WorldWideScience

Sample records for tests specific to a material structure or device

  1. Development of a Device for a Material Irradiation Test in the OR Test Hole

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Man Soon; Kang, Y. H.; Kim, B. G.; Choo, K. N.; Sohn, J. M.; Shin, Y. T.; Park, S. J.; Seo, C. K

    2008-05-15

    To develop a technology and a device for the irradiation test for utilization of the OR/IP holes according to the various requirements of users, the properties of the OR/IP holes were investigated and an irradiation device for the OR hole was designed and fabricated. The OR-4, 5 and the IP-9, 10, 11 holes were selected as those suitable to irradiation tests among the test holes located in the out core area. The conceptual design was performed to design a device to irradiate materials using the OR and IP holes. The capsule for the OR holes is fixed by pressing the protection tube using a clamping device, on the other hand the IP capsule is inserted in the hole without a special clamping device. In the basic design of the irradiation device for the OR hole, the capsules having the outside diameter of 50, 52, 54, 56mm were reviewed theoretically to investigate if they meet the hydraulic and vibration conditions required in the HANARO. The results of the pressure drop test showed that the 3 kinds of capsules having diameter of 52, 54, 56mm satisfied the requirement for the pressure difference and flow rate in HANARO. The capsule of {phi}56mm out of the above three satisfied the vibration condition and was finally selected giving consideration of a capacity of specimens. The capsule having a diameter of {phi}56mm was fabricated and the flow rate was measured. Using the velocity data measured at the out-core facility, the heat transfer coefficient, and the temperature on the surface of the capsule was evaluated to confirm it less than the ONB temperature. As a result, the capsule of {phi}56mm was selected for the irradiation test at the OR holes.

  2. Test device for measuring permeability of a barrier material

    Science.gov (United States)

    Reese, Matthew; Dameron, Arrelaine; Kempe, Michael

    2014-03-04

    A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed thereon and an edge seal which seals the test card to the barrier material. Another exemplary embodiment is an electrical calcium test device comprising: a test card an impermeable spacer, an edge seal which seals the test card to the spacer and an edge seal which seals the spacer to the barrier material.

  3. The development of an enhanced strain measurement device to support testing of radioactive material packages

    International Nuclear Information System (INIS)

    Uncapkher, W.L.; Arviso, M.

    1995-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of reliable instrumentation measurement data. Over the last four decades, Sandia National Laboratories (SNL) has been actively involved in the development, testing, and evaluation of measurement devices for a broad range of applications, resulting in the commercialization of several measurement devices commonly used today. SNL maintains an ongoing program sponsored by the US Department of Energy (DOE) to develop and evaluate measurement devices to support testing of packages used to transport radioactive or hazardous materials. The development of the enhanced strain measurement device is part of this program

  4. Design of a test device for subjecting materials to high strain rates: with application in nuclear area

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, Sergio R.; Mucsi, Cristiano S.; Rossi, Jesualdo L., E-mail: sergio.todesco@usp.br, E-mail: csmucsi@ipen.br, E-mail: jelrossi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    This paper presents a design of a device to gather characteristic data of materials subjected to high strain rates, this device named after the eminent English engineer Sir Bertram Hopkinson 'Split Hopkinson Pressure Bar', from here will be designated SHPB. More specifically, this work is inseparably linked to the development of packing for transportation of highly radioactive substances as a part to the general scope of a CAPES project in partnership with the CCTM Materials Department of IPEN, Institute of Energy and Nuclear Research, linked to the University of Sao Paulo. The development of the device is part of a scope, and collection of data necessary for the design and construction of this packing. The SHPB device can be divided into two parts, the first part concerning the mechanical design. The second, data collection that is indeed the challenging part of the device, and proper tests. The present paper, specifically, will only deals with the mechanical design of the device, importantly, divided into two parts, the size of the bars, which are the impact bar, the input bar, and the output bar, and the size of the impact device. The sizing of the bars involve knowledge of the concept of elastic waves in solid media for the length of the bars to serve as a wave-guide, which will cause a deformation of the specimen, and enables recording of these waves for data analysis. The impact device must be robust enough to produce the stress wave to deform the specimen, but not to plastically deform the bars, which have to continue throughout the test within the elastic range. (author)

  5. Design of a test device for subjecting materials to high strain rates: with application in nuclear area

    International Nuclear Information System (INIS)

    Todesco, Sergio R.; Mucsi, Cristiano S.; Rossi, Jesualdo L.

    2015-01-01

    This paper presents a design of a device to gather characteristic data of materials subjected to high strain rates, this device named after the eminent English engineer Sir Bertram Hopkinson 'Split Hopkinson Pressure Bar', from here will be designated SHPB. More specifically, this work is inseparably linked to the development of packing for transportation of highly radioactive substances as a part to the general scope of a CAPES project in partnership with the CCTM Materials Department of IPEN, Institute of Energy and Nuclear Research, linked to the University of Sao Paulo. The development of the device is part of a scope, and collection of data necessary for the design and construction of this packing. The SHPB device can be divided into two parts, the first part concerning the mechanical design. The second, data collection that is indeed the challenging part of the device, and proper tests. The present paper, specifically, will only deals with the mechanical design of the device, importantly, divided into two parts, the size of the bars, which are the impact bar, the input bar, and the output bar, and the size of the impact device. The sizing of the bars involve knowledge of the concept of elastic waves in solid media for the length of the bars to serve as a wave-guide, which will cause a deformation of the specimen, and enables recording of these waves for data analysis. The impact device must be robust enough to produce the stress wave to deform the specimen, but not to plastically deform the bars, which have to continue throughout the test within the elastic range. (author)

  6. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    International Nuclear Information System (INIS)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok

    2009-01-01

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data

  7. Drop Weight Device Fabrication and Tests for a Dynamic Material Property of Shock-Absorbing Material and Structure in Transportation Package

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woo Seok; Jeon, Jea Eon; Han, Sang Hyeok; Lee, Sang Hoon; Seo, Ki Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    A radioactive material transportation package consists of canister and impact limiters. IAEA Safety Standard Series No. TS-R-1 recommends a drop test to evaluate the structural integrity of a transportation package under a hypothetical accident condition. The free drop test of a transportation package from 9 m height simulates one of accident conditions. The transportation package has a potential energy corresponding to 9 m drop height, and this energy changes to a kinetic energy when it impacts on the target. The energy is absorbed by a deformation of shock-absorbing material so that the minimum energy is transferred to canister. Accordingly, the shock-absorbing material is a very important part in transportation package design. Since the data for shock-absorbing material characteristics is acquired by a static test in general, it is quite different to that of dynamic characteristics. And the dynamic characteristics data is hardly found in literature. In this study, a drop weight facility was designed and fabricated which produces an impact speed like that of free drop of 9 m height. Several materials considered for an impact limiter and impact limiter structures were tested by a drop weight facility to acquire a dynamic material characteristics data.

  8. Development and evaluation of measurement devices used to support testing of radioactive material transportation packages

    International Nuclear Information System (INIS)

    Uncapher, W.L.; Ammerman, D.J.; Stenberg, D.R.; Bronowski, D.R.; Arviso, M.

    1992-01-01

    Radioactive material package designers use structural testing to verify and demonstrate package performance. A major part of evaluating structural response is the collection of instrumentation measurement data. Sandia National Laboratories (SNL) has an ongoing program to develop and evaluate measurement devices to support testing of radioactive material packages. Measurement devices developed in support of this activity include evaluation channels, ruggedly constructed linear variable differential transformers, and piezoresistive accelerometers with enhanced measurement capabilities. In addition to developing measurement devices, a method has been derived to evaluate accelerometers and strain gages for measurement repeatability, ruggedness, and manufacturers' calibration data under both laboratory and field conditions. The developed measurement devices and evaluation technique will be discussed and the results of the evaluation will be presented

  9. Glass solidification material confinement test device

    International Nuclear Information System (INIS)

    Namiki, Shigekazu.

    1997-01-01

    In a device for confining glass solidification materials, a pipeline connecting a detection vessel and a detector is formed to have a double walled structure, and air blowing holes are formed on the wall of the inner pipe, and an air supply mechanism is connected to inner and outer pipes for supplying blowing air thereby preventing deposition on the inner pipe wall. The air blowing holes are formed by constituting the pipe by using a porous sintered material and porous portions thereof are defined as the air blowing holes, or holes are formed on the pipe wall made of a metal by machining. A blowing boundary layer is formed by blowing the supplied air along the pipe wall of the inner pipe, by which deposition of the sucked materials to the inner wall of the inner pipe is prevented, and all of the materials sucked from the detection vessel are collected to the detector. In addition, an air exit pipe is formed into a double walled structure so as to be supplied blowing air from the air supply mechanism thereby enabling to prevent deposition of sucked materials more reliably. (N.H.)

  10. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    Science.gov (United States)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  11. Device for remote inspection and testing of a structure

    International Nuclear Information System (INIS)

    Blanc, B.; Boudou, J.; Castaing, A.; Clasquin, J.; Gallet, B.; Saglio, R.; Samoel, A.

    1976-01-01

    A self-propelled carriage for inspecting the primary vessel of a fast reactor is capable of displacement within the interspace between the primary vessel and the containment vessel in order to inspect and test any predetermined zone of the primary vessel, the carriage being associated with a drive mechanism and applied against the oppositely facing wall of the containment vessel. The carriage is suspended from a composite cable actuated by a handling apparatus for introducing the carriage into the interspace and withdrawing it therefrom. The composite cable supplies electric power as well as the different fluids required for positioning and operation of the inspection devices which are mounted on the carriage. 9 claims, 6 drawing figures

  12. Compression device for feeding a waste material to a reactor

    Science.gov (United States)

    Williams, Paul M.; Faller, Kenneth M.; Bauer, Edward J.

    2001-08-21

    A compression device for feeding a waste material to a reactor includes a waste material feed assembly having a hopper, a supply tube and a compression tube. Each of the supply and compression tubes includes feed-inlet and feed-outlet ends. A feed-discharge valve assembly is located between the feed-outlet end of the compression tube and the reactor. A feed auger-screw extends axially in the supply tube between the feed-inlet and feed-outlet ends thereof. A compression auger-screw extends axially in the compression tube between the feed-inlet and feed-outlet ends thereof. The compression tube is sloped downwardly towards the reactor to drain fluid from the waste material to the reactor and is oriented at generally right angle to the supply tube such that the feed-outlet end of the supply tube is adjacent to the feed-inlet end of the compression tube. A programmable logic controller is provided for controlling the rotational speed of the feed and compression auger-screws for selectively varying the compression of the waste material and for overcoming jamming conditions within either the supply tube or the compression tube.

  13. Nano-Bio Quantum Technology for Device-Specific Materials

    Science.gov (United States)

    Choi, Sang H.

    2009-01-01

    The areas discussed are still under development: I. Nano structured materials for TE applications a) SiGe and Be.Te; b) Nano particles and nanoshells. II. Quantum technology for optical devices: a) Quantum apertures; b) Smart optical materials; c) Micro spectrometer. III. Bio-template oriented materials: a) Bionanobattery; b) Bio-fuel cells; c) Energetic materials.

  14. Li4 Ti5 O12 Anode: Structural Design from Material to Electrode and the Construction of Energy Storage Devices.

    Science.gov (United States)

    Chen, Zhijie; Li, Honsen; Wu, Langyuan; Lu, Xiaoxia; Zhang, Xiaogang

    2018-03-01

    Spinel Li 4 Ti 5 O 12 , known as a zero-strain material, is capable to be a competent anode material for promising applications in state-of-art electrochemical energy storage devices (EESDs). Compared with commercial graphite, spinel Li 4 Ti 5 O 12 offers a high operating potential of ∼1.55 V vs Li/Li + , negligible volume expansion during Li + intercalation process and excellent thermal stability, leading to high safety and favorable cyclability. Despite the merits of Li 4 Ti 5 O 12 been presented, there still remains the issue of Li 4 Ti 5 O 12 suffering from poor electronic conductivity, manifesting disadvantageous rate performance. Typically, a material modification process of Li 4 Ti 5 O 12 will be proposed to overcome such an issue. However, the previous reports have made few investigations and achievements to analyze the subsequent processes after a material modification process. In this review, we attempt to put considerable interest in complete device design and assembly process with its material structure design (or modification process), electrode structure design and device construction design. Moreover, we have systematically concluded a series of representative design schemes, which can be divided into three major categories involving: (1) nanostructures design, conductive material coating process and doping process on material level; (2) self-supporting or flexible electrode structure design on electrode level; (3) rational assembling of lithium ion full cell or lithium ion capacitor on device level. We believe that these rational designs can give an advanced performance for Li 4 Ti 5 O 12 -based energy storage device and deliver a deep inspiration. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    Science.gov (United States)

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-25

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  16. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  17. Fiberglass Material Specification Test Support

    Science.gov (United States)

    1985-09-27

    samples show a significant penetration at 600 C followed by expansion of the glass-filled matrix. One expected cause for such behavior would be that...but instead showed only an expansion after 60 0 C. This behavior could be interpreted as the presence of glass fiber at or near the surface of the...wan opp4od by Wash (70/m 42 setome wes cosumed in Phue I -sIf duplicate ^- 0,5am 0"• layer). T1 Olcost Was allowed to cu to 8 espoimus. 2 not oyam, aid

  18. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  19. Device for testing continuity and/or short circuits in a cable

    Science.gov (United States)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  20. A novel multiple super junction power device structure with low specific on-resistance

    International Nuclear Information System (INIS)

    Zhu Hui; Li Haiou; Li Qi; Huang Yuanhao; Xu Xiaoning; Zhao Hailiang

    2014-01-01

    A novel multiple super junction (MSJ) LDMOS power device is proposed to decrease R on due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface SJ; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D-depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom SJ, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm. (semiconductor devices)

  1. Method and device for the determination of material loss due to corrosion and/or erosion

    International Nuclear Information System (INIS)

    Dugstad, A.; Videm, K.

    1990-01-01

    The invention relates to a method and an apparatus for gauging material loss due to corrosion and/or erosion during a certain period of time from a given piece of material which previously has been made radioactive. The material loss is determined by measuring the intensity of the radiactive radiation from the material by means of a radiation intensity meter disposed at a measuring site a fixed distance from said piece of material for the measurement of the radioactive radiation from the piece both at the beginning and at the end of said period of time. Each of the measurements is calibrated by means of an additional radiation source disposed for controllably adopting either a most radiation screened position or alternatively a least screened position with respect to a radiation screen, and thereby providing a known radiation intensity at the measuring site in both positions. The least radiation screened position provides full unscreened radiation intensity at the measuring site, whereas the most screened position provides negligible radiation intensity at said site. The measurement results in the two positions are subsequently compared in order to deduce the contribution of said piece of material to the combined radiation intensity in proporsion to the known contribution of the radiation source. The additional radiation source is preferable made from a calibration body composed of the same material as the piece of material exposed to corrosion and/or erosion, the calibration body body being activated at the same time and by the same activation process as said piece. The calibration body is preferably dimensioned to provide at all time the same radiation intensity at the measuring site as a predetermined material loss from the piece of material, e.g. a prefixed thickness reduction of the same. 4 figs

  2. Isotopically enriched structural materials in nuclear devices

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, L.W.G., E-mail: Lee.Morgan@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Shimwell, J. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Gilbert, M.R. [CCFE, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom)

    2015-01-15

    Highlights: • C-B analysis of isotopic enrichment of structural materials is presented. • Some, previously, prohibited elements could be used as alloying elements in LAM's. • Adding enriched molybdenum and nickel, to EUROFER, could increase availability. • Isotope enrichment for EUROFER could be cost-effective. • Isotopically enriching copper, in CuCrZr, can reduce helium production by 50%. - Abstract: A large number of materials exist which have been labeled as low activation structural materials (LAM). Most often, these materials have been designed in order to substitute-out or completely remove elements that become activated and contribute significantly to shut-down activity after being irradiated by neutrons in a reactor environment. To date, one of the fundamental principles from which LAMs have been developed is that natural elemental compositions are the building blocks of LAMs. Thus, elements such as Co, Al, Ni, Mo, Nb, N and Cu that produce long-lived decay products are significantly reduced or removed from the LAM composition. These elements have an important part to play in the composition of steels and the removal/substitution can have a negative impact on materials properties such as yield stress and fracture toughness. This paper looks in more detail at whether using isotopic selection of the more mechanically desirable, but prohibited due to activation, elements can improve matters. In particular, this paper focuses on the activation of Eurofer. Carefully chosen isotopically enriched elements, which are normally considered to be on the prohibited element list, are added to EUROFER steel as potential alloying elements. The EUROFER activation results show that some prohibited elements can be used as alloying elements in LAM steels, providing the selected isotopes do not have a significant impact on waste disposal rating or shut-down dose. The economic implications of isotopically enriching elements and the potential implications for

  3. Effect on the insulation material of a MOSFET device submitted to a standard diagnostic radiation beam

    International Nuclear Information System (INIS)

    De Magalhaes, C M S; Dos Santos, L A P; Souza, D do N; Maia, A F

    2010-01-01

    MOSFET electronic devices have been used for dosimetry in radiology and radiotherapy. Several communications show that due to the radiation exposure defects appear on the semiconductor crystal lattice. Actually, the structure of a MOSFET consists of three materials: a semiconductor, a metal and an insulator between them. The MOSFET is a quadripolar device with a common terminal: gate-source is the input; drain-source is the output. The gate controls the electrical current passing through semiconductor medium by the field effect because the silicon oxide acts as insulating material. The proposal of this work is to show some radiation effects on the insulator of a MOSFET device. A 6430 Keithley sub-femtoamp SourceMeter was used to verify how the insulating material layer in the structure of the device varies with the radiation exposure. We have used the IEC 61267 standard radiation X-ray beams generated from a Pantak industrial unit in the radiation energy range of computed tomography. This range was chosen because we are using the MOSFET device as radiation detector for dosimetry in computed tomography. The results showed that the behaviour of the electrical current of the device is different in the insulator and semiconductor structures.

  4. Mechanical properties test program on structural materials in a sodium environment

    International Nuclear Information System (INIS)

    Natesan, K.; Chopra, O.K.; Kassner, T.F.

    1979-10-01

    This document describes in detail the ongoing and planned US Test program on the mechanical properties of sodium-exposed Type 316 austenitic stainless and Fe-2 1/4 Cr-1 Mo ferritic steels. The test program is based on the Development Requirement Specifications (DRS) established by the DOE/Clinch River Breeder Reactor Project (CRBRP) Program Office, the general need for the development of LMFBR structural-design criteria established by the Nuclear Systems Materials Handbook, and the need for a fundamental understanding of materials behavior in a sodium environment, which is generic to LMFBR systems. The planned test program is an extension of work based on current knowledge of sodium chemistry and the influence of sodium purity on the mechanical properties of structural materials

  5. Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency - Training Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Emergency response exercises are a key component of a good program of preparation in emergencies. They can provide a unique insight on the State of preparation of emergency response organizations. They can also be the basis for continuous improvement programs of the infrastructure of response in emergencies. However, to be more useful, the exercises in emergency response need to be well organized, professionally conducted and its assessment should focus on the potential for constructive improvement. The course of the IAEA on preparedness, conduction and evaluation exercises to test the preparation before a nuclear emergency or radiation designed for people and organizations that want to increase their ability to carry out effective and significant emergency exercises. The objectives of this course are: To familiarize participants with concepts, terminology, process of preparation, conduction and evaluation of the exercise to test the preparation before a nuclear emergency or radiation; Provide participants with knowledge practical and the ability to organize, lead and evaluate an exercise to test the preparation for a nuclear emergency or radiation in their own countries; Submit an exercise response model in emergency prepared by the IAEA; and give participants the skill to adapt the proposal of model exercise and organize and lead this exercise model right in your own country. [es

  6. An Intraoperative Site-specific Bone Density Device: A Pilot Test Case.

    Science.gov (United States)

    Arosio, Paolo; Moschioni, Monica; Banfi, Luca Maria; Di Stefano, Anilo Alessio

    2015-08-01

    This paper reports a case of all-on-four rehabilitation where bone density at implant sites was assessed both through preoperative computed tomographic (CT) scans and using a micromotor working as an intraoperative bone density measurement device. Implant-supported rehabilitation is a predictable treatment option for tooth replacement whose success depends on the clinician's experience, the implant characteristics and location and patient-related factors. Among the latter, bone density is a determinant for the achievement of primary implant stability and, eventually, for implant success. The ability to measure bone density at the placement site before implant insertion could be important in the clinical setting. A patient complaining of masticatory impairment was presented with a plan calling for extraction of all her compromised teeth, followed by implant rehabilitation. A week before surgery, she underwent CT examination, and the bone density on the CT scans was measured. When the implant osteotomies were created, the bone density was again measured with a micromotor endowed with an instantaneous torque-measuring system. The implant placement protocols were adapted for each implant, according to the intraoperative measurements, and the patient was rehabilitated following an all-on-four immediate loading protocol. The bone density device provided valuable information beyond that obtained from CT scans, allowing for site-specific, intraoperative assessment of bone density immediately before implant placement and an estimation of primary stability just after implant insertion. Measuring jaw-bone density could help clinicians to select implant-placement protocols and loading strategies based on site-specific bone features.

  7. A METHOD FOR CREATING STRUCTURES OR DEVICES USING AN ORGANIC ICE RESIST

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a method for creating an organic resist on a surface of a cooled substrate, the method comprising the steps of condensing a vapour into a solid film on the surface of the cooled substrate; patterning at least part of the solid film by exposing selected portions of said...... solid film to at least one electron beam thereby creating the organic resist on 5 the surface of the cooled substrate in accordance with a predetermined pattern; wherein the created organic resist remains essentially intact at ambient conditions; and using the created organic resist as a mask...... for creating semiconductor structures and/or semiconductor devices....

  8. A new device to test cutting efficiency of mechanical endodontic instruments

    Science.gov (United States)

    Rubini, Alessio Giansiracusa; Plotino, Gianluca; Al-Sudani, Dina; Grande, Nicola M.; Putorti, Ermanno; Sonnino, GianPaolo; Cotti, Elisabetta; Testarelli, Luca; Gambarini, Gianluca

    2014-01-01

    Background The purpose of the present study was to introduce a new device specifically designed to evaluate the cutting efficiency of mechanically driven endodontic instruments. Material/Methods Twenty new Reciproc R25 (VDW, Munich, Germany) files were used to be investigated in the new device developed to test the cutting ability of endodontic instruments. The device consists of a main frame to which a mobile plastic support for the hand-piece is connected and a stainless-steel block containing a Plexiglas block against which the cutting efficiency of the instruments was tested. The length of the block cut in 1 minute was measured in a computerized program with a precision of 0.1mm. The instruments were activated by using a torque-controlled motor (Silver Reciproc; VDW, Munich, Germany) in a reciprocating movement by the “Reciproc ALL” program (Group 1) and in counter-clockwise rotation at 300 rpm (Group 2). Mean and standard deviations of each group were calculated and data were statistically analyzed with a one-way ANOVA test (P0.05). Conclusions The cutting testing device evaluated in the present study was reliable and easy to use and may be effectively used to test cutting efficiency of both rotary and reciprocating mechanical endodontic instruments. PMID:24603777

  9. A method to determine site-specific, anisotropic fracture toughness in biological materials

    International Nuclear Information System (INIS)

    Bechtle, Sabine; Özcoban, Hüseyin; Yilmaz, Ezgi D.; Fett, Theo; Rizzi, Gabriele; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.

    2012-01-01

    Many biological materials are hierarchically structured, with highly anisotropic structures and properties on several length scales. To characterize the mechanical properties of such materials, detailed testing methods are required that allow precise and site-specific measurements on several length scales. We propose a fracture toughness measurement technique based on notched focused ion beam prepared cantilevers of lower and medium micron size scales. Using this approach, site-specific fracture toughness values in dental enamel were determined. The usefulness and challenges of the method are discussed.

  10. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  11. Spintronics from materials to devices

    CERN Document Server

    Felser, Claudia

    2013-01-01

    Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made

  12. Comparison of blood tests for liver fibrosis specific or not to NAFLD.

    Science.gov (United States)

    Calès, Paul; Lainé, Fabrice; Boursier, Jérôme; Deugnier, Yves; Moal, Valérie; Oberti, Frédéric; Hunault, Gilles; Rousselet, Marie Christine; Hubert, Isabelle; Laafi, Jihane; Ducluzeaux, Pierre Henri; Lunel, Françoise

    2009-01-01

    To compare blood tests of liver fibrosis specific for NAFLD: the FibroMeter NAFLD and the NAFLD fibrosis score (NFSA) with a non-specific test, APRI. Two hundred and thirty-five NAFLD patients with liver Metavir staging and blood markers from two independent centres were randomly assigned to a test (n=121) or a validation population (n=114). The highest accuracy--91%--for significant fibrosis was obtained with the FibroMeter whose (i) AUROC (0.943) was significantly higher than those of NFSA (0.884, p=0.008) and APRI (0.866, pliver biopsy could have been avoided in most patients: FibroMeter: 97.4% vs NFSA: 86.8% (pfibrosis, significantly outperforming NFSA and APRI.

  13. Positive Skin Test or Specific IgE to Penicillin Does Not Reliably Predict Penicillin Allergy.

    Science.gov (United States)

    Tannert, Line Kring; Mortz, Charlotte Gotthard; Skov, Per Stahl; Bindslev-Jensen, Carsten

    According to guidelines, patients are diagnosed with penicillin allergy if skin test (ST) result or specific IgE (s-IgE) to penicillin is positive. However, the true sensitivity and specificity of these tests are presently not known. To investigate the clinical relevance of a positive ST result and positive s-IgE and to study the reproducibility of ST and s-IgE. A sample of convenience of 25 patients with positive penicillin ST results, antipenicillin s-IgE results, or both was challenged with their culprit penicillin. Further 19 patients were not challenged, but deemed allergic on the basis of a recent anaphylactic reaction or delayed reactions to skin testing. Another sample of convenience of 18 patients, 17 overlapping with the 25 challenged, with initial skin testing and s-IgE (median, 25; range, 3-121), months earlier (T -1 ), was repeat skin tested and had s-IgE measured (T 0 ), and then skin tested and had s-IgE measured 4 weeks later (T 1 ). Only 9 (36%) of 25 were challenge positive. There was an increased probability of being penicillin allergic if both ST result and s-IgE were positive at T 0 . Positive ST result or positive s-IgE alone did not predict penicillin allergy. Among the 18 patients repeatedly tested, 46.2% (12 of 25) of positive ST results at T -1 were reproducibly positive at T 0 . For s-IgE, 54.2% (14 of 24) positive measurements were still positive at T 0 and 7 converted to positive at T 1 . The best predictor for a clinically significant (IgE-mediated) penicillin allergy is a combination of a positive case history with simultaneous positive ST result and s-IgE or a positive challenge result. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Building Investigation: Material or Structural Performance

    Directory of Open Access Journals (Sweden)

    Yusof M.Z.

    2014-03-01

    Full Text Available Structures such as roof trusses will not suddenly collapse without ample warning such as significant deflection, tilting etc. if the designer manages to avoid the cause of structural failure at the material level and the structural level. This paper outlines some principles and procedures of PDCA circle and QC tools which can show some clues of structural problems in terms of material or structural performance

  15. Improvements in or relating to semiconductor devices

    International Nuclear Information System (INIS)

    Cooper, K.; Groves, I.S.; Leigh, P.A.; McIntyre, N.; O'Hara, S.; Speight, J.D.

    1980-01-01

    A method of producing semiconductor devices is described consisting of a series of physical and chemical techniques which results in the production of semiconductor devices such as IMPATT diodes of DC-RF efficiency and high reliability (lifetime). The diodes can be mass produced without significant variation of the technology. One of the techniques used is the high energy proton bombardment of the semiconductor material in depth to passivate specific zones. The energy of the protons is increased in stages at intervals of less than 0.11 MeV up to a predetermined maximum energy. (UK)

  16. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  17. Positive Skin Test or Specific IgE to Penicillin Does Not Reliably Predict Penicillin Allergy

    DEFF Research Database (Denmark)

    Tannert, Line Kring; Mørtz, Charlotte G; Skov, Per Stahl

    2017-01-01

    INTRODUCTION: According to guidelines, patients are diagnosed with penicillin allergy if skin test (ST) result or specific IgE (s-IgE) to penicillin is positive. However, the true sensitivity and specificity of these tests are presently not known. OBJECTIVE: To investigate the clinical relevance...... of a positive ST result and positive s-IgE and to study the reproducibility of ST and s-IgE. METHODS: A sample of convenience of 25 patients with positive penicillin ST results, antipenicillin s-IgE results, or both was challenged with their culprit penicillin. Further 19 patients were not challenged......-IgE measured (T0), and then skin tested and had s-IgE measured 4 weeks later (T1). RESULTS: Only 9 (36%) of 25 were challenge positive. There was an increased probability of being penicillin allergic if both ST result and s-IgE were positive at T0. Positive ST result or positive s-IgE alone did not predict...

  18. A performance test of a capsule for a material irradiation in the OR holes of HANARO

    International Nuclear Information System (INIS)

    Cho, M. S.; Choo, K. N.; Shin, Y. T.; Sohn, J. M.; Park, S. J.; Kang, Y. H.; Kim, B. G.

    2008-01-01

    A test for a pressure drop and a vibration was performed to develop a material capsule for an irradiation at the OR hole in HANARO. It was analyzed before the test that a diameter of a material capsule for the OR holes should be more than 49mm by an evaluation of a flow rate and pressure drop in theory. According to this estimation, 3 kinds of mock-up capsules with a diameter of 52, 54, 56 mm were made and applied to a pressure drop test. As a result of the pressure drop test, the requirement for a pressure and a flow rate in HANARO was confirmed to be satisfied for the 3 kinds of diameters. The capsules with diameters of 54, 56mm were applied to a vibration test by taking into consideration a receptive capacity of the specimens. The capsule with a diameter of 56mm satisfied the requirement for an allowable limit of the vibration acceleration applied in HANARO. The heat transfer coefficient and the temperature on the surface of a capsule were estimated. As the temperature on the surface of the capsule was calculated to be 43.7 .deg. C, the ONB condition in HANARO was satisfied

  19. To Go or Not to Go: A Proof of Concept Study Testing Food-Specific Inhibition Training for Women with Eating and Weight Disorders.

    Science.gov (United States)

    Turton, Robert; Nazar, Bruno P; Burgess, Emilee E; Lawrence, Natalia S; Cardi, Valentina; Treasure, Janet; Hirsch, Colette R

    2018-01-01

    Inefficient food-specific inhibitory control is a potential mechanism that underlies binge eating in bulimia nervosa and binge eating disorder. Go/no-go training tools have been developed to increase inhibitory control over eating impulses. Using a within-subjects design, this study examined whether one session of food-specific go/no-go training, versus general inhibitory control training, modifies eating behaviour. The primary outcome measure was food consumption on a taste test following each training session. Women with bulimia nervosa and binge eating disorder had small non-significant reductions in high-calorie food consumption on the taste test following the food-specific compared with the general training. There were no effects on eating disorder symptomatic behaviour (i.e. binge eating/purging) in the 24 h post-training. The training task was found to be acceptable by the clinical groups. More research is needed with larger sample sizes to determine the effectiveness of this training approach for clinical populations. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  20. From screen to structure with a harvestable microfluidic device

    International Nuclear Information System (INIS)

    Stojanoff, Vivian; Jakoncic, Jean; Oren, Deena A.; Nagarajan, V.; Navarro Poulsen, Jens-Christian; Adams-Cioaba, Melanie A.; Bergfors, Terese; Sommer, Morten O. A.

    2011-01-01

    Microfluidic crystallization using the Crystal Former improves the identification of initial crystallization conditions relative to screening via vapour diffusion. Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines

  1. A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique

    Science.gov (United States)

    Kaneko, Kentaro; Fujita, Shizuo; Hitora, Toshimi

    2018-02-01

    Corundum-structured oxides have been attracting much attention as next-generation power device materials. A corundum-structured α-Ga2O3 successfully demonstrated power device operations of Schottky barrier diodes (SBDs) with the lowest on-resistance of 0.1 mΩ cm2. The SBDs as a mounting device of TO220 also showed low switching-loss properties with a capacitance of 130 pF. Moreover, the thermal resistance was 13.9 °C/W, which is comparable to that of the SiC TO220 device (12.5 °C/W). On the other hand, corundum-structured α-(Rh,Ga)2O3 showed p-type conductivity, which was confirmed by Hall effect measurements. The Hall coefficient, carrier density, and mobility were 8.22 cm3/C, 7.6 × 1017/cm3, and 1.0 cm2 V-1 s-1, respectively. These values were acceptable for the p-type layer of pn diodes based on α-Ga2O3.

  2. A Micro-Test Structure for the Thermal Expansion Coefficient of Metal Materials

    Directory of Open Access Journals (Sweden)

    Qingying Ren

    2017-02-01

    Full Text Available An innovative micro-test structure for detecting the thermal expansion coefficient (TEC of metal materials is presented in this work. Throughout this method, a whole temperature sensing moveable structures are supported by four groups of cascaded chevrons beams and packed together. Thermal expansion of the metal material causes the deflection of the cascaded chevrons, which leads to the capacitance variation. By detecting the capacitance value at different temperatures, the TEC value of the metal materials can be calculated. A finite element model has been established to verify the relationship between the TEC of the material and the displacement of the structure on horizontal and vertical directions, thus a function of temperature for different values of TEC can be deduced. In order to verify the analytical model, a suspended-capacitive micro-test structure has been fabricated by MetalMUMPs process and tested in a climate chamber. Test results show that in the temperature range from 30 °C to 80 °C, the TEC of the test material is 13.4 × 10−6 °C−1 with a maximum relative error of 0.8% compared with the given curve of relationship between displacement and temperature.

  3. Quasi-brittle material behavior under cyclic loading: from virtual testing to structural computation

    International Nuclear Information System (INIS)

    Vassaux, Maxime

    2015-01-01

    Macroscopic constitutive laws are developed not only because they allow for large-scale computations but also because refine dissipative mechanisms observed at lower scales. Within the framework of this study, the development of such models is carried out in the context of seismic loading, that is to say reverse cyclic loading, applied to the quasi-brittle materials and more precisely, concrete-like materials. Nowadays, robust and predictive macroscopic constitutive laws are still rare because of the complexity of cracking related phenomena. Among the challenges to face, the material parameters identification is far from being the easiest due to the lack of experimental data. Indeed, the difficulties to carry out cyclic tests on concrete-like materials are numerous. To overcome these difficulties, a virtual testing approach based on a refine model is proposed in this study in order to feed continuum models with the missing material parameters. Adopting a microscopic point of view, a representative volume element is seen as a structure. The microscopic model has been developed with the aim to require a minimal number of material parameters which only need basic mechanical tests to be identified. From an existing lattice model developed to deal with monotonic loading, several enhancements have been realized in order to extend its range of applicability, making it capable of dealing with complex multi-axial cyclic loadings. The microscopic model has been validated as a virtual testing machine that is able to help the identification procedure of continuous constitutive laws. This identification approach has been applied on a new constitutive law developed within the framework of isotropic continuum damage mechanics accounting for cyclic related effects. In particular, the concept of regularized unilateral effect has been introduced to describe the progressive crack closure. The macroscopic model has been calibrated with the help from the aforementioned virtual testing

  4. Study and selection of structured packing material: metallic, polymeric or ceramic to operate a column of absorption polluting gases coming from brick kilns efficiently

    International Nuclear Information System (INIS)

    Salazar P, A.

    2012-01-01

    In this research three structured packing materials were characterized: a metallic, polymeric and ceramic. The study of the physical properties of structured packing materials, and their behavior within the absorption column allowed to suggest a gas-liquid contactor material with higher mechanical and chemical resistance, which is more efficient for the treatment of sour gases from brick kilns. To study the mechanical properties (hardness, tension and elastic modulus) were used procedures of the American Society for Testing Materials, as well as resistance to corrosion. The geometric characteristics, the density, the melting temperature and the weight were tested with procedures of the measuring equipment. The structure was evaluated by X-ray diffraction, morphology was observed by scanning electron microscopy coupled to a sound of dispersive energy of X-ray, to quantify elemental chemical composition. The interaction of gas-liquid contactors materials in presence of CO 2 , was evaluated in three absorption columns built of Pyrex glass, with a diameter of 0.1016 m, of 1.5 m in height, 0.0081m 2 cross-sectional area, packed with every kind of material: metallic, polymeric and ceramic, processing a gas flow of 20m 3 / h at 9% CO 2 , in air and a liquid flow to 30% of Mea 5 L/min. The results of the properties studied were by the metallic material: more density, higher roughness, the greater tensile strength, greater resistance to corrosion in the presence of an aqueous solution of monoethanolamine (Mea) to 30% by weight, improvement more efficient absorption of CO 2 , and higher modulus of elasticity. The polymeric material was characterized to have lower hardness, lower roughness, lower density, lower melting temperature, greater resistance to corrosion in the presence of 1 N H 2 SO 4 aqueous solution, and allowed an absorption efficiency of CO 2 , 2% lower than that presented by the material metallic. The ceramic material found to be the hardest of the three

  5. Molten core material holding device in a nuclear reactor

    International Nuclear Information System (INIS)

    Nakamura, Hisashi; Tanaka, Nobuo; Takahashi, Katsuro.

    1985-01-01

    Purpose: To improve the function of cooling to hold molten core materials in a molten core material holding device. Constitution: Plenum structures are formed into a pan-like configuration, in which liners made of metal having high melting point and relatively high heat conductivity such as tantalum, tungsten, rhenium or alloys thereof are integrally appended to hold and directly cool the molten reactor core materials. Further, a plurality of heat pipes, passing through the plenum structures, facing the cooling portion thereof to the coolants at the outer side and immersing the heating portion into the molten core materials fallen to deposit in the inner liners are disposed radially. Furthermore, heat pipes embodded in the plenum structure are disposed in the same manner below the liners. Thus, the plenum structures and the molten reactor core materials can be cooled at a high efficiency. (Seki, T.)

  6. Error Analysis in a Device to Test Optical Systems by Using Ronchi Test and Phase Shifting

    International Nuclear Information System (INIS)

    Cabrera-Perez, Brasilia; Castro-Ramos, Jorge; Gordiano-Alvarado, Gabriel; Vazquez y Montiel, Sergio

    2008-01-01

    In optical workshops, Ronchi test is used to determine the optical quality of any concave surface, while it is in the polishing process its quality is verified. The Ronchi test is one of the simplest and most effective methods used for evaluating and measuring aberrations. In this work, we describe a device to test converging mirrors and lenses either with small F/numbers or large F/numbers, using LED (Light-Emitting Diode) that has been adapted in the Ronchi testing as source of illumination. With LED used the radiation angle is bigger than common LED. It uses external power supplies to have well stability intensity to avoid error during the phase shift. The setup also has the advantage to receive automatic input and output data, this is possible because phase shifting interferometry and a square Ronchi ruling with a variable intensity LED were used. Error analysis of the different parameters involved in the test of Ronchi was made. For example, we analyze the error in the shifting of phase, the error introduced by the movement of the motor, misalignments of x-axis, y-axis and z-axis of the surface under test, error in the period of the grid used

  7. Nondestructive Testing of Materials and Structures

    CERN Document Server

    Akkaya, Yılmaz

    2013-01-01

    Condition assessment and characterization of materials and structures by means of nondestructive testing (NDT) methods is a priority need around the world to meet the challenges associated with the durability, maintenance, rehabilitation, retrofitting, renewal and health monitoring of new and existing infrastructures including historic monuments. Numerous NDT methods that make use of certain components of the electromagnetic and acoustic spectra are currently in use to this effect with various levels of success and there is an intensive worldwide research effort aimed at improving the existing methods and developing new ones. The knowledge and information compiled in this book captures the current state-of-the-art in NDT methods and their application to civil and other engineering materials and structures. Critical reviews and advanced interdisciplinary discussions by world-renowned researchers point to the capabilities and limitations of the currently used NDT methods and shed light on current and future res...

  8. Flexible devices: from materials, architectures to applications

    Science.gov (United States)

    Zou, Mingzhi; Ma, Yue; Yuan, Xin; Hu, Yi; Liu, Jie; Jin, Zhong

    2018-01-01

    Flexible devices, such as flexible electronic devices and flexible energy storage devices, have attracted a significant amount of attention in recent years for their potential applications in modern human lives. The development of flexible devices is moving forward rapidly, as the innovation of methods and manufacturing processes has greatly encouraged the research of flexible devices. This review focuses on advanced materials, architecture designs and abundant applications of flexible devices, and discusses the problems and challenges in current situations of flexible devices. We summarize the discovery of novel materials and the design of new architectures for improving the performance of flexible devices. Finally, we introduce the applications of flexible devices as key components in real life. Project supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, 2015CB659300), the National Natural Science Foundation of China (Nos. 21403105, 21573108), and the Fundamental Research Funds for the Central Universities (No. 020514380107).

  9. Test devices in Jules Horowitz Reactor dedicated to the material studies in support to the current and future nuclear power plants

    International Nuclear Information System (INIS)

    Colin, C.; Pierre, J.; Blandin, C.; Gonnier, G.; Auclair, M.; Rozenblum, F.

    2015-01-01

    The Jules Horowitz Reactor (JHR) is a tank pool Material Testing Reactor with a maximum thermal power designed at 100 MW. JHR is being built in the CEA Cadarache site and will take over the Osiris reactor whose decommissioning is planned. JHR's design allows a large experimental capability (around 20 experiments at the same time) inside the reactor core, close to the fuel with high fast neutron flux or outside the reactor core, in the reflector with higher thermal neutron flux. A special attention has been put on the improvement of the thermal stability and gradients of the interest zones in samples despite strong gamma heating and on an improvement of the instrumentation devoted to the experiments. This paper presents the JHR and its main experimental devices that include the MICA (Material Irradiation Capsule) device, the CALIPSO (in-Core Advanced Loop for Irradiation in Potassium and Sodium) loop, the OCCITANE (Out-of-Core Capsule for Irradiation Testing of Ageing by Neutrons) rig, and the CLOE (Corrosion Loop Experiment) loop. JHR will play an important role for Gen IV reactors: CEA studies the feasibility of transmutation capsules, of metal liquid irradiation loops for JHR

  10. Development, simulation and testing of structural materials for DEMO

    International Nuclear Information System (INIS)

    Laesser, R.; Baluc, N.; Boutard, J.-L.; Diegele, E.; Gasparotto, M.; Riccardi, B.; Dudarev, S.; Moeslang, A.; Pippan, R.; Schaaf, B. van der

    2006-01-01

    In DEMO the structural and functional materials of the in-vessel components will be exposed to a very intense flux of fusion neutrons with energies up to 14 MeV creating displacement cascades and gaseous transmutation products. Point defects and transmutations will induce new microstructures leading to changes in mechanical and physical properties such as hardening, swelling, loss of fracture toughness and creep strength. The kinetics of microstructural evolution depends on time, temperature and defect production rates. The structural materials to be used in DEMO should have very special properties: high radiation resistance up to the dose of 100 dpa, low residual activation, high creep strength and good compatibility with the cooling media in as wide a temperature operational window as possible for the achievement of high thermal efficiency. The most promising materials are: Reduced Activation Ferritic Martensitic (RAFM) steels (Eurofer and F82H), Oxide Dispersion Strengthened (ODS) RAFM and RAF steels, SiC fibres reinforced SiC matrix composites (SiCf/SiC), tungsten (W) and W-alloys. Each of these materials has its advantages and drawbacks and will be best used under certain conditions. Presently the best studied group of materials are the RAFM steels. They require the smallest extrapolation for use in DEMO but also offer the lowest upper temperature limit of operation (550 o C) and thus the lowest thermal efficiency. The other materials foreseen for more advanced breeder blanket and divertor concepts require intense fundamental R(and)D and testing before their acceptance, whereas the so-called Test Blanket Modules (TBMs) will be constructed using RAFM steel and tested in ITER. Validation of the DEMO structural materials will be done in IFMIF, the International Fusion Materials Irradiation Facility, which will produce neutron damage and transmutation products very similar to those characterising a fusion device and will allow accelerated testing with damage rates

  11. Microelectronics to nanoelectronics materials, devices & manufacturability

    CERN Document Server

    Kaul, Anupama B

    2012-01-01

    Composed of contributions from top experts, Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability offers a detailed overview of important recent scientific and technological developments in the rapidly evolving nanoelectronics arena.Under the editorial guidance and technical expertise of noted materials scientist Anupama B. Kaul of California Institute of Technology's Jet Propulsion Lab, this book captures the ascent of microelectronics into the nanoscale realm. It addresses a wide variety of important scientific and technological issues in nanoelectronics research and

  12. Novel material and structural design for large-scale marine protective devices

    International Nuclear Information System (INIS)

    Qiu, Ang; Lin, Wei; Ma, Yong; Zhao, Chengbi; Tang, Youhong

    2015-01-01

    Highlights: • Large-scale protective devices with different structural designs have been optimized. • Large-scale protective devices with novel material designs have been optimized. • Protective devices constructed of sandwich panels have the best anti-collision performance. • Protective devices with novel material design can reduce weight and construction cost. - Abstract: Large-scale protective devices must endure the impact of severe forces, large structural deformation, the increased stress and strain rate effects, and multiple coupling effects. In evaluation of the safety of conceptual design through simulation, several key parameters considered in this research are maximum impact force, energy dissipated by the impactor (e.g. a ship) and energy absorbed by the device and the impactor stroke. During impact, the main function of the ring beam structure is to resist and buffer the impact force between ship and bridge pile caps, which could guarantee that the magnitude of impact force meets the corresponding requirements. The means of improving anti-collision performance can be to increase the strength of the beam section or to exchange the steel material with novel fiber reinforced polymer laminates. The main function of the buoyancy tank is to absorb and transfer the ship’s kinetic energy through large plastic deformation, damage, or friction occurring within itself. The energy absorption effect can be improved by structure optimization or by the use of new sandwich panels. Structural and material optimization schemes are proposed on the basis of conceptual design in this research, and protective devices constructed of sandwich panels prove to have the best anti-collision performance

  13. Introduction to organic electronic and optoelectronic materials and devices

    CERN Document Server

    Sun, Sam-Shajing

    2008-01-01

    Introduction to Optoelectronic Materials, N. Peyghambarian and M. Fallahi Introduction to Optoelectronic Device Principles, J. Piprek Basic Electronic Structures and Charge Carrier Generation in Organic Optoelectronic Materials, S.-S. Sun Charge Transport in Conducting Polymers, V.N. Prigodin and A.J. Epstein Major Classes of Organic Small Molecules for Electronic and Optoelectronics, X. Meng, W. Zhu, and H. Tian Major Classes of Conjugated Polymers and Synthetic Strategies, Y. Li and J. Hou Low Energy Gap, Conducting, and Transparent Polymers, A. Kumar, Y. Ner, and G.A. Sotzing Conjugated Polymers, Fullerene C60, and Carbon Nanotubes for Optoelectronic Devices, L. Qu, L. Dai, and S.-S. Sun Introduction of Organic Superconducting Materials, H. Mori Molecular Semiconductors for Organic Field-Effect Transistors, A. Facchetti Polymer Field-Effect Transistors, H.G.O. Sandberg Organic Molecular Light-Emitting Materials and Devices, F. So and J. Shi Polymer Light-Emitting Diodes: Devices and Materials, X. Gong and ...

  14. Device to test the leak-tightness of a container

    International Nuclear Information System (INIS)

    Mills, A.E.; Davey, P.G.

    1978-01-01

    A device is described by which the sensitivity and exactness leak detectors with flow meters may be increased. For this, the flow meter is equipped with two thermal flow sensers and one heating element acting on the two sensors. (RW) [de

  15. Insulating and sheathing materials of electric and optical cables: common test methods part 4-1: methods specific to polyethylene and polypropylene compounds – resistance to environmental stress cracking – measurement of the melt flow index – carbon black and/or mineral filler content measurement in polyethylene by direct combustion – measurement of carbon black content by thermogravimetric analysis (TGA) – assessment of carbon black dispersion in polyethylene using a microscope

    CERN Document Server

    International Electrotechnical Commission. Geneva

    2004-01-01

    Specifies the test methods to be used for testing polymeric insulating and sheathing materials of electric cables for power distribution and telecommunications including cables used on ships. Gives the methods for measurements of the resistance to environmental stress cracking, for wrapping test after thermal ageing in air, for measurement of melt flow index and for measurement of carbon black and/or mineral filler content, which apply to PE and PP coumpounds, including cellular compounds and foam skin for insulation.

  16. A Small Area In-Situ MEMS Test Structure to Accurately Measure Fracture Strength by Electrostatic Probing

    Energy Technology Data Exchange (ETDEWEB)

    Bitsie, Fernando; Jensen, Brian D.; de Boer, Maarten

    1999-07-15

    We have designed, fabricated, tested and modeled a first generation small area test structure for MEMS fracture studies by electrostatic rather than mechanical probing. Because of its small area, this device has potential applications as a lot monitor of strength or fatigue of the MEMS structural material. By matching deflection versus applied voltage data to a 3-D model of the test structure, we develop high confidence that the local stresses achieved in the gage section are greater than 1 GPa. Brittle failure of the polycrystalline silicon was observed.

  17. Consensus stability testing protocols for organic photovoltaic materials and devices

    DEFF Research Database (Denmark)

    Reese, Matthew O.; Gevorgyan, Suren; Jørgensen, Mikkel

    2011-01-01

    Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS). The proced......Procedures for testing organic solar cell devices and modules with respect to stability and operational lifetime are described. The descriptions represent a consensus of the discussion and conclusions reached during the first 3 years of the international summit on OPV stability (ISOS...

  18. Standard Test Method for Determining the Linearity of a Photovoltaic Device Parameter with Respect To a Test Parameter

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method determines the degree of linearity of a photovoltaic device parameter with respect to a test parameter, for example, short-circuit current with respect to irradiance. 1.2 The linearity determined by this test method applies only at the time of testing, and implies no past or future performance level. 1.3 This test method applies only to non-concentrator terrestrial photovoltaic devices. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. Psychophysical testing of visual prosthetic devices: a call to establish a multi-national joint task force

    Science.gov (United States)

    Rizzo, Joseph F., III; Ayton, Lauren N.

    2014-04-01

    vision to the blind. Decisions about the guidelines will be made democratically, with precautions to prevent any one group or company from having a more dominant voice than any other. One or more smaller working groups may be established to delve more deeply into specific issues, like the ethics of testing or governance structure, and to develop specific wording for recommendations that would be voted on by the entire Task Force group. Ultimately, the various recommendations, once approved democratically, will serve as the consensus document for the Multi-National Joint Task Force. The full list of members of the Task Force and the rules of governance will be published to promote transparency. The Joint Task force will post its guidelines with all signatories on a dedicated page within the website of the Henry Ford Department of Ophthalmology (Detroit). This site was chosen in recognition of the consistent support that Phillip Hessburg MD and the Board of Directors of the Detroit Institute of Ophthalmology, which has recently merged with the Henry Ford Department of Ophthalmology, have so generously and selflessly provided to our field over the past 14 years. This website will also contain a list of all human psychophysical testing that has been performed in the visual prosthetic field, with designations for those studies that were performed in accordance with the guidelines of the Multi-National Task Force, which will assume responsibility for the accuracy of the material. For those who wish to join this Task Force or have further questions, Dr Rizzo and Dr Ayton can be contacted at the email addresses listed above. The founding members of the Task Force anticipate that this digital resource will prove valuable to anyone who has interest in learning more about the achievements in our field, especially our prospective patients, to whom we dedicate our work.

  20. 10 CFR 32.74 - Manufacture and distribution of sources or devices containing byproduct material for medical use.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Manufacture and distribution of sources or devices... SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL Generally Licensed Items § 32.74 Manufacture and distribution of sources or devices containing byproduct material for...

  1. Materials for electrochemical device safety

    Science.gov (United States)

    Vissers, Daniel R.; Amine, Khalil; Thackeray, Michael M.; Kahaian, Arthur J.; Johnson, Christopher S.

    2015-04-07

    An electrochemical device includes a thermally-triggered intumescent material or a gas-triggered intumescent material. Such devices prevent or minimize short circuits in a device that could lead to thermal run-away. Such devices may include batteries or supercapacitors.

  2. Generation of a high temperature material data base and its application to creep tests with French or German RPV-steel. Technical report

    International Nuclear Information System (INIS)

    Willschuetz, H.G.; Altstadt, E.

    2002-08-01

    Considering the hypothetical core melt down scenario for a light water reactor (LWR) a possible failure mode of the reactor pressure vessel (RPV) and its failure time has to be investigated for a determination of the loadings on the containment. Numerous experiments have been performed accompanied with material properties evaluation, theoretical, and numerical work /REM 1993/, /THF 1997/, /CHU 1999/. For pre- and post-test calculations of Lower Head Failure experiments like OLHF or FOREVER it is necessary to model creep and plasticity processes. Therefore a Finite Element Model is developed at the FZR using a numerical approach which avoids the use of a single creep law employing constants derived from the data for a limited stress and temperature range. Instead of this a numerical creep data base (CDB) is developed where the creep strain rate is evaluated in dependence on the current total strain, temperature and equivalent stress. A main task for this approach is the generation and validation of the CDB. Additionally the implementation of all relevant temperature dependent material properties has been performed. For an evaluation of the failure times a damage model according to an approach of Lemaitre is applied. The validation of the numerical model is performed by the simulation of and comparison with experiments. This is done in 3 levels: starting with the simulation of single uniaxial creep tests, which is considered as a 1D-problem. In the next level so called ''tube-failure-experiments'' are modeled: the RUPTHER-14 and the ''MPA-Meppen''-experiment. These experiments are considered as 2D-problems. Finally the numerical model is applied to scaled 3D-experiments, where the lower head of a PWR is represented in its hemispherical shape, like in the FOREVER-experiments. This report deals with the 1D- and 2D-simulations. An interesting question to be solved in this frame is the comparability of the French 16MND5 and the German 20MnMoNi55 RPV-steels, which are

  3. COMPARISON OF A HEAD MOUNTED IMPACT MEASUREMENT DEVICE TO THE HYBRID III ANTHROPOMORPHIC TESTING DEVICE IN A CONTROLLED LABORATORY SETTING.

    Science.gov (United States)

    Schussler, Eric; Stark, David; Bolte, John H; Kang, Yun Seok; Onate, James A

    2017-08-01

    Reports estimate that 1.6 to 3.8 million cases of concussion occur in sports and recreation each year in the United States. Despite continued efforts to reduce the occurrence of concussion, the rate of diagnosis continues to increase. The mechanisms of concussion are thought to involve linear and rotational head accelerations and velocities. One method of quantifying the kinematics experienced during sport participation is to place measurement devices into the athlete's helmet or directly on the athlete's head. The purpose of this research to determine the accuracy of a head mounted device for measuring the head accelerations experienced by the wearer. This will be accomplished by identifying the error in Peak Linear Acceleration (PLA), Peak Rotational Acceleration (PRA) and Peak Rotational Velocity (PRV) of the device. Laboratory study. A helmeted Hybrid III 50th percentile male headform was impacted via a pneumatic ram from the front, side, rear, front oblique and rear oblique at speeds from 1.5 to 5 m/s. The X2 Biosystems xPatch® (Seattle, WA) sensor was placed on the headform's right side at the approximate location of the mastoid process. Measures of PLA, PRA, PRV from the xPatch ® and Hybrid III were analyzed for Root Mean Square Error (RMSE), and Absolute and Relative Error (AE, RE). Seventy-six impacts were analyzed. All measures of correlation, fixed through the origin, were found to be strong: PLA R 2 =0.967 pstandard yet above the average error of testing devices in both PLA and PRA, but a low error in PRV. PLA measures from the xPatch® system demonstrated a high level of correlation with the PLA data from the Hybrid III mounted data collection system. 3.

  4. Improvements in or relating to semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, M

    1981-08-26

    A method of testing a field effect device for radiation hardness is described which does not involve irradiating the device. In a low temperature environment the conductance of the device is measured as a function of gate voltage at a first and at a second different substrate bias potential and by comparing the two an assessment of radiation hardness is made.

  5. Impact of Atomic Layer Deposition to NanoPhotonic Structures and Devices: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Rizwan eSaleem

    2014-10-01

    Full Text Available We review the significance of optical thin films by Atomic Layer Deposition (ALD method to fabricate nanophotonic devices and structures. ALD is a versatile technique to deposit functional coatings on reactive surfaces with conformal growth of compound materials, precise thickness control capable of angstrom resolution and coverage of high aspect ratio nanostructures using wide range of materials. ALD has explored great potential in the emerging fields of photonics, plasmonics, nano-biotechnology, and microelectronics. ALD technique uses sequential reactive chemical reactions to saturate a surface with a monolayer by pulsing of a first precursor (metal alkoxides or covalent halides, followed by reaction with second precursor molecules such as water to form the desired compound coatings. The targeted thickness of the desired compound material is controlled by the number of ALD cycles of precursor molecules that ensures the self limiting nature of reactions. The conformal growth and filling of TiO2 and Al2O3 optical material on nanostructures and their resulting optical properties have been described. The low temperature ALD-growth on various replicated sub-wavelength polymeric gratings is discussed.

  6. An assessment of the terrorist threat to use a nuclear or radiological device in an attack

    Energy Technology Data Exchange (ETDEWEB)

    Kingshott, B.F. [Grand Valley State University, 275C DeVos Center, 401 West Fulton Street, Grand Rapids, MI 49504 (United States)]. E-mail: kingshob@gvsu.edu

    2006-07-01

    This paper will discuss terrorism from the perspective of a terrorist organisation acquiring nuclear material to build weapons and how security of radiological material world wide will minimise the risk of such devices being used. It will discuss the need to improve security at nuclear waste processing and storage sites and the adequacy of current security. It will also discuss the phenomenon of suicide attacks by the bomb carriers and the role of the media in informing and educating the general public of the consequences should such a device containing nuclear material be detonated. (author)

  7. To test or not to test: A cross-sectional survey of the psychosocial determinants of self-testing for cholesterol, glucose, and HIV

    Directory of Open Access Journals (Sweden)

    Dinant Geert-Jan

    2011-02-01

    Full Text Available Abstract Background Although self-tests are increasingly available and widely used, it is not clear whether their use is beneficial to the users, and little is known concerning the determinants of self-test use. The aim of this study was to identify the determinants of self-test use for cholesterol, glucose, and HIV, and to examine whether these are similar across these tests. Self-testing was defined as using in-vitro tests on body materials, initiated by consumers with the aim of diagnosing a particular disorder, condition, or risk factor for disease. Methods A cross-sectional Internet survey was conducted among 513 self-testers and 600 non-testers, assessing possible determinants of self-test use. The structured questionnaire was based on the Health Belief Model, Theory of Planned Behavior, and Protection Motivation Theory. Data were analyzed by means of logistic regression. Results The results revealed that perceived benefits and self-efficacy were significantly associated with self-testing for all three conditions. Other psychosocial determinants, e.g. gender, cues to action, perceived barriers, subjective norm, and moral obligation, seemed to be more test-specific. Conclusions Psychosocial determinants of self-testing are not identical for all tests and therefore information about self-testing needs to be tailored to a specific test. The general public should not only be informed about advantages of self-test use but also about the disadvantages. Designers of information about self-testing should address all aspects related to self-testing to stimulate informed decision making which, in turn, will result in more effective self-test use.

  8. Testing Fiscal Dominance Hypothesis in a Structural VAR Specification for Pakistan

    Directory of Open Access Journals (Sweden)

    Shaheen Rozina

    2018-03-01

    Full Text Available This research aims to test the fiscal dominance hypothesis for Pakistan through a bivariate structural vector auto regression (SVAR specification, covering time period 1977 – 2016. This study employs real primary deficit (non interest government expenditures minus total revenues and real primary liabilities (sum of monetary base and domestic public debt as indicators of fiscal measures and monetary policy respectively. A structural VAR is retrieved both for entire sample period and four sub periods (1977 – 1986, 1987 – 1997, 1998 – 2008, and 2009 – 2016. This study identifies the presence of fiscal dominance for the entire sample period and the sub period from 1987 – 2008. The estimates reveal an interesting phenomenon that fiscal dominance is significant in the elected regimes and weaker in the presence of military regimes in Pakistan. From a policy perspective, this research suggests increased autonomy of central bank to achieve long term price stability and reduced administration costs to ensure efficient democratic regime in Pakistan.

  9. Construction and testing of simple airfoils to demonstrate structural design, materials choice, and composite concepts

    Science.gov (United States)

    Bunnell, L. Roy; Piippo, Steven W.

    1993-01-01

    The objective of this educational exercise is to have students build and evaluate simple wing structures, and in doing so, learn about materials choices and lightweight construction methods. A list of equipment and supplies and the procedure for the experiment are presented.

  10. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    Energy Technology Data Exchange (ETDEWEB)

    Busby, Jeremy T [ORNL

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  11. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    International Nuclear Information System (INIS)

    Busby, Jeremy T.

    2009-01-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  12. Miniaturized supercapacitors: key materials and structures towards autonomous and sustainable devices and systems

    Science.gov (United States)

    Soavi, Francesca; Bettini, Luca Giacomo; Piseri, Paolo; Milani, Paolo; Santoro, Carlo; Atanassov, Plamen; Arbizzani, Catia

    2016-09-01

    Supercapacitors (SCs) are playing a key role for the development of self-powered and self-sustaining integrated systems for different fields ranging from remote sensing, robotics and medical devices. SC miniaturization and integration into more complex systems that include energy harvesters and functional devices are valuable strategies that address system autonomy. Here, we discuss about novel SC fabrication and integration approaches. Specifically, we report about the results of interdisciplinary activities on the development of thin, flexible SCs by an additive technology based on Supersonic Cluster Beam Deposition (SCBD) to be implemented into supercapacitive electrolyte gated transistors and supercapacitive microbial fuel cells. Such systems integrate at materials level the specific functions of devices, like electric switch or energy harvesting with the reversible energy storage capability. These studies might open new frontiers for the development and application of new multifunction-energy storage elements.

  13. Development status of irradiation devices and instrumentation for material and nuclear fuel irradiation tests in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Goo; Sohn, Jae Min; Choo, Kee Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-04-15

    The High flux Advanced Neutron Application ReactOr (HANARO), an open-tank-in-pool type reactor, is one of the multi-purpose research reactors in the world. Since the commencement of HANARO's operations in 1995, a significant number of experimental facilities have been developed and installed at HANARO, and continued efforts to develop more facilities are in progress. Owing to the stable operation of the reactor and its frequent utilization, more experimental facilities are being continuously added to satisfy various fields of study and diverse applications. The irradiation testing equipment for nuclear fuels and materials at HANARO can be classified into capsules and the Fuel Test Loop (FTL). Capsules for irradiation tests of nuclear fuels in HANARO have been developed for use under the dry conditions of the coolant and materials at HANARO and are now successfully utilized to perform irradiation tests. The FTL can be used to conduct irradiation testing of a nuclear fuel under the operating conditions of commercial nuclear power plants. During irradiation tests conducted using these capsules in HANARO, instruments such as the thermocouple, Linear Variable Differential Transformer (LVDT), small heater, Fluence Monitor (F/M) and Self-Powered Neutron Detector (SPND) are used to measure various characteristics of the nuclear fuel and irradiated material. This paper describes not only the status of HANARO and the status and perspective of irradiation devices and instrumentation for carrying out nuclear fuel and material tests in HANARO but also some results from instrumentation during irradiation tests

  14. Cryogenic structural material and design of support structures for the Large Helical Device

    International Nuclear Information System (INIS)

    Nishimura, Arata; Imagawa, Shinsaku; Tamura, Hitoshi

    1997-01-01

    This paper describes a short history of material selection for the cryogenic support structures for the Large Helical Device (LHD) which has superconducting coils. Since the support structures are cooled down to 4.4 K together with the coils, SUS 316 was chosen because of its stable austenitic phase, sufficient mechanical properties at cryogenic temperature and good weldability. Also, outlines of the design and fabrication processes of the support structures are summarized. On the design of the support structures, a deformation analysis was carried out to maintain the proper magnetic field during operation. Afterwards, a stress analysis was performed. During machining and assembling, tolerance was noticed to keep coil positions accurate. Special welding grooves and fabrication processes were considered and achieved successfully. Finally, a cryogenic supporting post which sustains the cryogenic structures and superconducting coils is presented. CFRP was used in this specially developed supporting post to reduce the heat conduction from ambient 300 K structures. (author)

  15. Use of Silicon Carbide as Beam Intercepting Device Material: Tests, Issues and Numerical Simulations

    CERN Document Server

    Delonca, M; Gil Costa, M; Vacca, A

    2014-01-01

    Silicon Carbide (SiC) stands as one of the most promising ceramic material with respect to its thermal shock resistance and mechanical strengths. It has hence been considered as candidate material for the development of higher performance beam intercepting devices at CERN. Its brazing with a metal counterpart has been tested and characterized by means of microstructural and ultrasound techniques. Despite the positive results, its use has to be evaluated with care, due to the strong evidence in literature of large and permanent volumetric expansion, called swelling, under the effect of neutron and ion irradiation. This may cause premature and sudden failure, and can be mitigated to some extent by operating at high temperature. For this reason limited information is available for irradiation below 100°C, which is the typical temperature of interest for beam intercepting devices like dumps or collimators. This paper describes the brazing campaign carried out at CERN, the results, and the theoretical and numeric...

  16. JHR Project: a future Material Testing Reactor working as an International user Facility: The key-role of instrumentation in support to the development of modern experimental capacity

    Energy Technology Data Exchange (ETDEWEB)

    Bignan, G. [CEA, DEN, DER, JHR user Facility Interface Manager' , Cadarache, F-13108 St-Paul-Lez-Durance (France); Gonnier, C. [CEA, DEN, DER, SRJH Jules Horowitz Reactor Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Lyoussi, A.; Villard, J.F.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St-Paul-Lez-Durance (France); Chauvin, J.P. [CEA,DEN, DER, SPEX, Experimental Physics Service, Cadarache, F-13108 St-Paul-Lez-Durance (France); Maugard, B. [CEA, DEN, DER, Reactor Department Studies, Cadarache, F-13108 St-Paul-Lez-Durance (France)

    2015-07-01

    Research and development on fuel and material behaviour under irradiation is a key issue for sustainable nuclear energy in order to meet specific needs by keeping the best level of safety. These needs mainly deal with a constant improvement of performances and safety in order to optimize the fuel cycle and hence to reach nuclear energy sustainable objectives. A sustainable nuclear energy requires a high level of performances in order to meet specific needs such as: - Pursuing improvement of the performances and safety of present and coming water cooled reactor technologies. This will require a continuous R and D support following a long-term trend driven by the plant life management, safety demonstration, flexibility and economics improvement. Experimental irradiations of structure materials are necessary to anticipate these material behaviours and will contribute to their optimisation. - Upgrading continuously nuclear fuel technology in present and future nuclear power plants to achieve better performances and to optimise the fuel cycle keeping the best level of safety. Fuel evolution for generation II, III and III+ is a key stake requiring developments, qualification tests and safety experiments to ensure the competitiveness and safety: experimental tests exploring the full range of fuel behaviour determine fuel stability limits and safety margins, as a major input for the fuel reliability analysis. To perform such accurate and innovative progress and developments, specific and ad hoc instrumentation, irradiation devices, measurement methods are necessary to be set up inside or beside the material testing reactor (MTR) core. These experiments require beforehand in situ and on line sophisticated measurements to accurately determine different key parameters such as thermal and fast neutron fluxes and nuclear heating in order to precisely monitor and control the conducted assays. The new Material Testing Reactor JHR (Jules Horowitz Reactor) currently under

  17. A miniaturized test method for the mechanical characterization of structural materials for fusion reactors

    International Nuclear Information System (INIS)

    Gondi, P.; Montanari, R.; Sili, A.

    1996-01-01

    This work deals with a non-destructive method for mechanical tests which is based on the indentation of materials at a constant rate by means of a cylinder with a small radius and penetrating flat surface. The load versus penetration depth curves obtained using this method have shown correspondences with those of tensile tests and have given indications about the mechanical properties on a reduced scale. In this work penetration tests have been carried out on various kinds of Cr martensitic steels (MANET-2, BATMAN and modified F82H) which are of interest for first wall and structural applications in future fusion reactors. The load versus penetration depth curves have been examined with reference to data obtained in tensile tests and to microhardness measurements. Penetration tests have been performed at various temperature (from -180 to 100 C). Conclusions, which can be drawn for the ductile to brittle transition, are discussed for MANET-2 steel. Preliminary results obtained on BATMAN and modified F82H steels are reported. The characteristics of the indenter imprints have been studied by scanning electron microscopy. (orig.)

  18. Neutron irradiation effects in fusion or spallation structural materials: Some recent insights related to neutron spectra

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.

    1998-01-01

    A review is presented of recent insights on the role of transmutation in the development of radiation-induced changes in dimension or radiation-induced changes in physical or mechanical properties. It is shown that, in some materials and some neutron spectra, transmutation can significantly affect or even dominate a given property change process. When the process under study is also sensitive to displacement rate, and especially if it involves radiation-induced segregation and precipitation, it becomes much more difficult to separate the transmutation and displacement rate dependencies. This complicates the application of data derived from 'surrogate' spectra to predictions in other flux-spectra environments. It is also shown in this paper that one must be sensitive to the impact of previously -ignored 'small' variations in neutron spectra within a given reactor. In some materials these small variations have major consequences. (author)

  19. A systematic concept of assuring structural integrity of components and parts for applying to highly ductile materials through brittle material

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko

    2007-09-01

    Concepts of assuring structural integrity of plant components have been developed under limited conditions of either highly ductile or brittle materials. There are some cases where operation in more and more severe conditions causes a significant reduction in ductility for materials with a high ductility before service. Use of high strength steels with relatively reduced ductility is increasing as industry applications. Current concepts of structural integrity assurance under the limited conditions of material properties or on the requirement of no significant changes in material properties even after long service will fail to incorporate expected technological innovations. A systematic concept of assuring the structural integrity should be developed for applying to highly ductile materials through brittle materials. Objectives of the on-going research are to propose a detail of the systematic concept by considering how we can develop the concept without restricting materials and for systematic considerations on a broad range of material properties from highly ductile materials through brittle materials. First, background of concepts of existing structural codes for components of highly ductile materials or for structural parts of brittle materials are discussed. Next, issues of existing code for parts of brittle materials are identified, and then resolutions to the issues are proposed. Based on the above-mentioned discussions and proposals, a systematic concept is proposed for application to components with reduced ductility materials and for applying to components of materials with significantly changing material properties due to long service. (author)

  20. Abbreviations for device names: a proposed methodology with specific examples.

    Science.gov (United States)

    Alam, Murad; Dover, Jeffrey S; Alam, Murad; Goldman, Mitchel P; Kaminer, Michael S; Orringer, Jeffrey; Waldorf, Heidi; Alam, Murad; Avram, Mathew; Cohen, Joel L; Draelos, Zoe Diana; Dover, Jeffrey S; Hruza, George; Kilmer, Suzanne; Lawrence, Naomi; Lupo, Mary; Metelitsa, Andrei; Nestor, Mark; Ross, E Victor

    2013-04-01

    Many devices used in dermatology lack generic names. If investigators use commercial device names, they risk the appearance of bias. Alternatively, reliance on ad-hoc names and abbreviations may confuse readers who do not recognize these. To develop a system for assigning abbreviations to denote devices commonly used in dermatology. Secondarily, to use this system to create abbreviations for FDA-approved neurotoxins and prepackaged injectable soft-tissue augmentation materials. The American Society for Dermatologic Surgery convened a Lexicon Task Force in March 2012. One charge of this Task Force was to develop criteria for assigning abbreviations to medical devices. A modified consensus process was used. Abbreviations to denote devices were to be: based on a standardized approach; transparent to the casual reader; markedly brief; and in all cases, different than the commercial names. Three-letter all caps abbreviations, some with subscripts, were assigned to denote each of the approved neurotoxins and fillers. A common system of abbreviations for medical devices in dermatology may avoid the appearance of bias while ensuring effective communication. The proposed system may be expanded to name other devices, and the ensuing abbreviations may be suitable for journal articles, continuing medical education lectures, or other academic or clinical purposes. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  1. The development of a digital signal processing and plotting package to support testing of hazardous and radioactive material packages

    International Nuclear Information System (INIS)

    Ludwigsen, J.S.; Uncapher, W.L.; Arviso, M.; Lattier, C.N.; Hankinson, M.; Cannone, D.J.

    1995-01-01

    Federal regulations allow package designers to use analysis, testing, or a combination of analysis and testing to support certification of packages used to transport hazardous or radioactive materials. In recent years, many certified packages were subjected to a combination of analysis and testing. A major part of evaluating structural or thermal package response is the collection, reduction and presentation of instrumentation measurement data. Sandia National Laboratories, under the sponsorship of the US Department of Energy, has developed a comprehensive analysis and plotting package (known as KAPP) that performs digital signal processing of both transient structural and thermal data integrated with a comprehensive plotting package designed to support radioactive material package testing

  2. The impact of communication materials on public responses to a radiological dispersal device (RDD) attack.

    Science.gov (United States)

    Rogers, M Brooke; Amlôt, Richard; Rubin, G James

    2013-03-01

    It is a common assumption that, in the event of a chemical, biological, radiological, or nuclear (CBRN) attack, a well-prepared and informed public is more likely to follow official recommendations regarding the appropriate safety measures to take. We present findings from a UK study investigating the ability of crisis communication to influence perceptions of risk and behavioral intentions in the general public in response to CBRN terrorism. We conducted a focus group study involving a scenario presented in mock news broadcasts to explore levels of public knowledge, information needs, and intended behavioral reactions to an attack involving an overt radiological dispersal device (RDD), or dirty bomb. We used the findings from these focus groups to design messages for the public that could be presented in a short leaflet. We then tested the effects of the leaflet on reactions to the same scenario in 8 further focus groups. The impact of the new messages on levels of knowledge, information needs, and intended compliance with official recommendations was assessed. The provision of information increased the perceived credibility of official messages and increased reported levels of intended compliance with advice to return to normal/stop sheltering, attend a facility for assessment and treatment, and return to a previously contaminated area after decontamination of the environment has taken place. Should a real attack with an RDD occur, having pretested messages available to address common concerns and information needs should facilitate the public health response to the attack.

  3. Improvements in and relating to apparatus for moving along or through a material

    International Nuclear Information System (INIS)

    Butterfield, R.

    1975-01-01

    The apparatus described, which has many uses, including operation as part of a remote control device in a nuclear environment, comprises two parts the first of which has an electrically conducting outer surface for engagement with the material and the second part also having an electrically conducting outer surface, electrically insulated from the first part, for engagement with the material. The two conducting outer surfaces are connected to a source of potential difference, and thrust means are provided for exerting a force between the two parts to move them closer together or further apart as required. The first part may be divided into a number of electrically insulated sections. The apparatus may include structures in the first and second parts to prevent liquid that has collected in the first part during operation from entering the second part, or vice versa. The method of operation relies on the fact that the ease with which an electrically conducting body not carrying an electric current can pass along or through material is increased by making the body negative or reduced by making the body positive. (U.K.)

  4. Corrosion resistant structural materials for use in lithium fluoride molten salts and thermonuclear device using it

    International Nuclear Information System (INIS)

    Kawamura, Kazutaka; Takagi, Ryuzo.

    1987-01-01

    Purpose: To provide blanket materials for thermo nuclear devices and structural materials for containers with less MHD effect and good heat exchanging efficiency. Constitution: LiF-PbF 2 is used as the liquid blanket material for moderating the MHD effect. That is, the lithium compound, in the form of a fluoride, can be made easily liquefiable being and PbF 2 is added for lowering the melting point. The reason of using the fluoride is that fluorine material is less activated by the adsorption of neutrons. Copper, phosphor bronze, nickel or nickel-based alloy, e.g., Monel metal is used as corrosion resistant structural material to LiF-PbF 2 molten salts. Use of copper as the low activating structural material can provide an excellent effect also in view of the maintenance and, further, a series of processes for purifying, separating injecting and recoverying tritium can be conducted safely and stationarily without contaminating the circumferences. (Kamimura, M.)

  5. Testing fireproof materials in a combustion chamber

    Directory of Open Access Journals (Sweden)

    Kulhavy Petr

    2017-01-01

    Full Text Available This article deals with a prototype concept, real experiment and numerical simulation of a combustion chamber, designed for testing fire resistance some new insulating composite materials. This concept of a device used for testing various materials, providing possibility of monitoring temperatures during controlled gas combustion. As a fuel for the combustion process propane butane mixture has been used and also several kinds of burners with various conditions of inlet air (forced, free and fuel flows were tested. The tested samples were layered sandwich materials based on various materials or foams, used as fillers in fire shutters. The temperature distribution was measured by using thermocouples. A simulation of whole concept of experimental chamber has been carried out as the non-premixed combustion process in the commercial final volume sw Pyrosim. The result was to design chamber with a construction suitable, according to the international standards, achieve the required values (temperature in time. Model of the combustion based on a stoichiometric defined mixture of gas and the tested layered samples showed good conformity with experimental results – i.e. thermal distribution inside and heat release rate that has gone through the sample.

  6. Use of a radionuclid to label material for radioactive tests

    International Nuclear Information System (INIS)

    Saklad, E.L.; Layne, W.W.

    1977-01-01

    In order to increase the stability of a test substance labelled with a radiotracer 99 Tcsup(m) the serum albumin portion of human serum albumin, of stannous macroaggregate-forming albumin and of the albumin-bloodpool are defatted. This is achieved by charcoal treatment or the acid precipitation method. (DG) [de

  7. Microfiber devices based on carbon materials

    OpenAIRE

    Gengzhi Sun; Xuewan Wang; Peng Chen

    2015-01-01

    Microfiber devices are able to extend the micro/nano functionalities of materials or devices to the macroscopic scale with excellent flexibility and weavability, promising a variety of unique applications and, sometimes, also improved performance as compared with bulk counterparts. The fiber electrodes in these devices are often made of carbon materials (e.g. carbon nanotubes and graphene) because of their exceptional electrical, mechanical, and structural properties. Covering the latest deve...

  8. Existential Threat or Dissociative Response? Examining Defensive Avoidance of Point-of-Care Testing Devices Through a Terror Management Theory Framework.

    Science.gov (United States)

    Dunne, Simon; Gallagher, Pamela; Matthews, Anne

    2015-01-01

    Using a terror management theory framework, this study investigated if providing mortality reminders or self-esteem threats would lead participants to exhibit avoidant responses toward a point-of-care testing device for cardiovascular disease risk and if the nature of the device served to diminish the existential threat of cardiovascular disease. One hundred and twelve participants aged 40-55 years completed an experimental questionnaire. Findings indicated that participants were not existentially threatened by established terror management methodologies, potentially because of cross-cultural variability toward such methodologies. Highly positive appraisals of the device also suggest that similar technologies may beneficially affect the uptake of screening behaviors.

  9. IN VITRO TESTING – AN ESENTIAL METHOD FOR EVALUATING THE PERFORMANCE OF DENTAL MATERIALS AND DEVICES

    Directory of Open Access Journals (Sweden)

    Anca VIŢALARIU

    2015-06-01

    Full Text Available Dentistry is unique among biomaterials specialties as to the large variety of materials used, and nature of the challenges they must resist. Intra-oral service demands materials adapted to a warm and moist environment, resisting the attack of digestive acids and enzymes. The materials subjected to mechanical forces should preserve their strength, fatigue and wear characteristics, for accomplishing their function. The wide range of materials available for restorative dentistry demands knowledge of their relative strengths and trade-offs, and offers the opportunity for many interesting lines of research. The spectrum extensively ranges from elastic impression materials to extremely stiff metal and ceramic appliances, so that familiarity with a variety of mechanical testing situations is required from a well-rounded dental materials laboratory. Evaluating the mechanical and wear characteristics of dental restorative materials and analyzing the durability of adhesives is critical to the development of improved dental devices

  10. Ineffable Cultures or Material Devices: What Valuation Studies can Learn from the Disappearance of Ensured Solidarity in a Health Care Market

    Directory of Open Access Journals (Sweden)

    Teun Zuiderent-Jerak

    2015-10-01

    Full Text Available Valuation studies addresses how values are made in valuation practices. A next - or rather previous - question becomes: what then makes valuation practices? Two oppositional replies are starting to dominate how that question can be answered: a more materially oriented focus on devices of valuation and a more sociologically inclined focus on ineffable valuation cultures. The debate between proponents of both approaches may easily turn into the kind of leapfrog debates that have dominated many previous discussions on whether culture or materiality would play a decisive role in driving history. This paper explores a less repetitive reply. It does so by analyzing the puzzling case of the demise of solidarity as a core value within the recent Dutch health care system of regulated competition. While "solidarity among the insured" was both a strong cultural value within the Dutch welfare-based health system, and a value that was built into market devices by health economists, within a fairly short time "fairness" became of lesser importance than "competition". This makes us call for a more historical, relational, and dynamic understanding of the role of economists, market devices, and of culture in valuation studies.

  11. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  12. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  13. A test to evaluation non-linear soil structure interaction

    International Nuclear Information System (INIS)

    Hagiwara, T.; Kitada, Y.

    2005-01-01

    JNES is planning a new project to study non-linear soil-structure interaction (SSI) effect under large earthquake ground motions equivalent to and/or over a design earthquake ground motion of S2. Concerning the SSI test, it is pointed out that handling of the scale effect of the specimen taking into account the surrounding soil on the earthquake response evaluation to the actual structure is essential issue for the scaled model test. Thus, for the test, the largest specimen possible and the biggest input motion possible are necessary. Taking into account the above issues, new test methodology, which utilizes artificial earthquake ground motion, is considered desirable if it can be performed at a realistic cost. With this motivation, we have studied the test methodology which applying blasting power as for a big earthquake ground motion. The information from a coalmine company in the U.S.A. indicates that the works performed in the surface coalmine to blast a rock covering a coal layer generates a big artificial ground motion, which is similar to earthquake ground motion. Application of this artificial earthquake ground motion for the SSI test is considered very promising because the blasting work is carried out periodically for mining coal so that we can apply artificial motions generated by the work if we construct a building model at a closed point to the blasting work area. The major purposes of the test are to understand (a) basic earthquake response characteristics of a Nuclear Power Plant (NPP) reactor building when a large earthquake strikes the NPP site and (b) nonlinear characteristics of SSI phenomenon during a big earthquake. In the paper of ICONE-13, we will introduce the test method and basic characteristics of measured artificial ground motions generated by the blasting works on an actual site. (authors)

  14. Mobile Devices: A Distraction, or a Useful Tool to Engage Nursing Students?

    Science.gov (United States)

    Gallegos, Cara; Nakashima, Hannah

    2018-03-01

    Engaging nursing students in theoretical courses, such as research, can be challenging. Innovative instructional strategies are essential to engage nursing students in theoretical nursing courses. This article describes an educational innovation using technology as a tool in an undergraduate nursing research class. All students in the course received iPads for the semester. Lecture material was presented in class using Nearpod, an interactive presentation embedded with slides, multimedia components, and learning activities. Students reported that using the mobile technology helped them minimize off-task activities, interact more with each other and the instructor, solve problems in the class, and develop skills and confidence related to their career. Allowing device use in the classroom, such as iPads and interactive mobile applications, can be a useful learning tool. Intentional use of technology and pedagogy can increase engagement and interaction with students. [J Nurs Educ. 2018;57(3):170-173.]. Copyright 2018, SLACK Incorporated.

  15. Hardware device to physical structure binding and authentication

    Science.gov (United States)

    Hamlet, Jason R.; Stein, David J.; Bauer, Todd M.

    2013-08-20

    Detection and deterrence of device tampering and subversion may be achieved by including a cryptographic fingerprint unit within a hardware device for authenticating a binding of the hardware device and a physical structure. The cryptographic fingerprint unit includes an internal physically unclonable function ("PUF") circuit disposed in or on the hardware device, which generate an internal PUF value. Binding logic is coupled to receive the internal PUF value, as well as an external PUF value associated with the physical structure, and generates a binding PUF value, which represents the binding of the hardware device and the physical structure. The cryptographic fingerprint unit also includes a cryptographic unit that uses the binding PUF value to allow a challenger to authenticate the binding.

  16. Diamond: a material for acoustic devices

    OpenAIRE

    MORTET, Vincent; WILLIAMS, Oliver; HAENEN, Ken

    2008-01-01

    Diamond has been foreseen to replace silicon for high power, high frequency electronic applications or for devices that operates in harsh environments. However, diamond electronic devices are still in the laboratory stage due to the lack of large substrates and the complexity of diamond doping. On another hand, surface acoustic wave filters based on diamond are commercially available. Diamond is especially suited for acoustic applications because of its exceptional mechanical properties. The ...

  17. A versatile magnetic refrigeration test device

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Petersen, Thomas Frank; Pryds, Nini

    2008-01-01

    of the applied magnetic field. An advanced two-dimensional numerical model has previously been implemented in order to help in the optimization of the design of a refrigeration test device. Qualitative agreement between the results from model and the experimental results is demonstrated for each of the four...... different parameter variations mentioned above. (C) 2008 American Institute of Physics....

  18. Model-based testing with UML applied to a roaming algorithm for bluetooth devices.

    Science.gov (United States)

    Dai, Zhen Ru; Grabowski, Jens; Neukirchen, Helmut; Pals, Holger

    2004-11-01

    In late 2001, the Object Management Group issued a Request for Proposal to develop a testing profile for UML 2.0. In June 2003, the work on the UML 2.0 Testing Profile was finally adopted by the OMG. Since March 2004, it has become an official standard of the OMG. The UML 2.0 Testing Profile provides support for UML based model-driven testing. This paper introduces a methodology on how to use the testing profile in order to modify and extend an existing UML design model for test issues. The application of the methodology will be explained by applying it to an existing UML Model for a Bluetooth device.

  19. Characterization of a test device for determination of the half value layer and of filtration with quality equity of materials in accordance with standard ABNT NBR IEC 60601-1-3

    International Nuclear Information System (INIS)

    Viana, Vlamir

    2012-01-01

    The motivation of this work was the development and validation of a device to perform the tests established by ABNT NBR IEC 60601-1-3 versions published in 2001 and 2011. The purpose of the tests is to determine the half-value layer – HVL and filtration with equivalent filtration quality in mmAl, materials that intercept the X-ray beam from their emission to the X-ray image receiving device. This filtration includes all the materials present in radiation source assembly, formed by the x-ray tube housing with x-ray tube inserted, the collimator (inherent filtration) and by materials present in the patients support, as Table and wall bucky, both incorporate image receiving device which is also evaluated. In the development was taken in consideration the routine of tests execution routine, in order to reduce the operator interaction with the system and in order to reduce the human factor in the execution, reflecting directly on the measurement uncertainty, in the runtime reduction of the runtime and radiation safety. The device was validated with respect to: a) Effect of positioning and distribution of the filters in the filter changer device; b) Influence of purity of the aluminum filter used in the device, and c) Comparison tests carried out with the testing device with respect to the tests carried out with a reference X-ray generator. (author)

  20. Sodium environment effects to structural materials for fast reactors

    International Nuclear Information System (INIS)

    Hasegawa, Masayoshi; Fujimura, Tadato; Kondo, Tatsuo; Okabayashi, Kunio; Matsumoto, Keishi.

    1976-03-01

    Among the material technology for liquid metal-cooling fast breeder reactors, the characteristic points are high temperature, liquid sodium as a heat medium, and high energy-high density neutron energy spectra, accordingly the secular change of materials due to these factors must be taken into the design. The project of material tests in sodium was started from the metallographical studies on corrosion and mass transfer phenomena in sodium environment, and was evolved to the tests and studies on short time strength, creep strength, fatigue strength, and embrittlement in sodium environment. Concerning the corrosion and mass transfer tests, low purity and medium purity material testing loops were employed, and the test of immersion in sodium was carried out. Domestically produced austenitic stainless steel and Cr-Mo steel were tested, and the measurement of weight change, surface inspection, and the observation of cross sectional structure were carried out before and after the immersion. The decrease of thickness due to the leaching of surface metal and the lowering of strength due to the change of composition or structure come into question only in case of very thin walled stainless tubes, and the lowering of heat transfer is negligible. Cr-Mo steel also showed good corrosion resistance in sodium, but the effect of decarbonization on the strength needs some investigation in the production specifications. (Kako, I.)

  1. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    Science.gov (United States)

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer

  2. To test or not to test

    DEFF Research Database (Denmark)

    Rochon, Justine; Gondan, Matthias; Kieser, Meinhard

    2012-01-01

    Background: Student's two-sample t test is generally used for comparing the means of two independent samples, for example, two treatment arms. Under the null hypothesis, the t test assumes that the two samples arise from the same normally distributed population with unknown variance. Adequate...... control of the Type I error requires that the normality assumption holds, which is often examined by means of a preliminary Shapiro-Wilk test. The following two-stage procedure is widely accepted: If the preliminary test for normality is not significant, the t test is used; if the preliminary test rejects...... the null hypothesis of normality, a nonparametric test is applied in the main analysis. Methods: Equally sized samples were drawn from exponential, uniform, and normal distributions. The two-sample t test was conducted if either both samples (Strategy I) or the collapsed set of residuals from both samples...

  3. A DEVICE TO MEASURE LOW LEVELS OF RADIOACTIVE CONTAMINANTS IN ULTRA-CLEAN MATERIALS

    International Nuclear Information System (INIS)

    James H Reeves; Matthew Kauer

    2006-01-01

    The purpose of this research was to develop a radiation detection device so sensitive that a decay rate of only one atom per 11.57 days per kilogram of material could be detected. Such a detector is needed for screening materials that will be used in exotic high energy physics experiments currently being planned for the near future. The research was performed deep underground at the Underground Mine State Park in Soudan, Minnesota. The overburden there is ∼1800 meters water equivalent. The reason for performing the research at such depth was to vastly reduce the effects of cosmic radiation. The flux of muons and fast neutrons is about 100,000 times lower than at the surface. A small clean room quality lab building was constructed so that work could be performed in such a manner that radioactive contamination could be kept at a minimum. Glove boxes filled with dry nitrogen gas were used to further reduce contamination from dirt and also help reduce the concentration of the radioactive gas 222Ra and daughter radionuclides which are normally present in air. A massive lead shield (about 20 tons) was constructed in such a manner that an eight inch cube of space in the center was available for the sample and detector. The innermost 4 inch thick lead walls were made of ∼460 year old lead previously used in double beta decay experiments and known to be virtually free of 210Pb. A one and one half inch thick shell of active plastic scintillator was imbedded in the center of the 16 inch thick lead walls, ceiling, and floor of the shield and is used to help reduce activity due to the few muons and fast neutrons seen at this depth. The thick lead shielding was necessary to shield the detector from gamma rays emitted by radionuclides in the rock walls of the mine. A sealable chamber was constructed and located on top of the shield that included a device for raising and lowering the detector and samples into and out of the center chamber of the shield. A plastic scintillator

  4. The Structural Engineering Strategy for Photonic Material Research and Device Development

    Directory of Open Access Journals (Sweden)

    Yalin Lu

    2007-01-01

    Full Text Available A new structural engineering strategy is introduced for optimizing the fabrication of arrayed nanorod materials, optimizing superlattice structures for realizing a strong coupling, and directly developing nanophotonic devices. The strategy can be regarded as “combinatorial” because of the high efficiency in optimizing structures. In this article, this strategy was applied to grow ZnO nanorod arrays, and to develop a new multifunctional photodetector using such nanorod arrays, which is able to simultaneously detect power, energy, and polarization of an incident ultraviolet radiation. The strategy was also used to study the extraordinary dielectric behavior of relaxor ferroelectric lead titanate doped lead magnesium niobate heterophase superlattices in the terahertz frequencies, in order to investigate their dielectric polariton physics and the potential to be integrated with tunable surface resonant plasmonics devices.

  5. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    Science.gov (United States)

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  6. Graded territories: Towards the design, specification and simulation of materially graded bending active structures

    DEFF Research Database (Denmark)

    Nicholas, Paul; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    these structures, the property of bending is activated and varied through bespoke material means so as to match a desired form. Within the architectural design process, formal control depends upon design approaches for material specification and simulation that consider behavior at the level of the material...... element as well as the structure. We describe an evolving approach to material specification and simulation, and highlight the digital and material considerations that frame the process.......The ability to make materials with bespoke behavior affords new perspectives on incorporating material properties within the design process not available through natural materials. This paper reports the design and assembly of two bending-active, fibre-reinforced composite structures. Within...

  7. Development Of A Sensor Network Test Bed For ISD Materials And Structural Condition Monitoring

    International Nuclear Information System (INIS)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-01-01

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  8. A Fractual Mechanical Testing and Design Strategy for FRC Structures

    DEFF Research Database (Denmark)

    Stang, Henrik; Olesen, John Forbes

    1999-01-01

    A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications.......A unified testing and design strategy for fibre reinforced concrete structures is summarised. The strategy is based on fracture mechanical concepts. Emphasis is placed on material characterisation and testing specifications....

  9. New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings.

    Science.gov (United States)

    Maffert, P; Reverchon, S; Nasser, W; Rozand, C; Abaibou, H

    2017-10-01

    Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes of fluids on a single platform. Microfluidic technology has recently been applied to paper, which is already used in low-cost lateral flow tests. Nucleic acid extraction from a biological specimen usually requires cell filtration and lysis on specific membranes, while affinity matrices, such as chitosan or polydiacetylene, are well suited to concentrating nucleic acids for subsequent amplification. Access to electricity is often difficult in resource-limited areas, so the amplification step needs to be equipment-free. Consequently, the reaction has to be isothermal to alleviate the need for a thermocycler. LAMP, NASBA, HDA, and RPA are examples of the technologies available. Nucleic acid detection techniques are currently based on fluorescence, colorimetry, or chemiluminescence. For point-of-care diagnostics, the results should be readable with the naked eye. Nowadays, interpretation and communication of results to health professionals could rely on a smartphone, used as a telemedicine device. The major challenge of creating an "all-in-one" diagnostic test involves the design of an optimal solution and a sequence for each analytical step, as well as combining the execution of all these steps on a single device. This review provides an overview of available materials and technologies which seem to be adapted to point-of-care nucleic acid-based diagnosis, in low-resource areas.

  10. Medical Devices; Hematology and Pathology Devices; Classification of a Cervical Intraepithelial Neoplasia Test System. Final order.

    Science.gov (United States)

    2018-01-03

    The Food and Drug Administration (FDA or we) is classifying the cervical intraepithelial neoplasia (CIN) test system into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the CIN test system's classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  11. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J. [Forschungszentrum Juelich (Germany). Inst. fuer Plasmaphysik

    2006-04-15

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation.

  12. Plasma facing materials and components for future fusion devices - development, characterization and performance under fusion specific loading conditions

    International Nuclear Information System (INIS)

    Linke, J.

    2006-01-01

    The plasma exposed components in existing and future fusion devices are strongly affected by the plasma material interaction processes. These mechanisms have a strong influence on the plasma performance; in addition they have major impact on the lifetime of the plasma facing armour and the joining interface between the plasma facing material (PFM) and the heat sink. Besides physical and chemical sputtering processes, high heat quasi-stationary fluxes during normal and intense thermal transients are of serious concern for the engineers who develop reliable wall components. In addition, the material and component degradation due to intense fluxes of energetic neutrons is another critical issue in D-T-burning fusion devices which requires extensive RandD. This paper presents an overview on the materials development and joining, the testing of PFMs and components, and the analysis of the neutron irradiation induced degradation

  13. High flux materials testing reactor HFR Petten. Characteristics of facilities and standard irradiation devices

    International Nuclear Information System (INIS)

    Roettger, H.; Hardt, P. von der; Tas, A.; Voorbraak, W.P.

    1981-01-01

    For the materials testing reactor HFR some characteristic information is presented. Besides the nuclear data for the experiment positions short descriptions are given of the most important standard facilities for material irradiation and radionuclide production. One paragraph deals with the experimental set-ups for solid state and nuclear structure investigations. The information in this report refers to a core type, which is operational since March 1977. The numerical data compiled have been up-dated to January 1981

  14. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.

    Science.gov (United States)

    Liu, Lili; Niu, Zhiqiang; Chen, Jun

    2016-07-25

    As energy storage devices, supercapacitors that are also called electrochemical capacitors possess high power density, excellent reversibility and long cycle life. The recent boom in electronic devices with different functions in transparent LED displays, stretchable electronic systems and artificial skin has increased the demand for supercapacitors to move towards light, thin, integrated macro- and micro-devices with transparent, flexible, stretchable, compressible and/or wearable abilities. The successful fabrication of such supercapacitors depends mainly on the preparation of innovative electrode materials and the design of unconventional supercapacitor configurations. Tremendous research efforts have been recently made to design and construct innovative nanocarbon-based electrode materials and supercapacitors with unconventional configurations. We review here recent developments in supercapacitors from nanocarbon-based electrode materials to device configurations. The advances in nanocarbon-based electrode materials mainly include the assembly technologies of macroscopic nanostructured electrodes with different dimensions of carbon nanotubes/nanofibers, graphene, mesoporous carbon, activated carbon, and their composites. The electrodes with macroscopic nanostructured carbon-based materials overcome the issues of low conductivity, poor mechanical properties, and limited dimensions that are faced by conventional methods. The configurational design of advanced supercapacitor devices is presented with six types of unconventional supercapacitor devices: flexible, micro-, stretchable, compressible, transparent and fiber supercapacitors. Such supercapacitors display unique configurations and excellent electrochemical performance at different states such as bending, stretching, compressing and/or folding. For example, all-solid-state simplified supercapacitors that are based on nanostructured graphene composite paper are able to maintain 95% of the original capacity at

  15. Standard practices for verification of displacement measuring systems and devices used in material testing machines

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 These practices cover procedures and requirements for the calibration and verification of displacement measuring systems by means of standard calibration devices for static and quasi-static testing machines. This practice is not intended to be complete purchase specifications for testing machines or displacement measuring systems. Displacement measuring systems are not intended to be used for the determination of strain. See Practice E83. 1.2 These procedures apply to the verification of the displacement measuring systems associated with the testing machine, such as a scale, dial, marked or unmarked recorder chart, digital display, etc. In all cases the buyer/owner/user must designate the displacement-measuring system(s) to be verified. 1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems m...

  16. LAMI - a planned Brazilian facility to investigate the mechanical and physical properties of structural materials under irradiation

    International Nuclear Information System (INIS)

    Andrade, Arnaldo H.P.; Lobo, Raquel M.

    2011-01-01

    The LAMI (Laboratorio de Materiais Irradiados) is a hot laboratory designed to the characterization of irradiated structural material and will constitute one of the main installations of the Brazilian Multipurpose Reactor (RMB). The strong points of LAMI are: to contribute, through theoretical and experimental investigations, to the development of knowledge in materials science in order to be able to predict the evolution of the physical and mechanical material properties under service conditions (irradiation, thermomechanical solicitation, influence of the environment, etc); to characterize the properties of the materials used in the nuclear industry in order to determine their performance and to be able to predict their life expectancy; to establish, maintain and make use of the database generated by these data and to provide expertise on industrial components, in particular to investigate strain or rupture mechanisms. The test materials can be irradiated or not, and originate from surveillance programs, experimental neutron irradiations or simulated irradiation with charged particles. The main line of LAMI will have 10 shielded hot cells. The building also will have an area dedicated to micro and nano structural materials analysis. The mechanical characterization to be carried out within LAMI includes mechanical tests on irradiated materials, comprehension of behavior and damage processes and the incorporation of the test data results in a data bank for capitalization of test results. Planned materials to be tested are going to be metallic alloys used in industrial and experimental reactor: pressure vessel steels, internal stainless steels, austeno-ferritic steels, zirconium alloys and aluminum alloys. (author)

  17. Improvements in or relating to refractory materials

    International Nuclear Information System (INIS)

    Peckett, J.W.A.

    1980-01-01

    A process is described for the production of a refractory material which includes heating an intermediate material containing carbon to cause a thermally induced reaction involving carbon in the intermediate material, wherein the intermediate material has been produced by heating a shaped gel precipitated gel, and the carbon in the intermediate material for participating in the thermally induced reaction has been produced from a gelling agent, or a derivative thereof, incorporated in the gel during gel precipitation. As examples, the refractory material may comprise uranium/plutonium oxide, or uranium/plutonium carbide, or thorium/uranium carbide, or tungsten carbide, or tungsten carbide/cobalt metal. (author)

  18. Non-destructive testing of assemblies by welding, brazing or bonding, and material to use for this process

    International Nuclear Information System (INIS)

    Benoit, J.

    1983-01-01

    The process consists in doing a neutron photography of the pieces assembled with the aid of a joining material containing a neutrophage element, such as gadolinium, samarium, europium, boron, cadmium. The neutrophage element, e.g. gadolinium, is dispersed in the joining material with contents between 0,5 and 7,5% of weight. Its granulometry must be less than 1000 MESH. The incorporation of a neutrophage element in the joining material of metallic pieces by welding or brazing, allows to visualize, among others, the following defects: blistering, cracks, slag inclusions, undercuts, bad distribution of the successive passes [fr

  19. Microelectronics to nanoelectronics: materials, devices & manufacturability

    National Research Council Canada - National Science Library

    Kaul, Anupama B

    2013-01-01

    .... They highlight new technologies that have successfully transitioned from the laboratory to the marketplace as well as technologies that have near-term market applications in electronics, materials, and optics...

  20. the JHR Material Testing Reactor

    International Nuclear Information System (INIS)

    Roure, C.; Cornu, B.; Berthet, B.; Simon, E.; Estre, N.; Guimbal, P.; Kinnunen, P.; Kotiluoto, P.

    2013-06-01

    The Jules Horowitz Reactor (JHR) is a European experimental reactor under construction in CEA Cadarache. It will be dedicated to material and fuel irradiation tests, and to medical isotopes production. Non-Destructive nuclear Examinations systems (NDE) will be implemented in pools to analyse the irradiated fuel or tested material in their supporting experimental irradiation devices extracted from the core or its immediate periphery. The Nuclear Measurement Laboratory (NML) of CEA Cadarache is working in collaboration with VTT (Technical Research Centre in Finland) in designing and developing NDE systems implementing gamma-ray spectroscopy and high energy X-ray imaging of the sample and irradiation device. CEA is also designing a neutron radiography system for which NML is working on the detection system. Design studies are performed with Monte Carlo transport codes and specific simulation tools developed by the NML for Xray and neutron imaging. (authors)

  1. Design Specifications for a Novel Climatic Wind Tunnel for the Testing of Structural Cables

    DEFF Research Database (Denmark)

    Georgakis, Christos; Koss, Holger; Ricciardelli, Francesco

    2009-01-01

    The newly proposed Femern fixed link between Denmark and Germany will push the limits in engineering design. The selection of a cable-stayed or suspension bridge will lead to one of the longest bridges of its type in the world. The challenges of designing a bridge are many and the prospects...... of cable vibrations already preoccupy both the owners and designers. In this connection, the Danish owners/operators Femern Bælt A/S, together with Storebælt A/S, are funding a collaborative research project to examine the ways of reducing the risk of cable vibrations on a bridge solution. A novel climatic...

  2. IgE to penicillins with different specificities can be identified by a multiepitope macromolecule: Bihaptenic penicillin structures and IgE specificities.

    Science.gov (United States)

    Ariza, A; Barrionuevo, E; Mayorga, C; Montañez, M I; Perez-Inestrosa, E; Ruiz-Sánchez, A; Rodríguez-Guéant, R M; Fernández, T D; Guéant, J L; Torres, M J; Blanca, M

    2014-04-01

    Quantitation of specific IgE by immunoassay is a recommended in vitro test for the diagnosis of immediate hypersensitivity reactions to betalactams (BLs), particularly when skin test results are negative. IgE antibodies that recognize the common nuclear structure of all BLs or the specific side chain structure can be mainly distinguished by immunoassays. The aim of this study was to develop an immunoassay system to detect IgE antibodies with different specificities. Cellulose discs conjugated with benzylpenicillin (BP), amoxicillin (AX) or both drugs, with poly-l-lysine (PLL) as carrier molecule, were used as solid phases in the radioallergosorbent test (RAST). Direct and inhibition radioimmunoassay studies were made to verify the structures recognized by serum IgE antibodies from penicillin-allergic patients. Our results indicated that the addition of both haptens did not decrease the capacity to capture IgE when serum specific to either BP or AX was used, at least in terms of sensitivity. In addition, the inclusion of two haptens improved significantly the levels of IgE detection in patients who recognized both BP and AX. Therefore, the use of a solid phase with a carrier molecule conjugated with two determinants (AX and BP) is helpful to recognize IgE antibodies against either of these determinants and is useful for screening sera with different specificities. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. A new experimental method to determine specific heat capacity of inhomogeneous concrete material with incorporated microencapsulated-PCM

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund

    2014-01-01

    PCM. This paper describes the development of the new material and the experimental set-up to determine the specific heat capacity of the PCM concrete material. Moreover, various methods are proposed and compared to calculate the specific heat capacity of the PCM concrete. Finally, it is hoped......The study presented in this paper focuses on an experimental investigation of the specific heat capacity as a function of the temperature Cp (T) of concrete mixed with various amounts of phase change material (PCM). The tested specimens are prepared by directly mixing concrete and microencapsulated...... that this work can be used as an inspiration and guidance to perform measurements on the various composite materials containing PCM....

  4. MODAL TRACKING of A Structural Device: A Subspace Identification Approach

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J. V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Franco, S. N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ruggiero, E. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Emmons, M. C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lopez, I. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Stoops, L. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-03-20

    Mechanical devices operating in an environment contaminated by noise, uncertainties, and extraneous disturbances lead to low signal-to-noise-ratios creating an extremely challenging processing problem. To detect/classify a device subsystem from noisy data, it is necessary to identify unique signatures or particular features. An obvious feature would be resonant (modal) frequencies emitted during its normal operation. In this report, we discuss a model-based approach to incorporate these physical features into a dynamic structure that can be used for such an identification. The approach we take after pre-processing the raw vibration data and removing any extraneous disturbances is to obtain a representation of the structurally unknown device along with its subsystems that capture these salient features. One approach is to recognize that unique modal frequencies (sinusoidal lines) appear in the estimated power spectrum that are solely characteristic of the device under investigation. Therefore, the objective of this effort is based on constructing a black box model of the device that captures these physical features that can be exploited to “diagnose” whether or not the particular device subsystem (track/detect/classify) is operating normally from noisy vibrational data. Here we discuss the application of a modern system identification approach based on stochastic subspace realization techniques capable of both (1) identifying the underlying black-box structure thereby enabling the extraction of structural modes that can be used for analysis and modal tracking as well as (2) indicators of condition and possible changes from normal operation.

  5. Evaluation of a novel dried blood spot collection device (HemaSpot™) to test blood samples collected from dogs for antibodies to Leishmania infantum.

    Science.gov (United States)

    Rosypal, Alexa C; Pick, Leanne D; Hernandez, Jaime O Esquivel; Lindsay, David S

    2014-09-15

    Collection of blood samples from veterinary and wildlife patients is often challenging because the samples have to be collected on farm or in the wild under various environmental conditions. This poses many technical problems associated with venipuncture materials, their safe use and disposal, transportation and processing of collected samples. Dried blood spot (DBS) sample collection techniques offer a simple and practical alternative to traditional blood collection methods to obtain blood samples from animals for parasite antibody evaluation. The DBS collection devices are compact, simple to use, and are particularly useful for large number of samples. Additionally, DBS samples take up less space and they are easier to transport than traditional venipuncture-collected blood samples. Visceral leishmaniasis (VL) is a potentially fatal parasitic disease of dogs and humans and it is frequently diagnosed by antibody tests. Immunochromatographic tests (ICT) for antibodies to Leishmania infantum are commercially available for dogs and they produce qualitative results in minutes. Measurement of canine antibodies to L. infantum with the ICT using traditional venipuncture has been validated previously, but the use of DBS samples has not been evaluated using this method. The purpose of the present study was to determine the ability of DBS samples to detect antibodies to L. infantum in dogs using a commercial ICT assay. One hundred plasma samples from dogs experimentally infected with the LIVT-1 strain of L. infantum were collected by venipuncture and frozen. Individual samples were thawed, and then 80 μl plasma (2 drops) was aliquotted onto the 8-spoked disk pad on individual DBS sample collection devices (HemaSpot™, Spot-On Sciences, Austin, TX), dried, and stored in the dark at room temperature. After one month and six months, respectively, 2 spokes of the 8 spokes of the disk pad of each DBS sample were removed and eluted in 200 μl PBS. The eluate was used to test

  6. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    of a vehicle and to test its components in laboratory. In this framework a mechanism to measure road profiles is designed and presented. Such a mechanism is composed of two rolling wheels and two long beams attached to the vehicles by means of four Kardan joints. The wheels are kept in contact to the ground...... to highlight that the aim of this device is to independently measure two road profiles, without the influence of the vehicle dynamics where the mechanism is attached. Before the mechatronic mechanism is attached to a real vehicle, its dynamic behavior must be known. A theoretical analysis of the mechanism...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  7. Plasma processing of soft materials for development of flexible devices

    International Nuclear Information System (INIS)

    Setsuhara, Yuichi; Cho, Ken; Takenaka, Kosuke; Shiratani, Masaharu; Sekine, Makoto; Hori, Masaru

    2011-01-01

    Plasma-polymer interactions have been studied as a basis for development of next-generation processing of flexible devices with soft materials by means of low-damage plasma technologies (soft materials processing technologies). In the present article, interactions between argon plasmas and polyethylene terephthalate (PET) films have been examined for investigations of physical damages induced by plasma exposures to the organic material via chemical bonding-structure analyses using hard X-ray photoelectron spectroscopy (HXPES) together with conventional X-ray photoelectron spectroscopy (XPS). The PET film has been selected as a test material for investigations in the present study not merely because of its specific applications, such as a substrate material, but because PET is one of the well defined organic materials containing major components in a variety of functional soft materials; C-C main chain, CH bond, oxygen functionalities (O=C-O bond and C-O bond) and phenyl group. Especially, variations of the phenyl group due to argon plasma exposures have been investigated in the present article in order to examine plasma interactions with π-conjugated system, which is in charge of electronic functions in many of the π-conjugated electronic organic materials to be utilized as functional layer for advanced flexible device formations. The PET films have been exposed to argon plasmas sustained via inductive coupling of RF power with low-inductance antenna modules. The HXPES analyses exhibited that the degradations of the oxygen functionalities and the phenyl group in the deeper regions up to 50 nm from the surface of the samples were insignificant indicating that the bond scission and/or the degradations of the chemical bonding structures due to photoirradiation from the plasma and/or surface heating via plasma exposure were relatively insignificant as compared with damages in the vicinity of the surface layers.

  8. Thermal Analysis of a SHIELD Electromigration Test Structure

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David A.; Bowman, Duane J.; Mitchell, Robert T.

    1999-05-01

    The steady state and transient thermal behavior of an electromigration test structure was analyzed. The test structure was a Sandia SHIELD (Self-stressing HIgh fregquency rELiability Device) electromigration test device manufactured by an outside vendor. This device has a high frequency oscillator circuit, a buffer circuit to isolate and drive the metal line to the tested (DUT), the DUT to be electromigrated itself, a metal resistance thermometry monitor, and a heater elment to temperature accelerate the electromigration effect.

  9. Materials for a uranium enrichment device

    International Nuclear Information System (INIS)

    Ito, Masayuki; Okamoto, Jiro; Machi, Sueo; Shirayama, Kenzo.

    1976-01-01

    Object: To provide packing or lining materials or vibration resisting materials, possessing superior characteristics of both elasticity and corrosion resistance against UF 6 , made from ethylene-hexafluoropropylene copolymers. Method: Ethylene-hexafluoropropylene copolymers, containing hexafluoropropylene by 10 - 50 mol %, are prepared by means of various methods. The copolymer is cross-linked in the form of powder or sheet or after it has been moulded into appropriate product forms. Crosslinking is achieved by either heating the raw copolymer mixed with t-butylperoxybenzoate by 3 to 100 at about 150 0 C, or irradiating with ionizing radiation, i.e., an electron beam by 12 Mrad under air-free atmosphere. The obtained cross-linked copolymer shows strong resistance against UF 6 gas even at 100 0 C and keeps high mechanical strength

  10. A comparison of conventional mechanical testing techniques with innovative testing techniques for the evaluation of mechanical properties of NPP structural materials

    International Nuclear Information System (INIS)

    Liddell, P.A.; Kopriva, R.

    2015-01-01

    The innovative testing methods of Small Punch (SP) and Automated Ball Indentation (ABI) tests are based on the determination of material properties from sub-sized samples. These methods are promising to evaluate the components of nuclear power plants since they preserve the structural integrity of the component. The SP test is a semi-destructive method that employs miniaturised plate-shaped samples of various geometries. The method is based on the penetration of a sample with a semi-spherical punch. The sample deflection is measured throughout the test. The ABI test is a fully automatic test based on multiple indentations at a single penetration location on a polished sample surface with a spherical indenter of various diameters. The purpose of the test is to determine the tensile properties of materials in a non-destructive and localised fashion. A comparison has been made between SP, ABI and conventional tensile tests on the measurement of yield strength for the A533B (JRQ) ferritic steel which is a base metal of the pressure vessels of western PWR. The results show an excellent correlation for both innovative methods and the conventional tensile tests

  11. Transparent oxide electronics from materials to devices

    CERN Document Server

    Martins, Rodrigo; Barquinha, Pedro; Pereira, Luis

    2012-01-01

    Transparent electronics is emerging as one of the most promising technologies for the next generation of electronic products, away from the traditional silicon technology. It is essential for touch display panels, solar cells, LEDs and antistatic coatings. The book describes the concept of transparent electronics, passive and active oxide semiconductors, multicomponent dielectrics and their importance for a new era of novel electronic materials and products. This is followed by a short history of transistors, and how oxides have revolutionized this field. It concludes with a glance at lo

  12. Physical test report to drop test of a 9975 radioactive material shipping packaging

    International Nuclear Information System (INIS)

    Blanton, P.S.

    1997-01-01

    This report presents the drop test results for the 9975 radioactive material shipping package being dropped 30 feet onto a unyielding surface followed by a 40-inch puncture pin drop. The purpose of these drops was to show that the package lid would remain attached to the drum. The 30-foot drop was designed to weaken the lid closure lug while still maintaining maximum extension of the lugs from the drum surface. This was accomplished by angling the drum approximately 30 degrees from horizontal in an inverted position. In this position, the drum was rotated slightly so as not to embed the closure lugs into the drum as a result of the 30-foot drop. It was determined that this orientation would maximize deformation to the closure ring around the closure lug while still maintaining the extension of the lugs from the package surface. The second drop was from 40 inches above a 40-inch tall 6-inch diameter puncture pin. The package was angled 10 degrees from vertical and aligned over the puncture pin to solidly hit the drum lug(s) in an attempt to disengage the lid when dropped.Tests were performed in response to DOE EM-76 review Q5 inquires that questioned the capability of the 9975 drum lid to remain in place under this test sequence. Two packages were dropped utilizing this sequence, a 9974 and 9975. Test results for the 9974 package are reported in WSRC-RP-97-00945. A series of 40-inch puncture pin tests were also performed on undamaged 9975 and 9974 packages

  13. A novel reflex cough testing device.

    Science.gov (United States)

    Fujiwara, Kazunori; Kawamoto, Katsuyuki; Shimizu, Yoko; Fukuhara, Takahiro; Koyama, Satoshi; Kataoka, Hideyuki; Kitano, Hiroya; Takeuchi, Hiromi

    2017-01-18

    The reflex cough test is useful for detecting silent aspiration, a risk factor for aspiration pneumonia. However, assessing the risk of aspiration pneumonia requires measuring not only the cough reflex but also cough strength. Currently, no reflex cough testing device is available that can directly measure reflex cough strength. We therefore developed a new testing device that can easily and simultaneously measure cough strength and the time until the cough reflex, and verified whether screening with this new instrument is feasible for evaluating the risk of aspiration pneumonia. This device consists of a special pipe with a double lumen, a nebulizer, and an electronic spirometer. We used a solution of prescription-grade L-tartaric acid to initiate the cough reflex. The solution was inhaled through a mouthpiece as a microaerosol produced by an ultrasonic nebulizer. The peak cough flow (PCF) of the induced cough was measured with the spirometer. The 70 patients who participated in this study comprised 49 patients without a history of pneumonia (group A), 21 patients with a history of pneumonia (group B), and 10 healthy volunteers (control group). With the novel device, PCF and time until cough reflex could be measured without adverse effects. The PCF values were 118.3 ± 64.0 L/min, 47.7 ± 38.5 L/min, and 254.9 ± 83.8 L/min in group A, group B, and the control group, respectively. The PCF of group B was significantly lower than that of group A and the control group (p reflex was 4.2 ± 5.9 s, 7.0 ± 7.0 s, and 1 s in group A, group B, and the control group, respectively. This duration was significantly longer for groups A and B than for the control group (A: p reflex and the strength of involuntary coughs for assessment of patients at risk of aspiration pneumonia.

  14. Environmental test program for superconducting materials and devices

    Science.gov (United States)

    Haertling, Gene; Randolph, Henry; Hsi, Chi-Shiung; Verbelyi, Darren

    1991-01-01

    This report is divided into two parts. The first dealing with work involved with Clemson University and the second with the results from Westinghouse/Savannah River. Both areas of work involved low noise, low thermal conductivity superconducting grounding links used in the NASA-sponsored Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Project. Clemson prepared the links from YBa2Cu3O(7-x) superconductor tape that was mounted on a printed circuit board and encapsulated with epoxy resin. The Clemson program includes temperature vs. resistance, liquid nitrogen immersion, water immersion, thermal cycling, humidity, and radiation testing. The evaluation of the links under a long term environmental test program is described. The Savannah River program includes gamma irradiation, vibration, and long-term evaluation. The progress made in these evaluations is discussed.

  15. First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices

    Science.gov (United States)

    Paul, Sujata

    In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide

  16. NRC Bulletin No. 87-02, Supplement 1: Fastener testing to determine conformance with applicable material specifications

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    Item 5 of NRC Compliance Bulletin 87-02 requested that all holders of operating licenses or construction permits for nuclear power reactors information regarding the identity of the suppliers and manufacturers of the safety-related and non-safety-related fasteners selected for testing. After further consideration, the NRC has determined that it needs information regarding the identity of all vendors from which safety-related and non-safety-related fasteners have been obtained within the past 10 years, a reasonable period which will not put undue burden on addressees. This information will assist the NRC in determining whether nuclear facility fasteners in use have been supplied in accordance with their intended use. In addition, this information is needed so that the NRC can properly coordinate information with other government agencies concerned with problems identified in the quality of fasteners

  17. Test or toy? Materiality and the measurement of infant intelligence.

    Science.gov (United States)

    Young, Jacy L

    2015-05-01

    Adopting a material culture perspective, this article interrogates the composition of the copy of the Cattell Infant Intelligence Scale housed at the University of Toronto Scientific Instruments Collection. As a deliberately assembled collection of toys, the Cattell Scale makes clear the indefinite boundary between test and toy in 20th-century American psychology. Consideration of the current condition of some of the material constituents of this particular Cattell Scale provides valuable insight into some of the elusive practices of intelligence testers in situ and highlights the dynamic nature of the testing process. At the same time, attending to the materiality of this intelligence test reveals some of the more general assumptions about the nature of intelligence inherent in tests for young children. The scale and others like it, I argue, exposes psychologists' often-uncritical equation of childhood intelligence with appropriate play undertaken with an appropriate toy, an approach complicit in, and fostered by, midcentury efforts to cultivate particular forms of selfhood. This analysis serves as an example of the kind of work that may be done on the history of intelligence testing when the material objects that were (and are) inherently a part of the testing process are included in historical scholarship. (c) 2015 APA, all rights reserved).

  18. Proof of Concept Study for the Design, Manufacturing, and Testing of a Patient-Specific Shape Memory Device for Treatment of Unicoronal Craniosynostosis.

    Science.gov (United States)

    Borghi, Alessandro; Rodgers, Will; Schievano, Silvia; Ponniah, Allan; Jeelani, Owase; Dunaway, David

    2018-01-01

    Treatment of unicoronal craniosynostosis is a surgically challenging problem, due to the involvement of coronal suture and cranial base, with complex asymmetries of the calvarium and orbit. Several techniques for correction have been described, including surgical bony remodeling, early strip craniotomy with orthotic helmet remodeling and distraction. Current distraction devices provide unidirectional forces and have had very limited success. Nitinol is a shape memory alloy that can be programmed to the shape of a patient-specific anatomy by means of thermal treatment.In this work, a methodology to produce a nitinol patient-specific distractor is presented: computer tomography images of a 16-month-old patient with unicoronal craniosynostosis were processed to create a 3-dimensional model of his skull and define the ideal shape postsurgery. A mesh was produced from a nitinol sheet, formed to the ideal skull shape and heat treated to be malleable at room temperature. The mesh was afterward deformed to be attached to a rapid prototyped plastic skull, replica of the patient initial anatomy. The mesh/skull construct was placed in hot water to activate the mesh shape memory property: the deformed plastic skull was computed tomography scanned for comparison of its shape with the initial anatomy and with the desired shape, showing that the nitinol mesh had been able to distract the plastic skull to a shape close to the desired one.The shape-memory properties of nitinol allow for the design and production of patient-specific devices able to deliver complex, preprogrammable shape changes.

  19. Heat resistant/radiation resistant cable and incore structure test device for FBR type reactor

    International Nuclear Information System (INIS)

    Tanimoto, Hajime; Shiono, Takeo; Sato, Yoshimi; Ito, Kazumi; Sudo, Shigeaki; Saito, Shin-ichi; Mitsui, Hisayasu.

    1995-01-01

    A heat resistant/radiation resistant coaxial cable of the present invention comprises an insulation layer, an outer conductor and a protection cover in this order on an inner conductor, in which the insulation layer comprises thermoplastic polyimide. In the same manner, a heat resistant/radiation resistant power cable has an insulation layer comprising thermoplastic polyimide on a conductor, and is provided with a protection cover comprising braid of alamide fibers at the outer circumference of the insulation layer. An incore structure test device for an FBR type reactor comprises the heat resistant/radiation resistant coaxial cable and/or the power cable. The thermoplastic polyimide can be extrusion molded, and has excellent radiation resistant by the extrusion, as well as has high dielectric withstand voltage, good flexibility and electric characteristics at high temperature. The incore structure test device for the FBR type reactor of the present invention comprising such a cable has excellent reliability and durability. (T.M.)

  20. Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications.

    Science.gov (United States)

    Zeng, Wei; Shu, Lin; Li, Qiao; Chen, Song; Wang, Fei; Tao, Xiao-Ming

    2014-08-20

    Fiber-based structures are highly desirable for wearable electronics that are expected to be light-weight, long-lasting, flexible, and conformable. Many fibrous structures have been manufactured by well-established lost-effective textile processing technologies, normally at ambient conditions. The advancement of nanotechnology has made it feasible to build electronic devices directly on the surface or inside of single fibers, which have typical thickness of several to tens microns. However, imparting electronic functions to porous, highly deformable and three-dimensional fiber assemblies and maintaining them during wear represent great challenges from both views of fundamental understanding and practical implementation. This article attempts to critically review the current state-of-arts with respect to materials, fabrication techniques, and structural design of devices as well as applications of the fiber-based wearable electronic products. In addition, this review elaborates the performance requirements of the fiber-based wearable electronic products, especially regarding the correlation among materials, fiber/textile structures and electronic as well as mechanical functionalities of fiber-based electronic devices. Finally, discussions will be presented regarding to limitations of current materials, fabrication techniques, devices concerning manufacturability and performance as well as scientific understanding that must be improved prior to their wide adoption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of radiation on MOS structures and silicon devices

    International Nuclear Information System (INIS)

    Braeunig, D.; Fahrner, W.

    1983-02-01

    A comprehensive view of radiation effects on MOS structures and silicon devices is given. In the introduction, the interaction of radiation with semiconductor material is presented. In the next section, the electrical degradation of semiconductor devices due to this interaction is discussed. The commonly used hardening techniques are shown. The last section deals with testing of radiation hardness of devices. (orig.) [de

  2. Evaluating Graphene as a Channel Material in Spintronic Logic Devices

    Science.gov (United States)

    Anugrah, Yoska

    Spintronics, a class of devices that exploit the spin properties of electrons in addition to the charge properties, promises the possibility for nonvolatile logic and memory devices that operate at low power. Graphene is a material in which the spin orientation of electrons can be conserved over a long distance, which makes it an attractive channel material in spintronics devices. In this dissertation, the properties of graphene that are interesting for spintronics applications are explored. A robust fabrication process is described for graphene spin valves using Al2O3 tunnel tunnel barriers and Co ferromagnetic contacts. Spin transport was characterized in both few-layer exfoliated and single-layer graphene, and spin diffusion lengths and spin relaxation times were extracted using the nonlocal spin valve geometry and Hanle measurements. The effect of input-output asymmetry on the spin transport was investigated. The effect of an applied drift electric field on spin transport was investigated and the spin diffusion length was found to be tunable by a factor of 8X (suppressed to 1.6 microm and enhanced to 13 microm from the intrinsic length of 4.6 microm using electric field of +/-1800 V/cm). A mechanism to induce asymmetry without excess power dissipation is also described which utilizes a double buried-gate structure to tune the Fermi levels on the input and output sides of a graphene spin logic device independently. It was found that different spin scattering mechanisms were at play in the two halves of a small graphene strip. This suggests that the spin properties of graphene are strongly affected by its local environment, e.g. impurities, surface topography, defects. Finally, two-dimensional materials beyond graphene have been explored as spin channels. One such material is phosphorene, which has low spin-orbit coupling and high mobility, and the interface properties of ferromagnets (cobalt and permalloy) with this material were explored. This work could

  3. Material testing facilities and programs for plasma-facing component testing

    Science.gov (United States)

    Linsmeier, Ch.; Unterberg, B.; Coenen, J. W.; Doerner, R. P.; Greuner, H.; Kreter, A.; Linke, J.; Maier, H.

    2017-09-01

    Component development for operation in a large-scale fusion device requires thorough testing and qualification for the intended operational conditions. In particular environments are necessary which are comparable to the real operation conditions, allowing at the same time for in situ/in vacuo diagnostics and flexible operation, even beyond design limits during the testing. Various electron and neutral particle devices provide the capabilities for high heat load tests, suited for material samples and components from lab-scale dimensions up to full-size parts, containing toxic materials like beryllium, and being activated by neutron irradiation. To simulate the conditions specific to a fusion plasma both at the first wall and in the divertor of fusion devices, linear plasma devices allow for a test of erosion and hydrogen isotope recycling behavior under well-defined and controlled conditions. Finally, the complex conditions in a fusion device (including the effects caused by magnetic fields) are exploited for component and material tests by exposing test mock-ups or material samples to a fusion plasma by manipulator systems. They allow for easy exchange of test pieces in a tokamak or stellarator device, without opening the vessel. Such a chain of test devices and qualification procedures is required for the development of plasma-facing components which then can be successfully operated in future fusion power devices. The various available as well as newly planned devices and test stands, together with their specific capabilities, are presented in this manuscript. Results from experimental programs on test facilities illustrate their significance for the qualification of plasma-facing materials and components. An extended set of references provides access to the current status of material and component testing capabilities in the international fusion programs.

  4. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    International Nuclear Information System (INIS)

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  5. Reliability analysis applied to structural tests

    Science.gov (United States)

    Diamond, P.; Payne, A. O.

    1972-01-01

    The application of reliability theory to predict, from structural fatigue test data, the risk of failure of a structure under service conditions because its load-carrying capability is progressively reduced by the extension of a fatigue crack, is considered. The procedure is applicable to both safe-life and fail-safe structures and, for a prescribed safety level, it will enable an inspection procedure to be planned or, if inspection is not feasible, it will evaluate the life to replacement. The theory has been further developed to cope with the case of structures with initial cracks, such as can occur in modern high-strength materials which are susceptible to the formation of small flaws during the production process. The method has been applied to a structure of high-strength steel and the results are compared with those obtained by the current life estimation procedures. This has shown that the conventional methods can be unconservative in certain cases, depending on the characteristics of the structure and the design operating conditions. The suitability of the probabilistic approach to the interpretation of the results from full-scale fatigue testing of aircraft structures is discussed and the assumptions involved are examined.

  6. Testing Requirements to Manage Data Exchange Specifications in Enterprise Integration - A Schema Design Quality Focus.

    Energy Technology Data Exchange (ETDEWEB)

    Kulvatunyou, Boonserm [ORNL; Ivezic, Nenad [ORNL; Buhwan, Jeong [POSTECH University, South Korea

    2004-07-01

    In this paper, we describe the requirements to test W3C XML Schema usage when defining message schemas for data exchange in any large and evolving enterprise integration project. We then decompose the XML Schema testing into four (4) aspects including the message schema conformance to the XML Schema specification grammar, the message schema conformance to the XML Schema specification semantics, the message schema conformance to design quality testing, and canonical semantics testing of the message schema. We describe these four testing aspects in some detail and point to other related efforts. We further focus to provide some technical details for the message schema design quality testing. As a future work, we describe the requirements for canonical semantics testing and potential solution approaches. Finally, we describe an implementation architecture for the message schema design quality testing.

  7. An Asset Pricing Approach to Testing General Term Structure Models including Heath-Jarrow-Morton Specifications and Affine Subclasses

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; van der Wel, Michel

    of the risk premium is associated with the slope factor, and individual risk prices depend on own past values, factor realizations, and past values of other risk prices, and are significantly related to the output gap, consumption, and the equity risk price. The absence of arbitrage opportunities is strongly...... is tested, but in addition to the standard bilinear term in factor loadings and market prices of risk, the relevant mean restriction in the term structure case involves an additional nonlinear (quadratic) term in factor loadings. We estimate our general model using likelihood-based dynamic factor model...... techniques for a variety of volatility factors, and implement the relevant likelihood ratio tests. Our factor model estimates are similar across a general state space implementation and an alternative robust two-step principal components approach. The evidence favors time-varying market prices of risk. Most...

  8. To test, or not to test: time for a MODY calculator?

    Science.gov (United States)

    Njølstad, P R; Molven, A

    2012-05-01

    To test, or not to test, that is often the question in diabetes genetics. This is why the paper of Shields et al in the current issue of Diabetologia is so warmly welcomed. MODY is the most common form of monogenic diabetes. Nevertheless, the optimal way of identifying MODY families still poses a challenge both for researchers and clinicians. Hattersley's group in Exeter, UK, have developed an easy-to-use MODY prediction model that can help to identify cases appropriate for genetic testing. By answering eight simple questions on the internet ( www.diabetesgenes.org/content/mody-probability-calculator ), the doctor receives a positive predictive value in return: the probability that the patient has MODY. Thus, the classical binary (yes/no) assessment provided by clinical diagnostic criteria has been substituted by a more rational, quantitative estimate. The model appears to discriminate well between MODY and type 1 and type 2 diabetes when diabetes is diagnosed before the age of 35 years. However, the performance of the MODY probability calculator should now be validated in other settings than where it was developed-and, as always, there is room for some improvements and modifications.

  9. Recent Progress of Textile-Based Wearable Electronics: A Comprehensive Review of Materials, Devices, and Applications.

    Science.gov (United States)

    Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu

    2018-01-01

    Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Flexible robotic entry device for a nuclear materials production reactor

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1988-01-01

    The Savannah River Laboratory has developed and is implementing a flexible robotic entry device (FRED) for the nuclear materials production reactors now operating at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique smart tether method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. This system makes it possible to use FRED under all operating and standby conditions, including those where radio/microwave transmissions are not possible or permitted, and increases the quantity of data available

  11. The Jules Horowitz reactor, a new high performance European material testing reactor open to international users: present status and objectives

    International Nuclear Information System (INIS)

    Iracane, D.; Bignan, G.

    2010-01-01

    The development of nuclear power as a sustainable and competitive energy source will continue to require research and development of fuel and material behaviour under irradiation. This necessitates a high performance material testing reactor (MTR). Facing the obsolescence of most of the existing MTR in Europe, France decided a few years ago the construction of the RJH (Jules Horowitz reactor). RJH is designed, built and will be operated as an international user facility. A first set of experimental hosting devices is being designed. For instance, there are the in-core CALIPSO Nak integrated loop for material studies and other loops for fuel studies under nominal or off-normal or accidental conditions. The RJH international program will focus on the following subjects: -) fuel reliability, assessed through power ramps tests and post-irradiation examination; -) Loss of coolant tests done out-of-pile in a first phase and in-pile in a possible second phase; and -) source term tests addressing fission products release. The paper reports also the point of view of VATTENFALL (a Swedish power utility), as a potential European RJH user. (A.C.)

  12. Development and Testing of a Device to Increase the Level of Automation of a Conventional Milking Parlor through Vocal Commands

    Directory of Open Access Journals (Sweden)

    Mauro Zaninelli

    2017-01-01

    Full Text Available A portable wireless device with a “vocal commands” feature for activating the mechanical milking phase in conventional milking parlors was developed and tested to increase the level of automation in the milking procedures. The device was tested in the laboratory and in a milking parlor. Four professional milkers participated in the experiment. Before the start of the tests, a set of acoustic models with speaker-dependent commands defined for the project was acquired for each milker using a dedicated “milker training procedure”. Two experimental sessions were performed by each milker, with one session in the laboratory and a subsequent session in the milking parlor. The device performance was evaluated based on the accuracy demonstrated in the vocal command recognition task and rated using the word recognition rate (WRR. The data were expressed as %WRR and grouped based on the different cases evaluated. Mixed effects logistic regression modeling was used to evaluate the association between the %WRR and explanatory variables. The results indicated significant effects due to the location where the tests were performed. Higher values of the %WRR were found for tests performed in the laboratory, whereas lower values were found for tests performed in the milking parlor (due to the presence of background noise. Nevertheless, the general performance level achieved by the device was sufficient for increasing the automation level of conventional milking parlors.

  13. Laser-cut paper-based device for the detection of dengue non-structural NS1 protein and specific IgM in human samples.

    Science.gov (United States)

    Theillet, G; Rubens, A; Foucault, F; Dalbon, P; Rozand, C; Leparc-Goffart, I; Bedin, F

    2018-03-10

    The incidence of flavivirus infections has increased dramatically in recent decades in tropical and sub-tropical areas worldwide, affecting hundreds of millions of people each year. Dengue viruses are typically transmitted by mosquitoes and can cause a wide range of symptoms from flu-like fever to organ impairment and death. Although conventional diagnostic tests can provide early diagnosis of acute dengue infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop affordable, simple, rapid, and robust diagnostic tools that can be used at 'Point of Care' settings. Early diagnosis is crucial to improve patient management and reduce the risk of complications. In the present study, a novel laser-cut device made of glass-fiber paper was designed and tested for the detection of the dengue Non Structural 1 (NS1) viral protein and specific IgM in blood and plasma. The device, called PAD, was able to detect around 25 ng/mL of NS1 protein in various sample types in 8 minutes, following a few simple steps. The PAD was also able to detect specific IgM in human plasmas in less than 10 minutes. The PAD appears to have all the potential to assist health workers in early diagnosis of dengue fever or other tropical fevers caused by flaviviruses.

  14. 78 FR 3450 - Solicitation for a Cooperative Agreement: Development of Materials Specific to Lesbian, Gay...

    Science.gov (United States)

    2013-01-16

    ... environment suggests the need for helping correctional agencies identify responsible and safe practices that... population, whether working in an institutional environment or community-based setting; have knowledge about... develop a white paper specific to recommended best practices in the safe and respectful management of the...

  15. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coiec, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad(Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' x-rays and 60 Co gamma rays

  16. A study of radiation vulnerability of ferroelectric material and devices

    Energy Technology Data Exchange (ETDEWEB)

    Coic, Y M; Musseau, O; Leray, J L [CEA Centre d` Etudes de Bruyeres-le-Chatel, 91 (France)

    1994-12-31

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ``10 keV Aracor`` s-rays and {sup 60}Co gamma rays. (author). 24 refs., 11 figs., 7 tabs.

  17. A study of radiation vulnerability of ferroelectric material and devices

    International Nuclear Information System (INIS)

    Coic, Y.M.; Musseau, O.; Leray, J.L.

    1994-01-01

    The radiation effects on ferroelectric material and devices are presented, based on commercially available samples. After recalling the background, effects in ferroelectric PZT capacitors are presented, concerning dose, neutrons and fatigue associated with dose effects. Physical implications and interpretations are sketched. In a second stage, effects are studied at the complete non-volatile RAM device level. Vulnerability in dose, dose rate and neutron fluence of commercial 4 kbit ferroelectric RAM is addressed. 64 kbit results are mentioned in dose rate. These results are compared to previously published data from other manufacturers or laboratories and supplement them. In the appendix, equivalence between rad (Si) and rad (PZT) is discussed in the case of low energy ''10 keV Aracor'' s-rays and 60 Co gamma rays. (author). 24 refs., 11 figs., 7 tabs

  18. Software test attacks to break mobile and embedded devices

    CERN Document Server

    Hagar, Jon Duncan

    2013-01-01

    Address Errors before Users Find Them Using a mix-and-match approach, Software Test Attacks to Break Mobile and Embedded Devices presents an attack basis for testing mobile and embedded systems. Designed for testers working in the ever-expanding world of ""smart"" devices driven by software, the book focuses on attack-based testing that can be used by individuals and teams. The numerous test attacks show you when a software product does not work (i.e., has bugs) and provide you with information about the software product under test. The book guides you step by step starting with the basics. It

  19. A New Light Weight Structural Material for Nuclear Structures

    International Nuclear Information System (INIS)

    Rabiei, Afsaneh

    2016-01-01

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  20. A New Light Weight Structural Material for Nuclear Structures

    Energy Technology Data Exchange (ETDEWEB)

    Rabiei, Afsaneh [North Carolina State Univ., Raleigh, NC (United States)

    2016-01-14

    Radiation shielding materials are commonly used in nuclear facilities to attenuate the background ionization radiations to a minimum level for creating a safer workplace, meeting regulatory requirements and maintaining high quality performance. The conventional radiation shielding materials have a number of drawbacks: heavy concrete contains a high amount of elements that are not desirable for an effective shielding such as oxygen, silicon, and calcium; a well known limitation of lead is its low machinability and toxicity, which is causing a major environmental concern. Therefore, an effective and environmentally friendly shielding material with increased attenuation and low mass density is desirable. Close-cell composite metal foams (CMFs) and open-cell Al foam with fillers are light-weight candidate materials that we have studied in this project. Close-cell CMFs possess several suitable properties that are unattainable by conventional radiation shielding materials such as low density and high strength for structural applications, high surface area to volume ratio for excellent thermal isolation with an extraordinary energy absorption capability. Open-cell foam is made up of a network of interconnected solid struts, which allows gas or fluid media to pass through it. This unique structure provided a further motive to investigate its application as radiation shields by infiltrating original empty pores with high hydrogen or boron compounds, which are well known for their excellent neutron shielding capability. The resulting open-cell foam with fillers will not only exhibit light weight and high specific surface area, but also possess excellent radiation shielding capability and good processability. In this study, all the foams were investigated for their radiation shielding efficiency in terms of X-ray, gamma ray and neutron. X-ray transmission measurements were carried out on a high-resolution microcomputed tomography (microCT) system. Gamma-emitting sources: 3.0m

  1. Automation software for a materials testing laboratory

    Science.gov (United States)

    Mcgaw, Michael A.; Bonacuse, Peter J.

    1990-01-01

    The software environment in use at the NASA-Lewis Research Center's High Temperature Fatigue and Structures Laboratory is reviewed. This software environment is aimed at supporting the tasks involved in performing materials behavior research. The features and capabilities of the approach to specifying a materials test include static and dynamic control mode switching, enabling multimode test control; dynamic alteration of the control waveform based upon events occurring in the response variables; precise control over the nature of both command waveform generation and data acquisition; and the nesting of waveform/data acquisition strategies so that material history dependencies may be explored. To eliminate repetitive tasks in the coventional research process, a communications network software system is established which provides file interchange and remote console capabilities.

  2. Sub Tenth Micron CMOS Devices - A Demonstration of the Virtual Factory Approach to New Structure Design

    National Research Council Canada - National Science Library

    Plummer, James L

    1995-01-01

    ...'. This project is exploring the use of advanced TCAD simulation tools to design a candidate 21st century MOS device - a fully-depleted surrounding gate vertical MOSFET with self-aligned drain contact...

  3. The Stiffness and Damping Characteristics of a Dual-Chamber Air Spring Device Applied to Motion Suppression of Marine Structures

    Directory of Open Access Journals (Sweden)

    Xiaohui Zeng

    2016-03-01

    Full Text Available Dual-chamber air springs are used as a key component for vibration isolation in some industrial applications. The working principle of the dual-chamber air spring device as applied to motion suppression of marine structures is similar to that of the traditional air spring, but they differ in their specific characteristics. The stiffness and damping of the dual-chamber air spring device determine the extent of motion suppression. In this article, we investigate the stiffness and damping characteristics of a dual-chamber air spring device applied to marine structure motion suppression using orthogonal analysis and an experimental method. We measure the effects of volume ratio, orifice ratio, excitation amplitude, and frequency on the stiffness and damping of the dual-chamber vibration absorber. Based on the experimental results, a higher-order non-linear regression method is obtained. We achieve a rapid calculation model for dual-chamber air spring stiffness and damping, which can provide guidance to project design.

  4. A new device for X-ray Diffraction analyses of irradiated materials

    International Nuclear Information System (INIS)

    Valot, Christophe; Blay, Thierry; Caillot, Laurent; Ferroud-Plattet, Marie Pierre

    2008-01-01

    A new X-Ray Diffraction (XRD) equipment is being implemented in the LECA (Cea - Cadarache) hot laboratory. The device will be dedicated to structural characterization on irradiated fuels, as PWR fuels, transmutation targets and innovative fuels. The paper will present the specific design that was decided in order to reduce the number of components in contaminated volume and to make servicing easier. The analytical performances of this new equipment will be illustrated on some model samples: -) micro-diffraction capabilities will be detailed on heterogeneous material; -) strain and stress analyses on fresh uranium oxide pellets. (authors)

  5. A Deep Learning Approach to on-Node Sensor Data Analytics for Mobile or Wearable Devices.

    Science.gov (United States)

    Ravi, Daniele; Wong, Charence; Lo, Benny; Yang, Guang-Zhong

    2017-01-01

    The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. While deep learning has been successful in implementations that utilize high-performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learned from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain preprocessing is used before the data are passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.

  6. Artificially structured materials

    International Nuclear Information System (INIS)

    Cho, A.Y.

    1988-01-01

    Recent developments in crystal growth methods such as molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) allow us to artifically structure new materials on an atomic scale. These structures may have electrical or optical properties that cannot be obtained in bulk crystals. There has been a dramatic increase in the study of layered structures during the past decade which has led to the discovery of many unexpected physical phenomena and opened a completely new branch of device physics. Since the advanced crystal growth techniques can tailor the compositions and doping profiles of the material to atomic scales, it pushes the frontier of devices to the ultimate imagination of device physicists and engineers. It is likely that for the next century the new generation of devices will rely heavily on artifically structured materials. This article will be limited to a discussion of recent developments in the area of semiconductor thin epitaxial films which may have technological impact. 21 refs., 12 figs

  7. FMIT test cell diagnostics: a unique materials challenge

    International Nuclear Information System (INIS)

    Cannon, C.P.; Fuller, J.L.

    1981-08-01

    Basic materials problems are discussed in instrumenting the FMIT test cell, which are applicable to fusion devices in general. Recent data on ceramic-to-metal seals, mineral insulated instrument cables, thermocouples, and optical components are reviewed. The data makes it clear that it would be a mistake to assume that materials and instruments will behave in the FMIT test cell environment as they do in more familiar fission reactors and low power accelerators

  8. A Method to Estimate the Dynamic Displacement and Stress of a Multi-layered Pavement with Bituminous or Concrete Materials

    Directory of Open Access Journals (Sweden)

    Zheng LU

    2014-12-01

    Full Text Available In this research work, a method to estimate the dynamic characteristics of a multilayered pavement with bituminous or concrete materials is proposed. A mechanical model is established to investigate the dynamic displacement and stress of the multi-layered pavement structure. Both the flexible and the rigid pavements, corresponding to bituminous materials and concrete materials, respectively, are studied. The theoretical solutions of the multi-layered pavement structure are deduced considering the compatibility condition at the interface of the structural layers. By introducing FFT (Fast Fourier Transform algorithm, some numerical results are presented. Comparisons of the theoretical and experimental result implied that the proposed method is reasonable in predicting the stress and displacement of a multi-layered pavement with bituminous or concrete materials. DOI: http://dx.doi.org/10.5755/j01.ms.20.4.6071

  9. Testing devices or experimental systems? Cancer clinical trials take the genomic turn.

    Science.gov (United States)

    Nelson, Nicole C; Keating, Peter; Cambrosio, Alberto; Aguilar-Mahecha, Adriana; Basik, Mark

    2014-06-01

    Clinical trials are often described as machine-like systems for generating specific information concerning drug safety and efficacy, and are understood as a component of the industrial drug development processes. This paper argues that contemporary clinical trials in oncology are not reducible to mere drug testing. Drawing on ethnographic fieldwork and interviews with researchers in the field of oncology from 2010 to 2013, we introduce a conceptual contrast between trials as testing machines and trials as clinical experimental systems to draw attention to the ways trials are increasingly being used to ask open-ended scientific questions. When viewed as testing machines, clinical trials are seen as a means to produce answers to straightforward questions and deviations from the protocol are seen as bugs in the system; but practitioners can also treat trials as clinical experimental systems to investigate as yet undefined problems and where heterogeneity becomes a means to produce novel biological or clinical insights. The rise of "biomarker-driven" clinical trials in oncology, which link measurable biological characteristics such as genetic mutations to clinical features such as a patient's response to a particular drug, exemplifies a trend towards more experimental styles of clinical work. These transformations are congruent with changes in the institutional structure of clinical research in oncology, including a movement towards more flexible, networked research arrangements, and towards using individual patients as model systems for asking biological questions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Experiments on crushed salt consolidation with true triaxial testing device as a contribution to an EC Benchmark exercise

    International Nuclear Information System (INIS)

    Korthaus, E.

    1998-10-01

    The description of a Benchmark laboratory test on crushed salt consolidation is given that was performed twice with the true triaxial testing device developed by INE. The test was defined as an anisothermal hydrostatic multi-step test, with six creeping periods, and 45 days total duration. In the repetition test, an additional technique was applied for the first time in order to further reduce wall friction effects in the triaxial device. In both tests the sample strains were measured with high precision, allowing a reliable determination of the consolidation rates during the creeping periods. Changes in consolidation rates during load reductions were used to calculate the stress exponent of the constitutive model. Elastic compression moduli were determined at three compaction stages in the first test with the use of fast stress changes. The test results are compared with the model calculations performed by INE before the test under the Benchmark project. A preliminary comparison of the test results with those of the other participants is given. The comparison of the results of both tests shows that wall friction has only a moderate effect in the measurements with the true triaxial device. (orig.) [de

  11. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    Energy Technology Data Exchange (ETDEWEB)

    Sadik, Omowunmi A., E-mail: osadik@binghamton.ed [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States); Mwilu, Samuel K.; Aluoch, Austin [Department of Chemistry, Center for Advanced Sensors and Environmental Monitoring (CASE), State University of New York-Binghamton, P.O. Box 6000, Binghamton, NY 13902 (United States)

    2010-05-30

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  12. Smart electrochemical biosensors: From advanced materials to ultrasensitive devices

    International Nuclear Information System (INIS)

    Sadik, Omowunmi A.; Mwilu, Samuel K.; Aluoch, Austin

    2010-01-01

    The specificity, simplicity, and inherent miniaturization afforded by advances in modern electronics have allowed electrochemical sensors to rival the most advanced optical protocols. One major obstacle in implementing electrochemistry for studying biomolecular reaction is its inadequate sensitivity. Recent reports however showed unprecedented sensitivities for biomolecular recognition using enhanced electronic amplification provided by new classes of electrode materials (e.g. carbon nanotubes, metal nanoparticles, and quantum dots). Biosensor technology is one area where recent advances in nanomaterials are pushing the technological limits of electrochemical sensitivities, thus allowing for the development of new sensor chemistries and devices. This work focuses on our recent work, based on metal-enhanced electrochemical detection, and those of others in combining advanced nanomaterials with electrochemistry for the development of smart sensors for proteins, nucleic acids, drugs and cancer cells.

  13. Modeling Spin Testing Using Location Specific Material Properties

    Science.gov (United States)

    2012-04-01

    bulk of a material (for example, ferrite, bainite , martensite phases in steels ) the properties may roughly be derived as a "rule of mixtures" of the...1986): Int. J. of plasticity,p149 α 1σ 2σ loading surface R0σ (HC steel -Wilson & Bate, Acta Metall. 34, pp. 1107-1120,1986) Tension curve ε σ oσ...nucleation potency of primary inclusions in heat treated and shot peened martensitic gear steels ,” International Journal of Fatigue, Vol. 31, No. 7

  14. A device-specific prioritization strategy based on the potential for harm to human health in informal WEEE recycling.

    Science.gov (United States)

    Cesaro, Alessandra; Belgiorno, Vincenzo; Vaccari, Mentore; Jandric, Aleksander; Chung, Tran Duc; Dias, Maria Isabel; Hursthouse, Andrew; Salhofer, Stefan

    2018-01-01

    In developing countries, the recovery of valuable materials from Waste Electrical and Electronic Equipment (WEEE) is carried out via uncontrolled practices, posing potentially severe risks both to human health and the environment. The assessment of the risk, which depends on both the kind and hazardous properties of the substances contained in WEEE, is currently limited as the exposure scenario for the single informal practice cannot be fully characterized for this purpose. In this context, this work proposes and evaluates a strategy to identify the relative potential harm of different kinds of WEEE by their content in metals, selected as the target substances of concern. This was based on the individual metal content, primarily located in the printed circuit boards (PCBs) of the different devices. The metal composition of the individual PCBs was identified and the dominant unregulated metal recovery practices were reviewed to identify the most suitable parameter to express the toxicity of these metals. Based on a mass-normalized cumulative toxicity, via the inhalation route, individual components were assessed from compositional variation found in the literature. The results is a semiquantitative ranking of individual components, revealing significant differences in potential harm posed by different electronic appliances and an opportunity to provide prioritization strategies in future management.

  15. 40 CFR 63.1015 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process.

    Science.gov (United States)

    2010-07-01

    ... devices; or emissions routed to a fuel gas system or process. 63.1015 Section 63.1015 Protection of... fuel gas system or process. (a) Compliance schedule. The owner or operator shall comply with this... emissions from equipment leaks to a fuel gas system or process shall comply with the provisions of subpart...

  16. Improvements in or relating to charge coupled devices

    International Nuclear Information System (INIS)

    Shannon, J.M.

    1980-01-01

    This invention relates to charge coupled devices for converting an electromagnetic radiation pattern in a certain wavelength range, particularly but not exclusively an infrared radiation pattern, into electrical signals. A semiconductor layer within this device can be of n-type silicon with a deep level impurity concentration present as proton bombardment induced defects in the crystal lattice or as an ion implanted concentration. (UK)

  17. A permutation test to analyse systematic bias and random measurement errors of medical devices via boosting location and scale models.

    Science.gov (United States)

    Mayr, Andreas; Schmid, Matthias; Pfahlberg, Annette; Uter, Wolfgang; Gefeller, Olaf

    2017-06-01

    Measurement errors of medico-technical devices can be separated into systematic bias and random error. We propose a new method to address both simultaneously via generalized additive models for location, scale and shape (GAMLSS) in combination with permutation tests. More precisely, we extend a recently proposed boosting algorithm for GAMLSS to provide a test procedure to analyse potential device effects on the measurements. We carried out a large-scale simulation study to provide empirical evidence that our method is able to identify possible sources of systematic bias as well as random error under different conditions. Finally, we apply our approach to compare measurements of skin pigmentation from two different devices in an epidemiological study.

  18. Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination.

    Science.gov (United States)

    Branch, T P; Stinton, S K; Siebold, R; Freedberg, H I; Jacobs, C A; Hutton, W C

    2017-08-01

    The purpose of this study was to collect knee laxity data using a robotic testing device. The data collected were then compared to the results obtained from manual clinical examination. Two human cadavers were studied. A medial collateral ligament (MCL) tear was simulated in the left knee of cadaver 1, and a posterolateral corner (PLC) injury was simulated in the right knee of cadaver 2. Contralateral knees were left intact. Five blinded examiners carried out manual clinical examination on the knees. Laxity grades and a diagnosis were recorded. Using a robotic knee device which can measure knee laxity in three planes of motion: anterior-posterior, internal-external tibia rotation, and varus-valgus, quantitative data were obtained to document tibial motion relative to the femur. One of the five examiners correctly diagnosed the MCL injury. Robotic testing showed a 1.7° larger valgus angle, 3° greater tibial internal rotation, and lower endpoint stiffness (11.1 vs. 24.6 Nm/°) in the MCL-injured knee during varus-valgus testing when compared to the intact knee and 4.9 mm greater medial tibial translation during rotational testing. Two of the five examiners correctly diagnosed the PLC injury, while the other examiners diagnosed an MCL tear. The PLC-injured knee demonstrated 4.1 mm more lateral tibial translation and 2.2 mm more posterior tibial translation during varus-valgus testing when compared to the intact knee. The robotic testing device was able to provide objective numerical data that reflected differences between the injured knees and the uninjured knees in both cadavers. The examiners that performed the manual clinical examination on the cadaver knees proved to be poor at diagnosing the injuries. Robotic testing could act as an adjunct to the manual clinical examination by supplying numbers that could improve diagnosis of knee injury. Level II.

  19. Appearance test device

    International Nuclear Information System (INIS)

    Watanabe, Tadao.

    1995-01-01

    The device of the present invention photographs glass solidification products of high level radioactive wastes by a camera to inspect the state for the surface of the glass solidification products. Namely, illumination light is irradiated to the surface of a material to be tested containing radioactive substances to photograph the surface to be tested and the photographed images are displayed. A photographing unit enhousing an illumination light source and the camera for photographing the surface to be detected is movable in the longitudinal direction of the object to be detected. A first reflector is disposed for reflecting the illumination light from the light source in a horizontal direction intersecting the longitudinal direction described above and reflecting the reflection light from the object to be tested to the camera. A second reflector is disposed to a position opposing to the end face of the object to be detected for entering the illumination light from the first reflector to the end face of the object to be tested and reflecting the reflection light from the end face of the object to be detected to the first reflector. In a device thus composed, the upper and lower end faces of the object to be tested can be illuminated and photographed without facing the photographing unit to the object to be inspected. (I.S.)

  20. 40 CFR 63.1034 - Closed vent systems and control devices; or emissions routed to a fuel gas system or process...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Closed vent systems and control devices; or emissions routed to a fuel gas system or process standards. 63.1034 Section 63.1034 Protection... routed to a fuel gas system or process standards. (a) Compliance schedule. The owner or operator shall...

  1. 49 CFR 655.49 - Refusal to submit to a drug or alcohol test.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Refusal to submit to a drug or alcohol test. 655... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PREVENTION OF ALCOHOL MISUSE AND PROHIBITED DRUG USE IN TRANSIT OPERATIONS Types of Testing § 655.49 Refusal to submit to a drug or alcohol test. (a) Each...

  2. Prostate specific antigen testing policy worldwide varies greatly and seems not to be in accordance with guidelines: a systematic review

    Directory of Open Access Journals (Sweden)

    Van der Meer Saskia

    2012-10-01

    Full Text Available Abstract Background Prostate specific antigen (PSA testing is widely used, but guidelines on follow-up are unclear. Methods We performed a systematic review of the literature to determine follow-up policy after PSA testing by general practitioners (GPs and non-urologic hospitalists, the use of a cut-off value for this policy, the reasons for repeating a PSA test after an initial normal result, the existence of a general cut-off value below which a PSA result is considered normal, and the time frame for repeating a test. Data sources. MEDLINE, Embase, PsychInfo and the Cochrane library from January 1950 until May 2011. Study eligibility criteria. Studies describing follow-up policy by GPs or non-urologic hospitalists after a primary PSA test, excluding urologists and patients with prostate cancer. Studies written in Dutch, English, French, German, Italian or Spanish were included. Excluded were studies describing follow-up policy by urologists and follow-up of patients with prostate cancer. The quality of each study was structurally assessed. Results Fifteen articles met the inclusion criteria. Three studies were of high quality. Follow-up differed greatly both after a normal and an abnormal PSA test result. Only one study described the reasons for not performing follow-up after an abnormal PSA result. Conclusions Based on the available literature, we cannot adequately assess physicians’ follow-up policy after a primary PSA test. Follow-up after a normal or raised PSA test by GPs and non-urologic hospitalists seems to a large extent not in accordance with the guidelines.

  3. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  4. Qualification testing facility for type A, B and C packages to be used for transport and storage of radioactive materials

    International Nuclear Information System (INIS)

    Vieru, G.; Nistor, V.; Vasile, A.; Cojocaru, V.

    2009-01-01

    In accordance with the Economic Commission for Europe-Committee on inland transport (ADR- European Agreement-concerning the international carriage of dangerous goods by road, 2007 Edition) the Safety and Security of the dangerous goods class No. 7 - Radioactive Materials during transport in all different modes - by road, by rail, by sea, by inland rivers or by air - have to be ensured at a very high level. The radioactive materials (RAM) packaging have to comply to all transport conditions, routine or in accident conditions, possibly to occur during transportation operations. It is well known that the safety in the transport of RAM is dependent on packaging appropriate for the contents being shipped rather than on operational and/or administrative actions required for the package. The quality of these packages - type A, B or C has to be proved by performing qualification tests in accordance with the Romanian nuclear regulation conditions provided by CNCAN Order no. 357/22.12.2005- N orms for a Safe Transport of Radioactive Material , the IAEA Vienna Recommendation (1, 2) stipulated in the Safety standard TS-R-1- Regulation for the Safe Transport of Radioactive Material, 2005 Edition, and other applicable international recommendations. The paper will describe the components of the designed testing facilities, and the qualification testing to be performed for all type A, B and C packages subjected to the testing Quality assurance and quality controls measures taken in order to meet technical specification provided by the design are also presented and commented. The paper concludes that the new Romanian Testing Facilities for RAM packages will comply with the national safe standards as well as with the IAEA applicable recommendation provided by the TS-R-1 safety standard. (authors)

  5. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    Science.gov (United States)

    Olsson, Anders; Hellsing, Maja S.; Rennie, Adrian R.

    2017-05-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented.

  6. New possibilities using additive manufacturing with materials that are difficult to process and with complex structures

    International Nuclear Information System (INIS)

    Olsson, Anders; Hellsing, Maja S; Rennie, Adrian R

    2017-01-01

    Additive manufacturing (or 3D printing) opens the possibility of creating new designs and manufacturing objects with new materials rapidly and economically. Particularly for use with polymers and polymer composites, simple printers can make high quality products, and these can be produced easily in offices, schools and in workshops and laboratories. This technology has opened a route for many to test ideas or to make custom devices. It is possible to easily manufacture complex geometries that would be difficult or even impossible to create with traditional methods. Naturally this technology has attracted attention in many fields that include the production of medical devices and prostheses, mechanical engineering as well as basic sciences. Materials that are highly problematic to machine can be used. We illustrate process developments with an account of the production of printer parts to cope with polymer fillers that are hard and abrasive; new nozzles with ruby inserts designed for such materials are durable and can be used to print boron carbide composites. As with other materials, complex parts can be printed using boron carbide composites with fine structures, such as screw threads and labels to identify materials. General ideas about design for this new era of manufacturing customised parts are presented. (invited comment)

  7. Diamagnetic composite material structure for reducing undesired electromagnetic interference and eddy currents in dielectric wall accelerators and other devices

    Science.gov (United States)

    Caporaso, George J.; Poole, Brian R.; Hawkins, Steven A.

    2015-06-30

    The devices, systems and techniques disclosed here can be used to reduce undesired effects by magnetic field induced eddy currents based on a diamagnetic composite material structure including diamagnetic composite sheets that are separated from one another to provide a high impedance composite material structure. In some implementations, each diamagnetic composite sheet includes patterned conductor layers are separated by a dielectric material and each patterned conductor layer includes voids and conductor areas. The voids in the patterned conductor layers of each diamagnetic composite sheet are arranged to be displaced in position from one patterned conductor layer to an adjacent patterned conductor layer while conductor areas of the patterned conductor layers collectively form a contiguous conductor structure in each diamagnetic composite sheet to prevent penetration by a magnetic field.

  8. A method to calculate flux distribution in reactor systems containing materials with grain structure

    International Nuclear Information System (INIS)

    Stepanek, J.

    1980-01-01

    A method is proposed to compute the neutron flux spatial distribution in slab, spherical or cylindrical systems containing zones with close grain structure of material. Several different types of equally distributed particles embedded in the matrix material are allowed in one or more zones. The multi-energy group structure of the flux is considered. The collision probability method is used to compute the fluxes in the grains and in an ''effective'' part of the matrix material. Then the overall structure of the flux distribution in the zones with homogenized materials is determined using the DPN ''surface flux'' method. Both computations are connected using the balance equation during the outer iterations. The proposed method is written in the code SURCU-DH. Two testcases are computed and discussed. One testcase is the computation of the eigenvalue in simplified slab geometry of an LWR container of one zone with boral grains equally distributed in an aluminium matrix. The second is the computation of the eigenvalue in spherical geometry of the HTR pebble-bed cell with spherical particles embedded in a graphite matrix. The results are compared to those obtained by repeated use of the WIMS Code. (author)

  9. Investigation of structural and electrical properties on substrate material for high frequency metal-oxide-semiconductor (MOS) devices

    Science.gov (United States)

    Kumar, M.; Yang, Sung-Hyun; Janardhan Reddy, K.; JagadeeshChandra, S. V.

    2017-04-01

    Hafnium oxide (HfO2) thin films were grown on cleaned P-type Ge and Si substrates by using atomic layer deposition technique (ALD) with thickness of 8 nm. The composition analysis of as-deposited and annealed HfO2 films was characterized by XPS, further electrical measurements; we fabricated the metal-oxide-semiconductor (MOS) devices with Pt electrode. Post deposition annealing in O2 ambient at 500 °C for 30 min was carried out on both Ge and Si devices. Capacitance-voltage (C-V) and conductance-voltage (G-V) curves measured at 1 MHz. The Ge MOS devices showed improved interfacial and electrical properties, high dielectric constant (~19), smaller EOT value (0.7 nm), and smaller D it value as Si MOS devices. The C-V curves shown significantly high accumulation capacitance values from Ge devices, relatively when compare with the Si MOS devices before and after annealing. It could be due to the presence of very thin interfacial layer at HfO2/Ge stacks than HfO2/Si stacks conformed by the HRTEM images. Besides, from current-voltage (I-V) curves of the Ge devices exhibited similar leakage current as Si devices. Therefore, Ge might be a reliable substrate material for structural, electrical and high frequency applications.

  10. A systematic review protocol investigating tests for physical or physiological qualities and game-specific skills commonly used in rugby and related sports and their psychometric properties.

    Science.gov (United States)

    Chiwaridzo, Matthew; Ferguson, Gillian D; Smits-Engelsman, Bouwien C M

    2016-07-27

    Scientific focus on rugby has increased over the recent years, providing evidence of the physical or physiological characteristics and game-specific skills needed in the sport. Identification of tests commonly used to measure these characteristics is important for the development of test batteries, which in turn may be used for talent identification and injury prevention programmes. Although there are a number of tests available in the literature to measure physical or physiological variables and game-specific skills, there is limited information available on the psychometric properties of the tests. Therefore, the purpose of this study is to systematically review the literature for tests commonly used in rugby to measure physical or physiological characteristics and rugby-specific skills, documenting evidence of reliability and validity of the identified tests. A systematic review will be conducted. Electronic databases such as Scopus, MEDLINE via EBSCOhost and PubMed, Academic Search Premier, CINAHL and Africa-Wide Information via EBSCOhost will be searched for original research articles published in English from January 1, 1995, to December 31, 2015, using a pre-defined search strategy. The principal investigator will select potentially relevant articles from titles and abstracts. To minimise bias, full text of titles and abstracts deemed potentially relevant will be retrieved and reviewed by two independent reviewers based on the inclusion criteria. Data extraction will be conducted by the principal investigator and verified by two independent reviewers. The Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) checklist will be used to assess the methodological quality of the selected studies. Choosing an appropriate test to be included in the screening test battery should be based on sound psychometric properties of the test available. This systematic review will provide an overview of the tests commonly used in rugby union

  11. Structural transformation in monolayer materials: a 2D to 1D transformation.

    Science.gov (United States)

    Momeni, Kasra; Attariani, Hamed; LeSar, Richard A

    2016-07-20

    Reducing the dimensions of materials to atomic scales results in a large portion of atoms being at or near the surface, with lower bond order and thus higher energy. At such scales, reduction of the surface energy and surface stresses can be the driving force for the formation of new low-dimensional nanostructures, and may be exhibited through surface relaxation and/or surface reconstruction, which can be utilized for tailoring the properties and phase transformation of nanomaterials without applying any external load. Here we used atomistic simulations and revealed an intrinsic structural transformation in monolayer materials that lowers their dimension from 2D nanosheets to 1D nanostructures to reduce their surface and elastic energies. Experimental evidence of such transformation has also been revealed for one of the predicted nanostructures. Such transformation plays an important role in bi-/multi-layer 2D materials.

  12. A novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose.

    Science.gov (United States)

    Mihranyan, Albert; Nyholm, Leif; Bennett, Alfonso E Garcia; Strømme, Maria

    2008-10-02

    We present a novel conducting polypyrrole-based composite material, obtained by polymerization of pyrrole in the presence of iron(III) chloride on a cellulose substrate derived from the environmentally polluting Cladophora sp. algae. The material, which was doped with chloride ions, was molded into paper sheets and characterized using scanning and transmission electron microscopy, N 2 gas adsorption analysis, cyclic voltammetry, chronoamperometry and conductivity measurements at varying relative humidities. The specific surface area of the composite was found to be 57 m (2)/g and the fibrous structure of the Cladophora cellulose remained intact even after a 50 nm thick layer of polypyrrole had been coated on the cellulose fibers. The composite could be repeatedly used for electrochemically controlled extraction and desorption of chloride and an ion exchanging capacity of 370 C per g of composite was obtained as a result of the high surface area of the cellulose substrate. The influence of the oxidation and reduction potentials on the chloride ion exchange capacity and the nucleation of delocalized positive charges, forming conductive paths in the polypyrrole film, was also investigated. The creation of conductive paths during oxidation followed an effective medium rather than a percolative behavior, indicating that some conduction paths survive the polymer reduction steps. The present high surface area material should be well-suited for use in, e.g., electrochemically controlled ion exchange or separation devices, as well as sensors based on the fact that the material is compact, light, mechanically stable, and moldable into paper sheets.

  13. Nanowire structures and electrical devices

    Science.gov (United States)

    Bezryadin, Alexey; Remeika, Mikas

    2010-07-06

    The present invention provides structures and devices comprising conductive segments and conductance constricting segments of a nanowire, such as metallic, superconducting or semiconducting nanowire. The present invention provides structures and devices comprising conductive nanowire segments and conductance constricting nanowire segments having accurately selected phases including crystalline and amorphous states, compositions, morphologies and physical dimensions, including selected cross sectional dimensions, shapes and lengths along the length of a nanowire. Further, the present invention provides methods of processing nanowires capable of patterning a nanowire to form a plurality of conductance constricting segments having selected positions along the length of a nanowire, including conductance constricting segments having reduced cross sectional dimensions and conductance constricting segments comprising one or more insulating materials such as metal oxides.

  14. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Masaru, Takeuchi; Nakajima, Masahiro; Huang, Qiang; Fukuda, Toshio

    2014-01-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans. (paper)

  15. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-03-01

    This report discusses design and operation of a single-nozzle test combustor for studying lean, premixed combustion oscillations from gas turbine fuel nozzles. It was used to study oscillations from a prototype fuel nozzle that produced oscillations during testing in a commercial engine. Similar, but not identical, oscillations were recorded in the test device. Basic requirements of the device design were that the flame geometry be maintained and acoustic losses be minimized; this was achieved by using a Helmholtz resonator as the combustor geometry. Surprisingly, the combustor oscillated strongly at several frequencies, without modification of the resonator. Brief survey of operating conditions suggests that it may be helpful to characterize oscillating behavior in terms of reference velocity and inlet air temperature with the rig backpressure playing a smaller role. The preliminary results do not guarantee that the single-nozzle test device will reproduce arbitrary oscillations that occur on a complete engine test. Nozzle/nozzle interactions may complicate the response, and oscillations controlled by acoustic velocities transverse to the nozzle axis may not be reproduced in a test device that relies on a bulk Helmholtz mode. Nevertheless, some oscillations can be reproduced, and the single-nozzle test device allows both active and passive control strategies to be tested relatively inexpensively.

  16. Study and selection of structured packing material: metallic, polymeric or ceramic to operate a column of absorption polluting gases coming from brick kilns efficiently; Estudio y seleccion de material empaque estructurado: metalico, polimerico o ceramico, para operar eficientemente una columna de absorcion de gases contaminantes provenientes de hornos tabiqueros

    Energy Technology Data Exchange (ETDEWEB)

    Salazar P, A.

    2012-07-01

    In this research three structured packing materials were characterized: a metallic, polymeric and ceramic. The study of the physical properties of structured packing materials, and their behavior within the absorption column allowed to suggest a gas-liquid contactor material with higher mechanical and chemical resistance, which is more efficient for the treatment of sour gases from brick kilns. To study the mechanical properties (hardness, tension and elastic modulus) were used procedures of the American Society for Testing Materials, as well as resistance to corrosion. The geometric characteristics, the density, the melting temperature and the weight were tested with procedures of the measuring equipment. The structure was evaluated by X-ray diffraction, morphology was observed by scanning electron microscopy coupled to a sound of dispersive energy of X-ray, to quantify elemental chemical composition. The interaction of gas-liquid contactors materials in presence of CO{sub 2}, was evaluated in three absorption columns built of Pyrex glass, with a diameter of 0.1016 m, of 1.5 m in height, 0.0081m{sup 2} cross-sectional area, packed with every kind of material: metallic, polymeric and ceramic, processing a gas flow of 20m{sup 3} / h at 9% CO{sub 2}, in air and a liquid flow to 30% of Mea 5 L/min. The results of the properties studied were by the metallic material: more density, higher roughness, the greater tensile strength, greater resistance to corrosion in the presence of an aqueous solution of monoethanolamine (Mea) to 30% by weight, improvement more efficient absorption of CO{sub 2}, and higher modulus of elasticity. The polymeric material was characterized to have lower hardness, lower roughness, lower density, lower melting temperature, greater resistance to corrosion in the presence of 1 N H{sub 2}SO{sub 4} aqueous solution, and allowed an absorption efficiency of CO{sub 2}, 2% lower than that presented by the material metallic. The ceramic material found to

  17. Concept-Development of a Structure Supported Membrane for Deployable Space Applications - From Nature to Manufacture and Testing

    Science.gov (United States)

    Zander, Martin; Belvin, W. K.

    2012-01-01

    Current space applications of membrane structures include large area solar power arrays, solar sails, antennas, and numerous other large aperture devices like the solar shades of the new James Webb Space Telescope. These expandable structural systems, deployed in-orbit to achieve the desired geometry, are used to collect, reflect and/or transmit electromagnetic radiation. This work, a feasibility study supporting a diploma thesis, describes the systematic process for developing a biologically inspired concept for a structure supported (integrated) membrane, that features a rip stop principle, makes self-deployment possible and is part of an ultra-light weight space application. Novel manufacturing of membrane prototypes and test results are presented for the rip-stop concepts. Test data showed that the new membrane concept has a higher tear resistance than neat film of equivalent mass.

  18. Standard Test Method for Water Absorption of Core Materials for Structural Sandwich Constructions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This test method covers the determination of the relative amount of water absorption by various types of structural core materials when immersed or in a high relative humidity environment. This test method is intended to apply to only structural core materials; honeycomb, foam, and balsa wood. 1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given may be approximate. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  19. BIG - a binary generator for testing digital devices

    International Nuclear Information System (INIS)

    Annuziata, M.; Sechi, G.

    1988-01-01

    This paper presents an unusual approach to the testing of digital devices. In order to test real time systems, we have designed, built, and used a digital generator able to send 2047 quadruples of 12-bit words, with a frequency range of up to 0.7 MHz. (orig.)

  20. Building a resistance to ignition testing device for sunglasses and analysing data: a continuing study for sunglasses standards.

    Science.gov (United States)

    Magri, Renan; Masili, Mauro; Duarte, Fernanda Oliveira; Ventura, Liliane

    2017-09-21

    % were made of polyamide (nylon 12); 10% were made of polyamide (nylon 11, mamona oil); 5% were made of cellulose acetate; 15% were made of ABS and 20% were made of polycarbonate. Out of the 410 tested lenses, 80% were polycarbonate; 2% were polymethyl methacrylate (PMMA); 5% CR-39 (with polarizing filter inside); 12.8% polyamide; 0.2% glass. For all the 410 tested spectacles frames and lenses, none burst into flames or continued to melt at the end of the procedure, being in compliance with ISO 12312-1:2013. The evidences show that all the tested thermoplastic and thermosetting materials are exceptionally resistant to ignition and all samples assessed comply with the resistance to ignition test. The analysis of the sunglasses made herein assures that most of sunglasses currently available to population are made of safe material.

  1. Phase-change materials for non-volatile memory devices: from technological challenges to materials science issues

    Science.gov (United States)

    Noé, Pierre; Vallée, Christophe; Hippert, Françoise; Fillot, Frédéric; Raty, Jean-Yves

    2018-01-01

    Chalcogenide phase-change materials (PCMs), such as Ge-Sb-Te alloys, have shown outstanding properties, which has led to their successful use for a long time in optical memories (DVDs) and, recently, in non-volatile resistive memories. The latter, known as PCM memories or phase-change random access memories (PCRAMs), are the most promising candidates among emerging non-volatile memory (NVM) technologies to replace the current FLASH memories at CMOS technology nodes under 28 nm. Chalcogenide PCMs exhibit fast and reversible phase transformations between crystalline and amorphous states with very different transport and optical properties leading to a unique set of features for PCRAMs, such as fast programming, good cyclability, high scalability, multi-level storage capability, and good data retention. Nevertheless, PCM memory technology has to overcome several challenges to definitively invade the NVM market. In this review paper, we examine the main technological challenges that PCM memory technology must face and we illustrate how new memory architecture, innovative deposition methods, and PCM composition optimization can contribute to further improvements of this technology. In particular, we examine how to lower the programming currents and increase data retention. Scaling down PCM memories for large-scale integration means the incorporation of the PCM into more and more confined structures and raises materials science issues in order to understand interface and size effects on crystallization. Other materials science issues are related to the stability and ageing of the amorphous state of PCMs. The stability of the amorphous phase, which determines data retention in memory devices, can be increased by doping the PCM. Ageing of the amorphous phase leads to a large increase of the resistivity with time (resistance drift), which has up to now hindered the development of ultra-high multi-level storage devices. A review of the current understanding of all these

  2. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    Directory of Open Access Journals (Sweden)

    Paula Jimena Ramos Giraldo

    2017-04-01

    Full Text Available Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  3. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees.

    Science.gov (United States)

    Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-04-06

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.

  4. Improvements in or relating to a fluidizing process and apparatus for treating comminuted solid materials

    Energy Technology Data Exchange (ETDEWEB)

    1949-02-15

    A fluidizing process of treating comminuted solid materials cyclically with different gaseous materials in different treatment zones, which comprises fluidizing comminuted solid material in contiguous treatment zones with different gaseous materials, and establishing unequal fluid-static heads in said zones to effect cyclic flow of said solid material through said zones which are in communication adjacent their respective top and bottom portions and permit the overflow of said solid material from one of said zones to another.

  5. Development of a novel device to trap heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    Science.gov (United States)

    Torigoe, Hidetaka; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Kozasa, Tetsuo

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel device to trap each of Hg(II) and Ag(I) cation. The device is composed of 5'-biotinylated T-rich or C-rich DNA oligonucleotides, BIO-T20: 5'-Bio-T(20)-3' or BIO-C20: 5'-Bio-C(20)-3' (Bio is a biotin), immobilized on streptavidin-coated polystylene beads. When the BIO-T20-immobilized beads were added to a solution containing Hg(II) cation, and the beads trapping Hg(II) cation were collected by centrifugation, almost all of Hg(II) cation were removed from the solution. Also, when the BIO-C20-immobilized beads were added to a solution containing Ag(I) cation, and the beads trapping Ag(I) cation were collected by centrifugation, almost all of Ag(I) cation were removed from the solution. We conclude that, using the novel device developed in this study, Hg(II) and Ag(I) cation can be effectively removed from the solution.

  6. Device for separating, purifying and recovering nuclear fuel material, impurities and materials from impurity-containing nuclear fuel materials or nuclear fuel containing material

    International Nuclear Information System (INIS)

    Sato, Ryuichi; Kamei, Yoshinobu; Watanabe, Tsuneo; Tanaka, Shigeru.

    1988-01-01

    Purpose: To separate, purify and recover nuclear fuel materials, impurities and materials with no formation of liquid wastes. Constitution: Oxidizing atmosphere gases are introduced from both ends of a heating furnace. Vessels containing impurity-containing nuclear fuel substances or nuclear fuel substance-containing material are continuously disposed movably from one end to the other of the heating furnace. Then, impurity oxides or material oxides selectively evaporated from the impurity-containing nuclear fuel substances or nuclear fuel substance-containing materials are entrained in the oxidizing atmosphere gas and the gases are led out externally from a discharge port opened at the intermediate portion of the heating furnace, filters are disposed to the exit to solidify and capture the nuclear fuel substances and traps are disposed behind the filters to solidify and capture the oxides by spontaneous air cooling or water cooling. (Sekiya, K.)

  7. Structural Break Tests Robust to Regression Misspecification

    Directory of Open Access Journals (Sweden)

    Alaa Abi Morshed

    2018-05-01

    Full Text Available Structural break tests for regression models are sensitive to model misspecification. We show—analytically and through simulations—that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the conditional mean dynamics are misspecified. We also show that the sup Wald test for breaks in the unconditional mean and variance does not have the same size distortions, yet benefits from similar power to its conditional counterpart in correctly specified models. Hence, we propose using it as an alternative and complementary test for breaks. We apply the unconditional and conditional mean and variance tests to three US series: unemployment, industrial production growth and interest rates. Both the unconditional and the conditional mean tests detect a break in the mean of interest rates. However, for the other two series, the unconditional mean test does not detect a break, while the conditional mean tests based on dynamic regression models occasionally detect a break, with the implied break-point estimator varying across different dynamic specifications. For all series, the unconditional variance does not detect a break while most tests for the conditional variance do detect a break which also varies across specifications.

  8. A test device for premixed gas turbine combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Richards, G.A.; Gemmen, R.S.; Yip, M.J.

    1996-09-01

    This paper discusses the design and operation of a test combustor suitable for studying combustion oscillations caused by a commercial-scale gas turbine fuel nozzle. Aside from the need to be conducted at elevated pressures and temperatures, it is desirable for the experimental device to be flexible in its geometry so as to provide an acoustic environment representative of the commercial device. The combustor design, capabilities, and relevant instrumentation for such a device are presented, along with initial operating experience and preliminary data that suggests the importance of nozzle reference velocity and air temperature.

  9. FUNDAMENTALS OF STRUCTURAL TYPOLOGY DEVICE DESIGN WITH A GAS BEARING LAYER

    Directory of Open Access Journals (Sweden)

    I. A. Аvtsinоv

    2015-01-01

    Full Text Available We describe the typical stages of a structural typology of devices allowing them to design quality in the automatic mode on the known parameters of products (parts and the required processing operations with them. In the first stage classification it was organized as a piece of specific products and devices for the manipulation of the latter. Specifics items described their physical – mechanical properties, geometry and their application. The most frequently described specific products are used in pharmaceutical, perfume, food, microelectronics, electrical engineering, electronics. The main elements of the proposed device is a carrier working surface over which a thin layer of gas is created. Depending on the position (horizontal or vertical of the form of its movement (rotation, rotational – translational or is stationary, and the configuration of the carrier operating the surface implement various manufacturing operations (targeting, positioning, shaping, classification, transport, heat treatment, weight control, assembly, culling, and others. The second stage was to mathematically describe the relationship of the specificity of piece goods, with design features of devices supporting the work surface and sold them operations. For this purpose, the device has been used in discrete mathematics, with which you can produce a description of all types of devices, and then make a conclusion such as the work surface meets the specified requirements. The apparent advantage of using predicate logic to this problem is fairly simple implementation of the algorithm of structural typology, which can be expressed using a declarative programming language. In the third phase, work is underway to create the necessary algorithmic language program "Prolog" and presented the structure of the imperative and declarative implementation of the algorithm.

  10. A qualification test for relay contacts as isolation devices in nuclear power plants

    International Nuclear Information System (INIS)

    Beck, C.E.; Behera, A.K.; Polanco, S.; Terry, B.

    1995-01-01

    A methodology is introduced for testing the integrity of relay contacts as isolation devices in Class IE circuits. A design activity that installed a new relay established the need for a new type of qualification test. This paper descries the process of establishing the test methodology, the development of the test plan, and the results of testing. It also describes the limitations of applying the results of any specific test to actual field installations, and offers other potential uses of the methodology

  11. Devices for SRF material characterization

    International Nuclear Information System (INIS)

    Goudket, Philippe; Xiao, B.; Junginger, T.; Helmholtz-Zentrum Berlin

    2016-01-01

    The surface resistance Rs of superconducting materials can be obtained by measuring the quality factor of an elliptical cavity excited in a transverse magnetic mode (TM010). The value obtained has however to be taken as averaged over the whole surface. A more convenient way to obtain Rs, especially of materials which are not yet technologically ready for cavity production, is to measure small samples instead. These can be easily man ufactured at low cost, duplicated and placed in film deposition and surface analytical tools. A commonly used design for a device to measure Rs consists of a cylindrical cavity excited in a transverse electric (TE110) mode with the sample under test serving as one replaceable endplate. Such a cavity has two drawbacks. For reasonably small samples the resonant frequency will be larger than frequencies of interest concerning SRF application and it requires a reference sample of known Rs. In this article we review several devices which have been designed to overcome these limitations, reaching sub - nΩ resolution in some cases. Some of these devices also comprise a parameter space in frequency and temperature which is inaccessible to standard cavity tests, making them ideal tools to test theoretical surface resistance models.

  12. Assessment of martensitic steels as structural materials in magnetic fusion devices

    International Nuclear Information System (INIS)

    Rawls, J.M.; Chen, W.Y.K.; Cheng, E.T.; Dalessandro, J.A.; Miller, P.H.; Rosenwasser, S.N.; Thompson, L.D.

    1980-01-01

    This manuscript documents the results of preliminary experiments and analyses to assess the feasibility of incorporating ferromagnetic martensitic steels in fusion reactor designs and to evaluate the possible advantages of this class of material with respect to first wall/blanket lifetime. The general class of alloys under consideration are ferritic steels containing from about 9 to 13 percent Cr with some small additions of various strengthening elements such as Mo. These steels are conventionally used in the normalized and tempered condition for high temperature applications and can compete favorably with austenitic alloys up to about 600 0 C. Although the heat treatment can result in either a tempered martensite or bainite structure, depending on the alloy and thermal treatment parameters, this general class of materials will be referred to as martensitic stainless steels for simplicity

  13. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    International Nuclear Information System (INIS)

    Van de Wiel, H J; Galagan, Y; Van Lammeren, T J; De Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Groen, W A; Hui, D

    2013-01-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom. (paper)

  14. A Methodological Report: Adapting the 505 Change-of-Direction Speed Test Specific to American Football.

    Science.gov (United States)

    Lockie, Robert G; Farzad, Jalilvand; Orjalo, Ashley J; Giuliano, Dominic V; Moreno, Matthew R; Wright, Glenn A

    2017-02-01

    Lockie, RG, Jalilvand, F, Orjalo, AJ, Giuliano, DV, Moreno, MR, and Wright, GA. A methodological report: Adapting the 505 change-of-direction speed test specific to American football. J Strength Cond Res 31(2): 539-547, 2017-The 505 involves a 10-m sprint past a timing gate, followed by a 180° change-of-direction (COD) performed over 5 m. This methodological report investigated an adapted 505 (A505) designed to be football-specific by changing the distances to 10 and 5 yd. Twenty-five high school football players (6 linemen [LM]; 8 quarterbacks, running backs, and linebackers [QB/RB/LB]; 11 receivers and defensive backs [R/DB]) completed the A505 and 40-yd sprint. The difference between A505 and 0 to 10-yd time determined the COD deficit for each leg. In a follow-up session, 10 subjects completed the A505 again and 10 subjects completed the 505. Reliability was analyzed by t-tests to determine between-session differences, typical error (TE), and coefficient of variation. Test usefulness was examined via TE and smallest worthwhile change (SWC) differences. Pearson's correlations calculated relationships between the A505 and 505, and A505 and COD deficit with the 40-yd sprint. A 1-way analysis of variance (p ≤ 0.05) derived between-position differences in the A505 and COD deficit. There were no between-session differences for the A505 (p = 0.45-0.76; intraclass correlation coefficient = 0.84-0.95; TE = 2.03-4.13%). Additionally, the A505 was capable of detecting moderate performance changes (SWC0.5 > TE). The A505 correlated with the 505 and 40-yard sprint (r = 0.58-0.92), suggesting the modified version assessed similar qualities. Receivers and defensive backs were faster than LM in the A505 for both legs, and right-leg COD deficit. Quarterbacks, running backs, and linebackers were faster than LM in the right-leg A505. The A505 is reliable, can detect moderate performance changes, and can discriminate between football position groups.

  15. Informed consent in direct-to-consumer personal genome testing: the outline of a model between specific and generic consent.

    Science.gov (United States)

    Bunnik, Eline M; Janssens, A Cecile J W; Schermer, Maartje H N

    2014-09-01

    Broad genome-wide testing is increasingly finding its way to the public through the online direct-to-consumer marketing of so-called personal genome tests. Personal genome tests estimate genetic susceptibilities to multiple diseases and other phenotypic traits simultaneously. Providers commonly make use of Terms of Service agreements rather than informed consent procedures. However, to protect consumers from the potential physical, psychological and social harms associated with personal genome testing and to promote autonomous decision-making with regard to the testing offer, we argue that current practices of information provision are insufficient and that there is a place--and a need--for informed consent in personal genome testing, also when it is offered commercially. The increasing quantity, complexity and diversity of most testing offers, however, pose challenges for information provision and informed consent. Both specific and generic models for informed consent fail to meet its moral aims when applied to personal genome testing. Consumers should be enabled to know the limitations, risks and implications of personal genome testing and should be given control over the genetic information they do or do not wish to obtain. We present the outline of a new model for informed consent which can meet both the norm of providing sufficient information and the norm of providing understandable information. The model can be used for personal genome testing, but will also be applicable to other, future forms of broad genetic testing or screening in commercial and clinical settings. © 2012 John Wiley & Sons Ltd.

  16. Inorganic Photovoltaics Materials and Devices: Past, Present, and Future

    Science.gov (United States)

    Hepp, Aloysius F.; Bailey, Sheila G.; Rafaelle, Ryne P.

    2005-01-01

    This report describes recent aspects of advanced inorganic materials for photovoltaics or solar cell applications. Specific materials examined will be high-efficiency silicon, gallium arsenide and related materials, and thin-film materials, particularly amorphous silicon and (polycrystalline) copper indium selenide. Some of the advanced concepts discussed include multi-junction III-V (and thin-film) devices, utilization of nanotechnology, specifically quantum dots, low-temperature chemical processing, polymer substrates for lightweight and low-cost solar arrays, concentrator cells, and integrated power devices. While many of these technologies will eventually be used for utility and consumer applications, their genesis can be traced back to challenging problems related to power generation for aerospace and defense. Because this overview of inorganic materials is included in a monogram focused on organic photovoltaics, fundamental issues and metrics common to all solar cell devices (and arrays) will be addressed.

  17. A Brillouin smart FRP material and a strain data post processing software for structural health monitoring through laboratory testing and field application on a highway bridge

    Science.gov (United States)

    Bastianini, Filippo; Matta, Fabio; Galati, Nestore; Nanni, Antonio

    2005-05-01

    Strain and temperature sensing obtained through frequency shift evaluation of Brillouin scattered light is a technology that seems extremely promising for Structural Health Monitoring (SHM). Due to the intrinsic distributed sensing capability, Brillouin can measure the deformation of any individual segment of huge lengths of inexpensive single-mode fiber. In addition, Brillouin retains other typical advantages of Fiber Optic Sensors (FOS), such as harsh environment durability and interference rejection. Despite these advantages, the diffusion of Brillouin for SHM is constrained by different factors, such as the high equipment cost, the commercial unavailability of specific SHM oriented fiber products and even some prejudices on the required sensitivity performances. In the present work, a complete SHM pilot application was developed, installed and successfully operated during a diagnostic load test on the High Performance Steel (HPS) bridge A6358 located at the Lake of the Ozarks (Miller County, MO, USA). Four out of five girders were extensively instrumented with a "smart" Glass Fiber Reinforced Polymer (GFRP) tape having embedded fibers for strain sensing and thermal compensation. Data collected during a diagnostic load test were elaborated through a specific post-processing software, and the strain profiles retrieved were compared to traditional strain gauges and theoretical results based on the AASHTO LRFD Bridge Design Specifications for structural assessment purposes. The excellent results obtained confirm the effectiveness of Brillouin SHM systems for the monitoring of real applications.

  18. Consumer mechatronics: a challenging playground for transducing materials and devices

    Science.gov (United States)

    Skjolstrup, Carl E.; Vonsild, Asbjorn L.

    2003-03-01

    The authors of this article are characterised by having a background within robotics technology, and have within the last 2-3 years moved into a material & process dominated environment. The authors are among other things responsible within LEGO Company; an internationally known toy developer and producer, for identification, prioritisation and procurement of new technological opportunities within materials, processes and devices providing new functionalities for the LEGO product.

  19. Device for continuous analysis of a stream of material

    International Nuclear Information System (INIS)

    Krampe, G.

    1981-01-01

    A radioactive radiation source and a radioactive detector are associated, as a unit, with equipment for conveying coal or other material in a continuous stream. One part of the conveying path or the whole path lies in the irradiation zone of the source, and the detector receives the radiation reflected by the material. The radiation source and the detector are carried by impacting means situated on the conveying path in such a way as to deflect the material from a portion of the conveying means travelling in a first direction, on to another portion travelling in a second direction intersecting the first direction. (author)

  20. Approximations to the distribution of a test statistic in covariance structure analysis: A comprehensive study.

    Science.gov (United States)

    Wu, Hao

    2018-05-01

    In structural equation modelling (SEM), a robust adjustment to the test statistic or to its reference distribution is needed when its null distribution deviates from a χ 2 distribution, which usually arises when data do not follow a multivariate normal distribution. Unfortunately, existing studies on this issue typically focus on only a few methods and neglect the majority of alternative methods in statistics. Existing simulation studies typically consider only non-normal distributions of data that either satisfy asymptotic robustness or lead to an asymptotic scaled χ 2 distribution. In this work we conduct a comprehensive study that involves both typical methods in SEM and less well-known methods from the statistics literature. We also propose the use of several novel non-normal data distributions that are qualitatively different from the non-normal distributions widely used in existing studies. We found that several under-studied methods give the best performance under specific conditions, but the Satorra-Bentler method remains the most viable method for most situations. © 2017 The British Psychological Society.

  1. FBR structural material test facility in flowing sodium environment

    International Nuclear Information System (INIS)

    Shanmugasundaram, M.; Kumar, Hemant; Ravi, S.

    2016-01-01

    In Fast Breeder Reactor (FBR), components such as Control and Safety Rod Drive Mechanism (CSRDM), Diverse Safety Rod Drive Mechanism (DSRDM), Transfer arm and primary sodium pumps etc., are experiencing friction and wear between the moving parts in contact with liquid sodium at high temperature. Hence, it is essential to evaluate the friction and wear behaviour to validate the design of components. In addition, the above core structural reactor components such as core cover plate, control plugs etc., undergoes thermal striping which is random thermal cycling induced by flow stream resulting from the mixing of non isothermal jets near that component. This leads to development of surface cracks and assist in crack growth which in turn may lead to failure of the structural component. Further, high temperature components are often subjected to low cycle fatigue due to temperature gradient induced cyclic thermal stresses caused by start-ups, shutdowns and transients. Also steady state operation at elevated temperature introduces creep and the combination of creep and fatigue leads to creep-fatigue interactions. Therefore, resistance to low cycle fatigue, creep and creep-fatigue are important considerations in the design of FBR components. Liquid sodium is used as coolant and hence the study of the above properties in dynamic sodium are equally important. In view of the above, facility for materials testing in sodium (INSOT) has been constructed and in operation for conducting the experiments such as tribology, thermal stripping, low cycle fatigue, creep and creep-fatigue interaction etc. The salient features of the operation and maintenance of creep and fatigue loops of INSOT facility are discussed in detail. (author)

  2. 3D site specific sample preparation and analysis of 3D devices (FinFETs) by atom probe tomography.

    Science.gov (United States)

    Kambham, Ajay Kumar; Kumar, Arul; Gilbert, Matthieu; Vandervorst, Wilfried

    2013-09-01

    With the transition from planar to three-dimensional device architectures such as Fin field-effect-transistors (FinFETs), new metrology approaches are required to meet the needs of semiconductor technology. It is important to characterize the 3D-dopant distributions precisely as their extent, positioning relative to gate edges and absolute concentration determine the device performance in great detail. At present the atom probe has shown its ability to analyze dopant distributions in semiconductor and thin insulating materials with sub-nm 3D-resolution and good dopant sensitivity. However, so far most reports have dealt with planar devices or restricted the measurements to 2D test structures which represent only limited challenges in terms of localization and site specific sample preparation. In this paper we will discuss the methodology to extract the dopant distribution from real 3D-devices such as a 3D-FinFET device, requiring the sample preparation to be carried out at a site specific location with a positioning accuracy ∼50 nm. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Inspection frequency required to monitor measurement, recording, or surveillance devices

    International Nuclear Information System (INIS)

    Jaech, J.L.

    1980-01-01

    A problem encountered recently is identical from a mathematical viewpoint to certain types of problems encountered in nuclear materials safeguards. The general form of the solution to the problem in question is therefore of interest in safeguards applications. The specific problem which prompted the investigation is stated as follows. An automatic recording instrument is used in atmospheric monitoring. It is subject to randomly occurring breakdown. The question is, what should be the time interval between the routine checks to provide a specified probability that the recording instrument is functioning properly for at least a given percentage of the time over a specified interval of time. The stated problem is solved in general terms. An application is then made to the specific problem that prompted the study. Applications to specific safeguards problems are left to the reader. 4 refs

  4. Performance evaluation of a thermoelectric energy harvesting device using various phase change materials

    International Nuclear Information System (INIS)

    Elefsiniotis, A; Becker, T; Kiziroglou, M E; Wright, S W; Toh, T T; Mitcheson, P D; Yeatman, E M; Schmid, U

    2013-01-01

    This paper compares the performance of a group of organic and inorganic phase change materials for a heat storage thermoelectric energy harvesting device. The device consists of thermoelectric generators and a closed container filled with a phase change material. One side of the generators is mounted on the aircraft fuselage and the other to the thermal mass. The group of inorganic and organic phase change materials was tested across two temperature ranges. These ranges are defined as ''positive'' and ''negative'', with the former being a sweep from +35°C to −5°C and the latter being a sweep from +5°C to −35°C. The performance in terms of electrical energy output and power produced is examined in detail for each group of materials

  5. SB certification handout material requirements, test methods, responsibilities, and minimum classification levels for mixture-based specification for flexible base.

    Science.gov (United States)

    2012-10-01

    A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...

  6. Fullerenic structures and such structures tethered to carbon materials

    Science.gov (United States)

    Goel, Anish; Howard, Jack B.; Vander Sande, John B.

    2010-01-05

    The fullerenic structures include fullerenes having molecular weights less than that of C.sub.60 with the exception of C.sub.36 and fullerenes having molecular weights greater than C.sub.60. Examples include fullerenes C.sub.50, C.sub.58, C.sub.130, and C.sub.176. Fullerenic structure chemically bonded to a carbon surface is also disclosed along with a method for tethering fullerenes to a carbon material. The method includes adding functionalized fullerene to a liquid suspension containing carbon material, drying the suspension to produce a powder, and heat treating the powder.

  7. Test procedures to detect a loss of material in a sequence of balance periods

    International Nuclear Information System (INIS)

    Avenhaus, R.; Beedgen, R.; Sellinschegg, D.

    1985-06-01

    A workshop on Near-Real-Time Accountancy (NRTA) was held in KfK which came to a preliminary end in December 1982. In the framework of this workshop a number of sequential statistical test procedures were proposed which can be used in the case of a NRTA based safeguards regime. In the report the most promising test procedures are investigated. The analysis is based on the chemical separation process of a large model reprocessing facility with a throughput or 1000 tonnes per year. (orig.) [de

  8. A Cognitive Approach to the Compilation of Test Materials for the Evaluation of Translator's Skills

    Directory of Open Access Journals (Sweden)

    Elena Berg

    2016-12-01

    Full Text Available A Cognitive Approach to the Compilation of Test Materials for the Evaluation of Translator's Skills This paper discusses the importance of a cognitive approach to the evaluation of translator’s skills. The authors set forth their recommendations for the compilation of test materials for the evaluation of translators’ cognitive ability.   Kognitywne podejście do kompilowania tekstów służących ocenie umiejętności tłumacza Artykuł porusza wagę kognitywnego podejścia do ewaluacji umiejętności tłumacza. Autorzy przedstawiają swoje zalecenia co do kompilowania materiałów testowych do ewaluacji kognitywnych zdolności tłumacza.

  9. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  10. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  11. Steels from materials science to structural engineering

    CERN Document Server

    Sha, Wei

    2013-01-01

    Steels and computer-based modelling are fast growing fields in materials science as well as structural engineering, demonstrated by the large amount of recent literature. Steels: From Materials Science to Structural Engineering combines steels research and model development, including the application of modelling techniques in steels.  The latest research includes structural engineering modelling, and novel, prototype alloy steels such as heat-resistant steel, nitride-strengthened ferritic/martensitic steel and low nickel maraging steel.  Researchers studying steels will find the topics vital to their work.  Materials experts will be able to learn about steels used in structural engineering as well as modelling and apply this increasingly important technique in their steel materials research and development. 

  12. Zeolitic materials with hierarchical porous structures.

    Science.gov (United States)

    Lopez-Orozco, Sofia; Inayat, Amer; Schwab, Andreas; Selvam, Thangaraj; Schwieger, Wilhelm

    2011-06-17

    During the past several years, different kinds of hierarchical structured zeolitic materials have been synthesized due to their highly attractive properties, such as superior mass/heat transfer characteristics, lower restriction of the diffusion of reactants in the mesopores, and low pressure drop. Our contribution provides general information regarding types and preparation methods of hierarchical zeolitic materials and their relative advantages and disadvantages. Thereafter, recent advances in the preparation and characterization of hierarchical zeolitic structures within the crystallites by post-synthetic treatment methods, such as dealumination or desilication; and structured devices by in situ and ex situ zeolite coatings on open-cellular ceramic foams as (non-reactive as well as reactive) supports are highlighted. Specific advantages of using hierarchical zeolitic catalysts/structures in selected catalytic reactions, such as benzene to phenol (BTOP) and methanol to olefins (MTO) are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Release strategies for making transferable semiconductor structures, devices and device components

    Science.gov (United States)

    Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J

    2014-11-25

    Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.

  14. Process and device for the polymerization and/or cross-linking by ionizing radiations of a resin component of a composite material part

    International Nuclear Information System (INIS)

    Beziers, D.

    1985-01-01

    An electron beam is directed on a target for the production of X-rays with adequate dose for resin cross-linking. Means are provided for relative motion between ionizing radiations and the irradiated object for partial or total exposure to radiations. The part can be polymerized by electron-beam or X-rays in function of its thickness [fr

  15. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    , MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  16. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    , MgAl LDH shows better performance than ZnAl LDH, due to the presence of magnesium cations in the layers. Following the structural, morphological and electrochemical behavior studies of both synthesized LDHs, the prepared LDH modified electrodes were tested through microbial fuel cell configuration, revealing a remarkable, potential new pathway for high-performance and cost-effective electrode use in electrochemical power devices.

  17. Sensitivity and specificity of parallel or serial serological testing for detection of canine Leishmania infection

    Directory of Open Access Journals (Sweden)

    Mauro Maciel de Arruda

    2016-01-01

    Full Text Available In Brazil, human and canine visceral leishmaniasis (CVL caused byLeishmania infantum has undergone urbanisation since 1980, constituting a public health problem, and serological tests are tools of choice for identifying infected dogs. Until recently, the Brazilian zoonoses control program recommended enzyme-linked immunosorbent assays (ELISA and indirect immunofluorescence assays (IFA as the screening and confirmatory methods, respectively, for the detection of canine infection. The purpose of this study was to estimate the accuracy of ELISA and IFA in parallel or serial combinations. The reference standard comprised the results of direct visualisation of parasites in histological sections, immunohistochemical test, or isolation of the parasite in culture. Samples from 98 cases and 1,327 noncases were included. Individually, both tests presented sensitivity of 91.8% and 90.8%, and specificity of 83.4 and 53.4%, for the ELISA and IFA, respectively. When tests were used in parallel combination, sensitivity attained 99.2%, while specificity dropped to 44.8%. When used in serial combination (ELISA followed by IFA, decreased sensitivity (83.3% and increased specificity (92.5% were observed. Serial testing approach improved specificity with moderate loss in sensitivity. This strategy could partially fulfill the needs of public health and dog owners for a more accurate diagnosis of CVL.

  18. Basic performance tests on vibration of support structure with flexible plates for ITER tokamak device

    International Nuclear Information System (INIS)

    Takeda, Nobukazu; Kakudate, Satoshi; Shibanuma, Kiyoshi

    2005-01-01

    The vibration experiments of the support structures with flexible plates for the ITER major components such as toroidal field coil (TF coil) and vacuum vessel (VV) were performed using small-sized flexible plates aiming to obtain its basic mechanical characteristics such as dependence of the stiffness on the loading angle. The experimental results obtained by the hammering and frequency sweep tests were agreed each other, so that the experimental method is found to be reliable. In addition, the experimental results were compared with the analytical ones in order to estimate an adequate analytical model for ITER support structure with flexible plates. As a result, the bolt connection of the flexible plates on the base plate strongly affected on the stiffness of the flexible plates. After studies of modeling the bolts, it is found that the analytical results modeling the bolts with finite stiffness only in the axial direction and infinite stiffness in the other directions agree well with the experimental ones. Using this adequate model, the stiffness of the support structure with flexible plates for the ITER major components can be calculated precisely in order to estimate the dynamic behaviors such as eigen modes and amplitude of deformation of the major components of the ITER tokamak device. (author)

  19. Tests in Print II: An Index to Tests, Test Reviews, and the Literature on Specific Tests.

    Science.gov (United States)

    Buros, Oscar K., Ed.

    Tests in Print II is a comprehensive, annotated bibliography of all in-print tests published as separates for use with English-speaking subjects. The 1,155 two-column pages list 2,467 tests in print as of early 1974; 16,574 references through 1971 on specific tests; a reprinting of the 1974 APA-AERA-NCME Standards for Educational andPsychological…

  20. Uranium material removing and recovering device

    International Nuclear Information System (INIS)

    Takita, Shin-ichi.

    1997-01-01

    A uranium material removing and recovering device for use in removing surplus uranium heavy metal (UO 2 ) generated in a uranium handling facility comprises a uranium material removing device and a uranium material recovering device. The uranium material removing device comprises an adsorbing portion filled with a uranium adsorbent, a control portion for controlling the uranium adsorbent of the uranium adsorbing portion by a controlling agent, a uranium adsorbing device connected thereto and a jetting device for jetting the adsorbing liquid to equipments deposited with uranium. The recovering device comprises a recovering apparatus for recovering uranium materials deposited with the adsorbent liquid removed by the jetting device and a recovering tank for storing the recovered uranium materials. The device of the present invention can remove surplus uranium simply and safely, mitigate body's load upon removing and recovering operations, facilitate the processing for the exchange of the adsorbent and reduces the radioactive wastes. (T.M.)

  1. Development of glass/glass-ceramics materials and devices and their micro-structural studies

    International Nuclear Information System (INIS)

    Goswami, Madhumita; Sarkar, Arjun; Shingarvelan, Shobha; Kumar, Rakesh; Ananathanarayan, Arvind; Shrikhande, V.K.; Kothiyal, G.P.

    2009-01-01

    Materials and devices based on glass and glass-ceramics (GCs) find applications in various high pressure and vacuum applications. We have prepared different glasses/glass-ceramics with requisite thermal expansion coefficient, electrical, vacuum and wetting characteristics to fabricate hermetic seals with different metals/alloys as well as components for these applications. Some of these are, SiO 2 -Na 2 O-K 2 O-Al 2 O 3 -B 2O3 (BS) for matched type of seal fabricated with Kovar alloy, SiO 2 -Na 2 O-K 2 O-BaO-PbO(LS) for fabrication of compressive type seals with stainless steel and SS 446 alloys, P 2 O 5 -Na 2 O-B 2 O 3 -BaO-PbO(NAP) for fabrication of matched type of seal with relatively low melting metals/alloys like AI/Cu-Be and Li 2 O-ZnO-SiO 2 -P 2 O 5 -B 2 O 3 -Na 2 O (LZS) and Lithium aluminium silicate (LAS) glass-ceramics to fabricate matched and compression types feedtroughs/conductivity probes Magnesium aluminium silicate (MAS) machinable glass-ceramics is another development for high voltage and ultra high vacuum applications. Micro-structural studies have been carried out on these materials to understand the mechanism of their behaviour and have also been deployed in various systems and plants in DAE. (author)

  2. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network

    Energy Technology Data Exchange (ETDEWEB)

    Millis, Andrew [Columbia Univ., New York, NY (United States). Dept. of Physics

    2016-11-17

    Understanding the behavior of interacting electrons in molecules and solids so that one can predict new superconductors, catalysts, light harvesters, energy and battery materials and optimize existing ones is the ``quantum many-body problem’’. This is one of the scientific grand challenges of the 21st century. A complete solution to the problem has been proven to be exponentially hard, meaning that straightforward numerical approaches fail. New insights and new methods are needed to provide accurate yet feasible approximate solutions. This CMSCN project brought together chemists and physicists to combine insights from the two disciplines to develop innovative new approaches. Outcomes included the Density Matrix Embedding method, a new, computationally inexpensive and extremely accurate approach that may enable first principles treatment of superconducting and magnetic properties of strongly correlated materials, new techniques for existing methods including an Adaptively Truncated Hilbert Space approach that will vastly expand the capabilities of the dynamical mean field method, a self-energy embedding theory and a new memory-function based approach to the calculations of the behavior of driven systems. The methods developed under this project are now being applied to improve our understanding of superconductivity, to calculate novel topological properties of materials and to characterize and improve the properties of nanoscale devices.

  3. Testing of abrasion materials

    International Nuclear Information System (INIS)

    Hummert, G.

    1983-01-01

    A method of abrasion testing according to ASTM C 704-76 a is presented for steel fibre concrete mortar, fusion-cast basalt and a surface coating material and results of practical interest are mentioned. Due to the high technical demands on these materials and their specific fields of application, the very first test already supplied interesting findings. From the user's point of view, the method is an interesting alternative to the common test methods, e.g. according to DIN 52 108 (wheel test according to Boehme). In English-speaking countries, testing according to ASTM is often mandatory in the refractory industry in order to assure constant quality of refractory materials after setting. The method is characterized by good comparability and high accuracy of measurement. Only the test piece is exchanged while the test conditions remain constant, so that accurate information on the material studied is obtained. (orig.) [de

  4. Latest advances in supercapacitors: from new electrode materials to novel device designs.

    Science.gov (United States)

    Wang, Faxing; Wu, Xiongwei; Yuan, Xinhai; Liu, Zaichun; Zhang, Yi; Fu, Lijun; Zhu, Yusong; Zhou, Qingming; Wu, Yuping; Huang, Wei

    2017-11-13

    Notably, many significant breakthroughs for a new generation of supercapacitors have been reported in recent years, related to theoretical understanding, material synthesis and device designs. Herein, we summarize the state-of-the-art progress toward mechanisms, new materials, and novel device designs for supercapacitors. Firstly, fundamental understanding of the mechanism is mainly focused on the relationship between the structural properties of electrode materials and their electrochemical performances based on some in situ characterization techniques and simulations. Secondly, some emerging electrode materials are discussed, including metal-organic frameworks (MOFs), covalent organic frameworks (COFs), MXenes, metal nitrides, black phosphorus, LaMnO 3 , and RbAg 4 I 5 /graphite. Thirdly, the device innovations for the next generation of supercapacitors are provided successively, mainly emphasizing flow supercapacitors, alternating current (AC) line-filtering supercapacitors, redox electrolyte enhanced supercapacitors, metal ion hybrid supercapacitors, micro-supercapacitors (fiber, plane and three-dimensional) and multifunctional supercapacitors including electrochromic supercapacitors, self-healing supercapacitors, piezoelectric supercapacitors, shape-memory supercapacitors, thermal self-protective supercapacitors, thermal self-charging supercapacitors, and photo self-charging supercapacitors. Finally, the future developments and key technical challenges are highlighted regarding further research in this thriving field.

  5. Field and Evaluation Methods Used to Test the Performance of a Stormceptor® Class 1 Stormwater Treatment Device in Australia

    Directory of Open Access Journals (Sweden)

    Peter Nichols

    2015-12-01

    Full Text Available Field testing of a proprietary stormwater treatment device was undertaken over 14 months at a site located in Nambour, South East Queensland. Testing was undertaken to evaluate the pollution removal performance of a Stormceptor® treatment train for removing total suspended solids (TSS, total nitrogen (TN and total phosphorous (TP from stormwater runoff. Water quality sampling was undertaken using natural rainfall events complying with an a priori sampling protocol. More than 59 rain events were monitored, of which 18 were found to comply with the accepted sampling protocol. The efficiency ratios (ER observed for the treatment device were found to be 83% for TSS, 11% for TP and 23% for TN. Although adequately removing TSS, additional system components, such as engineered filters, would be required to satisfy minimum local pollution removal regulations. The results of dry weather sampling tests did not conclusively demonstrate that pollutants were exported between storm events or that pollution concentrations increased significantly over time.

  6. Short structured feedback training is equivalent to a mechanical feedback device in two-rescuer BLS: a randomised simulation study.

    Science.gov (United States)

    Pavo, Noemi; Goliasch, Georg; Nierscher, Franz Josef; Stumpf, Dominik; Haugk, Moritz; Breckwoldt, Jan; Ruetzler, Kurt; Greif, Robert; Fischer, Henrik

    2016-05-13

    Resuscitation guidelines encourage the use of cardiopulmonary resuscitation (CPR) feedback devices implying better outcomes after sudden cardiac arrest. Whether effective continuous feedback could also be given verbally by a second rescuer ("human feedback") has not been investigated yet. We, therefore, compared the effect of human feedback to a CPR feedback device. In an open, prospective, randomised, controlled trial, we compared CPR performance of three groups of medical students in a two-rescuer scenario. Group "sCPR" was taught standard BLS without continuous feedback, serving as control. Group "mfCPR" was taught BLS with mechanical audio-visual feedback (HeartStart MRx with Q-CPR-Technology™). Group "hfCPR" was taught standard BLS with human feedback. Afterwards, 326 medical students performed two-rescuer BLS on a manikin for 8 min. CPR quality parameters, such as "effective compression ratio" (ECR: compressions with correct hand position, depth and complete decompression multiplied by flow-time fraction), and other compression, ventilation and time-related parameters were assessed for all groups. ECR was comparable between the hfCPR and the mfCPR group (0.33 vs. 0.35, p = 0.435). The hfCPR group needed less time until starting chest compressions (2 vs. 8 s, p feedback or by using a mechanical audio-visual feedback device was similar. Further studies should investigate whether extended human feedback training could further increase CPR quality at comparable costs for training.

  7. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity.

    Science.gov (United States)

    Kouno, Takahide; Silvas, Tania V; Hilbert, Brendan J; Shandilya, Shivender M D; Bohn, Markus F; Kelch, Brian A; Royer, William E; Somasundaran, Mohan; Kurt Yilmaz, Nese; Matsuo, Hiroshi; Schiffer, Celia A

    2017-04-28

    Nucleic acid editing enzymes are essential components of the immune system that lethally mutate viral pathogens and somatically mutate immunoglobulins, and contribute to the diversification and lethality of cancers. Among these enzymes are the seven human APOBEC3 deoxycytidine deaminases, each with unique target sequence specificity and subcellular localization. While the enzymology and biological consequences have been extensively studied, the mechanism by which APOBEC3s recognize and edit DNA remains elusive. Here we present the crystal structure of a complex of a cytidine deaminase with ssDNA bound in the active site at 2.2 Å. This structure not only visualizes the active site poised for catalysis of APOBEC3A, but pinpoints the residues that confer specificity towards CC/TC motifs. The APOBEC3A-ssDNA complex defines the 5'-3' directionality and subtle conformational changes that clench the ssDNA within the binding groove, revealing the architecture and mechanism of ssDNA recognition that is likely conserved among all polynucleotide deaminases, thereby opening the door for the design of mechanistic-based therapeutics.

  8. Design and testing of a chamber device to measure organic vapor fluxes from the unsaturated zone under natural conditions

    International Nuclear Information System (INIS)

    Tillman, F.D.; Choi, J-W.; Smith, J.A.

    2002-01-01

    As the difficulty and expense of achieving water quality standards at contaminated sites becomes more apparent, the U.S. Environmental Protection Agency is taking a closer look at natural attenuation processes for selected sites. To determine if a site has potential for natural attenuation, all natural processes affecting the fate and transport of volatile organic compounds (VOCs) in the subsurface must be identified and quantified. This research addresses the quantification of air-phase VOCs leaving the subsurface and entering the atmosphere, both through diffusion and soil-gas advection caused by barometric pumping. A simple, easy-to-use, and inexpensive device for measuring VOC flux under natural conditions was designed, constructed and tested both in a controlled laboratory environment and in a natural field setting. Design parameters for the chamber were selected using continuously stirred tank reactor (CSTR)-equation based modeling under several flux inputs. The final chamber design performs at greater than 95% efficiency for the simulated cases. Laboratory testing of the flux chamber under both diffusion and advection transport conditions was performed in a device constructed to simulate the unsaturated zone. Results indicate an average flux measurement accuracy of 83% over 3 orders of magnitude for diffusion-only fluxes and 94% for combined advection-diffusion fluxes. A field test of the chamber was performed and results compared with predictions made by a 1-dimensional unsaturated zone flow and transport model whose calibration and parameters were obtained from data collected at the site. Fluxes measured directly by the chamber were generally in good agreement with the fluxes calculated from the calibrated flow-and-transport model. (author)

  9. Ergonomic material-handling device

    Science.gov (United States)

    Barsnick, Lance E.; Zalk, David M.; Perry, Catherine M.; Biggs, Terry; Tageson, Robert E.

    2004-08-24

    A hand-held ergonomic material-handling device capable of moving heavy objects, such as large waste containers and other large objects requiring mechanical assistance. The ergonomic material-handling device can be used with neutral postures of the back, shoulders, wrists and knees, thereby reducing potential injury to the user. The device involves two key features: 1) gives the user the ability to adjust the height of the handles of the device to ergonomically fit the needs of the user's back, wrists and shoulders; and 2) has a rounded handlebar shape, as well as the size and configuration of the handles which keep the user's wrists in a neutral posture during manipulation of the device.

  10. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  11. Dictionary materials engineering, materials testing

    International Nuclear Information System (INIS)

    1994-01-01

    This dictionary contains about 9,500 entries in each part of the following fields: 1) Materials using and selection; 2) Mechanical engineering materials -Metallic materials - Non-metallic inorganic materials - Plastics - Composites -Materials damage and protection; 3) Electrical and electronics materials -Conductor materials - Semiconductors - magnetic materials - Dielectric materials - non-conducting materials; 4) Materials testing - Mechanical methods - Analytical methods - Structure investigation - Complex methods - Measurement of physical properties - Non-destructive testing. (orig.) [de

  12. A novel physiological testing device to study knee biomechanics in vitro

    NARCIS (Netherlands)

    van de Bunt, Fabian; Emanuel, Kaj S.; Wijffels, Thomas; Kooren, Peter N.; Kingma, Idsart; Smit, Theodoor H.

    2017-01-01

    Background To properly study knee kinetics, kinematics and the effects of injury and surgical treatment in vitro, the knee should be constrained as little as possible, while imposing physiological loads. A novel dynamic biomechanical knee system (BKS) is presented here. The aim of this study was to

  13. A novel physiological testing device to study knee biomechanics in vitro

    NARCIS (Netherlands)

    van de Bunt, Fabian; Emanuel, Kaj S.; Wijffels, Thomas; Kooren, Peter N.; Kingma, Idsart; Smit, Theodoor H.

    2017-01-01

    Background: To properly study knee kinetics, kinematics and the effects of injury and surgical treatment in vitro, the knee should be constrained as little as possible, while imposing physiological loads. A novel dynamic biomechanical knee system (BKS) is presented here. The aim of this study was to

  14. OR.NET: a service-oriented architecture for safe and dynamic medical device interoperability.

    Science.gov (United States)

    Kasparick, Martin; Schmitz, Malte; Andersen, Björn; Rockstroh, Max; Franke, Stefan; Schlichting, Stefan; Golatowski, Frank; Timmermann, Dirk

    2018-02-23

    Modern surgical departments are characterized by a high degree of automation supporting complex procedures. It recently became apparent that integrated operating rooms can improve the quality of care, simplify clinical workflows, and mitigate equipment-related incidents and human errors. Particularly using computer assistance based on data from integrated surgical devices is a promising opportunity. However, the lack of manufacturer-independent interoperability often prevents the deployment of collaborative assistive systems. The German flagship project OR.NET has therefore developed, implemented, validated, and standardized concepts for open medical device interoperability. This paper describes the universal OR.NET interoperability concept enabling a safe and dynamic manufacturer-independent interconnection of point-of-care (PoC) medical devices in the operating room and the whole clinic. It is based on a protocol specifically addressing the requirements of device-to-device communication, yet also provides solutions for connecting the clinical information technology (IT) infrastructure. We present the concept of a service-oriented medical device architecture (SOMDA) as well as an introduction to the technical specification implementing the SOMDA paradigm, currently being standardized within the IEEE 11073 service-oriented device connectivity (SDC) series. In addition, the Session concept is introduced as a key enabler for safe device interconnection in highly dynamic ensembles of networked medical devices; and finally, some security aspects of a SOMDA are discussed.

  15. Modeling and Experimental Tests of a Mechatronic Device to Measure Road Profiles Considering Impact Dynamics

    DEFF Research Database (Denmark)

    Souza, A.; Santos, Ilmar

    2002-01-01

    dynamics is led with help of a set of non-linear equations of motion obtained using Newton-Euler-Jourdain´s Method. Such a set of equation is numerically solved and the theoretical results are compared with experimental carried out with a laboratory prototype. Comparisons show that the theoretical model...... predicts well the mechanism movements. However it was also experimentally observed that the contact between the wheels and the road profile is not permanent. To analyze the non-contact between the wheels and the road, the Newton-Euler´s Method is used to calculate forces and moments of reactions between...

  16. A procedure for estimating site specific derived limits for the discharge of radioactive material to the atmosphere

    CERN Document Server

    Hallam, J; Jones, J A

    1983-01-01

    Generalised Derived Limits (GDLs) for the discharge of radioactive material to the atmosphere are evaluated using parameter values to ensure that the exposure of the critical group is unlikely to be underestimated significantly. Where the discharge is greater than about 5% of the GDL, a more rigorous estimate of the derived limit may be warranted. This report describes a procedure for estimating site specific derived limits for discharges of radioactivity to the atmosphere taking into account the conditions of the release and the location and habits of the exposed population. A worksheet is provided to assist in carrying out the required calculations.

  17. Testing a Novel Method to Approximate Wood Specific Gravity of Trees

    Science.gov (United States)

    Michael C. Wiemann; G. Bruce. Williamson

    2012-01-01

    Wood specific gravity (SG) has long been used by foresters as an index for wood properties. More recently, SG has been widely used by ecologists as a plant functional trait and as a key variable in estimates of biomass. However, sampling wood to determine SG can be problematic; at present, the most common method is sampling with an increment borer to extract a bark-to-...

  18. Electronic voltage and current transformers testing device.

    Science.gov (United States)

    Pan, Feng; Chen, Ruimin; Xiao, Yong; Sun, Weiming

    2012-01-01

    A method for testing electronic instrument transformers is described, including electronic voltage and current transformers (EVTs, ECTs) with both analog and digital outputs. A testing device prototype is developed. It is based on digital signal processing of the signals that are measured at the secondary outputs of the tested transformer and the reference transformer when the same excitation signal is fed to their primaries. The test that estimates the performance of the prototype has been carried out at the National Centre for High Voltage Measurement and the prototype is approved for testing transformers with precision class up to 0.2 at the industrial frequency (50 Hz or 60 Hz). The device is suitable for on-site testing due to its high accuracy, simple structure and low-cost hardware.

  19. Welcome to the 2014 volume of Smart Materials and Structures

    Science.gov (United States)

    Garcia, Ephrahim

    2014-01-01

    Welcome to Smart Materials and Structures (SMS). Smart materials and structures are comprised of structural matter that responds to a stimulus. These materials can be controlled or have properties that can be altered in a prescribed manner. Smart materials generate non-traditional forms of transduction. We are all familiar with common forms of transduction, electromechanical motors. Lorenz's forces utilize permanent and variable magnets, controlled by current, to generate magnetically generated forces that oppose each other. Utilizing this simple principal we have advanced the industrial revolution of the 19th Century by the creation of the servo-mechanism. Controlled velocity and position generation systems that have automated manufacturing, our machines and the very environs in which we dwell. Smart materials often rely on a variety of new and different methods of transduction. Piezoelectric, magnetostrictive, electrostrictive, and phase-change materials, such as shape memory alloys, are among the most common smart materials. Other approaches such as polymer actuators that rely on complex three-dimensional chemical-based composites are also emerging. The trinity of engineering research is analysis, simulation and experimentation. To perform analyses we must understand the physical phenomena at hand in order to develop a mathematical model for the problem. These models form the basis of simulation and complex computational modeling of a system. It is from these models that we begin to expand our understanding about what is possible, ultimately developing simulation-based tools that verify new designs and insights. Experimentation offers the opportunity to verify our analyses and simulations in addition to providing the 'proof of the pudding' so to speak. But it is our ability to simulate that guides us and our expectations, predicting the behavior of what we may see in the lab or in a prototype. Experimentation ultimately provides the feedback to our modeling

  20. Nanocrystalline silicon as the light emitting material of a field emission display device

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  1. Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2010-01-01

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  2. A Classroom-Based Assessment Method to Test Speaking Skills in English for Specific Purposes

    Science.gov (United States)

    Alberola Colomar, María Pilar

    2014-01-01

    This article presents and analyses a classroom-based assessment method to test students' speaking skills in a variety of professional settings in tourism. The assessment system has been implemented in the Communication in English for Tourism course, as part of the Tourism Management degree programme, at Florida Universitaria (affiliated to the…

  3. A simple method to accurately position Port-A-Cath without the aid of intraoperative fluoroscopy or other localizing devices.

    Science.gov (United States)

    Horng, Huann-Cheng; Yuan, Chiou-Chung; Chao, Kuan-Chong; Cheng, Ming-Huei; Wang, Peng-Hui

    2007-06-01

    To evaluate the efficacy and acceptability of the Port-A-Cath (PAC) insertion method with (conventional group as II) and without (modified group as I) the aid of intraoperative fluoroscopy or other localizing devices. A total of 158 women with various kinds of gynecological cancers warranting PAC insertion (n = 86 in group I and n = 72 in group II, respectively) were evaluated. Data for analyses included patient age, main disease, dislocation site, surgical time, complications, and catheter outcome. There was no statistical difference between the two groups in terms of age, main disease, complications, and the experiencing of patent catheters. However, appropriate positioning (100% in group I, and 82% in group II) in the superior vena cava (SVC) showed statistical differences between the two groups (P = 0.001). In addition, the surgical time in group I was statistically shorter than that in group II (P < 0.001). The modified method for inserting the PAC offered the following benefits: including avoiding X-ray exposure for both the operator and the patient, defining the appropriate position in the SVC, and less surgical time. (c) 2007 Wiley-Liss, Inc.

  4. Frequency formats, probability formats, or problem structure? A test of the nested-sets hypothesis in an extensional reasoning task

    Directory of Open Access Journals (Sweden)

    William P. Neace

    2008-02-01

    Full Text Available Five experiments addressed a controversy in the probability judgment literature that centers on the efficacy of framing probabilities as frequencies. The natural frequency view predicts that frequency formats attenuate errors, while the nested-sets view predicts that highlighting the set-subset structure of the problem reduces error, regardless of problem format. This study tested these predictions using a conjunction task. Previous studies reporting that frequency formats reduced conjunction errors confounded reference class with problem format. After controlling this confound, the present study's findings show that conjunction errors can be reduced using either a probability or a frequency format, that frequency effects depend upon the presence of a reference class, and that frequency formats do not promote better statistical reasoning than probability formats.

  5. Device for measuring the angle of repose of materials or goniometer

    Energy Technology Data Exchange (ETDEWEB)

    Depoitier, J [Institut National des Radioelements, Brussels (Belgium); Parisis, J; Rossion, R [Cimenteries CBR Cementbedrijven, Brussels (Belgium)

    1980-01-01

    The slope measuring facility consists essentially of a gamma source (Cobalt 60) positioned in front of the main position of the batter and of two scintillators (NaI crystals) opposite the source. The different absorption values piched up by the two detectors allow to determine the angle of repose of the batter. The device was especially studied for cement kilns.

  6. Haptics using a smart material for eyes-free interaction in personal devices

    Science.gov (United States)

    Wang, Huihui; Lane, William Brian; Pappas, Devin; Duque, Bryam; Leong, John

    2014-03-01

    In this paper we present a prototype using a dry ionic polymer metal composite (IPMC) in interactive personal devices such as bracelet, necklace, pocket key chain or mobile devices for haptic interaction when audio or visual feedback is not possible or practical. This prototype interface is an electro-mechanical system that realizes a shape-changing haptic display for information communication. A dry IPMC will change its dimensions due to the electrostatic effect when an electrical potential is provided to them. The IPMC can operate at a lower voltage (less than 2.5V) which is compatible with requirements for personal electrical devices or mobile devices. The prototype consists of the addressable arrays of the IPMCs with different dimensions which are deformable to different shapes with proper handling or customization. 3D printing technology will be used to form supporting parts. Microcontrollers (about 3cm square) from DigiKey will be imbedded into this personal device. An Android based mobile APP will be developed to talk with microcontrollers to control IPMCs. When personal devices receive information signals, the original shape of the prototype will change to another shape related to the specific sender or types of information sources. This interactive prototype can simultaneously realize multiple methods for conveying haptic information such as dimension, force, and texture due to the flexible array design. We conduct several studies of user experience to explore how users' respond to shape change information.

  7. 77 FR 41804 - Solicitation for a Cooperative Agreement: Development of Materials Specific to Compassion Fatigue...

    Science.gov (United States)

    2012-07-16

    ... out their professional roles and balance work with life. Statement of Work: The objective of this... lives. Staff may bring personal experiences and challenges with them to work during the course of their... dysfunctions of life. For years, staff have used the term ``burnout'' to describe the toll the work often takes...

  8. Perceptual learning is specific to the trained structure of information.

    Science.gov (United States)

    Cohen, Yamit; Daikhin, Luba; Ahissar, Merav

    2013-12-01

    What do we learn when we practice a simple perceptual task? Many studies have suggested that we learn to refine or better select the sensory representations of the task-relevant dimension. Here we show that learning is specific to the trained structural regularities. Specifically, when this structure is modified after training with a fixed temporal structure, performance regresses to pretraining levels, even when the trained stimuli and task are retained. This specificity raises key questions as to the importance of low-level sensory modifications in the learning process. We trained two groups of participants on a two-tone frequency discrimination task for several days. In one group, a fixed reference tone was consistently presented in the first interval (the second tone was higher or lower), and in the other group the same reference tone was consistently presented in the second interval. When following training, these temporal protocols were switched between groups, performance of both groups regressed to pretraining levels, and further training was needed to attain postlearning performance. ERP measures, taken before and after training, indicated that participants implicitly learned the temporal regularity of the protocol and formed an attentional template that matched the trained structure of information. These results are consistent with Reverse Hierarchy Theory, which posits that even the learning of simple perceptual tasks progresses in a top-down manner, hence can benefit from temporal regularities at the trial level, albeit at the potential cost that learning may be specific to these regularities.

  9. River Devices to Recover Energy with Advanced Materials (River DREAM)

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, Daniel P. [Bayer MaterialScience LLC

    2013-07-03

    The purpose of this project is to develop a generator called a Galloping Hydroelectric Energy Extraction Device (GHEED). It uses a galloping prism to convert water flow into linear motion. This motion is converted into electricity via a dielectric elastomer generator (DEG). The galloping mechanism and the DEG are combined to create a system to effectively generate electricity. This project has three research objectives: 1. Oscillator development and design a. Characterize galloping behavior, evaluate control surface shape change on oscillator performance and demonstrate shape change with water flow change. 2. Dielectric Energy Generator (DEG) characterization and modeling a. Characterize and model the performance of the DEG based on oscillator design 3. Galloping Hydroelectric Energy Extraction Device (GHEED) system modeling and integration a. Create numerical models for construction of a system performance model and define operating capabilities for this approach Accomplishing these three objectives will result in the creation of a model that can be used to fully define the operating parameters and performance capabilities of a generator based on the GHEED design. This information will be used in the next phase of product development, the creation of an integrated laboratory scale generator to confirm model predictions.

  10. A Review on Key Issues and Challenges in Devices Level MEMS Testing

    Directory of Open Access Journals (Sweden)

    Muhammad Shoaib

    2016-01-01

    Full Text Available The present review provides information relevant to issues and challenges in MEMS testing techniques that are implemented to analyze the microelectromechanical systems (MEMS behavior for specific application and operating conditions. MEMS devices are more complex and extremely diverse due to the immersion of multidomains. Their failure modes are distinctive under different circumstances. Therefore, testing of these systems at device level as well as at mass production level, that is, parallel testing, is becoming very challenging as compared to the IC test, because MEMS respond to electrical, physical, chemical, and optical stimuli. Currently, test systems developed for MEMS devices have to be customized due to their nondeterministic behavior and complexity. The accurate measurement of test systems for MEMS is difficult to quantify in the production phase. The complexity of the device to be tested required maturity in the test technique which increases the cost of test development; this practice is directly imposed on the device cost. This factor causes a delay in time-to-market.

  11. Quality assurance device for four-dimensional IMRT or SBRT and respiratory gating using patient-specific intrafraction motion kernels.

    Science.gov (United States)

    Nelms, Benjamin E; Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A

    2007-09-17

    Emerging technologies such as four-dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity-modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that 1. transformed the kernel into beam-specific two-dimensional (2D) motion "projections," 2. previewed the motion in real time, and 3. drove a recision X-Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's-eye-view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as "target detectors" to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction-to-fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient-customized 4D IMRT/SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's-eye-view motion kernels. This device has been proved to, effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and, integrate with a commercial

  12. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.

  13. Quality assurance device for four‐dimensional IMRT or SBRT and respiratory gating using patient‐specific intrafraction motion kernels

    Science.gov (United States)

    Ehler, Eric; Bragg, Henry; Tomé, Wolfgang A.

    2007-01-01

    Emerging technologies such as four‐dimensional computed tomography (4D CT) and implanted beacons are expected to allow clinicians to accurately model intrafraction motion and to quantitatively estimate internal target volumes (ITVs) for radiation therapy involving moving targets. In the case of intensity‐modulated (IMRT) and stereotactic body radiation therapy (SBRT) delivery, clinicians must consider the interplay between the temporal nature of the modulation and the target motion within the ITV. A need exists for a 4D IMRT/SBRT quality assurance (QA) device that can incorporate and analyze customized intrafraction motion as it relates to dose delivery and respiratory gating. We built a 4D IMRT/SBRT prototype device and entered (X, Y, Z)(T) coordinates representing a motion kernel into a software application that transformed the kernel into beam‐specific two‐dimensional (2D) motion “projections,”previewed the motion in real time, anddrove a precision X–Y motorized device that had, atop it, a mounted planar IMRT QA measurement device. The detectors that intersected the target in the beam's‐eye‐view of any single phase of the breathing cycle (a small subset of all the detectors) were defined as “target detectors” to be analyzed for dose uniformity between multiple fractions. Data regarding the use of this device to quantify dose variation fraction‐to‐fraction resulting from target motion (for several delivery modalities and with and without gating) have been recently published. A combined software and hardware solution for patient‐customized 4D IMRT/ SBRT QA is an effective tool for assessing IMRT delivery under conditions of intrafraction motion. The 4D IMRT QA device accurately reproduced the projected motion kernels for all beam's‐eye‐view motion kernels. This device has been proved to • effectively quantify the degradation in dose uniformity resulting from a moving target within a static planning target volume, and • integrate

  14. A Test Device Module of the Step Motor Driver for HANARO CAR Operation

    Energy Technology Data Exchange (ETDEWEB)

    Im, Yun-Taek; Doo, Seung-Gyu; Shin, Jin-Won; Kim, Ki-Hyun; Choi, Young-San; Lee, Jung-Hee; Kim, Hyung-Kyoo; Lee, Choong-Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The brand-new control system is reliable and has advantages compared with the old control system, and the installed system covers all functional operations of old system. Nevertheless, packaged RTP systems do not include a step motor or driver, and it is necessary to develop a proper test device to check the step motor and driver without using the RTP system. In particular, the operation of a CAR (Control Absorber Rod) requires many complicated procedures. Occasionally, it takes significant time to prepare for a field test. In this work, a test device module for a step motor diver is shown to emulate a HANARO CAR operation, and the test device system architecture, operational principle, and experiment results are presented. A commercial 8-bit μ-processor is applied to implement the device. A portable test device for HANARO CAR operation is presented. An 8-bit μ-controller is used to emulate a HANARO CAR operation. The digital interface, as well as the functional operation, of the test device module matches that of the currently used driver. This device can be used to check the functional validity of the step motor and driver.

  15. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  16. Nanostructured silicon for photonics from materials to devices

    CERN Document Server

    Gaburro, Z; Daldosso, N

    2006-01-01

    The use of light to channel signals around electronic chips could solve several current problems in microelectronic evolution including: power dissipation, interconnect bottlenecks, input/output from/to optical communication channels, poor signal bandwidth, etc. It is unfortunate that silicon is not a good photonic material: it has a poor light-emission efficiency and exhibits a negligible electro-optical effect. Silicon photonics is a field having the objective of improving the physical properties of silicon; thus turning it into a photonic material and permitting the full convergence of elec

  17. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Specific Case of Perovskites/Silicon Devices

    KAUST Repository

    Dupre, Olivier

    2018-01-05

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  18. An experiment to test advanced materials impacted by intense proton pulses at CERN HiRadMat facility

    Energy Technology Data Exchange (ETDEWEB)

    Bertarelli, A., E-mail: alessandro.bertarelli@cern.ch [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Berthome, E. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Boccone, V. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Carra, F. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Cerutti, F. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Charitonidis, N. [CERN, Engineering Department, Machines and Experimental Facilities Group (EN-MEF), CH-1211 Geneva 23 (Switzerland); École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Charrondiere, C. [CERN, Engineering Department, Industrial Controls and Engineering Group (EN-ICE), CH-1211 Geneva 23 (Switzerland); Dallocchio, A.; Fernandez Carmona, P.; Francon, P.; Gentini, L.; Guinchard, M.; Mariani, N. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Masi, A. [CERN, Engineering Department, Sources, Targets and Interactions Group (EN-STI), CH-1211 Geneva 23 (Switzerland); Marques dos Santos, S.D.; Moyret, P. [CERN, Engineering Department, Mechanical and Materials Engineering Group (EN-MME), CH-1211 Geneva 23 (Switzerland); Peroni, L. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Redaelli, S. [CERN, Beams Department, Accelerators and Beams Physics Group (BE-ABP), CH-1211 Geneva 23 (Switzerland); Scapin, M. [Politecnico di Torino, Department of Mechanical and Aerospace Engineering (DIMEAS), Corso Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-08-01

    Predicting the consequences of highly energetic particle beams impacting protection devices as collimators or high power target stations is a fundamental issue in the design of state-of-the-art facilities for high-energy particle physics. These complex dynamic phenomena can be successfully simulated resorting to highly non-linear numerical tools (Hydrocodes). In order to produce accurate results, however, these codes require reliable material constitutive models that, at the extreme conditions induced by a destructive beam impact, are scarce and often inaccurate. In order to derive or validate such models a comprehensive, first-of-its-kind experiment has been recently carried out at CERN HiRadMat facility: performed tests entailed the controlled impact of intense and energetic proton pulses on a number of specimens made of six different materials. Experimental data were acquired relying on embedded instrumentation (strain gauges, temperature probes and vacuum sensors) and on remote-acquisition devices (laser Doppler vibrometer and high-speed camera). The method presented in this paper, combining experimental measurements with numerical simulations, may find applications to assess materials under very high strain rates and temperatures in domains well beyond particle physics (severe accidents in fusion and fission nuclear facilities, space debris impacts, fast and intense loadings on materials and structures etc.)

  19. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Science.gov (United States)

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  20. Thermal shock tests to qualify different tungsten grades as plasma facing material

    Science.gov (United States)

    Wirtz, M.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Uytdenhouwen, I.

    2016-02-01

    The electron beam device JUDITH 1 was used to establish a testing procedure for the qualification of tungsten as plasma facing material. Absorbed power densities of 0.19 and 0.38 GW m-2 for an edge localized mode-like pulse duration of 1 ms were chosen. Furthermore, base temperatures of room temperature, 400 °C and 1000 °C allow investigating the thermal shock performance in the brittle, ductile and high temperature regime. Finally, applying 100 pulses under all mentioned conditions helps qualifying the general damage behaviour while with 1000 pulses for the higher power density the influence of thermal fatigue is addressed. The investigated reference material is a tungsten product produced according to the ITER material specifications. The obtained results provide a general overview of the damage behaviour with quantified damage characteristics and thresholds. In particular, it is shown that the damage strongly depends on the microstructure and related thermo-mechanical properties.

  1. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Ginige, Maneesha P; Garbin, Scott; Wylie, Jason; Krishna, K C Bal

    2017-01-01

    A Modified Robbins Device (MRD) was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE) and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media) were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP) and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  2. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System.

    Directory of Open Access Journals (Sweden)

    Maneesha P Ginige

    Full Text Available A Modified Robbins Device (MRD was installed in a full-scale water distribution system to investigate biofouling and metal depositions on concrete, high-density polyethylene (HDPE and stainless steel surfaces. Bulk water monitoring and a KIWA monitor (with glass media were used to offline monitor biofilm development on pipe wall surfaces. Results indicated that adenosine triphosphate (ATP and metal concentrations on coupons increased with time. However, bacterial diversities decreased. There was a positive correlation between increase of ATP and metal deposition on pipe surfaces of stainless steel and HDPE and no correlation was observed on concrete and glass surfaces. The shared bacterial diversity between bulk water and MRD was less than 20% and the diversity shared between the MRD and KIWA monitor was only 10%. The bacterial diversity on biofilm of plumbing material of MRD however, did not show a significant difference suggesting a lack of influence from plumbing material during early stage of biofilm development.

  3. 14 CFR 120.11 - Refusal to submit to a drug or alcohol test by a Part 61 certificate holder.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Refusal to submit to a drug or alcohol test...: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Individuals Certificated Under Parts 61, 63, and 65 § 120.11 Refusal to submit to a drug or alcohol test by a Part 61 certificate holder. (a) This...

  4. 14 CFR 120.15 - Refusal to submit to a drug or alcohol test by a Part 65 certificate holder.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Refusal to submit to a drug or alcohol test...: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Individuals Certificated Under Parts 61, 63, and 65 § 120.15 Refusal to submit to a drug or alcohol test by a Part 65 certificate holder. (a) This...

  5. 14 CFR 120.13 - Refusal to submit to a drug or alcohol test by a Part 63 certificate holder.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Refusal to submit to a drug or alcohol test...: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Individuals Certificated Under Parts 61, 63, and 65 § 120.13 Refusal to submit to a drug or alcohol test by a Part 63 certificate holder. (a) This...

  6. A smart predictor for material property testing

    International Nuclear Information System (INIS)

    Wang, Wilson; Kanneg, Derek

    2008-01-01

    A reliable predictor is very useful for real-world industrial applications to forecast the future behavior of dynamic systems. A smart predictor, based on a novel recurrent neural fuzzy (RNF) scheme, is developed in this paper for multi-step-ahead prediction of material properties. A systematic investigation based on two benchmark data sets is conducted in terms of performance and efficiency. Analysis results reveal that, of the data-driven forecasting schemes, predictors based on step input patterns outperform those based on sequential input patterns; the RNF predictor outperforms those based on recurrent neural networks and ANFIS schemes in multi-step-ahead prediction of nonlinear time series. An adaptive Levenberg–Marquardt training technique is adopted to improve the robustness and convergence of the RNF predictor. Furthermore, the proposed smart predictor is implemented for material property testing. Investigation results show that the developed RNF predictor is a reliable forecasting tool for material property testing; it can capture and track the system's dynamic characteristics quickly and accurately. It is also a robust predictor to accommodate different system conditions

  7. Development of a Hopkinson Bar Apparatus for Testing Soft Materials: Application to a Closed-Cell Aluminum Foam

    Directory of Open Access Journals (Sweden)

    Marco Peroni

    2016-01-01

    Full Text Available An increasing interest in lightweight metallic foams for automotive, aerospace, and other applications has been observed in recent years. This is mainly due to the weight reduction that can be achieved using foams and for their mechanical energy absorption and acoustic damping capabilities. An accurate knowledge of the mechanical behavior of these materials, especially under dynamic loadings, is thus necessary. Unfortunately, metal foams and in general “soft” materials exhibit a series of peculiarities that make difficult the adoption of standard testing techniques for their high strain-rate characterization. This paper presents an innovative apparatus, where high strain-rate tests of metal foams or other soft materials can be performed by exploiting the operating principle of the Hopkinson bar methods. Using the pre-stress method to generate directly a long compression pulse (compared with traditional SHPB, a displacement of about 20 mm can be applied to the specimen with a single propagating wave, suitable for evaluating the whole stress-strain curve of medium-sized cell foams (pores of about 1–2 mm. The potential of this testing rig is shown in the characterization of a closed-cell aluminum foam, where all the above features are amply demonstrated.

  8. Measurement of the enthalpy and specific heat of a Be2C-graphite-UC2 reactor fuel material to 19800K

    International Nuclear Information System (INIS)

    Roth, E.P.

    1980-01-01

    The enthalpy and specific heat of a Be 2 C-graphite-UC 2 composite nuclear fuel material were measured over the temperature range 300 to 1980 0 K using differential scanning calorimetry and liquid argon vaporization calorimetry. The fuel material measured was developed at Sandia National Laboratories for use in pulsed test reactors. The material is a hot-pressed composite consisting of 40 vol % Be 2 C, 49.5 vol % graphite, 3.5 vol % UC 2 and 7.0 vol % void. The specific heat was measured with the differential scanning calorimeter over the temperature range 300 to 950 0 K while the enthalpy was measured over the range 1185 to 1980 0 K with the liquid argon vaporization calorimeter. The normal spectral emittance at a wavelength of 6.5 x 10 -5 cm was measured over the experimental temperature range. The combined experimental enthalpy data were fit using a spline routine and differentiated to give the specific heat. Comparison of the measured specific heat of the composite to the specific heat calculated by summing the contributions of the individual components indicates that the specific heat of the Be 2 C component differs significantly from literature values and is approximately 0.6 cal/g-K (2.5 x 10 3 J/Kg-K) for temperatures above 1000 0 K

  9. Probabilistic analysis of a materially nonlinear structure

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.; Fossum, A. F.

    1990-01-01

    A probabilistic finite element program is used to perform probabilistic analysis of a materially nonlinear structure. The program used in this study is NESSUS (Numerical Evaluation of Stochastic Structure Under Stress), under development at Southwest Research Institute. The cumulative distribution function (CDF) of the radial stress of a thick-walled cylinder under internal pressure is computed and compared with the analytical solution. In addition, sensitivity factors showing the relative importance of the input random variables are calculated. Significant plasticity is present in this problem and has a pronounced effect on the probabilistic results. The random input variables are the material yield stress and internal pressure with Weibull and normal distributions, respectively. The results verify the ability of NESSUS to compute the CDF and sensitivity factors of a materially nonlinear structure. In addition, the ability of the Advanced Mean Value (AMV) procedure to assess the probabilistic behavior of structures which exhibit a highly nonlinear response is shown. Thus, the AMV procedure can be applied with confidence to other structures which exhibit nonlinear behavior.

  10. Penetration testing using mobile devices

    CSIR Research Space (South Africa)

    Shelembe, S

    2012-10-01

    Full Text Available et.al, 2006) ? An attempt to compromise the security of the mechanism undergoing the test, it can be host or network based (Fiocca, 2009) Difference: pen-testing and hacking is permission Its purpose is to find system vulnerabilities ? CSIR 2012... is not enough, cell-phones can hack too ? Pocket sized device is more convenient, since it is easy to carry around at anytime ? A power plug is not innocent, need to look for activity other than just traditional PCs / devices ? CSIR 2012 Slide 6 Mobile...

  11. Method and device for materials testing making use of the Doppler effect in nuclear gamma spectra

    International Nuclear Information System (INIS)

    Hauser, U.; Pietsch, W.; Neuwirth, W.

    1977-01-01

    A sample to be tested, e.g. steel or petroleum, is irradiated with isotropically incident 14MeV neutrons or thermal neutrons from a neutron generator. If the sample contains C,N,O,F,Na, or Mg, natural or implanted, the neutrons produce recoil nuclei excited by inelastic scattering or the (n,α) process. Their excitation energy is emitted in the form of γ quanta. The Doppler spectrum obtained with the aid of a gamma spectrometer yields information on the microstructure of the sample via the differential energy losses. (ORU) [de

  12. Evaluating the Potential for Marine and Hydrokinetic Devices to Act As Artificial Reefs or Fish Aggregating Devices

    Science.gov (United States)

    Kramer, S.; Nelson, P.

    2016-02-01

    Wave energy converters (WECs) and tidal energy converters (TECs) are only beginning to be deployed along the U.S. West Coast and in Hawai'i, and a better understanding of their ecological effects on fish, particularly on special status fish is needed to facilitate project siting, design and environmental permitting. The structures of WECs and TECs placed on to the seabed, such as anchors and foundations, may function as artificial reefs that attract reef associated fishes, while the midwater and surface structures, such as mooring lines, buoys, and wave or tidal power devices, may function as fish aggregating devices (FADs). We evaluated these potential ecological interactions by comparing them to surrogate structures, such as artificial reefs, natural reefs, kelp vegetation, floating and sunken debris, oil and gas platforms, anchored FADs deployed to enhance fishing opportunities, net cages used for mariculture, and piers and marinas. We also conducted guided discussions with scientists and resource managers to provide unpublished observations. Our findings indicate the structures of WECs and TECs placed on or near the seabed in coastal waters of the U.S. West Coast and Hawai`i likely will function as small scale artificial reefs and attract potentially high densities of reef associated fishes and the midwater and surface structures of WECs placed in the tropical waters of Hawai`i likely will function as de facto FADs.

  13. Structural characterization of amorphous materials applied to low-k organosilicate materials

    Energy Technology Data Exchange (ETDEWEB)

    Raymunt, Alexandra Cooper, E-mail: amc442@cornell.edu; Clancy, Paulette

    2014-07-01

    We present a methodology to create computational atomistic-level models of porous amorphous materials, in particular, an organosilicate structure for ultra-low dielectric constant (ULK) materials known as “SiCOH.” The method combines the ability to satisfy geometric and chemical constraints with subsequent molecular dynamics (MD) techniques as a way to capture the complexities of the porous and amorphous nature of these materials. The motivation for studying ULK materials arises from a desire to understand the origin of the material's weak mechanical properties. The first step towards understanding how these materials might behave under processing conditions that are intended to improve their mechanical properties is to develop a suitable computational model of the material and hence is the focus of this paper. We define the atomic-scale topology of ULK materials that have been produced by chemical vapor deposition-like experimental techniques. Specifically, we have developed a method of defining the initial atom configurations and interactions, as well as a method to rearrange these starting configurations into relaxed structures. The main advantage of our described approach is the ability of our structure generation method to maintain a random distribution of relevant structural motifs throughout the structure, without relying on large unit cells and periodic boundaries to approximate the behavior of this complex material. The minimization of the different models was accomplished using replica exchange molecular dynamics (REMD). Following the generation of the ‘equilibrium’ configurations that result from REMD for a ULK material of a pre-specified composition, we demonstrate that its structural properties, including bonding topology, porosity and pore size distribution are similar to experimentally used ULK materials. - Highlights: • Method for creating a model of a low dielectric constant organosilicate material • Method of defining porosity in

  14. A new tensile impact test for the toughness characterization of sheet material

    Science.gov (United States)

    Könemann, Markus; Lenz, David; Brinnel, Victoria; Münstermann, Sebastian

    2018-05-01

    In the past, the selection of suitable steels has been carried out primarily based on the mechanical properties of different steels. One of these properties is the resistance against crack propagation. For many constructions, this value plays an important role, because it can compare the impact toughness of different steel grades easily and gives information about the loading capacity of the specific materials. For thin sheets, impact toughness properties were usually not considered. One of the reasons for this is that the Charpy-impact test is not applicable for sheets with thicknesses below 2 mm. For a long time, this was not relevant because conventional steels had a sufficient impact toughness in a wide temperature range. However, since new multiphase steel grades with improved mechanical property exploitations are available, it turned out that impact toughness properties need to be considered during the component design phase, as the activation of the cleavage fracture mechanism is observed under challenging loading conditions. Therefore, this work aims to provide a new and practical testing procedure for sheet material or thin walled structures. The new testing procedure is based on tensile tests conducted in an impact pendulum similar to the Charpy impact hammer. A new standard geometry is provided, which enables a comparison between different steels or steel grades. A connection to the conventional Charpy test is presented using a damage mechanics model, which predicts material failure with consideration of to the stress state at various temperatures. Different specimen geometries are analysed to cover manifold stress states. A special advantage of the damage mechanics model is also the possibility to predict the materials behaviour in the transition area. To verify the method a conventional steel was tested in Charpy tests as well as in the new tensile impact test.

  15. Investigation of laboratory test procedures for assessing the structural capacity of geogrid-reinforced aggregate base materials.

    Science.gov (United States)

    2015-04-01

    The objective of this research was to identify a laboratory test method that can be used to quantify improvements in structural capacity of aggregate base materials reinforced with geogrid. For this research, National Cooperative Highway Research Pro...

  16. Fun During Knee Rehabilitation: Feasibility and Acceptability Testing of a New Android-Based Training Device.

    Science.gov (United States)

    Weber-Spickschen, Thomas Sanjay; Colcuc, Christian; Hanke, Alexander; Clausen, Jan-Dierk; James, Paul Abraham; Horstmann, Hauke

    2017-01-01

    The initial goals of rehabilitation after knee injuries and operations are to achieve full knee extension and to activate quadriceps muscle. In addition to regular physiotherapy, an android-based knee training device is designed to help patients achieve these goals and improve compliance in the early rehabilitation period. This knee training device combines fun in a computer game with muscular training or rehabilitation. Our aim was to test the feasibility and acceptability of this new device. 50 volunteered subjects enrolled to test out the computer game aided device. The first game was the high-striker game, which recorded maximum knee extension power. The second game involved controlling quadriceps muscular power to simulate flying an aeroplane in order to record accuracy of muscle activation. The subjects evaluated this game by completing a simple questionnaire. No technical problem was encountered during the usage of this device. No subjects complained of any discomfort after using this device. Measurements including maximum knee extension power, knee muscle activation and control were recorded successfully. Subjects rated their experience with the device as either excellent or very good and agreed that the device can motivate and monitor the progress of knee rehabilitation training. To the best of our knowledge, this is the first android-based tool available to fast track knee rehabilitation training. All subjects gave very positive feedback to this computer game aided knee device.

  17. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Science.gov (United States)

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  18. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    Directory of Open Access Journals (Sweden)

    Sofia Paulo

    2016-08-01

    Full Text Available Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV. Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance.

  19. A Comparative Study of Multi-material Data Structures for Computational Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Rao Veerabhadra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-31

    The data structures used to represent the multi-material state of a computational physics application can have a drastic impact on the performance of the application. We look at efficient data structures for sparse applications where there may be many materials, but only one or few in most computational cells. We develop simple performance models for use in selecting possible data structures and programming patterns. We verify the analytic models of performance through a small test program of the representative cases.

  20. In-Pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2013-12-01

    For many years, the increase in efficiency in the production of nuclear electricity has been an economic challenge in many countries which have developed this kind of energy. The increase in fuel burnup and fuel residence time leads to a reduction in the volume of fresh fuel loaded and spent fuel discharged, respectively. More demanding nuclear fuel cycle parameters are combined with a need to operate nuclear power plants with maximal availability and load factors, in load-follow mode and with longer fuel cycles. In meeting these requirements, fuel has to operate in a demanding environment of high radiation fields, high temperatures, high mechanical stresses and high coolant flow. Requirements of increased fuel reliability and minimal fuel failures also remain in force. Under such circumstances, continuous development of more radiation resistant fuel materials, especially advanced cladding, careful and incremental examinations, and improved understanding and modelling of high burnup fuel behaviour are required. Following a recommendation of the IAEA Technical Working Group on Fuel Performance and Technology, the Technical Meeting on In-pile Testing and Instrumentation for Development of Generation-IV Fuels and Materials was held in Halden, Norway, on 21-24 August 2012. The purpose of the meeting was to review the current status and the progress in methods and technologies used for the in-pile testing of nuclear fuel achieved since the previous IAEA meeting on In-core Instrumentation and Reactor Core Assessment, also held in Halden in 2007. Emphasis was placed on advanced techniques applied for the understanding of high burnup fuel behaviour of water cooled power reactors that represent the vast majority of the current nuclear reactor fleet. However, the meeting also included papers and discussion on testing techniques applied or developed specifically for new fuel and structural materials considered for Generation-IV systems. The meeting was attended by 43

  1. Power Cycling Test Method for Reliability Assessment of Power Device Modules in Respect to Temperature Stress

    DEFF Research Database (Denmark)

    Choi, Ui-Min; Blaabjerg, Frede; Jørgensen, Søren

    2018-01-01

    Power cycling test is one of the important tasks to investigate the reliability performance of power device modules in respect to temperature stress. From this, it is able to predict the lifetime of a component in power converters. In this paper, representative power cycling test circuits......, measurement circuits of wear-out failure indicators as well as measurement strategies for different power cycling test circuits are discussed in order to provide the current state of knowledge of this topic by organizing and evaluating current literature. In the first section of this paper, the structure...... of a conventional power device module and its related wear-out failure mechanisms with degradation indicators are discussed. Then, representative power cycling test circuits are introduced. Furthermore, on-state collector-emitter voltage (VCE ON) and forward voltage (VF) measurement circuits for wear-out condition...

  2. Institutional and structural barriers to HIV testing: elements for a theoretical framework.

    Science.gov (United States)

    Meyerson, Beth; Barnes, Priscilla; Emetu, Roberta; Bailey, Marlon; Ohmit, Anita; Gillespie, Anthony

    2014-01-01

    Stigma is a barrier to HIV health seeking, but little is known about institutional and structural expressions of stigma in HIV testing. This study examines evidence of institutional and structural stigma in the HIV testing process. A qualitative, grounded theory study was conducted using secondary data from a 2011 HIV test site evaluation data in a Midwestern, moderate HIV incidence state. Expressions of structural and institutional stigma were found with over half of the testing sites and at three stages of the HIV testing visit. Examples of structural stigma included social geography, organization, and staff behavior at first encounter and reception, and staff behavior when experiencing the actual HIV test. Institutional stigma was socially expressed through staff behavior at entry/reception and when experiencing the HIV test. The emerging elements demonstrate the potential compounding of stigma experiences with deleterious effect. Study findings may inform future development of a theoretical framework. In practice, findings can guide organizations seeking to reduce HIV testing barriers, as they provide a window into how test seekers experience HIV test sites at first encounter, entry/reception, and at testing stages; and can identify how stigma might be intensified by structural and institutional expressions.

  3. Device for the separation of spherically shaped fuel or breeding material particles for nuclear reactors

    International Nuclear Information System (INIS)

    Gyarmati, E.; Muenzer, R.

    1974-01-01

    Spherical fuel or blanket material particles are graded by diameter. The particles, which are present in a loose pebble bed, are singulized by means of a drum and by pneumatic suction. Next they pass through a drop section past an optical barrier which generates pulses corresponding to the number of particles. The particles then run through an eccentric wheel. This generates an electric voltage across a potentiometer which corresponds to the size of the particles. The slider of the potentiometer is connected with the axle of the eccentric wheel whose distance to the wall of the drop canal varies between the largest and the smallest possible diameters of the particles over half a revolution. Another barrier downstream of the eccentric wheel causes the particles to be graded in different containers in accordance with their diameters determined in this way. (DG) [de

  4. Immunodiagnosis of paracoccidioidomycosis due to Paracoccidioides brasiliensis using a latex test: detection of specific antibody anti-gp43 and specific antigen gp43.

    Directory of Open Access Journals (Sweden)

    Priscila Oliveira Dos Santos

    2015-02-01

    Full Text Available Paracoccidioidomycosis (PCM is a life-threatening systemic disease and is a neglected public health problem in many endemic regions of Latin America. Though several diagnostic methods are available, almost all of them present with some limitations.A latex immunoassay using sensitized latex particles (SLPs with gp43 antigen, the immunodominant antigen of Paracoccidioides brasiliensis, or the monoclonal antibody mAb17c (anti-gp43 was evaluated for antibody or antigen detection in sera, cerebrospinal fluid (CSF, and bronchoalveolar lavage (BAL from patients with PCM due to P. brasiliensis. The gp43-SLPs performed optimally to detect specific antibodies with high levels of sensitivity (98.46%, 95% CI 91.7-100.0, specificity (93.94%, 95% CI 87.3-97.7, and positive (91.4% and negative (98.9% predictive values. In addition, we propose the use of mAb17c-SLPs to detect circulating gp43, which would be particularly important in patients with immune deficiencies who fail to produce normal levels of immunoglobulins, achieving good levels of sensitivity (96.92%, 95% CI 89.3-99.6, specificity (88.89%, 95% CI 81.0-94.3, and positive (85.1% and negative (97.8% predictive values. Very good agreement between latex tests and double immune diffusion was observed for gp43-SLPs (k = 0.924 and mAb17c-SLPs (k = 0.850, which reinforces the usefulness of our tests for the rapid diagnosis of PCM in less than 10 minutes. Minor cross-reactivity occurred with sera from patients with other fungal infections. We successfully detected antigens and antibodies from CSF and BAL samples. In addition, the latex test was useful for monitoring PCM patients receiving therapy.The high diagnostic accuracy, low cost, reduced assay time, and simplicity of this new latex test offer the potential to be commercialized and makes it an attractive diagnostic assay for use not only in clinics and medical mycology laboratories, but mainly in remote locations with limited laboratory infrastructure

  5. Destructive vibration test of a concrete structure

    International Nuclear Information System (INIS)

    Chen, C.K.; Czarnecki, R.M.; Scholl, R.E.

    1977-01-01

    Two identical full-scale 4-story reinforced concrete structures were built in 1965-1966 at the Nevada Test Site to investigate their dynamic response behavior to underground nuclear explosions. For eight years following their construction, the structures were the subject of a continuing program of vibration testing, and substantial data has been collected on the elastic response of these structures. In 1974 it was decided to conduct a high-amplitude vibration test that would cause the south structure (free of partitions) to deform beyond its elastic limit and cause major structural damage. Results of the 1974 testing program are summarized

  6. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  7. Neutron diffraction potentialities at the IBR-2 pulsed reactor for nondestructive testing of structural materials

    International Nuclear Information System (INIS)

    Balagurov, A.M.; Bokuchava, G.D.; Papushkin, I.V.; Sumin, V.V.; Venter, A.M.

    2010-01-01

    Neutron diffraction is widely used for investigations of residual and applied stresses in bulk materials and components. The most important factor in these investigations is the high penetration depth of neutrons (up to 2 cm for steel). At the IBR-2 pulsed reactor in Dubna the Fourier stress diffractometer (FSD) has been constructed to optimize the internal stress measurements. The FSD design satisfies the requirements of high luminosity, high resolution and specific sample environment. The collimator system guarantees a minimum gauge volume of 2x2x2 mm. A mechanical testing machine allows in-situ tension or compression measurements up to a load of 20 kN and sample temperatures up to 800 deg C. In the paper the current status of FSD is reported and potentialities are demonstrated with several examples of investigations performed

  8. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Specific Case of Perovskites/Silicon Devices

    KAUST Repository

    Dupre, Olivier; Niesen, Bjö rn; De Wolf, Stefaan; Ballif, Christophe

    2018-01-01

    efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional

  9. Mobility Device Quality Affects Participation Outcomes for People With Disabilities: A Structural Equation Modeling Analysis.

    Science.gov (United States)

    Magasi, Susan; Wong, Alex; Miskovic, Ana; Tulsky, David; Heinemann, Allen W

    2018-01-01

    To test the effect that indicators of mobility device quality have on participation outcomes in community-dwelling adults with spinal cord injury, traumatic brain injury, and stroke by using structural equation modeling. Survey, cross-sectional study, and model testing. Clinical research space at 2 academic medical centers and 1 free-standing rehabilitation hospital. Community-dwelling adults (N=250; mean age, 48±14.3y) with spinal cord injury, traumatic brain injury, and stroke. Not applicable. The Mobility Device Impact Scale, Patient-Reported Outcomes Measurement Information System Social Function (version 2.0) scale, including Ability to Participate in Social Roles and Activities and Satisfaction with Social Roles and Activities, and the 2 Community Participation Indicators' enfranchisement scales. Details about device quality (reparability, reliability, ease of maintenance) and device type were also collected. Respondents used ambulation aids (30%), manual (34%), and power wheelchairs (30%). Indicators of device quality had a moderating effect on participation outcomes, with 3 device quality variables (repairability, ease of maintenance, device reliability) accounting for 20% of the variance in participation. Wheelchair users reported lower participation enfranchisement than did ambulation aid users. Mobility device quality plays an important role in participation outcomes. It is critical that people have access to mobility devices and that these devices be reliable. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. THE REACTION TO FIRE TEST FOR FIRE RETARDANT AND FOR COMBUSTIBLE MATERIAL

    Directory of Open Access Journals (Sweden)

    Adelaida FANFAROVÁ

    2016-12-01

    Full Text Available Currently the natural materials become popular building material for houses, buildings and recreational property. The risk of fires in residential timber construction or eco houses cannot be completely ruled out, therefore there is a need for proper and correct implementing preventive measures and application of all available solutions, which may reduce the risk of fire as far as possible, to slow down the combustion process, to protect the life of people, animals and also the building itself until arrival members of the Fire and Rescue Services. Fireproofing of combustible materials is a specific area of fire protection. For scientific research as well as for real-life practice, not only their structural and physical properties, but also fire-technical characteristics are really important. The present researchers mostly focus on fire-retardant treatment of wood that is why the authors of this contribution focused on a different combustible material. This research article presents the experimental testing and examination of the reaction to fire test of the selected thermal insulation of hemp fiber that was impregnated by the selected fire retardant in laboratory conditions.

  11. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Science.gov (United States)

    Gabryś, Katarzyna; Sas, Wojciech; Soból, Emil; Głuchowski, Andrzej

    2016-12-01

    From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  12. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

    Directory of Open Access Journals (Sweden)

    Gabryś Katarzyna

    2016-12-01

    Full Text Available From the viewpoint of environmental preservation and effective utilization of resources, it is beneficial and necessary to reuse wastes, for example, concrete, as the recycled aggregates for new materials. In this work, the dynamic behavior of such aggregates under low frequency torsional loading is studied. Results show that the properties of such artificial soils match with those reported in the literature for specific natural soils.

  13. Process and device for stage by stage enrichment of deuterium and/or tritium in a material suitable for isotope exchange of deuterium and tritium with hydrogen

    International Nuclear Information System (INIS)

    Iniotakis, N.; Decken, C.B. von der.

    1983-01-01

    Water containing deuterium and/or tritium is first introduced into a carrier gas flow and reduced for the stage by stage enrichment of deuterium and/or tritium. A hydrogen partial pressure of a maximum of 100 millibar is set in the carrier gas flow. The carrier gas flow is taken along the primary side of an exchange wall suitable for the permeation of hydrogen, and a further carrier gas flow flows on its secondary side, which contains water or hydrogen. Reaction products formed after isotope exchange of deuterium and/or tritium with hydrogen are removed by the secondary carrier gas flow. (orig./HP) [de

  14. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  15. New Layered Materials and Functional Nanoelectronic Devices

    Science.gov (United States)

    Yu, Jaeeun

    This thesis introduces functional nanomaterials including superatoms and carbon nanotubes (CNTs) for new layered solids and molecular devices. Chapters 1-3 present how we incorporate superatoms into two-dimensional (2D) materials. Chapter 1 describes a new and simple approach to dope transition metal dichalcogenides (TMDCs) using the superatom Co6Se8(PEt3)6 as the electron dopant. Doping is an effective method to modulate the electrical properties of materials, and we demonstrate an electron-rich cluster can be used as a tunable and controllable surface dopant for semiconducting TMDCs via charge transfer. As a demonstration of the concept, we make a p-n junction by patterning on specific areas of TMDC films. Chapter 2 and Chapter 3 introduce new 2D materials by molecular design of superatoms. Traditional atomic van der Waals materials such as graphene, hexagonal boron-nitride, and TMDCs have received widespread attention due to the wealth of unusual physical and chemical behaviors that arise when charges, spins, and vibrations are confined to a plane. Though not as widespread as their atomic counterparts, molecule-based layered solids offer significant benefits; their structural flexibility will enable the development of materials with tunable properties. Chapter 2 describes a layered van der Waals solid self-assembled from a structure-directing building block and C60 fullerene. The resulting crystalline solid contains a corrugated monolayer of neutral fullerenes and can be mechanically exfoliated. Chapter 3 describes a new method to functionalize electroactive superatoms with groups that can direct their assembly into covalent and non-covalent multi-dimensional frameworks. We synthesized Co6Se8[PEt2(4-C6H4COOH)]6 and found that it forms two types of crystalline assemblies with Zn(NO3)2, one is a three-dimensional solid and the other consists of stacked layers of two-dimensional sheets. The dimensionality is controlled by subtle changes in reaction conditions. CNT

  16. Structured flowcharts for control logic specification in the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Nielson, C.W.; Claborn, G.W.

    1983-01-01

    The Tritium Systems Test Assembly (TSTA) contains several subsystems employing sophisticated chemical and physical processes to purify, transport, and capture the isotopes of hydrogen. The ultimate responsibility for the correct and safe operation of these subsystems lies with their designers. However, the logic is implemented in a computer system with program control. A means to insure unambiguous specification of the control logic in a form understandable to both the non-programming designers and the software staff was required. The computer programs are written in RATFOR, a language providing clear control structures and powerful symbol definition facilities. However, the actual code was considered unsatisfactory as a means of primary specification by the non-programming designers. On the other hand, simple English language descriptions of the desired behavior were not precise enough to insure correctness. Experimentation with traditional flowcharts proved that they were more difficult to follow than the RATFOR code. On the other hand, the use of structured flowcharts derived from those introduced by Nassi and Shneidermanl have proven to be very powerful. Using simple geometric forms for the basic control structures such as loops and conditional tests, and by using expansion rather than connection as the means of reducing any flowchart to a single page, a specification that is both understandable and precise has been obtained. A computer code automates the production and modification of these flowcharts. Combining these flowcharts with primitive subroutines which hide most of the details of control implementation has provided an effective medium for algorithm specification and validation. Examples of the flowcharts and the language used to specify them will be given

  17. Development of a handmade device for collimation and central ray alignment tests in medical X-ray equipment

    International Nuclear Information System (INIS)

    Cruz, B.L. da; Brito, E.B.; Gomes, A.S.

    2017-01-01

    Ordinance 453/98 of the Ministry of Health establishes that medical X-ray equipment should be monitored by tests that prove its efficiency. This practice is called quality control (QC), and two important tests jointly evaluate the operation of the collimation and alignment systems of the central axis of the X-ray beam. The low supply and the high cost generate allegations of difficulties in the periodic realization of the tests. The aim of this work is to design, make and evaluate the performance of a handmade device for the mentioned tests, using low cost materials. Once built, the device had its performance evaluated and compared with the traditionally marketed device. The handmade device proved to be fit in its functions. It is possible to make a device that tests X-ray medical equipment, using the radiology technologist himself as the test runner. Radiation protection is promoted and legislation with no real financial burden

  18. Single event upset test structures for digital CMOS application specific integrated circuits

    International Nuclear Information System (INIS)

    Baze, M.P.; Bartholet, W.G.; Braatz, J.C.; Dao, T.A.

    1993-01-01

    An approach has been developed for the design and utilization of SEU test structures for digital CMOS ASICs. This approach minimizes the number of test structures required by categorizing ASIC library cells according to their SEU response and designing a structure to characterize each response for each category. Critical SEU response parameters extracted from these structures are used to evaluate the SEU hardness of ASIC libraries and predict the hardness of ASIC chips

  19. A New Approach to the Computer Modeling of Amorphous Nanoporous Structures of Semiconducting and Metallic Materials: A Review

    Science.gov (United States)

    Romero, Cristina; Noyola, Juan C.; Santiago, Ulises; Valladares, Renela M.; Valladares, Alexander; Valladares, Ariel A.

    2010-01-01

    We review our approach to the generation of nanoporous materials, both semiconducting and metallic, which leads to the existence of nanopores within the bulk structure. This method, which we have named as the expanding lattice method, is a novel transferable approach which consists first of constructing crystalline supercells with a large number of atoms and a density close to the real value and then lowering the density by increasing the volume. The resulting supercells are subjected to either ab initio or parameterized—Tersoff-based—molecular dynamics processes at various temperatures, all below the corresponding bulk melting points, followed by geometry relaxations. The resulting samples are essentially amorphous and display pores along some of the “crystallographic” directions without the need of incorporating ad hoc semiconducting atomic structural elements such as graphene-like sheets and/or chain-like patterns (reconstructive simulations) or of reproducing the experimental processes (mimetic simulations). We report radial (pair) distribution functions, nanoporous structures of C and Si, and some computational predictions for their vibrational density of states. We present numerical estimates and discuss possible applications of semiconducting materials for hydrogen storage in potential fuel tanks. Nanopore structures for metallic elements like Al and Au also obtained through the expanding lattice method are reported.

  20. Variation of a test's sensitivity and specificity with disease prevalence.

    Science.gov (United States)

    Leeflang, Mariska M G; Rutjes, Anne W S; Reitsma, Johannes B; Hooft, Lotty; Bossuyt, Patrick M M

    2013-08-06

    Anecdotal evidence suggests that the sensitivity and specificity of a diagnostic test may vary with disease prevalence. Our objective was to investigate the associations between disease prevalence and test sensitivity and specificity using studies of diagnostic accuracy. We used data from 23 meta-analyses, each of which included 10-39 studies (416 total). The median prevalence per review ranged from 1% to 77%. We evaluated the effects of prevalence on sensitivity and specificity using a bivariate random-effects model for each meta-analysis, with prevalence as a covariate. We estimated the overall effect of prevalence by pooling the effects using the inverse variance method. Within a given review, a change in prevalence from the lowest to highest value resulted in a corresponding change in sensitivity or specificity from 0 to 40 percentage points. This effect was statistically significant (p disease prevalence; there was no such systematic effect for sensitivity. The sensitivity and specificity of a test often vary with disease prevalence; this effect is likely to be the result of mechanisms, such as patient spectrum, that affect prevalence, sensitivity and specificity. Because it may be difficult to identify such mechanisms, clinicians should use prevalence as a guide when selecting studies that most closely match their situation.

  1. A comprehensive test specification for pulse fission counters

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, D L [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)

    1962-02-15

    The following test specification is based on the memorandum AERE - M 728 which it now replaces It contains a standard acceptance test procedure for the many U.K.A.E.A, designed pulse fission counters now commercially available. This test specification may be used for any pulse fission counter provided a specification sheet as shown in Appendix 3 is supplied to the contractor quoting this report and including specified values for the measured quantities. (author)

  2. Introduction to non-destructive testing of materials: part II

    International Nuclear Information System (INIS)

    Ahmed, M.; Ahmed, B.

    2001-01-01

    Ultrasonic waves are mechanical vibrations that require a medium, which functions as carrier. Ultrasonics are widely used in non-destructive testing of materials in which high frequency sound waves are introduced into the material being inspected. If the frequency of sound waves in within the range 10 to 20,000 Hz, the sound is audible, i.e. the range of hearing, above 20,000 Hz, the sound waves are referred to as Ultrasound or Ultrasonics. Sound waves do not cause any permanent change in material although its transient presence is very noticeable. An energy transport through a sound wave is possible only when constituent particles are connected to each other by elastic forces. Liquids and Gases are also suitable media for the transmission of sound. In vacuum no matter exists and thus no sound transmission is possible. At the end of this article advantages and limitations of ultrasonic testing are also given. (A.B.)

  3. Bridge to transplantation using paracorporeal biventricular assist devices or the syncardia temporary total artificial heart: is there a difference?

    Science.gov (United States)

    Nguyen, A; Pozzi, M; Mastroianni, C; Léger, P; Loisance, D; Pavie, A; Leprince, P; Kirsch, M

    2015-06-01

    Biventricular support can be achieved using paracorporeal ventricular assist devices (p-BiVAD) or the Syncardia temporary total artificial heart (t-TAH). The purpose of the present study was to compare survival and morbidity between these devices. Data from 2 French neighboring hospitals were reviewed. Between 1996 and 2009, 148 patients (67 p-BiVADs and 81 t-TAH) underwent primary, planned biventricular support. There were 128 (86%) males aged 44±13 years. Preoperatively, p-BiVAD recipients had significantly lower systolic and diastolic blood pressures, more severe hepatic cytolysis and higher white blood cell counts than t-TAH recipients. In contrast, t-TAH patients had significantly higher rates of pre-implant ECLS and hemofiltration. Mean support duration was 79±100 days for the p-BiVAD group and 71±92 for t-TAH group (P=0.6). Forty two (63%) p-BiVAD recipients were bridged to transplantation (39, 58%) or recovery (3, 5%), whereas 51 (63%) patients underwent transplantation in the t-TAH group. Death on support was similar between groups (p-BiVAD, 26 (39%); t-TAH, 30 (37%); P=0.87). Survival while on device was not significantly different between patient groups and multivariate analysis showed that only preimplant diastolic blood pressure and alanine amino-transferase levels were significant predictors of death. Post-transplant survival in the p-BiVAD group was 76±7%, 70±8%, and 58±9% at 1, 3, and 5 years after transplantation, respectively, and was similar to that of the t-TAH group (77±6%, 72±6%, and 70±7%, P=0.60). Survival while on support and up to 5 years after heart transplantation was not significantly different in patients supported by p-BiVADs or t-TAH. Multivariate analysis revealed that survival while on transplantation was not affected by the type of device implanted.

  4. Guided wave radiation in a finite-sized metallic or composite plate-like structure for its nondestructive testing

    International Nuclear Information System (INIS)

    Stevenin, Mathilde

    2016-01-01

    Different models are developed to provide generic tools for simulating nondestructive methods relying on elastic guided waves applied to metallic or composite plates. Various inspection methods of these structures exist or are under study. Most of them make use of ultrasonic sources of finite size; all are sensitive to reflection phenomena resulting from the finite size of the monitored objects. The developed models deal with transducer diffraction effects and edge reflection. As the interpretation of signals measured in guided wave inspection often uses the concept of modes, the models themselves are explicitly modal. The case of isotropic plates (metal) and anisotropic (multilayer composites) are considered; a general approach under the stationary phase approximation allows us to consider all the cases of interest. For the first, the validity of a Fraunhofer-like approximation leads to a very efficient computation of the direct and reflected fields radiated by a source. For the second, special attention is paid to the treatment of caustics. The stationary phase approximation being difficult to generalize, a model (so-called 'pencil model') of more geometrical nature is proposed with a high degree of genericity. It chains terms of isotropic or anisotropic propagation and terms of interaction with a boundary. The equivalence of the stationary phase approximation and the pencil model is demonstrated in the case of the radiation and reflection in an isotropic plate, for which an experimental validation is proceeded. (author) [fr

  5. Stochasticity in materials structure, properties, and processing—A review

    Science.gov (United States)

    Hull, Robert; Keblinski, Pawel; Lewis, Dan; Maniatty, Antoinette; Meunier, Vincent; Oberai, Assad A.; Picu, Catalin R.; Samuel, Johnson; Shephard, Mark S.; Tomozawa, Minoru; Vashishth, Deepak; Zhang, Shengbai

    2018-03-01

    We review the concept of stochasticity—i.e., unpredictable or uncontrolled fluctuations in structure, chemistry, or kinetic processes—in materials. We first define six broad classes of stochasticity: equilibrium (thermodynamic) fluctuations; structural/compositional fluctuations; kinetic fluctuations; frustration and degeneracy; imprecision in measurements; and stochasticity in modeling and simulation. In this review, we focus on the first four classes that are inherent to materials phenomena. We next develop a mathematical framework for describing materials stochasticity and then show how it can be broadly applied to these four materials-related stochastic classes. In subsequent sections, we describe structural and compositional fluctuations at small length scales that modify material properties and behavior at larger length scales; systems with engineered fluctuations, concentrating primarily on composite materials; systems in which stochasticity is developed through nucleation and kinetic phenomena; and configurations in which constraints in a given system prevent it from attaining its ground state and cause it to attain several, equally likely (degenerate) states. We next describe how stochasticity in these processes results in variations in physical properties and how these variations are then accentuated by—or amplify—stochasticity in processing and manufacturing procedures. In summary, the origins of materials stochasticity, the degree to which it can be predicted and/or controlled, and the possibility of using stochastic descriptions of materials structure, properties, and processing as a new degree of freedom in materials design are described.

  6. Impaired memory for material related to a problem solved prior to encoding: suppression at learning or interference at recall?

    Science.gov (United States)

    Kowalczyk, Marek

    2017-07-01

    Earlier research by the author revealed that material encoded incidentally in a speeded affective classification task and related to the demands of a divergent problem tends to be recalled worse in participants who solved the problem prior to encoding than in participants in the control, no-problem condition. The aim of the present experiment was to replicate this effect with a new, size-comparison orienting task, and to test for possible mechanisms of impaired recall. Participants either solved a problem before the orienting task or not, and classified each item in this task either once or three times. There was a reliable effect of impaired recall of problem-related items in the repetition condition, but not in the no-repetition condition. Solving the problem did not influence repetition priming for these items. These results support an account that attributes the impaired recall to inhibitory processes at learning and speak against a proactive interference explanation. However, they can be also accommodated by an account that refers to inefficient context cues and competitor interference at retrieval.

  7. Are ultrasound-guided ophthalmic blocks injurious to the eye? A comparative rabbit model study of two ultrasound devices evaluating intraorbital thermal and structural changes.

    Science.gov (United States)

    Palte, Howard D; Gayer, Steven; Arrieta, Esdras; Scot Shaw, Eric; Nose, Izuru; Lee, Elizabete; Arheart, Kristopher L; Dubovy, Sander; Birnbach, David J; Parel, Jean-Marie

    2012-07-01

    Since Atkinson's original description of retrobulbar block in 1936, needle-based anesthetic techniques have become integral to ophthalmic anesthesia. These techniques are unfortunately associated with rare, grave complications such as globe perforation. Ultrasound has gained widespread acceptance for peripheral nerve blockade, but its translation to ocular anesthesia has been hampered because sonic energy, in the guise of thermal or biomechanical insult, is potentially injurious to vulnerable eye tissue. The US Food and Drug Administration (FDA) has defined guidelines for safe use of ultrasound for ophthalmic examination, but most ultrasound devices used by anesthesiologists are not FDA-approved for ocular application because they generate excessive energy. Regulating agencies state that ultrasound examinations can be safely undertaken as long as tissue temperatures do not increase >1.5°C above physiological levels. Using a rabbit model, we investigated the thermal and mechanical ocular effects after prolonged ultrasonic exposure to single orbital- and nonorbital-rated devices. In a dual-phase study, aimed at detecting ocular injury, the eyes of 8 rabbits were exposed to continuous 10-minute ultrasound examinations from 2 devices: (1) the Sonosite Micromaxx (nonorbital rated) and (2) the Sonomed VuMax (orbital rated) machines. In phase I, temperatures were continuously monitored via thermocouples implanted within specific eye structures (n = 4). In phase II the eyes were subjected to ultrasonic exposure without surgical intervention (n = 4). All eyes underwent light microscopy examinations, followed at different intervals by histology evaluations conducted by an ophthalmic pathologist. Temperature changes were monitored in the eyes of 4 rabbits. The nonorbital-rated transducer produced increases in ocular tissue temperature that surpassed the safe limit (increases >1.5°C) in the lens of 3 rabbits (at 5.0, 5.5, and 1.5 minutes) and cornea of 2 rabbits (both at 1

  8. Nanoscale phase-change materials and devices

    International Nuclear Information System (INIS)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-01-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced. (topical review)

  9. Nanoscale phase-change materials and devices

    Science.gov (United States)

    Zheng, Qinghui; Wang, Yuxi; Zhu, Jia

    2017-06-01

    Phase-change materials (PCMs) that can reversibly transit between crystalline and amorphous phases have been widely used for data-storage and other functional devices. As PCMs scale down to nanoscale, the properties and transition procedures can vary, bringing both challenges and opportunities in scalability. This article describes the physical structures, properties and applications of nanoscale phase-change materials and devices. The limitations and performance of scaling properties in phase-change materials and the recent progress and challenges in phase-change devices are presented. At the end, some emerging applications related to phase-change materials are also introduced.

  10. Development of carbon/carbon composite control rod for HTTR. 2. Concept, specifications and mechanical test of materials

    International Nuclear Information System (INIS)

    Eto, Motokuni; Ishiyama, Shintaro; Fukaya, Kiyoshi; Saito, Tamotsu; Ishihara, Masahiro; Hanawa, Satoshi.

    1998-01-01

    A concept and specifications of carbon/carbon composite (C/C) control rod were proposed, aiming at the application of the material to the HTTR. The outer diameter and length of the control rod were kept as the same as those of the present control rod, i.e., 113 mm and 3094 mm, respectively. According to the concept, the rod consists of ten units which are connected in series using bolts. Then, the stresses generated by dead loads in the control rod elements were estimated and compared with the design strengths which were derived from the results of measurements of tensile, compressive, bending and shear strengths of two candidate materials, AC250 (Across Co.) and CX-270 (Toyo Tanso Co.). Design strength was preliminarily determined as one-third or one-fifth of the mean strength. Ratio of the design strength to generated stress for the AC250 (2D) was : Tensile stress in the outer sleeve tube, 66, tensile and shear stresses in the M16 bolt, 8.8 and 8.5, shear stress in the plug support bolt M8, 2.43. These results are believed to indicate the mechanical integrity of the control rod structure. Data available on the candidate materials were also compiled in the Appendix. (author)

  11. Carbon-Nanotube-Based Thermoelectric Materials and Devices.

    Science.gov (United States)

    Blackburn, Jeffrey L; Ferguson, Andrew J; Cho, Chungyeon; Grunlan, Jaime C

    2018-03-01

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g -1 ) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    Energy Technology Data Exchange (ETDEWEB)

    Maharaj, H.P., E-mail: H_P_Maharaj@hc-sc.gc.ca [Health Canada, Dept. of Health, Consumer and Clinical Radiaton Protection Bureau, Ottawa, Ontario (Canada)

    2016-03-15

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  13. Overview of a benefit/risk ratio optimized for a radiation emitting device used in non-destructive testing

    International Nuclear Information System (INIS)

    Maharaj, H.P.

    2016-01-01

    This paper aims to provide an overview of an optimized benefit/risk ratio for a radiation emitting device. The device, which is portable, hand-held, and open-beam x-ray tube based, is utilized by a wide variety of industries for purposes of determining elemental or chemical analyses of materials in-situ based on fluorescent x-rays. These analyses do not cause damage or permanent alteration of the test materials and are considered a non-destructive test (NDT). Briefly, the key characteristics, principles of use and radiation hazards associated with the Hay device are presented and discussed. In view of the potential radiation risks, a long term strategy that incorporates risk factors and guiding principles intended to mitigate the radiation risks to the end user was considered and applied. Consequently, an operator certification program was developed on the basis of an International Standards Organization (ISO) standard (ISO 20807:2004) and in collaboration with various stake holders and was implemented by a federal national NDT certification body several years ago. It comprises a written radiation safety examination and hands-on training with the x-ray device. The operator certification program was recently revised and the changes appear beneficial. There is a fivefold increase in operator certification (Levels 1 a nd 2) to date compared with earlier years. Results are favorable and promising. An operational guidance document is available to help mitigate radiation risks. Operator certification in conjunction with the use of the operational guidance document is prudent, and is recommended for end users of the x-ray device. Manufacturers and owners of the x-ray devices will also benefit from the operational guidance document. (author)

  14. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS.

    Energy Technology Data Exchange (ETDEWEB)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-02-02

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with

  15. A HUMAN RELIABILITY-CENTERED APPROACH TO THE DEVELOPMENT OF JOB AIDS FOR REVIEWERS OF MEDICAL DEVICES THAT USE RADIOLOGICAL BYPRODUCT MATERIALS

    International Nuclear Information System (INIS)

    COOPER, S.E.; BROWN, W.S.; WREATHALL, J.

    2005-01-01

    The U.S. Nuclear Regulatory Commission (NRC) is engaged in an initiative to risk-inform the regulation of byproduct materials. Operating experience indicates that human actions play a dominant role in most of the activities involving byproduct materials, which are radioactive materials other than those used in nuclear power plants or in weapons production, primarily for medical or industrial purposes. The overall risk of these activities is strongly influenced by human performance. Hence, an improved understanding of human error, its causes and contexts, and human reliability analysis (HRA) is important in risk-informing the regulation of these activities. The development of the human performance job aids was undertaken by stages, with frequent interaction with the prospective users. First, potentially risk significant human actions were identified based on reviews of available risk studies for byproduct material applications and of descriptions of events for byproduct materials applications that involved potentially significant human actions. Applications from the medical and the industrial domains were sampled. Next, the specific needs of the expected users of the human performance-related capabilities were determined. To do this, NRC headquarters and region staff were interviewed to identify the types of activities (e.g., license reviews, inspections, event assessments) that need HRA support and the form in which such support might best be offered. Because the range of byproduct uses regulated by NRC is so broad, it was decided that initial development of knowledge and tools would be undertaken in the context of a specific use of byproduct material, which was selected in consultation with NRC staff. Based on needs of NRC staff and the human performance related characteristics of the context chosen, knowledge resources were then compiled to support consideration of human performance issues related to the regulation of byproduct materials. Finally, with

  16. Carbon-Nanotube-Based Thermoelectric Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, Jeffrey L. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Ferguson, Andrew J. [Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden CO 80401-3305 USA; Cho, Chungyeon [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA; Grunlan, Jaime C. [Department of Mechanical Engineering, Texas A& M University, College Station TX 77843-3003 USA

    2018-01-22

    Conversion of waste heat to voltage has the potential to significantly reduce the carbon footprint of a number of critical energy sectors, such as the transportation and electricity-generation sectors, and manufacturing processes. Thermal energy is also an abundant low-flux source that can be harnessed to power portable/wearable electronic devices and critical components in remote off-grid locations. As such, a number of different inorganic and organic materials are being explored for their potential in thermoelectric-energy-harvesting devices. Carbon-based thermoelectric materials are particularly attractive due to their use of nontoxic, abundant source-materials, their amenability to high-throughput solution-phase fabrication routes, and the high specific energy (i.e., W g-1) enabled by their low mass. Single-walled carbon nanotubes (SWCNTs) represent a unique 1D carbon allotrope with structural, electrical, and thermal properties that enable efficient thermoelectric-energy conversion. Here, the progress made toward understanding the fundamental thermoelectric properties of SWCNTs, nanotube-based composites, and thermoelectric devices prepared from these materials is reviewed in detail. This progress illuminates the tremendous potential that carbon-nanotube-based materials and composites have for producing high-performance next-generation devices for thermoelectric-energy harvesting.

  17. Nonlinear dissipative devices in structural vibration control: A review

    Science.gov (United States)

    Lu, Zheng; Wang, Zixin; Zhou, Ying; Lu, Xilin

    2018-06-01

    Structural vibration is a common phenomenon existing in various engineering fields such as machinery, aerospace, and civil engineering. It should be noted that the effective suppression of structural vibration is conducive to enhancing machine performance, prolonging the service life of devices, and promoting the safety and comfort of structures. Conventional linear energy dissipative devices (linear dampers) are largely restricted for wider application owing to their low performance under certain conditions, such as the detuning effect of tuned mass dampers subjected to nonstationary excitations and the excessively large forces generated in linear viscous dampers at high velocities. Recently, nonlinear energy dissipative devices (nonlinear dampers) with broadband response and high robustness are being increasingly used in practical engineering. At the present stage, nonlinear dampers can be classified into three groups, namely nonlinear stiffness dampers, nonlinear-stiffness nonlinear-damping dampers, and nonlinear damping dampers. Corresponding to each nonlinear group, three types of nonlinear dampers that are widely utilized in practical engineering are reviewed in this paper: the nonlinear energy sink (NES), particle impact damper (PID), and nonlinear viscous damper (NVD), respectively. The basic concepts, research status, engineering applications, and design approaches of these three types of nonlinear dampers are summarized. A comparison between their advantages and disadvantages in practical engineering applications is also conducted, to provide a reference source for practical applications and new research.

  18. Permeation Testing of Materials With Chemical Agents or Simulants (Swatch Testing)

    Science.gov (United States)

    2013-08-05

    nerve agents, sarin (GB), soman (GD), and persistent nerve agent (VX). These procedures can also be applied to toxic industrial chemicals (TICs...garment, cap, clothing liner, mask, glove, footwear , etc. The swatch should be selected to be representative of the area of the material to be tested...solvent and the extract analyzed. This reduces the sensitivity but obviates problems arising from one-shot thermal desorption. c. NRT and real

  19. Materials testing 1985

    International Nuclear Information System (INIS)

    1985-01-01

    The following subjects were dealt with at the meeting: Testing with vibration loads; Hardness testing; Calibration of test devices and equipment; Test technique for compound materials; Vibration strength testing and expense of experiments; Solving problems in introducing forces into samples and components and process of ambulant materials testing. There are 17 separate abstracts from among 43 lectures. (orig./PW) [de

  20. Testing limits to airflow perturbation device (APD measurements

    Directory of Open Access Journals (Sweden)

    Jamshidi Shaya

    2008-10-01

    Full Text Available Abstract Background The Airflow Perturbation Device (APD is a lightweight, portable device that can be used to measure total respiratory resistance as well as inhalation and exhalation resistances. There is a need to determine limits to the accuracy of APD measurements for different conditions likely to occur: leaks around the mouthpiece, use of an oronasal mask, and the addition of resistance in the respiratory system. Also, there is a need for resistance measurements in patients who are ventilated. Method Ten subjects between the ages of 18 and 35 were tested for each station in the experiment. The first station involved testing the effects of leaks of known sizes on APD measurements. The second station tested the use of an oronasal mask used in conjunction with the APD during nose and mouth breathing. The third station tested the effects of two different resistances added in series with the APD mouthpiece. The fourth station tested the usage of a flexible ventilator tube in conjunction with the APD. Results All leaks reduced APD resistance measurement values. Leaks represented by two 3.2 mm diameter tubes reduced measured resistance by about 10% (4.2 cmH2O·sec/L for control and 3.9 cm H2O·sec/L for the leak. This was not statistically significant. Larger leaks given by 4.8 and 6.4 mm tubes reduced measurements significantly (3.4 and 3.0 cm cmH2O·sec/L, respectively. Mouth resistance measured with a cardboard mouthpiece gave an APD measurement of 4.2 cm H2O·sec/L and mouth resistance measured with an oronasal mask was 4.5 cm H2O·sec/L; the two were not significantly different. Nose resistance measured with the oronasal mask was 7.6 cm H2O·sec/L. Adding airflow resistances of 1.12 and 2.10 cm H2O·sec/L to the breathing circuit between the mouth and APD yielded respiratory resistance values higher than the control by 0.7 and 2.0 cm H2O·sec/L. Although breathing through a 52 cm length of flexible ventilator tubing reduced the APD

  1. Construction and tests of a gamma device for experimental measurements of burnup of nuclear reactor fuel

    International Nuclear Information System (INIS)

    Brandao Junior, F.A.

    1982-01-01

    The gamma-scanning method is an important tool for the measurement of burnup of nuclear reactor fuel. The adequate knowledge of burnup allows for a better inventory of 'sensitive' fissile materials, better fuel management and provides insight on fuel behaviour and safety margins. This paper is related to the description, construction and operation of a first gamma scanning device, tested by irradiation of prototype PWR fuel pins, 14 cm long, in a Triga Mark-I reactor at very low power. Despite the limitations imposed by the low burnup, the experiment permitted a good checking of the main physical concepts and devices involved in the method. (Author) [pt

  2. Leaching tests as a tool in waste management to evaluate the potential for utilization of waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Sloot, H.A. van der [Netherlands Energy Research Foundation (ECN), Petten (Netherlands); Kosson, D.S. [Rutgers Univ., Piscataway, NJ (United States)

    1995-12-01

    Several waste materials from large scale industrial processes possess technical properties that would allow their use in certain construction applications, e.g. coal fly ash, slags from large scale industrial melting and ore processing, and incinerator residues. The disposal of such materials requires space and controlled landfills to minimize long term environmental risks. The beneficial use of such bulk materials is an attractive alternative, if it can be shown that such applications are environmentally acceptable. For this management of wastes and the decision to either dispose or use, information on the environmental properties of materials is needed. Leaching tests have been developed to assess such properties. These have been designed typically in relation to regulatory tools, not as instruments to guide the management of wastes and the possibilities to improve material properties. New methods have been designed to address this aspect, in which maximum benefit can be derived from knowledge of the systematic behaviour of materials and the already existing knowledge in other countries producing similar residues. After initial detailed characterization, concise procedures can be used for control purposes focused on the typical aspects of a certain residue stream. Examples of existing knowledge in this field will be presented.

  3. A novel and compact nanoindentation device for in situ nanoindentation tests inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-03-01

    Full Text Available In situ nanomechanical tests provide a unique insight into mechanical behaviors of materials, such as fracture onset and crack propagation, shear band formation and so on. This paper presents a novel in situ nanoindentation device with dimensions of 103mm×74mm×60mm. Integrating the stepper motor, the piezoelectric actuator and the flexure hinge, the device can realize coarse adjustment of the specimen and precision loading and unloading of the indenter automatically. A novel indenter holder was designed to guarantee that the indenter penetrates into and withdraws from the specimen surface vertically. Closed-loop control of the indentation process was established to solve the problem of nonlinearity of the piezoelectric actuator and to enrich the loading modes. The in situ indentation test of Indium Phosphide (InP inside the scanning electron microscope (SEM was carried out and the experimental result indicates the feasibility of the developed device.

  4. Modification Of The Manufacturing Process Of A Composite Structure- From System Needs To Elementary Tests

    Science.gov (United States)

    Touzard, Jerome; Veilleraud, Frederic; Collias, Michael

    2012-07-01

    The SYLDA5 structure (SYstème de Lancement Double Ariane 5 - Ariane 5 dual launch system) is a lightweight carbon composite structure designed and manufactured by Astrium Space Transportation at Les Mureaux premises. In order to improve the manufacturing process of t he SYLDA5, a proposal was made by SYLDA5 technical team to change the manufacturing process of the composite sandwich parts. The SYLDA5 is however one of the main contributors in the dynamic behaviour of the upper part of Ariane 5 launcher and plays an important role in the qualification of the launcher. The present paper describes the overall qualification logic retained, from System requirements to material tests and to global System qualification, in a classical V- type design cycle. It demonstrates the necessity to take into account System needs when modifying a part of it, especially when the System is qualified with actual characteristics of t he parts that may not be defined in product’s initial requirements.

  5. Improvements in or relating to ceramic materials

    International Nuclear Information System (INIS)

    Lane, E.S.

    1975-01-01

    A method is described for the production of nuclear fuel containing sintered UC or PuC, or a mixture thereof, comprising the steps of precipitating an oxide forming compounds of U or Pu, or a mixture of same, in the form of gel particles containing C, and introducing into the gel particles a compound capable of providing Ni as a sintering aid by contacting the particles with a solution of the Ni compound in an organic solvent. The latter may be a chlorinated hydrocarbon such as trichloroethylene, perchloroethylene of CCl 4 , or an aliphatic alcohol such as n-hexanol, or 2-ethyl hexanol. The Ni compound may be Ni acetonyl acetate or a Ni salt of an organic solvent soluble carboxylic acid. The gel particles are dried by azeotropic distillation from the organic solvent containing the Ni compound, so that the particles absorb the Ni compound. Examples of application of the method are described. (U.K.)

  6. A novel composite material specifically developed for ultrasound bone phantoms: cortical, trabecular and skull

    International Nuclear Information System (INIS)

    Wydra, A; Maev, R Gr

    2013-01-01

    In the various stages of developing diagnostic and therapeutic equipment, the use of phantoms can play a very important role in improving the process, help in implementation, testing and calibrations. Phantoms are especially useful in developing new applications and training new doctors in medical schools. However, devices that use different physical factors, such as MRI, Ultrasound, CT Scan, etc will require the phantom to be made of different physical properties. In this paper we introduce the properties of recently designed new materials for developing phantoms for ultrasonic human body investigation, which in today's market make up more than 30% in the world of phantoms. We developed a novel composite material which allows fabrication of various kinds of ultrasound bone phantoms to mimic most of the acoustical properties of human bones. In contrast to the ex vivo tissues, the proposed material can maintain the physical and acoustical properties unchanged for long periods of time; moreover, these properties can be custom designed and created to suit specific needs. As a result, we introduce three examples of ultrasound phantoms that we manufactured in our laboratory: cortical, trabecular and skull bone phantoms. The paper also presents the results of a comparison study between the acoustical and physical properties of actual human bones (reported in the referenced literatures) and the phantoms manufactured by us. (note)

  7. Evaluation of the single-pass flow-through test to support a low-activity waste specification

    International Nuclear Information System (INIS)

    McGrail, B.P.; Peeler, D.K.

    1995-09-01

    A series of single-pass flow-through (SPFT) tests was performed on five reference low-activity waste glasses and a reference glass from the National Institute of Standards and Technology to support a product specification for low-activity waste (LAW) forms. The results showed that the SPFT test provides a means to quantitatively distinguish among LAW glass forms in terms of their forward reaction rate at a given temperature and solution pH. Two of the test glasses were also subjected to SPFT testing at Argonne National Laboratory (ANL). Forward reaction rate constants calculated from the ANL test data were 100 to over 1,000 times larger than the values obtained from the SPFT tests conducted at PNL. An analysis of the ANL results showed that they were inconsistent with independent measurements done on glasses of similar composition, the known pH-dependence of the forward rate, and with the results from low surface-area-to-volume, short duration product consistency tests. Because the data set obtained from the SPFT tests done at PNL was consistent with each of these same factors, a detailed examination of the test procedures used at both laboratories was performed to determine the cause(s) of the discrepancy. The omission of background subtraction in the data analysis procedure and the short-duration (on the order of hours) of the ANL tests are factors that may have significantly affected the calculated rates

  8. Some issues for blast from a structural reactive material solid

    Science.gov (United States)

    Zhang, F.

    2018-03-01

    Structural reactive material (SRM) is consolidated from a mixture of micro- or nanometric reactive metals and metal compounds to the mixture theoretical maximum density. An SRM can thus possess a higher energy density, relying on various exothermic reactions, and higher mechanical strength and heat resistance than that of conventional CHNO explosives. Progress in SRM solid studies is reviewed specifically as an energy source for air blast through the reaction of fine SRM fragments under explosive loading. This includes a baseline SRM solid explosion characterization, material properties of an SRM solid, and its dynamic fine fragmentation mechanisms and fragment reaction mechanisms. The overview is portrayed mainly from the author's own experimental studies combined with theoretical and numerical explanation. These advances have laid down some fundamentals for the next stage of developments.

  9. Lymphatic recovery of exogenous oleic acid in rats on long chain or specific structured triacylglycerol diets

    DEFF Research Database (Denmark)

    Vistisen, Bodil; Mu, Huiling; Høy, Carl-Erik

    2006-01-01

    Specific structured triacylglycerols, MLM (M = medium-chain fatty acid, L = long-chain fatty acid), rapidly deliver energy and long-chain fatty acids to the body and are used for longer periods in human enteral feeding. In the present study rats were fed diets of 10 wt% MLM or LLL (L = oleic acid......% and 45%, respectively). However, the recovery of exogenous 18:1 n-9 was higher after a single bolus of MLM compared with a bolus of LLL in rats on the MLM diet (40% and 24%, respectively, P = 0.009). The recovery of lymphatic 18:1 n-9 of the LLL bolus tended to depend on the diet triacylglycerol...... structure and composition (P = 0.07). This study demonstrated that with a diet containing specific structured triacylglycerol, the lymphatic recovery of 18:1 n-9 after a single bolus of fat was dependent on the triacylglycerol structure of the bolus. This indicates that the lymphatic recovery of long...

  10. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  11. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  12. Life time forecasting method upon occurrence of stress corrosion cracking of structure and test device therefor

    International Nuclear Information System (INIS)

    Anzai, Hideya; Kida, Toshitaka; Urayama, Yoshinao; Kikuchi, Eiji; Shimanuki, Sei; Kuniya, Jiro; Nakata, Kiyotomo; Izumitani, Masakiyo; Hattori, Shigeo.

    1993-01-01

    A load stress is applied to a metal piece made of a material identical with the constituent material of a structure and having the sensitivity enhanced to a predetermined level, and plurality of such pieces are immersed in a corrosive circumstance in this state. Then, the time from the immersion till the rupture thereof and the number of ruptured pieces of the metal pieces are detected while observing them. The relation with the probability of rupture is plotted on a paper to determine the life time for the occurrence of minimum stress corrosion creacks (SSC) of the metal pieces. Based on the relationship between the previously determined stress and the life time for the occurrence of minimum SSC, the ratio between the life time for the occurrence of minimum SSC relative to estimated stress applied to the structure and the life time for the occurrence of minimum SSC relative to the stress applied to the metal pieces is determined as a first SSC acceleration rate. The ratio between the time of occurrence for minimum SSC and the sensitivity is determined as a second SSC acceleration rate. The first and the second SSC acceleration rates are multiplied to estimate the time for the occurrence of SSC of the structure. Then, the life time for the occurrence of SSC for the equipments and structures can be recognized quantitatively, to prevent ruptures of actual equipments and extend the life time. (N.H.)

  13. Synaptic electronics: materials, devices and applications.

    Science.gov (United States)

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  14. Synaptic electronics: materials, devices and applications

    International Nuclear Information System (INIS)

    Kuzum, Duygu; Yu, Shimeng; Philip Wong, H-S

    2013-01-01

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented. (topical review)

  15. WIMS-IST/DRAGON-IST side-step calculation of reactivity device and structural material incremental cross sections for Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Dahmani, M.; McArthur, R.; Kim, B.G.; Kim, S.M.; Seo, H.-B.

    2008-01-01

    This paper describes the calculation of two-group incremental cross sections for all of the reactivity devices and incore structural materials for an RFSP-IST full-core model of Wolsong NPP Unit 1, in support of the conversion of the reference plant model to two energy groups. This is of particular interest since the calculation used the new standard 'side-step' approach, which is a three-dimensional supercell method that employs the Industry Standard Toolset (IST) codes DRAGON-IST and WIMS-IST with the ENDF/B-VI nuclear data library. In this technique, the macroscopic cross sections for the fuel regions and the device material specifications are first generated using the lattice code WIMS-IST with 89 energy groups. DRAGON-IST then uses this data with a standard supercell modelling approach for the three-dimensional calculations. Incremental cross sections are calculated for the stainless-steel adjuster rods (SS-ADJ), the liquid zone control units (LZCU), the shutoff rods (SOR), the mechanical control absorbers (MCA) and various structural materials, such as guide tubes, springs, locators, brackets, adjuster cables and support bars and the moderator inlet nozzle deflectors. Isotopic compositions of the Zircaloy-2, stainless steel and Inconel X-750 alloys in these items are derived from Wolsong NPP Unit 1 history dockets. Their geometrical layouts are based on applicable design drawings. Mid-burnup fuel with no moderator poison was assumed. The incremental cross sections and key aspects of the modelling are summarized in this paper. (author)

  16. Environmental effect of structural solutions and building materials to a building

    International Nuclear Information System (INIS)

    Haapio, Appu; Viitaniemi, Pertti

    2008-01-01

    The field of building environmental assessment tools has become a popular research area over the past decade. However, how the service life of a building affects the results of the environmental assessment of a building has not been emphasised previously. The aim of this study is to analyse how different structural solutions and building materials affect the results of the environmental assessment of a whole building over the building's life cycle. Furthermore, how the length of the building's service life affects the results is analysed. The environmental assessments of 78 single-family houses were calculated for this study. The buildings have different wall insulations, claddings, window frames, and roof materials, and the length of the service life varies from 60 years up to 160 years. The current situation and the future of the environmental assessment of buildings are discussed. In addition, topics for further research are suggested; for example, how workmanship affects the service life and the environmental impact of a building should be studied

  17. Structure of a radiate pseudocolony associated with an intrauterine contraceptive device

    International Nuclear Information System (INIS)

    O'Brien, P.K.; Lea, P.J.; Roth-Moyo, L.A.

    1985-01-01

    Transmission electron microscopy of a radiate pseudocolony associated with an intrauterine contraceptive device (IUCD) showed central bundles of extracellular fibers averaging 35 nm in diameter, surrounded by layered mantles of electron-dense, amorphous granular material. No bacterial, viral, or fungal structures were present. X-ray microanalysis revealed copper, sulfur, chloride, iron, and phosphorus; no calcium was found. It is postulated that these structures and histologically identical non-IUCD-associated granules from the female genital tract, as well as similar structures from other body locations, including those reported in colloid cysts of the third ventricle, are of lipofuscin origin

  18. Non- or full-laxative CT colonography vs. endoscopic tests for colorectal cancer screening: A randomised survey comparing public perceptions and intentions to undergo testing

    Energy Technology Data Exchange (ETDEWEB)

    Ghanouni, Alex; Wardle, Jane; Von Wagner, Christian [University College London, Health Behaviour Research Centre, Department of Epidemiology and Public Health, London (United Kingdom); Halligan, Steve; Plumb, Andrew; Boone, Darren [University College London, Centre for Medical Imaging, London (United Kingdom)

    2014-07-15

    Compare public perceptions and intentions to undergo colorectal cancer screening tests following detailed information regarding CT colonography (CTC; after non-laxative preparation or full-laxative preparation), optical colonoscopy (OC) or flexible sigmoidoscopy (FS). A total of 3,100 invitees approaching screening age (45-54 years) were randomly allocated to receive detailed information on a single test and asked to return a questionnaire. Outcomes included perceptions of preparation and test tolerability, health benefits, sensitivity and specificity, and intention to undergo the test. Six hundred three invitees responded with valid questionnaire data. Non-laxative preparation was rated more positively than enema or full-laxative preparations [effect size (r) = 0.13 to 0.54; p < 0.0005 to 0.036]; both forms of CTC and FS were rated more positively than OC in terms of test experience (r = 0.26 to 0.28; all p-values < 0.0005). Perceptions of health benefits, sensitivity and specificity (p = 0.250 to 0.901), and intention to undergo the test (p = 0.213) did not differ between tests (n = 144-155 for each test). Despite non-laxative CTC being rated more favourably, this study did not find evidence that offering it would lead to substantially higher uptake than full-laxative CTC or other methods. However, this study was limited by a lower than anticipated response rate. (orig.)

  19. A highly specific test for periodicity

    Energy Technology Data Exchange (ETDEWEB)

    Ansmann, Gerrit, E-mail: gansmann@uni-bonn.de [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14–16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53175 Bonn (Germany)

    2015-11-15

    We present a method that allows to distinguish between nearly periodic and strictly periodic time series. To this purpose, we employ a conservative criterion for periodicity, namely, that the time series can be interpolated by a periodic function whose local extrema are also present in the time series. Our method is intended for the analysis of time series generated by deterministic time-continuous dynamical systems, where it can help telling periodic dynamics from chaotic or transient ones. We empirically investigate our method's performance and compare it to an approach based on marker events (or Poincaré sections). We demonstrate that our method is capable of detecting small deviations from periodicity and outperforms the marker-event-based approach in typical situations. Our method requires no adjustment of parameters to the individual time series, yields the period length with a precision that exceeds the sampling rate, and its runtime grows asymptotically linear with the length of the time series.

  20. A highly specific test for periodicity

    International Nuclear Information System (INIS)

    Ansmann, Gerrit

    2015-01-01

    We present a method that allows to distinguish between nearly periodic and strictly periodic time series. To this purpose, we employ a conservative criterion for periodicity, namely, that the time series can be interpolated by a periodic function whose local extrema are also present in the time series. Our method is intended for the analysis of time series generated by deterministic time-continuous dynamical systems, where it can help telling periodic dynamics from chaotic or transient ones. We empirically investigate our method's performance and compare it to an approach based on marker events (or Poincaré sections). We demonstrate that our method is capable of detecting small deviations from periodicity and outperforms the marker-event-based approach in typical situations. Our method requires no adjustment of parameters to the individual time series, yields the period length with a precision that exceeds the sampling rate, and its runtime grows asymptotically linear with the length of the time series

  1. Variation of a test's sensitivity and specificity with disease prevalence

    NARCIS (Netherlands)

    Leeflang, Mariska M. G.; Rutjes, Anne W. S.; Reitsma, Johannes B.; Hooft, Lotty; Bossuyt, Patrick M. M.

    2013-01-01

    Anecdotal evidence suggests that the sensitivity and specificity of a diagnostic test may vary with disease prevalence. Our objective was to investigate the associations between disease prevalence and test sensitivity and specificity using studies of diagnostic accuracy. We used data from 23

  2. A nondestructive testing device for determining 235U enrichment in power reactor fuel elements

    International Nuclear Information System (INIS)

    Liu Lanhua; Liu Nangai

    1990-07-01

    The development and application of a nondestructive testing device are presented, which is used for determining the 235 U enrichment in the mixed fuel of fuel elements with UO 2 pellets. The testing efficiency is improved because the passive gamma ray method and a hole-bored NaI crystal and four channel multichannel analyzer are used. The false discrimination rate is reduced as the average comparing method is taken. This device is simple in structure and easy in operation. It has provided a new testing tool for the fuel elements production in China. This device has successfully been used in Qinshan Nuclear Power Plant in testing its fuel elements

  3. Development of a method of testing irradiation devices by gamma scanning inside a research nuclear reactor

    International Nuclear Information System (INIS)

    Michel, Francois.

    1975-01-01

    A tridimensional experiment of spectrometry of an irradiation device located inside the reactor Siloe at a place shielded against spurious radiations, is exposed. The automatic scanning system that was developed, makes it possible to fully analyze in about 24 hours, the irradiation device (fuel pin, coolant and structures). The process combined with a 'pre-processing' program allows first partial results to be simultaneously obtained, more refined results being achieved during the next week, using the 'heavy processing'. The irradiation of the device is only interrupted during the compelling duty shutdown of the reactor, the evolution of the device during the successive irradiation cycles being thus followed up without pertubing said evolution. The reproducibility was studied at a local stage for testing the collimation of the detection unit (1% accuracy) and for testing the whole set 'processing measurement and computation' (5% accuracy). The sensitivity has been illustrated by detecting and measuring local singularities inside fuel (pellets), determining the detection efficiency dependence on the radial distribution of fission products and measuring nucleides inside the coolant flow (limiting value 10 -7 ). The accuracy of the method is evaluated at 5% for relative measurement of an experimental device during its in-pile lifetime and as 10% for quantitative absolute measurements [fr

  4. Listener: a probe into information based material specification

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Karmon, Ayelet

    2011-01-01

    This paper presents the thinking and making of the architectural research probe Listener. Developed as an interdisciplinary collaboration between textile design and architecture, Listener explores how information based fabrication technologies are challenging the material practices of architecture....... The paper investigates how textile design can be understood as a model for architectural production providing new strategies for material specification and allowing the thinking of material as inherently variegated and performative. The paper traces the two fold information based strategies present...

  5. A specific alpha laboratory dedicated to structural and thermodynamic studies on actinide complexes

    Energy Technology Data Exchange (ETDEWEB)

    Charbonnel, M-C.; Berthon, C.; Berthon, L.; Boubals, N.; Couston, L.; Auwer, C. den; Meyer, D.; Guillaneux, D

    2004-07-01

    The main scope of the LN1 laboratory in ATALANTE facility is the chemical and physico-chemical study of transuranic samples to understand the behavior of compounds of actinide with selective ligands at a molecular scale. The main techniques implemented in this laboratory are the following ones: Nuclear Magnetic Resonance spectrometer (400 MHz shielded magnetic field), a four circle X-ray diffractometer for single crystals, a microcalorimeter to the measurement of low heats of reactions, a Time Resolved Laser-induced spectro-fluorimeter, vibrational spectrometers: FTIR and Raman, an Electro-spray Ionisation Mass spectrometer. Specific glove boxes have been built for each technique to work on radio elements with safety conditions and allow the analysis of samples in different states (aqueous and organic liquids, gels, solids). (authors)

  6. HTTR hydrogen production system. Structure and main specifications of mock-up test facility (Contract research)

    International Nuclear Information System (INIS)

    Kato, Michio; Aita, Hideki; Inagaki, Yoshiyuki; Hayashi, Koji; Ohashi, Hirofumi; Sato, Hiroyuki; Iwatsuki, Jin; Takada, Shoji; Inaba, Yoshitomo

    2007-03-01

    The mock-up test facility was fabricated to investigate performance of the steam generator for mitigation of the temperature fluctuation of helium gas and transient behavior of the hydrogen production system for HTTR and to obtain experimental data for verification of a dynamic analysis code. The test facility has an approximate hydrogen production capacity of 120Nm 3 /h and the steam reforming process of methane; CH 4 +H 2 O=3H 2 +CO, was used for hydrogen production of the test facility. An electric heater was used as a heat source instead of the reactor in order to heat helium gas up to 880degC (4MPa) at the chemical reactor inlet which is the same temperature as the HTTR hydrogen production system. Fabrication of the test facility was completed in February in 2002, and seven cycle operations were carried out from March in 2002 to December in 2004. This report describes the structure and main specifications of the test facility. (author)

  7. A Multiscale Adaptive Mesh Refinement Approach to Architectured Steel Specification in the Design of a Frameless Stressed Skin Structure

    DEFF Research Database (Denmark)

    Nicholas, Paul; Stasiuk, David; Nørgaard, Esben

    2015-01-01

    This paper describes the development of a modelling approach for the design and fabrication of an incrementally formed, stressed skin metal structure. The term incremental forming refers to a progression of localised plastic deformation to impart 3D form onto a 2D metal sheet, directly from 3D...... design data. A brief introduction presents this fabrication concept, as well as the context of structures whose skin plays a significant structural role. Existing research into ISF privileges either the control of forming parameters to minimise geometric deviation, or the more accurate measurement...... of the impact of the forming process at the scale of the grain. But to enhance structural performance for architectural applications requires that both aspects are considered synthetically. We demonstrate a mesh-based approach that incorporates critical parameters at the scales of structure, element...

  8. To Test or Not to Test: Barriers and Solutions to Testing African American College Students for HIV at a Historically Black College/University.

    Science.gov (United States)

    Hall, Naomi M; Peterson, Jennifer; Johnson, Malynnda

    2014-01-01

    Young African Americans are disproportionately affected by sexually transmitted infections, including HIV. The purpose was to identify reasons that African American college students at a historically Black college/university (HBCU) identified as barriers to HIV testing, and how these barriers can be removed. Fifty-seven heterosexual-identified undergraduate students (ages 18-25) attending an HBCU in the southeastern US participated in a mixed method study. Latent content analytic techniques were used to code the transcripts for themes and categories, and representative quotations were used in the findings. Quantitative data indicates high levels of perceived knowledge about HIV transmission, low perception of risk and concern of contracting HIV, yet continued sexual risk behavior. Qualitative data indicates three main themes used to avoid testing and three themes to encourage testing. Students were forthcoming in discussing the themes around avoidance of HIV testing (being scared to know, preferring not to know, and lack of discussion about HIV) and encouraging testing (group testing, increasing basic knowledge, and showing the reality of HIV). It is important for college healthcare professionals, researchers, and officials to identify appropriate ways to encourage HIV testing, and promote testing as part of overall health.

  9. Sensor devices comprising a metal-organic framework material and methods of making and using the same

    Science.gov (United States)

    Wang, Alan X.; Chang, Chih-hung; Kim, Ki-Joong; Chong, Xinyuan; Ohodnicki, Paul R.

    2018-05-29

    Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, or combinations thereof. In an exemplary embodiment, light guides can be coupled with the sensing components described herein to provide sensor devices capable of increased NIR detection sensitivity in determining the presence of detectable species, such as gases and volatile organic compounds. In another exemplary embodiment, optical properties of the plasmonic nanomaterials combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the particle or as a result of charge transfer to and from the plasmonic material as a result of interactions with the plasmonic material and/or the MOF material.

  10. Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices

    KAUST Repository

    Khan, Mohammed Zahed Mustafa; Ng, Tien Khee; Ooi, Boon S.

    2014-01-01

    The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building

  11. Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2014-11-01

    The advances in lasers, electronic and photonic integrated circuits (EPIC), optical interconnects as well as the modulation techniques allow the present day society to embrace the convenience of broadband, high speed internet and mobile network connectivity. However, the steep increase in energy demand and bandwidth requirement calls for further innovation in ultra-compact EPIC technologies. In the optical domain, advancement in the laser technologies beyond the current quantum well (Qwell) based laser technologies are already taking place and presenting very promising results. Homogeneously grown quantum dot (Qdot) lasers and optical amplifiers, can serve in the future energy saving information and communication technologies (ICT) as the work-horse for transmitting and amplifying information through optical fiber. The encouraging results in the zero-dimensional (0D) structures emitting at 980 nm, in the form of vertical cavity surface emitting laser (VCSEL), are already operational at low threshold current density and capable of 40 Gbps error-free transmission at 108 fJ/bit. Subsequent achievements for lasers and amplifiers operating in the O-, C-, L-, U-bands, and beyond will eventually lay the foundation for green ICT. On the hand, the inhomogeneously grown quasi 0D quantum dash (Qdash) lasers are brilliant solutions for potential broadband connectivity in server farms or access network. A single broadband Qdash laser operating in the stimulated emission mode can replace tens of discrete narrow-band lasers in dense wavelength division multiplexing (DWDM) transmission thereby further saving energy, cost and footprint. We herein reviewed the1 progress of both Qdots and Qdash devices, based on the InAs/InGaAlAs/InP and InAs/InGaAsP/InP material systems, from the angles of growth and device performance. In particular, we discussed the progress in lasers, semiconductor optical amplifiers (SOA), mode locked lasers, and superluminescent diodes, which are the building

  12. Devices for fatigue testing of electroplated nickel (MEMS)

    DEFF Research Database (Denmark)

    Larsen, Kristian Pontoppidan; Ravnkilde, J. T.; Ginnerup, Morten

    2002-01-01

    μm and an effective length from 4μm to 27μm. Maximum stresses of the test beam were calculated to be 500MPa to 2100MPa by use of FEM tools. The test results indicate very promising fatigue properties of nano-nickel, as none of the test devices have shown fatigue failure or even initiation of cracks......In-situ fatigue test devices with integrated electrostatic actuator were fabricated in electroplated nanocrystalline nickel (nano-nickel). The devices feature in-plane approximately pure bending with fixed displacement of the test specimen of the dimensions: widths from 2μm to 3.7μm, a height of 7...... after 108 cycles. The combination of high strength and toughness, which is known for nanocrystalline materials, together with very small test specimens and low surface roughness could be the explanation for the good fatigue properties....

  13. Assessment of a Newly Developed, Active Pneumatic-Driven, Sensorimotor Test and Training Device

    Directory of Open Access Journals (Sweden)

    Wolfram Haslinger

    2014-12-01

    Full Text Available The sensorimotor system (SMS plays an important role in sports and in every day movement. Several tools for assessment and training have been designed. Many of them are directed to specific populations, and have major shortcomings due to the training effect or safety. The aim of the present study was to design and assess a dynamic sensorimotor test and training device that can be adjusted for all levels of performance. The novel pneumatic-driven mechatronic device can guide the trainee, allow independent movements or disrupt the individual with unpredicted perturbations while standing on a platform. The test-reliability was evaluated using intraclass correlation coefficient (ICC. Subjects were required to balance their center of pressure (COP in a target circle (TITC. The time in TITC and the COP error (COPe were recorded for analysis. The results of 22 males and 14 females (23.7 ± 2.6 years showed good to excellent test–retest reliability. The newly designed Active Balance System (ABS was then compared with the Biodex Balance System SD® (BBS. The results of 15 females, 14 males (23.4 ± 1.6 years showed modest correlation in static and acceptable correlation in dynamic conditions, suggesting that ABS could be a reliable and comparable tool for dynamic balance assessments.

  14. The one repetition maximum test and the sit-to-stand test in the assessment of a specific pulmonary rehabilitation program on peripheral muscle strength in COPD patients.

    Science.gov (United States)

    Zanini, Andrea; Aiello, Marina; Cherubino, Francesca; Zampogna, Elisabetta; Azzola, Andrea; Chetta, Alfredo; Spanevello, Antonio

    2015-01-01

    Individuals with COPD may present reduced peripheral muscle strength, leading to impaired mobility. Comprehensive pulmonary rehabilitation (PR) should include strength training, in particular to lower limbs. Furthermore, simple tools for the assessment of peripheral muscle performance are required. To assess the peripheral muscle performance of COPD patients by the sit-to-stand test (STST), as compared to the one-repetition maximum (1-RM), considered as the gold standard for assessing muscle strength in non-laboratory situations, and to evaluate the responsiveness of STST to a PR program. Sixty moderate-to-severe COPD inpatients were randomly included into either the specific strength training group or into the usual PR program group. Patients were assessed on a 30-second STST and 1-minute STST, 1-RM, and 6-minute walking test (6MWT), before and after PR. Bland-Altman plots were used to evaluate the agreement between 1-RM and STST. The two groups were not different at baseline. In all patients, 1-RM was significantly related to the 30-second STST (r=0.48, Ptest. In the specific strength training group significant improvements were observed in the 30-second STST (P<0.001), 1-minute STST (P=0.005), 1-RM (P<0.001), and in the 6MWT (P=0.001). In the usual PR program group, significant improvement was observed in the 30-second STST (P=0.042) and in the 6MWT (P=0.001). Our study shows that in stable moderate-to-severe inpatients with COPD, STST is a valid and reliable tool to assess peripheral muscle performance of lower limbs, and is sensitive to a specific PR program.

  15. Corrosion test plan to guide canister material selection and design for a tuff repository

    International Nuclear Information System (INIS)

    McCright, R.D.; van Konynenburg, R.A.; Ballou, L.B.

    1983-11-01

    Corrosion rates and the mode of corrosion attack form a most important basis for selection of canister materials and design of a nuclear waste package. Type 304L stainless steel was selected as the reference material for canister fabrication because of its generally excellent corrosion resistance in water, steam and air. However, 304L may be susceptible to localized and stress-assisted forms of corrosion under certain conditions. Alternative alloys are also investigated; these alloys were chosen because of their improved resistance to these forms of corrosion. The fabrication and welding processes, as well as the glass pouring operation for defense and commercial high-level wastes, may influence the susceptibility of the canister to localized and stress forms of corrosion. 12 references, 2 figures, 4 tables

  16. Device intended for measurement of induced trapped charge in insulating materials under electron irradiation in a scanning electron microscope

    International Nuclear Information System (INIS)

    Belkorissat, R; Benramdane, N; Jbara, O; Rondot, S; Hadjadj, A; Belhaj, M

    2013-01-01

    A device for simultaneously measuring two currents (i.e. leakage and displacement currents) induced in insulating materials under electron irradiation has been built. The device, suitably mounted on the sample holder of a scanning electron microscope (SEM), allows a wider investigation of charging and discharging phenomena that take place in any type of insulator during its electron irradiation and to determine accurately the corresponding time constants. The measurement of displacement current is based on the principle of the image charge due to the electrostatic influence phenomena. We are reporting the basic concept and test results of the device that we have built using, among others, the finite element method for its calibration. This last method takes into account the specimen chamber geometry, the geometry of the device and the physical properties of the sample. In order to show the possibilities of the designed device, various applications under different experimental conditions are explored. (paper)

  17. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    Science.gov (United States)

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez-Pulliam, Ian Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaughan, Larry Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. The proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a

  19. 40 CFR Appendix A to Part 75 - Specifications and Test Procedures

    Science.gov (United States)

    2010-07-01

    ... the pollutant concentration monitor location. Where the moisture content of the flue gas affects... minimize the effects of condensation, coating, erosion, or other conditions that could adversely affect... emissions or percent moisture): (1) The error in linearity for each calibration gas concentration (low-, mid...

  20. Multifunctional magnetoelectric materials for device applications

    International Nuclear Information System (INIS)

    Ortega, N; Katiyar, Ram S; Kumar, Ashok; Scott, J F

    2015-01-01

    Over the past decade magnetoelectric (ME) mutiferroic (MF) materials and their devices are one of the highest priority research topics that has been investigated by the scientific ferroics community to develop the next generation of novel multifunctional materials. These systems show the simultaneous existence of two or more ferroic orders, and cross-coupling between them, such as magnetic spin, polarisation, ferroelastic ordering, and ferrotoroidicity. Based on the type of ordering and coupling, they have drawn increasing interest for a variety of device applications, such as magnetic field sensors, nonvolatile memory elements, ferroelectric photovoltaics, nano-electronics etc. Since single-phase materials exist rarely in nature with strong cross-coupling properties, intensive research activity is being pursued towards the discovery of new single-phase multiferroic materials and the design of new engineered materials with strong magneto-electric (ME) coupling. This review article summarises the development of different kinds of multiferroic material: single-phase and composite ceramic, laminated composite and nanostructured thin films. Thin-film nanostructures have higher magnitude direct ME coupling values and clear evidence of indirect ME coupling compared with bulk materials. Promising ME coupling coefficients have been reported in laminated composite materials in which the signal to noise ratio is good for device fabrication. We describe the possible applications of these materials. (topical review)

  1. Nuclear technical or chemical device

    International Nuclear Information System (INIS)

    Zeitzschel, G.; Tennie, M.; Ristow, U.; Sulic, M.

    1987-01-01

    The handling element and the tool are provided in a complementary way with a marking and a sensor for detecting the marking. The sensor is connected to a switching device, which controls the remote control depending on travel and/or time. The sensor controls a positioning device, which causes the tool to engage with the handling element. (orig./HP) [de

  2. Methodological developments and qualification of calculation schemes for the modelling of photonic heating in the experimental devices of the future Jules Horowitz material testing reactor (RJH)

    International Nuclear Information System (INIS)

    Blanchet, D.

    2006-01-01

    The objective of this work is to develop the modelling of the nuclear heating of the experimental devices of the future Jules Horowitz material testing reactor (RJH). The strong specific nuclear power produced (460 kW/l), induces so intense photonic fluxes which cause heating and large temperature gradients that it is necessary to control it by an adequate design. However, calculations of heating are penalized by the very large uncertainties estimated at a value of about 30% (2*σ) coming from the gaps and uncertainties of the data of gamma emission present in the libraries of basic nuclear data. The experimental program ADAPh aims at reducing these uncertainties. Measurements by thermoluminescent detectors (TLD) and ionisation chambers are carried out in the critical assemblies EOLE (Mox) and Minerve (UO 2 ). The rigorous interpretation of these measurements requires specific developments based on Monte-Carlo simulations of coupled neutron-gamma and gamma-electron transport. The developments carried out are made different in particular by the modelling of cavities phenomena and delayed gamma emissions by the decay of fission products. The comparisons calculation-measurement made it possible to identify a systematic bias confirming a tendency of calculations to underestimate measurements. A Bayesian method of adjustment was developed in order to re-estimate the principal components of the gamma heating and to transpose the results obtained to the devices of the RJH, under conditions clearly and definitely representative. This work made possible to reduce significantly the uncertainties on the determination of the gamma heating from 30 to 15 per cent. (author)

  3. General problems specific to hot nuclear materials research facilities

    International Nuclear Information System (INIS)

    Bart, G.

    1996-01-01

    During the sixties, governments have installed hot nuclear materials research facilities to characterize highly radioactive materials, to describe their in-pile behaviour, to develop and test new reactor core components, and to provide the industry with radioisotopes. Since then, the attitude towards the nuclear option has drastically changed and resources have become very tight. Within the changed political environment, the national research centres have defined new objectives. Given budgetary constraints, nuclear facilities have to co-operate internationally and to look for third party research assignments. The paper discusses the problems and needs within experimental nuclear research facilities as well as industrial requirements. Special emphasis is on cultural topics (definition of the scope of nuclear research facilities, the search for competitive advantages, and operational requirements), social aspects (overageing of personnel, recruitment, and training of new staff), safety related administrative and technical issues, and research needs for expertise and state of the art analytical infrastructure

  4. 9 CFR 113.10 - Testing of bulk material for export or for further manufacture.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Testing of bulk material for export or for further manufacture. 113.10 Section 113.10 Animals and Animal Products ANIMAL AND PLANT HEALTH... manufacture. When a product is prepared in a licensed establishment for export in large multiple-dose...

  5. A European collaboration research programme to study and test large scale base isolated structures

    International Nuclear Information System (INIS)

    Renda, V.; Verzeletti, G.; Papa, L.

    1995-01-01

    The improvement of the technology of innovative anti-seismic mechanisms, as those for base isolation and energy dissipation, needs of testing capability for large scale models of structures integrated with these mechanisms. These kind experimental tests are of primary importance for the validation of design rules and the setting up of an advanced earthquake engineering for civil constructions of relevant interest. The Joint Research Centre of the European Commission offers the European Laboratory for Structural Assessment located at Ispra - Italy, as a focal point for an international european collaboration research programme to test large scale models of structure making use of innovative anti-seismic mechanisms. A collaboration contract, opened to other future contributions, has been signed with the national italian working group on seismic isolation (Gruppo di Lavoro sull's Isolamento Sismico GLIS) which includes the national research centre ENEA, the national electricity board ENEL, the industrial research centre ISMES and producer of isolators ALGA. (author). 3 figs

  6. Experimental study associated to irradiation of FBR structural material, (4)

    International Nuclear Information System (INIS)

    1976-01-01

    The study presents one of the bases to evaluate the results of the post-irradiation tests to conduct the thermal control tests related to the second JMTR irradiation (70M-61P) of the demestic austenitic stainless steels for the structural material of the FBR performed by Power Reactor and Nuclear Fuel Development Corporation. The thermal control specimens were given the temperature history which simulated that of the irradiation temperature in vacuum by the electrical furnance, and then the tensile, fatigue and Charpy impact tests were performed. The changes of the material properties caused by the thermal history were investigated. (auth.)

  7. A DNA-based nanomechanical device with three robust states

    OpenAIRE

    Chakraborty, Banani; Sha, Ruojie; Seeman, Nadrian C.

    2008-01-01

    DNA has been used to build a variety of devices, ranging from those that are controlled by DNA structural transitions to those that are controlled by the addition of specific DNA strands. These sequence-dependent devices fulfill the promise of DNA in nanotechnology because a variety of devices in the same physical environment can be controlled individually. Many such devices have been reported, but most of them contain one or two structurally robust end states, in addition to a floppy interme...

  8. Sensor Fusion of a Mobile Device to Control and Acquire Videos or Images of Coffee Branches and for Georeferencing Trees

    OpenAIRE

    Ramos Giraldo, Paula Jimena; Guerrero Aguirre, ?lvaro; Mu?oz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio

    2017-01-01

    Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i)...

  9. Lanthanum Gadolinium Oxide: A New Electronic Device Material for CMOS Logic and Memory Devices

    Directory of Open Access Journals (Sweden)

    Shojan P. Pavunny

    2014-03-01

    Full Text Available A comprehensive study on the ternary dielectric, LaGdO3, synthesized and qualified in our laboratory as a novel high-k dielectric material for logic and memory device applications in terms of its excellent features that include a high linear dielectric constant (k of ~22 and a large energy bandgap of ~5.6 eV, resulting in sufficient electron and hole band offsets of ~2.57 eV and ~1.91 eV, respectively, on silicon, good thermal stability with Si and lower gate leakage current densities within the International Technology Roadmap for Semiconductors (ITRS specified limits at the sub-nanometer electrical functional thickness level, which are desirable for advanced complementary metal-oxide-semiconductor (CMOS, bipolar (Bi and BiCMOS chips applications, is presented in this review article.

  10. 12 CFR Appendix A to Subpart B of... - Risk-Based Capital Test Methodology and Specifications

    Science.gov (United States)

    2010-01-01

    ...-leveraged Compound Indicator Indicates if interest is compounded Compounding Frequency Indicates how often... Amount 3.8.3.6Project Interest and Dividend Cash Flows 3.8.3.7Apply Call, Put, or Cancellation Features, if Applicable 3.8.3.8Calculate Monthly Interest Accruals for the Life of the Instrument 3.8.3...

  11. Construction and material specification

    Science.gov (United States)

    2002-01-01

    These Construction and Material Specifications are written to the Bidder before award of the : Contract and to the Contractor after award of the Contract. The sentences that direct the Contractor to perform Work are written as commands. For example, ...

  12. A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee.

    Science.gov (United States)

    Prabhala, Sai Krishna; Chien, Stanley; Yokota, Hiroki; Anwar, Sohel

    2016-09-29

    This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC) motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.

  13. A Mechatronic Loading Device to Stimulate Bone Growth via a Human Knee

    Directory of Open Access Journals (Sweden)

    Sai Krishna Prabhala

    2016-09-01

    Full Text Available This paper presents the design of an innovative device that applies dynamic mechanical load to human knee joints. Dynamic loading is employed by applying cyclic and periodic force on a target area. The repeated force loading was considered to be an effective modality for repair and rehabilitation of long bones that are subject to ailments like fractures, osteoporosis, osteoarthritis, etc. The proposed device design builds on the knowledge gained in previous animal and mechanical studies. It employs a modified slider-crank linkage mechanism actuated by a brushless Direct Current (DC motor and provides uniform and cyclic force. The functionality of the device was simulated in a software environment and the structural integrity was analyzed using a finite element method for the prototype construction. The device is controlled by a microcontroller that is programmed to provide the desired loading force at a predetermined frequency and for a specific duration. The device was successfully tested in various experiments for its usability and full functionality. The results reveal that the device works according to the requirements of force magnitude and operational frequency. This device is considered ready to be used for a clinical study to examine whether controlled knee-loading could be an effective regimen for treating the stated bone-related ailments.

  14. Materials growth and characterization of thermoelectric and resistive switching devices

    Science.gov (United States)

    Norris, Kate J.

    erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and

  15. A Strategy for Material-specific e-Textile Interaction Design

    DEFF Research Database (Denmark)

    Gowrishankar, Ramyah; Bredies, Katharina; Ylirisku, Salu

    2017-01-01

    The interaction design of e-Textile products are often characterized by conventions adopted from electronic devices rather than developing interactions that can be specific to e-Textiles. We argue that textile materials feature a vast potential for the design of novel digital interactions....... Especially the shape-reformation capabilities of textiles may inform the design of expressive and aesthetically rewarding applications. In this chapter, we propose ways in which the textileness of e-Textiles can be better harnessed. We outline an e-Textile Interaction Design strategy that is based...... on defining the material-specificity of e-Textiles as its ability to deform in ways that match the expectations we have of textile materials. It embraces an open-ended exploration of textile-related interactions (for e.g. stretching, folding, turning-inside-out etc.) and their potential for electronic...

  16. Materials and material testing

    International Nuclear Information System (INIS)

    Joergens, H.

    1978-01-01

    A review based on 105 literature quotations is given on the latest state of development in the steel sector and in the field of non-ferrous metals and plastics. The works quoted also include, preparation, working, welding including simulation methods, improvement of weldability, material mechanics (explanation of defects mechanisms by means of fracture mechanics), defect causes (corrosion, erosion, hydrogen influence), mechanical-technological and non-destructive material testing. Examples from the field of reactor building are also given within there topics. (IHOE) [de

  17. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    Energy Technology Data Exchange (ETDEWEB)

    Bathke, C.G. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM (United States); Inoue, N.; Kuno, Y.; Mihara, T.; Sagara, H. [Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Ebbinghaus, B.B. [Lawrence Livermore National Laboratory, P.O. Box L-168, Livermore, CA 94551 (United States); Murphy, J.; Dalton, D. [National Nuclear Security Administration, Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585 (United States); Nagayama, Y. [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan)

    2013-07-01

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU in heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.

  18. A reference device for evaluating the thermal behavior of installed multilayered wall containing a phase change material

    International Nuclear Information System (INIS)

    Pagliolico, S.L.; Sassi, G.; Cascone, Y.; Bongiovanni, R.M.

    2015-01-01

    Highlights: • Thermal analysis of installed wallboards embedding phase change material layer. • Simple devices and real conditions for thermal analysis toward a standardization. • Scanning calorimetric measurements as initial condition for data regression. • Bias correction of calorimetric measurements data by installation factors. • Practical approach to identify a reliable thermal curve for capacitive wallboards. - Abstract: Thermal inertia of lightweight building envelopes can be improved including phase change materials in multilayered wallboards. The thermal modeling of buildings for design purposes needs a robust description of the thermal properties of installed phase change materials. A standard method would improve the thermal characterization of commercial products. The aim of the study is to develop a simple methodology to obtain reliable thermal data for phase change materials integrated in multilayered wallboards. The methodology modifies differential scanning calorimetry measurements on phase change material by installation factors to obtain the apparent specific heat vs. temperature for the wallboard layer embedding phase change material. Simple cubic cells were realized as reference devices to simulate a confined environment. A dynamic model of heat transfer was developed to simulate the thermal behavior of devices. Installation factors were calculated by regression of the monitored temperatures inside and outside the devices operating under real environmental conditions. The apparent specific heat of phase change material, measured by differential scanning calorimetry at different rates, resulted in a spread of curves vs. temperature. Mean curves were used as initial condition for regression. The mean calculation method did not significantly affect the installed resulted curve. A unique curve of apparent specific heat vs. temperature best fit data measured over a wide range of experimental devices and conditions. Good regression

  19. An Approach to the Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  20. Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan) Anthropomorphic Test Device (ATD) Tech Demonstrator

    Science.gov (United States)

    2017-01-01

    analytical model currently used by military vehicle analysts has been continuously updated to address the model’s inherent deficiencies and make the... model is a hyperelastic polymer model based upon statistical mechanics and the finite extensibility of a polymer chain.23 Its rheological ...ARL-TR-7927 ● JAN 2017 US Army Research Laboratory Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan

  1. Thermoelectric Energy Conversion: Materials, Devices, and Systems

    International Nuclear Information System (INIS)

    Chen, Gang

    2015-01-01

    This paper will present a discussion of challenges, progresses, and opportunities in thermoelectric energy conversion technology. We will start with an introduction to thermoelectric technology, followed by discussing advances in thermoelectric materials, devices, and systems. Thermoelectric energy conversion exploits the Seebeck effect to convert thermal energy into electricity, or the Peltier effect for heat pumping applications. Thermoelectric devices are scalable, capable of generating power from nano Watts to mega Watts. One key issue is to improve materials thermoelectric figure- of-merit that is linearly proportional to the Seebeck coefficient, the square of the electrical conductivity, and inversely proportional to the thermal conductivity. Improving the figure-of-merit requires good understanding of electron and phonon transport as their properties are often contradictory in trends. Over the past decade, excellent progresses have been made in the understanding of electron and phonon transport in thermoelectric materials, and in improving existing and identify new materials, especially by exploring nanoscale size effects. Taking materials to real world applications, however, faces more challenges in terms of materials stability, device fabrication, thermal management and system design. Progresses and lessons learnt from our effort in fabricating thermoelectric devices will be discussed. We have demonstrated device thermal-to-electrical energy conversion efficiency ∼10% and solar-thermoelectric generator efficiency at 4.6% without optical concentration of sunlight (Figure 1) and ∼8-9% efficiency with optical concentration. Great opportunities exist in advancing materials as well as in using existing materials for energy efficiency improvements and renewable energy utilization, as well as mobile applications. (paper)

  2. Design and construction of a device for elaborate films of Vyns or Cellulose with control thickness

    International Nuclear Information System (INIS)

    Patlan C, F.

    1998-01-01

    This work is a part of the studies about the elaboration of reference radioactive sources, which are done in the National Institute of Nuclear Research in Mexico. Specially concerns with the elaboration of α-β radioactive sources. The importance of this work is because their applications increase day by day. Medicine, engineering, agriculture and even the arts cannot escape to the influence and impact of the nuclear sciences. But, what are the radioactive sources?, what is a holder of a radioactive source?, why we elaborate holders with special materials?, which is the best technique to elaborate them?. These topics are commented in this work. The material is as follows: the introduction and objective are described in chapter one. The second chapter deals with concepts about atomic and molecular structures, general description of nuclear radiation and their characteristics, comments about radioactive law decay, interaction of the alpha particles with the matter and a short description about surface barrier detectors. The different methods for elaborate a radioactive source holders are described in the chapter three. This same chapter speaks the topic about the elaboration of vyns or cellulose films and a device is proposed for make them; are some methods described how to take measure of their thickness. Chapter four shows the results, analysis and the respective conclusions. (Author)

  3. Resistive switching characteristics of polymer non-volatile memory devices in a scalable via-hole structure

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Choi, Hyejung; Oh, Seung-Hwan; Jo, Minseok; Wang, Gunuk; Cho, Byungjin; Kim, Dong-Yu; Hwang, Hyunsang; Lee, Takhee

    2009-01-01

    The resistive switching characteristics of polyfluorene-derivative polymer material in a sub-micron scale via-hole device structure were investigated. The scalable via-hole sub-microstructure was fabricated using an e-beam lithographic technique. The polymer non-volatile memory devices varied in size from 40 x 40 μm 2 to 200 x 200 nm 2 . From the scaling of junction size, the memory mechanism can be attributed to the space-charge-limited current with filamentary conduction. Sub-micron scale polymer memory devices showed excellent resistive switching behaviours such as a large ON/OFF ratio (I ON /I OFF ∼10 4 ), excellent device-to-device switching uniformity, good sweep endurance, and good retention times (more than 10 000 s). The successful operation of sub-micron scale memory devices of our polyfluorene-derivative polymer shows promise to fabricate high-density polymer memory devices.

  4. Instrument comprising a cable or tube provided provided with a propulsion device

    NARCIS (Netherlands)

    Breedveld, P.

    2006-01-01

    The invention relates to an instrument (1) comprising a cable or tube (3), at a distal end of which a propulsion device (4) is provided for moving the cable or tube in a hollow space, the propulsion device being shaped like a donut lying in a plane at right angles to the longitudinal direction of

  5. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  6. Evaluation of Various Tack Coat Materials Using Interface Shear Device and Recommendations on a Simplified Device

    Science.gov (United States)

    2017-12-01

    The performance of pavement interface bonds affects the integrity of pavement structures. In current practice, tack coats are used to ensure sufficient bonding between asphalt concrete (AC) layers as well as AC and concrete or aggregate base layers. ...

  7. The Structural Characterisation of Risk in the R&D Process of Functional Raw Materials for Electronic Devices

    OpenAIRE

    Chikamori, Yoji; Nasu, Seigo

    2017-01-01

    The electronic materials and electronics device industries remain important to Japan in spite of the general decline of the Japanese electronics industry. There is risk and uncertainty when developing functional materials in the electronics industry. However, studies examining the uncertainty and risk variables in the development of functional materials are scarce. This study examines incremental research and development (R&D) developed for raw functional materials for electronics. Our analys...

  8. Investigation of the ElectroPuls E3000 Test Machine for Fatigue Testing of Structural Materials

    Science.gov (United States)

    2016-12-01

    potential to use high frequencies to reduce test time significantly (at, for example, four times the maximum frequency possible on a servo- hydraulic ...crack growth rate data (at a frequency of 10 Hz) that was consistent with previous testing performed on servo- hydraulic testing machines (at a frequency...operate at frequencies "over 100 Hz" and has the potential to increase efficiency by decreasing test time, as compared with a servo- hydraulic test machine

  9. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  10. Multi-energy radiography for non-destructive testing of materials and structures for civil engineering

    International Nuclear Information System (INIS)

    Naydenov, S.V.; Ryzhikov, V.

    2003-01-01

    Development of the technological base of modern non-destructive testing require new methods allowing determination of specified properties of materials and structures under study. A traditional direction of works is determination of internal spatial structure of the materials and other constructions. Restoration of this geometrical information is of qualitative character, though provides for determination of technical parameters affecting physical properties of the system. Reconstruction of the chemical composition, density and atomic structure (effective atomic number) is an inverse problem of direct quantitative determination of properties starting from data obtained by means of non-destructive testing. In the present work, we propose the use of multi-energy radiography for reconstruction of the substantial structure of materials. In framework of simple theoretical model it is shown that, using multi-channel absorption of X-rays, important substantial characteristics of materials and multi-compound structures can be readily reconstructed. The results obtained show high efficiency of 2-energy radiography for non-destructive testing in civil engineering

  11. Analysis and Testing of a Metallic Repair Applicable to Pressurized Composite Aircraft Structure

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2014-01-01

    Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.

  12. Testing a structural model of young driver willingness to uptake Smartphone Driver Support Systems.

    Science.gov (United States)

    Kervick, Aoife A; Hogan, Michael J; O'Hora, Denis; Sarma, Kiran M

    2015-10-01

    There is growing interest in the potential value of using phone applications that can monitor driver behaviour (Smartphone Driver Support Systems, 'SDSSs') in mitigating risky driving by young people. However, their value in this regard will only be realised if young people are willing to use this technology. This paper reports the findings of a study in which a novel structural model of willingness to use SDSSs was tested. Grounded in the driver monitoring and Technology Acceptance (TA) research literature, the model incorporates the perceived risks and gains associated with potential SDSS usage and additional social cognitive factors, including perceived usability and social influences. A total of 333 smartphone users, aged 18-24, with full Irish driving licenses completed an online questionnaire examining willingness or Behavioural Intention (BI) to uptake a SDSS. Following exploratory and confirmatory factor analyses, structural equation modelling indicated that perceived gains and social influence factors had significant direct effects on BI. Perceived risks and social influence also had significant indirect effects on BI, as mediated by perceived gains. Overall, this model accounted for 72.5% of the variance in willingness to uptake SDSSs. Multi-group structural models highlighted invariance of effects across gender, high and low risk drivers, and those likely or unlikely to adopt novel phone app technologies. These findings have implications for our understanding of the willingness of young drivers to adopt and use SDSSs, and highlight potential factors that could be targeted in behavioural change interventions seeking to improve usage rates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures

    Science.gov (United States)

    Lee, Myoung-Jae; Lee, Chang Bum; Lee, Dongsoo; Lee, Seung Ryul; Chang, Man; Hur, Ji Hyun; Kim, Young-Bae; Kim, Chang-Jung; Seo, David H.; Seo, Sunae; Chung, U.-In; Yoo, In-Kyeong; Kim, Kinam

    2011-08-01

    Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaOx-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 1012. Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

  14. Preparation, characterization and use of a reference material to proficiency testing for determination of metals in fish tissue in natura

    International Nuclear Information System (INIS)

    Santana, Luciana Vieira de

    2013-01-01

    The proficiency tests are widely used to evaluate the analytical capacity of laboratories and also as part of the accreditation process. For this reason, are important tools for the control of the quality of the analytical results obtained in the laboratories that work directly with seafood companies. In Brazil there are no providers of proficiency testing for metals potentially toxic in fish tissues. In this work will be described all steps used for the production of reference materials to be used in a proficiency testing pilot study for As, Cd, Pb and Hg in fish tissue following the recommendations of the ISO Guide 35. He preparation scheme consisted in selecting the individuals, cleaning, grinding, homogenization and fortification with As, Cd and Pb in two concentration levels. The preparation resulted in 164 sachets of 10 g each. In order to evaluate the effect of gamma irradiation in the samples conservation 52 sachets were irradiated with 60 Co (10.00 ± 1.05 kGy) in a gamma cell. This material with others non irradiated 52 sachets were used for the homogeneity and stability studies. The remaining 60 were used for the proficiency testing. The results demonstrated that both materials were homogeneous and presented good stability (during a period of 45 days). However, the irradiated material present better integrity, concerning biological degradation, when stored in ambient temperature. For this reason they were used to the proficiency testing pilot program. Ten laboratories participated in the proficiency testing pilot study and the results were evaluated using the following tests: z-score, confidence ellipse and En numbers. This work demonstrates the capability of the laboratory to produce reference materials as well as to organize and conduct proficiency testing. (author)

  15. Device and materials modeling in PEM fuel cells

    CERN Document Server

    Promislow, Keith

    2009-01-01

    Device and Materials Modeling in PEM Fuel Cells is a specialized text that compiles the mathematical details and results of both device and materials modeling in a single volume. Proton exchange membrane (PEM) fuel cells will likely have an impact on our way of life similar to the integrated circuit. The potential applications range from the micron scale to large scale industrial production. Successful integration of PEM fuel cells into the mass market will require new materials and a deeper understanding of the balance required to maintain various operational states. This book contains articles from scientists who contribute to fuel cell models from both the materials and device perspectives. Topics such as catalyst layer performance and operation, reactor dynamics, macroscopic transport, and analytical models are covered under device modeling. Materials modeling include subjects relating to the membrane and the catalyst such as proton conduction, atomistic structural modeling, quantum molecular dynamics, an...

  16. A hinged-pad test structure for sliding friction measurement in micromachining

    Energy Technology Data Exchange (ETDEWEB)

    Boer, M.P. de; Redmond, J.M.; Michalske, T.A.

    1998-08-01

    The authors describe the design, modeling, fabrication and initial testing of a new test structure for friction measurement in MEMS. The device consists of a cantilevered forked beam and a friction pad attached via a hinge. Compared to previous test structures, the proposed structure can measure friction over much larger pressure ranges, yet occupies one hundred times less area. The placement of the hinge is crucial to obtaining a well-known and constant pressure distribution in the device. Static deflections on the device were measured and modeled numerically, Preliminary results indicate that friction pad slip is sensitive to friction pad normal force.

  17. A review of Ga2O3 materials, processing, and devices

    Science.gov (United States)

    Pearton, S. J.; Yang, Jiancheng; Cary, Patrick H.; Ren, F.; Kim, Jihyun; Tadjer, Marko J.; Mastro, Michael A.

    2018-03-01

    Gallium oxide (Ga2O3) is emerging as a viable candidate for certain classes of power electronics, solar blind UV photodetectors, solar cells, and sensors with capabilities beyond existing technologies due to its large bandgap. It is usually reported that there are five different polymorphs of Ga2O3, namely, the monoclinic (β-Ga2O3), rhombohedral (α), defective spinel (γ), cubic (δ), or orthorhombic (ɛ) structures. Of these, the β-polymorph is the stable form under normal conditions and has been the most widely studied and utilized. Since melt growth techniques can be used to grow bulk crystals of β-GaO3, the cost of producing larger area, uniform substrates is potentially lower compared to the vapor growth techniques used to manufacture bulk crystals of GaN and SiC. The performance of technologically important high voltage rectifiers and enhancement-mode Metal-Oxide Field Effect Transistors benefit from the larger critical electric field of β-Ga2O3 relative to either SiC or GaN. However, the absence of clear demonstrations of p-type doping in Ga2O3, which may be a fundamental issue resulting from the band structure, makes it very difficult to simultaneously achieve low turn-on voltages and ultra-high breakdown. The purpose of this review is to summarize recent advances in the growth, processing, and device performance of the most widely studied polymorph, β-Ga2O3. The role of defects and impurities on the transport and optical properties of bulk, epitaxial, and nanostructures material, the difficulty in p-type doping, and the development of processing techniques like etching, contact formation, dielectrics for gate formation, and passivation are discussed. Areas where continued development is needed to fully exploit the properties of Ga2O3 are identified.

  18. Validation of Material Models For Automotive Carbon Fiber Composite Structures Via Physical And Crash Testing (VMM Composites Project)

    Energy Technology Data Exchange (ETDEWEB)

    Coppola, Anthony [General Motors Company, Flint, MI (United States); Faruque, Omar [Ford Motor Company, Dearborn, MI (United States); Truskin, James F [FCA US LLC, Auburn Hills, MI (United States); Board, Derek [Ford Motor Company, Dearborn, MI (United States); Jones, Martin [Ford Motor Company, Dearborn, MI (United States); Tao, Jian [FCA US LLC, Auburn Hills, MI (United States); Chen, Yijung [Ford Motor Company, Dearborn, MI (United States); Mehta, Manish [M-Tech International LLC, Dubai (United Arab Emirates)

    2017-09-27

    advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.

  19. Tungsten as First Wall Material in Fusion Devices

    International Nuclear Information System (INIS)

    Kaufmann, M.

    2006-01-01

    In the PLT tokamak with a tungsten limiter strong cooling of the central plasma was observed. Since then mostly graphite has been used as limiter or target plate material. Only a few tokamaks (limiter: FTU, TEXTOR; divertor: Alcator C-Mod, ASDEX Upgrade) gained experience with high-Z-materials. With the observed strong co- deposition of tritium together with carbon in JET and as a result of design studies of fusion reactors, it became clear that in the long run tungsten is the favourite for the first-wall material. Tungsten as a plasma facing material requires intensive research in all areas, i.e. in plasma physics, plasma wall-interaction and material development. Tungsten as an impurity in the confined plasma reveals considerable differences to carbon. Strong radiation at high temperatures, in connection with mostly a pronounced inward drift forms a particular challenge. Turbulent transport plays a beneficial role in this regard. The inward drift is an additional problem in the pedestal region of H-mode plasmas in ITER-like configurations. The erosion by low energy hydrogen atoms is in contrast to carbon small. However, erosion by fast particles from heating measures and impurity ions, accelerated in the sheath potential, play an important role in the case of tungsten. Radiation by carbon in the plasma boundary reduces the load to the target plates. Neon or Argon as substitutes will increase the erosion of tungsten. So far experiments have demonstrated that in most scenarios the tungsten content in the central plasma can be kept sufficiently small. The material development is directed to the specific needs of existing or future devices. In ASDEX Upgrade, which will soon be a divertor experiment with a complete tungsten first-wall, graphite tiles are coated with tungsten layers. In ITER, the solid tungsten armour of the target plates has to be castellated because of its difference in thermal expansion compared to the cooling structure. In a reactor the technical

  20. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach

    Science.gov (United States)

    Lengyel, Szabolcs; Déri, Eszter; Magura, Tibor

    2016-01-01

    Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD) is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR) of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary) and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals) showed that the wet-dry gradient (compositional HD at the between-patch scale) was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale) was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale) was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none) was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve biodiversity in

  1. Species Richness Responses to Structural or Compositional Habitat Diversity between and within Grassland Patches: A Multi-Taxon Approach.

    Directory of Open Access Journals (Sweden)

    Szabolcs Lengyel

    Full Text Available Habitat diversity (spatial heterogeneity within and between habitat patches in a landscape, HD is often invoked as a driver of species diversity at small spatial scales. However, the effect of HD on species richness (SR of multiple taxa is not well understood. We quantified HD and SR in a wet-dry gradient of open grassland habitats in Hortobágy National Park (E-Hungary and tested the effect of compositional and structural factors of HD on SR of flowering plants, orthopterans, true bugs, spiders, ground beetles and birds. Our dataset on 434 grassland species (170 plants, 264 animals showed that the wet-dry gradient (compositional HD at the between-patch scale was primarily related to SR in orthopterans, ground-dwelling arthropods, and all animals combined. The patchiness, or plant association richness, of the vegetation (compositional HD at the within-patch scale was related to SR of vegetation-dwelling arthropods, whereas vegetation height (structural HD at the within-patch scale was related to SR of ground-dwelling arthropods and birds. Patch area was related to SR only in birds, whereas management (grazing, mowing, none was related to SR of plants and true bugs. All relationships between HD and SR were positive, indicating increasing SR with increasing HD. However, total SR was not related to HD because different taxa showed similar positive responses to different HD variables. Our findings, therefore, show that even though HD positively influences SR in a wide range of grassland taxa, each taxon responds to different compositional or structural measures of HD, resulting in the lack of a consistent relationship between HD and SR when taxon responses are pooled. The idiosyncratic responses shown here exemplify the difficulties in detecting general HD-SR relationships over multiple taxa. Our results also suggest that management and restoration aimed specifically to sustain or increase the diversity of habitats are required to conserve

  2. Investigation of contact allergy to dental materials by patch testing

    Directory of Open Access Journals (Sweden)

    Reena Rai

    2014-01-01

    Full Text Available Background: Dental products are widely used by patients and dental personnel alike and may cause problems for both. Dental materials could cause contact allergy with varying manifestations such as burning, pain, stomatitis, cheilitis, ulcers, lichenoid reactions localized to the oral mucosa in patients, and hand dermatitis in dental personnel. Patch testing with the dental series comprising commonly used materials can be used to detect contact allergies to dental materials. Aim: This study aimed to identify contact allergy among patients who have oral mucosal lesions after dental treatment and among dental personnel who came in contact with these materials. Materials and Methods: Twenty patients who had undergone dental procedures with symptoms of oral lichen planus, oral stomatitis, burning mouth, and recurrent aphthosis, were included in the study. Dental personnel with history of hand dermatitis were also included in the study. Patch testing was performed using Chemotechnique Dental Series and results interpreted as recommended by the International Contact Dermatitis Research Group (ICDRG. Results: Out of 13 patients who had undergone dental treatment/with oral symptoms, six patients with stomatitis, lichenoid lesions, and oral ulcers showed positive patch tests to a variety of dental materials, seven patients with ulcers had negative patch tests, seven dental personnel with hand dermatitis showed multiple allergies to various dental materials, and most had multiple positivities. Conclusion: The patch test is a useful, simple, noninvasive method to detect contact allergies among patients and among dental personnel dealing with these products. Long term studies are necessary to establish the relevance of these positive patch tests by eliminating the allergic substances, identifying clinical improvement, and substituting with nonallergenic materials.

  3. Metasurfaces Based on Phase-Change Material as a Reconfigurable Platform for Multifunctional Devices

    Science.gov (United States)

    Raeis-Hosseini, Niloufar; Rho, Junsuk

    2017-01-01

    Integration of phase-change materials (PCMs) into electrical/optical circuits has initiated extensive innovation for applications of metamaterials (MMs) including rewritable optical data storage, metasurfaces, and optoelectronic devices. PCMs have been studied deeply due to their reversible phase transition, high endurance, switching speed, and data retention. Germanium-antimony-tellurium (GST) is a PCM that has amorphous and crystalline phases with distinct properties, is bistable and nonvolatile, and undergoes a reliable and reproducible phase transition in response to an optical or electrical stimulus; GST may therefore have applications in tunable photonic devices and optoelectronic circuits. In this progress article, we outline recent studies of GST and discuss its advantages and possible applications in reconfigurable metadevices. We also discuss outlooks for integration of GST in active nanophotonic metadevices. PMID:28878196

  4. Development of deterioration models and tests of structural materials for nuclear containment structures(III)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Byung Hwan [Seoul National University, Seoul (Korea)

    2002-03-01

    The nuclear containment structures are very important infrastructures which require much cost for construction and maintenance. If these structures lose their functions and do not ensure their safety, great losses of human lives and properties will result. Therefore, the nuclear containment structures should secure appropriate safety and functions during these service lives. The nuclear concrete structures start to experience deterioration due to severe environmental condition, even though the concrete structures exhibit generally superior durability. It is, therefore, necessary to take appropriate actions at each stage of planning, design and construction to secure safety and functionability. Thorough examination of deterioration mechanism and comprehensive tests have been conducted to explore the durability characteristics of nuclear concrete structures. 88 refs., 70 figs., 12 tabs. (Author)

  5. Hacking and penetration testing with low power devices

    CERN Document Server

    Polstra, Philip

    2014-01-01

    Hacking and Penetration Testing with Low Power Devices shows you how to perform penetration tests using small, low-powered devices that are easily hidden and may be battery-powered. It shows how to use an army of devices, costing less than you might spend on a laptop, from distances of a mile or more. Hacking and Penetration Testing with Low Power Devices shows how to use devices running a version of The Deck, a full-featured penetration testing and forensics Linux distribution, and can run for days or weeks on batteries due to their low power consumption. Author Philip Polstra shows how to

  6. Transmission electron microscopy of InP-based compound semiconductor materials and devices

    International Nuclear Information System (INIS)

    Chu, S.N.G.

    1990-01-01

    InP/InGaAsP-based heteroepitaxial structures constitute the major optoelectronic devices for state-of-the-art long wavelength optical fiber communication system.s Future advanced device structures will require thin heteroepitaxial quantum wells and superlattices a few tens of angstrom or less in thickness, and lateral dimensions ranging from a few tens angstrom for quantum dots and wires to a few μm in width for buried heterostructure lasers. Due to the increasing complexity of the device structure required by band-gap engineering, the performance of these devices becomes susceptible to any lattice imperfections present in the structure. Transmission electron microscopy (TEM), therefore, becomes the most important technique in characterizing the structural integrity of these materials. Cross-section transmission electron microscopy (XTEM) not only provides the necessary geometric information on the device structure; a careful study of the materials science behind the observed lattice imperfections provides directions for optimization of both the epitaxial growth parameters and device processing conditions. Furthermore, for device reliability studies, TEM is the only technique that unambiguously identifies the cause of device degradation. In this paper, the authors discuss areas of application of various TEM techniques, describe the TEM sample preparation technique, and review case studies to demonstrate the power of the TEM technique

  7. Teaching to the Test: Coaching or Corruption

    Science.gov (United States)

    Bond, Lloyd

    2008-01-01

    Despite their current popularity, many still view coaching schools for college admissions as somehow vaguely unethical, as a form of "teaching to the test." But "coaching" as an instructional exercise only crosses some ethical line of propriety when instructors have access to and in fact teach the actual items that will appear…

  8. Structural integrity for DEMO: An opportunity to close the gap from materials science to engineering needs

    Energy Technology Data Exchange (ETDEWEB)

    Porton, M., E-mail: michael.porton@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wynne, B.P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); University of Sheffield, Sheffield, South Yorkshire S10 2TN (United Kingdom); Bamber, R.; Hardie, C.D.; Kalsey, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Key shortfalls in the current approaches to verification of structural integrity are outlined. • Case studies for high integrity applications in other demanding environments are examined. • Relevant lessons are drawn from fission and space for the design stage and through service life. • Future efforts are suggested to align materials and engineering for DEMO structural integrity. - Abstract: It is clear that fusion demonstration devices offer unique challenges due to the myriad, interacting material degradation effects and the numerous, conflicting requirements that must be addressed in order for in-vessel components to deliver satisfactory performance over the required lifetime. The link between mechanical engineering and materials science is pivotal to assure the timely realisation and exploitation of successful fusion power. A key aspect of this link is the verification of structural integrity, achieved at the design stage via structural design criteria against which designs are judged to be sufficiently resilient (or not) to failure, for a given set of loading conditions and desired lifetime. As various demonstration power plant designs progress through their current conceptual design phases, this paper seeks to highlight key shortfalls in this vital link between engineering needs and materials science, offering a perspective on where future attention can be prioritised to maximise impact. Firstly, issues in applying existing structural design criteria to demonstration power plant designs are identified. Whilst fusion offers particular challenges, there are significant insights to be gained from attempts to address such issues for high performance, high integrity applications in other demanding environments. Therefore case studies from beyond fusion are discussed. These offer examples where similar shortfalls have been successfully addressed, via approaches at the design stage and through service lifetime in order to deliver significant

  9. A test management approach for structured testing

    NARCIS (Netherlands)

    Veenendaal, van E.P.W.M.; Pol, M.; Veenendaal, van E.P.W.M.; McMullan, J.

    1997-01-01

    Despite encouraging results with various quality improvement approaches, the IT industry is still far from achieving zero defect software. Testing will remain an important activity within software development and maintenance, often taking more than 30 - 40% of the total budget. Both the increasing

  10. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 .s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed. (U.S.)

  11. Repetitively pulsed material testing facility

    International Nuclear Information System (INIS)

    Zucker, O.; Bostick, W.; Gullickson, R.; Long, J.; Luce, J.; Sahlin, H.

    1975-01-01

    A continuously operated, 1 pps, dense-plasma-focus device capable of delivering a minimum of 10 15 neutrons per pulse for material testing purposes is described. Moderate scaling from existing results is sufficient to provide 2 x 10 13 n/cm 2 . s to a suitable target. The average power consumption, which has become a major issue as a result of the energy crisis, is analyzed with respect to other plasma devices and is shown to be highly favorable. A novel approach to the capacitor bank and switch design allowing repetitive operation is discussed

  12. Specification of a VVER-1000 SFAT device prototype. Interim report on Task FIN A 1073 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    Nikkinen, M.; Tiitta, A.; Iievlev, S.; Dvoeglazov, M.; Lopatin, S.

    1999-01-01

    The project to specify the optimal design of the Spent Fuel Attribute Tester (SFAT) for Ukrainian VVER-1000 facilities was run under Finnish Support Programme for IAEA Safeguards under the task FIN A1073. This document illustrates the optimum design and takes into account the special conditions at the Ukrainian facilities. The requirement presented here takes into account the needs of the user (IAEA), nuclear safety authority (NRA) and facilities. This document contains the views of these parties. According to this document, the work to design the optimal SFAT device can be started. This document contains also consideration for the operational procedures, maintenance and safety. (orig.)

  13. Nondestructive testing of materials

    International Nuclear Information System (INIS)

    NUKEM has transferred know-how from reactor technology to materials testing. The high and to a large extent new quality standards in the nuclear industry necessitate reliable measuring and testing equipment of the highest precision. Many of the tasks presented to us could not be solved with the equipment available on the market, for which reason we have developed our own measuring, testing and control systems. We have therefore acquired considerable experience in dealing with specific measuring, testing and control tasks and can handle even out-of-the-way problems that are submitted to us from a wide variety of fields. Our mechanical systems for the checking of close-tolerance gaps, the automatic determination of pellet dimensions and the measurement of absolute lengths and absolute velocities are in use in many different industrial fields. We have succeeded in solving unusual testing and sorting problems with the aid of automated surface testing equipment working on optical principles. Our main activities in the field of non-destructive testing have been concentrated on ultrasonic and eddy current testing and, of late, acoustic emission analysis. NUKEM ultrasonic systems are notable for their high defect detection rate and testing accuracy, combined with high testing speed. The equipment we supply includes ultrasonic rotary systems for the production testing of quality tubes, ultrasonic immersion systems for the final testing of reactor cladding tubes, weld testing equipment, and test equipment for the bonds in multi-layer plates. (orig./RW) [de

  14. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  15. 10 CFR 32.61 - Ice detection devices containing strontium-90; requirements for license to manufacture or...

    Science.gov (United States)

    2010-01-01

    ...; requirements for license to manufacture or initially transfer. 32.61 Section 32.61 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES TO MANUFACTURE OR TRANSFER CERTAIN ITEMS CONTAINING BYPRODUCT MATERIAL... manufacture or initially transfer. An application for a specific license to manufacture or initially transfer...

  16. Materializing a responsive interior: designing minimum energy structures

    DEFF Research Database (Denmark)

    Mossé, Aurélie; Kofod, Guggi; Ramsgaard Thomsen, Mette

    2011-01-01

    This paper discusses a series of design-led experiments investigating future possibilities for architectural materialization relying on minimum energy structures as an example of adaptive structure. The structures have been made as laminates of elastic membrane under high tension with flexible...... (Lendlein, Kelch 2002) or light (van Oosten, Bastiaansen et al. 2009). All in all, this approach could form a whole new design paradigm, in which efficient 2D-manufacturing can lead to highly flexible, low weight and adaptable 3D-structures. This is illustrated by the design and manufacture of electro...

  17. Nuclear waste package materials testing report: basaltic and tuffaceous environments

    International Nuclear Information System (INIS)

    Bradley, D.J.; Coles, D.G.; Hodges, F.N.; McVay, G.L.; Westerman, R.E.

    1983-03-01

    The disposal of high-level nuclear wastes in underground repositories in the continental United States requires the development of a waste package that will contain radionuclides for a time period commensurate with performance criteria, which may be up to 1000 years. This report addresses materials testing in support of a waste package for a basalt (Hanford, Washington) or a tuff (Nevada Test Site) repository. The materials investigated in this testing effort were: sodium and calcium bentonites and mixtures with sand or basalt as a backfill; iron and titanium-based alloys as structural barriers; and borosilicate waste glass PNL 76-68 as a waste form. The testing also incorporated site-specific rock media and ground waters: Reference Umtanum Entablature-1 basalt and reference basalt ground water, Bullfrog tuff and NTS J-13 well water. The results of the testing are discussed in four major categories: Backfill Materials: emphasizing water migration, radionuclide migration, physical property and long-term stability studies. Structural Barriers: emphasizing uniform corrosion, irradiation-corrosion, and environmental-mechanical testing. Waste Form Release Characteristics: emphasizing ground water, sample surface area/solution volume ratio, and gamma radiolysis effects. Component Compatibility: emphasizing solution/rock, glass/rock, glass/structural barrier, and glass/backfill interaction tests. This area also includes sensitivity testing to determine primary parameters to be studied, and the results of systems tests where more than two waste package components were combined during a single test

  18. Qualification of an out-of-pile Thermohydraulic test Bench (BETHY) developed to calibrate calorimetric cells under specific JHR experimental conditions

    International Nuclear Information System (INIS)

    De Vita, C.; Brun, J.; Carette, M.; Reynard-Carette, C.; Lyoussi, A.; Fourmentel, D.; Villard, J.F.; Guimbal, P.; Malo, J.Y.

    2013-06-01

    Online in-pile measurement methods are crucial during irradiations in material testing reactors to better understand the behavior of materials under accelerated ageing conditions and of nuclear fuels under high irradiation levels. Thus, the construction of a new Material Testing Reactor such as the Jules Horowitz Reactor (JHR) leads to new research and development programs devoted to innovative instrumentation and measurement methods. The presented works are performed in the framework of the IN-CORE program, 'Instrumentation for Nuclear radiations and Calorimetry Online in Reactor', between CEA and Aix-Marseille University. The program aim is to develop experimental devices and test bench to quantify more precisely the nuclear heating parameter in the JHR experimental channels. This in-pile parameter is usually measured by means of calorimeter or gamma thermometer. This paper focuses on a new out-of-pile test bench called BETHY. This bench was developed to study the response of a differential calorimeter during its preliminary calibration step according to specific thermal and hydraulic conditions occurring inside one type of JHR core channel. The first section of this paper is dedicated to a detailed description of the bench. The second part presents the study of the thermal characteristics established in the bench for two main thermal running modes. The last one concerns the calibration curve of the reference cell of the differential calorimeter in the case of homogenous temperature. (authors)

  19. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  20. Processing of hazardous material, or damage treatment method for shallow layer underground storage structure

    International Nuclear Information System (INIS)

    Ito, Hiroshi; Sakaguchi, Takehiko; Nishioka, Yoshihiro.

    1997-01-01

    In radioactive waste processing facilities and shallow layer underground structures for processing hazardous materials, sheet piles having freezing pipes at the joint portions are spiked into soils at the periphery of a damaged portion of the shallow layer underground structure for processing or storing hazardous materials. Liquid nitrogen is injected to the freezing pipes to freeze the joint portions of adjacent sheet piles. With such procedures, continuous waterproof walls are formed surrounding the soils at the peripheries of the damaged portion. Further, freezing pipes are disposed in the surrounding soils, and liquid nitrogen is injected to freeze the soils. The frozen soils are removed, and artificial foundation materials are filled in the space except for the peripheries of the damaged portion after the removal thereof, and liquid suspension is filled in the peripheries of the damaged portion, and restoration steps for closing the damaged portion are applied. Then, the peripheries of the damaged portion are buried again. With such procedures, series of treatments for removing contaminated soils and repairing a damaged portion can be conducted efficiently at a low cost. (T.M.)

  1. Material testing in a linear theta pinch

    International Nuclear Information System (INIS)

    Alani, R.; Azodi, H.; Naraghi, M.; Safaii, B.; Torabi-Fard, A.

    1983-01-01

    The interaction of stainless steel 316 and Inconel 625 alloys has been investigated with a thermonuclear-like plasma, n = 10 16 cm -3 and Tsub(i) = 1 keV, generated in the Alvand I linear theta pinch. The average power flux is 10 7 W/cm 2 and the interaction time nearly one μs. A theoretical analysis based on the formation of an observed impurity layer near the material, has been used to determine the properties of the impurity layer and the extent of the damage on the material. Although arcing has been observed, the dominant damage mechanism has been assessed to be due to evaporation. Exposure to single shots has produced very heavily defective areas and even surface cracks on the SS 316 sample, but no cracks were observed on Inconel 625 after exposure to even 18 shots. On the basis of temperature rise and evaporation a comparison is made among materials exposed to plasmas of a theta pinch, shock tube, present generation tokamak and an anticipated tokamak reactor. (orig.)

  2. Maternal mobile device use during a structured parent-child interaction task.

    Science.gov (United States)

    Radesky, Jenny; Miller, Alison L; Rosenblum, Katherine L; Appugliese, Danielle; Kaciroti, Niko; Lumeng, Julie C

    2015-01-01

    To examine associations of maternal mobile device use with the frequency of mother-child interactions during a structured laboratory task. Participants included 225 low-income mother-child pairs. When children were ∼6 years old, dyads were videotaped during a standardized protocol in order to characterize how mothers and children interacted when asked to try familiar and unfamiliar foods. From videotapes, we dichotomized mothers on the basis of whether or not they spontaneously used a mobile device, and we counted maternal verbal and nonverbal prompts toward the child. We used multivariate Poisson regression to study associations of device use with eating prompt frequency for different foods. Mothers were an average of 31.3 (SD 7.1) years old, and 28.0% were of Hispanic/nonwhite race/ethnicity. During the protocol, 23.1% of mothers spontaneously used a mobile device. Device use was not associated with any maternal characteristics, including age, race/ethnicity, education, depressive symptoms, or parenting style. Mothers with device use initiated fewer verbal (relative rate 0.80; 95% confidence interval 0.63, 1.03) and nonverbal (0.61; 0.39, 0.96) interactions with their children than mothers who did not use a device, when averaged across all foods. This association was strongest during introduction of halva, the most unfamiliar food (0.67; 0.48, 0.93 for verbal and 0.42; 0.20, 0.89 for nonverbal interactions). Mobile device use was common and associated with fewer interactions with children during a structured interaction task, particularly nonverbal interactions and during introduction of an unfamiliar food. More research is needed to understand how device use affects parent-child engagement in naturalistic contexts. Copyright © 2015 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  3. Inherent Risk or Risky Decision? Coach's Failure to Use Safety Device an Assumed Risk

    Science.gov (United States)

    Dodds, Mark A.; Bochicchio, Kristi Schoepfer

    2013-01-01

    The court examined whether a coach's failure to implement a safety device during pitching practice enhanced the risk to the athlete or resulted in a suboptimal playing condition, in the context of the assumption of risk doctrine.

  4. Certified reference materials for food packaging specific migration tests: development, validation and modelling

    NARCIS (Netherlands)

    Stoffers, N.H.

    2005-01-01

    Keywords:certified reference materials; diffusion; food contact materials; food packaging; laurolactam; migration modelling; nylon; specific migration This thesis compiles several research topics

  5. A statistical characterization method for damping material properties and its application to structural-acousti