity; shallow shells. 1. Introduction. Lower dimensional models of shells are preferred in numerical computations to three- dimensional models when the thickness of the ...

  17. From Bash to Z shell in 5 min

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Chances are you're spending a good amount of your time working on a shell. While Bash is the standard shell on Linux, some alternatives exist. I'll show you how to switch to one of them (Z shell) and what benefits come with it.

  18. Validating Finite Element Models of Assembled Shell Structures

    Science.gov (United States)

    Hoff, Claus

    2006-01-01

    The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.

  19. Parametric analysis of the dynamic properties of sectorial shells ...

    African Journals Online (AJOL)

    The behavioral responses of sectorial shells as related to the number of modes and certain geometric properties of the shell have been studied. By varying certain dimensionless geometric properties of the shell and considering a series of undamped vibration modes, the influences of these properties on displacements, ...

  20. Shell utilization and morphometries of the hermit crab Diogenes ...

    African Journals Online (AJOL)

    Fecundity, shell utilization, and crab and associated shell morphometries were investigated for the hermit crab Diogenes brevirostris collected from three intertidal sites in the eastern Cape. The relationship between crab fresh mass and egg number was linear. D. brevirostris was found to occupy 33 gastropod shell species ...

  1. Implementation and usage of the Bergman package shell

    Directory of Open Access Journals (Sweden)

    Alexander Colesnikov

    1996-09-01

    Full Text Available This article is the survey of author's work on dialog shells over interpreting systems. Aspects of the shell for the computational algebra package Bergman are presented: the solved task, homogenization algorithm, input data checking, approaches to implementation. The shell automatizes and strongly simplifies data preparation and monitoring of the Bergman package.

  2. Properties of Activated Carbon Prepared from Coconut Shells in ...

    African Journals Online (AJOL)

    Materials commonly used for preparation of activated carbons include coal and coconut shells. Ghana generates over 30,000 tonnes of coconut shells annually from coconut oil processing activities but apart from a small percentage of the shells, which is burned as fuel, the remaining is usually dumped as waste.

  3. An evaluation of surface-dose increase caused by the thermoplastic shell in head and neck radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Shin-ichi; Hayama, Kazuhide; Toyama, Michio; Ninomiya, Shuichi; Eguchi, Toru; Takase, Hiroshi; Maeda, Kadzuo (Nippon Dental Univ., Niigata (Japan) Faculty of Dentistry (Niigata))

    1992-10-01

    Some kinds of the thermoplastic shells have been developed to improve the reproducibility of patient immobilization in head and neck radiotherapy treatment. Due to a build-up layer of high energy photons, the consideration of the surface-dose under the shell is important in radiotherapy treatment planning. This paper presents the precise evaluation of the surface-dose affected by the shell. The therapy machine used was 2.8 MV linac X-ray. The shell used was mesh sheet type thermoplastic shell. The TPR (tissue peak ratio) in the build-up layer was measured in various irradiation fields under the conditions with or without a wedge filter. The coefficients m' and K's of the power function of the build-up region were obtained from the relation between TPR and the irradiation fields. As a result, the coefficients were approximately intermediate values between cobalt-60 [gamma]-ray and 4.3 MV X-ray. When a wedge filter was used, the coefficients shifted toward those of higher energy. Before obtaining the dose distribution under the thermoplastic shell, film response was tested under the conditions of various irradiation fields and use of a wedge filter. The results showed that the film response was constant enough for dosimetry in the build-up region. Digital surface-absorbed dose distribution images under the shell were obtained using the microphotometer-microcomputer system. The digital image demonstrated a meshy dose pattern under the shell. In the area of a higher absorbed dose, the dose increases were in the range of 40-50%. The differences depended on not only the irradiation field and presence of a wedge-filter, but especially on the extent of expansion of the thermoplastic material in making the shell mask. (author).

  4. Constraints for system specifications for the double-shell and single-shell tank systems

    Energy Technology Data Exchange (ETDEWEB)

    SHAW, C.P.

    1999-05-18

    This is a supporting document for the Level 1 Double-Shell and Single-Shell System Specifications. The rationale for selection of specific regulatory constraining documents cited in the two system specifications is provided. many of the regulations have been implemented by the Project Hanford Management Contract procedures (HNF-PROs) and as such noted and traced back to their origins in State and Federal regulations.

  5. Protein profiles of hatchery egg shell membrane.

    Science.gov (United States)

    Rath, N C; Liyanage, R; Makkar, S K; Lay, J O

    2016-01-01

    Eggshells which consist largely of calcareous outer shell and shell membranes, constitute a significant part of poultry hatchery waste. The shell membranes (ESM) not only contain proteins that originate from egg whites but also from the developing embryos and different contaminants of microbial and environmental origins. As feed supplements, during post hatch growth, the hatchery egg shell membranes (HESM) have shown potential for imparting resistance of chickens to endotoxin stress and exert positive health effects. Considering that these effects are mediated by the bioactive proteins and peptides present in the membrane, the objective of the study was to identify the protein profiles of hatchery eggshell membranes (HESM). Hatchery egg shell membranes were extracted with acidified methanol and a guanidine hydrochloride buffer then subjected to reduction/alkylation, and trypsin digestion. The methanol extract was additionally analyzed by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF-MS). The tryptic digests were analyzed by liquid chromatography and tandem mass spectrometry (LC-MS-MS) to identify the proteins. Our results showed the presence of several proteins that are inherent and abundant in egg white such as, ovalbumin, ovotransferrin, ovocleidin-116, and lysozyme, and several proteins associated with cytoskeletal, cell signaling, antimicrobial, and catalytic functions involving carbohydrate, nucleic acid, and protein metabolisms. There were some blood derived proteins most likely originating from the embryos and several other proteins identified with different aerobic, anaerobic, gram positive, gram negative, soil, and marine bacterial species some commensals and others zoonotic. The variety of bioactive proteins, particularly the cell signaling and enzymatic proteins along with the diverse microbial proteins, make the HESM suitable for nutritional and biological application to improve post hatch immunity of poultry.

  6. Defects in liquid crystal nematic shells

    Science.gov (United States)

    Fernandez-Nieves, A.; Utada, A. S.; Vitelli, V.; Link, D. R.; Nelson, D. R.; Weitz, D. A.

    2006-03-01

    We generate water/liquid crystal (LC)/water double emulsions via recent micro-capillary fluidic devices [A. S. Utada, et.al. Science 308, 537 (2005)]. The resultant objects are stabilized against coalescence by using surfactants or adequate polymers; these also fix the boundary conditions for the director field n. We use 4-pentyl-4-cyanobiphenyl (5CB) and impose tangential boundary conditions at both water/LC interfaces by having polyvinyl alcohol (PVA) dispersed in the inner and outer water phases. We confirm recent predictions [D. R. Nelson, NanoLetters 2, 1125 (2002)] and find that four strength s=+1/2 defects are present; this is in contrast to the two s=+1 defect bipolar configuration observed for bulk spheres [A. Fernandez-Nieves, et.al. Phys. Rev. Lett. 92, 105503 (2004)]. However, these defects do not lie in the vertices of a tetrahedron but are pushed towards each other until certain equilibration distance is reached. In addition to the four defect shells, we observe shells with two s=+1 defects and even with three defects, a s=+1 and two s=+1/2. We argue these configurations arise from nematic bulk distortions that become important as the shell thickness increases. Finally, by adding a different surfactant, sodium dodecyl sulphate (SDS), to the outer phase, we can change the director boundary conditions at the outermost interface from parallel to homeotropic, to induce coalescing of the two pair of defects in the four defect shell configuration to yield two defect bipolar shells.

  7. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites.

    Science.gov (United States)

    Du, Yunchen; Liu, Wenwen; Qiang, Rong; Wang, Ying; Han, Xijiang; Ma, Jun; Xu, Ping

    2014-08-13

    Core-shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very interestingly, a critical thickness of carbon shells leads to an unusual dielectric behavior of the core-shell structure, which endows these composites with strong reflection loss, especially in the high frequency range. By considering good chemical homogeneity and microwave absorption, we believe the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.

  8. CFD modelling of shell-side asphaltenes deposition in a shell and tube heat exchanger

    Science.gov (United States)

    Emani, Sampath; Ramasamy, M.; Shaari, Ku Zilati Ku

    2017-07-01

    Asphaltenes are identified as the main cause of crude oil fouling in the shell and tube exchangers. There are occasions where the crude oil flows through the shell side of the heat exchangers and some fouling is reported in the shell side of those heat exchangers. Understanding the fouling phenomena in the shell sides requires the knowledge on the irregular fluid flow paths and most susceptible locations of particles deposition. In the present work, an attempt has been made to investigate the effect of shear stress and surface roughness on shell-side asphaltenes deposition in a shell and tube heat exchanger through Computational Fluid Dynamics approach. The hydrodynamics of asphaltenes particles and the effect of various forces on the asphaltenes deposition on the heat transfer surfaces has been investigated through a Lagrangian based discrete-phase model. From the CFD analysis, the net mass deposition of the asphaltenes particles reduces with an increase in surface roughness from 0 to 0.04 mm and wall shear stress from 0 to 0.04 Pa for flow velocity 1 m/s, respectively. The asphaltenes mass deposition becomes constant with further increase in wall shear stress and surface roughness.

  9. In-shell pistachio nuts reduce caloric intake compared to shelled nuts.

    Science.gov (United States)

    Honselman, Carla S; Painter, James E; Kennedy-Hagan, Karla J; Halvorson, Amber; Rhodes, Kathy; Brooks, Tamatha L; Skwir, Kaitlin

    2011-10-01

    It was hypothesized that consuming in-shell pistachios, compared to shelled pistachios, causes individuals to consume less. A convenience sample of students at a mid-western university (n=140) was recruited, asking them to evaluate a variety of brands of pistachios. A survey at the end of class determined fullness and satisfaction. Subjects entering the classroom were given a 16-ounce cup and asked to self-select a portion of pistachios. Portion weight was recorded and subjects consumed pistachios at their leisure during class. At class end, pistachios remaining in the cup were weighed and total consumption by weight was determined. The caloric content of each portion was then calculated. In condition one, subjects offered in-shell pistachios consumed an average of 125 calories. In condition two, subjects offered shelled pistachios consumed an average of 211 calories; a difference of 86 calories. Subjects in condition one consumed 41% fewer calories compared to subjects in condition two (p≤.01). Fullness and satisfaction ratings were not significantly different (p≥.01). Caloric intake was influenced by the initial form of the food. The difference in calories consumed may be due to the additional time needed to shell the nuts or the extra volume perceived when consuming in-shell nuts. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. The Effect of Aquatic Plant Abundance on Shell Crushing Resistance in a Freshwater Snail

    Science.gov (United States)

    Chaves-Campos, Johel; Coghill, Lyndon M.; García de León, Francisco J.; Johnson, Steven G.

    2012-01-01

    Most of the shell material in snails is composed of calcium carbonate but the organic shell matrix determines the properties of calcium carbonate crystals. It has been shown that the deposition of calcium carbonate is affected by the ingestion of organic compounds. We hypothesize that organic compounds not synthesized by the snails are important for shell strength and must be obtained from the diet. We tested this idea indirectly by evaluating whether the abundance of the organic matter that snails eat is related to the strength of their shells. We measured shell crushing resistance in the snail Mexipyrgus churinceanus and the abundance of the most common aquatic macrophyte, the water lily Nymphaea ampla, in ten bodies of water in the valley of Cuatro Ciénegas, Mexico. We used stable isotopes to test the assumption that these snails feed on water lily organic matter. We also measured other factors that can affect crushing resistance, such as the density of crushing predators, snail density, water pH, and the concentration of calcium and phosphorus in the water. The isotope analysis suggested that snails assimilate water lily organic matter that is metabolized by sediment bacteria. The variable that best explained the variation in crushing resistance found among sites was the local abundance of water lilies. We propose that the local amount of water lily organic matter provides organic compounds important in shell biomineralization, thus determining crushing resistance. Hence, we propose that a third trophic level could be important in the coevolution of snail defensive traits and predatory structures. PMID:22970206

  11. Improved nine-node shell element MITC9i with reduced distortion sensitivity

    Science.gov (United States)

    Wisniewski, K.; Turska, E.

    2017-11-01

    The 9-node quadrilateral shell element MITC9i is developed for the Reissner-Mindlin shell kinematics, the extended potential energy and Green strain. The following features of its formulation ensure an improved behavior: 1. The MITC technique is used to avoid locking, and we propose improved transformations for bending and transverse shear strains, which render that all patch tests are passed for the regular mesh, i.e. with straight element sides and middle positions of midside nodes and a central node. 2. To reduce shape distortion effects, the so-called corrected shape functions of Celia and Gray (Int J Numer Meth Eng 20:1447-1459, 1984) are extended to shells and used instead of the standard ones. In effect, all patch tests are passed additionally for shifts of the midside nodes along straight element sides and for arbitrary shifts of the central node. 3. Several extensions of the corrected shape functions are proposed to enable computations of non-flat shells. In particular, a criterion is put forward to determine the shift parameters associated with the central node for non-flat elements. Additionally, the method is presented to construct a parabolic side for a shifted midside node, which improves accuracy for symmetric curved edges. Drilling rotations are included by using the drilling Rotation Constraint equation, in a way consistent with the additive/multiplicative rotation update scheme for large rotations. We show that the corrected shape functions reduce the sensitivity of the solution to the regularization parameter γ of the penalty method for this constraint. The MITC9i shell element is subjected to a range of linear and non-linear tests to show passing the patch tests, the absence of locking, very good accuracy and insensitivity to node shifts. It favorably compares to several other tested 9-node elements.

  12. Nucleus Accumbens Core and Shell Differentially Encode Reward-Associated Cues after Reinforcer Devaluation.

    Science.gov (United States)

    West, Elizabeth A; Carelli, Regina M

    2016-01-27

    Nucleus accumbens (NAc) neurons encode features of stimulus learning and action selection associated with rewards. The NAc is necessary for using information about expected outcome values to guide behavior after reinforcer devaluation. Evidence suggests that core and shell subregions may play dissociable roles in guiding motivated behavior. Here, we recorded neural activity in the NAc core and shell during training and performance of a reinforcer devaluation task. Long-Evans male rats were trained that presses on a lever under an illuminated cue light delivered a flavored sucrose reward. On subsequent test days, each rat was given free access to one of two distinctly flavored foods to consume to satiation and were then immediately tested on the lever pressing task under extinction conditions. Rats decreased pressing on the test day when the reinforcer earned during training was the sated flavor (devalued) compared with the test day when the reinforcer was not the sated flavor (nondevalued), demonstrating evidence of outcome-selective devaluation. Cue-selective encoding during training by NAc core (but not shell) neurons reliably predicted subsequent behavioral performance; that is, the greater the percentage of neurons that responded to the cue, the better the rats suppressed responding after devaluation. In contrast, NAc shell (but not core) neurons significantly decreased cue-selective encoding in the devalued condition compared with the nondevalued condition. These data reveal that NAc core and shell neurons encode information differentially about outcome-specific cues after reinforcer devaluation that are related to behavioral performance and outcome value, respectively. Many neuropsychiatric disorders are marked by impairments in behavioral flexibility. Although the nucleus accumbens (NAc) is required for behavioral flexibility, it is not known how NAc neurons encode this information. Here, we recorded NAc neurons during a training session in which rats

  13. Amino acid racemization dating of marine shells: A mound of possibilities

    Science.gov (United States)

    Demarchi, Beatrice; Williams, Matt G.; Milner, Nicky; Russell, Nicola; Bailey, Geoff; Penkman, Kirsty

    2011-01-01

    Shell middens are one of the most important and widespread indicators for human exploitation of marine resources and occupation of coastal environments. Establishing an accurate and reliable chronology for these deposits has fundamental implications for understanding the patterns of human evolution and dispersal. This paper explores the potential application of a new methodology of amino acid racemization (AAR) dating of shell middens and describes a simple protocol to test the suitability of different molluscan species. This protocol provides a preliminary test for the presence of an intracrystalline fraction of proteins (by bleaching experiments and subsequent heating at high temperature), checking the closed system behaviour of this fraction during diagenesis. Only species which pass both tests can be considered suitable for further studies to obtain reliable age information. This amino acid geochronological technique is also applied to midden deposits at two latitudinal extremes: Northern Scotland and the Southern Red Sea. Results obtained in this study indicate that the application of this new method of AAR dating of shells has the potential to aid the geochronological investigation of shell mounds in different areas of the world. PMID:21776187

  14. Stability of core-shell nanowires in selected model solutions

    Science.gov (United States)

    Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.

    2015-03-01

    This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.

  15. Shell Scripting Expert Recipes for Linux, Bash and more

    CERN Document Server

    Parker, Steve

    2011-01-01

    A compendium of shell scripting recipes that can immediately be used, adjusted, and applied The shell is the primary way of communicating with the Unix and Linux systems, providing a direct way to program by automating simple-to-intermediate tasks. With this book, Linux expert Steve Parker shares a collection of shell scripting recipes that can be used as is or easily modified for a variety of environments or situations. The book covers shell programming, with a focus on Linux and the Bash shell; it provides credible, real-world relevance, as well as providing the flexible tools to get started

  16. Control of Compact-Toroid Characteristics by External Copper Shell

    Science.gov (United States)

    Matsumoto, T.; Sekiguchi, J.; Asai, T.; Gota, H.; Roche, T.; Allfrey, I.; Cordero, M.; Garate, E.; Kinley, J.; Valentine, T.; Waggoner, W.; the TAE Team

    2015-11-01

    A collaborative research project by Tri Alpha Energy and Nihon University has been conducted for several years, which led to the development of a new compact toroid (CT) injector for efficient FRC particle refueling in the C-2U experiment. The CT is formed by a magnetized coaxial plasma gun (MCPG), consisting of coaxial cylindrical electrodes. In CT formation via MCPG, the magnetic helicity content of the generated CT is one of the critical parameters. A bias coil is inserted into the inner electrode to generate a poloidal flux. The resultant bias magnetic field is spread out of MCPG with time due to its low-frequency bias current. To obtain a more effectively distributed bias magnetic field as well as to improve the voltage breakdown between electrodes, the MCPG incorporates a novel ~ 1 mm thick copper shell mounted outside of the outer electrode. This allows for reliable and controlled operation and more robust CT generation. A detailed discussion of the copper shell and experimental test results will be presented.

  17. A Comparative Study of Cellulose Agricultural Wastes (Almond Shell, Pistachio Shell, Walnut Shell, Tea Waste And Orange Peel) for Adsorption of Violet B Dye from Aqueous Solutions

    OpenAIRE

    Saeedeh Hashemian

    2014-01-01

    Adsorption of violet B azo dye from aqueous solutions was studied by different cellulose agriculturalwaste materials (almond shell (AS), pistachio shell (PS), walnut shell (WS), Tea waste (TW) and orange peel (OP)). Cellulose agricultural waste sorbents characterized by FTIR and SEM methods. The effects of different parameters such as contact time, pH, adsorbent dosage and initial dye concentration were studied.Maximum removal of dye was obtained at contact time of 90 min and pH 11.The adsorp...

  18. Ground state instabilities of protein shells are eliminated by buckling.

    Science.gov (United States)

    Singh, Amit R; Perotti, Luigi E; Bruinsma, Robijn F; Rudnick, Joseph; Klug, William S

    2017-11-15

    We propose a hybrid discrete-continuum model to study the ground state of protein shells. The model allows for shape transformation of the shell and buckling transitions as well as the competition between states with different symmetries that characterize discrete particle models with radial pair potentials. Our main results are as follows. For large Föppl-von Kármán (FvK) numbers the shells have stable isometric ground states. As the FvK number is reduced, shells undergo a buckling transition resembling that of thin-shell elasticity theory. When the width of the pair potential is reduced below a critical value, then buckling coincides with the onset of structural instability triggered by over-stretched pair potentials. Chiral shells are found to be more prone to structural instability than achiral shells. It is argued that the well-width appropriate for protein shells lies below the structural instability threshold. This means that the self-assembly of protein shells with a well-defined, stable structure is possible only if the bending energy of the shell is sufficiently low so that the FvK number of the assembled shell is above the buckling threshold.

  19. Monte Carlo simulations of nematic and chiral nematic shells.

    Science.gov (United States)

    Wand, Charlie R; Bates, Martin A

    2015-01-01

    We present a systematic Monte Carlo simulation study of thin nematic and cholesteric shells with planar anchoring using an off-lattice model. The results obtained using the simple model correspond with previously published results for lattice-based systems, with the number, type, and position of defects observed dependent on the shell thickness with four half-strength defects in a tetrahedral arrangement found in very thin shells and a pair of defects in a bipolar (boojum) configuration observed in thicker shells. A third intermediate defect configuration is occasionally observed for intermediate thickness shells, which is stabilized in noncentrosymmetric shells of nonuniform thickness. Chiral nematic (cholesteric) shells are investigated by including a chiral term in the potential. Decreasing the pitch of the chiral nematic leads to a twisted bipolar (chiral boojum) configuration with the director twist increasing from the inner to the outer surface.

  20. Cloaking by shells with radially inhomogeneous anisotropic permittivity.

    Science.gov (United States)

    Reshetnyak, V Yu; Pinkevych, I P; Sluckin, T J; Evans, D R

    2016-01-25

    We model electromagnetic cloaking of a spherical or cylindrical nanoparticle enclosed by an optically anisotropic and optically inhomogeneous symmetric shell, by examining its electric response in a quasi-static uniform electric field. When the components of the shell permittivity are radially anisotropic and power-law dependent (ε~r(m)) whereris distance to the shell center, and m a positive or negative exponent which can be varied), the problem is analytically tractable. Formulas are calculated for the degree of cloaking in the general case, allowing the determination of a dielectric condition for the shells to be used as an invisibility cloak. Ideal cloaking is known to require that homogeneous shells exhibit an infinite ratio of tangential and radial components of the shell permittivity, but for radially inhomogeneous shells ideal cloaking can occur even for finite values of this ratio.

  1. Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures.

    Science.gov (United States)

    Li, Jingfa; Wang, Jiazhao; Liang, Xin; Zhang, Zhijia; Liu, Huakun; Qian, Yitai; Xiong, Shenglin

    2014-01-08

    We present a general strategy to synthesize uniform MnCo2O4 submicrospheres with various hollow structures. By using MnCo-glycolate submicrospheres as the precursor with proper manipulation of ramping rates during the heating process, we have fabricated hollow MnCo2O4 submicrospheres with multilevel interiors, including mesoporous spheres, hollow spheres, yolk-shell spheres, shell-in-shell spheres, and yolk-in-double-shell spheres. Interestingly, when tested as anode materials in lithium ion batteries, the MnCo2O4 submicrospheres with a yolk-shell structure showed the best performance among these multilevel interior structures because these structures can not only supply a high contact area but also maintain a stable structure.

  2. Interface Fracture in Adhesively Bonded Shell Structures

    DEFF Research Database (Denmark)

    Jensen, Henrik Myhre

    2007-01-01

    Two methods for the prediction of crack propagation through the interface of adhesively bonded shells are discussed. One is based on a fracture mechanics approach; the other is based on a cohesive zone approach. Attention is focussed on predicting the shape of the crack front and the critical...... stress required to propagate the crack under quasi-static conditions. The fracture mechanical model is theoretically sound and it is accurate and numerically stable. The cohesive zone model has some advantages over the fracture mechanics based model. It is easier to generalise the cohesive zone model...... to take into account effects such as plastic deformation in the adhering shells, and to take into account effects of large local curvatures of the interface crack front. The comparison shows a convergence of the results based on the cohesive zone model towards the results based on a fracture mechanics...

  3. Gravity and On-Shell Probe Actions

    CERN Document Server

    Ferrari, Frank

    2016-08-08

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including \\alpha'-corrections.

  4. Gravity and on-shell probe actions

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Frank [Université libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique,Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium); Theoretical Physics Department, CERN,CH-1211 Genève (Switzerland); Rovai, Antonin [Département de Physique Théorique, Université de Genève,24, quai Ansermet, CH-1211 Genève 4 (Switzerland); Université libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique,Campus de la Plaine, CP 231, B-1050 Bruxelles (Belgium); Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,Theresienstrasse 37, D-80333 München (Germany)

    2016-08-08

    In any gravitational theory and in a wide class of background space-times, we argue that there exists a simple, yet profound, relation between the on-shell Euclidean gravitational action and the on-shell Euclidean action of probes. The probes can be, for instance, charged particles or branes. The relation is tightly related to the thermodynamic nature of gravity. We provide precise checks of the relation in several examples, which include both asymptotically flat and asymptotically AdS space-times, with particle, D-brane and M-brane probes. Perfect consistency is found in all cases, including in a highly non-trivial example including α{sup ′}-corrections.

  5. Spherical nematic shells with a threefold valence

    Science.gov (United States)

    Koning, Vinzenz; Lopez-Leon, Teresa; Darmon, Alexandre; Fernandez-Nieves, Alberto; Vitelli, V.

    2016-07-01

    We present a theoretical study of the energetics of thin nematic shells with two charge-one-half defects and one charge-one defect. We determine the optimal arrangement: the defects are located on a great circle at the vertices of an isosceles triangle with angles of 66∘ at the charge-one-half defects and a distinct angle of 48∘, consistent with experimental findings. We also analyze thermal fluctuations around this ground state and estimate the energy as a function of thickness. We find that the energy of the three-defect shell is close to the energy of other known configurations having two charge-one and four charge-one-half defects. This finding, together with the large energy barriers separating one configuration from the others, explains their observation in experiments as well as their long-time stability.

  6. Shell model calculations for exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.A. (Michigan State Univ., East Lansing, MI (USA)); Warburton, E.K. (Brookhaven National Lab., Upton, NY (USA)); Wildenthal, B.H. (New Mexico Univ., Albuquerque, NM (USA). Dept. of Physics and Astronomy)

    1990-02-01

    In this paper we review the progress of the shell-model approach to understanding the properties of light exotic nuclei (A < 40). By shell-model'' we mean the consistent and large-scale application of the classic methods discussed, for example, in the book of de-Shalit and Talmi. Modern calculations incorporate as many of the important configurations as possible and make use of realistic effective interactions for the valence nucleons. Properties such as the nuclear densities depend on the mean-field potential, which is usually separately from the valence interaction. We will discuss results for radii which are based on a standard Hartree-Fock approach with Skyrme-type interactions.

  7. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  8. Shell architecture and its relation to shell occupation by the hermit crab Clibanarius antillensis under different wave action conditions

    Directory of Open Access Journals (Sweden)

    Araceli Argüelles

    2009-12-01

    Full Text Available We studied the intertidal hermit crab Clibanarius antillensis at Montepio Beach, Veracruz, Mexico, to determine whether architecture and weight of occupied shells varied with the degree of exposure to wave action. Data on shell use were obtained from 30-m transects perpendicular to the shoreline. The gastropod shells species used by C. antillensis were classified into four groups according to their morphology: neritiform, conical, turriculate, and turbinate. Neither the size nor the weight of hermit crabs varied along transects. A pattern showing differential use of shell type according to water velocity was detected. Neritiform and turriculate shells were the least occupied, and their abundance decreased with increasing water velocities. Conical and turbinate shells were the most used and their presence increased with increasing water velocities. Turbinate and conical shells are heavier and have a higher weight/exposed-area ratio than neritiform and turriculate shells, so using them at higher energy sites seems to be more advantageous than using turriculate shells. The pattern that emerges is one in which C. antillensis occupy different shells along the intertidal transect, probably due to the advantages that different shells may bring, such as minimising drag and the risk of dislodgement.

  9. Traditional utilization and biochemical composition of six mollusc shells in Nigeria

    Directory of Open Access Journals (Sweden)

    Ademolu Kehinde O.

    2015-06-01

    Full Text Available The shells of molluscs protect them from physical damage, predators and dehydration. We studied various local uses of shells and their biochemical properties in Abeokuta, Nigeria. A standard structured questionnaire about use was applied to 100 snail and herb sellers and shells from 120 adult individuals of Archachatina marginata, Achatina achatina, Achatina fulica, Littorina littorea, Meretrix lusoria and Merceneria mercenaria were evaluated for their mineral components (Ca2+, Fe2+, Mg2+, Na+, Zn+, P+, K+ and proximate composition (crude protein, ash, fibre, crude fat and carbohydrate using standard methods. Properties against fungi and bacteria isolates were also tested. These shells are used for bleaching, brushing, abrasion and others. The weight of the shells varied from 0.5g (L. littorea to 25.00g (A. marginata and thickness from 0.46mm in M .lusoria to 5.35mm in M. mercenaria. We found no inhibitory effect against fungi and bacterial isolates. The molluscs are high in carbohydrates (83.54-92.76g/100g and low in protein (0.16-0.38g/100g. The fat content ranged between 0.42g/100g and 0.82g/100g, and ash between 2.14g/100g and 9.45g/100g. Ca2+ was the most abundant (10.25-96.35mg/g while K+ was the least abundant (0.3-0.7mg/g (p<0.05. Active ingredients of these shells can be used in the feed and construction industries.

  10. Ancient shell industry at Bet Dwarka island

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A.S.; Sundaresh; Patankar, V.

    picked up by the fishermen till recently. This article discusses the importance of shell artifacts recovered d uring the excavation at Bet Dwarka Island and their significance in dating of an archae o logical site. Keywords: Bet Dwarka, Chank... ? 3640) and 1910 ? 80 (cal. 1950 ? 1730) yrs BP . They are in agreement with the archae o- logical findings. The oldest date came from a late Harappan site (BDK - VI), which is generally dated between 19th and 14th century BC . Similarly...

  11. Jess, the Java expert system shell

    Energy Technology Data Exchange (ETDEWEB)

    Friedman-Hill, E.J.

    1997-11-01

    This report describes Jess, a clone of the popular CLIPS expert system shell written entirely in Java. Jess supports the development of rule-based expert systems which can be tightly coupled to code written in the powerful, portable Java language. The syntax of the Jess language is discussed, and a comprehensive list of supported functions is presented. A guide to extending Jess by writing Java code is also included.

  12. Doehlert uniform shell designs and chromatography.

    Science.gov (United States)

    Araujo, Pedro; Janagap, Steve

    2012-12-01

    The principles of the Doehlert uniform shell designs (aka Doehlert designs) and their importance in the context of chromatography are discussed. The confidence of different models generated by Doehlert designs is studied by means of the uncertainty of the experimental points. The article provides an overview of analytical applications in chromatography with focus on single and coupled techniques and also discusses some reported blunders regarding Doehlert designs. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Quantum corrected Schwarzschild thin-shell wormhole

    OpenAIRE

    Jusufi, Kimet

    2016-01-01

    Recently, Ali and Khalil (Nucl Phys B, 909, 173–185, 2016 ), based on Bohmian quantum mechanics, derived a quantum corrected version of the Schwarzschild metric. In this paper, we construct a quantum corrected Schwarzschild thin-shell wormhole (QSTSW) and investigate the stability of this wormhole. First we compute the surface stress at the wormhole throat by applying the Darmois–Israel formalism to the modified Schwarzschild metric and show that exotic matter is required at the throat to kee...

  14. Invertebrate shells (mollusca, foraminifera) as pollution indicators, Red Sea Coast, Egypt

    Science.gov (United States)

    Youssef, Mohamed; Madkour, Hashem; Mansour, Abbas; Alharbi, Wedad; El-Taher, Atef

    2017-09-01

    To assess the degree of pollution and its impact on the environment along the Red Sea Coast, the most abundant nine species of recent benthic foraminifera and three species of molluscan shells have been selected for the analysis of Fe, Mn, Zn, Cu, Pb, Ni, Co, and Cd concentrations. The selected foraminiferal species are: Textularia agglutinans, Amphispsorus hemprichii, Sorites marginalis, Peneroplis planatus, Borelis schlumbergeri, Amphistegina lessonii, Ammonia beccarii, Operculina gaimairdi, and Operculinella cumingii. The selected molluscan shells are: Lambis truncata and Strombus tricornis (gastropods) and Tridacana gigas (bivalves). The inorganic material analysis of foraminifera and molluscs from the Quseir and Safaga harbors indicates that foraminifera tests include higher concentrations of heavy metals such as Fe and Mn than molluscan shells. These results are supported by the black tests of porcelaneous foraminifera and reflect iron selectivity. The Cd and Pb concentrations in molluscan shells are high in the El Esh Area because of oil pollution at this site. The Cu, Zn, and Ni concentrations in the studied invertebrates are high at Quseir Harbor and in the El Esh Area because of the strong influence of terrigenous materials that are rich in these metals. The heavy metal contamination is mostly attributed to anthropogenic sources.

  15. Application of Flame-Retardant Double-Layered Shell Microcapsules to Nonwoven Polyester

    Directory of Open Access Journals (Sweden)

    Chloé Butstraen

    2016-07-01

    Full Text Available A microencapsulated flame retardant was used in order to produce a flame retardant nonwoven substrate. Melamine-formaldehyde polymer-shell microcapsules, containing Afflamit® PLF 280 (resorcinol bis(diphenyl phosphate as the core substance, were coated by an outer thermoplastic wall (polystyrene (PS or poly(methyl methacrylate, before being applied to a core/sheet-type bi-component PET/co-PET spunbond nonwoven substrate using impregnation. The outer wall of the microcapsules was heated to the softening temperature of the thermoplastic shell in order to be bonded onto the textile fibres. The thermal stability of the microcapsules was examined using thermogravimetric analysis. The textile samples were observed with a scanning electron microscope, and the flame retardancy performance was evaluated using the NF P92-504 standard. The results show that the composition of the outer polymeric shell affected the thermal stability of the microcapsules, since the particles with a PS shell are more stable. Furthermore, the microcapsules were more located at the nonwoven surface without affecting the thickness of the samples. Based on the results of the NF P92-504 test, the flame spread rate was relatively low for all of the tested formulations. Only the formulation with a low content of PS was classified M2 while the others were M3.

  16. Thermoelastoplastic deformation of noncircular cylindrical shells

    Science.gov (United States)

    Merzlyakov, V. A.

    2008-08-01

    A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed

  17. Dust Shells around OH/IR Stars

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    1988-12-01

    Full Text Available We have made new models for mass-losing OH/IR stars to explain the properties of the dust shells around them using more accurate information about the material in the shell and the physical processes including pulsations. We have applied our dust opacity which has been deduced from observations and experimental data to various density distributions, calculated the model emergent spectra, and compared with observations. Contrary to previous suggestions, we could fit observations fairly well using density distribution ρ∝r-2, which is physically plausible, with proper choice of opacities. The time scales for dust formation, growth, and movement are calculated to be compared with pulsation periods. The change of the emergent spectrum depending of the phase of pulsation can be explained fairly well by changing dust condensation radius(for fixed dust condensation temperature in step with the change in stellar luminosity. The effects of stellar wind models and pulsation models on dust shells with attention to emergent spectra are discussed.

  18. Atomic force microscopy of virus shells.

    Science.gov (United States)

    Moreno-Madrid, Francisco; Martín-González, Natalia; Llauró, Aida; Ortega-Esteban, Alvaro; Hernando-Pérez, Mercedes; Douglas, Trevor; Schaap, Iwan A T; de Pablo, Pedro J

    2017-04-15

    Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  19. Fossorial Origin of the Turtle Shell.

    Science.gov (United States)

    Lyson, Tyler R; Rubidge, Bruce S; Scheyer, Torsten M; de Queiroz, Kevin; Schachner, Emma R; Smith, Roger M H; Botha-Brink, Jennifer; Bever, G S

    2016-07-25

    The turtle shell is a complex structure that currently serves a largely protective function in this iconically slow-moving group [1]. Developmental [2, 3] and fossil [4-7] data indicate that one of the first steps toward the shelled body plan was broadening of the ribs (approximately 50 my before the completed shell [5]). Broadened ribs alone provide little protection [8] and confer significant locomotory [9, 10] and respiratory [9, 11] costs. They increase thoracic rigidity [8], which decreases speed of locomotion due to shortened stride length [10], and they inhibit effective costal ventilation [9, 11]. New fossil material of the oldest hypothesized stem turtle, Eunotosaurus africanus [12] (260 mya) [13, 14] from the Karoo Basin of South Africa, indicates the initiation of rib broadening was an adaptive response to fossoriality. Similar to extant fossorial taxa [8], the broad ribs of Eunotosaurus provide an intrinsically stable base on which to operate a powerful forelimb digging mechanism. Numerous fossorial correlates [15-17] are expressed throughout Eunotosaurus' skeleton. Most of these features are widely distributed along the turtle stem and into the crown clade, indicating the common ancestor of Eunotosaurus and modern turtles possessed a body plan significantly influenced by digging. The adaptations related to fossoriality likely facilitated movement of stem turtles into aquatic environments early in the groups' evolutionary history, and this ecology may have played an important role in stem turtles surviving the Permian/Triassic extinction event. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Electron spin resonance dating of shells from the sambaqui (shell mound) Capelinha, Sao Paulo, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, A. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica; Universidade do Sagrado Coracao, Bauru, SP (Brazil); Figuty, L. [Sao Paulo Univ., SP (Brazil). Museu de Arqueologia e Etnologia. Setor de Arqueologia; Baffa, O. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2006-03-15

    Capelinha is a fluvial sambaqui (Brazilian Shell Mound) located in the Ribeira Valley in the State of Sao Paulo that is being studied. It is one of the oldest sambaquis located along a river dated so far in this region. The use of ESR to date other shells stimulated our group to apply this method to the Capelinha site. Shells from land snails (Megalobulimus sp.) obtained in two levels of excavations were analyzed; one of them was in contact with a skeleton that was dated by C-14. The archaeological doses obtained were (8.05{+-}0.07) Gy and (9.50{+-}0.03) Gy. Since the last site was previously dated by C-14 (Beta -Analytics, Beta 153988) giving: 8860 +/- 60 years BP (conventional age) and 10180 to 9710 years BP (calibrated age), the archaeological dose found for this shell was used to determine the local rate of (0.93 to 0.98) mGy/year, that aggress with other surveys done in the region. Using this dose rate the age of the second shell was found to be 8.14 to 8.73 ky BP that agrees with the stratigraphy of the site. (author)

  1. Oxide Shell Reduction and Magnetic Property Changes in Core-Shell Fe Nanoclusters under Ion Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Sundararajan, Jennifer A.; Kaur, Maninder; Jiang, Weilin; McCloy, John S.; Qiang, You

    2014-02-12

    Ion irradiation effects are studied on the Fe-based core-shell nanocluster (NC) films with core as Fe and shell as Fe3O4/FeO. These NC films were were deposited on Si substrates to thickness of ~0.5 micrometers using a NC deposition system. The films were irradiated at room temperature with 5.5 MeV Si2+ ions to ion fluences of 1015 and 1016 ions/cm2. It is found that the irradiation induces grain growth, Fe valence reduction in the shell, and crystallization of Fe3N. The nature and mechanism of oxide shell reduction and composition dependence after irradiation were studied by synthesizing additional NC films of Fe3O4 and FeO+Fe3N and irradiating them under the same conditions. The presence of nanocrystalline Fe is found to be a major factor for the oxide shell reduction. The surface morphologies of these films show dramatic changes in the microstructures due to cluster growth and agglomeration as a result of ion irradiation.

  2. Signatures of shell evolution in alpha decay across the N = 126 shell closure

    Science.gov (United States)

    Rui-Wang; Wang, Rui-Yao; Qian, Yi-Bin; Ren, Zhong-Zhou

    2017-06-01

    Within the alpha-cluster model, we particularly investigate the alpha decay of exotic nuclei in the vicinity of the N = 126 neutron shell plus the Z = 82 proton shell. The systematics of alpha-preformation probability (P α ), as an indicator of the shell effect, is deduced from the ratio of the experimental decay width to the calculated one. Through the comparative analysis of the P α trend in the N = 124-130 isotonic chain, the N = 126 and Z = 82 shell closures are believed to strongly affect the formation of the alpha particle before its penetration. Additionally, the P α variety in Po and Rn isotopes is presented as another proof for such an influence. More importantly, it may be concluded that the expected neutron (or proton) shell effect gradually fades away along with the increasing valence proton (or neutron) number. The odd-even staggering presented in the P α value is also discussed. Supported by National Natural Science Foundation of China (11375086, 11535004, 11605089, 11120101005), Natural Science Youth Fund of Jiangsu Province (BK20150762), Fundamental Research Funds for the Central Universities (30916011339), 973 National Major State Basic Research and Development Program of China (2013CB834400), and a Project Funded by the Priority Academic Programme Development of JiangSu Higher Education Institutions (PAPD)

  3. Switching closed-shell to open-shell phenalenyl: toward designing electroactive materials.

    Science.gov (United States)

    Pariyar, Anand; Vijaykumar, Gonela; Bhunia, Mrinal; Dey, Suman Kr; Singh, Santosh K; Kurungot, Sreekumar; Mandal, Swadhin K

    2015-05-13

    Open-shell phenalenyl chemistry started more than half a century back, and the first solid-state phenalenyl radical was realized only 15 years ago highlighting the synthetic challenges associated in stabilizing carbon-based radical chemistry, though it has great promise as building blocks for molecular electronics and multifunctional materials. Alternatively, stable closed-shell phenalenyl has tremendous potential as it can be utilized to create an in situ open-shell state by external spin injection. In the present study, we have designed a closed-shell phenalenyl-based iron(III) complex, Fe(III)(PLY)3 (PLY-H = 9-hydroxyphenalenone) displaying an excellent electrocatalytic property as cathode material for one compartment membraneless H2O2 fuel cell. The power density output of Fe(III)(PLY)3 is nearly 15-fold higher than the structurally related model compound Fe(III)(acac)3 (acac = acetylacetonate) and nearly 140-fold higher than an earlier reported mononuclear Fe(III) complex, Fe(III)(Pc)Cl (Pc = pthalocyaninate), highlighting the role of switchable closed-shell phenalenyl moiety for electron-transfer process in designing electroactive materials.

  4. Determination of the bending and buckling effect in the stress analysis of shell structures accessible from one side only

    Science.gov (United States)

    Dose, A

    1941-01-01

    The present report describes a device for ascertaining the bending and buckling effect in stress measurements on shell structures accessible from one side only. Beginning with a discussion of the relationship between flexural strain and certain parameters, the respective errors of the test method for great or variable skin curvature within the test range are analyzed and illustrated by specimen example.

  5. VERIFICATION TEST PROBLEMS

    Energy Technology Data Exchange (ETDEWEB)

    Moran, B

    2007-08-08

    We present analytic solutions to two test problems that can be used to check the hydrodynamic implementation in computer codes designed to calculate the propagation of shocks in spherically convergent geometry. Our analysis is restricted to fluid materials with constant bulk modulus. In the first problem we present the exact initial acceleration and pressure gradient at the outer surface of a sphere subjected to an exponentially decaying pressure of the form P(t) = P{sub 0}e{sup -at}. We show that finely-zoned hydro-code simulations are in good agreement with our analytic solution. In the second problem we discuss the implosions of incompressible spherical fluid shells and we present the radial pressure profile across the shell thickness. We also discuss a semi-analytic solution to the time-evolution of a nearly spherical shell with arbitrary but small initial 3-dimensional (3-D) perturbations on its inner and outer surfaces.

  6. Expression of cardiac proteins in neonatal cardiomyocytes on PGS/fibrinogen core/shell substrate for Cardiac tissue engineering.

    Science.gov (United States)

    Ravichandran, Rajeswari; Venugopal, Jayarama Reddy; Sundarrajan, Subramanian; Mukherjee, Shayanti; Sridhar, Radhakrishnan; Ramakrishna, Seeram

    2013-08-20

    Heart failure due to myocardial infarction remains the leading cause of death worldwide owing to the inability of myocardial tissue regeneration. The aim of this study is to develop a core/shell fibrous cardiac patch having desirable mechanical properties and biocompatibility to engineer the infarcted myocardium. We fabricated poly(glycerol sebacate)/fibrinogen (PGS/fibrinogen) core/shell fibers with core as elastomeric PGS provides suitable mechanical properties comparable to that of native tissue and shell as fibrinogen to promote cell-biomaterial interactions. The PGS/fibrinogen core/shell fibers and fibrinogen nanofibers were characterized by SEM, contact angle and tensile testing to analyze the fiber morphology, wettability, and mechanical properties of the scaffold. The cell-scaffold interactions were analyzed using isolated neonatal cardiomyocytes for cell proliferation, confocal analysis for the expression of marker proteins α-actinin, Troponin-T, β-myosin heavy chain and connexin 43 and SEM analysis for cell morphology. We observed PGS/fibrinogen core/shell fibers had a Young's modulus of about 3.28 ± 1.7 MPa, which was comparable to that of native myocardium. Neonatal cardiomyocytes cultured on these scaffolds showed normal expression of cardiac specific marker proteins α-actinin, Troponin, β-myosin heavy chain and connexin 43 to prove PGS/fibrinogen core/shell fibers have potential for cardiac tissue engineering. Results indicated that neonatal cardiomyocytes formed predominant gap junctions and expressed cardiac specific marker proteins on PGS/fibrinogen core/shell fibers compared to fibrinogen nanofibers, indicating PGS/fibrinogen core/shell fibers may serve as a suitable cardiac patch for the regeneration of infarcted myocardium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Waltzing route toward double-helix formation in cholesteric shells

    Science.gov (United States)

    Darmon, Alexandre; Benzaquen, Michael; Seč, David; Čopar, Simon; Dauchot, Olivier; Lopez-Leon, Teresa

    2016-01-01

    Liquid crystals, when confined to a spherical shell, offer fascinating possibilities for producing artificial mesoscopic atoms, which could then self-assemble into materials structured at a nanoscale, such as photonic crystals or metamaterials. The spherical curvature of the shell imposes topological constraints in the molecular ordering of the liquid crystal, resulting in the formation of defects. Controlling the number of defects, that is, the shell valency, and their positions, is a key success factor for the realization of those materials. Liquid crystals with helical cholesteric order offer a promising, yet unexplored way of controlling the shell defect configuration. In this paper, we study cholesteric shells with monovalent and bivalent defect configurations. By bringing together experiments and numerical simulations, we show that the defects appearing in these two configurations have a complex inner structure, as recently reported for simulated droplets. Bivalent shells possess two highly structured defects, which are composed of a number of smaller defect rings that pile up through the shell. Monovalent shells have a single radial defect, which is composed of two nonsingular defect lines that wind around each other in a double-helix structure. The stability of the bivalent configuration against the monovalent one is controlled by c = h/p, where h is the shell thickness and p the cholesteric helical pitch. By playing with the shell geometry, we can trigger the transition between the two configurations. This transition involves a fascinating waltz dynamics, where the two defects come closer while turning around each other. PMID:27493221

  8. Layer-by-Layer Proteomic Analysis of Mytilus galloprovincialis Shell.

    Directory of Open Access Journals (Sweden)

    Peng Gao

    Full Text Available Bivalve shell is a biomineralized tissue with various layers/microstructures and excellent mechanical properties. Shell matrix proteins (SMPs pervade and envelop the mineral crystals and play essential roles in biomineralization. Despite that Mytilus is an economically important bivalve, only few proteomic studies have been performed for the shell, and current knowledge of the SMP set responsible for different shell layers of Mytilus remains largely patchy. In this study, we observed that Mytilus galloprovincialis shell contained three layers, including nacre, fibrous prism, and myostracum that is involved in shell-muscle attachment. A parallel proteomic analysis was performed for these three layers. By combining LC-MS/MS analysis with Mytilus EST database interrogations, a whole set of 113 proteins was identified, and the distribution of these proteins in different shell layers followed a mosaic pattern. For each layer, about a half of identified proteins are unique and the others are shared by two or all of three layers. This is the first description of the protein set exclusive to nacre, myostracum, and fibrous prism in Mytilus shell. Moreover, most of identified proteins in the present study are novel SMPs, which greatly extended biomineralization-related protein data of Mytilus. These results are useful, on one hand, for understanding the roles of SMPs in the deposition of different shell layers. On the other hand, the identified protein set of myostracum provides candidates for further exploring the mechanism of adductor muscle-shell attachment.

  9. Ants as shell collectors: notes on land snail shells found around ant nests

    Directory of Open Access Journals (Sweden)

    Barna Páll-Gergely

    2009-03-01

    Full Text Available We investigated the shell collecting activities of harvester ants (Messor spp. in semi-arid grasslands and shrubs in Turkey. We found eleven species of snails in the area, two of them were not collected by ants. Eight – mainly small sized – snail species were found on ant nests in a habitat characterized by shrubs, three in rocky grassland and four in a grassland habitat. Some shells (e.g. Chondrus zebrula tantalus, Multidentula ovularis might be taken into the nests, and we hypothesise that some of these snail species are consumed by ants (Monacha spp.. From a fauna inventory perspective, shell collecting activities of harvester ant may help malacologists to find snail species which are normally hidden for a specialist (e.g. Oxychilus hydatinus, Cecilioides spp. due to their special habits.

  10. Effects of Shell-Buckling Knockdown Factors in Large Cylindrical Shells

    Science.gov (United States)

    Hrinda, Glenn A.

    2012-01-01

    Shell-buckling knockdown factors (SBKF) have been used in large cylindrical shell structures to account for uncertainty in buckling loads. As the diameter of the cylinder increases, achieving the manufacturing tolerances becomes increasingly more difficult. Knockdown factors account for manufacturing imperfections in the shell geometry by decreasing the allowable buckling load of the cylinder. In this paper, large-diameter (33 ft) cylinders are investigated by using various SBKF's. An investigation that is based on finite-element analysis (FEA) is used to develop design sensitivity relationships. Different manufacturing imperfections are modeled into a perfect cylinder to investigate the effects of these imperfections on buckling. The analysis results may be applicable to large- diameter rockets, cylindrical tower structures, bulk storage tanks, and silos.

  11. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter

    2014-01-01

    The development of efficient photocatalytic routines for producing hydrogen is of great importance as society moves away from energy sources derived from fossil fuels. Recent studies have identified that the addition of metal nanoparticles to TiO2 greatly enhances the photocatalytic performance...... on photocatalytic performance remains unclear. Here we report the synthesis of core–shell structured AuPd NPs with the controlled deposition of one and two monolayers (ML) equivalent of Pd onto Au NPs by colloidal and photodeposition methods. We have determined the shell composition and thickness...... of the nanoparticles by a combination of X-ray absorption fine structure and X-ray photoelectron spectroscopy. Photocatalytic ethanol reforming showed that the core–shell structured Au–Pd promoters supported on TiO2 exhibit enhanced activity compared to that of monometallic Au and Pd as promoters, whilst the core...

  12. Mathematical Modeling of the Thermal Shell State of the Cylindrical Cryogenic Tank During Filling and Emptying

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2015-01-01

    Full Text Available Liquid hydrogen and oxygen are used as the oxidizer and fuel for liquid rocket engines. Liquefied natural gas, which is based on methane, is seen as a promising motor fuel for internal combustion engines. One of the technical problems arising from the use of said cryogenic liquid is to provide containers for storage, transport and use in the propulsion system. In the design and operation of such vessels it is necessary to have reliable information about their temperature condition, on which depend the loss of cryogenic fluids due to evaporation and the stress-strain state of the structural elements of the containers.Uneven temperature distribution along the generatrix of the cylindrical thin-walled shell of rocket cryogenic tanks, in a localized zone of cryogenic liquid level leads to a curvature of the shell and reduce the permissible axle load in a hazard shell buckling in the preparation for the start of the missile in flight with an increasing acceleration. Moving the level of the cryogenic liquid during filling or emptying the tank at a certain combination of parameters results in an increase of the local temperature distribution nonuniformity.Along with experimental study of the shell temperature state of the cryogenic container, methods of mathematical modeling allow to have information needed for designing and testing the construction of cryogenic tanks. In this study a mathematical model is built taking into account features of heat transfer in a cryogenic container, including the boiling cryogenic liquid in the inner surface of the container. This mathematical model describes the temperature state of the thin-walled shell of cylindrical cryogenic tank during filling and emptying. The work also presents a quantitative analysis of this model in case of fixed liquid level, its movement at a constant speed, and harmonic oscillations relative to a middle position. The quantitative analysis of this model has allowed to find the limit options

  13. Evaluation of sanitizers for inactivating Salmonella on in-shell pecans and pecan nutmeats.

    Science.gov (United States)

    Beuchat, Larry R; Mann, David A; Alali, Walid Q

    2012-11-01

    Chlorine, organic acids, and water extracts of inedible pecan components were tested for effectiveness in killing Salmonella on pecans. In-shell pecans and nutmeats (U.S. Department of Agriculture medium pieces) were immersion inoculated with a mixture of five Salmonella serotypes, dried to 3.7% moisture, and stored at 4°C for 3 to 6 weeks. In-shell nuts were immersed in chlorinated water (200, 400, and 1,000 μg/ml), lactic acid (0.5, 1, and 2%), and levulinic acid (0.5, 1, and 2%) with and without 0.05% sodium dodecyl sulfate (SDS), and a mixed peroxyacid sanitizer (Tsunami 200, 40 μg/ml) for up to 20 min at 21°C. The rate of reduction of free chlorine in conditioning water decreased as the ratio of in-shell nuts/water was increased. The rate of reduction was more rapid when nuts were not precleaned before treatment. The initial population of Salmonella on in-shell nuts (5.9 to 6.3 log CFU/g) was reduced by 2.8 log CFU/g after treating with chlorinated water (1,000 μg/ml). Treatment with 2% lactic acid plus SDS or 2% levulinic acid plus SDS reduced the pathogen by 3.7 and 3.4 log CFU/g, respectively. Lactic and levulinic acids (2%) without SDS were less effective (3.3- and 2.1-log CFU/g reductions, respectively) than acids with SDS. Treatment with Tsunami 200 resulted in a 2.4-log CFU/g reduction. In-shell nuts and nutmeats were immersed in water extracts of ground pecan shucks (hulls), shells, a mixture of shells and pith, and pith. The general order of lethality of extracts to Salmonella was shuck in-shell pecans before conditioning in chlorinated water and the need for sanitizers with increased effectiveness in killing Salmonella on pecans.

  14. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  15. Fabrication of composite shell structure for advanced space transportation

    Science.gov (United States)

    Penton, A. P.; Johnson, R., Jr.; Freeman, V. L.

    1978-01-01

    It is pointed out that future space missions, such as those involving spacecraft and structural assemblies to be used in geosynchronous orbits, will require ultralightweight composite structures to achieve maximum payloads. Of equal importance is the requirement to provide designs that are cost-competitive with metal designs. For space structures that must resist buckling, graphite-epoxy materials offer an attractive potential for providing lightweight, low-cost structural components that will meet future space mission requirements. A description is presented of a program which was conducted to evaluate the merits of graphite-epoxy cylindrical shells and to continue the development of a design data base for ultralightweight structures. An objective of the program was to design, fabricate, and test a corrugated graphite-epoxy cylinder 10 ft in diameter and 10 ft long.

  16. Off-Shell Interactions of Closed-String Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Dabholkar, A

    2004-04-07

    Off-shell interactions for localized closed-string tachyons in C/Z{sub N} superstring backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions between these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact interaction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic interactions or to include other fields to test the conjecture for the height of the tachyon potential.

  17. Distribution and shell selection by two hermit crabs in different habitats on Egyptian Red Sea Coast

    Science.gov (United States)

    El-Kareem Ismail, Tarek Gad

    2010-05-01

    The present work aims to assess the spatial distribution, analyze shell utilization, shell fitness and determine the effect of coexistence of two hermit crabs Calcinus latens and Clibanarius signatus on used shell resources in various habitats on the Red Sea Coast. Also, to determine the choice of shells and investigate the shell species preference of C. latens and C. signatus in the laboratory. The hermit crabs C. latens and C. signatus were found to occupy shells of 39 gastropod species. The most commonly occupied gastropod shells are those belonging to genera Strombus, Nerita, Cerithium and Planaxis. The results showed that crab individuals utilized mainly the shell with elongate aperture. Laboratory experiments showed that two crab species preferred shells of Strombus followed by Cerithium and Nerita when offered shells of nearly similar size (optimal). Crab individuals showed a significant preference for optimal sized shells when given suboptimal shells as an alternative choice. Also, the hermit crabs avoid damaged shells when given a choice of optimal sized damaged shell and optimal sized intact one. In addition, two hermit crab species chose shells of smaller than optimal size when given a choice of damaged optimal sized shells and smaller intact ones. On the other hand, field observations showed that most crab individuals lived in adequate sized shells. The present data conclude that shell selection by hermit crabs C. latens and C. signatus depends mostly on shell internal volume, shell quality and shell aperture size than other factors, because they provide a maximum protection for hermit crabs.

  18. Safety studies conducted on pecan shell fiber, a food ingredient produced from ground pecan shells

    OpenAIRE

    Laurie Dolan; Ray Matulka; Jeffrey Worn; John Nizio

    2016-01-01

    Use of pecan shell fiber in human food is presently limited, but could increase pending demonstration of safety. In a 91-day rat study, pecan shell fiber was administered at dietary concentrations of 0 (control), 50 000, 100 000 or 150 000 ppm. There was no effect of the ingredient on body weight of males or females or food consumption of females. Statistically significant increases in food consumption were observed throughout the study in 100 000 and 150 000 ppm males, resulting in intermitt...

  19. Radar attenuation in Europa's ice shell: Obstacles and opportunities for constraining the shell thickness and its thermal structure

    Science.gov (United States)

    Kalousová, Klára; Schroeder, Dustin M.; Soderlund, Krista M.

    2017-03-01

    Young surface and possible recent endogenic activity make Europa one of the most exciting solar system bodies and a primary target for spacecraft exploration. Future Europa missions are expected to carry ice-penetrating radar instruments designed to investigate its subsurface thermophysical structure. Several authors have addressed the radar sounders' performance at icy moons, often ignoring the complex structure of a realistic ice shell. Here we explore the variation in two-way radar attenuation for a variety of potential thermal structures of Europa's shell (determined by reference viscosity, activation energy, tidal heating, surface temperature, and shell thickness) as well as for low and high loss temperature-dependent attenuation model. We found that (i) for all investigated ice shell thicknesses (5-30 km), the radar sounder will penetrate between 15% and 100% of the total thickness, (ii) the maximum penetration depth varies laterally, with deepest penetration possible through cold downwellings, (iii) direct ocean detection might be possible for shells of up to 15 km thick if the signal travels through cold downwelling ice or the shell is conductive, (iv) even if the ice/ocean interface is not directly detected, penetration through most of the shell could constrain the deep shell structure through returns from deep non-ocean interfaces or the loss of signal itself, and (v) for all plausible ice shells, the two-way attenuation to the eutectic point is ≲30 dB which shows a robust potential for longitudinal investigation of the ice shell's shallow thermophysical structure.

  20. Modelling apical constriction in epithelia using elastic shell theory.

    Science.gov (United States)

    Jones, Gareth Wyn; Chapman, S Jonathan

    2010-06-01

    Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epithelial sheet as an elastic shell, which contains a surface representing the continuous mesh formed from the embedded fibres. Allowing this mesh to contract, an enhanced shell theory is developed in which the stiffness and bending tensors of the shell are modified to include the fibres' stiffness, and in which the active effects of the contraction appear as body forces in the shell equilibrium equations. Numerical examples are presented at the end, including the bending of a plate and a cylindrical shell (modelling neurulation) and the invagination of a spherical shell (modelling simple gastrulation).

  1. Design criteria of launching rockets for burst aerial shells

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahara, T.; Takishita, Y.; Onda, T.; Shibamoto, H.; Hosaya, F. [Hosaya Kako Co. Ltd (Japan); Kubota, N. [Mitsubishi Electric Corporation (Japan)

    2000-04-01

    Rocket motors attached to large-sized aerial shells are proposed to compensate for the increase in the lifting charge in the mortar and the thickness of the shell wall. The proposal is the result of an evaluation of the performance of solid propellants to provide information useful in designing launch rockets for large-size shells. The propellants composed of ammonium perchlorate and hydroxy-terminated polybutadiene were used to evaluate the ballistic characteristics such as the relationship between propellant mass and trajectories of shells and launch rockets. In order to obtain an optimum rocket design, the evaluation also included a study of the velocity and height of the rocket motor and shell separation. A launch rocket with a large-sized shell (84.5 cm in diameter) was designed to verify the effectiveness of this class of launch system. 2 refs., 6 figs.

  2. Pair of null gravitating shells: III. Algebra of Dirac's observables

    CERN Document Server

    Kouletsis, I

    2002-01-01

    The study of the two-shell system started in 'pair of null gravitating shells I and II' is continued. The pull back of the Liouville form to the constraint surface, which contains complete information about the Poisson brackets of Dirac observables, is computed in the singular double-null Eddington-Finkelstein (DNEF) gauge. The resulting formula shows that the variables conjugate to the Schwarzschild masses of the intershell spacetimes are simple combinations of the values of the DNEF coordinates on these spacetimes at the shells. The formula is valid for any number of in- and outgoing shells. After applying it to the two-shell system, the symplectic form is calculated for each component of the physical phase space; regular coordinates are found, defining it as a symplectic manifold. The symplectic transformation between the initial and final values of observables for the shell-crossing case is given.

  3. Multidisciplinary optimization of a stiffened shell by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabani, Mahdi Maghsoudi; Jafari, Ali Asghar [K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Azadi, Mohammad [Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-02-15

    Vibration analysis of simply supported rotating cross-ply laminated stiffened cylindrical shell is performed using an energy approach which includes variational and averaging method. The stiffeners include rings and stringers. The equations are obtained by Rayleigh-Ritz method and Sander's relations. To validate the present method, the results are compared to the results available in other literatures. A good adoption is observed in different type of results including isotropic shells, rotating laminated shells, stiffened isotropic shells and stiffened laminated shells. Then, the optimization of parameters due to shell and stiffeners is conducted by genetic algorithm (GA) method under weight and frequency constraints. Stiffener shape, material properties and dimensions are also optimized.

  4. Vortex shells in mesoscopic triangles of amorphous superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kokubo, N., E-mail: kokubo@uec.ac.jp [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Miyahara, H. [Department of Engineering Science, University of Electro-Communications, Cho-fugaoka 1-5-1, Cho-fu, Tokyo 182-8585 (Japan); Okayasu, S. [Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nojima, T. [Institute for Materials Research,Tohoku University, Sendai 980-8577 (Japan)

    2016-11-15

    Highlights: • Direct imaging of multi-vortex states was made in mesoscopic equilateral triangles. • Commensurate and incommensurate vortex states were observed with metastability. • Formation of triangular multiple shells with alternative vortex packing was discussed. • Occupations of vortices in triangular multiple shells are not monotonic with vorticity. • Packing sequence of triangular shells was compared with ones of square and circle shells. - Abstract: Direct observation of vortex states confined in mesoscopic regular triangle dots of amorphous Mo–Ge thin films was made with a scanning superconducting quantum interference device microscope. The observed magnetic images illustrate clearly how vortices are distributed over the triangle dots by forming not only commensurate triangular clusters, but also unique patterns imposed by incommensurability. We discuss the results in terms of vortex shells and construct the packing sequence of vortices in the multiple shell structure.

  5. Semi-analytical postbuckling strength analysis of anisotropic shell structures

    Science.gov (United States)

    Brauns, J.; Skadins, U.

    2017-10-01

    An investigation of the forms of shell buckling has been the subject of many experimental and theoretical studies. On the basis of analysing of the forms of equilibrium it is possible to determine the stability of a structure as a whole, especially if a statistical analysis is used. The numerical analysis of the shells considered is based on a semi-analytical treatment of displacement and stress field. This method is proven for static and dynamic nonlinear analysis of general shells of revolution and leads to important advantages in efficiency and accuracy compared with a common finite element analysis, especially in the case of geometrically imperfect shells. The method developed permits determination of stresses in a shell by means of an experimental deflection function. Failure criterion allows predicting the sites of fracture and maintenance of a shell upon loss of stability.

  6. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    Science.gov (United States)

    2017-09-19

    NUWC-NPT Technical Report 12,236 19 September 2017 Structural Acoustic Physics -Based Modeling of Curved Composite Shells Rachel E. Hesse...SUBTITLE Structural Acoustic Physics -Based Modeling of Curved Composite Shells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...study was to use physics -based modeling (PBM) to investigate wave propagations through curved shells that are subjected to acoustic excitation. An

  7. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  8. On the accuracy of the asymptotic theory for cylindrical shells

    DEFF Research Database (Denmark)

    Niordson, Frithiof; Niordson, Christian

    1999-01-01

    We study the accuracy of the lowest-order bending theory of shells, derived from an asymptotic expansion of the three-dimensional theory of elasticity, by comparing the results of this theory for a cylindrical shell with clamped ends with the results of a solution to the three-dimensional problem....... The results are also compared with those of some commonly used engineering shell theories....

  9. Plasmonic and Magnetically Responsive Gold ShellMagnetic Nanorod Hybrids

    Science.gov (United States)

    2017-10-10

    UV-vis spectrum of gold-seeded (orange) and gold- coated (yellow) silica–iron oxide core-shell nanoparticles produced with commercially available...spectrum of gold-seeded (orange) and gold- coated (yellow) silica–iron oxide core-shell nanoparticles produced with commercially available (left) or... coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mat Sci Eng: C. 2017;80:274–281

  10. Failure of cement-in-shell acetabular liner exchange.

    Science.gov (United States)

    Blakey, Caroline M; Biant, Leela C; Kavanagh, Thomas G; Field, Richard E

    2010-01-01

    Cement-in-shell acetabular liner exchange is a revision surgery option for cases of total hip arthroplasty (THA) with polyethylene wear where direct liner exchange is not possible. A replacement liner is cemented into a well fixed uncemented acetabular shell, avoiding the morbidity associated with acetabular shell component revision. We present a case of dissociation of an acetabular liner at the cement-liner interface, three years following liner exchange without radiographic evidence to indicate the diagnosis.

  11. Vibrations of structurally orthotropic laminated shells under thermal power loading

    Science.gov (United States)

    Kogan, E. A.; Lopanitsyn, E. A.

    2017-05-01

    On the basis of the linearized version of equations obtained in a geometrically nonlinear statement and describing the nonaxisymmetric strain of nonshallow sandwich structure orthotropic shells under thermal power loading, the Rayleigh-Ritz method with polynomial approximation of displacements and shear strains is used to solve the problem of small free vibrations of axisymmetrically thermally preloaded freely supported three-layer conical shell. The causes of dynamical fracture of the shell under study are revealed.

  12. A Solution Method for Nonlinear Dynamic Analysis of Shell Structures

    Science.gov (United States)

    1984-10-01

    continuum mechanics theory and it is applicable to the analysis of thin and thick shells. The formulation of the element and the solutions to...Linear analysis of a cylindrical ( Scordelis -Lo) shell 26 4.3 Linear analysis of a pinched cylinder 26 4.4 Large deflection analysis of a...latter approach has the advantage of being independent of any particular shell theory , and this approach was used in ref. [3] to formulate a general

  13. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Youxun Liu

    2017-01-01

    Full Text Available Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu2+ on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g−1. Due to the high density of Cu2+ on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays.

  14. Green Biodiesel Synthesis Using Waste Shells as Sustainable Catalysts with Camelina sativa Oil

    Directory of Open Access Journals (Sweden)

    Yelda Hangun-Balkir

    2016-01-01

    Full Text Available Waste utilization is an essential component of sustainable development and waste shells are rarely used to generate practical products and processes. Most waste shells are CaCO3 rich, which are converted to CaO once calcined and can be employed as inexpensive and green catalysts for the synthesis of biodiesel. Herein, we utilized lobster and eggshells as green catalysts for the transesterification of Camelina sativa oil as feedstock into biodiesel. Camelina sativa oil is an appealing crop option as feedstock for biodiesel production because it has high tolerance of cold weather, drought, and low-quality soils and contains approximately 40% oil content. The catalysts from waste shells were characterized by X-ray powder diffraction, Fourier Transform Infrared Spectroscopy, and Scanning Electron Microscope. The product, biodiesel, was studied by 1H NMR and FTIR spectroscopy. The effects of methanol to oil ratio, reaction time, reaction temperature, and catalyst concentration were investigated. Optimum biodiesel yields were attained at a 12 : 1 (alcohol : oil molar ratio with 1 wt.% heterogeneous catalysts in 3 hours at 65°C. The experimental results exhibited a first-order kinetics and rate constants and activation energy were calculated for the transesterification reaction at different temperatures. The fuel properties of the biodiesel produced from Camelina sativa oil and waste shells were compared with those of the petroleum-based diesel by using American Society for Testing and Materials (ASTM standards.

  15. Selective Removal of Hemoglobin from Blood Using Hierarchical Copper Shells Anchored to Magnetic Nanoparticles.

    Science.gov (United States)

    Liu, Youxun; Wang, Yaokun; Yan, Mingyang; Huang, Juan

    2017-01-01

    Hierarchical copper shells anchored on magnetic nanoparticles were designed and fabricated to selectively deplete hemoglobin from human blood by immobilized metal affinity chromatography. Briefly, CoFe2O4 nanoparticles coated with polyacrylic acid were first synthesized by a one-pot solvothermal method. Hierarchical copper shells were then deposited by immobilizing Cu(2+) on nanoparticles and subsequently by reducing between the solid CoFe2O4@COOH and copper solution with NaBH4. The resulting nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. The particles were also tested against purified bovine hemoglobin over a range of pH, contact time, and initial protein concentration. Hemoglobin adsorption followed pseudo-second-order kinetics and reached equilibrium in 90 min. Isothermal data also fit the Langmuir model well, with calculated maximum adsorption capacity 666 mg g(-1). Due to the high density of Cu(2+) on the shell, the nanoparticles efficiently and selectively deplete hemoglobin from human blood. Taken together, the results demonstrate that the particles with hierarchical copper shells effectively remove abundant, histidine-rich proteins, such as hemoglobin from human blood, and thereby minimize interference in diagnostic and other assays.

  16. Uranium in larval shells as a barometer of molluscan ocean acidification exposure.

    Science.gov (United States)

    Frieder, Christina A; Gonzalez, Jennifer P; Levin, Lisa A

    2014-06-03

    As the ocean undergoes acidification, marine organisms will become increasingly exposed to reduced pH, yet variability in many coastal settings complicates our ability to accurately estimate pH exposure for those organisms that are difficult to track. Here we present shell-based geochemical proxies that reflect pH exposure from laboratory and field settings in larvae of the mussels Mytilus californianus and M. galloprovincialis. Laboratory-based proxies were generated from shells precipitated at pH 7.51 to 8.04. U/Ca, Sr/Ca, and multielemental signatures represented as principal components varied with pH for both species. Of these, U/Ca was the best predictor of pH and did not vary with larval size, with semidiurnal pH fluctuations, or with oxygen concentration. Field applications of U/Ca were tested with mussel larvae reared in situ at both known and unknown pH conditions. Larval shells precipitated in a region of greater upwelling had higher U/Ca, and these U/Ca values corresponded well with the laboratory-derived U/Ca-pH proxy. Retention of the larval shell after settlement in molluscs allows use of this geochemical proxy to assess ocean acidification effects on marine populations.

  17. High-resolution nitrogen stable isotope sclerochronology of bivalve shell carbonate-bound organics

    Science.gov (United States)

    Gillikin, David P.; Lorrain, Anne; Jolivet, Aurélie; Kelemen, Zita; Chauvaud, Laurent; Bouillon, Steven

    2017-03-01

    Nitrogen stable isotope ratios (δ15N) of organic material have successfully been used to track food-web dynamics, nitrogen baselines, pollution, and nitrogen cycling. Extending the δ15N record back in time has not been straightforward due to a lack of suitable substrates in which δ15N records are faithfully preserved, thus sparking interest in utilizing skeletal carbonate-bound organic matter (CBOM) in mollusks, corals, and foraminifera. Here we test if calcite Pecten maximus shells from the Bay of Brest and the French continental shelf can be used as an archive of δ15N values over a large environmental gradient and at a high temporal resolution (approximately weekly). Bulk CBOM δ15N values from the growing tip of shells collected over a large nitrogen isotope gradient were strongly correlated with adductor muscle tissue δ15N values (R2 = 0.99, n = 6, p fossil shells. In conclusion, bivalve shell CBOM δ15N values can be used in a similar manner to soft-tissue δ15N values, and can track various biogeochemical events at a very high-resolution.

  18. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  19. Capacitance sensors for the nondestructive measurement of moisture content in in-shell peanuts

    Science.gov (United States)

    Kandala, Chari V.; Butts, Chris L.

    2007-04-01

    Moisture content (MC) in peanuts is measured at various stages of their processing and storage in the peanut industry. A method was developed earlier that would estimate the MC of a small sample of in-shell peanuts (peanut pods) held between two circular parallel-plates, from the measured values of capacitance and phase angle at two frequencies 1 and 5 MHz. These values were used in an empirical equation, developed using the capacitance and phase angle values of samples of known MC levels, to obtain the average MC values of peanut samples with moisture contents in the range of 7 to 18%. In the present work, two rectangular parallel-plates were mounted inside a vertical cylinder made of acrylic material and filled with about 100 g of in-shell peanuts and their average mc was determined from a similar empirical equation. The calculated MC values were compared with those obtained by the standard air-oven method. For over 85% of the samples tested in the moisture range between 6% and 22% the MC values were found to be within 1% of the air-oven values. Ability to determine the average MC of slightly larger quantities of in-shell peanuts without shelling and cleaning them, as being done presently, will save time, labor and sampling material for the peanut industry.

  20. Double-shell CuS nanocages as advanced supercapacitor electrode materials

    Science.gov (United States)

    Guo, Jinxue; Zhang, Xinqun; Sun, Yanfang; Zhang, Xiaohong; Tang, Lin; Zhang, Xiao

    2017-07-01

    Metal sulfides hollow structures are advanced materials for energy storage applications of lithium-ion batteries and supercapacitors. However, constructing hollow metal sulfides with specific features, such as multi-shell and non-spherical shape, still remains great challenge. In this work, we firstly demonstrate the synthesis of CuS double-shell hollow nanocages using Cu2O nanocubes as precursors. The synthesis processes involve the repeated anion exchange reaction with Na2S and the controllable etching using hydrochloric acid. The whole synthesis processes are well revealed and the obtained double-shell CuS is tested as pseudocapacitive electrode material for supercapacitors. As expected, the CuS double-shell hollow nanocages deliver high specific capacitance, good rate performance and excellent cycling stability due to their unique nano-architecture. The present work contributes greatly to the exploration of hollow metal sulfides with complex architecture and non-spherical shape, as well as their promising application in high-performance electrochemical supercapacitors.

  1. Bright x-ray stainless steel K-shell source development at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    May, M. J.; Fournier, K. B.; Colvin, J. D.; Barrios, M. A.; Dewald, E. L.; Moody, J.; Patterson, J. R.; Schneider, M.; Widmann, K. [Lawrence Livermore National Laboratory, P.O. Box 808 L170, Livermore, California 94551 (United States); Hohenberger, M.; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2015-06-15

    High x-ray conversion efficiency (XRCE) K-shell sources are being developed for high energy density experiments for use as backlighters and for the testing of materials exposed to high x-ray fluxes and fluences. Recently, sources with high XRCE in the K-shell x-ray energy range of iron and nickel were investigated at the National Ignition Facility (NIF). The x-ray conversion efficiency in the 5–9 keV spectral range was determined to be 6.8% ± 0.3%. These targets were 4.1 mm diameter, 4 mm tall hollow epoxy tubes having a 50 μm thick wall supporting a tube of 3 to 3.5 μm thick stainless steel. The NIF laser deposited ∼460 kJ of 3ω light into the target in a 140 TW, 3.3 ns square pulse. The absolute x-ray emission of the source was measured by two calibrated Dante x-ray spectrometers. Time resolved images filtered for the Fe K-shell were recorded to follow the heating of the target. Time integrated high-resolution spectra were recorded in the K-shell range.

  2. Gold-Pluronic core-shell nanoparticles: synthesis, characterization and biological evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Timea; Boca, Sanda [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania); Biro, Dominic [Sapientia University, Department of Mechanical Engineering, Faculty of Technical and Human Sciences (Romania); Baldeck, Patrice [Universite Joseph Fourier and CNRS, Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS (France); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences and Faculty of Physics (Romania)

    2013-04-15

    This study presents the synthesis of gold-Pluronic core-shell nanoparticles by a two-step method and investigates their biological impact on cancer cells, specifically nanoparticle internalization and cytotoxicity. Uniform, 9-10-nm-sized, hydrophobic gold nanoparticles were synthesized in organic phase by reducing gold salt with oleylamine, after which oleylamine-protected gold nanoparticles were phase-transferred into aqueous medium using Pluronic F127 block copolymer, resulting in gold-Pluronic core-shell nanoparticles with a mean hydrodynamic diameter of {approx}35 nm. The formation and phase-transfer of gold nanoparticles were analyzed by UV-Vis absorption spectroscopy, transmission electron microscopy, and dynamic light scattering. The obtained gold-Pluronic core-shell nanoparticles proved to be highly stable in salted solution. Cytotoxicity tests showed no modification of cellular viability in the presence of properly purified particles. Furthermore, dark-field cellular imaging demonstrated that gold-Pluronic nanoparticles were able to be efficiently uptaken by cells, being internalized through nonspecific endocytosis. The high stability, proven biocompatibility, and imaging properties of gold-Pluronic core-shell nanoparticles hold promise for relevant intracellular applications, with such a design providing the feasibility to combine all multiple functionalities in one nanoparticle for simultaneous detection and imaging.

  3. Core/shell poly(ethylene oxide)/Eudragit fibers for site-specific release.

    Science.gov (United States)

    Jia, Dong; Gao, Yanshan; Williams, Gareth R

    2017-05-15

    Electrospinning was used to prepare core/shell fibers containing the active pharmaceutical ingredients indomethacin (IMC) or mebeverine hydrochloride (MB-HCl). The shell of the fibers was fabricated from the pH sensitive Eudragit S100 polymer, while the drug-loaded core was based on the mucoadhesive poly(ethylene oxide) (PEO). Three different drug loadings (from 9 to 23% (w/w) of the core mass) were prepared, and for MB-HCl two different molecular weights of PEO were explored. The resultant fibers generally comprise smooth cylinders, although in some cases defects such as surface particles or flattened or merged fibers were visible. Transmission electron microscopy showed all the systems to have clear core and shell compartments. The drugs are present in the amorphous physical form in the fibers. Dissolution tests found that the fibers can effectively prevent release in acidic conditions representative of the stomach, particularly for the acidic indomethacin. After transfer to a pH 7.4 medium, sustained release over between 6 and 22h is observed. Given the mucoadhesive nature of the PEO core, after dissolution of the shell the fibers will be able to adhere to the walls of the intestinal tract and give sustained local drug release. This renders them promising for the treatment of conditions such as irritable bowel disease and colon cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Emergence of a thin shell structure during collapse in isotropic coordinates

    Science.gov (United States)

    Beauchesne, Hugues; Edery, Ariel

    2012-02-01

    Numerical studies of gravitational collapse in isotropic coordinates have recently shown an interesting connection between the gravitational Lagrangian and black hole thermodynamics. A study of the actual spacetime was not the main focus of this work and, in particular, the rich and interesting structure of the interior has not been investigated in much detail and remains largely unknown. We elucidate its features by performing a numerical study of the spacetime in isotropic coordinates during gravitational collapse of a massless scalar field. The most salient feature to emerge is the formation of a thin shell of matter just inside the apparent horizon. The energy density and Ricci scalar peak at the shell and there is a jump discontinuity in the extrinsic curvature across the apparent horizon, the hallmark that a thin shell is present in its vicinity. At late stages of the collapse, the spacetime consists of two vacuum regions separated by the thin shell. The interior is described by an interesting collapsing isotropic universe. It tends towards a vacuum (never reaches a perfect vacuum) and there is a slight inhomogeneity in the interior that plays a crucial role in the collapse process as the areal radius tends to zero. The spacetime evolves towards a curvature (physical) singularity in the interior, both a Weyl and Ricci singularity. In the exterior, our numerical results match closely the analytical form of the Schwarzschild metric in isotropic coordinates, providing a strong test of our numerical code.

  5. Non-perturbative study of rotationally induced inner-shell excitation

    Science.gov (United States)

    Wille, U.

    1982-03-01

    Within the time-dependent formulation of atomic scattering theory, the exponential representation (“Magnus expansion”) of the quantum mechanical time-evolution matrix is used in a non-perturbative study of rotationally induced inner-shell excitation in slow ion-atom collisions. The impact-parameter dependence of this type of process is shown to represent a transparent example for testing the convergence properties of the Magnus expansion. The specific structure of the Magnus expansion for multi-state rotational coupling in the vicinity of a united-atom ( n, l) shell is investigated, and the analytic solution which this problem admits in the sudden limit is discussed. Explicit calculations within the Magnus approach have been performed for typical two-state and three-state problems relevant to K-shell and L-shell excitation. Their results are compared to the results of the sudden approximation and of coupled-state calculations. Good agreement between the Magnus results and the coupled-state calculations is obtained throughout if terms up to third order are retained in the commutator expansion of the exponent matrix associated with the time-evolution matrix.

  6. Design and modeling of an additive manufactured thin shell for x-ray astronomy

    Science.gov (United States)

    Feldman, Charlotte; Atkins, Carolyn; Brooks, David; Watson, Stephen; Cochrane, William; Roulet, Melanie; Willingale, Richard; Doel, Peter

    2017-09-01

    Future X-ray astronomy missions require light-weight thin shells to provide large collecting areas within the weight limits of launch vehicles, whilst still delivering angular resolutions close to that of Chandra (0.5 arc seconds). Additive manufacturing (AM), also known as 3D printing, is a well-established technology with the ability to construct or `print' intricate support structures, which can be both integral and light-weight, and is therefore a candidate technique for producing shells for space-based X-ray telescopes. The work described here is a feasibility study into this technology for precision X-ray optics for astronomy and has been sponsored by the UK Space Agency's National Space Technology Programme. The goal of the project is to use a series of test samples to trial different materials and processes with the aim of developing a viable path for the production of an X-ray reflecting prototype for astronomical applications. The initial design of an AM prototype X-ray shell is presented with ray-trace modelling and analysis of the X-ray performance. The polishing process may cause print-through from the light-weight support structure on to the reflecting surface. Investigations in to the effect of the print-through on the X-ray performance of the shell are also presented.

  7. Review of shell-and-tube heat exchanger fouling and corrosion in geothermal power plant service

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II

    1983-12-01

    Heat exchangers for hot geofluid/working substance vaporizers for binary power plants are considered. A brief description of the physical test apparatus and the geofluid chemistry for each of the several heat exchanger tests is presented. The fouling data developed from these tests are summarized, in most cases presenting a mathematical expression for the increase in fouling factor with time. The materials performance data developed from these same tests are explored. The performance of shell-and-tube heat exchangers used as condensers and ancillary coolers in the power plant heat rejection system is considered.

  8. Synthesis of AlNiCo core/shell nanopowders

    Science.gov (United States)

    Genc, A. M.; Akdeniz, M. V.; Ozturk, T.; Kalay, Y. E.

    2016-11-01

    Magnetic core/shell nanostructures have been recently received much interest owing to their utmost potential in permanent magnetic applications. In the present work, AlNiCo permanent magnet powders were synthesized by ball milling and a core/shell nanostructure was obtained using RF induced plasma. The effects of particle size and nanoshell structure on the magnetic properties were investigated in details. The coercivity of AlNiCo powders was found to increase with decreasing particle size, exclusively nanopowders encapsulated with Fe3O4 shell showed the highest coercivity values. The shell structure produced during plasma reaction was found to form a resistant layer against oxidation of metallic nanoparticles.

  9. Plasticity around an Axial Surface Crack in a Cylindrical Shell

    DEFF Research Database (Denmark)

    Krenk, Steen

    1979-01-01

    field in an axially cracked cylindrical shell arising from use of classical eighth order shallow shell theory is removed when use is made of a tenth order shell theory which accounts for transverse shear deformations. Although the membrane stresses are only moderately affected, the influence...... and Ratwani,3–5 it generalises Dugdale's assumption of a concentrated yield zone in the plane of the crack but, contrary to that model, transverse shear effects are included and a continuous stress distribution is assumed in the yield zone. The inherent difficulties arising from the use of shell theory...

  10. Theory of elastic thin shells solid and structural mechanics

    CERN Document Server

    Gol'Denveizer, A L; Dryden, H L

    1961-01-01

    Theory of Elastic Thin Shells discusses the mathematical foundations of shell theory and the approximate methods of solution. The present volume was originally published in Russian in 1953, and remains the only text which formulates as completely as possible the different sets of basic equations and various approximate methods of shell analysis emphasizing asymptotic integration. The book is organized into five parts. Part I presents the general formulation and equations of the theory of shells, which are based on the well-known hypothesis of the preservation of the normal element. Part II is

  11. Some Differential Geometric Relations in the Elastic Shell

    Directory of Open Access Journals (Sweden)

    Xiaoqin Shen

    2016-01-01

    Full Text Available The theory of the elastic shells is one of the most important parts of the theory of solid mechanics. The elastic shell can be described with its middle surface; that is, the three-dimensional elastic shell with equal thickness comprises a series of overlying surfaces like middle surface. In this paper, the differential geometric relations between elastic shell and its middle surface are provided under the curvilinear coordinate systems, which are very important for forming two-dimensional linear and nonlinear elastic shell models. Concretely, the metric tensors, the determinant of metric matrix field, the Christoffel symbols, and Riemann tensors on the three-dimensional elasticity are expressed by those on the two-dimensional middle surface, which are featured by the asymptotic expressions with respect to the variable in the direction of thickness of the shell. Thus, the novelty of this work is that we can further split three-dimensional mechanics equations into two-dimensional variation problems. Finally, two kinds of special shells, hemispherical shell and semicylindrical shell, are provided as the examples.

  12. Gravitational collapse of a cylindrical null shell in vacuum

    Directory of Open Access Journals (Sweden)

    S. Khakshournia

    2008-03-01

    Full Text Available   Barrabès-Israel null shell formalism is used to study the gravitational collapse of a thin cylindrical null shell in vacuum. In general the lightlike matter shell whose history coincides with a null hypersurface is characterized by a surface energy density. In addition, a gravitational impulsive wave is present on this null hypersurface whose generators admit both the shear and expansion. In the case of imposing the cylindrical flatness the surface energy-momentum tensor of the matter shell on the null hypersurface vanishes and the null hyper- surface is just the history of the gravitational wave .

  13. Comparison of HMOX1 expression and enzyme activity in blue-shelled chickens and brown-shelled chickens

    Directory of Open Access Journals (Sweden)

    ZhePeng Wang

    2013-01-01

    Full Text Available Blue egg coloring is attributed to biliverdin derived from the oxidative degradation of heme through catalysis by heme oxygenase (HO. The pigment is secreted into the eggshell by the shell gland. There is uncertainty as to whether the pigment is synthesized in the shell gland or in other tissues. To investigate the site of pigment biosynthesis, the expression of heme oxygenase (decycling 1 (HMOX1, a gene encoding HO, and HO activity in liver and spleen were compared between blue-shelled chickens (n=12 and brown-shelled chickens (n=12. There were no significant differences in HMOX1 expression and HO activity in these tissues between the two groups. Since the liver and spleen, two important sites outside the shell gland where heme is degraded into biliverdin, CO and Fe2+, did not differ in HO expression and activity we conclude that the pigment is most likely synthesized in the shell gland.

  14. Free vibrations of circular cylindrical shells

    CERN Document Server

    Armenàkas, Anthony E; Herrmann, George

    1969-01-01

    Free Vibrations of Circular Cylindrical Shells deals with thin-walled structures that undergo dynamic loads application, thereby resulting in some vibrations. Part I discusses the treatment of problems associated with the propagation of plane harmonic waves in a hollow circular cylinder. In such search for solutions, the text employs the framework of the three-dimensional theory of elasticity. The text explains the use of tables of natural frequencies and graphs of representative mode shapes of harmonic elastic waves bounding in an infinitely long isotropic hollow cylinder. The tables are

  15. The structural acoustic properties of stiffened shells

    DEFF Research Database (Denmark)

    Luan, Yu

    2008-01-01

    . This is important when a number of stiffened plates are combined in a complicated structure composed of many plates. However, whereas the equivalent plate theory is well established there is no similar established theory for stiffened shells. This paper investigates the mechanical and structural acoustic properties......Plates stiffened with ribs can be modeled as homogeneous isotropic or orthotropic plates, and modeling such an equivalent plate numerically with, say, the finite element method is, of course, far more economical in terms of computer resources than modelling the complete, stiffened plate...

  16. Mg/Ca of Continental Ostracode Shells

    Science.gov (United States)

    Ito, E.; Forester, R. M.; Marco-Barba, J.; Mezquita, F.

    2007-12-01

    Marine ionic chemistry is thought to remain constant. This, together with the belief that marine calcifiers partition Mg/Ca in a systematic manner as functions of temperature (and Mg/Ca) of water forms the basis of the Mg/Ca thermometer. In continental settings both of these assumptions are usually not true. Continental waters contain a wide variety of solutes in absolute and relative ion concentrations. Hence, waters with identical Mg/Ca may have very different concentrations of Mg and Ca and very different anions. Here we use two examples to focus on the effects of ion chemistry on Mg/Ca partitioning in continental ostracode shells and we ignore the complexities of solute evolution, which can change Mg/Ca over timescales of minutes to millennia. Palacios-Fest and Dettman (2001) conducted a monthly study of ,Cypridopsis vidua at El Yeso Lake in Sonora, Mexico. They established a relation between temperature and average shell Mg/Ca using regression analyses on averaged data. When their Mg/Ca-temperature relation is applied to monthly ,C. vidua data from Page Pond near Cleveland, Ohio, water temperatures of -8 to -1°C are obtained. The observed Mg/Ca ranges for El Yeso Lake (0.31 to 0.46) and Page Pond (0.33 to 0.46) are similar, as are their specific conductivities (700 to 850μS for El Yeso Lake; 400 to 600μS for Page Pond). However, [Ca] is 140-260 mg/L for El Yeso, but only 70-90 mg/L for Page Pond. Page Pond data, in fact, shows a good temperature shell Mg/Ca relation for .C. vidua, but the relation is different from that at El Yeso. Hence, shell Mg/Ca is a multi-valued, family of curves function of temperature and Mg/Ca of water that depends on the [Mg] and [Ca] values in water and perhaps other factors. Our second example comes from sites near Valencia, Spain and involves shell data for ,Cyprideis torosa, an estuarine ostracode that is tolerant of a wide range of salinity and can live in continental waters as long as the carbonate alkalinity to Ca ratio is

  17. The dynamo bifurcation in rotating spherical shells

    CERN Document Server

    Morin, Vincent; 10.1142/S021797920906378X

    2010-01-01

    We investigate the nature of the dynamo bifurcation in a configuration applicable to the Earth's liquid outer core, i.e. in a rotating spherical shell with thermally driven motions. We show that the nature of the bifurcation, which can be either supercritical or subcritical or even take the form of isola (or detached lobes) strongly depends on the parameters. This dependence is described in a range of parameters numerically accessible (which unfortunately remains remote from geophysical application), and we show how the magnetic Prandtl number and the Ekman number control these transitions.

  18. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    Science.gov (United States)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  19. Shell thickness-dependent antibacterial activity and biocompatibility of gold@silver core–shell nanoparticles

    Science.gov (United States)

    Antimicrobial activity of silver is highly effective and broad-spectrum; however, poor long-term antibacterial efficiency and cytotoxicity toward mammalian cells have restricted their applications. Here, we fabricated Au@Ag NPs with tailored shell thickness, and investigated their antibacterial acti...

  20. Unified description of pf-shell nuclei by the Monte Carlo shell model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Mizusaki, Takahiro; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Honma, Michio

    1998-03-01

    The attempts to solve shell model by new methods are briefed. The shell model calculation by quantum Monte Carlo diagonalization which was proposed by the authors is a more practical method, and it became to be known that it can solve the problem with sufficiently good accuracy. As to the treatment of angular momentum, in the method of the authors, deformed Slater determinant is used as the basis, therefore, for making angular momentum into the peculiar state, projected operator is used. The space determined dynamically is treated mainly stochastically, and the energy of the multibody by the basis formed as the result is evaluated and selectively adopted. The symmetry is discussed, and the method of decomposing shell model space into dynamically determined space and the product of spin and isospin spaces was devised. The calculation processes are shown with the example of {sup 50}Mn nuclei. The calculation of the level structure of {sup 48}Cr with known exact energy can be done with the accuracy of peculiar absolute energy value within 200 keV. {sup 56}Ni nuclei are the self-conjugate nuclei of Z=N=28. The results of the shell model calculation of {sup 56}Ni nucleus structure by using the interactions of nuclear models are reported. (K.I.)

  1. Energy Migration Upconversion in Ce(III)-Doped Heterogeneous Core-Shell-Shell Nanoparticles.

    Science.gov (United States)

    Chen, Xian; Jin, Limin; Sun, Tianying; Kong, Wei; Yu, Siu Fung; Wang, Feng

    2017-11-01

    One major challenge in upconversion research is to develop new materials and structures to expand the emission spectrum. Herein, a heterogeneous core-shell-shell nanostructure of NaYbF4 :Gd/Tm@NaGdF4 @CaF2 :Ce is developed to realize efficient photon upconversion in Ce3+ ions through a Gd-mediated energy migration process. The design takes advantage of CaF2 host that reduces the 4f-5d excitation frequency of Ce3+ to match the emission line of Gd3+ . Meanwhile, CaF2 is isostructural with NaGdF4 and can form a continuous crystalline lattice with the core layer. As a result, effective Yb3+ → Tm3+ → Gd3+ → Ce3+ energy transfer can be established in a single nanoparticle. This effect enables efficient ultraviolet emission of Ce3+ following near infrared excitation into the core layer. The Ce3+ upconversion emission achieved in the core-shell-shell nanoparticles features broad bandwidth and long lifetime, which offers exciting opportunities of realizing tunable lasing emissions in the ultraviolet spectral region. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Local shell-to-shell energy transfer via nonlocal interactions in fluid ...

    Indian Academy of Sciences (India)

    In this paper we analytically compute the strength of nonlinear interactions in a triad, and the energy exchanges between wave-number shells in incompressible fluid turbulence. The computation has been done using first-order perturbative field theory. In three dimensions, magnitude of triad interactions is large for nonlocal ...

  3. Standardized CSR and climate performance: why is Shell willing, but Hydro reluctant?; Shell; Hydro

    Energy Technology Data Exchange (ETDEWEB)

    Boasson, Elin Lerum; Wettestad, Joergen

    2007-06-15

    This report aims to contribute to the ongoing discussion concerning whether CSR merely serves to streamline company rhetoric or also has an influence on actual efforts. We discuss the tangible effects of CSR instruments on the climate-related rules and performances of the two different oil companies Hydro and Shell. First we explore whether similar CSR instruments lead to similar climate-related rules and practices in the two companies. Both Hydro and Shell adhere to the Global Compact (GC), the Global Reporting Initiative (GRI), the Carbon Disclosure Project (CDP) and the Global Gas Flaring Reduction Public-Private Partnership (GGFR). The report concludes that the GC has not rendered any tangible effects in either of the companies. Concerning the other instruments, Hydro has only followed the instrument requirements that fit their initial approach, and refrained from all deviating requirements. Shell has been more malleable, but we have noted few effects on the actual emissions and business portfolio resulting from the instrument adherence. Second, we assess how the differing results of the similar CSR portfolio may be explained. The reluctant attitude of the leaders in Hydro and the strong CSR motivation of Shell's executives result in significant differences. Hydro executives are able to constrain the effects of the instrument adherence. With Shell we note the opposite pattern: Its leaders promoted the instruments to be translated into internal rules, but a general lack of hierarchical structures hinders them from governing the conduct of various sub-organisations. The very diversity of the Shell culture helps to explain why the efforts of its executives have resulted in limited impact. The strength of the Hydro culture makes the corporation resistant to the instruments. Moreover, Hydro is strikingly shielded by virtue of its strong position in Norway. In contrast, Shell is more strongly affected by the global field of petroleum and the global field of CSR

  4. Rapid detection of respiratory viruses by shell vial culture and direct staining by using pooled and individual monoclonal antibodies.

    Science.gov (United States)

    Matthey, S; Nicholson, D; Ruhs, S; Alden, B; Knock, M; Schultz, K; Schmuecker, A

    1992-03-01

    The Bartels respiratory virus panel detection kit is an indirect fluorescent-antibody (IFA) method that uses pooled and individual antisera for tissue culture confirmation of seven respiratory viruses. We evaluated these reagents for detecting viral antigen in shell vial cultures and by direct staining of cells from respiratory specimens. The isolation from 254 specimens of respiratory viruses in shell vial cultures compared with standard tube cultures was highly sensitive (94%) and specific (97.3%). The numbers of viral isolates detected in three consecutive years of testing with shell vial cultures were 68 of 254 (26.8%), 101 of 381 (26.5%), and 122 of 430 (28.4%). IFA direct staining of all 1,065 specimens resulted in 183 (17.2) being uninterpretable because of inadequate numbers of cells or interfering fluorescence. The sensitivity and specificity of the interpretable IFA direct stains in comparison with shell vial cultures were 85.9 and 87.1%, respectively. For detection of 881 adequate specimens, Bartels respiratory syncytial virus IFA direct staining compared with an Ortho Diagnostics Systems direct fluorescent-antibody test for respiratory syncytial virus RSV was highly sensitive (95.5%) and specific (97%). Shell vial cultures combined with Bartels IFA reagents are a rapid alternative to standard tube cultures. Bartels IFA direct staining with individual antisera provides useful same-day screening of respiratory specimens, but the antiserum pool was not effective in screening for positive specimens because of excessive amounts of nonspecific fluorescence.

  5. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  6. Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity.

    Science.gov (United States)

    Liao, Yuanyuan; Li, Yuan; Wang, Lei; Zhao, Yongxia; Ma, Danyang; Wang, Biqing; Wan, Yongxia; Zhong, Shengliang

    2017-01-31

    In this work, ceria multi-shelled nanospheres with a tunable shell number and thickness were prepared by a facile coordination polymer (CP) precursor method without the use of any template and surfactant. Interestingly, the number, thickness and structure of the shell can be tuned by varying the reaction time, reaction temperature, ratio of reagent and calcination temperature. The formation process of the multi-shelled hollow spheres was also investigated, which experienced a core contraction and shell separation process. Moreover, the multi-shelled CeO2 hollow nanospheres displayed excellent photocatalytic activity in the degradation of RhB. Au and AuPd nanoparticle loaded multi-shelled CeO2 nanocomposites were also prepared. Results show that Au/CeO2 multi-shelled hollow nanospheres showed eximious catalytic activity for the reduction of p-nitrophenol with a reaction rate constant k of 0.416 min. In addition, AuPd/CeO2 exhibited a remarkable catalytic activity for the conversion of CO. Employing this method, heavy rare earth oxide multi-shelled structures and light rare earth oxide solid spheres were obtained. This method may be employed for the preparation of other materials with complex structures.

  7. Ge/Si core/shell quantum dots in alumina: tuning the optical absorption by the core and shell size

    Directory of Open Access Journals (Sweden)

    Nekić Nikolina

    2017-03-01

    Full Text Available Ge/Si core/shell quantum dots (QDs recently received extensive attention due to their specific properties induced by the confinement effects of the core and shell structure. They have a type II confinement resulting in spatially separated charge carriers, the electronic structure strongly dependent on the core and shell size. Herein, the experimental realization of Ge/Si core/shell QDs with strongly tunable optical properties is demonstrated. QDs embedded in an amorphous alumina glass matrix are produced by simple magnetron sputtering deposition. In addition, they are regularly arranged within the matrix due to their self-assembled growth regime. QDs with different Ge core and Si shell sizes are made. These core/shell structures have a significantly stronger absorption compared to pure Ge QDs and a highly tunable absorption peak dependent on the size of the core and shell. The optical properties are in agreement with recent theoretical predictions showing the dramatic influence of the shell size on optical gap, resulting in 0.7 eV blue shift for only 0.4 nm decrease at the shell thickness. Therefore, these materials are very promising for light-harvesting applications.

  8. Crystal Phase Transitions in the Shell of PbS/CdS Core/Shell Nanocrystals Influences Photoluminescence Intensity

    Science.gov (United States)

    2014-01-01

    We reveal the existence of two different crystalline phases, i.e., the metastable rock salt and the equilibrium zinc blende phase within the CdS-shell of PbS/CdS core/shell nanocrystals formed by cationic exchange. The chemical composition profile of the core/shell nanocrystals with different dimensions is determined by means of anomalous small-angle X-ray scattering with subnanometer resolution and is compared to X-ray diffraction analysis. We demonstrate that the photoluminescence emission of PbS nanocrystals can be drastically enhanced by the formation of a CdS shell. Especially, the ratio of the two crystalline phases in the shell significantly influences the photoluminescence enhancement. The highest emission was achieved for chemically pure CdS shells below 1 nm thickness with a dominant metastable rock salt phase fraction matching the crystal structure of the PbS core. The metastable phase fraction decreases with increasing shell thickness and increasing exchange times. The photoluminescence intensity depicts a constant decrease with decreasing metastable rock salt phase fraction but shows an abrupt drop for shells above 1.3 nm thickness. We relate this effect to two different transition mechanisms for changing from the metastable rock salt phase to the equilibrium zinc blende phase depending on the shell thickness. PMID:25673918

  9. Magnetization-prepared shells trajectory with automated gradient waveform design.

    Science.gov (United States)

    Shu, Yunhong; Tao, Shengzhen; Trzasko, Joshua D; Huston, John; Weavers, Paul T; Bernstein, Matt A

    2017-08-21

    To develop a fully automated trajectory and gradient waveform design for the non-Cartesian shells acquisition, and to develop a magnetization-prepared (MP) shells acquisition to achieve an efficient three-dimensional acquisition with improved gray-to-white brain matter contrast. After reviewing the shells k-space trajectory, a novel, fully automated trajectory design is developed that allows for gradient waveforms to be automatically generated for specified acquisition parameters. Designs for two types of shells are introduced, including fully sampled and undersampled/accelerated shells. Using those designs, an MP-Shells acquisition is developed by adjusting the acquisition order of shells interleaves to synchronize the center of k-space sampling with the peak of desired gray-to-white matter contrast. The feasibility of the proposed design and MP-Shells is demonstrated using simulation, phantom, and volunteer subject experiments, and the performance of MP-Shells is compared with a clinical Cartesian magnetization-prepared rapid gradient echo acquisition. Initial experiments show that MP-Shells produces excellent image quality with higher data acquisition efficiency and improved gray-to-white matter contrast-to-noise ratio (by 36%) compared with the conventional Cartesian magnetization-prepared rapid gradient echo acquisition. We demonstrated the feasibility of a three-dimensional MP-Shells acquisition and an automated trajectory design to achieve an efficient acquisition with improved gray-to-white matter contrast. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  10. What determines sclerobiont colonization on marine mollusk shells?

    Science.gov (United States)

    Ochi Agostini, Vanessa; Ritter, Matias do Nascimento; José Macedo, Alexandre; Muxagata, Erik; Erthal, Fernando

    2017-01-01

    Empty mollusk shells may act as colonization surfaces for sclerobionts depending on the physical, chemical, and biological attributes of the shells. However, the main factors that can affect the establishment of an organism on hard substrates and the colonization patterns on modern and time-averaged shells remain unclear. Using experimental and field approaches, we compared sclerobiont (i.e., bacteria and invertebrate) colonization patterns on the exposed shells (internal and external sides) of three bivalve species (Anadara brasiliana, Mactra isabelleana, and Amarilladesma mactroides) with different external shell textures. In addition, we evaluated the influence of the host characteristics (mode of life, body size, color alteration, external and internal ornamentation and mineralogy) of sclerobionts on dead mollusk shells (bivalve and gastropod) collected from the Southern Brazilian coast. Finally, we compared field observations with experiments to evaluate how the biological signs of the present-day invertebrate settlements are preserved in molluscan death assemblages (incipient fossil record) in a subtropical shallow coastal setting. The results enhance our understanding of sclerobiont colonization over modern and paleoecology perspectives. The data suggest that sclerobiont settlement is enhanced by (i) high(er) biofilm bacteria density, which is more attracted to surfaces with high ornamentation; (ii) heterogeneous internal and external shell surface; (iii) shallow infaunal or attached epifaunal life modes; (iv) colorful or post-mortem oxidized shell surfaces; (v) shell size (1,351 mm2); and (vi) calcitic mineralogy. Although the biofilm bacteria density, shell size, and texture are considered the most important factors, the effects of other covarying attributes should also be considered. We observed a similar pattern of sclerobiont colonization frequency over modern and paleoecology perspectives, with an increase of invertebrates occurring on textured bivalve

  11. Natural melting within a spherical shell

    Science.gov (United States)

    Bahrami, Parviz A.

    1990-01-01

    Fundamental heat transfer experiments were performed on the melting of a phase change medium in a spherical shell. Free expansion of the medium into a void space within the sphere was permitted. A step function temperature jump on the outer shell wall was imposed and the timewise evolution of the melting process and the position of the solid-liquid interface was photographically recorded. Numerical integration of the interface position data yielded information about the melted mass and the energy of melting. It was found that the rate of melting and the heat transfer were significantly affected by the movement of the solid medium to the base of the sphere due to gravity. The energy transfer associated with melting was substantially higher than that predicted by the conduction model. Furthermore, the radio of the measured values of sensible energy in the liquid melt to the energy of melting were nearly proportional to the Stefan number. The experimental results are in agreement with a theory set forth in an earlier paper.

  12. Dynamical symmetries of the shell model

    Energy Technology Data Exchange (ETDEWEB)

    Van Isacker, P

    2000-07-01

    The applications of spectrum generating algebras and of dynamical symmetries in the nuclear shell model are many and varied. They stretch back to Wigner's early work on the supermultiplet model and encompass important landmarks in our understanding of the structure of the atomic nucleus such as Racah's SU(2) pairing model and Elliot's SU(3) rotational model. One of the aims of this contribution has been to show the historical importance of the idea of dynamical symmetry in nuclear physics. Another has been to indicate that, in spite of being old, this idea continues to inspire developments that are at the forefront of today's research in nuclear physics. It has been argued in this contribution that the main driving features of nuclear structure can be represented algebraically but at the same time the limitations of the symmetry approach must be recognised. It should be clear that such approach can only account for gross properties and that any detailed description requires more involved numerical calculations of which we have seen many fine examples during this symposium. In this way symmetry techniques can be used as an appropriate starting point for detailed calculations. A noteworthy example of this approach is the pseudo-SU(3) model which starting from its initial symmetry Ansatz has grown into an adequate and powerful description of the nucleus in terms of a truncated shell model. (author)

  13. Helium-Shell Nucleosynthesis and Extinct Radioactivities

    Science.gov (United States)

    Meyer, B. S.; The, L.-S.; Clayton, D. D.; ElEid, M. F.

    2004-01-01

    Although the exact site for the origin of the r-process isotopes remains mysterious, most thinking has centered on matter ejected from the cores of massive stars in core-collapse supernovae [13]. In the 1970's and 1980's, however, difficulties in understanding the yields from such models led workers to consider the possibility of r-process nucleosynthesis farther out in the exploding star, in particular, in the helium burning shell [4,5]. The essential idea was that shock passage through this shell would heat and compress this material to the point that the reactions 13C(alpha; n)16O and, especially, 22Ne(alpha; n)25Mg would generate enough neutrons to capture on preexisting seed nuclei and drive an "n process" [6], which could reproduce the r-process abundances. Subsequent work showed that the required 13C and 22Ne abundances were too large compared to the amounts available in realistic models [7] and recent thinking has returned to supernova core material or matter ejected from neutron star-neutron star collisions as the more likely r-process sites.

  14. Windows PowerShell Cookbook For Windows, Exchange 2007, and MOM V3

    CERN Document Server

    Holmes, Lee

    2008-01-01

    This Cookbook provides hundreds of tested scripts that you can use right away to administer Windows systems using Microsoft's new tool-everything from automating routine tasks to working with files, event logs and other forms of structured data to managing the users and resources of complex Windows networks. Along with its task-based introduction to the Windows PowerShell scripting language and environment, this book meets the needs of system administrators at any level.

  15. An Investigation at Low Speed of the Spin Instability of Mortar-Shell Tails

    Science.gov (United States)

    Bird, John D.; Lichtenstein, Jacob H.

    1957-01-01

    An investigation was made in the Langley stability tunnel to study the influence of number of fins, fin shrouding, and fin aspect ratio on the spin instability of mortar-shell tail surfaces. It was found that the 12-fin tails tested spun less rapidly throughout the angle-of-yaw range than did the 6-fin tails and that fin shrouding reduced the spin encountered by a large amount.

  16. Motion of a thin spherically symmetric Shell of Dust in the Schwarzschild field

    CERN Document Server

    Schmidt, H -J

    2014-01-01

    The equation of motion announced in the title was already deduced for the cases the inner metric being flat and the shell being negligibly small (test matter), using surface layers and geodesic trajectories resp. Here we derive the general equation of motion and solve it in closed form for the case of parabolic motion. Especially the motion near the horizon and near the singularity are examined.

  17. A Triangular Thin Shell Element for the Linear Analysis of Stiffened Composite Structures

    Science.gov (United States)

    1988-04-01

    Cantileaver Beam Example ...................................... 13 Twisted Beam .................................................. 14 Scordelis -Lo Roof...will relate the constants a, to ais, a, to the node rotations ply. From the theory of thin plates the curvature-displacement relationships are defined by...0.005399 -0.5 0.001735 -1.1 - 15 - Scordelis -Lo Roof The shell structure shown in figure 8 is a standard test problem [6]. Table 2 summarizes the maximum

  18. Reinforcement of Underground Excavation with Expansion Shell Rock Bolt Equipped with Deformable Component

    Directory of Open Access Journals (Sweden)

    Korzeniowski Waldemar

    2017-03-01

    Full Text Available The basic type of rock mass reinforcement method for both preparatory and operational workings in underground metal ore mines, both in Poland and in different countries across the world, is the expansion shell or adhesive-bonded rock bolt. The article discusses results of static loading test of the expansion shell rock bolts equipped with originally developed deformable component. This component consists of two profiled rock bolt washers, two disk springs, and three guide bars. The disk spring and disk washer material differs in stiffness. The construction materials ensure that at first the springs under loading are partially compressed, and then the rock bolt washer is plastically deformed. The rock bolts tested were installed in blocks simulating a rock mass with rock compressive strength of 80 MPa. The rock bolt was loaded statically until its ultimate loading capacity was exceeded. The study presents the results obtained under laboratory conditions in the test rig allowing testing of the rock bolts at their natural size, as used in underground metal ore mines. The stress-strain/displacement characteristics of the expansion shell rock bolt with the deformable component were determined experimentally. The relationships between the geometric parameters and specific strains or displacements of the bolt rod were described, and the percentage contribution of those values in total displacements, resulting from the deformation of rock bolt support components (washer, thread and the expansion shell head displacements, were estimated. The stiffness of the yielded and stiff bolts was empirically determined, including stiffness parameters of every individual part (deformable component, steel rod. There were two phases of displacement observed during the static tension of the rock bolt which differed in their intensity.

  19. Pet Fiber Reinforced Wet-Mix Shotcrete with Walnut Shell as Replaced Aggregate

    Directory of Open Access Journals (Sweden)

    Weimin Cheng

    2017-03-01

    Full Text Available In the rapidly developing modern society, many raw materials, such as crushed limestone and river sand, which are limited, are consumed by the concrete industry. Naturally, the usage of waste materials in concrete have become an interesting research area in recent years, which is used to reduce the negative influence of concrete on the environment. Hence, this paper presents the development of a sustainable lightweight wet-mix shotcrete by replacing natural coarse gravel with a kind of byproduct, nut shell (walnut. Fibers made from dumped polyethylene terephthalate (PET bottles were mixed in the composite to improve the properties of the lightweight wet-mix shotcrete. The initial evaluation of the fresh concrete mixed with different volume fraction of walnut shell was carried out in terms of its performance capacities of mechanical properties (i.e., tensile and compressive strength, pumpability and shootability (i.e., slump, pressure drop per meter and rebound rate and the results were compared with plain concrete. With increase of walnut shell, compressive and splitting tensile strength of casting concrete decreased, while slump and pressure drop reduced slightly. Additionally, appropriate dosage of walnut shell can improve the shootability of fresh concrete with low rebound rate and larger build-up thickness. In the second series tests, polypropylene (PP fiber and multi-dimension fiber were also mixed in composite for comparative analysis. After mixing fibers, the splitting tensile strength had obtained marked improvement with slight reduction of compressive strength, along with acceptable fluctuation in terms of pumpability and shootability. Furthermore, relation of density and compressive strength, relation of rebound and density, build-up thickness and relation of compressive and splitting tensile strength were discussed. This study found wet-mix shotcrete incorporating PET fiber with walnut shell of about 35% coarse aggregate replacement

  20. Tenofovir Containing Thiolated Chitosan Core/Shell Nanofibers: In Vitro and in Vivo Evaluations.

    Science.gov (United States)

    Meng, Jianing; Agrahari, Vivek; Ezoulin, Miezan J; Zhang, Chi; Purohit, Sudhaunshu S; Molteni, Agostino; Dim, Daniel; Oyler, Nathan A; Youan, Bi-Botti C

    2016-12-05

    It is hypothesized that thiolated chitosan (TCS) core/shell nanofibers (NFs) can enhance the drug loading of tenofovir, a model low molecular weight and highly water-soluble drug molecule, and improve its mucoadhesivity and in vivo safety. To test this hypothesis, poly(ethylene oxide) (PEO) core with TCS and polylactic acid (PLA) shell NFs are fabricated by a coaxial electrospinning technique. The morphology, drug loading, drug release profiles, cytotoxicity and mucoadhesion of the NFs are analyzed using scanning and transmission electron microscopies, liquid chromatography, cytotoxicity assays on VK2/E6E7 and End1/E6E7 cell lines and Lactobacilli crispatus, fluorescence imaging and periodic acid colorimetric method, respectively. In vivo safety studies are performed in C57BL/6 mice followed by H&E and immunohistochemical (CD45) staining analysis of genital tract. The mean diameters of PEO, PEO/TCS, and PEO/TCS-PLA NFs are 118.56, 9.95, and 99.53 nm, respectively. The NFs exhibit smooth surface. The drug loading (13%-25%, w/w) increased by 10-fold compared to a nanoparticle formulation due to the application of the electrospinning technique. The NFs are noncytotoxic at the concentration of 1 mg/mL. The PEO/TCS-PLA core/shell NFs mostly exhibit a release kinetic following Weibull model (r(2) = 0.9914), indicating the drug release from a matrix system. The core/shell NFs are 40-60-fold more bioadhesive than the pure PEO based NFs. The NFs are nontoxic and noninflammatory in vivo after daily treatment for up to 7 days. Owing to their enhanced drug loading and preliminary safety profile, the TCS core/shell NFs are promising candidates for the topical delivery of HIV/AIDS microbicides such as tenofovir.

  1. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    Science.gov (United States)

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A Potential Paleotsunami Shell-Hash layer from the Los Penasquitos Marsh, San Diego County, California

    Science.gov (United States)

    Rhodes, B. P.; Cordova, J.; Kirby, M. E.; Leeper, R. J.; Bonuso, N.

    2013-12-01

    The Los Penasquitos Marsh is one of a series of coastal wetlands between San Diego and Orange County that formed within stream valleys that were flooded and filled with sediment during early Holocene sea-level rise. In order to test the hypothesis that these wetlands contain a record of prehistoric tsunamis, 21 reconnaissance gouge cores between 48 and 321 cm in length were collected and described in the field. Nearly all of the cores contained a single peaty layer in the top 20-40 cm, underlain by interbedded fine-medium gray sand and mud. The stratigraphy in the cores is generally consistent with the complete infilling of a lagoon behind a baymouth bar during the mid-late Holocene. Five of the cores, ranging from 1.0-1.4 km inland from the present beach, intersect a distinctive 0.5 - 12.0 cm-thick shell-hash layer at a depth of between 233 and 280 cm beneath the modern surface. Based on this discovery, we collected a 285 cm long 5-cm diameter core using a Livingstone Piston corer. In this core the 10 cm-thick shell hash layer consists of angular fragments up to 1 cm of broken shells in a coarse sandy matrix that include the following genera: Mitrella, Venus, Spirotropis, Pecten, and Nassarius. This assemblage suggests a quiet water, marine source - from the lagoon and/or offshore. The core was also analyzed for loss on ignition (LOI) at both 550° and 950°C and magnetic susceptibility (ms). The LOI550 data are unremarkable throughout the core, and the LOI950 data show an expected spike within the shell-hash layer. The ms data show very low values for the lagoonal muds and sands, but a pronounced spike within the shell hash layer. We hypothesize that the anomalously high ms value for the shell hash layer indicates a substantial component from an offshore source, where heavier magnetic minerals may have accumulated seaward of the baymouth bar. If correct, this layer may represent a large-wave event, either a storm or tsunami. Three C-14 dates (uncorrected for the

  3. REMOVAL OF INDIGO CARMINE DYE (IC) BY BATCH ADSORPTION METHOD ONTO DRIED COLA NUT SHELLS AND ITS ACTIVE CARBON FROM AQUEOUS MEDIUM

    OpenAIRE

    Ankoro Naphtali Odogu*; Kouotou Daouda; Belibi Belibi Placide Desiré; Ndi Julius Nsami; Ketcha Joseph Mbadcam

    2016-01-01

    Natural cola nut shells and its active carbons were used to remove indigo carmine dye from aqueous solution using batch adsorption test. The effect of pH, contact time (t), adsorbent dose (m) and initial concentrations (Co) were investigated. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Tempkin and Dubin-Kaganer-Raduskushkevich classical isotherm models. This equilibrium data best fits with all the four isotherm models for cola nut shells. Langmuir and Freundlich equ...

  4. Demonstration of Enabling Spar-Shell Cooling Technology in Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Downs, James [Florida Turbine Technologies Inc., Jupiter, FL (United States)

    2014-12-29

    In this Advanced Turbine Program-funded Phase III project, Florida Turbine Technologies, Inc. (FTT) has developed and tested, at a pre-commercial prototypescale, spar-shell turbine airfoils in a commercial gas turbine. The airfoil development is based upon FTT’s research and development to date in Phases I and II of Small Business Innovative Research (SBIR) grants. During this program, FTT has partnered with an Original Equipment Manufacturer (OEM), Siemens Energy, to produce sparshell turbine components for the first pre-commercial prototype test in an F-Class industrial gas turbine engine and has successfully completed validation testing. This project will further the commercialization of this new technology in F-frame and other highly cooled turbine airfoil applications. FTT, in cooperation with Siemens, intends to offer the spar-shell vane as a first-tier supplier for retrofit applications and new large frame industrial gas turbines. The market for the spar-shell vane for these machines is huge. According to Forecast International, 3,211 new gas turbines units (in the >50MW capacity size range) will be ordered in ten years from 2007 to 2016. FTT intends to enter the market in a low rate initial production. After one year of successful extended use, FTT will quickly ramp up production and sales, with a target to capture 1% of the market within the first year and 10% within 5 years (2020).

  5. Nucleus accumbens core and shell are necessary for reinforcer devaluation effects on Pavlovian conditioned responding

    Directory of Open Access Journals (Sweden)

    Teghpal eSingh

    2010-10-01

    Full Text Available The nucleus accumbens (NA has been hypothesized to be part of a circuit in which cue-evoked information about expected outcomes is mobilized to guide behavior. Here we tested this hypothesis using a Pavlovian reinforcer devaluation task, previously applied to assess outcome-guided behavior after damage to regions such as the orbitofrontal cortex and amygdala that send projections to NA. Rats with sham lesions or neurotoxic lesions of either the core or shell subdivision of NA were trained to associate a 10 sec CS+ with delivery of three food pellets. After training, half of the rats in each lesion group received food paired with illness induced by LiCl injections; the remaining rats received food and illness unpaired. Subsequently, responding to the CS+ was assessed in an extinction probe test. Both sham and lesioned rats conditioned to the CS+ and formed a conditioned taste aversion. However only sham rats reduced their conditioned responding as a result of reinforcer devaluation; devalued rats with lesions of either core or shell showed levels of responding that were similar to lesioned, non-devalued rats. This impairment was not due to the loss of motivational salience conferred to the CS+ in lesioned rats as both groups responded similarly for the cue in conditioned reinforcement testing. These data suggest that NA core and shell are part of a circuit necessary for the use of cue-evoked information about expected outcomes to guide behavior.

  6. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness

    Science.gov (United States)

    Sun, Xiaolian; Li, Dongguo; Guo, Shaojun; Zhu, Wenlei; Sun, Shouheng

    2016-01-01

    Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions.Using a modified seed-mediated method, we synthesized core/shell Au/FePt nanoparticles (NPs) with Au sizes of 4, 7, and 9 nm and the FePt shell was controlled to have similar FePt compositions and 0.5, 1, and 2 nm thickness. We studied both core and shell effects on electrochemical and electrocatalytic properties of the Au/FePt NPs, and found that the Au core did change the redox chemistry of the FePt shell and promoted its electrochemical oxidation of methanol. The catalytic activity was dependent on the FePt thicknesses, but not much on the Au core sizes, and the 1 nm FePt shell was found to be the optimal thickness for catalyzing methanol oxidation in 0.1 M HClO4 + 0.1 M methanol, offering not only high activity (1.19 mA cm-2 at 0.5 V vs. Ag/AgCl), but also enhanced stability. Our studies demonstrate a general approach to the design and tuning of shell catalysis in the core/shell structure to achieve optimal catalysis for important electrochemical reactions. Electronic supplementary information (ESI

  7. Dynamic Stiffness Modeling of Composite Plate and Shell Assemblies

    Science.gov (United States)

    2013-12-09

    28, 29, 63]. Re- views on finite element shell formulations have been given by Denis and Palazzotto [64] and Di and Ramm [65]. An exhaustive review...theory. AIAA Journal, 27(10):1441–1447, 1989. [65] S. Di and E. Ramm . Hybrid stress formulation for higher-order theory of laminated shell analysis

  8. Nonlinear analysis of doubly curved shells: An analytical approach

    Indian Academy of Sciences (India)

    Dynamic analogues of vin Karman-Donnell type shell equations for doubly curved, thin isotropic shells in rectangular planform are formulated and expressed in displacement components. These nonlinear partial differential equations of motion are linearized by using a quadratic extrapolation technique. The spatial and ...

  9. PENETRATION OF A SOUND FIELD THROUGH A MULTILAYERED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2013-01-01

    Full Text Available An analytical solution of the boundary problem describing the process of penetration of thesound field of a spherical emitter located inside a thin unclosed spherical shell through a permeable multilayered spherical shell is considered. The influence of some parameters of the problem on the value of the sound field weakening (screening coefficient is studied via a numerical simulation.

  10. Generalized synthesis of mesoporous shells on zeolite crystals

    KAUST Repository

    Han, Yu

    2010-12-30

    A simple and generalized synthetic approach is developed for creating mesoporous shells on zeolite crystals. This method allows for the tailoring of thickness, pore size, and composition of the mesoporous shell, and can be applied to zeolites of various structures, compositions, and crystal sizes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Review of Imperfection Sensitivity of Stiffened Shells.

    Science.gov (United States)

    1984-02-01

    of examining the static uperfection sensitivity of shells -- BOSOR6 6 , STAGS 7 , FASOR 8 7 and NBALL(SATANS) 8 0 The last three permit general V...CR-1901, 1971. 87. Cohen, G. A., " FASOR - A Second Generation Shell of Revolution Code," Trends in Computerized Structural Analysis and Synthesis 1978

  12. Snap-Through Buckling Problem of Spherical Shell Structure

    Directory of Open Access Journals (Sweden)

    Sumirin Sumirin

    2014-12-01

    Full Text Available This paper presents results of a numerical study on the nonlinear behavior of shells undergoing snap-through instability. This research investigates the problem of snap-through buckling of spherical shells applying nonlinear finite element analysis utilizing ANSYS Program. The shell structure was modeled by axisymmetric thin shell of finite elements. Shells undergoing snap-through buckling meet with significant geometric change of their physical configuration, i.e. enduring large deflections during their deformation process. Therefore snap-through buckling of shells basically is a nonlinear problem. Nonlinear numerical operations need to be applied in their analysis. The problem was solved by a scheme of incremental iterative procedures applying Newton-Raphson method in combination with the known line search as well as the arc- length methods. The effects of thickness and depth variation of the shell is taken care of by considering their geometrical parameter l. The results of this study reveal that spherical shell structures subjected to pressure loading experience snap-through instability for values of l≥2.15. A form of ‘turn-back’ of the load-displacement curve took place at load levels prior to the achievement of the critical point. This phenomenon was observed for values of l=5.0 to l=7.0.

  13. Eco-technique of sewer renovation using composite shells ...

    African Journals Online (AJOL)

    An eco-technical renovation of the sewage system is developed in this paper; this technique involves incorporating into the existing sewer a series of jointed prefabricated sandwich or composite shells. The purpose of his study is to determine the structural shell deflection, the high displacement areas and to validate the ...

  14. Problems with tunneling of thin shells from black holes

    Indian Academy of Sciences (India)

    Specifically for shells tunneling out of black holes, this quantity is not invariant under canonical transformations. It can be interpreted as the transmission coefficient only in the cases in which it is invariant under canonical transformations. Although such cases include alpha decay, they do not include the tunneling of shells ...

  15. Water Quality of Trickling Biological Periwinkle Shells Filter for ...

    African Journals Online (AJOL)

    Water Quality of Trickling Biological Periwinkle Shells Filter for Closed Recirculating Catfish System. ... International Journal of Tropical Agriculture and Food Systems ... Studies were carried on the design, efficiency and economics of trickling biological periwinkle shells filter in recirculating aquaculture systems for catfish ...

  16. AF-Shell 1.0 User Guide

    Science.gov (United States)

    McElroy, Mark W.

    2017-01-01

    This document serves as a user guide for the AF-Shell 1.0 software, an efficient tool for progressive damage simulation in composite laminates. This guide contains minimal technical material and is meant solely as a guide for a new user to apply AF-Shell 1.0 to laminate damage simulation problems.

  17. String gas shells, their dual radiation and hedgehog signature control

    National Research Council Canada - National Science Library

    Guendelman, E.I

    2009-01-01

    ... as spacelike in nature. This “dual radiation”, we will argue, can be interpreted as representing the virtual quantum fluctuations that stabilize the shell. The solutions can be generalized allowing for the introduction of a string-hedgehog [2] or a global monopole [3] on top of the string gas shell and its dual radiation. Then, for big enough hedgehog strengt...

  18. Monodispersed core-shell Fe3O4@Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L Y.; Luo, Jin; Fan, Quan; Suzuki, Masatsugu; Suzuki, Itsuko S.; Engelhard, Mark H.; Lin, Yuehe; Kim, Nam; Wang, JQ; Zhong, Chuan-Jian

    2005-12-15

    The ability to synthesize and assemble monodispersed core-shell nanoparticles is important for exploring the unique properties of nanoscale core, shell, or their combinations in technological applications. This paper describes findings of an investigation of the synthesis and assembly of core (Fe3O4)-shell (An) nanoparticles with high monodispersity. Fe3O4 nanoparticles of selected sizes were used as seeding materials for the reduction of gold precursors to produce gold-coated Fe3O4 nanoparticles (Fe3O4@Au). Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, core-shell composition, surface reactivity, and magnetic properties have confirmed the formation of the core-shell nanostructure. The interfacial reactivity of a combination of ligand-exchanging and interparticle cross-linking was exploited for molecularly mediated thin film assembly of the core-shell nanoparticles. The SQUID data reveal a decrease in magnetization and blocking temperature and an increase in coercivity for Fe3O4@Au, reflecting the decreased coupling of the magnetic moments as a result of the increased interparticle spacing by both gold and capping shells. Implications of the findings to the design of interfacial reactivities via core-shell nanocomposites for magnetic, catalytic, and biological applications are also briefly discussed.

  19. Inner-shell physics after fifty years of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Merzbacher, E.

    1976-01-01

    A historical view is given of how the development of quantum mechanics has been affected by the information relating to inner shells, gathered by physicists since the early days of atomic physics, and of the impact of quantum mechanics on the physics of inner atomic shells. 25 refs. (GHT)

  20. Core-shell particles as model compound for studying fouling

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Nielsen, Troels Bach; Andersen, Morten Boel Overgaard

    2008-01-01

    Synthetic colloidal particles with hard cores and soft, water-swollen shells were used to study cake formation during ultrafiltration. The total cake resistance was lowest for particles with thick shells, which indicates that interparticular forces between particles (steric hindrance...... the permeate flux could be enhanced by lowering the pressure. Hence, the amount of water-swollen material influences both cake thickness and resistance....