WorldWideScience

Sample records for tests conducted include

  1. Test design requirements: Thermal conductivity probe testing

    International Nuclear Information System (INIS)

    Heath, R.E.

    1985-01-01

    This document establishes the test design requirements for development of a thermal conductivity probe test. The thermal conductivity probe determines in situ thermal conductivity using a line source transient heat conduction analysis. This document presents the rationale for thermal conductivity measurement using a thermal conductivity probe. A general test description is included. Support requirements along with design constraints are detailed to allow simple design of the thermal conductivity probe and test. The schedule and delivery requirements of the responsible test designer are also included. 7 refs., 1 fig

  2. Identification of conductive hearing loss using air conduction tests alone: reliability and validity of an automatic test battery.

    Science.gov (United States)

    Convery, Elizabeth; Keidser, Gitte; Seeto, Mark; Freeston, Katrina; Zhou, Dan; Dillon, Harvey

    2014-01-01

    specificity of the test battery vary depending on the size of this deviation, but increase with increasing ABG size, with decreasing test frequency, and when results from multiple test frequencies are taken into account. The individual automatic tests comprising the battery were found to be reliable and valid, with strong, significant correlations between the test and retest results (r = 0.81 to 0.99; p conduction audiometry or specialized diagnostic equipment is unavailable or impractical. Examples of these include self-fitting hearing aids, whose efficacy relies on the ability of the device to automatically administer an in situ hearing test; self-administered adult hearing screenings in both clinical and home environments; large-scale industrial hearing conservation programs; and test environments in which ambient noise levels exceed the maximum permissible levels for unoccluded ears.

  3. Bone-Conduction ABR Tests.

    Science.gov (United States)

    Cone-Wesson, Barbara

    1995-01-01

    This article discusses the accuracy of bone-conduction auditory brainstem response (BC-ABR) tests to determine the presence and severity of conductive hearing impairment. It provides warnings about technical pitfalls and recommends incorporating BC-ABR protocols for routine clinical use. It concludes that the method allows estimating cochlear…

  4. 30 CFR 250.460 - What are the requirements for conducting a well test?

    Science.gov (United States)

    2010-07-01

    ... Other Drilling Requirements § 250.460 What are the requirements for conducting a well test? (a) If you intend to conduct a well test, you must include your projected plans for the test with your APD (form MMS...) You must give the District Manager at least 24-hours notice before starting a well test. [68 FR 8423...

  5. Including test errors in evaluating surveillance test intervals

    International Nuclear Information System (INIS)

    Kim, I.S.; Samanta, P.K.; Martorell, S.; Vesely, W.E.

    1991-01-01

    Technical Specifications require surveillance testing to assure that the standby systems important to safety will start and perform their intended functions in the event of plant abnormality. However, as evidenced by operating experience, the surveillance tests may be adversely impact safety because of their undesirable side effects, such as initiation of plant transients during testing or wearing-out of safety systems due to testing. This paper first defines the concerns, i.e., the potential adverse effects of surveillance testing, from a risk perspective. Then, we present a methodology to evaluate the risk impact of those adverse effects, focusing on two important kinds of adverse impacts of surveillance testing: (1) risk impact of test-caused trips and (2) risk impact of test-caused equipment wear. The quantitative risk methodology is demonstrated with several surveillance tests conducted at boiling water reactors, such as the tests of the main steam isolation valves, the turbine overspeed protection system, and the emergency diesel generators. We present the results of the risk-effectiveness evaluation of surveillance test intervals, which compares the adverse risk impact with the beneficial risk impact of testing from potential failure detection, along with insights from sensitivity studies

  6. Standard practice for conducting moist SO2 tests

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This practice covers the apparatus and procedure to be used in conducting qualitative assessment tests in accordance with the requirements of material or product specifications by means of specimen exposure to condensed moisture containing sulfur dioxide. 1.2 The exposure conditions may be varied to suit particular requirements and this practice includes provisions for use of different concentrations of sulfur dioxide and for tests either running continuously or in cycles of alternate exposure to the sulfur dioxide containing atmosphere and to the ambient atmosphere. 1.3 The variant of the test to be used, the exposure period required, the type of test specimen, and the criteria of failure are not prescribed by this practice. Such details are provided in appropriate material and product purchase specifications. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety c...

  7. Noninvasive electrical conductivity measurement by MRI: a test of its validity and the electrical conductivity characteristics of glioma.

    Science.gov (United States)

    Tha, Khin Khin; Katscher, Ulrich; Yamaguchi, Shigeru; Stehning, Christian; Terasaka, Shunsuke; Fujima, Noriyuki; Kudo, Kohsuke; Kazumata, Ken; Yamamoto, Toru; Van Cauteren, Marc; Shirato, Hiroki

    2018-01-01

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤ .045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r = .571, Bonferroni-corrected p = .018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r = .518, p = .040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. • This study tested the validity of noninvasive electrical conductivity measurements by MRI. • This study also evaluated the electrical conductivity characteristics of diffuse glioma. • Gliomas have higher electrical conductivity values than the normal brain parenchyma. • Noninvasive electrical conductivity measurement can be helpful for better characterisation of glioma.

  8. 30 CFR 250.1152 - How do I conduct well tests?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do I conduct well tests? 250.1152 Section... Tests and Surveys § 250.1152 How do I conduct well tests? (a) When you conduct well tests you must: (1... during completion, recompletion, reworking, or treatment operations before you start a well test; (2...

  9. Standard guide for conducting and evaluating galvanic corrosion tests in electrolytes

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1981-01-01

    1.1 This guide covers conducting and evaluating galvanic corrosion tests to characterize the behavior of two dissimilar metals in electrical contact in an electrolyte under low-flow conditions. It can be adapted to wrought or cast metals and alloys. 1.2 This guide covers the selection of materials, specimen preparation, test environment, method of exposure, and method for evaluating the results to characterize the behavior of galvanic couples in an electrolyte. Note 1—Additional information on galvanic corrosion testing and examples of the conduct and evaluation of galvanic corrosion tests in electrolytes are given in Refs (1) through (7). 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicabil...

  10. 49 CFR 40.211 - Who conducts DOT alcohol tests?

    Science.gov (United States)

    2010-10-01

    ...) Screening test technicians (STTs) and breath alcohol technicians (BATs) meeting their respective... conduct only alcohol screening tests, but a BAT can conduct alcohol screening and confirmation tests. (c) As a BAT- or STT-qualified immediate supervisor of a particular employee, you may not act as the STT...

  11. Interpretation of the tracer testing conducted in the Leuggern borehole

    International Nuclear Information System (INIS)

    McNeish, J.A.; Andrews, R.W.; Vomvoris, S.

    1990-12-01

    Tracer testing was conducted in the Leuggern borehole from July to December 1988 to evaluate the hydraulic properties of the crystalline host rock. The tested interval was an approximately 50 m section of fractured crystalline rock at a depth of greater than 1,600 m. The testing consisted of three tracer injection/recovery periods (uranin - 44 days, eosin - 30 days, and naphtionat -14 days), which utilized tracer injection/circulation rates, ranging between 25 and 50 ml/min. During these testing periods, tracer was injected in either of two 1/4 flow lines ported at the top or bottom of the interval and recovered from the other. Following the three tracer injection periods, a natural outflow tracer recovery test was conducted from the central tubing at an average outflow of 12 l/min. The central tubing was ported near the center of the test interval. Data collected during the testing periods included: continuous monitoring of fluid temperature, injection pressure, and electrical conductivity as well as discrete measurement of flow rates, electrical conductivity, fluid temperature, and tracer concentration. Testing results indicate a downward vertical flow of approximately 195-225 ml/min in the isolated interval, from an upper fracture inflow zone to a lower fracture outflow zone. Through analysis of the dilution levels of uranin and eosin during the injection/recovery periods, and review of field data, the top of the upper inflow zone was determined to be approximately 13 m below the top flow line and the bottom of the outflow zone to be approximately 3 to 5 meters above the bottom flow line. The calculated transmissivity value of 6E-05 m 2 /s from observed outflow rate and pressure recovery data, is consistent with results derived from previous hydraulic packer testing in the interval. The effective porosity was determined to be 0.1. Dispersion coefficient values ranged from 1.0 m to 5.0 m. The lateral hydraulic gradient value calculated from tracer recovery

  12. Thermal conductivity tests on buffermasses of bentonite/silt

    International Nuclear Information System (INIS)

    Knutsson, S.

    1977-09-01

    The investigation concerns the thermal conductivity of the bentonite/quartz buffer mass suggested as embedding substance for radioactive canisters. The first part presents the theoretical relationships associated with the various heat transfer mechanisms in moist granular materials. Chapter 3 describes the author's experimental determination of the thermal conductivity of the buffer mass. The tested mass consisted of 10 percent (by weight) bentonite and 90 percent natural silt. Four tests were made with different water content values and degree of water saturation. A comparison between the measured and calculated thermal conductivities is given. It is shown that the conductivity can be calculated with an accuracy of +-20 percent. (author)

  13. Advanced Testing Method for Ground Thermal Conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaobing [ORNL; Clemenzi, Rick [Geothermal Design Center Inc.; Liu, Su [University of Tennessee (UT)

    2017-04-01

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce the cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.

  14. Postirradiation examination data report for gap conductance test series. Test GC 2-1

    International Nuclear Information System (INIS)

    Murdock, B.A.

    1978-02-01

    The results of the postirradiation examination of four boiling water reactor type, zircaloy-clad, UO 2 -fueled rods tested in the Power Burst Facility are discussed. These rods were employed in Gap Conductance Test GC 2-1 which was performed to obtain experimental data from which test fuel rod gap conductance values could be determined by both the steady state ∫kdT and the power oscillation methods. The postirradiation examination results provided in the document will aid in interpreting the experimental data obtained during Test GC 2-1 and in evaluating the effect of fuel behavior on the fuel rod thermal response and interpreted gap conductances. Fuel rod fill gas composition and pressure are discussed. Measurements of fuel pellet-cladding gap and fuel crack areas are presented. The fuel structure is analyzed. Test rod instrumentation and power profiles are examined to better evaluate the test conditions

  15. Adaptation of electrical conductivity test for Moringa oleifera seeds

    Directory of Open Access Journals (Sweden)

    Maria Luiza de Souza Medeiros

    2017-09-01

    Full Text Available This study aimed to adapt and test the efficiency of electrical conductivity methodology test in quality evaluation of Moringa oleifera Lam seeds. For physiological characterization four seed sets were evaluated by tests of germination, seedlings emergency, speed of emergency index, emergency first count, seedlings length and dry mass and cold test. The electrical conductivity test was carried out at 25 °C for 4, 8, 12, 16 and 24 h of immersion in 75 or 125 mL of distilled water using 25 or 50 seeds. A completely randomized design was used. The best results were obtained when using 50 seeds immersed in 75 mL or 125 mL of distilled water for 4 h. The electrical conductivity test adapted to moringa seeds was efficient in ranking sets of different vigor levels. The test may be efficiently used for physiological quality evaluation of moringa seeds.

  16. Re-analysis of hydraulic tests conducted for well 4A

    International Nuclear Information System (INIS)

    Swanson, L.C.

    1994-01-01

    During 1992, a series of hydrologic characterization tests were conducted at the well 4A -- 4T test facility complex. Details concerning these tests are described in Swanson (1992). Two of the tests, a constant-rate discharge test conducted on March 30, 1992 and a slug interference test performed on April 15, 1992, are the focus of this report

  17. Conducting Closed Habitation Experiments: Experience from the Lunar Mars Life Support Test Project

    Science.gov (United States)

    Barta, Daniel J.; Edeen, Marybeth A.; Henninger, Donald L.

    2006-01-01

    The Lunar-Mars Life Support Test Project (LMLSTP) was conducted from 1995 through 1997 at the National Aeronautics and Space Administration s (NASA) Johnson Space Center (JSC) to demonstrate increasingly longer duration operation of integrated, closed-loop life support systems that employed biological and physicochemical techniques for water recycling, waste processing, air revitalization, thermal control, and food production. An analog environment for long-duration human space travel, the conditions of isolation and confinement also enabled studies of human factors, medical sciences (both physiology and psychology) and crew training. Four tests were conducted, Phases I, II, IIa and III, with durations of 15, 30, 60 and 91 days, respectively. The first phase focused on biological air regeneration, using wheat to generate enough oxygen for one experimental subject. The systems demonstrated in the later phases were increasingly complex and interdependent, and provided life support for four crew members. The tests were conducted using two human-rated, atmospherically-closed test chambers, the Variable Pressure Growth Chamber (VPGC) and the Integrated Life Support Systems Test Facility (ILSSTF). Systems included test articles (the life support hardware under evaluation), human accommodations (living quarters, kitchen, exercise equipment, etc.) and facility systems (emergency matrix system, power, cooling, etc.). The test team was managed by a lead engineer and a test director, and included test article engineers responsible for specific systems, subsystems or test articles, test conductors, facility engineers, chamber operators and engineering technicians, medical and safety officers, and science experimenters. A crew selection committee, comprised of psychologists, engineers and managers involved in the test, evaluated male and female volunteers who applied to be test subjects. Selection was based on the skills mix anticipated for each particular test, and utilized

  18. The benefits of conducting factory performance tests for main mine fans

    Energy Technology Data Exchange (ETDEWEB)

    Ray, R.E.Jr. [PB Americas Inc., New York, NY (United States); Gamble, G.A. [Clarage Twin City Fan Co., Akron, OH (United States)

    2010-07-01

    Axial flow fans used in underground mining are also commonly used in subway tunnel ventilation fans to provide an evacuation path during a tunnel fire emergency. The axial flow fans provide sufficient air velocity to the fire site to prevent backlayering of smoke against the incoming airflow. Since the tunnels are used by the public, advance testing of fans and motors is conducted to confirm that the equipment will perform as specified during a fire. This paper discussed some of the advantages derived from conducting fan factory tests for tunnel projects that would also apply to mining applications. It also described other benefits from testing that are unique to mining. External factors that may cause the fan performance to vary considerably from the predicted performance measured at the factory were also discussed. These included air density changes and system effects produced by poorly designed shaft configurations and fan inlet ductwork. 11 refs., 6 figs.

  19. 10 CFR 26.101 - Conducting a confirmatory test for alcohol.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Conducting a confirmatory test for alcohol. 26.101 Section... Testing § 26.101 Conducting a confirmatory test for alcohol. (a) The confirmatory test must begin as soon... that meets the requirements of § 26.91(b) and (c) was used for the initial alcohol test, the same EBT...

  20. Standard practice for conducting and evaluating laboratory corrosions tests in soils

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1999-01-01

    1.1 This practice covers procedures for conducting laboratory corrosion tests in soils to evaluate the corrosive attack on engineering materials. 1.2 This practice covers specimen selection and preparation, test environments, and evaluation of test results. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, P.G., E-mail: pgr@mtechindustrial.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Toit, C.G. du; Antwerpen, W. van [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Antwerpen, H.J. van [M-Tech Industrial (Pty) Ltd., PO Box 19855, Noordbrug 2522 (South Africa)

    2014-05-01

    Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTU non-nuclear test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. This paper describes the separate effects tests that were conducted to determine the effective thermal conductivity through the pebble bed under near-vacuum conditions and temperatures up to 1200 °C. It also presents the measured temperature distributions and the methodology applied in the data analysis to derive the resultant values of effective thermal conductivity and its associated uncertainty.

  2. Separate effects tests to determine the effective thermal conductivity in the PBMR HTTU test facility

    International Nuclear Information System (INIS)

    Rousseau, P.G.; Toit, C.G. du; Antwerpen, W. van; Antwerpen, H.J. van

    2014-01-01

    Thermal-fluid simulations are used extensively to predict the maximum fuel temperatures, flows, pressure drops and thermal capacitance of pebble bed gas cooled reactors in support of the reactor safety case. The PBMR company developed the HTTU non-nuclear test facility in cooperation with M-Tech Industrial (Pty) Ltd. and the North-West University in South Africa to conduct comprehensive separate effects tests as well as integrated effects tests to study the different thermal-fluid phenomena. This paper describes the separate effects tests that were conducted to determine the effective thermal conductivity through the pebble bed under near-vacuum conditions and temperatures up to 1200 °C. It also presents the measured temperature distributions and the methodology applied in the data analysis to derive the resultant values of effective thermal conductivity and its associated uncertainty

  3. 30 CFR 250.1151 - How often must I conduct well production tests?

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How often must I conduct well production tests... Requirements Well Tests and Surveys § 250.1151 How often must I conduct well production tests? (a) You must conduct well production tests as shown in the following table: You must conduct: And you must submit to...

  4. A methodology to investigate the contribution of conduction and radiation heat transfer to the effective thermal conductivity of packed graphite pebble beds, including the wall effect

    Energy Technology Data Exchange (ETDEWEB)

    De Beer, M., E-mail: maritz.db@gmail.com [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Du Toit, C.G., E-mail: Jat.DuToit@nwu.ac.za [School of Mechanical and Nuclear Engineering, North-West University, Private Bag X6001, Potchefstroom 2520 (South Africa); Rousseau, P.G., E-mail: pieter.rousseau@uct.ac.za [Department of Mechanical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa)

    2017-04-01

    Highlights: • The radiation and conduction components of the effective thermal conductivity are separated. • Near-wall effects have a notable influence on the effective thermal conductivity. • Effective thermal conductivity is a function of the macro temperature gradient. • The effective thermal conductivity profile shows a characteristic trend. • The trend is a result of the interplay between conduction and radiation. - Abstract: The effective thermal conductivity represents the overall heat transfer characteristics of a packed bed of spheres and must be considered in the analysis and design of pebble bed gas-cooled reactors. During depressurized loss of forced cooling conditions the dominant heat transfer mechanisms for the passive removal of decay heat are radiation and conduction. Predicting the value of the effective thermal conductivity is complex since it inter alia depends on the temperature level and temperature gradient through the bed, as well as the pebble packing structure. The effect of the altered packing structure in the wall region must therefore also be considered. Being able to separate the contributions of radiation and conduction allows a better understanding of the underlying phenomena and the characteristics of the resultant effective thermal conductivity. This paper introduces a purpose-designed test facility and accompanying methodology that combines physical measurements with Computational Fluid Dynamics (CFD) simulations to separate the contributions of radiation and conduction heat transfer, including the wall effects. Preliminary results obtained with the methodology offer important insights into the trends observed in the experimental results and provide a better understanding of the interplay between the underlying heat transfer phenomena.

  5. Results of gap conductance tests in the power burst facility

    International Nuclear Information System (INIS)

    Garner, R.W.; Sparks, D.T.

    1977-01-01

    Light water reactor (LWR) fuel rod behavior studies are being conducted by the Thermal Fuels Behavior Program of EG and G Idaho, Inc. These studies are being performed under contract to the Energy Research and Development Adminstration at the Idaho National Engineering Laboratory (INEL), as part of the Nuclear Regulatory Commission's Water Reactor Safety Research Fuel Behavior Program. Experimental data for verification of analytical models developed to predict light water nuclear fuel rod behavior under normal and postulated accident conditions are being obtained from a variety of in-reactor and out-of-reactor experiments. This paper summarizes the results of tests performed in the Power Burst Facility (PBF) to obtain data from which the thermal response, gap conductance, and stored energy of LWR fuel rods can be determined. Primary objectives of the PBF gap conductance test program are (a) to obtain data on a variety of pressurized water reactor (PWR) and boiling water reactor (BWR) fuel rod designs, under a wide range of operating conditions, from which gap conductance values can be determined and (b) to evaluate experimentally the power oscillation method for measuring the gap conductance and thermal response of a fresh or burned LWR fuel rod. Tests have been performed with both irradiated and unirradiated PWR-type fuel and with fresh BWR-type fuel rods. Some PWR rod test results are described, and the thermal response data from BWR rod tests are discussed in greater detail. Comparisons are made of gap conductance values determined by the tests with analytically calculated values using the Fuel Rod Analysis Program-Transient (FRAP-T) computer code. These comparisons provide insight into both the experimental measurements methods and the validity of the gap conductance models

  6. Evaluation of the radionuclide tracer test conducted at the project Gnome Underground Nuclear Test Site, New Mexico

    International Nuclear Information System (INIS)

    Pohll, G.; Pohlmann, K.

    1996-08-01

    A radionuclide tracer test was conducted in 1963 by the U.S. Geological Survey at the Project Gnome underground nuclear test site, approximately 40 km southeast of Carlsbad, New Mexico. The tracer study was carried out under the auspices of the U.S. Atomic Energy Commission (AEC) to study the transport behavior of radionuclides in fractured rock aquifers. The Culebra Dolomite was chosen for the test because it was considered to be a reasonable analogue of the fractured carbonate aquifer at the Nevada Test Site (NTS), the principal location of U.S. underground nuclear tests. Project Gnome was one of a small number of underground nuclear tests conducted by the AEC at sites distant from the NTS. The Gnome device was detonated on December 10, 1961 in an evaporate unit at a depth of 360 m below ground surface. Recently, the U.S. Department of Energy (DOE) implemented an environmental restoration program to characterize, remediate, and close these offsite nuclear test areas. An early step in this process is performance of a preliminary risk analysis of the hazard posed by each site. The Desert Research Institute has performed preliminary hydrologic risk evaluations for the groundwater transport pathway at Gnome. That evaluation included the radioactive tracer test as a possible source because the test introduced radionuclides directly into the Culebra Dolomite, which is the only aquifer at the site. This report presents a preliminary evaluation of the radionuclide tracer test as a source for radionuclide migration in the Culebra Dolomite. The results of this study will assist in planning site characterization activities and refining estimates of the radionuclide source for comprehensive models of groundwater transport st the Gnome site

  7. Pretest Calculations of Temperature Changes for Field Thermal Conductivity Tests

    International Nuclear Information System (INIS)

    N.S. Brodsky

    2002-01-01

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J · m -3 · K -1 ), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result

  8. A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer

    International Nuclear Information System (INIS)

    Sitprasert, Chatcharin; Dechaumphai, Pramote; Juntasaro, Varangrat

    2009-01-01

    The interfacial layer of nanoparticles has been recently shown to have an effect on the thermal conductivity of nanofluids. There is, however, still no thermal conductivity model that includes the effects of temperature and nanoparticle size variations on the thickness and consequently on the thermal conductivity of the interfacial layer. In the present work, the stationary model developed by Leong et al. (J Nanopart Res 8:245-254, 2006) is initially modified to include the thermal dispersion effect due to the Brownian motion of nanoparticles. This model is called the 'Leong et al.'s dynamic model'. However, the Leong et al.'s dynamic model over-predicts the thermal conductivity of nanofluids in the case of the flowing fluid. This suggests that the enhancement in the thermal conductivity of the flowing nanofluids due to the increase in temperature does not come from the thermal dispersion effect. It is more likely that the enhancement in heat transfer of the flowing nanofluids comes from the temperature-dependent interfacial layer effect. Therefore, the Leong et al.'s stationary model is again modified to include the effect of temperature variation on the thermal conductivity of the interfacial layer for different sizes of nanoparticles. This present model is then evaluated and compared with the other thermal conductivity models for the turbulent convective heat transfer in nanofluids along a uniformly heated tube. The results show that the present model is more general than the other models in the sense that it can predict both the temperature and the volume fraction dependence of the thermal conductivity of nanofluids for both non-flowing and flowing fluids. Also, it is found to be more accurate than the other models due to the inclusion of the effect of the temperature-dependent interfacial layer. In conclusion, the present model can accurately predict the changes in thermal conductivity of nanofluids due to the changes in volume fraction and temperature for

  9. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  10. 40 CFR 60.3035 - May I conduct performance testing less often?

    Science.gov (United States)

    2010-07-01

    ... deviation from an emission limitation for any pollutant, you must conduct annual performance tests for that... 40 Protection of Environment 6 2010-07-01 2010-07-01 false May I conduct performance testing less... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance...

  11. 40 CFR 60.2934 - May I conduct performance testing less often?

    Science.gov (United States)

    2010-07-01

    ... deviation from an emission limitation for any pollutant, you must conduct annual performance tests for that... 40 Protection of Environment 6 2010-07-01 2010-07-01 false May I conduct performance testing less... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Operator Training and...

  12. Benchmark Testing of the Largest Titanium Aluminide Sheet Subelement Conducted

    Science.gov (United States)

    Bartolotta, Paul A.; Krause, David L.

    2000-01-01

    To evaluate wrought titanium aluminide (gamma TiAl) as a viable candidate material for the High-Speed Civil Transport (HSCT) exhaust nozzle, an international team led by the NASA Glenn Research Center at Lewis Field successfully fabricated and tested the largest gamma TiAl sheet structure ever manufactured. The gamma TiAl sheet structure, a 56-percent subscale divergent flap subelement, was fabricated for benchmark testing in three-point bending. Overall, the subelement was 84-cm (33-in.) long by 13-cm (5-in.) wide by 8-cm (3-in.) deep. Incorporated into the subelement were features that might be used in the fabrication of a full-scale divergent flap. These features include the use of: (1) gamma TiAl shear clips to join together sections of corrugations, (2) multiple gamma TiAl face sheets, (3) double hot-formed gamma TiAl corrugations, and (4) brazed joints. The structural integrity of the gamma TiAl sheet subelement was evaluated by conducting a room-temperature three-point static bend test.

  13. Sweat conductivity and coulometric quantitative test in neonatal cystic fibrosis screening.

    Science.gov (United States)

    Domingos, Mouseline Torquato; Magdalena, Neiva Isabel Rodrigues; Cat, Mônica Nunes Lima; Watanabe, Alexandra Mitiru; Rosário Filho, Nelson Augusto

    2015-01-01

    To compare the results obtained with the sweat test using the conductivity method and coulometric measurement of sweat chloride in newborns (NBs) with suspected cystic fibrosis (CF) in the neonatal screening program. The sweat test was performed simultaneously by both methods in children with and without CF. The cutoff values to confirm CF were >50 mmol/L in the conductivity and >60 mmol/L in the coulometric test. There were 444 infants without CF (185 males, 234 females, and 24 unreported) submitted to the sweat test through conductivity and coulometric measurement simultaneously, obtaining median results of 32 mmol/L and 12 mmol/L, respectively. For 90 infants with CF, the median values of conductivity and coulometric measurement were 108 mmol/L and 97 mmol/L, respectively. The false positive rate for conductivity was 16.7%, and was higher than 50 mmol/L in all patients with CF, which gives this method a sensitivity of 100% (95% CI: 93.8-97.8), specificity of 96.2% (95% CI: 93.8-97.8), positive predictive value of 83.3% (95% CI: 74.4-91.1), negative predictive value of 100% (95% CI: 90.5-109.4), and 9.8% accuracy. The correlation between the methods was r=0.97 (p>0.001). The best suggested cutoff value was 69.0 mmol/L, with a kappa coefficient=0.89. The conductivity test showed excellent correlation with the quantitative coulometric test, high sensitivity and specificity, and can be used in the diagnosis of CF in children detected through newborn screening. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  14. Analysis of slug tests in formations of high hydraulic conductivity.

    Science.gov (United States)

    Butler, James J; Garnett, Elizabeth J; Healey, John M

    2003-01-01

    A new procedure is presented for the analysis of slug tests performed in partially penetrating wells in formations of high hydraulic conductivity. This approach is a simple, spreadsheet-based implementation of existing models that can be used for analysis of tests from confined or unconfined aquifers. Field examples of tests exhibiting oscillatory and nonoscillatory behavior are used to illustrate the procedure and to compare results with estimates obtained using alternative approaches. The procedure is considerably simpler than recently proposed methods for this hydrogeologic setting. Although the simplifications required by the approach can introduce error into hydraulic-conductivity estimates, this additional error becomes negligible when appropriate measures are taken in the field. These measures are summarized in a set of practical field guidelines for slug tests in highly permeable aquifers.

  15. An improved method for interpreting API filter press hydraulic conductivity test results

    International Nuclear Information System (INIS)

    Heslin, G.M.; Baxter, D.Y.; Filz, G.M.; Davidson, R.R.

    1997-01-01

    The American Petroleum Institute (API) filter press is frequently used to measure the hydraulic conductivity of soil-bentonite backfill during the mix design process and as part of construction quality controls. However, interpretation of the test results is complicated by the fact that the seepage-induced consolidation pressure varies from zero at the top of the specimen to a maximum value at the bottom of the specimen. An analytical solution is available which relates the stress, compressibility, and hydraulic conductivity in soil consolidated by seepage forces. This paper presents the results of a laboratory investigation undertaken to support application of this theory to API hydraulic conductivity tests. When the API test results are interpreted using seepage consolidation theory, they are in good agreement with the results of consolidometer permeameter tests. Limitations of the API test are also discussed

  16. 40 CFR 63.5992 - When must I conduct subsequent performance tests?

    Science.gov (United States)

    2010-07-01

    ... performance tests? 63.5992 Section 63.5992 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... CATEGORIES National Emissions Standards for Hazardous Air Pollutants: Rubber Tire Manufacturing General Testing and Initial Compliance Requirements § 63.5992 When must I conduct subsequent performance tests? If...

  17. Hydrogeological study of single water conducting fracture using a crosshole hydraulic test apparatus

    International Nuclear Information System (INIS)

    Yamamoto, Hajime; Shimo, Michito; Yamamoto, Takuya

    1998-03-01

    The Crosshole Injection Test Apparatus has been constructed to evaluate the hydraulic properties and conditions, such as hydraulic conductivity and its anisotropy, storage coefficient, pore pressure etc. within a rock near a drift. The construction started in FY93 and completed on August FY96 as a set of equipments for the use of crosshole hydraulic test, which is composed of one injection borehole instrument, one observation borehole instrument and a set of on-ground instrument. In FY96, in-situ feasibility test was conducted at a 550 m level drift in Kamaishi In Situ Test Site which has been operated by PNC, and the performance of the equipment and its applicability to various types of injection method were confirmed. In this year, a hydrogeological investigation on the single water conducting fracture was conducted at a 250 m level drift in Kamaishi In Situ Test Site, using two boreholes, KCH-3 and KCH-4, both of which are 30 m depth and inclined by 45 degrees from the surface. Pressure responses at the KCH-3 borehole during the drilling of KCH-4 borehole, the results of Borehole TV logging and core observation indicated that a major conductive single-fracture was successfully isolated by the packers. As a result of a series of the single-hole and the crosshole tests (sinusoidal and constant flowrate test), the hydraulic parameters of the single-fracture (such as hydraulic conductivity and storage coefficient) were determined. This report shows all the test result, analysed data, and also describes the hydro-geological structure near the drift. (author)

  18. 40 CFR 60.2155 - May I conduct performance testing less often?

    Science.gov (United States)

    2010-07-01

    ... performance test. (c) If a performance test shows a deviation from an emission limitation for particulate... 40 Protection of Environment 6 2010-07-01 2010-07-01 false May I conduct performance testing less... PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for...

  19. Modification of EBR-II plant to conduct loss-of-flow-without-scram tests

    Energy Technology Data Exchange (ETDEWEB)

    Messick, N C; Betten, P R; Booty, W F; Christensen, L J; Fryer, R M; Mohr, D; Planchon, H P; Radtke, W H

    1987-04-01

    This paper describes the details of and the philosophy behind changes made to the EBR-II plant in order to conduct loss-of-flow-without-scram tests. No changes were required to conduct loss-of-heat-sink-without-scram tests.

  20. Modification of EBR-II plant to conduct loss-of-flow-without-scram tests

    International Nuclear Information System (INIS)

    Messick, N.C.; Betten, P.R.; Booty, W.F.; Christensen, L.J.; Fryer, R.M.; Mohr, D.; Planchon, H.P.; Radtke, W.H.

    1987-01-01

    This paper describes the details of and the philosophy behind changes made to the EBR-II plant in order to conduct loss-of-flow-without-scram tests. No changes were required to conduct loss-of-heat-sink-without-scram tests. (orig.)

  1. 9 CFR 55.8 - Official CWD tests and approval of laboratories to conduct official CWD tests.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Official CWD tests and approval of laboratories to conduct official CWD tests. 55.8 Section 55.8 Animals and Animal Products ANIMAL AND PLANT... on live or dead animals, and will base the approval or disapproval of a test on the evaluation by...

  2. Sweat conductivity and coulometric quantitative test in neonatal cystic fibrosis screening

    Directory of Open Access Journals (Sweden)

    Mouseline Torquato Domingos

    2015-11-01

    Full Text Available Objective: To compare the results obtained with the sweat test using the conductivity method and coulometric measurement of sweat chloride in newborns (NBs with suspected cystic fibrosis (CF in the neonatal screening program. Methods: The sweat test was performed simultaneously by both methods in children with and without CF. The cutoff values to confirm CF were >50 mmol/L in the conductivity and >60 mmol/L in the coulometric test. Results: There were 444 infants without CF (185 males, 234 females, and 24 unreported submitted to the sweat test through conductivity and coulometric measurement simultaneously, obtaining median results of 32 mmol/L and 12 mmol/L, respectively. For 90 infants with CF, the median values of conductivity and coulometric measurement were 108 mmol/L and 97 mmol/L, respectively. The false positive rate for conductivity was 16.7%, and was higher than 50 mmol/L in all patients with CF, which gives this method a sensitivity of 100% (95% CI: 93.8–97.8, specificity of 96.2% (95% CI: 93.8–97.8, positive predictive value of 83.3% (95% CI: 74.4–91.1, negative predictive value of 100% (95% CI: 90.5–109.4, and 9.8% accuracy. The correlation between the methods was r = 0.97 (p > 0.001. The best suggested cutoff value was 69.0 mmol/L, with a kappa coefficient = 0.89. Conclusion: The conductivity test showed excellent correlation with the quantitative coulometric test, high sensitivity and specificity, and can be used in the diagnosis of CF in children detected through newborn screening. Resumo: Objetivo: Comparar os resultados obtidos no teste do suor pelo método da condutividade e a dosagem coulométrica de cloreto no suor em recém nascidos (RN suspeitos da triagem neonatal para fibrose cística (FC. Métodos: O teste do suor foi realizado simultaneamente pelos dois métodos em crianças com e sem FC. Os valores de corte para confirmar FC foram na condutividade > 50 mmol/L e no teste coulométrico > 60

  3. Noninvasive electrical conductivity measurement by MRI. A test of its validity and the electrical conductivity characteristics of glioma

    Energy Technology Data Exchange (ETDEWEB)

    Tha, Khin Khin; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Katscher, Ulrich; Stehning, Christian [Philips Research Laboratories, Hamburg (Germany); Yamaguchi, Shigeru; Terasaka, Shunsuke; Kazumata, Ken [Faculty of Medicine, Hokkaido University, Department of Neurosurgery, Sapporo (Japan); Fujima, Noriyuki [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology, N-14, W-5, Kita-ku, Sapporo (Japan); Yamamoto, Toru [Hokkaido University, Faculty of Health Sciences, Sapporo (Japan); Van Cauteren, Marc [Clinical Science Philips Healthtech Asia Pacific, Tokyo (Japan); Shirato, Hiroki [Hokkaido University, Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Sapporo (Japan); Faculty of Medicine, Hokkaido University, Department of Radiation Medicine, Sapporo (Japan)

    2018-01-15

    This study noninvasively examined the electrical conductivity (σ) characteristics of diffuse gliomas using MRI and tested its validity. MRI including a 3D steady-state free precession (3D SSFP) sequence was performed on 30 glioma patients. The σ maps were reconstructed from the phase images of the 3D SSFP sequence. The σ histogram metrics were extracted and compared among the contrast-enhanced (CET) and noncontrast-enhanced tumour components (NCET) and normal brain parenchyma (NP). Difference in tumour σ histogram metrics among tumour grades and correlation of σ metrics with tumour grades were tested. Validity of σ measurement using this technique was tested by correlating the mean tumour σ values measured using MRI with those measured ex vivo using a dielectric probe. Several σ histogram metrics of CET and NCET of diffuse gliomas were significantly higher than NP (Bonferroni-corrected p ≤.045). The maximum σ of NCET showed a moderate positive correlation with tumour grade (r =.571, Bonferroni-corrected p =.018). The mean tumour σ measured using MRI showed a moderate positive correlation with the σ measured ex vivo (r =.518, p =.040). Tissue σ can be evaluated using MRI, incorporation of which may better characterise diffuse gliomas. (orig.)

  4. Analyses of production tests and MDT tests conducted in Mallik and Alaska methane hydrate reservoirs : what can we learn from these well tests?

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, M.; Funatsu, K.; Ouchi, H. [Japan Oil Engineering Co., Tokyo (Japan); Masuda, Y. [Tokyo Univ., Tokyo (Japan). School of Engineering; Yamamoto, K. [Japan Oil, Gas and Metals National Corp., Tokyo (Japan); Narita, H. [National Inst. of Advanced Industrial Science and Technology, Tokyo (Japan); Dallimore, S.R. [Natural Resources Canada, Ottawa, ON (Canada). Geological Survey of Canada; Collett, T.S. [United States Geological Survey, Reston, VA (United States); Hancock, S.H. [APA Petroleum Engineering Ltd., Calgary, AB (Canada)

    2008-07-01

    This paper described a series of pressure drawdown tests conducted to evaluate a modular formation dynamics tester (MDT) wireline tool. The tests were conducted at the Mallik methane hydrate (MH) reservoir as well as in MH reservoirs in Alaska over a period of several years. Production tests were also conducted to evaluate depressurization methods, and measure production and bottomhole pressure (BHP) below known MH stability pressures in order to estimate permeability and MH dissociation radius properties. The results of the tests were then history-matched using a numerical simulator. An analysis of the simulation study showed that the MDT tests were useful in estimating initial effective permeability levels in the presence of MH. However, wellbore storage erased important data used to indicate the radius of MH dissociation and effective permeability after partial MH dissociation. The study also showed that steady flow conditions must be established before obtaining solutions from history-matched production tests. Parameters accurately estimated using the MDT and production tests were outlined, and suggestions for future designs and analyses for MH reservoirs were presented. 14 refs., 7 tabs., 17 figs.

  5. Research Problems Associated with Limiting the Applied Force in Vibration Tests and Conducting Base-Drive Modal Vibration Tests

    Science.gov (United States)

    Scharton, Terry D.

    1995-01-01

    The intent of this paper is to make a case for developing and conducting vibration tests which are both realistic and practical (a question of tailoring versus standards). Tests are essential for finding things overlooked in the analyses. The best test is often the most realistic test which can be conducted within the cost and budget constraints. Some standards are essential, but the author believes more in the individual's ingenuity to solve a specific problem than in the application of standards which reduce problems (and technology) to their lowest common denominator. Force limited vibration tests and base-drive modal tests are two examples of realistic, but practical testing approaches. Since both of these approaches are relatively new, a number of interesting research problems exist, and these are emphasized herein.

  6. Development of Chinese HTR-PM pebble bed equivalent conductivity test facility

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Cheng; Yang, Xingtuan; Jiang, Shengyao [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2016-01-15

    The first two 250-MWt high-temperature reactor pebble bed modules (HTR-PM) have been installing at the Shidaowan plant in Shandong Province, China. The values of the effective thermal conductivity of the pebble bed core are essential parameters for the design. For their determination, Tsinghua University in China has proposed a full-scale heat transfer experiment to conduct comprehensive thermal transfer tests in packed pebble bed and to determine the effective thermal conductivity.

  7. Perforation of dental gloves during prosthodontic treatments as assessed by the conductivity and water inflation tests.

    Science.gov (United States)

    Nikawa, H; Hamada, T; Tamamoto, M; Abekura, H; Murata, H

    1996-01-01

    The incidence of latex glove perforation during prosthodontic treatment was investigated on 122 occasions using two methods, a conductivity test and a water inflation test. Latex glove perforation was detected in 38.5% of the treatments by the conductivity test and in 27.9% by the water inflation test. The perforation went unrecognized in 74.7% of the occurrences (35/47 incidents) using the conductivity test and in 64.7% (22/34) when the water inflation test was used. Of the total 55 glove perforations, 21 perforations were detected only by conductivity test, 3 were detected only by the water inflation test, and 31 perforations were detected by both methods, which suggested that the conductivity test is more sensitive than the water inflation test for the detection of glove perforation. The results of this research suggested that even when latex gloves are worn, the risk to prosthodontists of exposure to body fluids remains in four of every six treatments, often without the awareness of the prosthodontist.

  8. Development, manufacturing and testing of a gas-loaded variable conductance methanol heat pipe

    Science.gov (United States)

    Vanbuggenum, R. I. J.; Daniels, D. H. W.

    1987-02-01

    The experimental technology required to measure the performance of moderate temperature heat pipes is presented. The heat pipe manufacturing process is described. The hydrodynamic characteristics of the porous structure inside the heat pipe envelope were examined using a specially developed test rig, based upon a steady-state evaporation test. A fully automated test facility was developed and validated by testing constant conductance and variable conductance heat pipes (VCHP). Theoretical performance predictions are illustrated in terms of pressure, depicted in 3D-plots, and compared with the test results of the heat pipe performance tests. The design of the VCHP was directed towards the verification of the VCHP mathematical model. The VCHP design is validated and ready for the final testing and model verification.

  9. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas

    International Nuclear Information System (INIS)

    1994-02-01

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided

  10. Public health genomics and genetic test evaluation: the challenge of conducting behavioural research on the utility of lifestyle-genetic tests.

    Science.gov (United States)

    Sanderson, Saskia C; Wardle, Jane; Humphries, Steve E

    2008-01-01

    Human genetics research is increasingly concerned with multifactorial conditions such as diabetes and heart disease, which are influenced not only by genetic but also lifestyle factors such as diet and smoking. Although the results of 'lifestyle-genetic' tests using this information could conceivably motivate lifestyle changes in the future, companies are already selling such tests and related lifestyle advice commercially. Some academics and lobby groups have condemned the companies for selling these tests in advance of scientific support. Others are concerned that the tests may not motivate lifestyle improvements, instead causing distress in people receiving adverse test results and complacency in those receiving reassuring results. There is currently no regulatory oversight of genetic test utility, despite consensus in the Public Health Genomics community that clinical utility (including psychological and behavioural impact) of all emerging genetic tests should be evaluated before being introduced for individual use. Clearly, empirical data in this area is much needed, to inform understanding of the potential utility of these tests, and of whether stricter regulation of commercial exploitation is needed. In this article, we review the current situation regarding lifestyle-genetic tests, and discuss the challenges inherent in conducting this kind of behavioural research in the genomics era. Copyright 2008 S. Karger AG, Basel.

  11. Drying tests conducted on Three Mile Island fuel canisters containing simulated debris

    International Nuclear Information System (INIS)

    Palmer, A.J.

    1995-01-01

    Drying tests were conducted on TMI-2 fuel canisters filled with simulated core debris. During these tests, canisters were dried by heating externally by a heating blanket while simultaneously purging the canisters' interior with hot, dry nitrogen. Canister drying was found to be dominated by moisture retention properties of a concrete filler material (LICON) used for geometry control. This material extends the drying process 10 days or more beyond what would be required were it not there. The LICON resides in a nonpurgeable chamber separate from the core debris, and because of this configuration, dew point measurements on the exhaust stream do not provide a good indication of the dew point in the canisters. If the canisters are not dried, but rather just dewatered, 140-240 lb of water (not including the LICON water of hydration) will remain in each canister, approximately 50-110 lb of which is pore water in the LICON and the remainder unbound water

  12. Thermography Used to Test Conductivity of Carbon Based Cloth

    Science.gov (United States)

    Craven, Paul

    2012-01-01

    Testing of the ability of carbon fiber to radiatively cool a heat source. The carbon fibers are attached to a heat source. The heat conducts into the fiber than along the fiber away from the heat source. The test are done in a vacuum chamber (10-5 Torr typical). The IR camera is viewing the fiber through a ZnSe window. A thermocouple (TC) in contact with the fiber is at the top right hand side of the area of interest and one is near the bottom. Thin shielding fins, seen edge on, are just above the top thermocouple.

  13. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  14. Standard Guide for Conducting Corrosion Tests in Field Applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This guide covers procedures for conducting corrosion tests in plant equipment or systems under operating conditions to evaluate the corrosion resistance of engineering materials. It does not cover electrochemical methods for determining corrosion rates. 1.1.1 While intended primarily for immersion tests, general guidelines provided can be applicable for exposure of test specimens in plant atmospheres, provided that placement and orientation of the test specimens is non-restrictive to air circulation. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. See also 10.4.2.

  15. Technical and management considerations in conducting type B shipping container tests

    International Nuclear Information System (INIS)

    Whitney, M.A.; Leader, D.R.; Phipps, D.P.

    1994-01-01

    The Code of Federal Regulations (CFR) mandate that type B shipping containers are capable of surviving specific drop tests. One approach for demonstrating compliance to the CFRs is to drop test a shipping container. This paper will discuss the technical and management considerations in conducting such drop tests on the 9975 family of shipping containers. For both technical and management considerations this paper will comment on loading the shipping container, dropping the shopping container, and examination of the shipping container after the drop tests

  16. A Conduction-Cooled Superconducting Magnet System-Design, Fabrication and Thermal Tests

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Holbøll, Joachim; Wang, Qiuliang

    2015-01-01

    A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high-vacuumed c......A conduction-cooled superconducting magnet system with an operating current of 105.5 A was designed, fabricated and tested for material processing applications. The magnet consists of two coaxial NbTi solenoid coils with an identical vertical height of 300 mm and is installed in a high......-vacuumed cryostat. A two-stage GM cryocooler with a cooling power of 1.5 W at 4.2 K in the second stage is used to cool the system from room temperature to 4.2 K. In this paper, the detailed design, fabrication, thermal analysis and tests of the system are presented....

  17. Property transfer assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1992-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most environmental assessments. These requirements come from lending regulators and state legislatures and affect single family, multifamily, and commercial properties. Fannie Mae and others have developed environmental investigation guidelines for protection from long term legal liabilities in the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more banks and state governments following this trend, radon gas testing should be performed during all property transfers and environmental assessments to protect the parties involved from any long term legal liabilities

  18. Testing Conducted for Lithium-Ion Cell and Battery Verification

    Science.gov (United States)

    Reid, Concha M.; Miller, Thomas B.; Manzo, Michelle A.

    2004-01-01

    The NASA Glenn Research Center has been conducting in-house testing in support of NASA's Lithium-Ion Cell Verification Test Program, which is evaluating the performance of lithium-ion cells and batteries for NASA mission operations. The test program is supported by NASA's Office of Aerospace Technology under the NASA Aerospace Flight Battery Systems Program, which serves to bridge the gap between the development of technology advances and the realization of these advances into mission applications. During fiscal year 2003, much of the in-house testing effort focused on the evaluation of a flight battery originally intended for use on the Mars Surveyor Program 2001 Lander. Results of this testing will be compared with the results for similar batteries being tested at the Jet Propulsion Laboratory, the Air Force Research Laboratory, and the Naval Research Laboratory. Ultimately, this work will be used to validate lithium-ion battery technology for future space missions. The Mars Surveyor Program 2001 Lander battery was characterized at several different voltages and temperatures before life-cycle testing was begun. During characterization, the battery displayed excellent capacity and efficiency characteristics across a range of temperatures and charge/discharge conditions. Currently, the battery is undergoing lifecycle testing at 0 C and 40-percent depth of discharge under low-Earth-orbit (LEO) conditions.

  19. LMFBR safety: Interim test report for the characterization of released particle tests conducted at INEL during FY 1979

    International Nuclear Information System (INIS)

    Johnson, R.P.; Nelson, C.T.

    1979-01-01

    Two additional atmospheric sodium release tests were jointly conducted by ESG and ARL at INEL. These tests were conducted under very stable (Pasquill E and G) meteorological conditions where the natural humidity content was high (47 and 96% RH). Sufficient experimental data was obtained on Test 7 to quantitatively qualify the formation of Na 2 CO 3 in the open atmosphere from primary sodium combustion products. These data show that a maximum concentration of approx. 60% Na 2 CO 3 is reached with the plume 100 meters from the release point. This concentration increases slightly as the plume is dispersed beyond 2400 meters. The available particle fallout data is consistent with predictions

  20. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...

  1. Using Pneumatics to Perform Laboratory Hydraulic Conductivity Tests on Gravel with Underdamped Responses

    Science.gov (United States)

    Judge, A. I.

    2011-12-01

    A permeameter has been designed and built to perform laboratory hydraulic conductivity tests on various kinds of gravel samples with hydraulic conductivity values ranging from 0.1 to 1 m/s. The tests are commenced by applying 200 Pa of pneumatic pressure to the free surface of the water column in a riser connected above a cylinder that holds large gravel specimens. This setup forms a permeameter specially designed for these tests which is placed in a barrel filled with water, which acts as a reservoir. The applied pressure depresses the free surface in the riser 2 cm until it is instantly released by opening a ball valve. The water then flows through the base of the cylinder and the specimen like a falling head test, but the water level oscillates about the static value. The water pressure and the applied air pressure in the riser are measured with vented pressure transducers at 100 Hz. The change in diameter lowers the damping frequency of the fluctuations of the water level in the riser, which allows for underdamped responses to be observed for all tests. The results of tests without this diameter change would otherwise be a series of critically damped responses with only one or two oscillations that dampen within seconds and cannot be evaluated with equations for the falling head test. The underdamped responses oscillate about the static value at about 1 Hz and are very sensitive to the hydraulic conductivity of all the soils tested. These fluctuations are also very sensitive to the inertia and friction in the permeameter that are calculated considering the geometry of the permeameter and verified experimentally. Several gravel specimens of various shapes and sizes are tested that show distinct differences in water level fluctuations. The friction of the system is determined by calibrating the model with the results of tests performed where the cylinder had no soil in it. The calculation of the inertia in the response of the water column for the typical testing

  2. Conducting meta-analyses of HIV prevention literatures from a theory-testing perspective.

    Science.gov (United States)

    Marsh, K L; Johnson, B T; Carey, M P

    2001-09-01

    Using illustrations from HIV prevention research, the current article advocates approaching meta-analysis as a theory-testing scientific method rather than as merely a set of rules for quantitative analysis. Like other scientific methods, meta-analysis has central concerns with internal, external, and construct validity. The focus of a meta-analysis should only rarely be merely describing the effects of health promotion, but rather should be on understanding and explaining phenomena and the processes underlying them. The methodological decisions meta-analysts make in conducting reviews should be guided by a consideration of the underlying goals of the review (e.g., simply effect size estimation or, preferably theory testing). From the advocated perspective that a health behavior meta-analyst should test theory, the authors present a number of issues to be considered during the conduct of meta-analyses.

  3. Standard practice for conducting atmospheric corrosion tests on metals

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers and defines conditions for exposure of metals and alloys to the weather. It sets forth the general procedures that should be followed in any atmospheric test. It is presented as an aid in conducting atmospheric corrosion tests so that some of the pitfalls of such testing may be avoided. As such, it is concerned mainly with panel exposures to obtain data for comparison purposes. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  4. 40 CFR 63.2354 - What performance tests, design evaluations, and performance evaluations must I conduct?

    Science.gov (United States)

    2010-07-01

    ... evaluations, and performance evaluations must I conduct? 63.2354 Section 63.2354 Protection of Environment... tests, design evaluations, and performance evaluations must I conduct? (a)(1) For each performance test... procedures specified in subpart SS of this part. (3) For each performance evaluation of a continuous emission...

  5. Conducting tests for statistically significant differences using forest inventory data

    Science.gov (United States)

    James A. Westfall; Scott A. Pugh; John W. Coulston

    2013-01-01

    Many forest inventory and monitoring programs are based on a sample of ground plots from which estimates of forest resources are derived. In addition to evaluating metrics such as number of trees or amount of cubic wood volume, it is often desirable to make comparisons between resource attributes. To properly conduct statistical tests for differences, it is imperative...

  6. Feasibility and normal values of an integrated conductivity (Nanoduct™) sweat test system in healthy newborns.

    Science.gov (United States)

    Kuehni, Claudia E; Schindler, Matthias; Mazur, Agnieszka; Malzacher, Andreas; Hornung, René; Barben, Juerg

    2017-07-01

    Nanoduct™ is a simple and practical sweat analysis system measuring conductivity in situ. It requires only three microlitres of sweat, making it especially applicable to newborns. We measured conductivity in 260 healthy term infants at the age of four days, and again at four weeks to determine the proportion of successful tests, test duration, and normal values for sweat conductivity in newborns. Sufficient sweat was collected in 159/260 of four-day olds (61%), and in 225/239 of four-week olds (94%). Mean (sd) test duration was 27 (5) and 25 (5) min. Mean (sd, range) conductivity was 53mmol/l (16, 8-114) at age four days, and 36 (9, 12-64) at four weeks. Determination of sweat conductivity using Nanoduct™ cannot be recommended for four-day old newborns. However, at the age of four weeks the success rate is high (94%), and conductivity values at that age are comparable to older healthy children. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  7. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    International Nuclear Information System (INIS)

    Daw, J.E.; Knudson, D.L.; Villard, J.F.; Liothin, J.; Destouches, C.; Rempe, J.L.; Matheron, P.; Lambert, T.

    2015-01-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  8. Joint tests at INL and CEA of a transient hot wire needle probe for in-pile thermal conductivity measurement

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.E.; Knudson, D.L. [Idaho National Laboratory, Idaho Falls, ID 83415, (United States); Villard, J.F.; Liothin, J.; Destouches, C. [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Rempe, J.L. [Rempe and Associates, LLC, Idaho Falls, ID, 83404 (United States); Matheron, P. [CEA, DEN, DEC, Uranium Fuels Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France); Lambert, T. [CEA, DEN, DEC, Innovative Fuel Design and Irradiation Laboratory, Cadarache, F-13108 St Paul-Lez-Durance, (France)

    2015-07-01

    Thermal conductivity is a key property that must be known for proper design, testing, and deployment of new fuels and structural materials in nuclear reactors. Thermal conductivity is highly dependent on the physical structure, chemical composition, and the state of the material. Typically, thermal conductivity changes that occur during irradiation are currently measured out-of-pile using a 'cook and look' approach. But repeatedly removing samples from a test reactor to make measurements is expensive, has the potential to disturb phenomena of interest, and only provides understanding of the sample's end state when each measurement is made. There are also limited thermo-physical property data available for advanced fuels; and such data are needed for simulation codes, the development of next generation reactors, and advanced fuels for existing nuclear plants. Being able to quickly characterize fuel thermal conductivity during irradiation can improve the fidelity of data, reduce costs of post-irradiation examinations, increase understanding of how fuels behave under irradiation, and confirm or improve existing thermal conductivity measurement techniques. This paper discusses efforts to develop and evaluate an innovative in-pile thermal conductivity sensor based on the transient hot wire thermal conductivity method (THWM), using a single needle probe (NP) containing a line heat source and thermocouple embedded in the fuel. The sensor that has been designed and manufactured by the Idaho National Laboratory (INL) includes a unique combination of materials, geometry, and fabrication techniques that make the hot wire method suitable for in-pile applications. In particular, efforts were made to minimize the influence of the sensor and maximize fuel hot-wire heating. The probe has a thermocouple-like construction with high temperature resistant materials that remain ductile while resisting transmutation and materials interactions. THWM-NP prototypes were

  9. [Autopsy and blood testing for alcohol and drugs/medicine after traffic fatalities is not routinely conducted].

    Science.gov (United States)

    Uhrenholt, Lars; Schumacher, Bente; Freeman, Michael

    2010-09-27

    In some road traffic crashes with fatal outcome, the police investigations lead to charges against and prosecution of a person. The police can request a medico-legal autopsy as well as a toxicological examination, but the extent to which this is done, and the role here of in the legal setting is unknown. Information concerning traffic crashes with fatal outcome in the period 2000-2004 in Aarhus Police District was retrieved and compared. The information included comprised crash specific and legal information, as well as medical data concerning autopsy, examination for alcohol, drugs and/or medicine. In all, 81 traffic crashes had a fatal outcome for 92 persons, of whom 17 (18%) were autopsied, 55 (60%) were tested for alcohol, and five (5%) were examined for drugs/medicine. Twenty-six were charged with negligent homicide, of which 18 were convicted. Autopsy was performed in four of these cases, 19 were tested for alcohol and one was tested for drugs/medicine. This study shows that the police requests few medico-legal autopsies following road traffic fatalities, and that testing for alcohol as well as drugs/medicine is not conducted routinely. As a consequence, important information may not come to the knowledge of the police in cases of negligent homicide. We recommend that postmortem examination be conducted routinely in traffic-related homicide cases to secure the best possible conditions for a legal evaluation.

  10. Standard guide for conducting exfoliation corrosion tests in aluminum alloys

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1992-01-01

    1.1 This guide differs from the usual ASTM standard in that it does not address a specific test. Rather, it is an introductory guide for new users of other standard exfoliation test methods, (see Terminology G 15 for definition of exfoliation). 1.2 This guide covers aspects of specimen preparation, exposure, inspection, and evaluation for conducting exfoliation tests on aluminum alloys in both laboratory accelerated environments and in natural, outdoor atmospheres. The intent is to clarify any gaps in existent test methods. 1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Compact X-ray source at STF (Super Conducting Accelerator Test Facility)

    International Nuclear Information System (INIS)

    Urakawa, J

    2012-01-01

    KEK-STF is a super conducting linear accelerator test facility for developing accelerator technologies for the ILC (International Linear Collider). We are supported in developing advanced accelerator technologies using STF by Japanese Ministry (MEXT) for Compact high brightness X-ray source development. Since we are required to demonstrate the generation of high brightness X-ray based on inverse Compton scattering using super conducting linear accelerator and laser storage cavity technologies by October of next year (2012), the design has been fixed and the installation of accelerator components is under way. The necessary technology developments and the planned experiment are explained.

  12. MHD SIMULATIONS OF CORONAL SUPRA-ARCADE DOWNFLOWS INCLUDING ANISOTROPIC THERMAL CONDUCTION

    International Nuclear Information System (INIS)

    Zurbriggen, E.; Costa, A.; Schneiter, M.; Cécere, M.; Esquivel, A.

    2016-01-01

    Coronal supra-arcade downflows (SADs) are observed as dark trails descending toward hot turbulent-fan-shaped regions. Due to the large temperature values and gradients in these fan regions, the thermal conduction (TC) should be very efficient. While several models have been proposed to explain the triggering and the evolution of SADs, none of these scenarios address a systematic consideration of TC. Thus, we accomplish this task numerically simulating the evolution of SADs within this framework. That is, SADs are conceived as voided (subdense) cavities formed by nonlinear waves triggered by downflowing bursty localized reconnection events in a perturbed hot fan. We generate a properly turbulent fan, obtained by a stirring force that permits control of the energy and vorticity input in the medium where SADs develop. We include anisotropic TC and consider plasma properties consistent with observations. Our aim is to study whether it is possible to prevent SADs from vanishing by thermal diffusion. We find that this will be the case, depending on the turbulence parameters, in particular if the magnetic field lines are able to envelope the voided cavities, thermally isolating them from the hot environment. Velocity shear perturbations that are able to generate instabilities of the Kelvin–Helmholtz type help to produce magnetic islands, extending the lifetime of SADs.

  13. MHD SIMULATIONS OF CORONAL SUPRA-ARCADE DOWNFLOWS INCLUDING ANISOTROPIC THERMAL CONDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Zurbriggen, E.; Costa, A.; Schneiter, M.; Cécere, M. [Instituto de Investigaciones en Astronomía Teórica y Experimental (IATE), Córdoba (Argentina); Esquivel, A., E-mail: ezurbriggen@unc.edu.ar, E-mail: acosta@unc.edu.ar [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)

    2016-11-20

    Coronal supra-arcade downflows (SADs) are observed as dark trails descending toward hot turbulent-fan-shaped regions. Due to the large temperature values and gradients in these fan regions, the thermal conduction (TC) should be very efficient. While several models have been proposed to explain the triggering and the evolution of SADs, none of these scenarios address a systematic consideration of TC. Thus, we accomplish this task numerically simulating the evolution of SADs within this framework. That is, SADs are conceived as voided (subdense) cavities formed by nonlinear waves triggered by downflowing bursty localized reconnection events in a perturbed hot fan. We generate a properly turbulent fan, obtained by a stirring force that permits control of the energy and vorticity input in the medium where SADs develop. We include anisotropic TC and consider plasma properties consistent with observations. Our aim is to study whether it is possible to prevent SADs from vanishing by thermal diffusion. We find that this will be the case, depending on the turbulence parameters, in particular if the magnetic field lines are able to envelope the voided cavities, thermally isolating them from the hot environment. Velocity shear perturbations that are able to generate instabilities of the Kelvin–Helmholtz type help to produce magnetic islands, extending the lifetime of SADs.

  14. Benchmark Tests for Stirling Convertor Heater Head Life Assessment Conducted

    Science.gov (United States)

    Krause, David L.; Halford, Gary R.; Bowman, Randy R.

    2004-01-01

    A new in-house test capability has been developed at the NASA Glenn Research Center, where a critical component of the Stirling Radioisotope Generator (SRG) is undergoing extensive testing to aid the development of analytical life prediction methodology and to experimentally aid in verification of the flight-design component's life. The new facility includes two test rigs that are performing creep testing of the SRG heater head pressure vessel test articles at design temperature and with wall stresses ranging from operating level to seven times that (see the following photograph).

  15. Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    O'Brien, G.M.

    1998-01-01

    Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data

  16. Characteristics of Anisotropic Conducting Polymers Suggest Feasibility of Test Fixtures up to 110 GHz

    Directory of Open Access Journals (Sweden)

    Mark Sippel

    2017-12-01

    Full Text Available Applications and volume of integrated circuits operating at frequencies up to 100 GHz are steadily increasing. This establishes serious challenges, especially for temporarily contacting such products during manufacturing tests with appropriate signal integrity. At present, existing test socket concepts have reached their applicability limit. The most promising candidates to meet the requirements of future microwave device interfacing are thin, anisotropic conducting polymers. This paper reports a survey covering measurement methodology for signal integrity properties of conducting polymers, model parameter extraction, measurement results from various materials, reliability issues, and a prototype application.

  17. Complex conductivity of soils

    DEFF Research Database (Denmark)

    Revil, A.; Coperey, A.; Shao, Z.

    2017-01-01

    The complex conductivity of soil remains poorly known despite the growing importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one clean sand in the frequency range 0.1 Hertz...... to 45 kHz. The soil samples are saturated with 6 different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl, 25°C) in order to determine their intrinsic formation factor and surface conductivity. This dataset is used to test the predictions of the dynamic Stern...

  18. Wave Pattern Peculiarities of Different Types of Explosions Conducted at Semipalatinsk Test Site

    Science.gov (United States)

    Sokolova, Inna

    2014-05-01

    The historical seismograms of the explosions conducted at the STS in 1949 - 1989 are of great interest for the researchers in the field of monitoring. Large number of air (86), surface (30) and underground nuclear explosions were conducted here in boreholes and tunnels (340). In addition to nuclear explosions, large chemical explosions were conducted at the Test Site. It is known that tectonic earthquakes occur on the Test Site territory and near it. Since 2005 the Institute of Geophysical Researches conducts works on digitizing the historical seismograms of nuclear explosions. Currently, the database contains more than 6000 digitized seismograms of nuclear explosions used for investigative monitoring tasks, major part of them (4000) are events from the STS region. Dynamic parameters of records of air, surface and underground nuclear explosions, as well as large chemical explosions with compact charge laying were investigated for seismic stations located on the territory of Kazakhstan using digitized records of the STS events. In addition, the comparison between salvo wave pattern and single explosions was conducted. The records of permanent and temporary seismic stations (epicentral distances range 100 - 800 km) were used for the investigations. Explosions spectra were analyzed, specific features of each class of events were found. The seismograms analysis shows that the wave pattern depends significantly on the explosion site and on the source type.

  19. Development and Testing of a Variable Conductance Thermal Acquisition, Transport, and Switching System

    Science.gov (United States)

    Bugby, David C.; Farmer, Jeffery T.; Stouffer, Charles J.

    2013-01-01

    This paper describes the development and testing of a scalable thermal management architecture for instruments, subsystems, or systems that must operate in severe space environments with wide variations in sink temperature. The architecture involves a serial linkage of one or more hot-side variable conductance heat pipes (VCHPs) to one or more cold-side loop heat pipes (LHPs). The VCHPs provide wide area heat acquisition, limited distance thermal transport, modest against gravity pumping, concentrated LHP startup heating, and high switching ratio variable conductance operation. The LHPs provide localized heat acquisition, long distance thermal transport, significant against gravity pumping, and high switching ratio variable conductance operation. The single-VCHP, single-LHP system described herein was developed to maintain thermal control of a small robotic lunar lander throughout the lunar day-night thermal cycle. It is also applicable to other variable heat rejection space missions in severe environments. Operationally, despite a 60-70% gas blocked VCHP condenser during ON testing, the system was still able to provide 2-4 W/K ON conductance, 0.01 W/K OFF conductance, and an end-to-end switching ratio of 200-400. The paper provides a detailed analysis of VCHP condenser performance, which quantified the gas blockage situation. Future multi-VCHP/multi-LHP thermal management system concepts that provide power/transport length scalability are also discussed.

  20. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Science.gov (United States)

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  1. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site

    International Nuclear Information System (INIS)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report

  2. 30 CFR 250.407 - What tests must I conduct to determine reservoir characteristics?

    Science.gov (United States)

    2010-07-01

    ... Gas Drilling Operations General Requirements § 250.407 What tests must I conduct to determine... of oil, gas, sulphur, and water in the formations penetrated by logging, formation sampling, or well...

  3. Database dictionary for the results of groundwater tracer tests using tritiated water, conducted at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, B.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Civil Engineering; Huff, D.D. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-05-01

    In 1977, the United States Geological Survey (USGS) conducted two tracer tests at the Oak Ridge National Laboratory (ORNL) using tritiated water to study the relative importance of bedding-plane openings on shallow groundwater flow. Through a cooperative agreement between the USGS and the US Department of Energy (DOE), the data were made available to researchers at the Oak Ridge National Laboratory (ORNL), who organized the data into a data management format. The results of these groundwater tracer tests have been compiled into a collection of four SAS data sets. This report documents these SAS data sets, including their structure, methodology, and content. The SAS data sets include information on precipitation, tritium, water levels, and well construction for wells at or near ORNL radioactive waste burial grounds 4, 5, and 6.

  4. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic Conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Science.gov (United States)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-01-01

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  5. Interpretation of Flow Logs from Nevada Test Site Boreholes to Estimate Hydraulic conductivity Using Numerical Simulations Constrained by Single-Well Aquifer Tests

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, C. Amanda; Halford, Keith J.; Laczniak, Randell J.

    2010-02-12

    Hydraulic conductivities of volcanic and carbonate lithologic units at the Nevada Test Site were estimated from flow logs and aquifer-test data. Borehole flow and drawdown were integrated and interpreted using a radial, axisymmetric flow model, AnalyzeHOLE. This integrated approach is used because complex well completions and heterogeneous aquifers and confining units produce vertical flow in the annular space and aquifers adjacent to the wellbore. AnalyzeHOLE simulates vertical flow, in addition to horizontal flow, which accounts for converging flow toward screen ends and diverging flow toward transmissive intervals. Simulated aquifers and confining units uniformly are subdivided by depth into intervals in which the hydraulic conductivity is estimated with the Parameter ESTimation (PEST) software. Between 50 and 150 hydraulic-conductivity parameters were estimated by minimizing weighted differences between simulated and measured flow and drawdown. Transmissivity estimates from single-well or multiple-well aquifer tests were used to constrain estimates of hydraulic conductivity. The distribution of hydraulic conductivity within each lithology had a minimum variance because estimates were constrained with Tikhonov regularization. AnalyzeHOLE simulated hydraulic-conductivity estimates for lithologic units across screened and cased intervals are as much as 100 times less than those estimated using proportional flow-log analyses applied across screened intervals only. Smaller estimates of hydraulic conductivity for individual lithologic units are simulated because sections of the unit behind cased intervals of the wellbore are not assumed to be impermeable, and therefore, can contribute flow to the wellbore. Simulated hydraulic-conductivity estimates vary by more than three orders of magnitude across a lithologic unit, indicating a high degree of heterogeneity in volcanic and carbonate-rock units. The higher water transmitting potential of carbonate-rock units relative

  6. Determination of hydraulic conductivity coefficient in NSD site, Serpong, based on in-situ permeability test method

    International Nuclear Information System (INIS)

    Heri Syaeful; Sucipta

    2013-01-01

    In line with the increase of amount of radioactive waste, PTLR-BATAN plans to build the Near Surface Disposal (NSD) facility, especially in the preliminary stages is the Demo Plant of NSD facility. NSD is a low to medium level radioactive waste storage concept. Most important aspect in the site study for planning NSD is hydrogeological aspect especially related to the migration of radionuclides to the environment. In the study of radionuclide migration, a preliminary parameter which is required to know is the hydraulic conductivity in order to deliver the soil and rock hydraulic conductivity values in the site then conducted the in-situ permeability test. Based on the test, obtained soil and rock hydraulic conductivity values ranging from 10 -6 to 10 -2 cm/sec. The greatest hydraulic conductivity value located in the gravelly silt soil units which is in the site, constitute as aquifer, with depth ranging from 8 - 24 m, with hydraulic conductivity value reached 10 -2 cm/sec. (author)

  7. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Rukmani; Sarazin, Craig, E-mail: rukmani@virginia.edu [Department of Astronomy, University of Virginia, 530 McCormick Rd., Charlottesville, VA 22904 (United States)

    2017-05-20

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  8. The Evaporation and Survival of Cluster Galaxy Coronae. I. The Effectiveness of Isotropic Thermal Conduction Including Saturation

    International Nuclear Information System (INIS)

    Vijayaraghavan, Rukmani; Sarazin, Craig

    2017-01-01

    We simulate the evolution of cluster galaxy hot interstellar medium (ISM) gas that is a result of the effects of ram pressure and thermal conduction in the intracluster medium (ICM). At the density and temperature of the ICM, the mean free paths of ICM electrons are comparable to the sizes of galaxies, therefore electrons can efficiently transport heat that is due to thermal conduction from the hot ICM to the cooler ISM. Galaxies consisting of dark matter halos and hot gas coronae are embedded in an ICM-like “wind tunnel” in our simulations. In this paper, we assume that thermal conduction is isotropic and include the effects of saturation. We find that as heat is transferred from the ICM to the ISM, the cooler denser ISM expands and evaporates. This process is significantly faster than gas loss due to ram pressure stripping; for our standard model galaxy, the evaporation time is 160 Myr, while the ram pressure stripping timescale is 2.5 Gyr. Thermal conduction also suppresses the formation of shear instabilities, and there are no stripped ISM tails since the ISM evaporates before tails can form. Observations of long-lived X-ray emitting coronae and ram pressure stripped X-ray tails in galaxies in group and cluster environments therefore require that thermal conduction is suppressed or offset by some additional physical process. The most likely process is anisotropic thermal conduction that is due to magnetic fields in the ISM and ICM, which we simulate and study in the next paper in this series.

  9. The Validity of Graduate Management Admission Test Scores: A Summary of Studies Conducted from 1997 to 2004

    Science.gov (United States)

    Talento-Miller, Eileen; Rudner, Lawrence M.

    2008-01-01

    The validity of Graduate Management Admission Test (GMAT) scores is examined by summarizing 273 studies conducted between 1997 and 2004. Each of the studies was conducted through the Validity Study Service of the test sponsor and contained identical variables and statistical methods. Validity coefficients from each of the studies were corrected…

  10. Underground Nuclear Testing Program, Nevada Test Site

    International Nuclear Information System (INIS)

    1975-09-01

    The Energy Research and Development Administration (ERDA) continues to conduct an underground nuclear testing program which includes tests for nuclear weapons development and other tests for development of nuclear explosives and methods for their application for peaceful uses. ERDA also continues to provide nuclear explosive and test site support for nuclear effects tests sponsored by the Department of Defense. This Supplement extends the Environmental Statement (WASH-1526) to cover all underground nuclear tests and preparations for tests of one megaton (1 MT) or less at the Nevada Test Site (NTS) during Fiscal Year 1976. The test activities covered include numerous continuing programs, both nuclear and non-nuclear, which can best be conducted in a remote area. However, if nuclear excavation tests or tests of yields above 1 MT or tests away from NTS should be planned, these will be covered by separate environmental statements

  11. More Than Just Accuracy: A Novel Method to Incorporate Multiple Test Attributes in Evaluating Diagnostic Tests Including Point of Care Tests.

    Science.gov (United States)

    Thompson, Matthew; Weigl, Bernhard; Fitzpatrick, Annette; Ide, Nicole

    2016-01-01

    Current frameworks for evaluating diagnostic tests are constrained by a focus on diagnostic accuracy, and assume that all aspects of the testing process and test attributes are discrete and equally important. Determining the balance between the benefits and harms associated with new or existing tests has been overlooked. Yet, this is critically important information for stakeholders involved in developing, testing, and implementing tests. This is particularly important for point of care tests (POCTs) where tradeoffs exist between numerous aspects of the testing process and test attributes. We developed a new model that multiple stakeholders (e.g., clinicians, patients, researchers, test developers, industry, regulators, and health care funders) can use to visualize the multiple attributes of tests, the interactions that occur between these attributes, and their impacts on health outcomes. We use multiple examples to illustrate interactions between test attributes (test availability, test experience, and test results) and outcomes, including several POCTs. The model could be used to prioritize research and development efforts, and inform regulatory submissions for new diagnostics. It could potentially provide a way to incorporate the relative weights that various subgroups or clinical settings might place on different test attributes. Our model provides a novel way that multiple stakeholders can use to visualize test attributes, their interactions, and impacts on individual and population outcomes. We anticipate that this will facilitate more informed decision making around diagnostic tests.

  12. Techniques Employed to Conduct Postshot Drilling at the former Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Dekin, W D

    2011-04-14

    Postshot drilling provided essential data on the results of the underground nuclear tests conducted at the Nevada Test Site (NTS), now identified as the Nevada National Security Site (NNSS). It was the means by which samples from the zone of interest were obtained for radiochemical analysis. This handbook describes how Lawrence Livermore National Laboratory (LLNL) conducted postshot drilling operations at the NTS, and it provides a general understanding of the process. Postshot drilling is a specialized application of rotary drilling. Accordingly, this handbook gives a brief description of rotary drilling in Section 2 to acquaint the reader with the general subject before proceeding to the specialized techniques used in postshot drilling. In Section 3, the handbook describes the typical postshot drilling situation at the former NTS and the drilling methods used. Section 4 describes the typical sequence of operations in postshot drilling at the former NTS. Detailed information on special equipment and techniques is given in a series of appendices (A through F) at the end of the handbook.

  13. Conducting field studies for testing pesticide leaching models

    Science.gov (United States)

    Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.

    1990-01-01

    A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.

  14. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    Science.gov (United States)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  15. Comprehensive overview of FPL field testing conducted in the tropics (1945-2005)

    Science.gov (United States)

    Grant T. Kirker; Stan L. Lebow; Mark E. Mankowski

    2016-01-01

    Tropical exposure often represents a more severe environment for treated wood and wood based products. Accelerated tropical decay rates are typically attributed to higher mean rainfall and temperatures. The Forest Products Laboratory (FPL) in Madison, WI has been conducting tropical field tests in a variety of locations since the early 1940’s. This paper summarizes FPL...

  16. Requirements Relating To Manufacturing Constructions In The Aspect Of Conducting Ultrasonic Testing

    Directory of Open Access Journals (Sweden)

    Kaczmarek R.

    2015-09-01

    Full Text Available Basic factors which have an influence on conducting manual ultrasonic testing of joints in the welded constructions are presented in the following article. These factors are specified on the base of the guidelines referring to conditions and methods of carrying out examinations which are currently in force in the following standards PN-EN ISO 17640 and PN-EN ISO 22825. Due to the vastness of subject of ultrasonic testing the main aim of the following article is to collect all important information which relates to design and manufacture of constructions and has a key influence on the following examinations.

  17. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    Science.gov (United States)

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  18. Test of Association Between 10 SNPs in the Oxytocin Receptor Gene and Conduct Disorder

    OpenAIRE

    Sakai, Joseph T.; Crowley, Thomas J.; Stallings, Michael C.; McQueen, Matthew; Hewitt, John K.; Hopfer, Christian; Hoft, Nicole R.; Ehringer, Marissa A.

    2012-01-01

    Animal and human studies have implicated oxytocin (OXT) in affiliative and prosocial behaviors. We tested whether genetic variation in the OXT receptor (OXTR) gene is associated with conduct disorder (CD).

  19. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  20. Device including a contact detector

    DEFF Research Database (Denmark)

    2011-01-01

    arms (12) may extend from the supporting body in co-planar relationship with the first surface. The plurality of cantilever arms (12) may extend substantially parallel to each other and each of the plurality of cantilever arms (12) may include an electrical conductive tip for contacting the area......The present invention relates to a probe for determining an electrical property of an area of a surface of a test sample, the probe is intended to be in a specific orientation relative to the test sample. The probe may comprise a supporting body defining a first surface. A plurality of cantilever...... of the test sample by movement of the probe relative to the surface of the test sample into the specific orientation.; The probe may further comprise a contact detector (14) extending from the supporting body arranged so as to contact the surface of the test sample prior to any one of the plurality...

  1. Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging

    Science.gov (United States)

    Jardani, A.; Revil, A.; Dupont, J. P.

    2013-02-01

    The assessment of hydraulic conductivity of heterogeneous aquifers is a difficult task using traditional hydrogeological methods (e.g., steady state or transient pumping tests) due to their low spatial resolution. Geophysical measurements performed at the ground surface and in boreholes provide additional information for increasing the resolution and accuracy of the inverted hydraulic conductivity field. We used a stochastic joint inversion of Direct Current (DC) resistivity and self-potential (SP) data plus in situ measurement of the salinity in a downstream well during a synthetic salt tracer experiment to reconstruct the hydraulic conductivity field between two wells. The pilot point parameterization was used to avoid over-parameterization of the inverse problem. Bounds on the model parameters were used to promote a consistent Markov chain Monte Carlo sampling of the model parameters. To evaluate the effectiveness of the joint inversion process, we compared eight cases in which the geophysical data are coupled or not to the in situ sampling of the salinity to map the hydraulic conductivity. We first tested the effectiveness of the inversion of each type of data alone (concentration sampling, self-potential, and DC resistivity), and then we combined the data two by two. We finally combined all the data together to show the value of each type of geophysical data in the joint inversion process because of their different sensitivity map. We also investigated a case in which the data were contaminated with noise and the variogram unknown and inverted stochastically. The results of the inversion revealed that incorporating the self-potential data improves the estimate of hydraulic conductivity field especially when the self-potential data were combined to the salt concentration measurement in the second well or to the time-lapse cross-well electrical resistivity data. Various tests were also performed to quantify the uncertainty in the inverted hydraulic conductivity

  2. Amplification of transcutaneous and percutaneous bone-conduction devices with a test-band in an induced model of conductive hearing loss.

    Science.gov (United States)

    Park, Marn Joon; Lee, Jae Ryung; Yang, Chan Joo; Yoo, Myung Hoon; Jin, In Suk; Choi, Chi Ho; Park, Hong Ju

    2016-11-01

    Transcutaneous devices have a disadvantage, the dampening effect by soft tissue between the bone and devices. We investigated hearing outcomes with percutaneous and transcutaneous devices using test-bands in an induced unilateral conductive hearing loss. Comparison of hearing outcomes of two devices in the same individuals. The right ear was plugged in 30 subjects and a test-band with devices (Cochlear™ Baha® BP110 Power and Sophono® Alpha-2 MPO™) was applied on the right mastoid tip with the left ear masked. Sound-field thresholds, speech recognition thresholds (SRTs), and word recognition scores (WRSs) were compared. Aided thresholds of Sophono were significantly better than those of Baha at most frequencies. Sophono WRSs (86 ± 12%) at 40 dB SPL and SRTs (14 ± 5 dB HL) were significantly better than those (73 ± 24% and 23 ± 8 dB HL) of Baha. However, Sophono WRSs (98 ± 3%) at 60 dB SPL did not differ from Baha WRSs (95 ± 12%). Amplifications of the current transcutaneous device were not inferior to those of percutaneous devices with a test-band in subjects with normal bone-conduction thresholds. Since the percutaneous devices can increase the gain when fixed to the skull by eliminating the dampening effect, both devices are expected to provide sufficient hearing amplification.

  3. Thermal conductivity of different colored compomers.

    Science.gov (United States)

    Guler, Cigdem; Keles, Ali; Guler, Mehmet S; Karagoz, Sendogan; Cora, Ömer N; Keskin, Gul

    2017-11-10

    Compomers are mostly used in primary dentition. The thermal conductivity properties of traditional or colored compomers have not been investigated in detail so far. The aim of this in vitro study was to assess and compare the thermal conductivities of traditional and colored compomers. Two sets of compomers - namely, Twinky Star (available in berry, lemon, green, silver, blue, pink, gold and orange shades) and Dyract Extra (available in B1, A3 and A2 shades) - were included in this study. All of the traditional and colored compomers were applied to standard molds and polymerized according to the manufacturers' instructions. Three samples were prepared from each compomer. Measurements were conducted using a heat conduction test setup, and the coefficient of heat conductivity was calculated for each material. The heat conductivity coefficients were statistically analyzed using Kruskal-Wallis and Duncan tests. Uncertainty analysis was also performed on the calculated coefficients of heat conductivity. Statistically significant differences were found (p<0.05) between the thermal conductivity properties of the traditional and colored compomers examined. Among all of the tested compomers, the silver shade compomer exhibited the highest coefficient of heat conductivity (p<0.05), while the berry shade exhibited the lowest coefficient (p<0.05). Uncertainty analyses revealed that 6 out of 11 samples showed significant differences. The silver shade compomer should be avoided in deep cavities. The material properties could be improved for colored compomers.

  4. Efficiency of the Needle Probe Test for Evaluation of Thermal Conductivity of Composite Materials: Two-Scale Analysis

    Directory of Open Access Journals (Sweden)

    Łydżba Dariusz

    2014-03-01

    Full Text Available The needle probe test, as a thermal conductivity measurement method, has become very popular in recent years. In the present study, the efficiency of this methodology, for the case of composite materials, is investigated based on the numerical simulations. The material under study is a two-phase composite with periodic microstructure of “matrix-inclusion” type. Two-scale analysis, incorporating micromechanics approach, is performed. First, the effective thermal conductivity of the composite considered is found by the solution of the appropriate boundary value problem stated for the single unit cell. Next, numerical simulations of the needle probe test are carried out. In this case, two different locations of the measuring sensor are considered. It is shown that the “equivalent” conductivity, derived from the probe test, is strongly affected by the location of the sensor. Moreover, comparing the results obtained for different scales, one can notice that the “equivalent” conductivity cannot be interpreted as the effective one for the composites considered. Hence, a crude approximation of the effective property is proposed based on the volume fractions of constituents and the equivalent conductivities derived from different sensor locations.

  5. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca

    Science.gov (United States)

    Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Hammer, Edward J.; Mount, David R.; Hockett, J. Russell; Norberg-King, Teresa J.; Soucek, Dave; Taylor, Lisa

    2016-01-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast–cerophyll–trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca.

  6. Individual electrical conductivity test for the assessment of soybean seed germination.

    OpenAIRE

    MATTIONI, N. M.; MERTZ, L. M.; BARBIERI, A. P. P.; HAESBAERT, F. M.; GIORDANI, W.; LOPES, S. J.

    2015-01-01

    Soybean seed quality is affected by many factors, which may occur during the production, processing, and storage phases. To ensure the quality of seeds, the adoption of fast and efficient methods to estimate seed viability in quality control programs is important. This study aimed to determine a partition point of the individual electrical conductivity test to predict soybean seed germination. Three lots each of five different soybean cultivars (Fundacep 57 RR, BMX Potência RR, BMX Força RR, ...

  7. 21 CFR 20.105 - Testing and research conducted by or with funds provided by the Food and Drug Administration.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing and research conducted by or with funds... Categories of Records § 20.105 Testing and research conducted by or with funds provided by the Food and Drug Administration. (a) Any list that may be prepared by the Food and Drug Administration of testing and research...

  8. Photoacoustic infrared spectroscopy for conducting gas tracer tests and measuring water saturations in landfills

    International Nuclear Information System (INIS)

    Jung, Yoojin; Han, Byunghyun; Mostafid, M. Erfan; Chiu, Pei; Yazdani, Ramin; Imhoff, Paul T.

    2012-01-01

    Highlights: ► Photoacoustic infrared spectroscopy tested for measuring tracer gas in landfills. ► Measurement errors for tracer gases were 1–3% in landfill gas. ► Background signals from landfill gas result in elevated limits of detection. ► Technique is much less expensive and easier to use than GC. - Abstract: Gas tracer tests can be used to determine gas flow patterns within landfills, quantify volatile contaminant residence time, and measure water within refuse. While gas chromatography (GC) has been traditionally used to analyze gas tracers in refuse, photoacoustic spectroscopy (PAS) might allow real-time measurements with reduced personnel costs and greater mobility and ease of use. Laboratory and field experiments were conducted to evaluate the efficacy of PAS for conducting gas tracer tests in landfills. Two tracer gases, difluoromethane (DFM) and sulfur hexafluoride (SF 6 ), were measured with a commercial PAS instrument. Relative measurement errors were invariant with tracer concentration but influenced by background gas: errors were 1–3% in landfill gas but 4–5% in air. Two partitioning gas tracer tests were conducted in an aerobic landfill, and limits of detection (LODs) were 3–4 times larger for DFM with PAS versus GC due to temporal changes in background signals. While higher LODs can be compensated by injecting larger tracer mass, changes in background signals increased the uncertainty in measured water saturations by up to 25% over comparable GC methods. PAS has distinct advantages over GC with respect to personnel costs and ease of use, although for field applications GC analyses of select samples are recommended to quantify instrument interferences.

  9. Safe affordable fission engine (SAFE 30) module conductivity test thermal model correlation

    International Nuclear Information System (INIS)

    Roman, Jose

    2001-01-01

    The SAFE 30 is a simple, robust space fission power system that is comprised of several independent modules. Each module contains 4 fuel tubes bonded to a central heatpipe. Fission energy is conducted from the fuel tubes to the heatpipe, which in turn transfers the energy to a power conversion system. This paper benchmarks a thermal model of the SAFE 30 with actual test data from simulated SAFE 30 module tests. Two 'dummy' SAFE 30 modules were fabricated - each consisted of 4 1-inch dia. tubes (simulating the fuel tubes) bonded to a central '1' dia. tube (simulating the heatpipe). In the first module the fuel tubes were simply brazed to the heatpipe along the line of contact (leaving void space in the interstices), and in the second module the tubes and heatpipe were brazed via tri-cusps that completely fill the interstices between the tubes. In these tests, fission energy is simulated by placing resistance heaters within each of the 4 fuel tubes. The tests were conducted in a vacuum chamber in 4 configurations: tri-cusps filled with and without an outer insulation wrap, and no tri-cusps with and without an outer insulation wrap. The baseline SAFE 30 configuration uses the brazed tri-cusps. During the tests, the power applied to the heaters was varied in a stepwise fashion, until a steady-state temperature profile was reached. These temperature levels varied between 773 K and 1073 K. To benchmark the thermal model, the input energy and chamber surface temperature were used as boundary conditions for the model. The analytical results from the nodes at the same location as the test thermocouples were plotted again test data to determinate the accuracy of the analysis. The unknown variables on the analysis are the radiation emissivity of the pipe and chamber and the radiation view factor between the module and the chamber. A correlation was determined using a parametric analysis by varying the surface emissivity and view factor until a good match was reached. This

  10. Hydraulic fracture conductivity: effects of rod-shaped proppant from lattice-Boltzmann simulations and lab tests

    Science.gov (United States)

    Osiptsov, Andrei A.

    2017-06-01

    The goal of this study is to evaluate the conductivity of random close packings of non-spherical, rod-shaped proppant particles under the closure stress using numerical simulation and lab tests, with application to the conductivity of hydraulic fractures created in subterranean formation to stimulate production from oil and gas reservoirs. Numerical simulations of a steady viscous flow through proppant packs are carried out using the lattice Boltzmann method for the Darcy flow regime. The particle packings were generated numerically using the sequential deposition method. The simulations are conducted for packings of spheres, ellipsoids, cylinders, and mixtures of spheres with cylinders at various volumetric concentrations. It is demonstrated that cylinders provide the highest permeability among the proppants studied. The dependence of the nondimensional permeability (scaled by the equivalent particle radius squared) on porosity obtained numerically is well approximated by the power-law function: K /Rv2 = 0.204ϕ4.58 in a wide range of porosity: 0.3 ≤ ϕ ≤ 0.7. Lattice-Boltzmann simulations are cross-verified against finite-volume simulations using Navier-Stokes equations for inertial flow regime. Correlations for the normalized beta-factor as a function of porosity and normalized permeability are presented as well. These formulae are in a good agreement with the experimental measurements (including packings of rod-shaped particles) and existing laboratory data, available in the porosity range 0.3 ≤ ϕ ≤ 0.5. Comparison with correlations by other authors is also given.

  11. Standard test method for conducting friction tests of piston ring and cylinder liner materials under lubricated conditions

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers procedures for conducting laboratory bench-scale friction tests of materials, coatings, and surface treatments intended for use in piston rings and cylinder liners in diesel or spark-ignition engines. The goal of this procedure is to provide a means for preliminary, cost-effective screening or evaluation of candidate ring and liner materials. A reciprocating sliding arrangement is used to simulate the contact that occurs between a piston ring and its mating liner near the top-dead-center position in the cylinder where liquid lubrication is least effective, and most wear is known to occur. Special attention is paid to specimen alignment, running-in, and lubricant condition. 1.2 This test method does not purport to simulate all aspects of a fired engine’s operating environment, but is intended to serve as a means for preliminary screening for assessing the frictional characteristics of candidate piston ring and liner material combinations in the presence of fluids that behave as u...

  12. Spatial variability of hydraulic conductivity of an unconfined sandy aquifer determined by a mini slug test

    DEFF Research Database (Denmark)

    Bjerg, Poul Løgstrup; Hinsby, Klaus; Christensen, Thomas Højlund

    1992-01-01

    The spatial variability of the hydraulic conductivity in a sandy aquifer has been determined by a mini slug test method. The hydraulic conductivity (K) of the aquifer has a geometric mean of 5.05 × 10−4 m s−1, and an overall variance of 1n K equal to 0.37 which corresponds quite well to the results...... obtained by two large scale tracer experiments performed in the aquifer. A geological model of the aquifer based on 31 sediment cores, proposed three hydrogeological layers in the aquifer concurrent with the vertical variations observed with respect to hydraulic conductivity. The horizontal correlation......, to be in the range of 0.3–0.5 m compared with a value of 0.42 m obtained in one of the tracer tests performed....

  13. 40 CFR 63.9620 - On which units and by what date must I conduct performance tests or other initial compliance...

    Science.gov (United States)

    2010-07-01

    ... units and by what date must I conduct performance tests or other initial compliance demonstrations? (a... similar emission units together and conduct an initial compliance test on one representative emission unit... meet the criteria in paragraph (f) of this section. If you decide to test representative emission units...

  14. Methodological approaches to conducting pilot and proof tests on reverse-osmosis systems: Results of comparative studies

    Science.gov (United States)

    Panteleev, A. A.; Bobinkin, V. V.; Larionov, S. Yu.; Ryabchikov, B. E.; Smirnov, V. B.; Shapovalov, D. A.

    2017-10-01

    When designing large-scale water-treatment plants based on reverse-osmosis systems, it is proposed to conduct experimental-industrial or pilot tests for validated simulation of the operation of the equipment. It is shown that such tests allow establishing efficient operating conditions and characteristics of the plant under design. It is proposed to conduct pilot tests of the reverse-osmosis systems on pilot membrane plants (PMPs) and test membrane plants (TMPs). The results of a comparative experimental study of pilot and test membrane plants are exemplified by simulating the operating parameters of the membrane elements of an industrial plant. It is concluded that the reliability of the data obtained on the TMP may not be sufficient to design industrial water-treatment plants, while the PMPs are capable of providing reliable data that can be used for full-scale simulation of the operation of industrial reverse-osmosis systems. The test membrane plants allow simulation of the operating conditions of individual industrial plant systems; therefore, potential areas of their application are shown. A method for numerical calculation and experimental determination of the true selectivity and the salt passage are proposed. An expression has been derived that describes the functional dependence between the observed and true salt passage. The results of the experiments conducted on a test membrane plant to determine the true value of the salt passage of a reverse-osmosis membrane are exemplified by magnesium sulfate solution at different initial operating parameters. It is shown that the initial content of a particular solution component has a significant effect on the change in the true salt passage of the membrane.

  15. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    Science.gov (United States)

    Moench, Allen F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2001-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table.

  16. Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted

    Science.gov (United States)

    Krause, David L.; Whittenberger, J. Daniel

    2002-01-01

    , which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.

  17. Near-drift thermal analysis including combined modes of conduction, convection, and radiation

    International Nuclear Information System (INIS)

    Ho, C.K.; Francis, N.D.

    1995-01-01

    The performance of waste packages containing high-level nuclear wastes at underground repositories such as the potential repository at Yucca Mountain, Nevada, depends, in part, on the thermodynamic environment immediately surrounding the buried waste packages. For example, degradation of the waste packages can be caused by corrosive and microbial processes, which are influenced by both the relative humidity and temperature within the emplacement drifts. In this paper, the effects of conduction, convection, and radiation are investigated for a heat-generating waste package in an empty-drift. Simulations explicitly modeling radiation from the waste package to the drift wall are compared simulations using only conduction. Temperatures, relative humidities, and vapor mass fractions are compared at various locations within the drift. In addition, the effects of convection on relative humidity and moisture distribution within the drift are presented

  18. A new thermal conductivity probe for high temperature tests for the characterization of molten salts

    Science.gov (United States)

    Bovesecchi, G.; Coppa, P.; Pistacchio, S.

    2018-05-01

    A new thermal conductivity probe for high temperature (HT-TCP) has been built and tested. Its design and construction procedure are adapted from the ambient temperature thermal conductivity probe (AT-TCP) due to good performance of the latter device. The construction procedure and the preliminary tests are accurately described. The probe contains a Pt wire as a heater and a type K thermocouple (TC) as a temperature sensor, and its size is so small (0.6 mm in diameter and 60 mm in length) as to guarantee a length to diameter ratio of about 100. Calibration tests with glycerol for temperatures between 0 °C and 60 °C have shown good agreement with literature data, within 3%. Preliminary tests were also carried on a ternary molten salt for Concentrated Solar Power (CSP) (18% in mass of NaNO3, 52% KNO3, and 30% LiNO3) at 120 °C and 150 °C. Obtained results are within λ range of the Hitec® salt (53% KNO3, 7% NaNO3, 40% NaNO2). Unfortunately, at the higher temperature tested (200 °C), the viscosity of the salt highly decreases, and free convection starts, making the measurements unreliable.

  19. Characteristics of acoustic wave from atmospheric nuclear explosions conducted at the USSR Test Sites

    Science.gov (United States)

    Sokolova, Inna

    2015-04-01

    Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for

  20. A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer

    DEFF Research Database (Denmark)

    Hinsby, Klaus; Bjerg, Poul Løgstrup; Andersen, Lars J.

    1992-01-01

    distributed measurements of a local hydraulic conductivity at a tracer test site at Vejen, Denmark. The mini slug test results calculated by a modified Dax slug test analysing method, applying the elastic storativity in the Dax equations instead of the specific yield, are in good accordance with the results...

  1. GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2001-01-01

    This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa

  2. Observational constraint on the interacting dark energy models including the Sandage-Loeb test

    Science.gov (United States)

    Zhang, Ming-Jian; Liu, Wen-Biao

    2014-05-01

    Two types of interacting dark energy models are investigated using the type Ia supernova (SNIa), observational data (OHD), cosmic microwave background shift parameter, and the secular Sandage-Loeb (SL) test. In the investigation, we have used two sets of parameter priors including WMAP-9 and Planck 2013. They have shown some interesting differences. We find that the inclusion of SL test can obviously provide a more stringent constraint on the parameters in both models. For the constant coupling model, the interaction term has been improved to be only a half of the original scale on corresponding errors. Comparing with only SNIa and OHD, we find that the inclusion of the SL test almost reduces the best-fit interaction to zero, which indicates that the higher-redshift observation including the SL test is necessary to track the evolution of the interaction. For the varying coupling model, data with the inclusion of the SL test show that the parameter at C.L. in Planck priors is , where the constant is characteristic for the severity of the coincidence problem. This indicates that the coincidence problem will be less severe. We then reconstruct the interaction , and we find that the best-fit interaction is also negative, similar to the constant coupling model. However, for a high redshift, the interaction generally vanishes at infinity. We also find that the phantom-like dark energy with is favored over the CDM model.

  3. Standard Guide for Conducting Supplemental Surveillance Tests for Nuclear Power Reactor Vessels, E 706 (IH)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide discusses test procedures that can be used in conjunction with, but not as alternatives to, those required by Practices E185 and E2215 for the surveillance of nuclear reactor vessels. The supplemental mechanical property tests outlined permit the acquisition of additional information on radiation-induced changes in fracture toughness, notch ductility, and yield strength properties of the reactor vessel steels. 1.2 This guide provides recommendations for the preparation of test specimens for irradiation, and identifies special precautions and requirements for reactor surveillance operations and postirradiation test planning. Guidance on data reduction and computational procedures is also given. Reference is made to other ASTM test methods for the physical conduct of specimen tests and for raw data acquisition.

  4. Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc

    International Nuclear Information System (INIS)

    Eaton, W.C.

    1995-01-01

    This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter trademark vitrification system

  5. Round robin testing of thermal conductivity reference materials

    International Nuclear Information System (INIS)

    Hulstrom, L.C.; Tye, R.P.; Smith, S.E.

    1985-07-01

    The Basalt Waste Isolation Project (BWIP), operated by Rockwell Hanford Operations, has a need to determine the thermal properties of basalt in the region being considered for a nuclear waste repository in basalt. Experimental data on thermal conductivity and its variation with temperature are information required for the characterization of basalt. To establish thermal conductivity values for the reference materials, an interlaboratory measurements program was undertaken. The program was planned to meet the objectives of performing an experimental characterization of the new stock and providing a detailed analysis of the results such that reference values of thermal conductivity could be determined. This program of measurements of the thermal conductivity of Pyrex 7740 and Pyroceram 9606 has produced recommended values that are within +- 1% of those accepted previously. These measurements together with those of density indicate that the present lots of material are similar to those previously available. Pyrex 7740 and Pyroceram 9606 can continue to be used with confidence as thermal conductivity reference materials for studies on rocks and minerals and other materials of similar thermal conductivity. The uncertainty range for Pyrex 7740 and Pyroceram 9606 up to 300 0 C is +- 10.3% and +- 5.6%, respectively. This range is similar to that indicated for the previously recommended values proposed some 18 years ago. It would appear that the overall state of the art in thermal conductivity measurements for materials in this range has changed little in the intervening years. The above uncertainties, which would have been greater had not three data sets been eliminated, are greater than those which are normally claimed for each individual method. Analyses of these differences through refinements in techniques and additional measurements to higher temperatures are required. 13 refs., 7 figs., 4 tabs

  6. Electrical conductivity testing of corn seeds as influenced by temperature and period of storage

    OpenAIRE

    Fessel,Simone Aparecida; Vieira,Roberval Daiton; Cruz,Mara Cristina Pessoa da; Paula,Rinaldo Cesar de; Panobianco,Maristela

    2006-01-01

    The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations o...

  7. Measurement of in-situ hydraulic conductivity in the Cretaceous Pierre Shale

    International Nuclear Information System (INIS)

    Neuzil, C.E.; Bredehoeft, J.D.

    1981-01-01

    A recent study of the hydrology of the Cretaceous Pierre Shale utilized three techniques for measuring the hydraulic conductivity of tight materials. Regional hydraulic conductivity was obtained from a hydrodynamic model analysis of the aquifer-aquitard system which includes the Pierre Shale. Laboratory values were obtained from consolidation tests on core samples. In-situ values of hydraulic conductivity were obtained by using a borehole slug test designed specifically for tight formations. The test is conducted by isolating a portion of the borehole with one or two packers, abruptly pressurizing the shut-in portion, and recording the pressure decay with time. The test utilizes the analytical solution for pressure decay as water flows into the surrounding formation. Consistent results were obtained using the test on three successively smaller portions of a borehole in the Pierre Shale. The in-situ tests and laboratory tests yielded comparable values; the regional hydraulic conductivity was two to three orders of magnitude larger. This suggests that the lower values represent intergranular hydraulic conductivity of the intact shale and the regional values represent secondary permeability due to fractures. Calculations based on fracture flow theory demonstrate that small fractures could account for the observed differences

  8. Test chamber

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2009-01-01

    A test chamber for measuring electromagnetic radiation emitted by an apparatus to be tested or for exposing an apparatus to be tested to an electromagnetic radiation field. The test chamber includes a reverberation chamber made of a conductive tent fabric. To create a statistically uniform field in

  9. Information content of slug tests for estimating hydraulic properties in realistic, high-conductivity aquifer scenarios

    Science.gov (United States)

    Cardiff, Michael; Barrash, Warren; Thoma, Michael; Malama, Bwalya

    2011-06-01

    SummaryA recently developed unified model for partially-penetrating slug tests in unconfined aquifers ( Malama et al., in press) provides a semi-analytical solution for aquifer response at the wellbore in the presence of inertial effects and wellbore skin, and is able to model the full range of responses from overdamped/monotonic to underdamped/oscillatory. While the model provides a unifying framework for realistically analyzing slug tests in aquifers (with the ultimate goal of determining aquifer properties such as hydraulic conductivity K and specific storage Ss), it is currently unclear whether parameters of this model can be well-identified without significant prior information and, thus, what degree of information content can be expected from such slug tests. In this paper, we examine the information content of slug tests in realistic field scenarios with respect to estimating aquifer properties, through analysis of both numerical experiments and field datasets. First, through numerical experiments using Markov Chain Monte Carlo methods for gauging parameter uncertainty and identifiability, we find that: (1) as noted by previous researchers, estimation of aquifer storage parameters using slug test data is highly unreliable and subject to significant uncertainty; (2) joint estimation of aquifer and skin parameters contributes to significant uncertainty in both unless prior knowledge is available; and (3) similarly, without prior information joint estimation of both aquifer radial and vertical conductivity may be unreliable. These results have significant implications for the types of information that must be collected prior to slug test analysis in order to obtain reliable aquifer parameter estimates. For example, plausible estimates of aquifer anisotropy ratios and bounds on wellbore skin K should be obtained, if possible, a priori. Secondly, through analysis of field data - consisting of over 2500 records from partially-penetrating slug tests in a

  10. Laboratory performance of sweat conductivity for the screening of cystic fibrosis.

    Science.gov (United States)

    Greaves, Ronda F; Jolly, Lisa; Massie, John; Scott, Sue; Wiley, Veronica C; Metz, Michael P; Mackay, Richard J

    2018-03-28

    There are several complementary English-language guidelines for the performance of the sweat chloride test. These guidelines also incorporate information for the collection of conductivity samples. However, recommendations for the measurement and reporting of sweat conductivity are less clear than for sweat chloride. The aim of the study was to develop an understanding of the testing and reporting practices of sweat conductivity in Australasian laboratories. A survey specifically directed at conductivity testing was sent to the 12 laboratories registered with the Royal College of Pathologists of Australasia Quality Assurance Programs. Nine (75%) laboratories participated in the survey, seven of whom used Wescor Macroduct® for collecting sweat and the Wescor SWEAT·CHEK™ for conductivity testing, and the remaining two used the Wescor Nanoduct®. There was considerable variation in frequency and staffing for this test. Likewise, criteria about which patients it was inappropriate to test, definitions of adequate collection sweat rate, cutoffs and actions recommended on the basis of the result showed variations between laboratories. Variations in sweat conductivity testing and reporting reflect many of the same issues that were revealed in sweat chloride test audits and have the potential to lead to uncertainty about the result and the proper action in response to the result. We recommend that sweat testing guidelines should include clearer statements about the use of sweat conductivity.

  11. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.S.

    1991-12-01

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  12. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    Science.gov (United States)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    In the framework of its research on the deep disposal of radioactive waste in shale formations, the French Institute for Radiological Protection and Nuclear Safety (IRSN) has developed a large array of in situ programs concerning the confining properties of shales in their underground research laboratory at Tournemire (SW France). One of its aims is to evaluate the occurrence and processes controlling radionuclide migration through the host rock, from the disposal system to the biosphere. Past research programs carried out at Tournemire covered mechanical, hydro-mechanical and physico-chemical properties of the Tournemire shale as well as water chemistry and long-term behaviour of the host rock. Studies show that fluid circulations in the undisturbed matrix are very slow (hydraulic conductivity of 10-14 to 10-15 m.s-1). However, recent work related to the occurrence of small scale fractures and clay-rich fault gouges indicate that fluid circulations may have been significantly modified in the vicinity of such features. To assess the transport properties associated with such faults, IRSN designed a series of in situ and laboratory experiments to evaluate the contribution of both diffusive and advective process on water and solute flux through a clay-rich fault zone (fault core and damaged zone) and in an undisturbed shale formation. As part of these studies, Modular Mini-Packer System (MMPS) hydraulic testing was conducted in multiple boreholes to characterize hydraulic conductivities within the formation. Pressure data collected during the hydraulic tests were analyzed using the nSIGHTS (n-dimensional Statistical Inverse Graphical Hydraulic Test Simulator) code to estimate hydraulic conductivity and formation pressures of the tested intervals. Preliminary results indicate hydraulic conductivities of 5.10-12 m.s-1 in the fault core and damaged zone and 10-14 m.s-1 in the adjacent undisturbed shale. Furthermore, when compared with neutron porosity data from borehole

  13. Review of FRAP-T4 performance based on fuel behavior tests conducted in the PBF

    International Nuclear Information System (INIS)

    Charyulu, M.K.

    1979-09-01

    The ability of the Fuel Rod Analysis Program - Transient (FRAP-T), a computer code developed at the Idaho National Engineering Laboratory to calculate fuel rod behavior during transient experiments conducted in the Power Burst Facility, is discussed. Fuel rod behavior calculations are compared with data from tests performed under postulated RIA, LOCA, and PCM accident conditions. Physical phenomena, rod damage, and damage mechanisms observed during the tests and not presently incorporated into the FRAP-T code are identified

  14. Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis.

    Science.gov (United States)

    Pivovaroff, Alexandria L; Sack, Lawren; Santiago, Louis S

    2014-08-01

    Coordination of water movement among plant organs is important for understanding plant water use strategies. The hydraulic segmentation hypothesis (HSH) proposes that hydraulic conductance in shorter lived, 'expendable' organs such as leaves and longer lived, more 'expensive' organs such as stems may be decoupled, with resistance in leaves acting as a bottleneck or 'safety valve'. We tested the HSH in woody species from a Mediterranean-type ecosystem by measuring leaf hydraulic conductance (Kleaf) and stem hydraulic conductivity (KS). We also investigated whether leaves function as safety valves by relating Kleaf and the hydraulic safety margin (stem water potential minus the water potential at which 50% of conductivity is lost (Ψstem-Ψ50)). We also examined related plant traits including the operating range of water potentials, wood density, leaf mass per area, and leaf area to sapwood area ratio to provide insight into whole-plant water use strategies. For hydrated shoots, Kleaf was negatively correlated with KS , supporting the HSH. Additionally, Kleaf was positively correlated with the hydraulic safety margin and negatively correlated with the leaf area to sapwood area ratio. Consistent with the HSH, our data indicate that leaves may act as control valves for species with high KS , or a low safety margin. This critical role of leaves appears to contribute importantly to plant ecological specialization in a drought-prone environment. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  15. Heat conduction

    International Nuclear Information System (INIS)

    Grigull, U.; Sandner, H.

    1984-01-01

    Included are discussions of rates of heat transfer by conduction, the effects of varying and changing properties, thermal explosions, distributed heat sources, moving heat sources, and non-steady three-dimensional conduction processes. Throughout, the importance of thinking both numerically and symbolically is stressed, as this is essential to the development of the intuitive understanding of numerical values needed for successful designing. Extensive tables of thermophysical properties, including thermal conductivity and diffusivity, are presented. Also included are exact and approximate solutions to many of the problems that arise in practical situations

  16. Hydraulic testing of Type Q septifoils including modifications

    International Nuclear Information System (INIS)

    Steimke, J.L.; Fowley, M.D.; Guerrero, H.N.

    1992-09-01

    On May 25, 1992 a leak of moderator was detected as K Reactor was approaching initial criticality. The partial length control rods were being withdrawn when the leak detectors in the Process Room alarmed. The apparent location of the moderator leak was the top of the guide tubes which are positioned over the new Type Q septifoils. The reactor was shut down immediately. In response, a testing program was begun at the Heat Transfer Laboratory (HTL). The goals of the program were to determine the cause of the septifoil leak and to test methods for preventing future leaks. These tests are described in this report

  17. Manual for Cyclic Triaxial Test

    DEFF Research Database (Denmark)

    Shajarati, Amir; Sørensen, Kris Wessel; Nielsen, Søren Kjær

    This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic/dynamic tria......This manual describes the different steps that is included in the procedure for conducting a cyclic triaxial test at the geotechnical Laboratory at Aalborg University. Furthermore it contains a chapter concerning some of the background theory for the static triaxial tests. The cyclic...

  18. Test report for run-in acceptance testing of hydrogen mitigation test pump-2

    International Nuclear Information System (INIS)

    Brewer, A.K.; Kolowith, R.

    1995-01-01

    This document provides the results of the run-in test of the replacement mixer pump for the Tank 241-SY-101. The test was conducted at the 400 Area MASF facility between August 12 and September 29, 1994. The report includes findings, analysis, recommendations, and corrective actions taken

  19. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Science.gov (United States)

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  20. Testing and assessment strategies, including alternative and new approaches

    DEFF Research Database (Denmark)

    Meyer, Otto A.

    2003-01-01

    The object of toxicological testing is to predict possible adverse effect in humans when exposed to chemicals whether used as industrial chemicals, pharmaceuticals or pesticides. Animal models are predominantly used in identifying potential hazards of chemicals. The use of laboratory animals raises...... ethical concern. However, irrespective of animal welfare it is an important aspect of the discipline of toxicology that the primary object is human health. The ideal testing and assessment strategy is simple to use all the available test methods and preferably more in laboratory animal species from which...... uses and of the absence of health problems involved with their use. Thus, the regulatory toxicology is a cocktail of science and pragmatism added a crucial concern for animal welfare. Test methods are most often used in a testing sequence as bricks in a testing strategy. The main key driving forces...

  1. Psychometric Characteristics of a Measure of Emotional Dispositions Developed to Test a Developmental Propensity Model of Conduct Disorder

    Science.gov (United States)

    Lahey, Benjamin B.; Applegate, Brooks; Chronis, Andrea M.; Jones, Heather A.; Williams, Stephanie Hall; Loney, Jan; Waldman, Irwin D.

    2008-01-01

    Lahey and Waldman proposed a developmental propensity model in which three dimensions of children's emotional dispositions are hypothesized to transact with the environment to influence risk for conduct disorder, heterogeneity in conduct disorder, and comorbidity with other disorders. To prepare for future tests of this model, a new measure of…

  2. Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency - Training Materials

    International Nuclear Information System (INIS)

    2010-01-01

    Emergency response exercises are a key component of a good program of preparation in emergencies. They can provide a unique insight on the State of preparation of emergency response organizations. They can also be the basis for continuous improvement programs of the infrastructure of response in emergencies. However, to be more useful, the exercises in emergency response need to be well organized, professionally conducted and its assessment should focus on the potential for constructive improvement. The course of the IAEA on preparedness, conduction and evaluation exercises to test the preparation before a nuclear emergency or radiation designed for people and organizations that want to increase their ability to carry out effective and significant emergency exercises. The objectives of this course are: To familiarize participants with concepts, terminology, process of preparation, conduction and evaluation of the exercise to test the preparation before a nuclear emergency or radiation; Provide participants with knowledge practical and the ability to organize, lead and evaluate an exercise to test the preparation for a nuclear emergency or radiation in their own countries; Submit an exercise response model in emergency prepared by the IAEA; and give participants the skill to adapt the proposal of model exercise and organize and lead this exercise model right in your own country. [es

  3. Non-Destructive Testing: Sample Questions for Conduct of Examinations at Levels 1 and 2

    International Nuclear Information System (INIS)

    2010-01-01

    The International Atomic Energy Agency (IAEA) supports industrial applications of radiation technology which include non-destructive testing (NDT) under its various programmes such as individual country Technical Co-operation (TC) projects, Regional Projects and Coordinated Research Projects (CRPs). NDT technology is essentially needed for the improvement of the quality of industrial products, equipment and plants all over the world, especially in developing Member States. Trained and certified personnel is one of the essential requirements for applying this technology in industry. With this in view, the IAEA first played an important role in cooperation with the International Organisation for Standardisation (ISO) for the development of a standard for training and certification of NDT personnel, namely ISO 9712, 'Non-Destructive Testing: Qualification and Certification of Personnel'. Subsequently the syllabi and needed training materials were identified and developed for the creation of, in each of the Member States, a core group of personnel who are trained and qualified to establish the training and certification process in their respective countries. One of the important requirements for such a process is to have the examination questions for conducting the certification examinations. A need had been felt to compile the appropriate questions firstly for conducting these examinations at the national and regional levels and secondly to provide these to the certification bodies of the Member States so that they could initiate their own level 1 and 2 certification examinations. For this purpose, Experts' Task Force Meetings were convened first in Accra, Ghana and then in Vienna, Austria under the AFRA regional projects on NDT. The experts examined and discussed in detail the ISO 9712 (1999 and 2005 versions) requirements for general, specific and practical examinations for level 1 and 2 personnel. After that a set of questions has been established which are

  4. Teste de condutividade elétrica em sementes de soja armazenadas sob diferentes temperaturas Electrical conductivity test of soybean seeds stored under different temperatures

    Directory of Open Access Journals (Sweden)

    Simone Aparecida Fessel

    2010-01-01

    Full Text Available Os resultados do teste de condutividade elétrica podem ser influenciados pela temperatura de armazenamento, particularmente as mais baixas, como em condições de câmara fria (10 ºC. Este trabalho objetivou avaliar o efeito da temperatura e do período de armazenamento na condutividade elétrica e na composição química da solução de embebição de sementes de soja. Para tanto, foram determinados o teor de água, a germinação, o vigor (testes de envelhecimento acelerado, de frio e de condutividade elétrica e a composição química (K+, Ca2+ e Mg2+ da solução de embebição. Foram utilizados dois lotes de sementes, da cultivar FT-20, com níveis distintos de vigor. As avaliações foram realizadas a cada três meses, durante 15 meses. Tanto a temperatura como o período de armazenamento influenciaram o vigor das sementes. A lixiviação dos íons K+, Ca2+ e Mg2+ foi influenciada pelos mesmos fatores. Pelos resultados concluiu-se que o teste de condutividade elétrica não é indicado para avaliar o vigor de sementes de soja armazenadas sob baixa temperatura (10 ºC e o K+ é o íon lixiviado em maior quantidade de semente de soja, independentemente da temperatura de armazenamento.There are some results showing that the electrical conductivity test can be influenced by low temperature of seed storage, such as 10 ºC. This work was carried out in order to study the effect of temperature and period of storage on electrical conductivity and chemical composition of the imbibing solution of soybean seeds. For that, seed water content, germination, vigor (accelerated aging, cold test and electrical conductivity, and chemical composition (K+, Ca2+ and Mg2+ of the imbibing solution were determined. Two soybean seed lots of cultivar FT-20 with high and low vigor were used. The evaluations were performed at every three months intervals, during 15 months. Both temperature and storage period influenced seed vigor, as well as the ions leakage. It

  5. Conductive concrete wins Popular Science prize

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1997-06-01

    A conductive concrete developed by a research team at IRC (Institute for Research in Construction, National Research Council of Canada) has won a prize in the home technology category because of its possible use in heating homes. Following the award, there have been a number of inquiries regarding possible applications for the concrete. Greatest interests in the concrete have been in its potential to heat buildings by using it as flooring. Other possible applications included de-icing pavements to building warming pads for parking aircraft. Essentially, carbon fibres and conductive particles are added to a concrete mix in such a quantity that they form a network within the mix, ensuring high electrical conductivity. A demonstration project is underway to build a 20 by 80 foot conductive concrete pad to test the material`s capability as a snow removal and de-icing tool.

  6. Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

    International Nuclear Information System (INIS)

    Zhang, Jian Hai; Song, Sung Jin; Kim, Woong Ji; Kim, Hak Joon; Chung, Jong Duk

    2011-01-01

    Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT

  7. A review of a radioactive material shipping container including design, testing, upgrading compliance program and shipping logistics

    International Nuclear Information System (INIS)

    Celovsky, A.; Lesco, R.; Gale, B.; Sypes, J.

    2003-01-01

    Ten years ago Atomic Energy of Canada developed a Type B(U)-85 shipping container for the global transport of highly radioactive materials. This paper reviews the development of the container, including a summary of the design requirements, a review of the selected materials and key design elements, and the results of the major qualification tests (drop testing, fire test, leak tightness testing, and shielding integrity tests). As a result of the testing, improvements to the structural, thermal and containment design were made. Such improvements, and reasons thereof, are noted. Also provided is a summary of the additional analysis work required to upgrade the package from a Type B(U) to a Type B(F), i.e. essentially upgrading the container to include fissile radioisotopes to the authorized radioactive contents list. Having a certified shipping container is only one aspect governing the global shipments of radioactive material. By necessity the shipment of radioactive material is a highly regulated environment. This paper also explores the experiences with other key aspects of radioactive shipments, including the service procedures used to maintain the container certification, the associated compliance program for radioactive material shipments, and the shipping logistics involved in the transport. (author)

  8. An experimental and numerical study of endwall heat transfer in a turbine blade cascade including tangential heat conduction analysis

    Science.gov (United States)

    Ratto, Luca; Satta, Francesca; Tanda, Giovanni

    2018-06-01

    This paper presents an experimental and numerical investigation of heat transfer in the endwall region of a large scale turbine cascade. The steady-state liquid crystal technique has been used to obtain the map of the heat transfer coefficient for a constant heat flux boundary condition. In the presence of two- and three-dimensional flows with significant spatial variations of the heat transfer coefficient, tangential heat conduction could lead to error in the heat transfer coefficient determination, since local heat fluxes at the wall-to-fluid interface tend to differ from point to point and surface temperatures to be smoothed out, thus making the uniform-heat-flux boundary condition difficult to be perfectly achieved. For this reason, numerical simulations of flow and heat transfer in the cascade including the effect of tangential heat conduction inside the endwall have been performed. The major objective of numerical simulations was to investigate the influence of wall heat conduction on the convective heat transfer coefficient determined during a nominal iso-flux heat transfer experiment and to interpret possible differences between numerical and experimental heat transfer results. Results were presented and discussed in terms of local Nusselt number and a convenient wall heat flux function for two values of the Reynolds number (270,000 and 960,000).

  9. Comparison of electrical conductivity calculation methods for natural waters

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  10. Task 2 - Limits for High-Frequency Conducted Susceptibility Testing - CS114 (NRC-HQ-60-14-D-0015)

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ewing, Paul D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moses, Rebecca J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    A principal focus of Task 2 under this project was for ORNL to evaluate the basis for susceptibility testing against high-frequency conducted interference and to establish recommendations to resolve concerns about the severity of test limits for the conducted susceptibility (CS) test, CS114, from MIL-STD-461. The primary concern about the test limit has been characterized by the EPRI EMI Working Group in the following terms: Demonstrating compliance with the CS114 test limits recommended in TR-102323 has proven to be problematic, even for components that have been tested to commercial standards and demonstrated proper operation in industrial applications [6]. Specifically, EPRI notes that the CS114 limits approved in regulatory documents are significantly higher than those invoked by the US military and similar commercial standards in the frequency range below 200 kHz. For this task, ORNL evaluated the original approach to establishing the test limit, EPRI technical findings from a review of the limit, and the regulatory basis through which the currently approved limits were accepted. Based on this analysis, strategies have been developed regarding changes to the CS114 limit that can resolve the technical concerns raised by the industry. Guided by the principles that reasonable assurance of safety must not be compromised but excessive conservatism should be reduced, recommendations on a suitable basis for a revised limit have been developed and can be incorporated into the planned Revision 2 of RG 1.180.

  11. Nerve conduction velocity

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see ...

  12. In Situ Estuarine and Marine Toxicity Testing: A Review, Including Recommendations for Future Use in Ecological Risk Assessment

    Science.gov (United States)

    2009-09-01

    field and microcosms than they do under laboratory test conditions. In the case of tributyltin ( TBT ) exposures in San Diego Bay, he found that...TECHNICAL REPORT 1986 September 2009 In Situ Estuarine and Marine Toxicity Testing A Review, Including Recommendations for Future Use in...Pacific TECHNICAL REPORT 1986 September 2009 In Situ Estuarine and Marine Toxicity Testing A Review, Including Recommendations for Future Use in

  13. 40 CFR 790.62 - Submission of study plans and conduct of testing.

    Science.gov (United States)

    2010-07-01

    ... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its source; and a summary of expected spontaneous chronic diseases (including tumors), genealogy, and life..., and communicating with the Agency about laboratory inspections and other matters affecting the...

  14. Proton-conducting cerate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  15. Metamorphic Testing for Cybersecurity.

    Science.gov (United States)

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey; Zhou, Zhi Quan

    2016-06-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity.

  16. Analysis of hydraulic tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds conducted at the Waste Isolation Pilot Plant Site

    International Nuclear Information System (INIS)

    Beauheim, R.L.

    1998-09-01

    This report presents interpretations of hydraulic tests conducted at 15 well locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico between 1980 and 1996. The WIPP is a US Department of Energy (DOE) facility to demonstrate safe disposal of transuranic wastes arising form the nation's defense programs. The WIPP repository lies within bedded halite of the Salado Formation, 2,155 ft below ground surface. The tests reported herein were, with two exceptions, conducted in the Culebra Dolomite member of the Rustler Formation, which overlies the Salado Formation. The remaining tests were conducted in the Magenta Member of the Rustler and in the overlying formation, the Dewey Lake Redbeds. This report completes the documentation of hydraulic-test interpretations used as input to the WIPP Compliance Certification Application (US DOE, 1996)

  17. Heat conductivity of buffer materials

    International Nuclear Information System (INIS)

    Boergesson, L.; Fredrikson, Anders; Johannesson, L.E.

    1994-11-01

    The report deals with the thermal conductivity of bentonite based buffer materials. An improved technique for measuring the thermal conductivity of buffer materials is described. Measurements of FLAC calculations applying this technique have led to a proposal of how standardized tests should be conducted and evaluated. The thermal conductivity of bentonite with different void ratio and degree of water saturation has been determined in the following different ways: * Theoretically according to three different investigations by other researchers. * Laboratory measurements with the proposed method. * Results from back-calculated field tests. Comparison and evaluation showed that these results agreed very well, when the buffer material was almost water saturated. However, the influence of the degree of saturation was not very well predicted with the theoretical methods. Furthermore, the field tests showed that the average thermal conductivity in situ of buffer material (compacted to blocks) with low degree of water saturation was lower than expected from laboratory tests. 12 refs, 29 figs, 11 tabs

  18. A New Method for a Virtue-Based Responsible Conduct of Research Curriculum: Pilot Test Results.

    Science.gov (United States)

    Berling, Eric; McLeskey, Chet; O'Rourke, Michael; Pennock, Robert T

    2018-02-03

    Drawing on Pennock's theory of scientific virtues, we are developing an alternative curriculum for training scientists in the responsible conduct of research (RCR) that emphasizes internal values rather than externally imposed rules. This approach focuses on the virtuous characteristics of scientists that lead to responsible and exemplary behavior. We have been pilot-testing one element of such a virtue-based approach to RCR training by conducting dialogue sessions, modeled upon the approach developed by Toolbox Dialogue Initiative, that focus on a specific virtue, e.g., curiosity and objectivity. During these structured discussions, small groups of scientists explore the roles they think the focus virtue plays and should play in the practice of science. Preliminary results have shown that participants strongly prefer this virtue-based model over traditional methods of RCR training. While we cannot yet definitively say that participation in these RCR sessions contributes to responsible conduct, these pilot results are encouraging and warrant continued development of this virtue-based approach to RCR training.

  19. Audit of Trichomonas vaginalis test requesting by community referrers after a change from culture to molecular testing, including a cost analysis.

    Science.gov (United States)

    Bissessor, Liselle; Wilson, Janet; McAuliffe, Gary; Upton, Arlo

    2017-06-16

    Trichomonas vaginalis (TV) prevalence varies among different communities and peoples. The availability of robust molecular platforms for the detection of TV has advanced diagnosis; however, molecular tests are more costly than phenotypic methodologies, and testing all urogenital samples is costly. We recently replaced culture methods with the Aptima Trichomonas vaginalis nucleic acid amplification test on specific request and as reflex testing by the laboratory, and have audited this change. Data were collected from August 2015 (microbroth culture and microscopy) and August 2016 (Aptima TV assay) including referrer, testing volumes, results and test cost estimates. In August 2015, 10,299 vaginal swabs, and in August 2016, 2,189 specimens (urogenital swabs and urines), were tested. The positivity rate went from 0.9% to 5.3%, and overall more TV infections were detected in 2016. The number needed to test and cost for one positive TV result respectively was 111 and $902.55 in 2015, and 19 and $368.92 in 2016. Request volumes and positivity rates differed among referrers. The methodology change was associated with higher overall detection of TV, and reductions in the numbers needed to test/cost for one TV diagnosis. Our audit suggests that there is room for improvement with TV test requesting in our community.

  20. Relay test program

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.K.; Kunkel, C.; Shteyngart, S.

    1994-02-01

    This report presents the results of a relay test program conducted by Brookhaven National Laboratory (BNL) under the sponsorship of the US Nuclear Regulatory Commission (NRC). The program is a continuation of an earlier test program the results of which were published in NUREG/CR-4867. The current program was carried out in two phases: electrical testing and vibration testing. The objective was primarily to focus on the electrical discontinuity or continuity of relays and circuit breaker tripping mechanisms subjected to electrical pulses and vibration loads. The electrical testing was conducted by KEMA-Powertest Company and the vibration testing was performed at Wyle Laboratories, Huntsville, Alabama. This report discusses the test procedures, presents the test data, includes an analysis of the data and provides recommendations regarding reliable relay testing

  1. Variations in hydraulic conductivity with scale of measurement during aquifer tests in heterogeneous, porous carbonate rocks

    Science.gov (United States)

    Schulze-Makuch, Dirk; Cherkauer, Douglas S.

    Previous studies have shown that hydraulic conductivity of an aquifer seems to increase as the portion of the aquifer tested increases. To date, such studies have all relied on different methods to determine hydraulic conductivity at each scale of interest, which raises the possibility that the observed increase in hydraulic conductivity is due to the measurement method, not to the scale. This study analyzes hydraulic conductivity with respect to scale during individual aquifer tests in porous, heterogeneous carbonate rocks in southeastern Wisconsin, USA. Results from this study indicate that hydraulic conductivity generally increases during an individual test as the volume of aquifer impacted increases, and the rate of this increase is the same as the rate of increase determined by using different measurement methods. Thus, scale dependence of hydraulic conductivity during single tests does not depend on the method of measurement. This conclusion is supported by 22 of 26 aquifer tests conducted in porous-flow-dominated carbonate units within the aquifer. Instead, scale dependency is probably caused by heterogeneities within the aquifer, a conclusion supported by digital simulation. All of the observed types of hydraulic-conductivity variations with scale during individual aquifer tests can be explained by a conceptual model of a simple heterogeneous aquifer composed of high-conductivity zones within a low-conductivity matrix. Résumé Certaines études ont montré que la conductivité hydraulique d'un aquifère semble augmenter en même temps que la partie testée de l'aquifère s'étend. Jusqu'à présent, ces études ont toutes reposé sur des méthodes de détermination de la conductivité hydraulique différentes pour chaque niveau d'échelle, ce qui a conduit à penser que l'augmentation observée de la conductivité hydraulique pouvait être due aux méthodes de mesure et non à l'effet d'échelle. Cette étude analyse la conductivité hydraulique par

  2. Results of Detailed Hydrologic Characterization Tests - Fiscal Year 2000

    International Nuclear Information System (INIS)

    Spane, Frank A; Thorne, Paul D; Newcomer, Darrell R

    2001-01-01

    This report provides the results of detailed hydrologic characterization tests conducted within eleven Hanford Site wells during fiscal year 2000. Detailed characterization tests performed included groundwater-flow characterization; barometric response evaluation; slug tests; single-well tracer tests; constant-rate pumping tests; and in-well, vertical flow tests. Hydraulic property estimates obtained from the detailed hydrologic tests include transmissivity; hydraulic conductivity; specific yield; effective porosity; in-well, lateral flow velocity; aquifer-flow velocity; vertical distribution of hydraulic conductivity (within the well-screen section); and in-well, vertical flow velocity. In addition, local groundwater-flow characteristics (i.e., hydraulic gradient and flow direction) were determined for four sites where detailed well testing was performed

  3. Analysis of hydraulic tests of the Culebra and Magenta Dolomites and Dewey Lake Redbeds conducted at the Waste Isolation Pilot Plant Site

    Energy Technology Data Exchange (ETDEWEB)

    Beauheim, R.L. [Sandia National Labs., Albuquerque, NM (United States). Geohydrology Dept.; Ruskauff, G.J. [Duke Engineering and Services, Inc., Albuquerque, NM (United States)

    1998-09-01

    This report presents interpretations of hydraulic tests conducted at 15 well locations in the vicinity of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico between 1980 and 1996. The WIPP is a US Department of Energy (DOE) facility to demonstrate safe disposal of transuranic wastes arising form the nation`s defense programs. The WIPP repository lies within bedded halite of the Salado Formation, 2,155 ft below ground surface. The tests reported herein were, with two exceptions, conducted in the Culebra Dolomite member of the Rustler Formation, which overlies the Salado Formation. The remaining tests were conducted in the Magenta Member of the Rustler and in the overlying formation, the Dewey Lake Redbeds. This report completes the documentation of hydraulic-test interpretations used as input to the WIPP Compliance Certification Application (US DOE, 1996).

  4. Metamorphic Testing for Cybersecurity

    Science.gov (United States)

    Chen, Tsong Yueh; Kuo, Fei-Ching; Ma, Wenjuan; Susilo, Willy; Towey, Dave; Voas, Jeffrey

    2016-01-01

    Testing is a major approach for the detection of software defects, including vulnerabilities in security features. This article introduces metamorphic testing (MT), a relatively new testing method, and discusses how the new perspective of MT can help to conduct negative testing as well as to alleviate the oracle problem in the testing of security-related functionality and behavior. As demonstrated by the effectiveness of MT in detecting previously unknown bugs in real-world critical applications such as compilers and code obfuscators, we conclude that software testing of security-related features should be conducted from diverse perspectives in order to achieve greater cybersecurity. PMID:27559196

  5. Knowledge of HIV and willingness to conduct oral rapid HIV testing among dentists in Xi'an China.

    Directory of Open Access Journals (Sweden)

    Lirong Wang

    Full Text Available China is considered a country of low HIV prevalence (780,000 people living with HIV, however, HIV infections among high-risk populations continue to grow at alarming rates. Voluntary Counseling and Testing services were first implemented in 2003, and oral rapid HIV testing (ORHT began in 2012. Dentists, as oral health experts, would be well placed to conduct ORHT. We assessed willingness of dentists to undertake ORHT in their clinical practice.A cross-sectional, paper-based survey of dentists from the Xi'an region of China was conducted from April to June 2013. Dentists were recruited from Shaanxi Stomatological Association using a stratified sampling methodology. A 40-item survey was used to measure knowledge of HIV, attitudes toward people living with HIV and willingness to conduct ORHT.477 dentists completed the survey with a mean HIV knowledge test score of 13.2/18 (SD 1.9. If made available in the dental setting, 276 (57.9% preferred to use blood to diagnose HIV, only 190 (39.8% preferred saliva or both. Four hundred and thirty-five (91.2% thought that ORHT was needed in dental clinics. Female dentists felt more accepting of ORHT than males (93.8% vs. 87.8%; χ2=5.145; p<0.05. 42.6% of the participants who responded thought that lack of education on ORHT for dentists was the most urgent problem to solve for ORHT, 144 (31.3% thought that lack of support for ORHT from patients was the most urgent problem. There was statistically significant difference among dental hospital, dentistry and department of dentistry (χ2=24.176; p<0.05.The majority of Chinese dentists thought that ORHT was needed in the dental setting. Providing opportunities for dentists and dental students to learn about HIV testing guidelines and practices is needed as well as feasibility and implementation science research.

  6. Standard operation procedures for conducting the on-the-road driving test, and measurement of the standard deviation of lateral position (SDLP).

    Science.gov (United States)

    Verster, Joris C; Roth, Thomas

    2011-01-01

    This review discusses the methodology of the standardized on-the-road driving test and standard operation procedures to conduct the test and analyze the data. The on-the-road driving test has proven to be a sensitive and reliable method to examine driving ability after administration of central nervous system (CNS) drugs. The test is performed on a public highway in normal traffic. Subjects are instructed to drive with a steady lateral position and constant speed. Its primary parameter, the standard deviation of lateral position (SDLP), ie, an index of 'weaving', is a stable measure of driving performance with high test-retest reliability. SDLP differences from placebo are dose-dependent, and do not depend on the subject's baseline driving skills (placebo SDLP). It is important that standard operation procedures are applied to conduct the test and analyze the data in order to allow comparisons between studies from different sites.

  7. Integration of conducting polymer network in non-conductive polymer substrates

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; West, Keld; Hassager, Ole

    2006-01-01

    Anew method for integration ofconjugated, inherently conducting polymers into non-conductive polymer substrates has been developed. Alayer of the conducting polymer is polymerised by chemical oxidation, e.g. using Fe(ID) p-toluene sulfonate (ferri tosylate) followed by washing with a solvent which...... simultaneously removes residual and spent oxidant and at the same time dissolves the top layer of the polymer substrate. This results in an integration of the conducting polymer into the surface layers of the polymer substrate. Several combinations of conducting polymers and substrates have been tested...... absorption during sequential reactive ion etching has allowed for analysis of the PEDOT distribution within the surface layer of thePMMA substrate. The surface resistance ofthe conducting polymer layer remains low while the surface layer at the same time adapts some of the mechanical properties...

  8. The Effects of Including a Callous-Unemotional Specifier for the Diagnosis of Conduct Disorder

    Science.gov (United States)

    Kahn, Rachel E.; Frick, Paul J.; Youngstrom, Eric; Findling, Robert L.; Youngstrom, Jennifer Kogos

    2012-01-01

    Background: "With Significant Callous-Unemotional Traits" has been proposed as a specifier for conduct disorder (CD) in the upcoming revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). The impact of this specifier on children diagnosed with CD should be considered. Methods: A multi-site cross-sectional design with…

  9. Saturated Zone In-Situ Testing

    International Nuclear Information System (INIS)

    Reimus, P. W.; Umari, M. J.

    2003-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  10. Saturated Zone In-Situ Testing

    Energy Technology Data Exchange (ETDEWEB)

    P. W. Reimus; M. J. Umari

    2003-12-23

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that have been conducted to test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain. The test interpretations provide estimates of flow and transport parameters that are used in the development of parameter distributions for Total System Performance Assessment (TSPA) calculations. These parameter distributions are documented in the revisions to the SZ flow model report (BSC 2003 [ 162649]), the SZ transport model report (BSC 2003 [ 162419]), the SZ colloid transport report (BSC 2003 [162729]), and the SZ transport model abstraction report (BSC 2003 [1648701]). Specifically, this scientific analysis report provides the following information that contributes to the assessment of the capability of the SZ to serve as a barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvium Testing Complex (ATC), which is located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and

  11. Community Violence Exposure and Conduct Problems in Children and Adolescents with Conduct Disorder and Healthy Controls.

    Science.gov (United States)

    Kersten, Linda; Vriends, Noortje; Steppan, Martin; Raschle, Nora M; Praetzlich, Martin; Oldenhof, Helena; Vermeiren, Robert; Jansen, Lucres; Ackermann, Katharina; Bernhard, Anka; Martinelli, Anne; Gonzalez-Madruga, Karen; Puzzo, Ignazio; Wells, Amy; Rogers, Jack C; Clanton, Roberta; Baker, Rosalind H; Grisley, Liam; Baumann, Sarah; Gundlach, Malou; Kohls, Gregor; Gonzalez-Torres, Miguel A; Sesma-Pardo, Eva; Dochnal, Roberta; Lazaratou, Helen; Kalogerakis, Zacharias; Bigorra Gualba, Aitana; Smaragdi, Areti; Siklósi, Réka; Dikeos, Dimitris; Hervás, Amaia; Fernández-Rivas, Aranzazu; De Brito, Stephane A; Konrad, Kerstin; Herpertz-Dahlmann, Beate; Fairchild, Graeme; Freitag, Christine M; Popma, Arne; Kieser, Meinhard; Stadler, Christina

    2017-01-01

    Exposure to community violence through witnessing or being directly victimized has been associated with conduct problems in a range of studies. However, the relationship between community violence exposure (CVE) and conduct problems has never been studied separately in healthy individuals and individuals with conduct disorder (CD). Therefore, it is not clear whether the association between CVE and conduct problems is due to confounding factors, because those with high conduct problems also tend to live in more violent neighborhoods, i.e., an ecological fallacy. Hence, the aim of the present study was: (1) to investigate whether the association between recent CVE and current conduct problems holds true for healthy controls as well as adolescents with a diagnosis of CD; (2) to examine whether the association is stable in both groups when including effects of aggression subtypes (proactive/reactive aggression), age, gender, site and socioeconomic status (SES); and (3) to test whether proactive or reactive aggression mediate the link between CVE and conduct problems. Data from 1178 children and adolescents (62% female; 44% CD) aged between 9 years and 18 years from seven European countries were analyzed. Conduct problems were assessed using the Kiddie-Schedule of Affective Disorders and Schizophrenia diagnostic interview. Information about CVE and aggression subtypes was obtained using self-report questionnaires (Social and Health Assessment and Reactive-Proactive aggression Questionnaire (RPQ), respectively). The association between witnessing community violence and conduct problems was significant in both groups (adolescents with CD and healthy controls). The association was also stable after examining the mediating effects of aggression subtypes while including moderating effects of age, gender and SES and controlling for effects of site in both groups. There were no clear differences between the groups in the strength of the association between witnessing violence

  12. Community Violence Exposure and Conduct Problems in Children and Adolescents with Conduct Disorder and Healthy Controls

    Directory of Open Access Journals (Sweden)

    Linda Kersten

    2017-11-01

    Full Text Available Exposure to community violence through witnessing or being directly victimized has been associated with conduct problems in a range of studies. However, the relationship between community violence exposure (CVE and conduct problems has never been studied separately in healthy individuals and individuals with conduct disorder (CD. Therefore, it is not clear whether the association between CVE and conduct problems is due to confounding factors, because those with high conduct problems also tend to live in more violent neighborhoods, i.e., an ecological fallacy. Hence, the aim of the present study was: (1 to investigate whether the association between recent CVE and current conduct problems holds true for healthy controls as well as adolescents with a diagnosis of CD; (2 to examine whether the association is stable in both groups when including effects of aggression subtypes (proactive/reactive aggression, age, gender, site and socioeconomic status (SES; and (3 to test whether proactive or reactive aggression mediate the link between CVE and conduct problems. Data from 1178 children and adolescents (62% female; 44% CD aged between 9 years and 18 years from seven European countries were analyzed. Conduct problems were assessed using the Kiddie-Schedule of Affective Disorders and Schizophrenia diagnostic interview. Information about CVE and aggression subtypes was obtained using self-report questionnaires (Social and Health Assessment and Reactive-Proactive aggression Questionnaire (RPQ, respectively. The association between witnessing community violence and conduct problems was significant in both groups (adolescents with CD and healthy controls. The association was also stable after examining the mediating effects of aggression subtypes while including moderating effects of age, gender and SES and controlling for effects of site in both groups. There were no clear differences between the groups in the strength of the association between witnessing

  13. Analysis of pumping tests of the Culebra dolomite conducted at the H-11 hydropad at the Waste Isolation Pilot Plant (WIPP) site

    International Nuclear Information System (INIS)

    Saulnier, G.J. Jr.

    1987-01-01

    The Culebra Dolomite Member of the Permian Rustler Formation was hydrologically evaluated in a series of pumping tests conducted at the H-11 hydropad at the Waste Isolation Pilot Plant (WIPP) site. At H-11, the Culebra dolomite is a 25-ft thick argillaceous dolomite with 0.1- to 0.5-foot thick layers with a high density of vugs. The vugs range in size from 0.1 to 0.5 inches in diameter; most are 0.1 to 0.2 inches in diameter. The thin vuggy layers alternate with thicker, more competent layers which have few vugs, but which do contain high-angle fractures. Some of the vugs and fractures are gypsum-filled. Three pumping tests consisted of 12- to 21-hour pumping periods at each of the three wells, while using the other two wells at the hydropad as observation wells. An additional pumping test was conducted at H-11b3 with H-11b1 and H-11b2 as observation wells. The test was a 32-day multirate test with four pumping and recovery periods. The original tests were conducted by lowering a submersible pump and pressure transducers in the boreholes. The additional test added a downhole packer with feed-through assembly designed to isolate the test interval and reduce or minimize the effect of wellbore storage. The data from all tests were recorded and stored on floppy disks. The pumping tests at the H-11 hydropad were analyzed with the INTERPRET reservoir-analysis software. 46 refs., 46 figs., 12 tabs

  14. Proton Conductivity and Operational Features Of PBI-Based Membranes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; Precht Noyé, Pernille

    2005-01-01

    As an approach to high temperature operation of PEMFCs, acid-doped PBI membranes are under active development. The membrane exhibits high proton conductivity under low water contents at temperatures up to 200°C. Mechanisms of proton conduction for the membranes have been proposed. Based on the me...... on the membranes fuel cell tests have been demonstrated. Operating features of the PBI cell include no humidification, high CO tolerance, better heat utilization and possible integration with fuel processing units. Issues for further development are also discussed....

  15. Main Propulsion Test Article (MPTA)

    Science.gov (United States)

    Snoddy, Cynthia

    2010-01-01

    Scope: The Main Propulsion Test Article integrated the main propulsion subsystem with the clustered Space Shuttle Main Engines, the External Tank and associated GSE. The test program consisted of cryogenic tanking tests and short- and long duration static firings including gimbaling and throttling. The test program was conducted on the S1-C test stand (Position B-2) at the National Space Technology Laboratories (NSTL)/Stennis Space Center. 3 tanking tests and 20 hot fire tests conducted between December 21 1 1977 and December 17, 1980 Configuration: The main propulsion test article consisted of the three space shuttle main engines, flightweight external tank, flightweight aft fuselage, interface section and a boilerplate mid/fwd fuselage truss structure.

  16. Comparison of Audiological Results Between a Transcutaneous and a Percutaneous Bone Conduction Instrument in Conductive Hearing Loss.

    Science.gov (United States)

    Gerdes, Timo; Salcher, Rolf Benedikt; Schwab, Burkard; Lenarz, Thomas; Maier, Hannes

    2016-07-01

    In conductive, mixed hearing losses and single-sided-deafness bone-anchored hearing aids are a well-established treatment. The transcutaneous transmission across the intact skin avoids the percutaneous abutment of a bone-anchored device with the usual risk of infections and requires less care.In this study, the audiological results of the Bonebridge transcutaneous bone conduction implant (MED-EL) are compared to the generally used percutaneous device BP100 (Cochlear Ltd., Sydney, Australia). Ten patients implanted with the transcutaneous hearing implant were compared to 10 matched patients implanted with a percutaneous device. Tests included pure-tone AC and BC thresholds and unaided and aided sound field thresholds. Speech intelligibility was determined in quiet using the Freiburg monosyllable test and in noise with the Oldenburg sentence test (OLSA) in sound field with speech from the front (S0). The subjective benefit was assessed with the Abbreviated Profile of Hearing Aid Benefit. In comparison with the unaided condition there was a significant improvement in aided thresholds, word recognition scores (WRS), and speech reception thresholds (SRT) in noise, measured in sound field, for both devices. The comparison of the two devices revealed a minor but not significant difference in functional gain (Bonebridge: PTA = 27.5 dB [mean]; BAHA: PTA = 26.3 dB [mean]). No significant difference between the two devices was found when comparing the improvement in WRSs and SRTs (Bonebridge: improvement WRS = 80% [median], improvement SRT = 6.5 dB SNR [median]; BAHA: improvement WRS = 77.5% [median], BAHA: improvement SRT = 6.9 dB SNR [median]). Our data show that the transcutaneous bone conduction hearing implant is an audiologically equivalent alternative to percutaneous bone-anchored devices in conductive hearing loss with a minor sensorineural hearing loss component.

  17. Discussion on the thermal conductivity enhancement of nanofluids

    Science.gov (United States)

    2011-01-01

    Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed. PMID:21711638

  18. Method of forming electronically conducting polymers on conducting and nonconducting substrates

    Science.gov (United States)

    Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor); Clarke, Eric T. (Inventor); Miller, David L. (Inventor); Parker, Donald L. (Inventor)

    2001-01-01

    The present invention provides electronically conducting polymer films formed from photosensitive formulations of pyrrole and an electron acceptor that have been selectively exposed to UV light, laser light, or electron beams. The formulations may include photoinitiators, flexibilizers, solvents and the like. These solutions can be used in applications including printed circuit boards and through-hole plating and enable direct metallization processes on non-conducting substrates. After forming the conductive polymer patterns, a printed wiring board can be formed by sensitizing the polymer with palladium and electrolytically depositing copper.

  19. ORNL rod-bundle heat-transfer test data. Volume 3. Thermal-hydraulic test facility experimental data report for test 3.06.6B - transient film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Reduced instrument responses are presented for Thermal-Hyraulic Test Facility (THTF) Test 3.06.6B. This test was conducted by members of the Oak Ridge National Laboratory Pressurized-Water-Reactor (PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on August 29, 1980. The objective of the program was to investigate heat transfer phenomena believed to occur in PWR's during accidents, including small and large break loss-of-coolant accidents. Test 3.06.6B was conducted to obtain transient film boiling data in rod bundle geometry under reactor accident-type conditions. The primary purpose of this report is to make the reduced instrument responses for THTF Test 3.06.6B available. Included in the report are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  20. Adequação do teste de condutividade elétrica para sementes de Pisum sativum subsp. Arvense Suitability of electrical conductivity test for seeds of Pisum sativum subsp. Arvense

    Directory of Open Access Journals (Sweden)

    Carla Gomes Machado

    2011-06-01

    Full Text Available A qualidade da semente na produção agrícola é um dos principais fatores a ser considerado na implantação da cultura, de forma que se torna importante a obtenção de informações sobre a germinação e o vigor das sementes, além da necessidade de avaliá-los. Dentro desse contexto, este trabalho teve como objetivo adequar a metodologia do teste de condutividade elétrica para a avaliação da qualidade fisiológica de sementes de Pisum sativum subsp. arvense. Para tanto, foram utilizados dez lotes de sementes da cultivar IAPAR 83, empregando-se períodos de condicionamento de 8, 16, 20, 24 e 28 horas, combinados às temperaturas de 20 e 25°C e volumes de 75 e 250mL de água. Além destes, foram conduzidos os testes de germinação, primeira contagem de germinação e emergência de plântulas. Para ambas as avaliações, foram utilizadas quatro repetições de 50 sementes. Os testes de vigor, assim como o teste de germinação foram sensíveis para avaliar a qualidade das sementes dos diferentes lotes estudados, porém houve variações na ordenação deles quanto ao vigor. O volume de água, o tempo e a temperatura de embebição influenciaram os valores de condutividade elétrica. Concluiu-se que o teste de condutividade elétrica utilizando 250mL de água, na temperatura de 25°C por 24 horas é promissor para a diferenciação de lotes de sementes de P. sativum subsp. arvense.Seed quality in agricultural production is a major factor to be considered in the deployment of a crop, so it becomes important to obtain information about seed vigor and germination and. This study had the objective to adjust the methodology of the electrical conductivity test to evaluate the physiological quality of Pisum sativum subsp. arvense seeds. Ten lots of the cultivar 'IAPAR 83' were studied to establish the methodology for the electrical conductivity test. It was studied germination, first count of germination and seedling emergence in greenhouse

  1. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 2: Data from seat testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    The unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft is reviewed. A program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats is presented. An energy absorbing test seat is designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions is conducted at a sled test facility. Comparative tests with operational F-111 crewseats are also conducted. After successful dynamic testing of the seat, more testing is conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests are conducted. The vertical drop tests are used to obtain comparative data between the energy absorbing and operational seats. Volume 1 describes the energy absorbing test seat and testing conducted, and evaluates the data from both test series. Volume 2 presents the data obtained during the seat test series, while Volume 3 presents the data from the crew module test series.

  2. Ceramic substrate including thin film multilayer surface conductor

    Science.gov (United States)

    Wolf, Joseph Ambrose; Peterson, Kenneth A.

    2017-05-09

    A ceramic substrate comprises a plurality of ceramic sheets, a plurality of inner conductive layers, a plurality of vias, and an upper conductive layer. The ceramic sheets are stacked one on top of another and include a top ceramic sheet. The inner conductive layers include electrically conductive material that forms electrically conductive features on an upper surface of each ceramic sheet excluding the top ceramic sheet. The vias are formed in each of the ceramic sheets with each via being filled with electrically conductive material. The upper conductive layer includes electrically conductive material that forms electrically conductive features on an upper surface of the top ceramic sheet. The upper conductive layer is constructed from a stack of four sublayers. A first sublayer is formed from titanium. A second sublayer is formed from copper. A third sublayer is formed from platinum. A fourth sublayer is formed from gold.

  3. 30 CFR 27.9 - Date for conducting tests.

    Science.gov (United States)

    2010-07-01

    ... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND... completing such other test work as may be in progress. [31 FR 10607, Aug. 9, 1966, as amended at 70 FR 46343.... The date of receipt of an application will determine the order of precedence for investigation and...

  4. SATURATED ZONE IN-SITU TESTING

    Energy Technology Data Exchange (ETDEWEB)

    P.W. REIMUS

    2004-11-08

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass

  5. SATURATED ZONE IN-SITU TESTING

    International Nuclear Information System (INIS)

    REIMUS, P.W.

    2004-01-01

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid

  6. Testing activities at the National Battery Test Laboratory

    Science.gov (United States)

    Hornstra, F.; Deluca, W. H.; Mulcahey, T. P.

    The National Battery Test Laboratory (NBTL) is an Argonne National Laboratory facility for testing, evaluating, and studying advanced electric storage batteries. The facility tests batteries developed under Department of Energy programs and from private industry. These include batteries intended for future electric vehicle (EV) propulsion, electric utility load leveling (LL), and solar energy storage. Since becoming operational, the NBTL has evaluated well over 1400 cells (generally in the form of three- to six-cell modules, but up to 140-cell batteries) of various technologies. Performance characterization assessments are conducted under a series of charge/discharge cycles with constant current, constant power, peak power, and computer simulated dynamic load profile conditions. Flexible charging algorithms are provided to accommodate the specific needs of each battery under test. Special studies are conducted to explore and optimize charge procedures, to investigate the impact of unique load demands on battery performance, and to analyze the thermal management requirements of battery systems.

  7. Summary of ROSA-4 LSTF first phase test program and station blackout (TMLB) test results

    International Nuclear Information System (INIS)

    Tasaka, K.; Kukita, Y.; Anoda, Y.

    1990-01-01

    This paper summarizes major test results obtained at the ROSA-4 Large Scale Test Facility (LSTF) during the first phase of the test program. The results from a station blackout (TMLB) test conducted at the end of the first-phase program are described in some detail. The LSTF is an integral test facility being operated by the Japan Atomic Energy Research Institute for simulation of pressurized water reactor (PWR) thermal-hydraulic responses during small-break loss-of-coolant accidents (SBLOCAs) and operational/abnormal transients. It is a 1/48 volumetrically scaled, full-height, full-pressure simulator of a Westinghouse-type 4-loop PWR. The facility includes two symmetric primary loops each one containing an active inverted-U tube steam generator and an active reactor coolant pump. The loop horizontal legs are sized to conserve the scaled (1/24) volumes as well as the length to the square root of the diameter ratio in order to simulate the two-phase flow regime transitions. The primary objective of the LSTF first-phase program was to define the fundamental PWR thermal-hydraulic responses during SBLOCAs and transients. Most of the tests were conducted with simulated component/operator failures, including unavailability of the high pressure injection system and auxiliary feedwater system, as well as operator failure to take corrective actions. The forty-two first phase tests included twenty-nine SBLOCA tests conducted mainly for cold leg breaks, three abnormal transient tests and ten natural circulation tests. Attempts were made in several of the SBLOCA tests to simulate the plant recovery procedures as well as candidate accident management measures for prevention of high-pressure core melt situation. The natural circulation tests simulated the single-phase and two-phase natural circulation as well as reflux condensation behavior in the primary loops in steady or quasi-steady states

  8. Report on Beryllium Strength Experiments Conducted at the TA-55 40 mm Impact Test Facility, Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, William Wyatt [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hollowell, Benjamin Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez, Todd P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Owens, Charles Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rivera, Joseph Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-10

    A series of experiments is currently in progress at eth 40 mm Impact Test Facility (ITF), located at TA-55, to understand the strength behavior of Beryllium metal at elevated temperature and pressure. In FY 2017, three experiments were conducted as a part of this project.

  9. Conducting network penetration and espionage in a global environment

    CERN Document Server

    Middleton, Bruce

    2014-01-01

    When it's all said and done, penetration testing remains the most effective way to identify security vulnerabilities in computer networks. Conducting Network Penetration and Espionage in a Global Environment provides detailed guidance on how to perform effective penetration testing of computer networks-using free, open source, and commercially available tools, including Backtrack, Metasploit, Wireshark, Nmap, Netcat, and Nessus. It also considers exploits and other programs using Python, PERL, BASH, PHP, Ruby, and Windows PowerShell.The book taps into Bruce Middleton's decades of experience wi

  10. Energy transmittance predicts conductive hearing loss in older children and adults

    Science.gov (United States)

    Keefe, Douglas H.; Simmons, Jeffrey L.

    2003-12-01

    The test performance of a wideband acoustic transfer function (ATF) test and 226-Hz tympanometry was assessed in predicting the presence of conductive hearing loss, based on an air-bone gap of 20 dB or more. Two ATF tests were designed using an improved calibration method over a frequency range (0.25-8 kHz): an ambient-pressure test and a tympanometric test using an excess static pressure in the ear canal. Wideband responses were objectively classified using moment analyses of energy transmittance, which was a more appropriate test variable than energy reflectance. Subjects included adults and children of age 10 years and up, with 42 normal-functioning ears and 18 ears with a conductive hearing loss. Predictors were based on the magnitudes of the moment deviations from the 10th to 90th percentiles of the normal group. Comparing tests at a fixed specificity of 0.90, the sensitivities were 0.28 for peak-compensated static acoustic admittance at 226 Hz, 0.72 for ambient-pressure ATF, and 0.94 for pressurized ATF. Pressurized ATF was accurate at predicting conductive hearing loss with an area under the receiver operating characteristic curve of 0.95. Ambient-pressure ATF may have sufficient accuracy to use in some hearing-screening applications, whereas pressurized ATF has additional accuracy that may be appropriate for hearing-diagnostic applications.

  11. Ionic Conductivity of Polyelectrolyte Hydrogels.

    Science.gov (United States)

    Lee, Chen-Jung; Wu, Haiyan; Hu, Yang; Young, Megan; Wang, Huifeng; Lynch, Dylan; Xu, Fujian; Cong, Hongbo; Cheng, Gang

    2018-02-14

    Polyelectrolytes have many important functions in both living organisms and man-made applications. One key property of polyelectrolytes is the ionic conductivity due to their porous networks that allow the transport of water and small molecular solutes. Among polyelectrolytes, zwitterionic polymers have attracted huge attention for applications that involve ion transport in a polyelectrolyte matrix; however, it is still unclear how the functional groups of zwitterionic polymer side chains affect their ion transport and swelling properties. In this study, zwitterionic poly(carboxybetaine acrylamide), poly(2-methacryloyloxyethyl phosphorylcholine), and poly(sulfobetaine methacrylate) hydrogels were synthesized and their ionic conductivity was studied and compared to cationic, anionic, and nonionic hydrogels. The change of the ionic conductivity of zwitterionic and nonionic hydrogels in different saline solutions was investigated in detail. Zwitterionic hydrogels showed much higher ionic conductivity than that of the widely used nonionic poly(ethylene glycol) methyl ether methacrylate hydrogel in all tested solutions. For both cationic and anionic hydrogels, the presence of mobile counterions led to high ionic conductivity in low salt solutions; however, the ionic conductivity of zwitterionic hydrogels surpassed that of cationic and ionic hydrogels in high salt solutions. Cationic and anionic hydrogels showed much higher water content than that of zwitterionic hydrogels in deionized water; however, the cationic hydrogels shrank significantly with increasing saline concentration. This work provides insight into the effects of polyelectrolyte side chains on ion transport. This can guide us in choosing better polyelectrolytes for a broad spectrum of applications, including bioelectronics, neural implants, battery, and so on.

  12. Cathodic Delamination Accelerated Life Test Method

    National Research Council Canada - National Science Library

    Ramotowski, Thomas S

    2007-01-01

    A method for conducting an accelerated life test of a polymer coated metallic sample includes placing the sample below the water surface in a test tank containing water and an oxygen containing gas...

  13. Predictive Accuracy of Sweep Frequency Impedance Technology in Identifying Conductive Conditions in Newborns.

    Science.gov (United States)

    Aithal, Venkatesh; Kei, Joseph; Driscoll, Carlie; Murakoshi, Michio; Wada, Hiroshi

    2018-02-01

    Diagnosing conductive conditions in newborns is challenging for both audiologists and otolaryngologists. Although high-frequency tympanometry (HFT), acoustic stapedial reflex tests, and wideband absorbance measures are useful diagnostic tools, there is performance measure variability in their detection of middle ear conditions. Additional diagnostic sensitivity and specificity measures gained through new technology such as sweep frequency impedance (SFI) measures may assist in the diagnosis of middle ear dysfunction in newborns. The purpose of this study was to determine the test performance of SFI to predict the status of the outer and middle ear in newborns against commonly used reference standards. Automated auditory brainstem response (AABR), HFT (1000 Hz), transient evoked otoacoustic emission (TEOAE), distortion product otoacoustic emission (DPOAE), and SFI tests were administered to the study sample. A total of 188 neonates (98 males and 90 females) with a mean gestational age of 39.4 weeks were included in the sample. Mean age at the time of testing was 44.4 hr. Diagnostic accuracy of SFI was assessed in terms of its ability to identify conductive conditions in neonates when compared with nine different reference standards (including four single tests [AABR, HFT, TEOAE, and DPOAE] and five test batteries [HFT + DPOAE, HFT + TEOAE, DPOAE + TEOAE, DPOAE + AABR, and TEOAE + AABR]), using receiver operating characteristic (ROC) analysis and traditional test performance measures such as sensitivity and specificity. The test performance of SFI against the test battery reference standard of HFT + DPOAE and single reference standard of HFT was high with an area under the ROC curve (AROC) of 0.87 and 0.82, respectively. Although the HFT + DPOAE test battery reference standard performed better than the HFT reference standard in predicting middle ear conductive conditions in neonates, the difference in AROC was not significant. Further analysis revealed that the

  14. 3D electrical conductivity tomography of volcanoes

    Science.gov (United States)

    Soueid Ahmed, A.; Revil, A.; Byrdina, S.; Coperey, A.; Gailler, L.; Grobbe, N.; Viveiros, F.; Silva, C.; Jougnot, D.; Ghorbani, A.; Hogg, C.; Kiyan, D.; Rath, V.; Heap, M. J.; Grandis, H.; Humaida, H.

    2018-05-01

    Electrical conductivity tomography is a well-established galvanometric method for imaging the subsurface electrical conductivity distribution. We characterize the conductivity distribution of a set of volcanic structures that are different in terms of activity and morphology. For that purpose, we developed a large-scale inversion code named ECT-3D aimed at handling complex topographical effects like those encountered in volcanic areas. In addition, ECT-3D offers the possibility of using as input data the two components of the electrical field recorded at independent stations. Without prior information, a Gauss-Newton method with roughness constraints is used to solve the inverse problem. The roughening operator used to impose constraints is computed on unstructured tetrahedral elements to map complex geometries. We first benchmark ECT-3D on two synthetic tests. A first test using the topography of Mt. St Helens volcano (Washington, USA) demonstrates that we can successfully reconstruct the electrical conductivity field of an edifice marked by a strong topography and strong variations in the resistivity distribution. A second case study is used to demonstrate the versatility of the code in using the two components of the electrical field recorded on independent stations along the ground surface. Then, we apply our code to real data sets recorded at (i) a thermally active area of Yellowstone caldera (Wyoming, USA), (ii) a monogenetic dome on Furnas volcano (the Azores, Portugal), and (iii) the upper portion of the caldera of Kīlauea (Hawai'i, USA). The tomographies reveal some of the major structures of these volcanoes as well as identifying alteration associated with high surface conductivities. We also review the petrophysics underlying the interpretation of the electrical conductivity of fresh and altered volcanic rocks and molten rocks to show that electrical conductivity tomography cannot be used as a stand-alone technique due to the non-uniqueness in

  15. Repeat confirmatory testing for persons with discordant whole blood and oral fluid rapid HIV test results: findings from post marketing surveillance.

    Science.gov (United States)

    Wesolowski, Laura G; Mackellar, Duncan A; Ethridge, Steven F; Zhu, Julia H; Owen, S Michele; Sullivan, Patrick S

    2008-02-06

    Reactive oral fluid and whole blood rapid HIV tests must be followed with a confirmatory test (Western blot (WB), immunofluorescent assay (IFA) or approved nucleic acid amplification test (NAAT)). When the confirmatory result is negative or indeterminate (i.e. discordant with rapid result), repeat confirmatory testing should be conducted using a follow-up specimen. Previous reports have not described whether repeat testing adequately resolves the HIV-infection status of persons with discordant results. Post-marketing surveillance was conducted in 368 testing sites affiliated with 14 state and 2 city health departments from August 11, 2004 to June 30, 2005 and one health department through December 31, 2005. For persons with discordant results, data were collected on demographics, risk behaviors, HIV test results and specimen types. Persons with repeat confirmatory results were classified as HIV-infected or uninfected. Regression models were created to assess risk factors for not having repeat testing. Of 167,371 rapid tests conducted, 2589 (1.6%) were reactive: of these, 2417 (93%) had positive WB/IFA, 172 (7%) had negative or indeterminate WB/IFA. Of 89/172 (52%) persons with a repeat confirmatory test: 17 (19%) were HIV-infected, including 3 with indeterminate WB and positive NAAT; 72 (81%) were uninfected, including 12 with repeat indeterminate WB. Factors associated with HIV-infection included having an initial indeterminate WB/IFA (vs. negative) (ptest [adjusted OR 2.6, 95% CI (1.3, 4.9)]. Though only half of persons with discordant results had repeat confirmatory testing, of those who did, nearly one in five were HIV-infected. These findings underscore the need for rapid HIV testing programs to increase repeat confirmatory testing for persons with discordant results. Because of the lower sensitivity of oral fluid WBs, confirmatory testing following a reactive rapid test should be conducted using serum or plasma, when possible.

  16. Design and testing of an energy-absorbing crewseat for the F/FB-111 aircraft. Volume 3: Data from crew module testing

    Science.gov (United States)

    Shane, S. J.

    1985-01-01

    Over the past years, several papers and reports have documented the unacceptably high injury rate during the escape sequence (including the ejection and ground impact) of the crew module for F/FB-111 aircraft. This report documents a program to determine if the injury potential could be reduced by replacing the existing crewseats with energy absorbing crewseats. An energy absorbing test seat was designed using much of the existing seat hardware. An extensive dynamic seat test series, designed to duplicate various crew module ground impact conditions, was conducted at a sled test facility. Comparative tests with operational F-111 crewseats were also conducted. After successful dynamic testing of the seat, more testing was conducted with the seats mounted in an F-111 crew module. Both swing tests and vertical drop tests werre conducted. The vertical drop tests were used to obtain comparative data between the energy absorbing and operational seats.

  17. CMIF ECLS system test findings

    Science.gov (United States)

    Schunk, Richard G.; Carrasquillo, Robyn L.; Ogle, Kathyrn Y.; Wieland, Paul O.; Bagdigian, Robert M.

    1989-01-01

    During 1987 three Space Station integrated Environmental Control and Life Support System (ECLSS) tests were conducted at the Marshall Space Flight Center (MSFC) Core Module Integration Facility (CMIF) as part of the MSFC ECLSS Phase II test program. The three tests ranged in duration from 50 to 150 hours and were conducted inside of the CMIF module simulator. The Phase II partial integrated system test configuration consisted of four regenerative air revitalization subsystems and one regenerative water reclamation subsystem. This paper contains a discussion of results and lessons learned from the Phase II test program. The design of the Phase II test configuration and improvements made throughout the program are detailed. Future plans for the MSFC CMIF test program are provided, including an overview of planned improvements for the Phase III program.

  18. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  19. Microfluidic System Simulation Including the Electro-Viscous Effect

    Science.gov (United States)

    Rojas, Eileen; Chen, C. P.; Majumdar, Alok

    2007-01-01

    This paper describes a practical approach using a general purpose lumped-parameter computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels including electro-viscous effects due to the existence of electrical double layer (EDL). In this study, an empirical formulation for calculating an effective viscosity of ionic solutions based on dimensional analysis is described to account for surface charge and bulk fluid conductivity, which give rise to electro-viscous effect in microfluidics network. Two dimensional slit micro flow data was used to determine the model coefficients. Geometry effect is then included through a Poiseuille number correlation in GFSSP. The bi-power model was used to calculate flow distribution of isotropically etched straight channel and T-junction microflows involving ionic solutions. Performance of the proposed model is assessed against experimental test data.

  20. Conduct Problems, IQ, and Household Chaos: A Longitudinal Multi-Informant Study

    Science.gov (United States)

    Deater-Deckard, Kirby; Mullineaux, Paula Y.; Beekman, Charles; Petrill, Stephen A.; Schatschneider, Chris; Thompson, Lee A.

    2009-01-01

    Background: We tested the hypothesis that household chaos would be associated with lower child IQ and more child conduct problems concurrently and longitudinally over two years while controlling for housing conditions, parent education/IQ, literacy environment, parental warmth/negativity, and stressful events. Methods: The sample included 302…

  1. Another cause for conductive hearing loss with present acoustic reflexes.

    Science.gov (United States)

    Ebert, Charles S; Zanation, Adam M; Buchman, Craig A

    2008-11-01

    There are numerous potential causes of conductive hearing loss (HL). It is important to obtain a thorough history and perform a complete examination, including audiometric testing and radiographic evaluation when necessary. In this report, we present a patient with an intact tympanic membrane, no history of ear disease or trauma who as an adult developed progressive, conductive HL because of an anomalous course of a dehiscent facial nerve. In the patient with a conductive HL and at least partially intact reflexes, superior semicircular canal dehiscence, fracture of the stapes superstructure proximal to the tendon, other third window phenomena, and now dehiscence of the facial nerve resulting in decreased mobility of the ossicular chain must be considered.

  2. IEEE Std 600: IEEE trial-use standard requirements for organizations that conduct qualification testing of safety systems equipment for use in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    The purpose of this standard is to provide requirements for establishing a program for conducting qualification tests of safety systems equipment used in nuclear power generating stations. Compliance with the requirements of this standard does not assure the adequacy of the qualification tests performed. This standard applies to organizations that conduct qualification tests on equipment that has a definable safety function and is an identifiable part of a safety system for use in nuclear power generating stations. It requires a technical program, a quality assurance program, and a demonstrated ability to meet specified technical requirements. It does not apply to materials tests, production tests, normal performance testing, qualification by analysis, qualification by operating experience, or reliability tests such as diesel-generator multiple start tests. The intent of this standard is to achieve greater consistency, reliability, and reproducibility of test results and to provide adequate control of qualification testing of safety systems equipment

  3. Testes para avaliação do vigor de sementes de sorgo com ênfase à condutividade elétrica Vigor tests in sorghum seeds with emphasis to electrical conductivity

    Directory of Open Access Journals (Sweden)

    Marcos Morais Soares

    2010-04-01

    opção eficiente para classificação dos lotes em níveis de vigor de sementes de sorgo, possibilitando identificar apenas lotes de baixo vigor.The researches show that germination tests do not always reveal differences between seed lots, so that other methods have been studied that allow to differentiate the lots using vigor tests. The goal of this research was, therefore, to verify the efficiency of different vigor tests on the evaluation the physiological quality of sorghum seeds and to determine the effects of water volume and imbibition period on the efficiency of the electrical conductivity test to evaluate sorghum seed vigor. The physiological quality of the seeds was evaluated by the germination test, first count, cold test without soil, immersion in ammonium chloride, seedling emergence in greenhouse and accelerated aging. Electrical conductivity was determined at 2, 4, 6, 8, 16, 24 and 48 hours imbibition, using four subsamples of 50 seeds, soaked in 50 and 75 mL water, at 25ºC. The results showed that the germination test detected two levels of vigor, while the seedling emergence in greenhouse detected three levels of vigor, showing that the germination test has some limitations regarding the differentiation of lots. Among vigor tests carried out in the laboratory, the test of accelerated aging and cold test without soil showed a highly significant correlation with seedling emergence in greenhouse. In the test of electric conductivity only the lot of inferior quality was discriminated with 2, 4 and 6 hours of imbibition in 75 mL of water, and with 16 hours of imbibition in 50 mL of water. It was concluded that the accelerated aging and cold test were efficient for vigor evaluation of sorghum seeds compared to the seedling emergence in greenhouse. The test of electric conductivity is not an efficient option for classification of the lots in levels of vigor of sorghum seeds, just identifying lots with low vigor.

  4. Environmental radiation at the Monte Bello Islands from nuclear weapons tests conducted in 1952 and 1956

    International Nuclear Information System (INIS)

    Moroney, J.R.; Cooper, M.B.

    1982-12-01

    The results from the 1962 and 1968 surveys of environmental radiation at the Monte Bello Islands are presented. These were the first of the series of surveys of radioactive contamination of the Islands to be carried out following nuclear weapons tests conducted in 1952 and 1956. Detailed comparison is made with the results obtained in the subsequent surveys in 1972 and 1978. For more than 20 years, no area at the Monte Bello Islands has presented an acute hazard due to external exposure to environmental radiation

  5. Defect detection in conducting materials using eddy current testing techniques

    Directory of Open Access Journals (Sweden)

    Brauer Hartmut

    2014-01-01

    Full Text Available Lorentz force eddy current testing (LET is a novel nondestructive testing technique which can be applied preferably to the identification of internal defects in nonmagnetic moving conductors. The LET is compared (similar testing conditions with the classical eddy current testing (ECT. Numerical FEM simulations have been performed to analyze the measurements as well as the identification of internal defects in nonmagnetic conductors. The results are compared with measurements to test the feasibility of defect identification. Finally, the use of LET measurements to estimate of the electrical conductors under test are described as well.

  6. Utilizing the Fast Flux Test Facility for international passive safety testing

    International Nuclear Information System (INIS)

    Shen, P.K.; Padilla, A.; Lucoff, D.M.; Waltar, A.E.

    1991-01-01

    A two-phased approach has been undertaken in the Fast Flux Test Facility (FFTF) to conduct passive safety testing. Phase I (1986 to 1987) was structured to obtain an initial understanding of the reactivity feedback components. The planned Phase II (1992 to 1993) international program will extend the testing to include static and dynamic feedback measurements, transient and demonstration tests, and gas expansion module (GEM) reactivity tests. The primary objective is to meet the needs for safety analysis code validation, with particular emphasis on reducing the uncertainties associated with structure reactivity feedback. Program scope and predicted FFTF responses are discussed and illustrated. (author)

  7. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer.

    Science.gov (United States)

    Lens, Frederic; Sperry, John S; Christman, Mairgareth A; Choat, Brendan; Rabaey, David; Jansen, Steven

    2011-05-01

    • Vulnerability to cavitation and conductive efficiency depend on xylem anatomy. We tested a large range of structure-function hypotheses, some for the first time, within a single genus to minimize phylogenetic 'noise' and maximize detection of functionally relevant variation. • This integrative study combined in-depth anatomical observations using light, scanning and transmission electron microscopy of seven Acer taxa, and compared these observations with empirical measures of xylem hydraulics. • Our results reveal a 2 MPa range in species' mean cavitation pressure (MCP). MCP was strongly correlated with intervessel pit structure (membrane thickness and porosity, chamber depth), weakly correlated with pit number per vessel, and not related to pit area per vessel. At the tissue level, there was a strong correlation between MCP and mechanical strength parameters, and some of the first evidence is provided for the functional significance of vessel grouping and thickenings on inner vessel walls. In addition, a strong trade-off was observed between xylem-specific conductivity and MCP. Vessel length and intervessel wall characteristics were implicated in this safety-efficiency trade-off. • Cavitation resistance and hydraulic conductivity in Acer appear to be controlled by a very complex interaction between tissue, vessel network and pit characteristics. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  8. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  9. An integrated system for conducting radiological surveys of contaminated sites - 16312

    International Nuclear Information System (INIS)

    McCown, Jay P.; Rogers, Donna M.; Waggoner, Charles A.

    2009-01-01

    This paper describes an integrated detection system that has been developed to conduct radiological surveys of sites suspected of contamination of materials such as depleted uranium. This system utilizes cerium activated lanthanum bromide and thallium activated sodium iodide gamma detectors and can be easily adapted to include units for detecting neutrons. The detection system includes software controlling the collection of radiological spectra and GPS data. Two different platforms are described for conducting surveys, a modified zero turn radius (ZTR) mower and a three-wheeled cart that is manually pushed. The detection system software controlling data collection has components that facilitate completing a grid-less survey on user specified spacings. Another package confirms that all data quality activities (calibrations, etc.) are conducted prior to beginning the survey and also reviews data to identify areas that have been missed for which data quality falls below user designated parameters. Advanced digital signal processing algorithms are used to enhance the interpretation of spectra for conducting background subtractions and for mapping. Data from radiation detection instruments and GPS antennae are merged and made compatible with mapping using Geosoft Oasis montaj software. A summary of system performance during field-testing is included in the paper. This includes survey rate, detection limits, duty cycle, supporting ancillary equipment/material, and manpower requirements. The rate of false positives and false negatives is discussed with the benefits of surveys conducted using synergetic detection systems such as electromagnetic induction imaging. (authors)

  10. Advanced CMOS Radiation Effects Testing and Analysis

    Science.gov (United States)

    Pellish, J. A.; Marshall, P. W.; Rodbell, K. P.; Gordon, M. S.; LaBel, K. A.; Schwank, J. R.; Dodds, N. A.; Castaneda, C. M.; Berg, M. D.; Kim, H. S.; hide

    2014-01-01

    Presentation at the annual NASA Electronic Parts and Packaging (NEPP) Program Electronic Technology Workshop (ETW). The material includes an update of progress in this NEPP task area over the past year, which includes testing, evaluation, and analysis of radiation effects data on the IBM 32 nm silicon-on-insulator (SOI) complementary metal oxide semiconductor (CMOS) process. The testing was conducted using test vehicles supplied by directly by IBM.

  11. Application of Conductive Materials to Asphalt Pavement

    Directory of Open Access Journals (Sweden)

    Hai Viet Vo

    2017-01-01

    Full Text Available Snow-melting pavement technique is an advanced preservation method, which can prevent the forming of snow or ice on the pavement surface by increasing the temperature using an embedded heating system. The main scope of this study is to evaluate the impact of conductive additives on the heating efficiency. The electrical resistivity and thermal conductivity were considered to investigate effects of conductive additives, graphite, and carbon fibers on the snow-melting ability of asphalt mixtures. Also, the distribution of the conductive additives within the asphalt concrete body was investigated by microstructural imaging. An actual test was applied to simulate realistic heating for an asphalt concrete mixture. Thermal testing indicated that graphite and carbon fibers improve the snow-melting ability of asphalt mixes and their combination is more effective than when used alone. As observed in the microstructural image, carbon fibers show a long-range connecting effect among graphite conductive clusters and gather in bundles when added excessively. According to the actual test, adding the conductive additives helps improve snow-melting efficiency by shortening processing time and raising the surface temperature.

  12. Theory of conductivity of chiral particles

    International Nuclear Information System (INIS)

    Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim

    2013-01-01

    In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)

  13. Cryogenic Thermal Conductivity Measurements on Candidate Materials for Space Missions

    Science.gov (United States)

    Tuttle, JIm; Canavan, Ed; Jahromi, Amir

    2017-01-01

    Spacecraft and instruments on space missions are built using a wide variety of carefully-chosen materials. In addition to having mechanical properties appropriate for surviving the launch environment, these materials generally must have thermal conductivity values which meet specific requirements in their operating temperature ranges. Space missions commonly propose to include materials for which the thermal conductivity is not well known at cryogenic temperatures. We developed a test facility in 2004 at NASAs Goddard Space Flight Center to measure material thermal conductivity at temperatures between 4 and 300 Kelvin, and we have characterized many candidate materials since then. The measurement technique is not extremely complex, but proper care to details of the setup, data acquisition and data reduction is necessary for high precision and accuracy. We describe the thermal conductivity measurement process and present results for several materials.

  14. SCOPE-RADTEST: Radioactivity from nuclear test explosions

    International Nuclear Information System (INIS)

    Shapiro, C.S.; Tsaturov, Y.

    1993-10-01

    The SCOPE-RADTEST program consists of an international collaborative study involving Russia, the USA, China, and Kazakhstan. It will focus on the releases of radioactivity that resulted from nuclear test explosions that have taken place at various test sites around the world for peaceful and military purposes. RADTEST will focus on these principal tasks: (1) To inventory data on measurements of radionuclide deposition densities, and identify gaps in these data. (2) To compare old and develop new models of radioactive transport to better understand the deposition densities of radionuclides both on and near the nuclear test sites, including areas downwind where potentially significant episodes of fallout have occurred (such as the Altaj Region of Russia). (3) To study the migration of the radionuclides through the biosphere, including all pathways to humans. This will include the study of the effects on other biota that have impacts on humans. The main focus will be to characterize the nature and magnitude of the dose to humans. This will include dose reconstructions from past events, and also an increased capability for dose prediction from possible future accidental or deliberate explosions. (4)To analyze the data on the effects of these doses (including low doses) on human health. The test sites to be studied would include the Nevada Test Site (USA), South Pacific Islands (USA), Novaja Zemla (Russia), Semipalatinsk (Kazakhstan) and Luc Bu Pu (Lop Nor) (China). Tests at these sites include most of the total of nuclear explosions that have been conducted. Other sites, (including the sites of the U.K. and France), as appropriate, may also be included where tests were conducted for peaceful or military purposes

  15. Method for Measuring Thermal Conductivity of Small Samples Having Very Low Thermal Conductivity

    Science.gov (United States)

    Miller, Robert A.; Kuczmarski, Maria a.

    2009-01-01

    This paper describes the development of a hot plate method capable of using air as a standard reference material for the steady-state measurement of the thermal conductivity of very small test samples having thermal conductivity on the order of air. As with other approaches, care is taken to ensure that the heat flow through the test sample is essentially one-dimensional. However, unlike other approaches, no attempt is made to use heated guards to block the flow of heat from the hot plate to the surroundings. It is argued that since large correction factors must be applied to account for guard imperfections when sample dimensions are small, it may be preferable to simply measure and correct for the heat that flows from the heater disc to directions other than into the sample. Experimental measurements taken in a prototype apparatus, combined with extensive computational modeling of the heat transfer in the apparatus, show that sufficiently accurate measurements can be obtained to allow determination of the thermal conductivity of low thermal conductivity materials. Suggestions are made for further improvements in the method based on results from regression analyses of the generated data.

  16. Bilateral bone conduction devices: improved hearing ability in children with bilateral conductive hearing loss.

    Science.gov (United States)

    Dun, Catharina A J; Agterberg, Martijn J H; Cremers, Cor W R J; Hol, Myrthe K S; Snik, Ad F M

    2013-01-01

    The aim of the study was to investigate whether children with bilateral conductive hearing loss benefit from their second device (i.e., the bilateral bone conduction device [BCD]). Speech recognition in noise was assessed in 10 children fitted with bilateral BCDs during childhood. Speech recognition was measured in 2 conditions with both BCDs active. Spatial resolution was tested with the Minimum Audible Angle test in the bilateral and monaural listening conditions. Children demonstrated an improvement in speech recognition when speech was presented from the front and noise was presented from the right-hand side as compared with both speech and noise being presented from the front. The minimum audible angle decreased from 57° in the best monaural condition to 13° in the bilateral condition. The audiological outcomes demonstrate the advantage of bilateral BCD fitting in children with bilateral conductive hearing loss.

  17. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan

    Directory of Open Access Journals (Sweden)

    Bernd Grosche

    2015-05-01

    Full Text Available The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today’s radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  18. Studies of Health Effects from Nuclear Testing near the Semipalatinsk Nuclear Test Site, Kazakhstan.

    Science.gov (United States)

    Grosche, Bernd; Zhunussova, Tamara; Apsalikov, Kazbek; Kesminiene, Ausrele

    2015-01-01

    The nuclear bomb testing conducted at the Semipalatinsk nuclear test site in Kazakhstan is of great importance for today's radiation protection research, particularly in the area of low dose exposures. This type of radiation is of particular interest due to the lack of research in this field and how it impacts population health. In order to understand the possible health effects of nuclear bomb testing, it is important to determine what studies have been conducted on the effects of low dose exposure and dosimetry, and evaluate new epidemiologic data and biological material collected from populations living in proximity to the test site. With time, new epidemiological data has been made available, and it is possible that these data may be linked to biological samples. Next to linking existing and newly available data to examine health effects, the existing dosimetry system needs to be expanded and further developed to include residential areas, which have not yet been taken into account. The aim of this paper is to provide an overview of previous studies evaluating the health effects of nuclear testing, including some information on dosimetry efforts, and pointing out directions for future epidemiologic studies.

  19. A study of frequency effects on conductivity measurements

    International Nuclear Information System (INIS)

    Nurul Ain Ahmad Latif; Mahmood Dollah; Mohd Khidir Kamaron; Suaib Ibrahim

    2010-01-01

    In eddy current testing (ET), different measurement can be carry out through the selection of the test frequency. In conductivity measurement, the selection of eddy current test frequencies permits to select the specific material properties to be measured. The test frequency selected should be sufficient high that eddy current penetration is limited only to fraction of the test material thickness. This paper describes the effects of test frequency on the conductivity measurement. This experiment done by applying different values of test frequency which is 20 kHz, 100 kHz and 1 MHz. (author)

  20. NedWind 25 Blade Testing at NREL for the European Standards Measurement and Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Larwood, S.; Musial, W.; Freebury, G.; Beattie, A.G.

    2001-04-19

    In the mid-90s the European community initiated the Standards, Measurements, and Testing (SMT) program to harmonize testing and measurement procedures in several industries. Within the program, a project was carried out called the European Wind Turbine Testing Procedure Development. The second part of that project, called Blade Test Methods and Techniques, included the United States and was devised to help blade-testing laboratories harmonize their testing methods. This report provides the results of those tests conducted by the National Renewable Energy Laboratory.

  1. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    International Nuclear Information System (INIS)

    R. JONES

    2004-01-01

    This model report addresses activities described in ''Technical Work Plan for: Near-Field Environment and Transport Thermal Properties and Analysis Reports Integration'' (BSC 2004 [DIRS 171708]). The model develops values for thermal conductivity, and its uncertainty, for the nonrepository layers of Yucca Mountain; in addition, the model provides estimates for matrix porosity and dry bulk density for the nonrepository layers. The studied lithostratigraphic units, as identified in the ''Geologic Framework Model'' (GFM 2000) (BSC 2004 [DIRS 170029]), are the Timber Mountain Group, the Tiva Canyon Tuff, the Yucca Mountain Tuff, the Pah Canyon Tuff, the Topopah Spring Tuff (excluding the repository layers), the Calico Hills Formation, the Prow Pass Tuff, the Bullfrog Tuff, and the Tram Tuff. The deepest model units of the GFM (Tund and Paleozoic) are excluded from this study because no data suitable for model input are available. The parameter estimates developed in this report are used as input to various models and calculations that simulate heat transport through the rock mass. Specifically, analysis model reports that use product output from this report are: (1) Drift-scale coupled processes (DST and TH seepage) models; (2) Drift degradation analysis; (3) Multiscale thermohydrologic model; and (4) Ventilation model and analysis report. In keeping with the methodology of the thermal conductivity model for the repository layers in ''Thermal Conductivity of the Potential Repository Horizon'' (BSC 2004 [DIRS 169854]), the Hsu and others (1995 [DIRS 158073]) three-dimensional (3-D) cubic model (referred to herein as ''the Hsu model'') was used to represent the matrix thermal conductivity as a function of the four parameters (matrix porosity, thermal conductivity of the saturating fluid, thermal conductivity of the solid, and geometric connectivity of the solid). The Hsu model requires input data from each test specimen to meet three specific conditions: (1) Known value

  2. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  3. Influence of interface-included disorder on classical quantum conductivity of CdTe:In epitaxial layers

    International Nuclear Information System (INIS)

    Lusakowski, J.; Karpierz, K.; Grynberg, M.; Karczewski, G.; Wojtowicz, T.; Contreras, S.; Callen, O.

    1997-01-01

    An influence of disorder originated from the substrate/layer interface on electrical properties of CdTe:In layers was investigated by means of the Hall effect and magnetoresistance measurements at low temperatures. An estimation of a scattering rate due to interface induced disorder is given. Characteristic features of a magnetic field dependence of magnetoresistance are explained by an influence of quantum interference of scattered electron waves both in the hopping and the free electron conductivity regimes. (author)

  4. Preliminary data from an instantaneous profile test conducted near the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories/New Mexico

    International Nuclear Information System (INIS)

    Bayliss, S.C.; Goering, T.J.; McVey, M.D.; Strong, W.R.; Peace, J.L.

    1996-04-01

    This paper presents data from an instantaneous profile test conducted near the Sandia National Laboratories/New Mexico Mixed Waste Landfill in Technical Area 3. The test was performed from December 1993 through 1995 as part of the environmental Restoration Project's Phase 2 RCRA Facility Investigation of the Mixed Waste Landfill. The purpose of the test was to measure the unsaturated hydraulic properties of soils near the Mixed Waste Landfill. The instantaneous profile test and instrumentation are described, and the pressure and moisture content data from the test are presented. These data may be useful for understanding the unsaturated hydraulic properties of soils in Technical Area 3 and for model validation, verification, and calibration

  5. Full-Scale Crash Test of an MD-500 Helicopter

    Science.gov (United States)

    Littell, Justin

    2011-01-01

    A full-scale crash test was successfully conducted in March 2010 of an MD-500 helicopter at NASA Langley Research Center s Landing and Impact Research Facility. The reasons for conducting this test were threefold: 1 To generate data to be used with finite element computer modeling efforts, 2 To study the crashworthiness features typically associated with a small representative helicopter, and 3 To compare aircraft response to data collected from a previously conducted MD-500 crash test, which included an externally deployable energy absorbing (DEA) concept. Instrumentation on the airframe included accelerometers on various structural components of the airframe; and strain gages on keel beams, skid gear and portions of the skin. Three Anthropomorphic Test Devices and a specialized Human Surrogate Torso Model were also onboard to collect occupant loads for evaluation with common injury risk criteria. This paper presents background and results from this crash test conducted without the DEA concept. These results showed accelerations of approximately 30 to 50 g on the airframe at various locations, little energy attenuation through the airframe, and moderate to high probability of occupant injury for a variety of injury criteria.

  6. Stress Testing with Student's t Dependence

    NARCIS (Netherlands)

    H.J.W.G. Kole (Erik); C.G. Koedijk (Kees); M.J.C.M. Verbeek (Marno)

    2003-01-01

    textabstractIn this study we propose the use of the Student's t dependence function to model dependence between asset returns when conducting stress tests. To properly include stress testing in a risk management system, it is important to have accurate information about the (joint) probabilities of

  7. Calculation of saturated hydraulic conductivity of bentonite

    International Nuclear Information System (INIS)

    He Jun

    2006-01-01

    Hydraulic conductivity test has some defects such as weak repeatability, time-consuming. Taking bentonite as dual porous media, the calculation formula of the distance, d 2 , between montmorillonite in intraparticle pores is deduced. Improved calculated method of hydraulic conductivity is obtained using d 2 and Poiseuille law. The method is valid through the comparison with results of test and other methods. The method is very convenient to calculate hydraulic conductivity of bentonite of certain montmorillonite content and void ratio. (authors)

  8. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  9. Biostatistics with emphasis on life table survival rate calculations (including Kaplan Meier) and the logrank test

    International Nuclear Information System (INIS)

    Mould, Richard F.

    1995-01-01

    Purpose/Objective: To explain some of the most useful statistical calculation procedures which are relevant to radiation oncologists and to provide insights on what tests and procedures should be used in various situations such as when survival rates and their associated standard errors have to be determined. To describe some of the problems and pitfalls in clinical trial designs which have to be overcome if a trial is to have the possibility of reaching a successful conclusion. To review methods of computing criteria to quantitatively describe criteria of success (eg. quality of life, long-term survival, cure) of radiation oncology and to suggest possible future statistical improvements in this area. Chi-Squared Test: The chi-squared test is probably the most useful of the tests of statistical significance for the radiation oncologist. Applications will be described, including goodness of fit tests and 2x2 contingency tables which are the simplest of the generalized nxm contingency tables. Degrees of Freedom and P<0.05 for Significance Testing: An Introduction will be given to the meaning of P<0.05 in relation to significance testing and the use of tables of critical values of a test statistic (eg. chi-squared) which are given as a function of degrees of freedom and P-values. Survival Rate Calculations for Grouped and Ungrouped Data: The life-table method (sometimes termed the actuarial method) will be explained for both grouped data (eg. survival times grouped in annual intervals for patients who have died and for those who are still alive or lost to follow-up) and for ungrouped data (when individual survival times are used). The method for ungrouped data is variously termed the Kaplan-Meier or Product Limit method. Logrank Test: This is the most useful test for comparison of the survival experience of two groups of patients and its use will be explained. In part the computation is similar to that for the Kaplan-Meier/Product Limit method

  10. Biostatistics with emphasis on life table survival rate calculations (including Kaplan Meier) and the logrank test

    Energy Technology Data Exchange (ETDEWEB)

    Mould, Richard F

    1995-07-01

    Purpose/Objective: To explain some of the most useful statistical calculation procedures which are relevant to radiation oncologists and to provide insights on what tests and procedures should be used in various situations such as when survival rates and their associated standard errors have to be determined. To describe some of the problems and pitfalls in clinical trial designs which have to be overcome if a trial is to have the possibility of reaching a successful conclusion. To review methods of computing criteria to quantitatively describe criteria of success (eg. quality of life, long-term survival, cure) of radiation oncology and to suggest possible future statistical improvements in this area. Chi-Squared Test: The chi-squared test is probably the most useful of the tests of statistical significance for the radiation oncologist. Applications will be described, including goodness of fit tests and 2x2 contingency tables which are the simplest of the generalized nxm contingency tables. Degrees of Freedom and P<0.05 for Significance Testing: An Introduction will be given to the meaning of P<0.05 in relation to significance testing and the use of tables of critical values of a test statistic (eg. chi-squared) which are given as a function of degrees of freedom and P-values. Survival Rate Calculations for Grouped and Ungrouped Data: The life-table method (sometimes termed the actuarial method) will be explained for both grouped data (eg. survival times grouped in annual intervals for patients who have died and for those who are still alive or lost to follow-up) and for ungrouped data (when individual survival times are used). The method for ungrouped data is variously termed the Kaplan-Meier or Product Limit method. Logrank Test: This is the most useful test for comparison of the survival experience of two groups of patients and its use will be explained. In part the computation is similar to that for the Kaplan-Meier/Product Limit method.

  11. Standard leach tests for nuclear waste materials

    International Nuclear Information System (INIS)

    Strachan, D.M.; Barnes, B.O.; Turcotte, R.P.

    1980-01-01

    Five leach tests were conducted to study time-dependent leaching of waste forms (glass). The first four tests include temperature as a variable and the use of three standard leachants. Three of the tests are static and two are dynamic (flow). This paper discusses the waste-form leach tests and presents some representative data. 4 figures

  12. Lyral has been included in the patch test standard series in Germany.

    Science.gov (United States)

    Geier, Johannes; Brasch, Jochen; Schnuch, Axel; Lessmann, Holger; Pirker, Claudia; Frosch, Peter J

    2002-05-01

    Lyral 5% pet. was tested in 3245 consecutive patch test patients in 20 departments of dermatology in order (i) to check the diagnostic quality of this patch test preparation, (ii) to examine concomitant reactions to Lyral and fragrance mix (FM), and (iii) to assess the frequency of contact allergy to Lyral in an unselected patch test population of German dermatological clinics. 62 patients reacted to Lyral, i.e. 1.9%. One third of the positive reactions were + + and + + +. The reaction index was 0.27. Thus, the test preparation can be regarded a good diagnostic tool. Lyral and fragrance mix (FM) were tested in parallel in 3185 patients. Of these, 300 (9.4%) reacted to FM, and 59 (1.9%) to Lyral. In 40 patients, positive reactions to both occurred, which is 13.3% of those reacting to FM, and 67.8% of those reacting to Lyral. So the concordance of positive test reactions to Lyral and FM was only slight. Based on these results, the German Contact Dermatitis Research Group (DKG) decided to add Lyral 5% pet. to the standard series.

  13. Super Conducting and Conventional Magnets Test & Mapping Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — Vertical Magnet Test Facility: Accommodate a device up to 3.85 m long, 0.61 m diameter, and 14,400 lbs. Configured for 5 psig sub-cooled liquid helium bath cooling...

  14. Data for pilot-scale low level hydrogen peroxide tests using humidifiers

    Data.gov (United States)

    U.S. Environmental Protection Agency — Dataset includes data from each experiment conducted in the pilot-scale testing. Each sheet of the Excel file pertains to each test. A data dictionary is included in...

  15. Electrically conductive cellulose composite

    Science.gov (United States)

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  16. Device for testing continuity and/or short circuits in a cable

    Science.gov (United States)

    Hayhurst, Arthur R. (Inventor)

    1995-01-01

    A device for testing current paths is attachable to a conductor. The device automatically checks the current paths of the conductor for continuity of a center conductor, continuity of a shield and a short circuit between the shield and the center conductor. The device includes a pair of connectors and a circuit to provide for testing of the conductive paths of the cable. The pair of connectors electrically connects the conductive paths of a cable to be tested with the circuit paths of the circuit. The circuit paths in the circuit include indicators to simultaneously indicate the results of the testing.

  17. Comparison of under-pressure and over-pressure pulse tests conducted in low-permeability basalt horizons at the Hanford Site, Washington State

    International Nuclear Information System (INIS)

    Thorne, P.D.; Spane, F.A. Jr.

    1984-10-01

    Over-pressure pulse tests (pressurized slug tests have been widely used by others for hydraulic characterization of low-permeability ( -8 m/sec) rock formations. Recent field studies of low-permeability basalt horizons at the Hanford Site, Washington, indicate that the under-pressure pulse technique is also a viable test method for hydraulic characterization studies. For over-pressure pulse tests, fluid within the test system is rapidly pressurized and the associated pressure decay is monitored as compressed fluid within the test system expands and flows into the test formation. Under-pressure pulse tests are conducted in a similar manner by abruptly decreasing the pressure of fluid within the test system, and monitoring the associated increase in pressure as fluid flows from the formation into the test system. Both pulse test methods have been used in conjunction with other types of tests to determine the hydraulic properties of selected low-permeability basalt horizons at Hanford test sites. Results from both pulse test methods generally provide comparable estimates of hydraulic properties and are in good agreement with those from other tests

  18. MXIbus data throughput tests

    International Nuclear Information System (INIS)

    Botlo, M.; Dunning, J.; Jagieski, M.; Miller, L.; Romero, A.

    1992-11-01

    A series of tests were conducted to evaluate data transfer rates using the MXIbus architecture. The tests were conducted by the DAQ group in the Physics Research Division. The MXIbus from National Instruments provides a multisystem extension interface bus. It allows multiple VME chassis to be networked. Other bus architectures that can participate in the network include VXIbus, IBM PC-AT bus, Sun Sbus, Mac NuBus and stand-alone instruments with the appropriate MXIbus adapter cards. From a functional standpoint the MXIbus provides the capability to enlarge the address space in a fashion that is transparent to the software application. The tests were designed to measure data throughput when using the MSIbus with other industry off-the-shelf hardware. This report contains discussions on: MXIbus architecture and general guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and guidelines; the commercial hardware and software used in each set of tests; and a brief description of each set of tests, observations and conclusions

  19. Double-shell tank integrity assessments ultrasonic test equipment performance test

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, D.C.

    1996-09-26

    A double-shell tank (DST) inspection (DSTI) system was performance tested over three months until August 1995 at Pittsburgh, Pennsylvania, completing a contract initiated in February 1993 to design, fabricate, and test an ultrasonic inspection system intended to provide ultrasonic test (UT) and visual data to determine the integrity of 28 DSTs at Hanford. The DSTs are approximately one-million-gallon underground radioactive-waste storage tanks. The test was performed in accordance with a procedure (Jensen 1995) that included requirements described in the contract specification (Pfluger 1995). This report documents the results of tests conducted to evaluate the performance of the DSTI system against the requirements of the contract specification. The test of the DSTI system also reflects the performance of qualified personnel and operating procedures.

  20. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    Science.gov (United States)

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (electronics are expected.

  1. FY 2016 Status Report: Documentation of All CIRFT Data including Hydride Reorientation Tests (Draft M2)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Jiang, Hao [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Yan, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Bevard, Bruce B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division; Scaglione, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science and Technology Division

    2016-09-04

    The first portion of this report provides a detailed description of fiscal year (FY) 2015 test result corrections and analysis updates based on FY 2016 updates to the Cyclic Integrated Reversible-Bending Fatigue Tester (CIRFT) program methodology, which is used to evaluate the vibration integrity of spent nuclear fuel (SNF) under normal conditions of transport (NCT). The CIRFT consists of a U-frame test setup and a real-time curvature measurement method. The three-component U-frame setup of the CIRFT has two rigid arms and linkages connecting to a universal testing machine. The curvature SNF rod bending is obtained through a three-point deflection measurement method. Three linear variable differential transformers (LVDTs) are clamped to the side connecting plates of the U-frame and used to capture deformation of the rod. The second portion of this report provides the latest CIRFT data, including data for the hydride reorientation test. The variations in fatigue life are provided in terms of moment, equivalent stress, curvature, and equivalent strain for the tested SNFs. The equivalent stress plot collapsed the data points from all of the SNF samples into a single zone. A detailed examination revealed that, at the same stress level, fatigue lives display a descending order as follows: H. B. Robinson Nuclear Power Station (HBR), LMK, and mixed uranium-plutonium oxide (MOX). Just looking at the strain, LMK fuel has a slightly longer fatigue life than HBR fuel, but the difference is subtle. The third portion of this report provides finite element analysis (FEA) dynamic deformation simulation of SNF assemblies . In a horizontal layout under NCT, the fuel assembly’s skeleton, which is formed by guide tubes and spacer grids, is the primary load bearing apparatus carrying and transferring vibration loads within an SNF assembly. These vibration loads include interaction forces between the SNF assembly and the canister basket walls. Therefore, the integrity of the guide

  2. Cycom 977-2 Composite Material: Impact Test Results (workshop presentation)

    Science.gov (United States)

    Engle, Carl; Herald, Stephen; Watkins, Casey

    2005-01-01

    Contents include the following: Ambient (13A) tests of Cycom 977-2 impact characteristics by the Brucenton and statistical method at MSFC and WSTF. Repeat (13A) tests of tested Cycom from phase I at MSFC to expended testing statistical database. Conduct high-pressure tests (13B) in liquid oxygen (LOX) and GOX at MSFC and WSTF to determine Cycom reaction characteristics and batch effect. Conduct expended ambient (13A) LOX test at MSFC and high-pressure (13B) testing to determine pressure effects in LOX. Expend 13B GOX database.

  3. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  4. Conductive ink print on PA66 gear for manufacturing condition monitoring sensors

    Science.gov (United States)

    Futagawa, Shintaro; Iba, Daisuke; Kamimoto, Takahiro; Nakamura, Morimasa; Miura, Nanako; Iizuka, Takashi; Masuda, Arata; Sone, Akira; Moriwaki, Ichiro

    2018-03-01

    Failures detection of rotating machine elements, such as gears, is an important issue. The purpose of this study was to try to solve this issue by printing conductive ink on gears to manufacture condition-monitoring sensors. In this work, three types of crack detection sensor were designed and the sprayed conductive ink was directly sintered on polyimide (PI) - coated polyamide (PA) 66 gears by laser. The result showed that it was possible to produce narrow circuit lines of the conductive ink including Ag by laser sintering technique and the complex shape sensors on the lateral side of the PA66 gears, module 1.0 mm and tooth number 48. A preliminary operation test was carried out for investigation of the function of the sensors. As a result of the test, the sensors printed in this work should be effective for detecting cracks at tooth root of the gears and will allow for the development of better equipment and detection techniques for health monitoring of gears.

  5. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  6. Blockage and flow studies of a generalized test apparatus including various wing configurations in the Langley 7-inch Mach 7 Pilot Tunnel

    Science.gov (United States)

    Albertson, C. W.

    1982-03-01

    A 1/12th scale model of the Curved Surface Test Apparatus (CSTA), which will be used to study aerothermal loads and evaluate Thermal Protection Systems (TPS) on a fuselage-type configuration in the Langley 8-Foot High Temperature Structures Tunnel (8 ft HTST), was tested in the Langley 7-Inch Mach 7 Pilot Tunnel. The purpose of the tests was to study the overall flow characteristics and define an envelope for testing the CSTA in the 8 ft HTST. Wings were tested on the scaled CSTA model to select a wing configuration with the most favorable characteristics for conducting TPS evaluations for curved and intersecting surfaces. The results indicate that the CSTA and selected wing configuration can be tested at angles of attack up to 15.5 and 10.5 degrees, respectively. The base pressure for both models was at the expected low level for most test conditions. Results generally indicate that the CSTA and wing configuration will provide a useful test bed for aerothermal pads and thermal structural concept evaluation over a broad range of flow conditions in the 8 ft HTST.

  7. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Science.gov (United States)

    2010-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for...

  8. Repeat confirmatory testing for persons with discordant whole blood and oral fluid rapid HIV test results: findings from post marketing surveillance.

    Directory of Open Access Journals (Sweden)

    Laura G Wesolowski

    Full Text Available BACKGROUND: Reactive oral fluid and whole blood rapid HIV tests must be followed with a confirmatory test (Western blot (WB, immunofluorescent assay (IFA or approved nucleic acid amplification test (NAAT. When the confirmatory result is negative or indeterminate (i.e. discordant with rapid result, repeat confirmatory testing should be conducted using a follow-up specimen. Previous reports have not described whether repeat testing adequately resolves the HIV-infection status of persons with discordant results. METHODOLOGY: Post-marketing surveillance was conducted in 368 testing sites affiliated with 14 state and 2 city health departments from August 11, 2004 to June 30, 2005 and one health department through December 31, 2005. For persons with discordant results, data were collected on demographics, risk behaviors, HIV test results and specimen types. Persons with repeat confirmatory results were classified as HIV-infected or uninfected. Regression models were created to assess risk factors for not having repeat testing. PRINCIPAL FINDINGS: Of 167,371 rapid tests conducted, 2589 (1.6% were reactive: of these, 2417 (93% had positive WB/IFA, 172 (7% had negative or indeterminate WB/IFA. Of 89/172 (52% persons with a repeat confirmatory test: 17 (19% were HIV-infected, including 3 with indeterminate WB and positive NAAT; 72 (81% were uninfected, including 12 with repeat indeterminate WB. Factors associated with HIV-infection included having an initial indeterminate WB/IFA (vs. negative (p<0.001 and having an initial oral fluid WB (vs. serum (p<0.001. Persons who had male-female sex (vs. male-male sex were at increased risk for not having a repeat test [adjusted OR 2.6, 95% CI (1.3, 4.9]. CONCLUSIONS: Though only half of persons with discordant results had repeat confirmatory testing, of those who did, nearly one in five were HIV-infected. These findings underscore the need for rapid HIV testing programs to increase repeat confirmatory testing for

  9. Experimental test of a hot water storage system including a macro-encapsulated phase change material (PCM)

    Science.gov (United States)

    Mongibello, L.; Atrigna, M.; Bianco, N.; Di Somma, M.; Graditi, G.; Risi, N.

    2017-01-01

    Thermal energy storage systems (TESs) are of fundamental importance for many energetic systems, essentially because they permit a certain degree of decoupling between the heat or cold production and the use of the heat or cold produced. In the last years, many works have analysed the addition of a PCM inside a hot water storage tank, as it can allow a reduction of the size of the storage tank due to the possibility of storing thermal energy as latent heat, and as a consequence its cost and encumbrance. The present work focuses on experimental tests realized by means of an indoor facility in order to analyse the dynamic behaviour of a hot water storage tank including PCM modules during a charging phase. A commercial bio-based PCM has been used for the purpose, with a melting temperature of 58°C. The experimental results relative to the hot water tank including the PCM modules are presented in terms of temporal evolution of the axial temperature profile, heat transfer and stored energy, and are compared with the ones obtained by using only water as energy storage material. Interesting insights, relative to the estimation of the percentage of melted PCM at the end of the experimental test, are presented and discussed.

  10. The Influence of Maternal Acculturation, Neighborhood Disadvantage, and Parenting on Chinese American Adolescents' Conduct Problems: Testing the Segmented Assimilation Hypothesis

    Science.gov (United States)

    Liu, Lisa L.; Lau, Anna S.; Chen, Angela Chia-Chen; Dinh, Khanh T.; Kim, Su Yeong

    2009-01-01

    Associations among neighborhood disadvantage, maternal acculturation, parenting and conduct problems were investigated in a sample of 444 Chinese American adolescents. Adolescents (54% female, 46% male) ranged from 12 to 15 years of age (mean age = 13.0 years). Multilevel modeling was employed to test the hypothesis that the association between…

  11. Further elucidation of nanofluid thermal conductivity measurement using a transient hot-wire method apparatus

    Science.gov (United States)

    Yoo, Donghoon; Lee, Joohyun; Lee, Byeongchan; Kwon, Suyong; Koo, Junemo

    2018-02-01

    The Transient Hot-Wire Method (THWM) was developed to measure the absolute thermal conductivity of gases, liquids, melts, and solids with low uncertainty. The majority of nanofluid researchers used THWM to measure the thermal conductivity of test fluids. Several reasons have been suggested for the discrepancies in these types of measurements, including nanofluid generation, nanofluid stability, and measurement challenges. The details of the transient hot-wire method such as the test cell size, the temperature coefficient of resistance (TCR) and the sampling number are further investigated to improve the accuracy and consistency of the measurements of different researchers. It was observed that smaller test apparatuses were better because they can delay the onset of natural convection. TCR values of a coated platinum wire were measured and statistically analyzed to reduce the uncertainty in thermal conductivity measurements. For validation, ethylene glycol (EG) and water thermal conductivity were measured and analyzed in the temperature range between 280 and 310 K. Furthermore, a detailed statistical analysis was conducted for such measurements, and the results confirmed the minimum number of samples required to achieve the desired resolution and precision of the measurements. It is further proposed that researchers fully report the information related to their measurements to validate the measurements and to avoid future inconsistent nanofluid data.

  12. Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology

    International Nuclear Information System (INIS)

    Pantea, Dana; Darmstadt, Hans; Kaliaguine, Serge; Roy, Christian

    2003-01-01

    Conductive carbon blacks from different manufacturers were studied in order to obtain some insight into the relation between their electrical conductivity and their surface properties. The surface chemistry was studied by X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SIMS), whereas the topology of the carbon black surface was investigated using low-pressure nitrogen adsorption. All these techniques yield information on the graphitic character of the surface. In general, the electrical conductivity of the conductive blacks increases with the graphitic character of the surface. For low surface area conductive blacks, the electrical conductivity correlates well with the surface chemistry. In the case of the XPS and SIMS data, this correlation is also valid when other types of carbon blacks such as thermal and furnace blacks are included, confirming the determining influence of the carbon black surface chemistry on the electrical conductivity

  13. Climax granite test results

    Energy Technology Data Exchange (ETDEWEB)

    Ramspott, L.D.

    1980-01-15

    The Lawrence Livermore Laboratory (LLL), as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) program, is carrying out in situ rock mechanics testing in the Climax granitic stock at the Nevada Test Site (NTS). This summary addresses only those field data taken to date that address thermomechanical modeling for a hard-rock repository. The results to be discussed include thermal measurements in a heater test that was conducted from October 1977 through July 1978, and stress and displacement measurements made during and after excavation of the canister storage drift for the Spent Fuel Test (SFT) in the Climax granite. Associated laboratory and field measurements are summarized. The rock temperature for a given applied heat load at a point in time and space can be adequately modeled with simple analytic calculations involving superposition and integration of numerous point source solutions. The input, for locations beyond about a meter from the source, can be a constant thermal conductivity and diffusivity. The value of thermal conductivity required to match the field data is as much as 25% different from laboratory-measured values. Therefore, unless we come to understand the mechanisms for this difference, a simple in situ test will be required to obtain a value for final repository design. Some sensitivity calculations have shown that the temperature field is about ten times more sensitive to conductivity than to diffusivity under the test conditions. The orthogonal array was designed to detect anisotropy. After considering all error sources, anisotropic efforts in the thermal field were less than 5 to 10%.

  14. Effects of Aggregation on Blood Sedimentation and Conductivity

    Science.gov (United States)

    Zhbanov, Alexander; Yang, Sung

    2015-01-01

    The erythrocyte sedimentation rate (ESR) test has been used for over a century. The Westergren method is routinely used in a variety of clinics. However, the mechanism of erythrocyte sedimentation remains unclear, and the 60 min required for the test seems excessive. We investigated the effects of cell aggregation during blood sedimentation and electrical conductivity at different hematocrits. A sample of blood was drop cast into a small chamber with two planar electrodes placed on the bottom. The measured blood conductivity increased slightly during the first minute and decreased thereafter. We explored various methods of enhancing or retarding the erythrocyte aggregation. Using experimental measurements and theoretical calculations, we show that the initial increase in blood conductivity was indeed caused by aggregation, while the subsequent decrease in conductivity resulted from the deposition of erythrocytes. We present a method for calculating blood conductivity based on effective medium theory. Erythrocytes are modeled as conducting spheroids surrounded by a thin insulating membrane. A digital camera was used to investigate the erythrocyte sedimentation behavior and the distribution of the cell volume fraction in a capillary tube. Experimental observations and theoretical estimations of the settling velocity are provided. We experimentally demonstrate that the disaggregated cells settle much slower than the aggregated cells. We show that our method of measuring the electrical conductivity credibly reflected the ESR. The method was very sensitive to the initial stage of aggregation and sedimentation, while the sedimentation curve for the Westergren ESR test has a very mild slope in the initial time. We tested our method for rapid estimation of the Westergren ESR. We show a correlation between our method of measuring changes in blood conductivity and standard Westergren ESR method. In the future, our method could be examined as a potential means of accelerating

  15. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  16. Preparation of conductive membranes using poly pyrrole

    International Nuclear Information System (INIS)

    Madaeni, S.; Khavaran, B.

    2003-01-01

    Conductive membranes show many benefits including fouling reduction for feeds containing ionic species. These membranes may be prepared either by conductive polymers or coating of the surfaces of non-conductive membranes with conductive polymer. In this research, the commercial micro filtration GVHP membrane manufactured from PVDF was coated with poly pyrrole using two different techniques. The conductivity of the prepared membranes was measured. In this paper, effects of various factors including concentration of the solutions, oxidizing agents, time for leaving the support in the solutions, support type and temperature on membrane conductivity were investigated

  17. Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Chornack, M.P.; French, C.A.

    1989-01-01

    Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy's Yucca Mountain Site, a candidate site for the nation's first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical ampersand Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs

  18. Recommendation to include fragrance mix 2 and hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) in the European baseline patch test series.

    Science.gov (United States)

    Bruze, Magnus; Andersen, Klaus Ejner; Goossens, An

    2008-03-01

    The currently used fragrance mix in the European baseline patch test series (baseline series) fails to detect a substantial number of clinically relevant fragrance allergies. To investigate whether it is justified to include hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) and fragrance mix 2 containing hydroxyisohexyl 3-cyclohexene carboxaldehyde, citral, farnesol, coumarin, citronellol, and alpha-hexyl cinnamal in the European baseline patch test series. Survey of the literature on reported frequencies of contact allergy and allergic contact dermatitis from fragrance mix 2 and hydroxyisohexyl 3-cyclohexene carboxaldehyde (Lyral) as well as reported results of experimental provocation test. Fragrance mix 2 has been demonstrated to be a useful additional marker of fragrance allergy with contact allergy rates up to 5% when included in various national baseline patch test series. Of the fragrance substances present in fragrance mix 2, hydroxyisohexyl 3-cyclohexene carboxaldehyde is the most common sensitizer. Contact allergy rates between 1.5% and 3% have been reported for hydroxyisohexyl 3-cyclohexene carboxaldehyde in petrolatum (pet.) at 5% from various European centres when tested in consecutive dermatitis patients. From 2008, pet. preparations of fragrance mix 2 at 14% w/w (5.6 mg/cm(2)) and hydroxyisohexyl 3-cyclohexene carboxaldehyde at 5% w/w (2.0 mg/cm(2)) are recommended for inclusion in the baseline series. With the Finn Chamber technique, a dose of 20 mg pet. preparation is recommended. Whenever there is a positive reaction to fragrance mix 2, additional patch testing with the 6 ingredients, 5 if there are simultaneous positive reactions to hydroxyisohexyl 3-cyclohexene carboxaldehyde and fragrance mix 2, is recommended.

  19. 40 CFR 86.230-11 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... compartment cooling. (1) Fixed speed air cooling of the engine compartment with the compartment cover open... fuel economy testing, alternative engine compartment cooling fans or systems, including those which... test. Additionally, the Administrator may conduct certification, fuel economy and in-use testing using...

  20. THERMAL CONDUCTIVITY OF NON-REPOSITORY LITHOSTRATIGRAPHIC LAYERS

    Energy Technology Data Exchange (ETDEWEB)

    R. JONES

    2004-10-22

    from each test specimen to meet three specific conditions: (1) Known value for matrix porosity; (2) Known values for wet and dry thermal conductivity; and (3) The location of the measured specimen in relation to the model stratigraphic unit. The only matrix thermal conductivity values developed are limited to fully saturated and dry conditions. The model does not include the effects of convection and thermal radiation in voids. The model does not include temperature dependence of thermal conductivity, porosity, or bulk density.

  1. Implantable electrolyte conductance-based pressure sensing catheter, II. Device construction and testing.

    Science.gov (United States)

    Tan, Robert; Benharash, Peyman; Schulam, Peter; Schmidt, Jacob J

    2013-12-01

    Direct measurements of arterial blood pressure most commonly use bulky external instrumentation containing a pressure transducer connected to an ex vivo fluid-filled arterial line, which is subject to several sensing artifacts. In situ blood pressure sensors, typically solid state piezoresistive, capacitive, and interferometric sensors, are unaffected by these artifacts, but can be expensive to produce and miniaturize. We have developed an alternative approach to blood pressure measurement based on deformation of an elastic tube filled with electrolyte solution. Simple measurement of the electrical conductance of this solution as the tube dimensions change allows determination of the external pressure. The sensor is made from inexpensive materials and its miniaturization is straightforward. In vitro static testing of initial sensor prototypes mounted on a catheter tip showed a linear response with applied pressure and a resolution of 1 mmHg. In vivo sensing followed catheterization of the sensor into the femoral artery of a porcine model through a 7F catheter port. The sensor performed comparably to a commercial pressure transducer also connected to the catheter port. Due to its scalability and cost, this sensor has the potential for use in a range of pressure sensing applications, such as measurement of intracranial, spinal, or interstitial pressures.

  2. Drilling and testing specifications for the McGee well

    International Nuclear Information System (INIS)

    Patterson, J.K.

    1982-01-01

    The McGee Well is a part of the Basalt Waste Isolation Project's subsurface site selection and characterization activities. Information from the McGee Well support site hydrologic characterization and repository design. These test specifications include details for the drilling and testing of the McGee. It includes the predicted stratigraphy, the drilling requirements, description of tests to be conducted, intervals selected for hydrologic testing, and a schedule of the drilling and testing activities. 19 refs., 10 figs., 7 tabs

  3. Conductivity of two-component systems

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, A. de; Hofman, J.P.; Waal, J.A. de [Shell Research BV, Rijswijk (Netherlands). Koninklijke/Shell Exploratie en Productie Lab.; Sandor, R.K.J. [Shell International Petroleum Maatschappij, The Hague (Netherlands)

    1996-01-01

    The authors present measurements and computer simulation results on the electrical conductivity of nonconducting grains embedded in a conductive brine host. The shapes of the grains ranged from prolate-ellipsoidal (with an axis ratio of 5:1) through spherical to oblate-ellipsoidal (with an axis ratio of 1:5). The conductivity was studied as a function of porosity and packing, and Archie`s cementation exponent was found to depend on porosity. They used spatially regular and random configurations with aligned and nonaligned packings. The experimental results agree well with the computer simulation data. This data set will enable extensive tests of models for calculating the anisotropic conductivity of two-component systems.

  4. Measurements for testing of fluoroscopic screens, including the photofluorographic units

    International Nuclear Information System (INIS)

    Balfanz, R.

    1986-01-01

    Image quality control measurements for fluoroscopic screens and photofluorographs have shown that both types of equipment have a long operating life, so that constancy and technical performance tests are absolutely necessary. It is recommended to conclude in-service maintenance contracts with the manufacturers. (DG) [de

  5. Evaluation and Comparison of Multiple Test Methods, Including Real-time PCR, for Legionella Detection in Clinical Specimens

    Science.gov (United States)

    Peci, Adriana; Winter, Anne-Luise; Gubbay, Jonathan B.

    2016-01-01

    Legionella is a Gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture, and polymerase chain reaction (PCR) test methods and to determine if sputum is an acceptable alternative to the use of more invasive bronchoalveolar lavage (BAL). Data for this study included specimens tested for Legionella at Public Health Ontario Laboratories from 1st January, 2010 to 30th April, 2014, as part of routine clinical testing. We found sensitivity of urinary antigen test (UAT) compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV) 63.8%, and negative predictive value (NPV) 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7%, and NPV 98.1%. Out of 146 patients who had a Legionella-positive result by PCR, only 66 (45.2%) also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%); sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results regardless testing methods (Fisher Exact p-values = 1.0, for each test). In summary, all test methods have inherent weaknesses in identifying Legionella; therefore, more than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical from patients being tested for Legionella. PMID:27630979

  6. Evaluation and comparison of multiple test methods, including real-time PCR, for Legionella detection in clinical specimens.

    Directory of Open Access Journals (Sweden)

    Adriana Peci

    2016-08-01

    Full Text Available Legionella is a gram-negative bacterium that can cause Pontiac fever, a mild upper respiratory infection and Legionnaire’s disease, a more severe illness. We aimed to compare the performance of urine antigen, culture and PCR test methods and to determine if sputum is an alternative to the use of more invasive bronchoalveolar lavage (BAL. Data for this study included specimens tested for Legionella at PHOL from January 1, 2010 to April 30, 2014, as part of routine clinical testing. We found sensitivity of UAT compared to culture to be 87%, specificity 94.7%, positive predictive value (PPV 63.8% and negative predictive value (NPV 98.5%. Sensitivity of UAT compared to PCR was 74.7%, specificity 98.3%, PPV 77.7% and NPV 98.1%. Of 146 patients who had a Legionella positive result by PCR, only 66(45.2% also had a positive result by culture. Sensitivity for culture was the same using either sputum or BAL (13.6%; sensitivity for PCR was 10.3% for sputum and 12.8% for BAL. Both sputum and BAL yield similar results despite testing methods (Fisher Exact p-values=1.0, for each test. In summary, all test methods have inherent weaknesses in identifying Legionella; thereforemore than one testing method should be used. Obtaining a single specimen type from patients with pneumonia limits the ability to diagnose Legionella, particularly when urine is the specimen type submitted. Given ease of collection, and similar sensitivity to BAL, clinicians are encouraged to submit sputum in addition to urine when BAL submission is not practical, from patients being tested for Legionella.

  7. Refinement of parameters of weak nuclear explosions conducted at the Semipalatinsk test site on the basis of historical seismograms study

    Science.gov (United States)

    Sokolova, Inna

    2014-05-01

    Many researchers working in the field of monitoring and discriminating of nuclear tests encounter the problem of lacking in seismic catalogues the information about source parameters for weak nuclear explosions. As usual, the information about origin time, coordinates and magnitude is absent, there is information about date, approximate coordinates and information about explosion yield. Huge work conducted on recovery of parameters of small underground nuclear explosions conducted at the Semipalatinsk Test Site using records of analogue seismic stations of the USSR located at regional distances was conducted by V. Khalturin, T. Rayutian, P. Richards (Pure and Applied Geophysics, 2001). However, if underground nuclear explosions are studied and described in literature quite well, then air and contact explosions were small and were not recorded by standard permanent seismic stations. In 1961-1962 maximum number of air and contact explosions was conducted at Opytnoye polye site of the STS. We managed to find and analyze additional seismic data from some temporary and permanent stations. That time IPE AS USSR installed a network of high-sensitive stations along Pamir-Baykal profile to study earth crust structure and upper mantle, the profile length was 3500 km. Epicentral distance from some stations of the profile to Opytnoye polye was 300-400 km. In addition, a permanent seismic station Semipalatinsk (SEM) located 175 km away from the site started its operation. The seismograms from this station became available recently. The digitized historical seismograms allowed to recover and add parameters for more than 36 air and surface explosions. Origin time, coordinates, magnitudes mpv, MLV and energy class K were determined for explosions. A regional travel-time curve for Central Kazakhstan constructed using records of calibration chemical explosions conducted at the STS in 1997-2000 and ground-truth underground nuclear explosions was used to determine kinematic parameters

  8. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  9. Preparation, Conduct and Evaluation of Exercises to Test Preparedness for a Nuclear or Radiological Emergency

    International Nuclear Information System (INIS)

    2010-01-01

    The aim of this publication is to serve as a practical tool for the preparation, conduct and evaluation of exercises to test preparedness for response to a nuclear or radiological emergency. It fulfils in part the functions assigned to the IAEA under Article 5.a(ii) of the Convention on Assistance in Case of a Nuclear Accident or Radiological Emergency (Assistance Convention), namely, to collect and disseminate to States Parties and Member States information concerning the methodologies, techniques and available results of research on such emergencies. To ensure effective response to radiation emergencies when needed, provisions should be made for regular training of emergency response personnel. As stated in Preparedness and Response for a Nuclear or Radiological Emergency (Safety Requirements, Safety Standard Series No. GS-R-2), 'The operator and the response organizations shall make arrangements for the selection of personnel and training to ensure that the personnel have the requisite knowledge, skills, abilities, equipment, procedures and other arrangements to perform their assigned response functions'. A further requirement is that 'Exercise programmes shall be conducted to ensure that all specified functions required to be performed for emergency response and all organizational interfaces for facilities in threat category I, II or III and the national level programmes for threat category IV or V are tested at suitable intervals'. In 2004 the IAEA General Conference, in resolution GC(48)/RES/10 encouraged Member States to 'implement the Safety Requirements for Preparedness and Response to a Nuclear or Radiological Emergency'. This document is published as part of the IAEA Emergency Preparedness and Response Series to assist in meeting these requirements and to fulfil Article 5 of the Assistance Convention. It was developed based on a number of assumptions about national and local capabilities. Therefore, the exercise structure, terms and scenarios must be

  10. Results from Operational Testing of the Siemens Smart Grid-Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Idaho National Laboratory conducted testing and analysis of the Siemens smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Siemens for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Siemens smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  11. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L K; Allan, G L; Cresswell, R G; Ophel, T R [Australian National Univ., Canberra, ACT (Australia); King, S J; Day, J P [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1994-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  12. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1993-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  13. Field operational tests of Smartway in Japan

    Directory of Open Access Journals (Sweden)

    Fumihiko Kanazawa

    2010-07-01

    Full Text Available Efforts are underway in Japan to promote “Smartway” next-generation roadways, which provide a variety of services through the use of advanced ITS technologies. In recent years, the National Institute for Land and Infrastructure Management (NILIM, part of the Ministry of Land, Infrastructure, Transport and Tourism (MLIT, has conducted public–private joint research on next-generation road services using ITS technologies. Field operational tests (FOTs of services including forward obstacle information provision and merging assistance using 5.8 GHz dedicated short range communication (DSRC were conducted on the Tokyo Metropolitan Expressway through FY2007. In FY2008–2009, FOTs were conducted in three major metropolitan areas—Tokyo, Nagoya, and Keihanshin (Kyoto, Osaka, and Kobe—to promote future deployment nationwide. These included tests of information provision services to alert drivers to forward obstacles hidden beyond the crest of an incline and prevent excessive speed on sharp curves. This paper presents an overview of these FOTs conducted by NILIM in recent years and their results.

  14. Building Energy Simulation Test for Existing Homes (BESTEST-EX); Phase 1 Test Procedure: Building Thermal Fabric Cases

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.

    2010-08-01

    The U.S. Department of Energy tasked NREL to develop a process for testing the reliability of models that predict retrofit energy savings, including their associated calibration methods. DOE asked NREL to conduct the work in phases so that a test procedure would be ready should DOE need it to meet legislative requirements related to residential retrofits in FY 2010. This report documents the initial 'Phase 1' test procedure.

  15. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach.

    Science.gov (United States)

    Aromataris, Edoardo; Fernandez, Ritin; Godfrey, Christina M; Holly, Cheryl; Khalil, Hanan; Tungpunkom, Patraporn

    2015-09-01

    With the increase in the number of systematic reviews available, a logical next step to provide decision makers in healthcare with the evidence they require has been the conduct of reviews of existing systematic reviews. Syntheses of existing systematic reviews are referred to by many different names, one of which is an umbrella review. An umbrella review allows the findings of reviews relevant to a review question to be compared and contrasted. An umbrella review's most characteristic feature is that this type of evidence synthesis only considers for inclusion the highest level of evidence, namely other systematic reviews and meta-analyses. A methodology working group was formed by the Joanna Briggs Institute to develop methodological guidance for the conduct of an umbrella review, including diverse types of evidence, both quantitative and qualitative. The aim of this study is to describe the development and guidance for the conduct of an umbrella review. Discussion and testing of the elements of methods for the conduct of an umbrella review were held over a 6-month period by members of a methodology working group. The working group comprised six participants who corresponded via teleconference, e-mail and face-to-face meeting during this development period. In October 2013, the methodology was presented in a workshop at the Joanna Briggs Institute Convention. Workshop participants, review authors and methodologists provided further testing, critique and feedback on the proposed methodology. This study describes the methodology and methods developed for the conduct of an umbrella review that includes published systematic reviews and meta-analyses as the analytical unit of the review. Details are provided regarding the essential elements of an umbrella review, including presentation of the review question in a Population, Intervention, Comparator, Outcome format, nuances of the inclusion criteria and search strategy. A critical appraisal tool with 10 questions to

  16. EMAT Evaluation of Thin Conductive Sheets

    Directory of Open Access Journals (Sweden)

    Ivo Cap

    2006-01-01

    Full Text Available At present a non-destructive testing of conducting materials becomes very important one in connection with monitoring and control of strategic technical facilities, e.g. nuclear power plants. There are more methods of material testing and evaluation and every of them has its advantages and disadvantages. Recently the electromagnetic methods are in increasing interest. There are many ways of conducting material testing. One of them often used utilises investigation of eddy currents induced in the surface layer by means of a proper coil. The arrangement is very simple and inexpensive but it offers only local information on cracks and other inhomogeneities in the thin surface layer. On the other hand there exist a method based on an electromagnetic – acoustic transducer (EMAT, which is able to generate and detect acoustic wave in a conducting body in a contact-less way. The present paper deals with a survey of EMATs for investigation of thin metalliclayers by means of Lamb waves. The new design of generation coil is presented.

  17. Experimental system description for air-water CCFL tests of the 161-rod FLECHT-SEASET test vessel upper plenum

    International Nuclear Information System (INIS)

    Fogdall, S.P.; Anderson, J.L.

    1983-01-01

    A series of countercurrent flow limiting (CCFL) experiments has been performed by EG and G Idaho, Inc. in the Steam-Air-Water (SAW) test facility at the Idaho National Engineering Laboratory on behalf of the US Nuclear Regulatory Commission (NRC). Tests were performed in a mockup of the vessel for the 161-Rod Systems Effects Test (SET) facility of the FLECHT-SEASET program, conducted by the Westinghouse Electric Corporation. Westinghouse and the NRC will use the test results to provide a CCFL correlation to predict the flooding behavior in the upper plenum of the SET vessel. This paper presents a description of the experimental system and the test conduct, including data validation and uncertainty analysis. The test objectives centered on experimentally obtaining coefficients in the Wallis correlation for flooding with the specific vessel geometry. The test conditions and vessel configuration are described and the design of the test loop, instrumentation, and data acquisition are discussed. The establishment of a test point and the resultant data are described

  18. Automating Test Activities: Test Cases Creation, Test Execution, and Test Reporting with Multiple Test Automation Tools

    OpenAIRE

    Loke Mun Sei

    2015-01-01

    Software testing has become a mandatory process in assuring the software product quality. Hence, test management is needed in order to manage the test activities conducted in the software test life cycle. This paper discusses on the challenges faced in the software test life cycle, and how the test processes and test activities, mainly on test cases creation, test execution, and test reporting is being managed and automated using several test automation tools, i.e. Jira, ...

  19. Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moser, Jeremy L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hawkins, Charles S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. 1/4” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The required mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.

  20. Double tracks test site characterization report

    International Nuclear Information System (INIS)

    1996-05-01

    This report presents the results of site characterization activities performed at the Double Tracks Test Site, located on Range 71 North, of the Nellis Air Force Range (NAFR) in southern Nevada. Site characterization activities included reviewing historical data from the Double Tracks experiment, previous site investigation efforts, and recent site characterization data. The most recent site characterization activities were conducted in support of an interim corrective action to remediate the Double Tracks Test Site to an acceptable risk to human health and the environment. Site characterization was performed using a phased approach. First, previously collected data and historical records sere compiled and reviewed. Generalized scopes of work were then prepared to fill known data gaps. Field activities were conducted and the collected data were then reviewed to determine whether data gaps were filled and whether other areas needed to be investigated. Additional field efforts were then conducted, as required, to adequately characterize the site. Characterization of the Double Tracks Test Site was conducted in accordance with the US Department of Energy's (DOE) Streamlined Approach for Environmental Restoration (SAFER)

  1. UJI KONDUKTIVITAS TERMAL PADA DAUN BAYAM DENGAN MENGGUNAKAN THERMAL CONDUCTIVITY APPARATUS

    OpenAIRE

    Firmansyah, Firmansyah; Syafutra, Heriyanto; Sidikrubadi, Sidikrubadi; Irzaman, Irzaman

    2017-01-01

    Abstract Has successfully tested thermal conductivity on spinach leaves by using Thermal Conductivity Apparatus. Thermal conductivity Apparatus assisted with Steam generator, Caliper, Micrometer, and iron. The thermal conductivity value of spinach leaves is 0.5208 watts / (m.K). This thermal conductivity test on foliage, fruits using Thermal Conductivity Apparatus are very easy to do in Basic Physics Laboratory by physics study program students in Indonesia. Keywords: Thermal Conductivi...

  2. Analytical Solutions of Ionic Diffusion and Heat Conduction in Multilayered Porous Media

    Directory of Open Access Journals (Sweden)

    Yu Bai

    2015-01-01

    Full Text Available Ionic diffusion and heat conduction in a multiple layered porous medium have many important engineering applications. One of the examples is the chloride ions from deicers penetrating into concrete structures such as bridge decks. Different overlays can be placed on top of concrete surface to slowdown the chloride penetration. In this paper, the chloride ion diffusion equations were established for concrete structures with multiple layers of protective system. By using Laplace transformation, an analytical solution was developed first for chloride concentration profiles in two-layered system and then extended to multiple layered systems with nonconstant boundary conditions, including the constant boundary and linear boundary conditions. Because ionic diffusion in saturated media and heat conduction are governed by the same form of partial differential equations with different materials parameters, the analytical solution was further extended to handle heat conduction in a multiple layered system under nonconstant boundary conditions. The numerical results were compared with available test data. The basic trends of the analytical solution and the test data agreed quite well.

  3. Vertical drop test of a transport fuselage center section including the wheel wells

    Science.gov (United States)

    Williams, M. S.; Hayduk, R. J.

    1983-01-01

    A Boeing 707 fuselage section was drop tested to measure structural, seat, and anthropomorphic dummy response to vertical crash loads. The specimen had nominally zero pitch, roll and yaw at impact with a sink speed of 20 ft/sec. Results from this drop test and other drop tests of different transport sections will be used to prepare for a full-scale crash test of a B-720.

  4. 40 CFR 63.3360 - What performance tests must I conduct?

    Science.gov (United States)

    2010-07-01

    ... gaseous non-methane organic matter concentration. Use the same test method for both the inlet and outlet... exchange occurs. (B) Use the data collected during the performance test to calculate and record the average..., the outlet of the last control device in the series, and all intermediate streams (e.g., gaseous...

  5. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  6. Kalman filter-based gap conductance modeling

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    Geometric and thermal property uncertainties contribute greatly to the problem of determining conductance within the fuel-clad gas gap of a nuclear fuel pin. Accurate conductance values are needed for power plant licensing transient analysis and for test analyses at research facilities. Recent work by Meek, Doerner, and Adams has shown that use of Kalman filters to estimate gap conductance is a promising approach. A Kalman filter is simply a mathematical algorithm that employs available system measurements and assumed dynamic models to generate optimal system state vector estimates. This summary addresses another Kalman filter approach to gap conductance estimation and subsequent identification of an empirical conductance model

  7. Preliminary Development of Conductivity based Test Method for Industrial Radiography Film Developer Solution

    International Nuclear Information System (INIS)

    Zainuddin, N.S.; Manah, N.S.A.; Khairul Anuar Mohd Salleh; Noorhazleena Azaman

    2015-01-01

    The strength of industrial radiography film developer solution is one of the most important aspects in radiography film processing. The developer solution reacts with the exposed film to visualize the latent image through chemical-film reaction. As the developer is repeatedly used, the strength decreases until a point where it cannot yield the required film optical density value. This work attempts to investigate the developer solution strength through its conductivity. Obtained data are cross correlated to the required industrial radiography optical density range. Through the experiment, the conductivity of the developer solution decreased as the number of the film processed increase. Thus, the desired optical density of the film cannot be achieved. The conductivity of developer is measured and recorded at interval of six films developed. The optical density of every film is recorded to analyze the change in optical density as the conductivity decreases. Through the procedure, it is suggested that as the conductivity decreases, the optical density of film decreased. Ultimately, the strength level of the developer solution can be determined. (author)

  8. Time course and predictors of median nerve conduction after carpal tunnel release.

    Science.gov (United States)

    Rotman, Mitchell B; Enkvetchakul, Bobby V; Megerian, J Thomas; Gozani, Shai N

    2004-05-01

    To identify predictors of outcome and of electrophysiologic recovery in patients with carpal tunnel syndrome (CTS) treated by endoscopic carpal tunnel release using a nerve conduction testing system (NC-Stat; NEUROMetrix, Inc, Waltham, MA). Validity of the automated nerve conduction testing system was shown by comparing presurgical distal motor latencies (DMLs) against a reference obtained by referral to an electromyography laboratory. The DML was evaluated in 48 patients with CTS. Measurements were obtained within 1 hour of surgery and at 2 weeks, 6 weeks, 3 months, and 6 months after carpal tunnel release. Presurgical and postsurgical DMLs were then compared and correlated with variables and possible predictors of outcome including age, body mass index, gender, and presurgical DMLs. The automated nerve conduction testing system DMLs matched those of reference electromyography/nerve conduction study values with high correlation. Sensitivity of the automated nerve conduction testing system when compared with a standardized CTS case definition was 89%, with a specificity of 95%. A significant correlation was found between the DML before release and the DML 1 hour after release. Moreover, maximal postsurgical DML improvement was highly dependent on the presurgical DML, with no improvement shown for the 6-ms group. Among the clinical variables of age, gender, and body mass index only age was mildly predictive of postrelease DML changes at 6 months. No other correlations between clinical variables and postsurgical DMLs were significant. In addition the predictive value of age was lost when combined with the presurgical DML in a multivariate analysis. Postsurgical changes in the median nerve DML were highly dependent on the prerelease latency. The sensitivity and specificity of a nerve conduction monitoring system in detecting and aiding in the diagnosis of CTS is useful in the long-term management of patients with CTS and can aid in determining the level of improvement

  9. Discrete Element Modeling Results of Proppant Rearrangement in the Cooke Conductivity Cell

    Energy Technology Data Exchange (ETDEWEB)

    Earl Mattson; Hai Huang; Michael Conway; Lisa O' Connell

    2014-02-01

    The study of propped fracture conductivity began in earnest with the development of the Cooke cell which later became part of the initial API standard. Subsequent developments included a patented multicell design to conduct 4 tests in a press at the same time. Other modifications have been used by various investigators. Recent studies by the Stim-Lab proppant consortium have indicated that the flow field across a Cooke proppant conductivity testing cell may not be uniform as initially believed which resulted is significantly different conductivity results. Post test analysis of low temperature metal alloy injections at the termination of proppant testing prior to the release of the applied stress suggest that higher flow is to be expected along the sides and top of the proppant pack than compared to the middle of the pack. To evaluate these experimental findings, a physics-based two-dimensional (2-D) discrete element model (DEM) was developed and applied to simulate proppant rearrangement during stress loading in the Cooke conductivity cell and the resulting porosity field. Analysis of these simulations are critical to understanding the impact of modification to the testing cell as well as understanding key proppant conductivity issues such as how these effects are manifested in proppant concentration testing results. The 2-D DEM model was constructed to represent a realistic cross section of the Cooke cell with a distribution of four material properties, three that represented the Cooke cell (steel, sandstone,square rings), and one representing the proppant. In principle, Cooke cell materials can be approximated as assemblies of independent discrete elements (particles) of various sizes and material properties that interact via cohesive interactions, repulsive forces, and frictional forces. The macroscopic behavior can then be modeled as the collective behavior of many interacting discrete elements. This DEM model is particularly suitable for modeling proppant

  10. Photovoltaic test and demonstration project. [residential energy program

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The considered project consists of three subprojects related to applications, device performance and diagnostics, and endurance testing. The objectives of the applications subproject include the determination of the operating characteristics for a variety of photovoltaic conversion systems. A system test facility is being constructed in this connection and a prototype residence experiment is to be conducted. Market demand for solar cells is to be stimulated by demonstrating suitability of solar cells for specific near-term applications. Activities conducted in connection with device performance studies and diagnostics are also discussed along with developments in the area of endurance testing.

  11. Results from the Operational Testing of the Eaton Smart Grid Capable Electric Vehicle Supply Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The Idaho National Laboratory conducted testing and analysis of the Eaton smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from Eaton for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the Eaton smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  12. Teste de condutividade elétrica individual na avaliação da qualidade fisiológica de sementes de café (Coffea arabica L. Individual electrical conductivity test for evaluation of the physiological quality of coffee seeds (Coffea arabica L.

    Directory of Open Access Journals (Sweden)

    Paula de Souza Cabral Costa

    2006-02-01

    Full Text Available O teste de condutividade elétrica é usado para medir os exsudatos das sementes, que certamente refletem a integridade do sistema de membranas. O teste é rápido e de operação simples, mas a metodologia necessita ser testada para cada espécie individualmente para obter uma melhor precisão e exatidão dos resultados. Este trabalho foi conduzido visando determinar o ponto de partição na realização do teste de condutividade elétrica em sementes de café. Dez lotes de sementes de Coffea arabica sem pergaminho, cultivar Acaiá foram usados nesse estudo. Para a avaliação do ponto de partição as sementes foram embebidas por 96 horas e submetidas ao teste de germinação, correlacionando os valores de condutividade observados com os valores obtidos no teste de germinação. O ponto de partição é de 120,5µS.cm-1, considerando 70% de germinação.The conductivity test is used to measure the leaches from the seeds, which certaintily reflect the membrane system integrity. The test is rapid and it is of simple operation, but the methodology needs to be tested for each individual species in order to reach a better precision and accuracy. This work was conducted to determinate the partition point for the realization of electrical conductivity test in coffee seeds. Ten seed lots of Coffea arabica, cultivar Acaiá, without parchment, were used in this study. For the evaluation of the partition point, seeds were imbibed for 96 hours and submitted to the germination test, with the correlation between the conductivity values and those obtained in the germination test being evaluated. The partition point is 120,5µS.cm-1, considering 70% of germination.

  13. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  14. A usability test is not an interview

    DEFF Research Database (Denmark)

    Hertzum, Morten

    2016-01-01

    Usability tests are conducted to gauge users’ experience with a system, preferably before it is released for real use, and thereby find any problems that prevent users from completing their tasks, slow them down, or otherwise degrade their user experience. Such tests are important to successful...... systems development, yet test procedures vary and the quality of test results is sometimes contested. While there is no single accepted procedure for usability specialists to follow when conducting usability tests, these tests normally involve users who think out loud while using a system and an evaluator...... who observes the users’ behavior and listens in on their thoughts. This common core of usability tests is illustrated in Figure 1. The possible variations include, for example, whether the users work individually or in pairs, whether the evaluator is in the room with the user or in an adjoining room...

  15. Including osteoprotegerin and collagen IV in a score-based blood test for liver fibrosis increases diagnostic accuracy.

    Science.gov (United States)

    Bosselut, Nelly; Taibi, Ludmia; Guéchot, Jérôme; Zarski, Jean-Pierre; Sturm, Nathalie; Gelineau, Marie-Christine; Poggi, Bernard; Thoret, Sophie; Lasnier, Elisabeth; Baudin, Bruno; Housset, Chantal; Vaubourdolle, Michel

    2013-01-16

    Noninvasive methods for liver fibrosis evaluation in chronic liver diseases have been recently developed, i.e. transient elastography (Fibroscan™) and blood tests (Fibrometer®, Fibrotest®, and Hepascore®). In this study, we aimed to design a new score in chronic hepatitis C (CHC) by selecting blood markers in a large panel and we compared its diagnostic performance with those of other noninvasive methods. Sixteen blood tests were performed in 306 untreated CHC patients included in a multicenter prospective study (ANRS HC EP 23 Fibrostar) using METAVIR histological fibrosis stage as reference. The new score was constructed by non linear regression using the most accurate biomarkers. Five markers (alpha-2-macroglobulin, apolipoprotein-A1, AST, collagen IV and osteoprotegerin) were included in the new function called Coopscore©. Using the Obuchowski Index, Coopscore© shows higher diagnostic performances than for Fibrometer®, Fibrotest®, Hepascore® and Fibroscan™ in CHC. Association between Fibroscan™ and Coopscore© might avoid 68% of liver biopsies for the diagnosis of significant fibrosis. Coopscore© provides higher accuracy than other noninvasive methods for the diagnosis of liver fibrosis in CHC. The association of Coopscore© with Fibroscan™ increases its predictive value. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Guidelines for conducting impact tests on shipping packages for radioactive material

    International Nuclear Information System (INIS)

    Mok, G.C.; Carlson, R.W.; Lu, S.C.; Fischer, L.E.

    1995-09-01

    Federal regulation (10 CFR Part 71) specifies a number of impact conditions (free-drop, penetration, and puncture), under which a package for the transport of radioactive materials must be tested or evaluated to demonstrate compliance with the regulation. This report is a comprehensive guide to the planning and execution of these impact tests. The report identifies the required considerations for both the design, pre-, and post-test inspections of the test model and the measurement, recording, analysis, and reporting of the test data. The report also presents reasons for the requirements, identifies the major difficulties in meeting these requirements, and suggests possible methods to overcome the difficulties. Discussed in substantial detail is the use of scale models and instrumented measurements

  17. Electrically Conductive Epoxy Adhesives

    Directory of Open Access Journals (Sweden)

    Lan Bai

    2011-02-01

    Full Text Available Conductive adhesives are widely used in electronic packaging applications such as die attachment and solderless interconnections, component repair, display interconnections, and heat dissipation. The effects of film thickness as functions of filler volume fraction, conductive filler size, shape, as well as uncured adhesive matrix viscosity on the electrical conduction behavior of epoxy-based adhesives are presented in this work. For this purpose, epoxy-based adhesives were prepared using conductive fillers of different size, shape, and types, including Ni powder, flakes, and filaments, Ag powder, and Cu powder. The filaments were 20 μm in diameter, and 160 or 260 μm in length. HCl and H3PO4 acid solutions were used to etch and remove the surface oxide layers from the fillers. The plane resistance of filled adhesive films was measured using the four-point method. In all cases of conductive filler addition, the planar resistivity levels for the composite adhesive films increased when the film thickness was reduced. The shape of resistivity-thickness curves was negative exponential decaying type and was modeled using a mathematical relation. The relationships between the conductive film resistivities and the filler volume fractions were also derived mathematically based on the experimental data. Thus, the effects of surface treatment of filler particles, the type, size, shape of fillers, and the uncured epoxy viscosity could be included empirically by using these mathematical relations based on the experimental data. By utilizing the relations we proposed to model thickness-dependent and volume fraction-dependent conduction behaviors separately, we were able to describe the combined and coupled volume fraction-film thickness relationship mathematically based on our experimental data.

  18. Integrated Test and Evaluation Flight Test 3 Flight Test Plan

    Science.gov (United States)

    Marston, Michael Lawrence

    2015-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration into the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability, Human Systems Integration (HSI), and Communication to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Sense and Avoid (SAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including the integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project will conduct a series of Human-in-the-Loop and Flight Test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity and complexity of the previous tests and

  19. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    International Nuclear Information System (INIS)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P.; Courtney, J.C.; Duff, M.J.

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m 3 (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein

  20. Conducting Accessible Research: Including People With Disabilities in Public Health, Epidemiological, and Outcomes Studies.

    Science.gov (United States)

    Rios, Dianne; Magasi, Susan; Novak, Catherine; Harniss, Mark

    2016-12-01

    People with disabilities are largely absent from mainstream health research. Exclusion of people with disabilities may be explicit, attributable to poorly justified exclusion criteria, or implicit, attributable to inaccessible study documents, interventions, or research measures. Meanwhile, people with disabilities experience poorer health, greater incidence of chronic conditions, and higher health care expenditure than people without disabilities. We outline our approach to "accessible research design"-research accessible to and inclusive of people with disabilities. We describe a model that includes 3 tiers: universal design, accommodations, and modifications. Through our work on several large-scale research studies, we provide pragmatic examples of accessible research design. Making efforts to include people with disabilities in public health, epidemiological, and outcomes studies will enhance the interpretability of findings for a significant patient population.

  1. A summary of the test procedures and operational details of a Delaware River and an ocean dumping pollution monitoring experiment conducted 28 August 1975

    Science.gov (United States)

    Hypes, W. D.; Ohlhorst, C. W.

    1977-01-01

    Two remote sensor evaluation experiments are discussed. One experiment was conducted at the DuPont acid-dump site off the Delaware coast. The second was conducted at an organic waste outfall in the Delaware River. The operational objective of obtaining simultaneous sea truth sampling with remote sensors overpasses was met. Descriptions of the test sites, sensors, sensor platforms, flight lines, sea truth data collected, and operational chronology are presented.

  2. Sound Localization in Patients With Congenital Unilateral Conductive Hearing Loss With a Transcutaneous Bone Conduction Implant.

    Science.gov (United States)

    Vyskocil, Erich; Liepins, Rudolfs; Kaider, Alexandra; Blineder, Michaela; Hamzavi, Sasan

    2017-03-01

    There is no consensus regarding the benefit of implantable hearing aids in congenital unilateral conductive hearing loss (UCHL). This study aimed to measure sound source localization performance in patients with congenital UCHL and contralateral normal hearing who received a new bone conduction implant. Evaluation of within-subject performance differences for sound source localization in a horizontal plane. Tertiary referral center. Five patients with atresia of the external auditory canal and contralateral normal hearing implanted with transcutaneous bone conduction implant at the Medical University of Vienna were tested. Activated/deactivated implant. Sound source localization test; localization performance quantified using the root mean square (RMS) error. Sound source localization ability was highly variable among individual subjects, with RMS errors ranging from 21 to 40 degrees. Horizontal plane localization performance in aided conditions showed statistically significant improvement compared with the unaided conditions, with RMS errors ranging from 17 to 27 degrees. The mean RMS error decreased by a factor of 0.71 (p conduction implant. Some patients with congenital UCHL might be capable of developing improved horizontal plane localization abilities with the binaural cues provided by this device.

  3. UAS-NAS Flight Test Series 3: Test Environment Report

    Science.gov (United States)

    Hoang, Ty; Murphy, Jim; Otto, Neil

    2016-01-01

    The desire and ability to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) is of increasing urgency. The application of unmanned aircraft to perform national security, defense, scientific, and emergency management are driving the critical need for less restrictive access by UAS to the NAS. UAS represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the NAS. NASA's UAS Integration in the NAS Project is conducting research in the areas of Separation Assurance/Sense and Avoid Interoperability (SSI), Human Systems Integration (HSI), and Communications (Comm), and Certification to support reducing the barriers of UAS access to the NAS. This research is broken into two research themes namely, UAS Integration and Test Infrastructure. UAS Integration focuses on airspace integration procedures and performance standards to enable UAS integration in the air transportation system, covering Detect and Avoid (DAA) performance standards, command and control performance standards, and human systems integration. The focus of Test Infrastructure is to enable development and validation of airspace integration procedures and performance standards, including integrated test and evaluation. In support of the integrated test and evaluation efforts, the Project will develop an adaptable, scalable, and schedulable relevant test environment capable of evaluating concepts and technologies for unmanned aircraft systems to safely operate in the NAS. To accomplish this task, the Project is conducting a series of human-in-the-loop (HITL) and flight test activities that integrate key concepts, technologies and/or procedures in a relevant air traffic environment. Each of the integrated events will build on the technical achievements, fidelity, and

  4. Crippling load test of Budd Pioneer Car 244, test 3.

    Science.gov (United States)

    2013-04-01

    This report summarizes Test 3, a crippling load test on Budd Pioneer Car 244, conducted on June 28, 2011. Before the crippling load test, Transportation Technology Center, Inc., conducted two 800,000-pound (lb) quasi-static tests on Car 244 in accord...

  5. Knowledge and attitude of general pratictioners towards direct-to-consumer genomic tests: a survey conducted in Italy

    Directory of Open Access Journals (Sweden)

    Anna Baroncini

    2015-12-01

    Full Text Available Background: Personal genomic tests (PGT offered directly-to-consumers (DTC for complex disease risk assessment have raised several concerns regarding their potential adverse impact. To mitigate worries continuing professional education has been advocated and the central gatekeeper role of family physicians has been highlighted. Nevertheless, to date, only few studies have been published on awareness, involvement and attitudes of  primary healthcare providers on DTC marketing of PGT and, to the best of our knowledge, none in Italy.Methods: An exploratory survey to achieve information about knowledge and attitudes towards DTC-PGT of a selected group of family physicians participating to courses on predictive medicine and public health genomics was conducted. Results: A total amount of 114 partially or fully filled questionnaires was obtained. The majority of the primary care providers (68,4%  expressed that they are unaware that companies are selling genomic tests directly to consumers, while 31,6% was aware.  In terms of attitudes toward testing 61,1% of the aware respondents deemed the DTC-PGT for chronic complex diseases to be ‘‘not clinically useful.’’  The overwhelming majority of our respondents (95,6% felt unprepared to answer patients’ questions on DTC-PGT. If only aware respondents are considered this percentage results obviously  lower (86,1%, though still very high. Conclusion: The low percentage of aware respondents suggests that DTC advertising in the realm of genomic testing is still limited in Italy. Should DTC-PGT become more widely used, a comprehensive education program may be necessary to increase family physicians’ awareness and help them discuss testing with their patients. 

  6. Environmental Monitoring Plan, Nevada Test Site and support facilities

    International Nuclear Information System (INIS)

    1991-11-01

    This Environmental Monitoring Plan applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this Environmental Monitoring Plan brings together in one document a description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA). The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  7. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  8. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  9. Vestibular evoked myogenic potential testing for the diagnosis of conductive hearing loss: survey of pediatric otolaryngologists' knowledge and beliefs.

    Science.gov (United States)

    Dargie, Jenna M; Zhou, Guangwei; Dornan, Briana K; Whittemore, Kenneth R

    2014-11-01

    To assess physicians' knowledge and beliefs regarding vestibular evoked myogenic potential (VEMP) testing in children. A survey was delivered via email in html format to 1069 members of the American Academy of Otolaryngology--Head and Neck Surgery who identified as pediatric otolaryngologists. Study data were collected and managed using the Research Electronic Data Capture (REDCap) tools. 443 (41.4%) physicians opened the email. 190 (42.9% of opens) initiated the survey, of which 117 (61.9%) fully completed the survey of the physicians who responded to a question regarding knowledge of VEMP, 16% of respondents had never heard of the test. 16% of participants would use it in the setting of diagnosing pediatric conductive hearing loss. Responses regarding the youngest age at which VEMP is possible ranged from younger than 6 months through greater than 13 years of age. Beliefs regarding utility and reliability of VEMP varied, with 'unsure' as the most frequent response. Additionally, only 26% of pediatric otolaryngologists indicated some access to the test. The knowledge and availability of VEMP testing in the pediatric otolaryngology community varies widely. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Increased thermal conductivity monolithic zeolite structures

    Science.gov (United States)

    Klett, James; Klett, Lynn; Kaufman, Jonathan

    2008-11-25

    A monolith comprises a zeolite, a thermally conductive carbon, and a binder. The zeolite is included in the form of beads, pellets, powders and mixtures thereof. The thermally conductive carbon can be carbon nano-fibers, diamond or graphite which provide thermal conductivities in excess of about 100 W/mK to more than 1,000 W/mK. A method of preparing a zeolite monolith includes the steps of mixing a zeolite dispersion in an aqueous colloidal silica binder with a dispersion of carbon nano-fibers in water followed by dehydration and curing of the binder is given.

  11. Magnetoelectrostatic thruster physical geometry tests

    Science.gov (United States)

    Ramsey, W. D.

    1981-01-01

    Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.

  12. Identifying Variations in Hydraulic Conductivity on the East River at Crested Butte, CO

    Science.gov (United States)

    Ulmer, K. N.; Malenda, H. F.; Singha, K.

    2016-12-01

    Slug tests are a widely used method to measure saturated hydraulic conductivity, or how easily water flows through an aquifer, by perturbing the piezometric surface and measuring the time the local groundwater table takes to re-equilibrate. Saturated hydraulic conductivity is crucial to calculating the speed and direction of groundwater movement. Therefore, it is important to document data variance from in situ slug tests. This study addresses two potential sources of data variability: different users and different types of slug used. To test for user variability, two individuals slugged the same six wells with water multiple times at a stream meander on the East River near Crested Butte, CO. To test for variations in type of slug test, multiple water and metal slug tests were performed at a single well in the same meander. The distributions of hydraulic conductivities of each test were then tested for variance using both the Kruskal-Wallis test and the Brown-Forsythe test. When comparing the hydraulic conductivity distributions gathered by the two individuals, we found that they were statistically similar. However, we found that the two types of slug tests produced hydraulic conductivity distributions for the same well that are statistically dissimilar. In conclusion, multiple people should be able to conduct slug tests without creating any considerable variations in the resulting hydraulic conductivity values, but only a single type of slug should be used for those tests.

  13. Coaxial test fixture

    Science.gov (United States)

    Praeg, Walter F.

    1986-01-01

    An assembly is provided for testing one or more contact material samples in a vacuum environment. The samples are positioned as an inner conductive cylinder assembly which is mounted for reciprocal vertical motion as well as deflection from a vertical axis. An outer conductive cylinder is coaxially positioned around the inner cylinder and test specimen to provide a vacuum enclosure therefor. A power source needed to drive test currents through the test specimens is connected to the bottom of each conductive cylinder, through two specially formed conductive plates. The plates are similar in form, having a plurality of equal resistance current paths connecting the power source to a central connecting ring. The connecting rings are secured to the bottom of the inner conductive assembly and the outer cylinder, respectively. A hydraulic actuator is also connected to the bottom of the inner conductor assembly to adjust the pressure applied to the test specimens during testing. The test assembly controls magnetic forces such that the current distribution through the test samples is symmetrical and that contact pressure is not reduced or otherwise disturbed.

  14. Thermal Properties of Asphalt Mixtures Modified with Conductive Fillers

    Directory of Open Access Journals (Sweden)

    Byong Chol Bai

    2015-01-01

    Full Text Available This paper investigates the thermal properties of asphalt mixtures modified with conductive fillers used for snow melting and solar harvesting pavements. Two different mixing processes were adopted to mold asphalt mixtures, dry- and wet-mixing, and two conductive fillers were used in this study, graphite and carbon black. The thermal conductivity was compared to investigate the effects of asphalt mixture preparing methods, the quantity, and the distribution of conductive filler on thermal properties. The combination of conductive filler with carbon fiber in asphalt mixture was evaluated. Also, rheological properties of modified asphalt binders with conductive fillers were measured using dynamic shear rheometer and bending beam rheometer at grade-specific temperatures. Based on rheological testing, the conductive fillers improve rutting resistance and decrease thermal cracking resistance. Thermal testing indicated that graphite and carbon black improve the thermal properties of asphalt mixes and the combined conductive fillers are more effective than the single filler.

  15. Test report for cesium powder and pellets inner container decontamination method determination test

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1998-01-01

    This report documents the decontamination method determination testing that was performed on three cesium powder and pellets inner container test specimens The test specimens were provided by B and W Hanford Company (BVMC). The tests were conducted by the Numatec Hanford Company (NHC), in the 305 Building. Photographic evidence was also provided by NHC. The Test Plan and Test Report were provided by Waste Management Federal Services, Inc., Northwest Operations. Witnesses to testing included a test engineer, a BC project engineer, and a BC Quality Assurance (QA) representative. The Test Plan was modified with the mutual decision of the test engineer, the BWHC project engineer, and the BVMC QA representative. The results of this decision were written in red (permanent type) ink on the official copy of the test procedure, Due to the extent of the changes, a summary of the test results are provided in Section 3.0 of this Test Report. In addition, a copy of the official copy field documentation obtained during testing is included in Appendix A. The original Test Plan (HNF-2945) will be revised to indicate that extensive changes were required in the field during testing, however, the test documentation will stand as is (i.e., it will not be retyped, text shaded, etc.) due to the inclusion of the test parameters and results into this Test Report

  16. 40 CFR 86.230-94 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... compartment cooling. (1) Fixed speed air cooling of the engine compartment with the compartment cover open... fuel economy testing, alternative engine compartment cooling fans or systems, including those which... Administrator may conduct certification, fuel economy and in-use testing using the additional cooling set-up...

  17. Nanostructured transparent conducting oxide electrochromic device

    Science.gov (United States)

    Milliron, Delia; Tangirala, Ravisubhash; Llordes, Anna; Buonsanti, Raffaella; Garcia, Guillermo

    2016-05-17

    The embodiments described herein provide an electrochromic device. In an exemplary embodiment, the electrochromic device includes (1) a substrate and (2) a film supported by the substrate, where the film includes transparent conducting oxide (TCO) nanostructures. In a further embodiment, the electrochromic device further includes (a) an electrolyte, where the nanostructures are embedded in the electrolyte, resulting in an electrolyte, nanostructure mixture positioned above the substrate and (b) a counter electrode positioned above the mixture. In a further embodiment, the electrochromic device further includes a conductive coating deposited on the substrate between the substrate and the mixture. In a further embodiment, the electrochromic device further includes a second substrate positioned above the mixture.

  18. Cerebellar abnormalities contribute to disability including cognitive impairment in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Katrin Weier

    Full Text Available The cerebellum is known to be involved not only in motor but also cognitive and affective processes. Structural changes in the cerebellum in relation to cognitive dysfunction are an emerging topic in the field of neuro-psychiatric disorders. In Multiple Sclerosis (MS cerebellar motor and cognitive dysfunction occur in parallel, early in the onset of the disease, and the cerebellum is one of the predilection sites of atrophy. This study is aimed at determining the relationship between cerebellar volumes, clinical cerebellar signs, cognitive functioning and fatigue in MS. Cerebellar volumetry was conducted using T1-weighted MPRAGE magnetic resonance imaging of 172 MS patients. All patients underwent a clinical and brief neuropsychological assessment (information processing speed, working memory, including fatigue testing. Patients with and without cerebellar signs differed significantly regarding normalized cerebellar total volume (nTCV, normalized brain volume (nBV and whole brain T2 lesion volume (LV. Patients with cerebellar dysfunction likewise performed worse in cognitive tests. A regression analysis indicated that age and nTCV explained 26.3% of the variance in SDMT (symbol digit modalities test performance. However, only age, T2 LV and nBV remained predictors in the full model (r(2 = 0.36. The full model for the prediction of PASAT (Paced Auditory Serial Addition Test scores (r(2 = 0.23 included age, cerebellar and T2 LV. In the case of fatigue, only age and nBV (r(2 = 0.17 emerged as significant predictors. These data support the view that cerebellar abnormalities contribute to disability, including cognitive impairment in MS. However, this contribution does not seem to be independent of, and may even be dominated by wider spread MS pathology as reflected by nBV and T2 LV.

  19. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. [Argonne National Lab., Idaho Falls, ID (United States); Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States); Duff, M.J. [Consolidated Technical Services, Inc., Walkersville, MD (United States)

    1992-02-01

    Argonne National Laboratory is participating in the Department of Energy`s Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  20. Characterization of mixed CH-TRU waste for the WIPP Experimental Test Program conducted at ANL-W

    Energy Technology Data Exchange (ETDEWEB)

    Dwight, C.C.; McClellan, G.C.; Guay, K.P. (Argonne National Lab., Idaho Falls, ID (United States)); Courtney, J.C. (Louisiana State Univ., Baton Rouge, LA (United States)); Duff, M.J. (Consolidated Technical Services, Inc., Walkersville, MD (United States))

    1992-01-01

    Argonne National Laboratory is participating in the Department of Energy's Waste Isolation Pilot Plant (WIPP) Experimental Test Program by characterizing and repackaging mixed contact-handled transuranic waste. Characterization activities include gas sampling the waste containers, visually examining the waste contents, categorizing the contents according to their gas generation potentials, and weighing the contents. The waste is repackaged from 0.21m{sup 3} (55 gallon) drums into instrumented steel test bins which can hold up to six drum-equivalents in volume. Eventually the loaded test bins will be shipped to WIPP where they will be evaluated during a five-year test program. Three test bins of inorganic solids (primarily glass) were prepared between March and September 1991 and are ready for shipment to WIPP. The characterization activities confirmed process knowledge of the waste and verified the nondestructive examinations; the gas sample analyses showed the target constituents to be within allowable regulatory limits. A new waste characterization chamber is being developed at ANL-W which will improve worker safety, decrease the potential for contamination spread, and increase the waste characterization throughput. The new facility is expected to begin operations by Fall 1992. A comprehensive summary of the project is contained herein.

  1. ORNL rod-bundle heat-transfer test data. Volume 7. Thermal-Hydraulic Test Facility experimental data report for test series 3.07.9 - steady-state film boiling in upflow

    International Nuclear Information System (INIS)

    Mullins, C.B.; Felde, D.K.; Sutton, A.G.; Gould, S.S.; Morris, D.G.; Robinson, J.J.

    1982-05-01

    Thermal-Hydraulic Test Facility (THTF) test series 3.07.9 was conducted by members of the Oak Ridge National Laboratory Pressurized-Water Reactor (ORNL-PWR) Blowdown Heat Transfer (BDHT) Separate-Effects Program on September 11, September 18, and October 1, 1980. The objective of the program is to investigate heat transfer phenomena believed to occur in PWRs during accidents, including small- and large-break loss-of-coolant accidents. Test series 3.07.9 was designed to provide steady-state film boiling data in rod bundle geometry under reactor accident-type conditions. This report presents the reduced instrument responses for THTF test series 3.07.9. Also included are uncertainties in the instrument responses, calculated mass flows, and calculated rod powers

  2. Test report: Electron-proton spectrometer qualification test unit, qualification test

    Science.gov (United States)

    Vincent, D. L.

    1972-01-01

    Qualification tests of the electron-proton spectrometer test unit are presented. The tests conducted were: (1) functional, (2) thermal/vacuum, (3) electromagnetic interference, (4) acoustic, (5) shock, (6) vibration, and (7) humidity. Results of each type of test are presented in the form of data sheets.

  3. Full-scale tests of spent-nuclear-fuel shipping systems

    International Nuclear Information System (INIS)

    Yoshimura, H.R.; Huerta, M.

    1976-01-01

    Sandia Laboratories will be conducting, for the U.S. Energy Research and Development Administration, a series of tests involving spent-nuclear-fuel shipping systems. Large shipping casks in the 20500 to 70000-kg range will be included in the following full-scale tests: (1) Runaway tractor-trailer crash into a solid concrete barrier while carrying a shipping cask. (2) High-speed locomotive grade-crossing impact with a truck carrying a shipping cask. (3) High-speed derailment, collision, and fire involving a special railcar and shipping cask. The hardware and testing procedures for each of the tests are described. The analysis conducted in advance of the tests addresses the modelling technique used and a description of the scale-model tests. Analytical modelling being done before running the full-scale tests is also described. (author)

  4. Recent trends on Software Verification and Validation Testing

    International Nuclear Information System (INIS)

    Kim, Hyungtae; Jeong, Choongheui

    2013-01-01

    Verification and Validation (V and V) include the analysis, evaluation, review, inspection, assessment, and testing of products. Especially testing is an important method to verify and validate software. Software V and V testing covers test planning to execution. IEEE Std. 1012 is a standard on the software V and V. Recently, IEEE Std. 1012-2012 was published. This standard is a major revision to IEEE Std. 1012-2004 which defines only software V and V. It expands the scope of the V and V processes to include system and hardware as well as software. This standard describes the scope of V and V testing according to integrity level. In addition, independent V and V requirement related to software V and V testing in IEEE 7-4.3.2-2010 have been revised. This paper provides a recent trend of software V and V testing by reviewing of IEEE Std. 1012-2012 and IEEE 7-4.3.2-2010. There are no major changes of software V and V testing activities and tasks in IEEE 1012-2012 compared with IEEE 1012-2004. But the positions on the responsibility to perform software V and V testing are changed. In addition IEEE 7-4.3.2-2010 newly describes the positions on responsibility to perform Software V and V Testing. However, the positions of these standards on the V and V testing are different. For integrity level 3 and 4, IEEE 1012-2012 basically requires that V and V organization shall conduct all of V and V testing tasks such as test plan, test design, test case, and test procedure except test execution. If V and V testing is conducted by not V and V but another organization, the results of that testing shall be analyzed by the V and V organization. For safety-related software, IEEE 7-4.3.2-2010 requires that test procedures and reports shall be independently verified by the alternate organization regardless of who writes the procedures and/or conducts the tests

  5. 28 CFR 549.80 - Authority to conduct autopsies.

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Authority to conduct autopsies. 549.80... MEDICAL SERVICES Authority To Conduct Autopsies § 549.80 Authority to conduct autopsies. (a) The Warden may order an autopsy and related scientific or medical tests to be performed on the body of a deceased...

  6. Tests for oil/dispersant toxicity: In situ laboratory assays

    International Nuclear Information System (INIS)

    Wright, D.A.; Coelho, G.M.; Aurand, D.V.

    1995-01-01

    As part of its readiness program in oil spill response, the Marine Pollution Control Unit (MPCU), Department of Transport, U.K. conducts annual field trials in the North Sea, approximately 30 nautical miles from the southeast coast of England. The trials take the form of controlled releases of crude oil or Medium Fuel/Gas Oil mix (MFO), with and without the application of Corexit 9527 dispersant. In 1994 and 1995 the authors conducted a series of in situ toxicity bioassays in association with these spills with included 48h LC50 tests for turbot (Scophthalmus maximus) and oyster (Crassostrea gigas) larvae, a 48 h oyster (C. gigas) embryonic development test and two full life-cycle assays using the copepods Acartia tonsa and Tisbe battagliai. Tests were also conducted in the Chesapeake Bay laboratory using estuarine species including the copepod Eurytemora affinis and the inland silverside Menidia beryllina. Here, the authors report on the results of these assays, together with 1996 in situ toxicity data resulting from Norwegian field trials in the northern North Sea

  7. A Platform for Functional Conductive Polymers

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Hoffmann, Christian; Lind, Johan Ulrik

    Conductive polymers have been studied extensively during recent years. In order to broaden the application field of conductive polymers different methods have been tested and recently an azide functional poly(3,4-ethylenedioxythiophene) (PEDOT-N3) was developed(1, 2). The azide functional...... conductive polymer can be postpolymerization functionalized to introduce a large number of functionalities through click chemistry(3). Through selection of reaction conditions it is possible control the depth of the reaction into the polymer film to the upper surface or the entire film(4). Thus a conductive...... polymer can be prepared with a subsurface layer of highly conductive polymer where only the upper surface has been grafted with functional groups to ensure selectivity of the surface layer for e.g. interaction with specific biospecies. The conductive polymer can be patterned using selective etching, which...

  8. Cost-effectiveness analysis of chemical testing for decision-support: How to include animal welfare?

    NARCIS (Netherlands)

    Gabbert, S.G.M.; Ierland, van E.C.

    2010-01-01

    Toxicity testing for regulatory purposes raises the question of test selection for a particular endpoint. Given the public's concern for animal welfare, test selection is a multi-objective decision problem that requires balancing information outcome, animal welfare loss, and monetary testing costs.

  9. Reconfigurable electronics using conducting metal-organic frameworks

    Science.gov (United States)

    Allendorf, Mark D.; Talin, Albert Alec; Leonard, Francois; Stavila, Vitalie

    2017-07-18

    A device including a porous metal organic framework (MOF) disposed between two terminals, the device including a first state wherein the MOF is infiltrated by a guest species to form an electrical path between the terminals and a second state wherein the electrical conductivity of the MOF is less than the electrical conductivity in the first state. A method including switching a porous metal organic framework (MOF) between two terminals from a first state wherein a metal site in the MOF is infiltrated by a guest species that is capable of charge transfer to a second state wherein the MOF is less electrically conductive than in the first state.

  10. A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests.

    Science.gov (United States)

    Simon, S L; Robison, W L

    1997-07-01

    Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics.

  11. Classification of materials for conducting spheroids based on the first order polarization tensor

    Science.gov (United States)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  12. Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Richard Barney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scoffield, Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bennett, Brion [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-12-01

    The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

  13. Air-conduction estimated from tympanometry (ACET) 1: relationship to measured hearing in OME.

    Science.gov (United States)

    2009-01-01

    In otitis media with effusion (OME), the accuracy of predicting air-conduction hearing-level (HLs) from tympanometry has generally been seen as too poor for use in clinical practice. Previous studies of the relationship have mostly concerned single ears, many using samples with predominantly mild cases of OM and weak statistical approaches. A better understanding of the interrelations between these tests might improve efficiency in testing and decision-making for individuals. Binaural average HL was adopted as the measure to be predicted most relevant to auditory disability. Multiple regression from modified Jerger tympanogram categories B, C2, C1 and A tympanogram types on 3085 children aged 3(1/4)-6(3/4) years gave formulae which we tested for replication, stability and generalization across distributions differing in severity. Age-adjusted formulae explained up to 49% of the variance in binaural HL (i.e. a multiple correlation of 0.70), and were robust across phase of disease. Best predictions were seen in a severe sample permitting exploitation of the strong conditioning effect by a B tympanogram in one ear upon the tympanometry/HL relationship in the other. This permits a trichotomous approximation (0, 1, or 2 B-tympanograms) to also perform well. We name the HL prediction formula "ACET" - Air Conduction Estimated from Tympanometry. We do not recommend replacing audiometry with tympanometry, particularly not at first assessment. However, where the diagnosis is, or likely from history to be, OME (even if fluid is absent on test day), the informativeness of further air-conduction audiometry on the same or later occasion may not always be worth the further effort or cost. It is therefore clinically useful to have a dB measure, from an evidence-based formula justifying a principled estimate. Non-clinical uses include imputation when research data are missing, and non-intensive applications where audiometry is impracticable, e.g. field clinics and large scale or

  14. Thermal contact conductance

    CERN Document Server

    Madhusudana, Chakravarti V

    2013-01-01

    The work covers both theoretical and practical aspects of thermal contact conductance. The theoretical discussion focuses on heat transfer through spots, joints, and surfaces, as well as the role of interstitial materials (both planned and inadvertent). The practical discussion includes formulae and data that can be used in designing heat-transfer equipment for a variety of joints, including special geometries and configurations. All of the material has been updated to reflect the latest advances in the field.

  15. Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy

    International Nuclear Information System (INIS)

    Snooks, S.J.; Swash, M.

    1985-01-01

    Transcutaneous electrical stimulation of the central nervous system was used to measure motor conduction velocity in the human spinal cord in 21 subjects aged 22 to 75 years (mean 55 years), none of whom had neurological disease. The motor conduction velocity between the sixth cervical (C6) and first lumbar (L1) vertebral levels was 67.4+-9.1 m/s. This probably represents conduction velocity in the corticospinal tracts. In these subjects the motor conduction velocity in the cauda equina, between the first lumbar (L1) and fourth lumbar (L4) vertebral levels, was 57.9+-10.3 m/s. In four of five patients with multiple sclerosis, all with corticospinal signs in the legs, motor conduction velocity between C6 and L1 was slowed (41.8+-16.8 m/s), but cauda equina conduction was normal (55.8+-7.8 m/s). Similar slowing of spinal cord motor conduction was found in a patient with radiation myelopathy. This method should provide a relevant, simple clinical test in patients with spinal cord disease. (author)

  16. Patterns of Psychopathology in the Families of Children with Conduct Problems, Depression, and Both Psychiatric Conditions

    Science.gov (United States)

    Kopp, Lisa M.; Beauchaine, Theodore P.

    2007-01-01

    Comorbid conduct problems (CPs) and depression are observed far more often than expected by chance, which is perplexing given minimal symptom overlap. In this study, relations between parental psychopathology and children's diagnostic status were evaluated to test competing theories of comorbidity. Participants included 180 families with an…

  17. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  18. ZnO based transparent conductive oxide films with controlled type of conduction

    Energy Technology Data Exchange (ETDEWEB)

    Zaharescu, M., E-mail: mzaharescu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Mihaiu, S., E-mail: smihaiu@icf.ro [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Toader, A. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Atkinson, I., E-mail: irinaatkinson@yahoo.com [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Calderon-Moreno, J.; Anastasescu, M.; Nicolescu, M.; Duta, M.; Gartner, M. [Institute of Physical Chemistry “Ilie Murgulescu”, Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vojisavljevic, K.; Malic, B. [Institute Jožef Stefan, Ljubljana (Slovenia); Ivanov, V.A.; Zaretskaya, E.P. [State Scientific and Production Association “Scientific-Practical Materials Research Center of the National Academy of Science Belarus, P. Brovska str.19, 220072, Minsk (Belarus)

    2014-11-28

    The transparent conductive oxide films with controlled type of conduction are of great importance and their preparation is intensively studied. In our work, the preparation of such films based on doped ZnO was realized in order to achieve controlled type of conduction and high concentration of the charge carriers. Sol–gel method was used for films preparation and several dopants were tested (Sn, Li, Ni). Multilayer deposition was performed on several substrates: SiO{sub 2}/Si wafers, silica-soda-lime and/or silica glasses. The structural and morphological characterization of the obtained films were done by scanning electron microscopy, X-ray diffraction, X-ray fluorescence, X-ray photoelectron spectroscopy and atomic force microscopy respectively, while spectroscopic ellipsometry and transmittance measurements were done for determination of optical properties. The selected samples with the best structural, morphological and optical properties were subjected to electrical measurement (Hall and Seebeck effect). In all studied cases, samples with good adherence and homogeneous morphology as well as monophasic wurtzite type structure were obtained. The optical constants (refractive index and extinction coefficient) were calculated from spectroscopic ellipsometry data using Cauchy model. Films with n- or p-type conduction were obtained depending on the composition, number of deposition and thermal treatment temperature. - Highlights: • Transparent conductive ZnO based thin films were prepared by the sol–gel method. • Controlled type of conduction is obtained in (Sn, Li) doped and Li-Ni co-doped ZnO films. • Hall and Seebeck measurements proved the p-type conductivity for Li-Ni co-doped ZnO films. • The p-type conductivity was maintained even after 4-months of storage. • Influence of dopant- and substrate-type on the ZnO films properties was established.

  19. Electrically conductive anodized aluminum coatings

    Science.gov (United States)

    Alwitt, Robert S. (Inventor); Liu, Yanming (Inventor)

    2001-01-01

    A process for producing anodized aluminum with enhanced electrical conductivity, comprising anodic oxidation of aluminum alloy substrate, electrolytic deposition of a small amount of metal into the pores of the anodized aluminum, and electrolytic anodic deposition of an electrically conductive oxide, including manganese dioxide, into the pores containing the metal deposit; and the product produced by the process.

  20. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff

    International Nuclear Information System (INIS)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.R.

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application

  1. Relevance of nerve conduction velocity in the assessment of balance performance in older adults with diabetes mellitus.

    Science.gov (United States)

    Wang, Ting-Yun; Chen, Shih-Ching; Peng, Chih-Wei; Kang, Chun-Wei; Chen, Yu-Luen; Chen, Chun-Lung; Chou, Yi-Lin; Lai, Chien-Hung

    2017-03-01

    Purpose This study investigated the relationship between peripheral nerve conduction velocity (NCV) and balance performance in older adults with diabetes. Methods Twenty older adults with diabetes were recruited to evaluate the NCV of their lower limbs and balance performance. The balance assessments comprised the timed up and go (TUG) test, Berg balance scale (BBS), unipedal stance test (UST), multidirectional reach test (MDRT), maximum step length (MSL) test and quiet standing with eyes open and closed. The relationship between NCV and balance performance was evaluated by Pearson's correlation coefficients, and the balance performances of the diabetic patients with and without peripheral neuropathy were compared by using Mann-Whitney U tests. Results The NCV in the lower limbs exhibited a moderate to strong correlation with most of the balance tests including the TUG (r = -0.435 to -0.520, p tests, which are commonly used in clinics. Decline in nerve conduction velocity of the lower limbs may be related to the impairment of balance control in patients with diabetes. Diabetic older adults with peripheral neuropathy exhibited greater postural instability than those without peripheral neuropathy.

  2. Apparatus for testing semiconductor devices and capacitors

    International Nuclear Information System (INIS)

    York, R.A.

    1984-01-01

    An apparatus is provided for testing semiconductor devices. The apparatus tests the impedance of the semiconductor devices in both conducting and non-conducting states to detect semiconductors whose impedance in the conducting state is too high or whose impedance in the non-conducting state is too low. The apparatus uses a battery source for low voltage d.c. The circuitry for detecting when the impedance is too high in the conducting state includes a lamp in series with the battery source and the semiconductor device, whereby the impedance of the semiconductor device determines whether sufficient current will flow through the lamp to cause the lamp to illuminate. A d.c. to d.c. converter is provided to boost the voltage from the battery source to a relatively high voltage d.c. The relatively high voltage d.c. can be connected by a switch to circuitry for detecting when the impedance of the semiconductor device in the non-conducting state is too low. The circuitry for detecting when the impedance of the semiconductor device is too low includes a resistor which senses the current flowing in the device and converts the current into a voltage proportional to the leakage current. This voltage is then compared against a fixed reference. Further circuitry is provided for providing a visual indication when the voltage representative of leakage in relation to the reference signal indicates that there is excessive current flow through the semiconductor device

  3. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  4. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Mehrali, Mohammad; Latibari, Sara Tahan; Mehrali, Mehdi; Indra Mahlia, Teuku Meurah; Cornelis Metselaar, Hendrik Simon

    2013-01-01

    PA/GO (palmitic acid/graphene oxide) as PCMs (phase change materials) prepared by vacuum impregnation method, have high thermal conductivity. The GO (graphene oxide) composite was used as supporting material to improve thermal conductivity and shape stabilization of composite PCM (phase change material). SEM (Scanning electronic microscope), FT-IR (Fourier transformation infrared spectroscope) and XRD (X-ray diffractometer) were applied to determine microstructure, chemical structure and crystalloid phase of palmitic acid/GO composites, respectively. DSC (Differential scanning calorimeter) test was done to investigate thermal properties which include melting and solidifying temperatures and latent heat. FT-IR analysis represented that the composite instruction of porous palmitic acid and GO were physical. The temperatures of melting, freezing and latent heats of the composite measured through DSC analysis were 60.45, 60.05 °C, 101.23 and 101.49 kJ/kg, respectively. Thermal cycling test showed that the form-stable composite PCM has good thermal reliability and chemical stability. Thermal conductivity of the composite PCM was improved by more than three times from 0.21 to 1.02. As a result, due to their acceptable thermal properties, good thermal reliability, chemical stability and great thermal conductivities, we can consider the prepared form-stable composites as highly conductive PCMs for thermal energy storage applications. - Highlights: • Novel composite PCM with high thermal conductivity and latent heat storage. • New thermal cycling test for thermal reliability of composite PCMs. • Increasing thermal conductivity of composite PCM with graphene oxide. • Increasing thermal stability of phase change material by adding graphene oxide

  5. High Conduction Neutron Absorber to Simulate Fast Reactor Environment in an Existing Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna; Greenwood, Lawrence R.; Parry, James

    2014-06-22

    A need was determined for a thermal neutron absorbing material that could be cooled in a gas reactor environment without using large amounts of a coolant that would thermalize the neutron flux. A new neutron absorbing material was developed that provided high conduction so a small amount of water would be sufficient for cooling thereby thermalizing the flux as little as possible. An irradiation experiment was performed to assess the effects of radiation and the performance of a new neutron absorbing material. Neutron fluence monitors were placed inside specially fabricated holders within a set of drop-in capsules and irradiated for up to four cycles in the Advanced Test Reactor. Following irradiation, the neutron fluence monitor wires were analyzed by gamma and x-ray spectrometry to determine the activities of the activation products. The adjusted neutron fluences were calculated and grouped into three bins – thermal, epithermal and fast to evaluate the spectral shift created by the new material. Fluence monitors were evaluated after four different irradiation periods to evaluate the effects of burn-up in the absorbing material. Additionally, activities of the three highest activity isotopes present in the specimens are given.

  6. Sodium oxide and uranium oxide aerosol experiments: NSPP Tests 106-108 and Tests 204-207, data record report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.E.; Kress, T.S.; Tobias, M.L.

    1981-03-01

    This data record report describes three sodium oxide aerosol tests and four uranium oxide aerosol tests conducted in the Nuclear Safety Pilot Plant project at Oak Ridge National Laboratory. The goal of this project is to establish the validity (or level of conservatism) of the aerosol behavioral code, HAARM-3, and follow-on codes under development at the Battelle Columbus Laboratories for the US Nuclear Regulatory Commission. Descriptions of the seven tests with tables and graphs summarizing the results are included. 92 figs.

  7. Geologic surface effects of underground nuclear testing, Yucca Flat, Nevada Test Site, Nevada; TOPICAL

    International Nuclear Information System (INIS)

    Grasso, D.N.

    2000-01-01

    This report presents a new Geographic Information System composite map of the geologic surface effects caused by underground nuclear testing in the Yucca Flat Physiographic Area of the Nevada Test Site, Nye County, Nevada. The Nevada Test Site (NTS) was established in 1951 as a continental location for testing nuclear devices (Allen and others, 1997, p.3). Originally known as the ''Nevada Proving Ground'', the NTS hosted a total of 928 nuclear detonations, of which 828 were conducted underground (U.S. Department of Energy, 1994). Three principal testing areas of the NTS were used: (1) Yucca Flat, (2) Pahute Mesa, and (3) Rainier Mesa including Aqueduct Mesa. Underground detonations at Yucca Flat and Pahute Mesa were typically emplaced in vertical drill holes, while others were tunnel emplacements. Of the three testing areas, Yucca Flat was the most extensively used, hosting 658 underground tests (747 detonations) located at 719 individual sites (Allen and others, 1997, p.3-4). Figure 1 shows the location of Yucca Flat and other testing areas of the NTS. Figure 2 shows the locations of underground nuclear detonation sites at Yucca Flat. Table 1 lists the number of underground nuclear detonations conducted, the number of borehole sites utilized, and the number of detonations mapped for surface effects at Yucca Flat by NTS Operational Area

  8. Comparing statistical tests for detecting soil contamination greater than background

    International Nuclear Information System (INIS)

    Hardin, J.W.; Gilbert, R.O.

    1993-12-01

    The Washington State Department of Ecology (WSDE) recently issued a report that provides guidance on statistical issues regarding investigation and cleanup of soil and groundwater contamination under the Model Toxics Control Act Cleanup Regulation. Included in the report are procedures for determining a background-based cleanup standard and for conducting a 3-step statistical test procedure to decide if a site is contaminated greater than the background standard. The guidance specifies that the State test should only be used if the background and site data are lognormally distributed. The guidance in WSDE allows for using alternative tests on a site-specific basis if prior approval is obtained from WSDE. This report presents the results of a Monte Carlo computer simulation study conducted to evaluate the performance of the State test and several alternative tests for various contamination scenarios (background and site data distributions). The primary test performance criteria are (1) the probability the test will indicate that a contaminated site is indeed contaminated, and (2) the probability that the test will indicate an uncontaminated site is contaminated. The simulation study was conducted assuming the background concentrations were from lognormal or Weibull distributions. The site data were drawn from distributions selected to represent various contamination scenarios. The statistical tests studied are the State test, t test, Satterthwaite's t test, five distribution-free tests, and several tandem tests (wherein two or more tests are conducted using the same data set)

  9. Severe accident testing of electrical penetration assemblies

    International Nuclear Information System (INIS)

    Clauss, D.B.

    1989-11-01

    This report describes the results of tests conducted on three different designs of full-size electrical penetration assemblies (EPAs) that are used in the containment buildings of nuclear power plants. The objective of the tests was to evaluate the behavior of the EPAs under simulated severe accident conditions using steam at elevated temperature and pressure. Leakage, temperature, and cable insulation resistance were monitored throughout the tests. Nuclear-qualified EPAs were produced from D. G. O'Brien, Westinghouse, and Conax. Severe-accident-sequence analysis was used to generate the severe accident conditions (SAC) for a large dry pressurized-water reactor (PWR), a boiling-water reactor (BWR) Mark I drywell, and a BWR Mark III wetwell. Based on a survey conducted by Sandia, each EPA was matched with the severe accident conditions for a specific reactor type. This included the type of containment that a particular EPA design was used in most frequently. Thus, the D. G. O'Brien EPA was chosen for the PWR SAC test, the Westinghouse was chosen for the Mark III test, and the Conax was chosen for the Mark I test. The EPAs were radiation and thermal aged to simulate the effects of a 40-year service life and loss-of-coolant accident (LOCA) before the SAC tests were conducted. The design, test preparations, conduct of the severe accident test, experimental results, posttest observations, and conclusions about the integrity and electrical performance of each EPA tested in this program are described in this report. In general, the leak integrity of the EPAs tested in this program was not compromised by severe accident loads. However, there was significant degradation in the insulation resistance of the cables, which could affect the electrical performance of equipment and devices inside containment at some point during the progression of a severe accident. 10 refs., 165 figs., 16 tabs

  10. Study on thermal conductivity of HTR spherical fuel element matrix graphite

    International Nuclear Information System (INIS)

    Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe

    2014-01-01

    Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)

  11. The Thermal Electrical Conductivity Probe (TECP) for Phoenix

    Science.gov (United States)

    Zent, Aaron P.; Hecht, Michael H.; Cobos, Doug R.; Campbell, Gaylon S.; Campbell, Colin S.; Cardell, Greg; Foote, Marc C.; Wood, Stephen E.; Mehta, Manish

    2009-01-01

    The Thermal and Electrical Conductivity Probe (TECP) is a component of the Microscopy, Electrochemistry, and Conductivity Analyzer (MECA) payload on the Phoenix Lander. TECP will measure the temperature, thermal conductivity and volumetric heat capacity of the regolith. It will also detect and quantify the population of mobile H2O molecules in the regolith, if any, throughout the polar summer, by measuring the electrical conductivity of the regolith, as well as the dielectric permittivity. In the vapor phase, TECP is capable of measuring the atmospheric H2O vapor abundance, as well as augment the wind velocity measurements from the meteorology instrumentation. TECP is mounted near the end of the 2.3 m Robotic Arm, and can be placed either in the regolith material or held aloft in the atmosphere. This paper describes the development and calibration of the TECP. In addition, substantial characterization of the instrument has been conducted to identify behavioral characteristics that might affect landed surface operations. The greatest potential issue identified in characterization tests is the extraordinary sensitivity of the TECP to placement. Small gaps alter the contact between the TECP and regolith, complicating data interpretation. Testing with the Phoenix Robotic Arm identified mitigation techniques that will be implemented during flight. A flight model of the instrument was also field tested in the Antarctic Dry Valleys during the 2007-2008 International Polar year. 2

  12. Summary of CPAS EDU Testing Analysis Results

    Science.gov (United States)

    Romero, Leah M.; Bledsoe, Kristin J.; Davidson, John.; Engert, Meagan E.; Fraire, Usbaldo, Jr.; Galaviz, Fernando S.; Galvin, Patrick J.; Ray, Eric S.; Varela, Jose

    2015-01-01

    The Orion program's Capsule Parachute Assembly System (CPAS) project is currently conducting its third generation of testing, the Engineering Development Unit (EDU) series. This series utilizes two test articles, a dart-shaped Parachute Compartment Drop Test Vehicle (PCDTV) and capsule-shaped Parachute Test Vehicle (PTV), both of which include a full size, flight-like parachute system and require a pallet delivery system for aircraft extraction. To date, 15 tests have been completed, including six with PCDTVs and nine with PTVs. Two of the PTV tests included the Forward Bay Cover (FBC) provided by Lockheed Martin. Advancements in modeling techniques applicable to parachute fly-out, vehicle rate of descent, torque, and load train, also occurred during the EDU testing series. An upgrade from a composite to an independent parachute simulation allowed parachute modeling at a higher level of fidelity than during previous generations. The complexity of separating the test vehicles from their pallet delivery systems necessitated the use the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulator for modeling mated vehicle aircraft extraction and separation. This paper gives an overview of each EDU test and summarizes the development of CPAS analysis tools and techniques during EDU testing.

  13. DOT-7A packaging test procedure

    International Nuclear Information System (INIS)

    Kelly, D.L.

    1995-01-01

    This test procedure documents the steps involved with performance testing of Department of Transportation Specification 7A (DOT-7A) Type A packages. It includes description of the performance tests, the personnel involved, appropriate safety considerations, and the procedures to be followed while performing the tests. Westinghouse Hanford Company (WHC) is conducting the evaluation and testing discussed herein for the Department of Energy-Headquarters, Division of Quality Verification and Transportation Safety (EH-321). Please note that this report is not in WHC format. This report is being submitted through the Engineering Documentation System so that it may be used for reference and information purposes

  14. SOLID STATE BATTERIES WITH CONDUCTING POLYMERS

    OpenAIRE

    Bénière , F.; Boils , D.; Cánepa , H.; Franco , J.; Le Corre , A.; Louboutin , J.

    1983-01-01

    The conducting polymers like (CH)x are very interesting materials for electrodes in electrochemical cells. We have combined such electrodes with solid electrolytes to build "all solid-state" batteries. The first prototypes using a silver anode and a silver conducting electrolyte have been working satisfactorily since two years. The performances have been tested with many batteries to study the electrical properties as well as the thermodynamical parameters. A number of cycles of charge-discha...

  15. Midwives conducting perineal repair: The Danish Suture Trial

    DEFF Research Database (Denmark)

    Kindberg, Sara

    2007-01-01

    Midwives conducting perineal repair: The Danish Suture Trial.     Background Suture techniques and materials for repair of 2nd degree perineal lacerations and episiotomies have been tested in several clinical trials. Danish midwives and obstetricians have developed a new, simple and time-efficien......Midwives conducting perineal repair: The Danish Suture Trial.     Background Suture techniques and materials for repair of 2nd degree perineal lacerations and episiotomies have been tested in several clinical trials. Danish midwives and obstetricians have developed a new, simple and time...

  16. Materials and methods for autonomous restoration of electrical conductivity

    Science.gov (United States)

    Blaiszik, Benjamin J; Odom, Susan A; Caruso, Mary M; Jackson, Aaron C; Baginska, Marta B; Ritchey, Joshua A; Finke, Aaron D; White, Scott R; Moore, Jeffrey S; Sottos, Nancy R; Braun, Paul V; Amine, Khalil

    2014-03-25

    An autonomic conductivity restoration system includes a solid conductor and a plurality of particles. The particles include a conductive fluid, a plurality of conductive microparticles, and/or a conductive material forming agent. The solid conductor has a first end, a second end, and a first conductivity between the first and second ends. When a crack forms between the first and second ends of the conductor, the contents of at least a portion of the particles are released into the crack. The cracked conductor and the released contents of the particles form a restored conductor having a second conductivity, which may be at least 90% of the first conductivity.

  17. Fiber/matrix interfacial thermal conductance effect on the thermal conductivity of SiC/SiC composites

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Henager, Charles H.

    2013-01-01

    SiC/SiC composites used in fusion reactor applications are subjected to high heat fluxes and require knowledge and tailoring of their in-service thermal conductivity. Accurately predicting the thermal conductivity of SiC/SiC composites as a function of temperature will guide the design of these materials for their intended use, which will eventually include the effects of 14-MeV neutron irradiations. This paper applies an Eshelby–Mori–Tanaka approach (EMTA) to compute the thermal conductivity of unirradiated SiC/SiC composites. The homogenization procedure includes three steps. In the first step EMTA computes the homogenized thermal conductivity of the unidirectional (UD) SiC fiber embraced by its coating layer. The second step computes the thermal conductivity of the UD composite formed by the equivalent SiC fibers embedded in a SiC matrix, and finally the thermal conductivity of the as-formed SiC/SiC composite is obtained by averaging the solution for the UD composite over all possible fiber orientations using the second-order fiber orientation tensor. The EMTA predictions for the transverse thermal conductivity of several types of SiC/SiC composites with different fiber types and interfaces are compared to the predicted and experimental results by Youngblood et al. [J. Nucl. Mater. 307–311 (2002) 1120–1125, Fusion Sci. Technol. 45 (2004) 583–591, Compos. Sci. Technol. 62 (2002) 1127–1139.

  18. Use of coal fly ash and other waste products in soil stabilization and road construction-including non-destructive testing of roadways.

    Science.gov (United States)

    2012-02-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and lime kiln dust. The laboratory : program included measurements of: compaction curves, small strain elastic moduli, resilient modulus (Mr), Briaud Com...

  19. Use of coal fly ash and other waste products in soil stabilization and road construction including non-destructive testing of roadways.

    Science.gov (United States)

    2012-06-01

    An extensive laboratory testing program was performed on subgrade soils stabilized using fly ash and : lime kiln dust. The laboratory program included measurements of: compaction curves, small strain elastic moduli, : resilient modulus (Mr), Briaud C...

  20. Perception of medical students on e-assessment conducted through Yengage portal

    Directory of Open Access Journals (Sweden)

    Latha Rajendra Kumar

    2013-01-01

    Full Text Available Introduction: E-learning includes various categories of media that distribute text, audio, images, animation, and streaming video, and includes technology applications and processes, computer-based learning, as well as local intranet/extranet learning. Information and communication systems motivate many e-learning processes. E-learning can occur in or out of the classroom. ILIAS (Integriertes Lern-, Informations- und Arbeitskooperations-System [German for "Integrated Learning, Information and Work Cooperation System"] is an open source web-based learning management system (LMS. It supports learning content management and tools for collaboration, communication, evaluation, and assessment for University students. Materials and Methods: First year medical students were requested to register in Yengage, and the date of the assessment was announced. Twenty MCQ from cardiovascular system was preloaded in the Yengage portal, and the students used their personal laptop to answer the questions within the stipulated time. The results were automatically loaded at the end of the assessment. Pre- and post-test was conducted to investigate the usefulness of the E- assessment. Results: The students responded that the E-assessment was easy to assess, unique as they received immediate feedback, customized and flexible. There was significant difference in the post-test score when compared to the pre-test score. Discussion: Technology has created new methods of assessment for today′s generation of students, and these advances are here to stay. Conclusion: It is possible to conduct online examinations in medical school regularly. The e-learning can enhance student interests and allows immediate feedback. Since e-learning is not well-established in India, we hope to create awareness and change the outlook of medical students in online teaching-learning and assessment program.

  1. The Electronic Thermal Conductivity of Graphene.

    Science.gov (United States)

    Kim, Tae Yun; Park, Cheol-Hwan; Marzari, Nicola

    2016-04-13

    Graphene, as a semimetal with the largest known thermal conductivity, is an ideal system to study the interplay between electronic and lattice contributions to thermal transport. While the total electrical and thermal conductivity have been extensively investigated, a detailed first-principles study of its electronic thermal conductivity is still missing. Here, we first characterize the electron-phonon intrinsic contribution to the electronic thermal resistivity of graphene as a function of doping using electronic and phonon dispersions and electron-phonon couplings calculated from first-principles at the level of density-functional theory and many-body perturbation theory (GW). Then, we include extrinsic electron-impurity scattering using low-temperature experimental estimates. Under these conditions, we find that the in-plane electronic thermal conductivity κe of doped graphene is ∼300 W/mK at room temperature, independently of doping. This result is much larger than expected and comparable to the total thermal conductivity of typical metals, contributing ∼10% to the total thermal conductivity of bulk graphene. Notably, in samples whose physical or domain sizes are of the order of few micrometers or smaller, the relative contribution coming from the electronic thermal conductivity is more important than in the bulk limit, because lattice thermal conductivity is much more sensitive to sample or grain size at these scales. Last, when electron-impurity scattering effects are included we find that the electronic thermal conductivity is reduced by 30 to 70%. We also find that the Wiedemann-Franz law is broadly satisfied at low and high temperatures but with the largest deviations of 20-50% around room temperature.

  2. Selected hydraulic test analysis techniques for constant-rate discharge tests

    International Nuclear Information System (INIS)

    Spane, F.A. Jr.

    1993-03-01

    The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions

  3. Evaluation of snubber functional test methods: Tier 1

    International Nuclear Information System (INIS)

    Brown, D.P.

    1993-07-01

    The objective of the research is to establish technical bases in support of efforts on the part of the Snubber Utility Group (SNUG) and the Subsection ISTD Working Group of the ASME O ampersand M Code in developing guidelines and methodologies for snubber functional testing to ensure that snubbers are tested in a manner that ensures reliable and meaningful test results. The methodology used in this research includes both a review of available industry information as well as the testing of different snubber models using various test machines. Information is provided pertaining to current industry practices in regard to snubber testing including recommended test procedures, technical description of various test machines, and the number and types of snubbers used in the nuclear power industry. A review of previous test methodology research conducted by the Snubber Utility Group is also included. The effects of variations in controllable test parameters on snubber test results are discussed. Also included are the results of confirmatory tests in which various snubber models were tested using various test machines. Recommendations are provided for standard test methods to be included in Subsection ISTD of the ASME O ampersand M Code [4]. General information and recommendations are provided that may be used by utility personnel in specifying snubber test equipment that is most suited for plant-specific needs as well as information that may be effectively used in the review and interpretation of test results

  4. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hatton

    2012-01-01

    Full Text Available The bone-conduction (BC tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears and (ii the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears. Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz. A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%. A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing.

  5. Auditory Brainstem Responses to Bone-Conducted Brief Tones in Young Children with Conductive or Sensorineural Hearing Loss

    Science.gov (United States)

    Hatton, Jennifer L.; Janssen, Renée M.; Stapells, David R.

    2012-01-01

    The bone-conduction (BC) tone ABR has been used clinically for over 20 years. The current study formally evaluated the test performance of the BC tone-evoked ABR in infants with hearing loss. Method. By comparing BC-ABR results to follow-up behavioural results, this study addressed two questions: (i) whether the BC tone ABR was successful in differentiating children with conductive versus sensorineural hearing loss (Study A; conductive: 68 ears; SNHL: 129 ears) and (ii) the relationship between BC ABR and behavioural hearing loss severity (Study B: 2000 Hz: 104 ears; 500 Hz: 47 ears). Results. Results demonstrate that the “normal” BC-ABR levels accurately differentiated normal versus elevated cochlear sensitivity (accuracy: 98% for 2000 Hz; 98% for 500 Hz). A subset of infants in Study A with elevated BC-ABR (i.e., no response at normal level) had additional testing at higher intensities, which allowed for categorization of the degree of cochlear impairment. Study B results indicate that the BC ABR accurately categorizes the degree of cochlear hearing loss for 2000 Hz (accuracy = 95.2%). A preliminary dBnHL-to-dBHL correction factor of “0 dB” was determined for 2000 Hz BC ABR. Conclusions. These findings further support the use of BC tone ABR for diagnostic ABR testing. PMID:22988461

  6. FY 1993 report on aluminum-nitrate testing at the ETF

    International Nuclear Information System (INIS)

    Goodman, M.D.D.; Wise, M.D.

    1993-01-01

    This report summarizes the progress of the Aluminum Nitrate Nonhydrate (ANN) testing program at the F/H-Area Effluent Treatment Facility (ETF) for Fiscal Year 1993. Three tests were conducted in the months of February, April, and September. The tests yielded data that validated earlier conclusions that the addition of ANN to non-routine feed has a positive effect on the performance of ETF's submicron filtration unit. Performance was observed to increase from 30--309%, depending on the season. The data also supports SRTC's earlier conclusion that an optimal aluminum concentration exists in the range of 30--40 ppm, and concentrations above this range begin to retard filtration performance. A rudimentary mathematical model that would predict Stage 1 flux was also developed during FY93. The model allowed for a more concise comparison of filter test runs, as well as increase the efficiency of the testing program by allowing shorter test runs to be conducted. It is postulated that the model can be further optimized to include aluminum concentration and time of year as independent variables that determine Stage 1 flux. Such a model should unequivocally prove the merits of pretreating ETF's wastewater with aluminum nitrate. To proceed with the development of the model, further testing is proposed with stringent control of the aluminum concentration in the feed. In order to account for seasonal effects, one test should be conducted each month for Fiscal Year 1994. High Level Waste Engineering requests permission to conduct these test runs according to the following schedule: conduct tests in even numbered months beginning with October with routine influent as it is collected from normal process sewer influents and conduct tests in odd numbered months beginning with November with non-routine feed from H-Retention Basin

  7. Complex conductivity of oil-contaminated clayey soils

    Science.gov (United States)

    Deng, Y.; Revil, A.; Shi, X.

    2017-12-01

    Non-intrusive hydrogeophysical techniques have been wildly applied to detect organic contaminants because of the difference of electrical properties for contaminated soil. Among them, spectral induced polarization (SIP) has emerged as a promising tool for the identification of contamination due to its sensitivity to the chemistry of pore water, solid-fluid interfaces and fluid content. Previous works have investigated the influences of oil on the electrical signatures of porous media, which demonstrated the potentials of SIP in the detection of hydrocarbon contamination. However, few works have done on the SIP response of oil in clayey soils. In this study, we perform a set of SIP measurements on the clayey samples under different water saturations. These clayey soils are characterized by relatively high cation exchange capacity. The objective in this work is to test the empirical relationships between the three exponents, including the cementation exponent (m), the saturation exponent (n) and the quadrature conductivity exponent (p), which is expected to reduce the model parameters needed in geophysical and hydraulic properties predictions. Our results show that the complex conductivity are saturation dependent. The magnitude of both in-phase and quadrature conductivities generally decrease with decreasing water saturation. The shape of quadrature conductivity spectra slightly changes when water saturation decreases in some cases. The saturation exponent slightly increases with cation exchange capacity, specific surface area and clay content, with an average value around 2.05. Compared to saturation exponent, the quadrature conductivity exponent apparently increases with cation exchange capacity and specific surface area while has little to do with the clay content. Further, the results indicate that the quadrature conductivity exponent p does not strictly obey to p=n-1 as proposed by Vinegar and Waxman (1984). Instead, it mostly ranges between p=n-1.5 and p=n-0

  8. Mental sets in conduct problem youth with psychopathic features: entity versus incremental theories of intelligence.

    Science.gov (United States)

    Salekin, Randall T; Lester, Whitney S; Sellers, Mary-Kate

    2012-08-01

    The purpose of the current study was to examine the effect of a motivational intervention on conduct problem youth with psychopathic features. Specifically, the current study examined conduct problem youths' mental set (or theory) regarding intelligence (entity vs. incremental) upon task performance. We assessed 36 juvenile offenders with psychopathic features and tested whether providing them with two different messages regarding intelligence would affect their functioning on a task related to academic performance. The study employed a MANOVA design with two motivational conditions and three outcomes including fluency, flexibility, and originality. Results showed that youth with psychopathic features who were given a message that intelligence grows over time, were more fluent and flexible than youth who were informed that intelligence is static. There were no significant differences between the groups in terms of originality. The implications of these findings are discussed including the possible benefits of interventions for adolescent offenders with conduct problems and psychopathic features. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  9. Electrical conductivity of silicon carbide composites

    International Nuclear Information System (INIS)

    Scholz, R.; Greeff, J. de; Vinche, C.; Frias Rebelo, A.

    1997-01-01

    The electrical conductivity was measured on two SiC/SiC composite materials in the temperature range from room temperature up to 1000degC in order to estimate the magnitude of MHD effects in liquid metal blankets if SiC/SiC composites are used as structural materials. For both types of material, the electrical conductivity increased continuously with temperature. The conductivity values ranged from 350 (Ωm) -1 at room temperature to 550 (Ωm) -1 at 1000degC, indicating that the materials tested cannot be treated as an electrical insulator in a MHD analysis for liquid metal blanket studies. (author)

  10. Space Station CMIF extended duration metabolic control test

    Science.gov (United States)

    Schunk, Richard G.; Bagdigian, Robert M.; Carrasquillo, Robyn L.; Ogle, Kathryn Y.; Wieland, Paul O.

    1989-01-01

    The Space Station Extended Duration Metabolic Control Test (EMCT) was conducted at the MSFC Core Module Integration Facility. The primary objective of the EMCT was to gather performance data from a partially-closed regenerative Environmental Control and Life Support (ECLS) system functioning under steady-state conditions. Included is a description of the EMCT configuration, a summary of events, a discussion of anomalies that occurred during the test, and detailed results and analysis from individual measurements of water and gas samples taken during the test. A comparison of the physical, chemical, and microbiological methods used in the post test laboratory analyses of the water samples is included. The preprototype ECLS hardware used in the test, providing an overall process description and theory of operation for each hardware item. Analytical results pertaining to a system level mass balance and selected system power estimates are also included.

  11. Controlled environmental radioiodine tests at the national reactor testing station. 1965 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.R.; Bunch, D.F.; Gammill, W.P.; Hawley, C.A. Jr.; Markee, E.H.; Tiernan, M.W.

    1966-02-01

    The CERT project consists of a series of planned releases of radioiodine over different vegetation and during various meteorological conditions, with the prime objective being to measure the relationships involved in the passage of radioiodine through the air-vegetation-cow-milk-human chain. The results of the first five tests in the series, which started in the spring of 1963 and is continuing, are reported. Each test was conducted under measured meteorological conditions and over prepared sampling and grazing courses. Two tests were made over open-range type vegetation, two over irrigated pastures, and one over snow-covered ground. Two tests were conducted under lapse conditions, two under inversion conditions, and one under neutral conditions. In each case, known quantities of elemental /sup 131/I/sub 2/ were released. Relationships determined included air-grass ratios (deposition velocities) which ranged from 0.1 to 1.0 cm/sec; effective half life of /sup 131/I on grass of 3.5 days and 5.5 days; the time of peak activity in milk at two days following a release; milk-grass ratio (C/1:C/g); total /sup 131/I secreted in milk by cows to that ingested by cows; adult human thyroid uptake fraction (inhalation); and based on a breathing rate of 20 m/sup 3//24 hours, the ratio between infinity mills ingestion dose and infinity inhalation dose for a single release was calculated. Data, descriptions of methods, and calculations are reported. Discussions of resuspension factors and particle sizes and behavior are also included.

  12. Accelerated testing for studying pavement design and performance (FY 2002) : research summary.

    Science.gov (United States)

    2004-01-01

    This report covers the Fiscal Year 2002 project conducted at the Accelerated Testing : Laboratory at Kansas State University. The project was selected and funded by the : Midwest States Accelerated Testing Pooled Fund Program, which includes Iowa, Ka...

  13. High-frequency conductive hearing loss as a diagnostic test for incomplete ossicular discontinuity in non-cholesteatomatous chronic suppurative otitis media.

    Directory of Open Access Journals (Sweden)

    Krishnamurti M A Sarmento

    Full Text Available Chronic suppurative otitis media, with or without cholesteatoma, may lead to erosion of the ossicles and discontinuity of the ossicular chain. In incomplete ossicular discontinuity (IOD, partial erosion of the ossicles occurs, but some sound transmission is noted throughout the ossicular chain. High-frequency conductive hearing loss (HfCHL has been considered a hallmark of incomplete ossicular discontinuity. This study aims to evaluate the use of HfCHL as a preoperative predictor of IOD in patients with non-cholesteatomatous chronic suppurative otitis media. The HfCHL test was defined as the preoperative air-bone gap (ABG at 4 kHz minus the average of the ABG at 0.25 and 0.5 kHz. The test was applied in 328 patients before surgery and compared to intraoperative findings as the gold standard. At surgery, 201 (61.3% patients had an intact ossicular chain, 44 (13.4% had a complete ossicular discontinuity, and 83 (25.3% exhibited an IOD. The best cutoff level was calculated as 10 dB. The HfCHL test to diagnose IOD had a sensitivity of 83% and a specificity of 92% with a post-test probability of 78% and a likelihood ratio of 10.2. We concluded that the HfCHL test is highly effective in predicting IOD in patients with non-cholesteatomatous chronic suppurative otitis media and that it should be used routinely as a screening test prior to surgery.

  14. Coupling heat conduction and radiation in complex 2D and 3D geometries

    Energy Technology Data Exchange (ETDEWEB)

    Peniguel, C [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Rupp, I [SIMULOG, 78 - Guyancourt (France)

    1998-12-31

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author) 6 refs.

  15. Coupling heat conduction and radiation in complex 2D and 3D geometries

    International Nuclear Information System (INIS)

    Peniguel, C.

    1997-01-01

    Thermal radiation is a very important mode of heat transfer in most real industrial systems. A numerical approach coupling radiation (restricted to non participant medium) and conduction is presented. The code (SYRTHES) is able to handle 2D and 3D problems (including cases with symmetries and periodicity). Radiation is solved by a radiosity approach, and conduction by a finite element method. Accurate and efficient algorithms based on a mixing of analytical/numerical integration, and ray tracing techniques are used to compute the view factors. Validation has been performed on numerous test cases. A conjugate residual algorithm solves the radiosity system. An explicit interactive numerical procedure is then used to couple conduction and radiation. No stability problem has been encountered so far. One specificity of SYRTHES is that conduction and radiation are solved on independent grids. This brings much flexibility and allows to keep the number of independent radiation patches at a reasonable level. Several industrial examples are given as illustration. (author)

  16. Drilling and testing specifications for RRL-6, RRL-14, RRL-15 and DC-3

    International Nuclear Information System (INIS)

    Moak, D.J.

    1982-07-01

    RRL-6, RRL-14, RRL-15, and DC-3 will provide data for characterization of the stratigraphy and intraflow structures in the Reference Repository Location. This test specification includes details for the drilling and testing of the boreholes. It includes the predicted stratigraphy, the drilling requirements, description of tests to be conducted, intervals selected for hydrologic testing and a schedule of the drilling and testing activities. 14 refs., 8 figs., 12 tabs

  17. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  18. Conduction velocity of antigravity muscle action potentials.

    Science.gov (United States)

    Christova, L; Kosarov, D; Christova, P

    1992-01-01

    The conduction velocity of the impulses along the muscle fibers is one of the parameters of the extraterritorial potentials of the motor units allowing for the evaluation of the functional state of the muscles. There are no data about the conduction velocities of antigravity muscleaction potentials. In this paper we offer a method for measuring conduction velocity of potentials of single MUs and the averaged potentials of the interference electromiogram (IEMG) lead-off by surface electrodes from mm. sternocleidomastoideus, trapezius, deltoideus (caput laterale) and vastus medialis. The measured mean values of the conduction velocity of antigravity muscles potentials can be used for testing the functional state of the muscles.

  19. High Thermal Conductivity Materials

    CERN Document Server

    Shinde, Subhash L

    2006-01-01

    Thermal management has become a ‘hot’ field in recent years due to a need to obtain high performance levels in many devices used in such diverse areas as space science, mainframe and desktop computers, optoelectronics and even Formula One racing cars! Thermal solutions require not just taking care of very high thermal flux, but also ‘hot spots’, where the flux densities can exceed 200 W/cm2. High thermal conductivity materials play an important role in addressing thermal management issues. This volume provides readers a basic understanding of the thermal conduction mechanisms in these materials and discusses how the thermal conductivity may be related to their crystal structures as well as microstructures developed as a result of their processing history. The techniques for accurate measurement of these properties on large as well as small scales have been reviewed. Detailed information on the thermal conductivity of diverse materials including aluminum nitride (AlN), silicon carbide (SiC), diamond, a...

  20. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    International Nuclear Information System (INIS)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior

  1. Fuels for research and test reactors, status review: July 1982

    International Nuclear Information System (INIS)

    Stahl, D.

    1982-12-01

    A thorough review is provided on nuclear fuels for steady-state thermal research and test reactors. The review was conducted to provide a documented data base in support of recent advances in research and test reactor fuel development, manufacture, and demonstration in response to current US policy on availability of enriched uranium. The review covers current fabrication practice, fabrication development efforts, irradiation performance, and properties affecting fuel utilization, including thermal conductivity, specific heat, density, thermal expansion, corrosion, phase stability, mechanical properties, and fission-product release. The emphasis is on US activities, but major work in Europe and elsewhere is included. The standard fuel types discussed are the U-Al alloy, UZrH/sub x/, and UO 2 rod fuels. Among new fuels, those given major emphasis include H 3 Si-Al dispersion and UO 2 caramel plate fuels

  2. What We Know about Software Test Maturity and Test Process Improvement

    NARCIS (Netherlands)

    Garousi, Vahid; Felderer, Michael; Hacaloglu, Tuna

    2018-01-01

    In many companies, software testing practices and processes are far from mature and are usually conducted in an ad hoc fashion. Such immature practices lead to negative outcomes - for example, testing that doesn't detect all the defects or that incurs cost and schedule overruns. To conduct test

  3. Why Citizen Science Without Usability Testing Will Underperform

    Science.gov (United States)

    Romano, C.; Gay, P.; Owens, R.; Burlea, G.

    2017-12-01

    Citizen science projects must undergo usability testing and optimization if they are to meet their stated goals. This presentation will include video of usability tests conducted upon citizen science websites. Usability testing is essential to the success of online interaction, however, citizen science projects have just begun to include this critical activity. Interaction standards in citizen science lag behind those of commercial interests, and published research on this topic is limited. Since online citizen science is by definition, an exchange of information, a clear understanding of how users experience an online project is essential to informed decision-making. Usability testing provides that insight. Usability testing collects data via direct observation of a person while she interacts with a digital product, such as a citizen science website. The test participant verbalizes her thoughts while using the website or application; the moderator follows the participant and captures quantitative measurement of the participant's confidence of success as she advances through the citizen science project. Over 15 years of usability testing, we have observed that users who do not report a consistent sense of progress are likely to abandon a website after as few as three unrewarding interactions. Since citizen science is also a voluntary activity, ensuring seamless interaction for users is mandatory. Usability studies conducted on citizen science websites demonstrate that project teams frequently underestimate a user's need for context and ease of use. Without usability testing, risks to online citizen science projects include high bounce rate (users leave the website without taking any action), abandonment (of the website, tutorials, registration), misunderstanding instructions (causing disorientation and erroneous conclusions), and ultimately, underperforming projects.

  4. Virtual Turbine Engine Test Bench Using MGET Test Device

    Science.gov (United States)

    Kho, Seonghee; Kong, Changduk; Ki, Jayoung

    2015-05-01

    Test device using virtual engine simulator can help reduce the number of engine tests through tests similar to the actual engine tests and repeat the test under the same condition, and thus reduce the engine maintenance and operating costs [1]. Also, as it is possible to easily implement extreme conditions in which it is hard to conduct actual tests, it can prevent engine damages that may happen during the actual engine test under such conditions. In this study, an upgraded MGET test device was developed that can conduct both real and virtual engine test by applying real-time engine model to the existing MGET test device that was developed and has been sold by the Company. This newly developed multi-purpose MGET test device is expected to be used for various educational and research purposes.

  5. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  6. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  7. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  8. Development of a Novel Bone Conduction Verification Tool Using a Surface Microphone: Validation With Percutaneous Bone Conduction Users.

    Science.gov (United States)

    Hodgetts, William; Scott, Dylan; Maas, Patrick; Westover, Lindsey

    2018-03-23

    To determine if a newly-designed, forehead-mounted surface microphone would yield equivalent estimates of audibility when compared to audibility measured with a skull simulator for adult bone conduction users. Data was analyzed using a within subjects, repeated measures design. There were two different sensors (skull simulator and surface microphone) measuring the same hearing aid programmed to the same settings for all subjects. We were looking for equivalent results. Twenty-one adult percutaneous bone conduction users (12 females and 9 males) were recruited for this study. Mean age was 54.32 years with a standard deviation of 14.51 years. Nineteen of the subjects had conductive/mixed hearing loss and two had single-sided deafness. To define audibility, we needed to establish two things: (1) in situ-level thresholds at each audiometric frequency in force (skull simulator) and in sound pressure level (SPL; surface microphone). Next, we measured the responses of the preprogrammed test device in force on the skull simulator and in SPL on the surface mic in response to pink noise at three input levels: 55, 65, and 75 dB SPL. The skull simulator responses were converted to real head force responses by means of an individual real head to coupler difference transform. Subtracting the real head force level thresholds from the real head force output of the test aid yielded the audibility for each audiometric frequency for the skull simulator. Subtracting the SPL thresholds from the surface microphone from the SPL output of the test aid yielded the audibility for each audiometric frequency for the surface microphone. The surface microphone was removed and retested to establish the test-retest reliability of the tool. We ran a 2 (sensor) × 3 (input level) × 10 (frequency) mixed analysis of variance to determine if there were any significant main effects and interactions. There was a significant three-way interaction, so we proceeded to explore our planned comparisons

  9. Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU UP-1 Wells 299-W19-48, 699-30-66, and 699-36-70B

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Newcomer, Darrell R.

    2010-06-15

    This report presents test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) UP-1 wells: 299-W19-48 (C4300/Well K), 699-30-66 (C4298/Well R), and 699-36-70B (C4299/Well P). These wells are located within, adjacent to, and to the southeast of the Hanford Site 200-West Area. The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OU UP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.

  10. Electrical insulation and conduction coating for fusion experimental devices

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko; Abe, Tetsuya; Murakami, Yoshio

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al 2 O 3 , while Cr 3 C 2 -NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs

  11. Pre-test evaluation of LLTR Series II Test A-6

    International Nuclear Information System (INIS)

    Knittle, D.

    1980-11-01

    Purpose of this report is to present pre-test predictions of pressure histories for the A6 test to be conducted in the Large Leak Test Facility (LLTF) at the Energy Technology Engineering Center. A6 is part of a test program being conducted to evaluate the effects of leaks produced by a double-ended guillotine rupture of a single tube. A6 will provide data on the CRBR prototypical double rupture disc performance

  12. Conductive Carbon Nanotube Inks for Use with Desktop Inkjet Printing Technology

    Science.gov (United States)

    Roberson, Luke; Williams, Martha; Tate, LaNetra; Fortier, Craig; Smith, David; Davia, Kyle; Gibson, Tracy; Snyder, Sarah

    2013-01-01

    Inkjet printing is a common commercial process. In addition to the familiar use in printing documents from computers, it is also used in some industrial applications. For example, wire manufacturers are required by law to print the wire type, gauge, and safety information on the exterior of each foot of manufactured wire, and this is typically done with inkjet or laser printers. The goal of this work was the creation of conductive inks that can be applied to a wire or flexible substrates via inkjet printing methods. The use of inkjet printing technology to print conductive inks has been in testing for several years. While researchers have been able to get the printing system to mechanically work, the application of conductive inks on substrates has not consistently produced adequate low resistances in the kilohm range. Conductive materials can be applied using a printer in single or multiple passes onto a substrate including textiles, polymer films, and paper. The conductive materials are composed of electrical conductors such as carbon nanotubes (including functionalized carbon nanotubes and metal-coated carbon nanotubes); graphene, a polycyclic aromatic hydrocarbon (e.g., pentacene and bisperipentacene); metal nanoparticles; inherently conductive polymers (ICP); and combinations thereof. Once the conductive materials are applied, the materials are dried and sintered to form adherent conductive materials on the substrate. For certain formulations, increased conductivity can be achieved by printing on substrates supported by low levels of magnetic field alignment. The adherent conductive materials can be used in applications such as damage detection, dust particle removal, smart coating systems, and flexible electronic circuitry. By applying alternating layers of different electrical conductors to form a layered composite material, a single homogeneous layer can be produced with improved electrical properties. It is believed that patterning alternate layers of

  13. The conductivity of neonatal piglet skulls

    International Nuclear Information System (INIS)

    Pant, Shilpa; Te, Tang; Tucker, Aaron; Sadleir, Rosalind J

    2011-01-01

    We report the first measured values of conductivities for neonatal mammalian skull samples. We measured the average radial (normal to the skull surface) conductivity of fresh neonatal piglet skull samples at 1 kHz and found it to be around 30 mS m −1 at ambient room temperatures of about 23 °C. Measurements were made on samples of either frontal or parietal cranial bone, using a saline-filled cell technique. The conductivity value we observed was approximately twice the values reported for adult skulls (Oostendorp et al 2000 IEEE Trans. Biomed. Eng. 47 1487–92) using a similar technique, but at a frequency of around 5 Hz. Further, we found that the conductivity of skull fragments increased linearly with thickness. We found evidence that this was related to differences in composition between the frontal and parietal bone samples tested, which we believe is because frontal bones contained a larger fraction of higher conductivity cancellous bone material

  14. Recent package testing successes at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Ludwig, S.B.; Singley, P.T.; Michelhaugh, R.D.; Hawk, M.B.; Shappert, L.B.

    2004-01-01

    Oak Ridge National Laboratory (ORNL)'s history of testing of radioactive material packages dates back to the early 1960s, and includes the testing of hundreds of different packages of all shapes and sizes. This paper provides an overview of ORNL's new Packaging Research Facility (PRF) at the National Transportation Research Center (NTRC), and describes recent package testing successes conducted at the NTRC from September 2002 to September 2003

  15. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  16. Nondestructive testing methods for 55-gallon, waste storage drums

    International Nuclear Information System (INIS)

    Ferris, R.H.; Hildebrand, B.P.; Hockey, R.L.; Riechers, D.M.; Spanner, J.C.; Duncan, D.R.

    1993-06-01

    The Westinghouse Hanford Company (WHC) authorized Pacific Northwest Laboratory (PNL) to conduct a feasibility study to identify promising nondestructive testing (NDT) methods for detecting general and localized (both pitting and pinhole) corrosion in the 55-gal drums that are used to store solid waste materials at the Hanford Site. This document presents results obtained during a literature survey, identifies the relevant reference materials that were reviewed, provides a technical description of the methods that were evaluated, describes the laboratory tests that were conducted and their results, identifies the most promising candidate methods along with the rationale for these selections, and includes a work plan for recommended follow-on activities. This report contains a brief overview and technical description for each of the following NDT methods: magnetic testing techniques; eddy current testing; shearography; ultrasonic testing; radiographic computed tomography; thermography; and leak testing with acoustic detection

  17. 7 CFR 97.157 - Professional conduct.

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS... appearing before the Office shall conform to the standards of ethical and professional conduct, generally...

  18. Ground test program for a full-size solar dynamic heat receiver

    Science.gov (United States)

    Sedgwick, L. M.; Kaufmann, K. J.; Mclallin, K. L.; Kerslake, T. W.

    1991-01-01

    Test hardware, facilities, and procedures were developed to conduct ground testing of a full-size, solar dynamic heat receiver in a partially simulated, low earth orbit environment. The heat receiver was designed to supply 102 kW of thermal energy to a helium and xenon gas mixture continuously over a 94 minute orbit, including up to 36 minutes of eclipse. The purpose of the test program was to quantify the receiver thermodynamic performance, its operating temperatures, and thermal response to changes in environmental and power module interface boundary conditions. The heat receiver was tested in a vacuum chamber using liquid nitrogen cold shrouds and an aperture cold plate. Special test equipment was designed to provide the required ranges in interface boundary conditions that typify those expected or required for operation as part of the solar dynamic power module on the Space Station Freedom. The support hardware includes an infrared quartz lamp heater with 30 independently controllable zones and a closed-Brayton cycle engine simulator to circulate and condition the helium-xenon gas mixture. The test article, test support hardware, facilities, and instrumentation developed to conduct the ground test program are all described.

  19. Supercritical water oxidation benchscale testing metallurgical analysis report

    International Nuclear Information System (INIS)

    Norby, B.C.

    1993-02-01

    This report describes metallurgical evaluation of witness wires from a series of tests using supercritical water oxidation (SCWO) to process cutting oil containing a simulated radionuclide. The goal of the tests was to evaluate the technology's ability to process a highly chlorinated waste representative of many mixed waste streams generated in the DOE complex. The testing was conducted with a bench-scale SCWO system developed by the Modell Development Corporation. Significant test objectives included process optimization for adequate destruction efficiency, tracking the radionuclide simulant and certain metals in the effluent streams, and assessment of reactor material degradation resulting from processing a highly chlorinated waste. The metallurgical evaluation described herein includes results of metallographic analysis and Scanning Electron Microscopy analysis of witness wires exposed to the SCWO environment for one test series

  20. Preliminary hazard analysis for the Brayton Isotope Ground Demonstration System (including vacuum test chamber)

    International Nuclear Information System (INIS)

    Miller, L.G.

    1975-01-01

    The Preliminary Hazard Analysis (PHA) of the BIPS-GDS is a tabular summary of hazards and undesired events which may lead to system damage or failure and/or hazard to personnel. The PHA reviews the GDS as it is envisioned to operate in the Vacuum Test Chamber (VTC) of the GDS Test Facility. The VTC and other equipment which will comprise the test facility are presently in an early stage of preliminary design and will undoubtedly undergo numerous changes before the design is frozen. The PHA and the FMECA to follow are intended to aid the design effort by identifying areas of concern which are critical to the safety and reliability of the BIPS-GDS and test facility

  1. Thermal conductivity of spray-on foam insulations for aerospace applications

    Science.gov (United States)

    Barrios, Matt; Vanderlaan, Mark; Van Sciver, Steven

    2012-06-01

    A guarded-hot-plate apparatus [1] has been developed to measure the thermal conductivity of spray-on foam insulations (SOFI) at temperatures ranging from 30 K to 300 K. The foam tested in the present study is NCFI 24-124, a polyisocyanurate foam used on the External Tanks of the Space Shuttle. The foam was tested first in ambient pressure air, then evacuated and tested once more. These thermal conductivities were compared to the thermal conductivity taken from a sample immediately after being subjected to conditions similar to those experienced by the foam while on the launch pad at Kennedy Space Center. To mimic the conditions experienced on the launch pad, an apparatus was built to enclose one side of the foam sample in a warm, humid environment while the other side of the sample contacts a stainless steel surface held at 77 K. The thermal conductivity data obtained is also compared to data found in the literature.

  2. Mechanical property and conductivity changes in several copper alloys after 13.5 dpa neutron irradiation

    International Nuclear Information System (INIS)

    Ames, M.; Kohse, G.; Lee, T.S.; Grant, N.J.; Harling, O.K.

    1986-01-01

    A scoping experiment in which 25 different copper materials of 17 alloy compositions were irradiated to approx.13.5 dpa approx.400 0 C in a fast reactor is described. The materials include rapidly solidified (RS) alloys, with and without oxide dispersion strengthening, as well as conventionally processed alloys. Immersion density (swelling), electrical conductivity (which can be related to thermal conductivity), and yield stress and ductility by miniature disk bend testing have been measured before and after irradiation. It was found, in general, that the Rs alloys are stable under irradiation to 13.5 dpa, showing small conductivity changes and little or no swelling. Reduction of strength and ductility, in post-irradiation tests at the irradiation temperature, are not generally observed. Some conventionally processed alloys also performed well, although irradiation softening and swelling of several percent were observed in some cases, and pure copper swelled in excess of 5%. It is concluded that a number of copper alloys should receive further study, and that higher dose irradiations will be required to establish the limits of swelling suppression in these alloys

  3. Standard test method for tension testing of structural alloys in liquid helium

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method describes procedures for the tension testing of structural alloys in liquid helium. The format is similar to that of other ASTM tension test standards, but the contents include modifications for cryogenic testing which requires special apparatus, smaller specimens, and concern for serrated yielding, adiabatic heating, and strain-rate effects. 1.2 To conduct a tension test by this standard, the specimen in a cryostat is fully submerged in normal liquid helium (He I) and tested using crosshead displacement control at a nominal strain rate of 10−3 s−1 or less. Tests using force control or high strain rates are not considered. 1.3 This standard specifies methods for the measurement of yield strength, tensile strength, elongation, and reduction of area. The determination of the elastic modulus is treated in Test Method E 111. Note 1—The boiling point of normal liquid helium (He I) at sea level is 4.2 K (−269°C or −452.1°F or 7.6°R). It decreases with geographic elevation and is...

  4. Test procedures and instructions for Hanford tank waste supernatant cesium removal

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, D.W., Westinghouse Hanford

    1996-05-31

    This document provides specific test procedures and instructions to implement the test plan for the preparation and conduct of a cesium removal test using Hanford Double-Shell Slurry Feed supernatant liquor from tank 251-AW-101 in a bench-scale column.Cesium sorbents to be tested include resorcinol-formaldehyde resin and crystalline silicotitanate. The test plan for which this provides instructions is WHC-SD-RE-TP-022, Hanford Tank Waste Supernatant Cesium Removal Test Plan.

  5. Fabrication and analysis of small-scale thermal energy storage with conductivity enhancement

    International Nuclear Information System (INIS)

    Thapa, Suvhashis; Chukwu, Sam; Khaliq, Abdul; Weiss, Leland

    2014-01-01

    Highlights: • Useful thermal conductivity envelope established for small scale TES. • Paraffin conductivity enhanced from .5 to 3.8 W/m K via low-cost copper insert. • Conductivity increase beyond 5 W/m K shows diminished returns. • Storage with increased conductivity lengthened thermoelectric output up to 247 s. - Abstract: The operation and useful operating parameters of a small-scale Thermal Energy Storage (TES) device that collects and stores heat in a Phase Change Material (PCM) is explored. The PCM utilized is an icosane wax. A physical device is constructed on the millimeter scale to examine specific effects of low-cost thermal conductivity enhancements that include copper foams and other metallic inserts. Numerical methods are utilized to establish useful operating range of small-scale TES devices in general, and the limits of thermal conductivity enhancement on thermoelectric operation specifically. Specific attention is paid to the manufacturability of the various constructs as well as the resulting thermal conductivity enhancement. A maximum thermal conductivity of 3.8 W/m K is achieved in experimental testing via copper foam enhancement. A simplified copper matrix achieves conductivity of 3.7 W/m K and allows significantly reduced fabrication effort. These results compare favorably to baseline wax conductivity of .5 W/m K. Power absorption is recorded of about 900 W/m 2 . Modeling reveals diminishing returns beyond 4–6 W/m K for devices on this scale. Results show the system capable of extending thermoelectric operation several minutes through the use of thermal energy storage techniques within the effective conductivity ranges

  6. Hydraulic Conductivity of Residual Soil-Cement Mix

    Science.gov (United States)

    Govindasamy, P.; Taha, M. R.

    2016-07-01

    In Malaysia, although there are several researches on engineering properties of residual soils, however study on the hydraulic conductivity properties of metasedimentary residual soils is still lacking. Construction of containment walls like slurry wall techniques can be achieved with hydraulic conductivity of approximately 5 x 10-7cm/sec. The objectives of the study were to determine the physical properties of metasedimentary residual soils and to determine the influence of 1%, 3%, 5% and 10% of cement on hydraulic conductivity parameters. The coefficient of hydraulic conductivity of the soil naturally and soil-cement mixtures were determined by using the falling head test. According to the test, the hydraulic conductivity of the original soil was 4.16 x 10-8 m/s. The value decreases to 3.89 x 10-8 m/s, 2.78 x 10-8 m/s then 6.83 x 10-9 m/s with the addition of 1%, 3% and 5% of cement additives, respectively. During the hydration process, cement hydrates is formed followed by the increase in pH value and Ca(OH)2 which will alter the modification of pores size and distribution. When the quantity of cement increases, the pores size decrease. But, the addition of 10% cement gives an increased hydraulic conductivity value to 2.78 x 10-8 m/s. With 10%, the pore size increase might due to flocculation and agglomeration reaction. The generated hydraulic conductivity values will indirectly become a guide in the preliminary soil cement stabilization to modify the properties of the soil to become more like the properties of a soft rock.1. Introduction

  7. Thermally conductive cementitious grouts for geothermal heat pumps. Progress report FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Allan, M.L.; Philippacopoulos, A.J.

    1998-11-01

    Research commenced in FY 97 to determine the suitability of superplasticized cement-sand grouts for backfilling vertical boreholes used with geothermal heat pump (GHP) systems. The overall objectives were to develop, evaluate and demonstrate cementitious grouts that could reduce the required bore length and improve the performance of GHPs. This report summarizes the accomplishments in FY 98. The developed thermally conductive grout consists of cement, water, a particular grade of silica sand, superplasticizer and a small amount of bentonite. While the primary function of the grout is to facilitate heat transfer between the U-loop and surrounding formation, it is also essential that the grout act as an effective borehole sealant. Two types of permeability (hydraulic conductivity) tests was conducted to evaluate the sealing performance of the cement-sand grout. Additional properties of the proposed grout that were investigated include bleeding, shrinkage, bond strength, freeze-thaw durability, compressive, flexural and tensile strengths, elastic modulus, Poisson`s ratio and ultrasonic pulse velocity.

  8. Pharmacists performing quality spirometry testing: an evidence based review.

    Science.gov (United States)

    Cawley, Michael J; Warning, William J

    2015-10-01

    The scope of pharmacist services for patients with pulmonary disease has primarily focused on drug related outcomes; however pharmacists have the ability to broaden the scope of clinical services by performing diagnostic testing including quality spirometry testing. Studies have demonstrated that pharmacists can perform quality spirometry testing based upon international guidelines. The primary aim of this review was to assess the published evidence of pharmacists performing quality spirometry testing based upon American Thoracic Society/European Respiratory Society (ATS/ERS) guidelines. In order to accomplish this, the description of evidence and type of outcome from these services were reviewed. A literature search was conducted using five databases [PubMed (1946-January 2015), International Pharmaceutical Abstracts (1970 to January 2015), Cumulative Index of Nursing and Allied Health Literature, Cochrane Central Register of Controlled Trials and Cochrane Database of Systematic Reviews] with search terms including pharmacy, spirometry, pulmonary function, asthma or COPD was conducted. Searches were limited to publications in English and reported in humans. In addition, Uniform Resource Locators and Google Scholar searches were implemented to include any additional supplemental information. Eight studies (six prospective multi-center trials, two retrospective single center studies) were included. Pharmacists in all studies received specialized training in performing spirometry testing. Of the eight studies meeting inclusion and exclusion criteria, 8 (100%) demonstrated acceptable repeatability of spirometry testing based upon standards set by the ATS/ERS guidelines. Acceptable repeatability of seven studies ranged from 70 to 99% consistent with published data. Available evidence suggests that quality spirometry testing can be performed by pharmacists. More prospective studies are needed to add to the current evidence of quality spirometry testing performed by

  9. Electron thermal conduction in LASNEX

    International Nuclear Information System (INIS)

    Munro, D.; Weber, S.

    1994-01-01

    This report is a transcription of hand-written notes by DM dated 29 January 1986, transcribed by SW, with some clarifying comments added and details specific to running the LASNEX code deleted. Reference to the esoteric measurement units employed in LASNEX has also been deleted by SW (hopefully, without introducing errors in the numerical constants). The report describes the physics equations only, and only of electron conduction. That is, it does not describe the numerical method, which may be finite difference or finite element treatment in space, and (usually) implicit treatment in time. It does not touch on other electron transport packages which are available, and which include suprathermal electrons, nonlocal conduction, Krook model conduction, and modifications to electron conduction by magnetic fields. Nevertheless, this model is employed for the preponderance of LASNEX simulations

  10. Design of high temperature Engineering Test Reactor (HTTR)

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tanaka, Toshiyuki; Sudo, Yukio

    1994-09-01

    Construction of High Temperature Engineering Test Reactor (HTTR) is now underway to establish and upgrade basic technologies for HTGRs and to conduct innovative basic research at high temperatures. The HTTR is a graphite-moderated and helium gas-cooled reactor with 30 MW in thermal output and outlet coolant temperature of 850degC for rated operation and 950degC for high temperature test operation. It is planned to conduct various irradiation tests for fuels and materials, safety demonstration tests and nuclear heat application tests. JAERI received construction permit of HTTR reactor facility in February 1990 after 22 months of safety review. This report summarizes evaluation of nuclear and thermal-hydraulic characteristics, design outline of major systems and components, and also includes relating R and D result and safety evaluation. Criteria for judgment, selection of postulated events, major analytical conditions for anticipated operational occurrences and accidents, computer codes used in safety analysis and evaluation of each event are presented in the safety evaluation. (author)

  11. Making Complex Electrically Conductive Patterns on Cloth

    Science.gov (United States)

    Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert

    2008-01-01

    A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.

  12. Syphilis testing practices in the Americas.

    Science.gov (United States)

    Trinh, Thuy T; Kamb, Mary L; Luu, Minh; Ham, D Cal; Perez, Freddy

    2017-09-01

    To present the findings of the Pan American Health Organization's 2014 survey on syphilis testing policies and practices in the Americas. Representatives of national/regional reference and large, lower-level laboratories from 35 member states were invited to participate. A semi-structured, electronically administered questionnaire collected data on syphilis tests, algorithms, equipment/commodities, challenges faced and basic quality assurance (QA) strategies employed (i.e. daily controls, standard operating procedures, technician training, participating in external QA programmes, on-site evaluations). The 69 participating laboratories from 30 (86%) member states included 41 (59%) national/regional reference and 28 (41%) lower-level laboratories. Common syphilis tests conducted were the rapid plasma reagin (RPR) (62% of surveyed laboratories), venereal disease research laboratory (VDRL) (54%), fluorescent treponemal antibody absorption (FTA-ABS) (41%) and Treponema pallidum haemagglutination assay (TPHA) (32%). Only three facilities reported using direct detection methods, and 28 (41% overall, 32% of lower-level facilities) used rapid tests. Most laboratories (62%) used only traditional testing algorithms (non-treponemal screening and treponemal confirmatory testing); however, 12% used only a reverse sequence algorithm (treponemal test first), and 14% employed both algorithms. Another nine (12%) laboratories conducted only one type of serologic test. Although most reference (97%) and lower-level (89%) laboratories used at least one QA strategy, only 16% reported using all five basic strategies. Commonly reported challenges were stock-outs of essential reagents or commodities (46%), limited staff training (73%) and insufficient equipment (39%). Many reference and clinical laboratories in the Americas face challenges in conducting appropriate syphilis testing and in ensuring quality of testing. © 2017 John Wiley & Sons Ltd The Pan-American Health Organization retains

  13. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  14. Considerations When Including Students with Disabilities in Test Security Policies. NCEO Policy Directions. Number 23

    Science.gov (United States)

    Lazarus, Sheryl; Thurlow, Martha

    2015-01-01

    Sound test security policies and procedures are needed to ensure test security and confidentiality, and to help prevent cheating. In this era when cheating on tests draws regular media attention, there is a need for thoughtful consideration of the ways in which possible test security measures may affect accessibility for some students with…

  15. A study on the strength properties of the rock mass based on triaxial tests conducted at the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Aoyagi, Kazuhei; Ishii, Eiichi; Fujita, Tomoo; Kondo, Keiji; Tsusaka, Kimikazu

    2015-03-01

    Japan Atomic Energy Agency (JAEA) has been conducting R and D activities at the off-site URL at Horonobe, Hokkaido, Japan in order to enhance reliability of technology related to deep geological disposal of HLW in sedimentary rocks. In this report, strength properties (cohesion and frictional angle) of rock masses in the Koetoi and Wakkanai formations are investigated on the basis of triaxial tests conducted in the Horonobe URL considering the relative depths to the formation. Strength properties investigated in this report are compared with the properties obtained in the designing phase. The cohesion in the Koetoi Formation increased with increasing depth. On the other hand, in the transition zone of the Wakkanai Formation, the cohesion increased significantly in the shallow Wakkanai formation (transition zone). Below the transition zone, the cohesion does not significantly depend on the depth. Thus the strength properties between two formations were found to be different. Comparing the cohesions and frictional angles determined from triaxial tests with the values determined in the designing phase, there was no agreement between these values in almost all the depth. Thus it is essential to determine cohesion and frictional angle considering the relative depths to the formation for detailed understanding of strength properties of rock mass. A CD-ROM is attached as an appendix. (J.P.N.)

  16. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    International Nuclear Information System (INIS)

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static

  17. Nevada Test Site, Nye County, Nevada. Final environmental impact statement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-09-01

    This environmental statement for the Nevada Test Site (NTS) considers underground nuclear detonations with yields of one megaton or less, along with the preparations necessary for such detonations. The testing activities considered also include other continuing and intermittent activities, both nuclear and nonnuclear, which can best be conducted in the remote and controlled area of the Nevada Test Site. These activities are listed, with emphasis on weapons testing programs which do not remain static.

  18. Addendum to environmental monitoring plan Nevada Test Site and support facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-11-01

    This 1992 Addendum to the ``Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,`` Report No. DOE/NV/1 0630-28 (EMP) applies to the US Department of Energy`s (DOE`s) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Field Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1992 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards.

  19. Addendum to Environmental Monitoring Plan, Nevada Test Site and Support Facilities

    International Nuclear Information System (INIS)

    1993-11-01

    This 1993 Addendum to the ''Environmental Monitoring Plan Nevada Test Site and Support Facilities -- 1991,'' Report No. DOE/NV/10630-28 (EMP) applies to the US Department of Energy's (DOE's) operations on the Continental US (including Amchitka Island, Alaska) that are under the purview of the DOE Nevada Operations Office (DOE/NV). The primary purpose of these operations is the conduct of the nuclear weapons testing program for the DOE and the Department of Defense. Since 1951, these tests have been conducted principally at the Nevada Test Site (NTS), which is located approximately 100 miles northwest of Las Vegas, Nevada. In accordance with DOE Order 5400.1, this 1993 Addendum to the EMP brings together, in one document, updated information and/or new sections to the description of the environmental activities conducted at the NTS by user organizations, operations support contractors, and the US Environmental Protection Agency (EPA) originally published in the EMP. The EPA conducts both the offsite environmental monitoring program around the NTS and post-operational monitoring efforts at non-NTS test locations used between 1961 and 1973 in other parts of the continental US. All of these monitoring activities are conducted under the auspices of the DOE/NV, which has the stated policy of conducting its operations in compliance with both the letter and the spirit of applicable environmental statutes, regulations, and standards

  20. Integrated Data Collection Analysis (IDCA) Program - SSST Testing Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sandstrom, Mary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Geoffrey W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Preston, Daniel N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pollard, Colin J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Warner, Kirstin F. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Remmers, Daniel L. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Sorensen, Daniel N. [Naval Surface Warfare Center (NSWC), Indian Head, MD (United States). Indian Head Division; Whinnery, LeRoy L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Phillips, Jason J. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Shelley, Timothy J. [Bureau of Alcohol, Tobacco and Firearms (ATF), Huntsville, AL (United States); Reyes, Jose A. [Applied Research Associates, Tyndall AFB, FL (United States); Hsu, Peter C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, John G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-03-25

    The Integrated Data Collection Analysis (IDCA) program is conducting a proficiency study for Small- Scale Safety and Thermal (SSST) testing of homemade explosives (HMEs). Described here are the methods used for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis during the IDCA program. These methods changed throughout the Proficiency Test and the reasons for these changes are documented in this report. The most significant modifications in standard testing methods are: 1) including one specified sandpaper in impact testing among all the participants, 2) diversifying liquid test methods for selected participants, and 3) including sealed sample holders for thermal testing by at least one participant. This effort, funded by the Department of Homeland Security (DHS), is putting the issues of safe handling of these materials in perspective with standard military explosives. The study is adding SSST testing results for a broad suite of different HMEs to the literature. Ultimately the study will suggest new guidelines and methods and possibly establish the SSST testing accuracies needed to develop safe handling practices for HMEs. Each participating testing laboratory uses identical test materials and preparation methods wherever possible. The testing performers involved are Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Indian Head Division, Naval Surface Warfare Center, (NSWC IHD), Sandia National Laboratories (SNL), and Air Force Research Laboratory (AFRL/RXQL). These tests are conducted as a proficiency study in order to establish some consistency in test protocols, procedures, and experiments and to compare results when these testing variables cannot be made consistent.

  1. Active Bone Conduction Prosthesis: BonebridgeTM

    Directory of Open Access Journals (Sweden)

    Zernotti, Mario E.

    2015-10-01

    Full Text Available Introduction Bone conduction implants are indicated for patients with conductive and mixed hearing loss, as well as for patients with single-sided deafness (SSD. The transcutaneous technology avoids several complications of the percutaneous bone conduction implants including skin reaction, skin growth over the abutment, and wound infection. The Bonebridge (MED-EL, Austria prosthesis is a semi-implantable hearing system: the BCI (Bone Conduction Implant is the implantable part that contains the Bone Conduction-Floating Mass Transducer (BC-FMT, which applies the vibrations directly to the bone; the external component is the audio processor Amadé BB (MED-EL, Austria, which digitally processes the sound and sends the information through the coil to the internal part. Bonebridge may be implanted through three different approaches: the transmastoid, the retrosigmoid, or the middle fossa approach. Objective This systematic review aims to describe the world́s first active bone conduction implant system, Bonebridge, as well as describe the surgical techniques in the three possible approaches, showing results from implant centers in the world in terms of functional gain, speech reception thresholds and word recognition scores. Data Synthesis The authors searched the MEDLINE database using the key term Bonebridge. They selected only five publications to include in this systematic review. The review analyzes 20 patients that received Bonebridge implants with different approaches and pathologies. Conclusion Bonebridge is a solution for patients with conductive/mixed hearing loss and SSD with different surgical approaches, depending on their anatomy. The system imparts fewer complications than percutaneous bone conduction implants and shows proven benefits in speech discrimination and functional gain.

  2. 9 CFR 146.13 - Testing.

    Science.gov (United States)

    2010-01-01

    ...) Enzyme-linked immunosorbent assay (ELISA). ELISA must be conducted using test kits approved by the... conducted on all ELISA-positive samples. (B) The AGID test must be conducted using reagents approved by the... time reverse transcriptase/polymerase chain reaction (RRT-PCR) assay. (A) The RRT-PCR tests must be...

  3. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  4. Study on thermal conductive BN/novolac resin composites

    International Nuclear Information System (INIS)

    Li, Shasha; Qi, Shuhua; Liu, Nailiang; Cao, Peng

    2011-01-01

    Highlights: → Boron nitride (BN) particles were used to modify novolac resin. → BN particles were pretreated by γ-aminopropyltriethoxysilane. → The thermal conductivity trend of composite almost agrees with the predicted data from the Maxwell-Eucken model. → At BN concentration of 80 wt.%, thermal conductivity value of composite is 4.5 times that of pure novolac resin. → Combined use of the larger and smaller particles with a mass ratio of 1:2 provides the composites with the maximum thermal conductivity among the testing systems. → The composite thermal property also increases with an increase in the BN concentration. - Abstract: In this study, γ-aminopropyltriethoxysilane-treated boron nitride (BN) particles were used to modify novolac resin. The effect of varying the BN concentration, particle size, and hybrid BN fillers with the binary particle size distribution on the thermal conductivity of the composites was investigated. Scanning electron microscopy (SEM) imaging showed homogeneously dispersed treated BN particles in the matrix. Furthermore, the thermal conductivity increased as the BN concentration was increased. This behavior was also observed when the filler size was increased. Experimentally obtained thermal conductivity values agree with the predicted data from the Maxwell-Eucken model well at less than 70 wt.% BN loading. A larger particle size BN-filled novolac resin exhibits a higher thermal conductivity than a smaller particle size BN-filled one. The combined use of 0.5 and 15 μm particles with a mass ratio of 2:1 achieved the maximum thermal conductivity among the testing systems. The thermal resistance properties of the composites were also studied.

  5. Numerical simulations of rubber bearing tests and shaking table tests

    International Nuclear Information System (INIS)

    Hirata, K.; Matsuda, A.; Yabana, S.

    2002-01-01

    Test data concerning rubber bearing tests and shaking table tests of base-isolated model conducted by CRIEPI are provided to the participants of Coordinated Research Program (CRP) on 'Intercomparison of Analysis Methods for predicting the behaviour of Seismically Isolated Nuclear Structure', which is organized by International Atomic Energy Agency (IAEA), for the comparison study of numerical simulation of base-isolated structure. In this paper outlines of the test data provided and the numerical simulations of bearing tests and shaking table tests are described. Using computer code ABAQUS, numerical simulations of rubber bearing tests are conducted for NRBs, LRBs (data provided by CRIEPI) and for HDRs (data provided by ENEA/ENEL and KAERI). Several strain energy functions are specified according to the rubber material test corresponding to each rubber bearing. As for lead plug material in LRB, mechanical characteristics are reevaluated and are made use of. Simulation results for these rubber bearings show satisfactory agreement with the test results. Shaking table test conducted by CRIEPI is of a base isolated rigid mass supported by LRB. Acceleration time histories, displacement time histories of the isolators as well as cyclic loading test data of the LRB used for the shaking table test are provided to the participants of the CRP. Simulations of shaking table tests are conducted for this rigid mass, and also for the steel frame model which is conducted by ENEL/ENEA. In the simulation of the rigid mass model test, where LRBs are used, isolators are modeled either by bilinear model or polylinear model. In both cases of modeling of isolators, simulation results show good agreement with the test results. In the case of the steel frame model, where HDRs are used as isolators, bilinear model and polylinear model are also used for modeling isolators. The response of the model is simulated comparatively well in the low frequency range of the floor response, however, in

  6. Thermomechanical testing of beryllium for the JET/ISX-B beryllium limiter experiment

    International Nuclear Information System (INIS)

    Watson, R.D.; Smith, M.F.; Whitley, J.B.; McDonald, J.M.

    1984-01-01

    Materials testing of S-65-B beryllium has been conducted in support of the beryllium limiter experiment on the ISX-B tokamak. The S-65-B grade of hot-pressed beryllium was chosen over S-200-E because of its superior strength and ductility at elevated temperatures. The testing has included measurement of tensile and yield strength, ductility, Young's Modulus, thermal conductivity, and specific heat from 50 0 C to 700 0 C. Thermal fatigue testing of a 2.5 cm beryllium cube was conducted using an electron beam to apply a heat flux of 2.5 kw/cm 2 for 0.3 second pulses for 1500 cycles. Results from the tests are compared to elastic-plastic finite element stress calculations. The testing indicates that the ISX-B beryllium limiter should survive the tokamak environment without serious structural failure, although some surface cracking is expected to occur. (author)

  7. Cybersecurity managing systems, conducting testing, and investigating intrusions

    CERN Document Server

    Mowbray, Thomas J

    2013-01-01

    A must-have, hands-on guide for working in the cybersecurity profession Cybersecurity involves preventative methods to protect information from attacks. It requires a thorough understanding of potential threats, such as viruses and other malicious code, as well as system vulnerability and security architecture. This essential book addresses cybersecurity strategies that include identity management, risk management, and incident management, and also serves as a detailed guide for anyone looking to enter the security profession. Doubling as the text for a cybersecurity course, it is also a usef

  8. Field-test programs of borehole plugs in southeastern New Mexico

    International Nuclear Information System (INIS)

    Christensen, C.L.; Peterson, E.W.

    1981-01-01

    This paper gives a general overview of the repository-sealing field test effort being conducted by Sandia National Laboratories in support of the Waste Isolation Pilot Plant in southeast New Mexico. Summary descriptions of supporting activities, such as performance assessment and plugging materials development, are included to create the connection between modeling and laboratory activities as they relate to field results. Results of tests on a portion of a 17-year-old plug (Plug 217) recovered from a mine horizon and the Bell Canyon Test, in which a cement plug was emplaced to isolate a naturally pressurized aquifer, are given. Conclusions from these field plugging tests are included

  9. Test Results and Comparison of Triaxial Strength Testing of Waste Isolation Pilot Plant Clean Salt

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Stuart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    This memorandum documents laboratory thermomechanical triaxial strength testing of Waste Isolation Pilot Plant (WIPP) clean salt. The limited study completed independent, adjunct laboratory tests in the United States to assist in validating similar testing results being provided by the German facilities. The testing protocol consisted of completing confined triaxial, constant strain rate strength tests of intact WIPP clean salt at temperatures of 25°C and 100°C and at multiple confining pressures. The stratigraphy at WIPP also includes salt that has been labeled “argillaceous.” The much larger test matrix conducted in Germany included both the so-called clean and argillaceous salts. When combined, the total database of laboratory results will be used to develop input parameters for models, assess adequacy of existing models, and predict material behavior. These laboratory studies are also consistent with the goals of the international salt repository research program. The goal of this study was to complete a subset of a test matrix on clean salt from the WIPP undertaken by German research groups. The work was performed at RESPEC in Rapid City, South Dakota. A rigorous Quality Assurance protocol was applied, such that corroboration provides the potential of qualifying all of the test data gathered by German research groups.

  10. Duration Test Report for the SWIFT Wind Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, I.; Hur, J.

    2013-01-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. Three turbines where selected for testing at the National Wind Technology Center (NWTC) as a part of round two of the Small Wind Turbine Independent Testing project. Duration testing is one of up to 5 tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification.

  11. Residual radioactive contamination of the test site at Emu from nuclear weapons tests conducted in 1953

    International Nuclear Information System (INIS)

    Maclagan, D.S.; Cooper, M.B.; Duggleby, J.C.

    1979-08-01

    The detailed distributions and soil concentrations of long-lived radionuclides remaining from nuclear weapons trials conducted at Emu in October 1953, are presented. Significant radiation levels due to long-lived neutron activation products in soil, 60 Co and 152 Eu, occur only in the immediate vicinity of the ground zeros of TOTEM 1 and TOTEM 2. It is shown that the levels of contamination due to fallout products in the soil are well below those which would constitute a health hazard to occupants of the area

  12. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  13. Reducing the cost of MWT module technology based on conductive back-sheet foils

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Goris, M.J.A.A.; Eerenstein, W. [ECN Solar Energy, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2013-10-15

    MWT cell and module technology has shown to result in modules with a higher power output than H-pattern modules and to be suitable for use with thin and fragile cells. In this work, the use of low-cost module materials and their effect on module performance and reliability has been assessed. These materials include a conductive back-sheet patterned by milling with no silver plating at the contacts on the foil and no isolation coating on the copper and a low-silver content conductive adhesive. The sensitivity of module performance for the anti-corrosion coating on the copper of the conductive back-sheet is measured, as is the reliability in climate chamber testing of mini-modules made with these materials. The results show that these low cost materials can be used to manufacture module with good performance and reliability. Options are given for further cost reduction.

  14. Conducted and radiated emission tests for fault tolerant power distribution system ECPS-100 developed for PHWR700MW C and I

    International Nuclear Information System (INIS)

    Das, Shantanu; Yadav, Ramnayan

    2016-01-01

    Electronics devices when designed to meet specific requirements, the designers do not generally envisage the amount of electromagnetic interference that this particular device may give as power line conducted noise and radiated noise. After the product is developed, the quantification of the same is carried out in certified EMI-EMC set-up to get these figures of conducted emissions (CE) and radiated emissions (RE), and its mitigation as per limits of the chosen standard. In the latest TM embodiment of Fault Tolerant Power Distribution System ECPS"T"M (Electronics Corporation Power Supply) developed for NPCIL (PHWR700MW plant) we carried out CE and RE tests and quantified the spectrum obtained for CE and RE, and mitigated them as per CISPR22 standards. In this short article we bring out the CE and RE results of the latest product ECPS, done at EMI-EMC Centre of ECIL Hyderabad. (author)

  15. Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  16. Slug Test Characterization Results for Multi-Test/Depth Intervals Conducted During the Drilling of CERCLA Operable Unit OU ZP-1 Wells 299-W11-43, 299-W15-50, and 299-W18-16

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.; Newcomer, Darrell R.

    2010-06-21

    The following report presents test descriptions and analysis results for multiple, stress level slug tests that were performed at selected test/depth intervals within three Operable Unit (OU) ZP-1 wells: 299-W11-43 (C4694/Well H), 299-W15-50 (C4302/Well E), and 299-W18-16 (C4303/Well D). These wells are located within south-central region of the Hanford Site 200-West Area (Figure 1.1). The test intervals were characterized as the individual boreholes were advanced to their final drill depths. The primary objective of the hydrologic tests was to provide information pertaining to the areal variability and vertical distribution of hydraulic conductivity with depth at these locations within the OU ZP-1 area. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor well strategies for OU and Waste Management Area locations.

  17. Effect of hydrophobic microstructured surfaces on conductive ink printing

    International Nuclear Information System (INIS)

    Kim, Seunghwan; Kang, Hyun Wook; Lee, Kyung Heon; Sung, Hyung Jin

    2011-01-01

    Conductive ink was printed on various microstructured substrates to measure the printing quality. Poly-dimethylsiloxane (PDMS) substrates were used to test the printability of the hydrophobic surface material. Microstructured arrays of 10 µm regular PDMS cubes were prepared using the MEMS fabrication technique. The gap distance between the cubes was varied from 10 to 40 µm. The printing wettability of the microstructured surfaces was determined by measuring the contact angle of a droplet of silver conductive ink. Screen-printing methods were used in the conductive line printing experiment. Test line patterns with finely varying widths (30–250 µm) were printed repeatedly, and the conductivity of the printed lines was measured. The printability, which was defined as the ratio of the successfully printed patterns to the total number of printed patterns, was analyzed as a function of the linewidth and the gap distance of the microstructured surfaces

  18. Influence of heat conductivity on the performance of RTV SIR coatings with different fillers

    Energy Technology Data Exchange (ETDEWEB)

    Siderakis, K [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, GR-26110 Patras (Greece); Agoris, D [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Greece, GR-26500, Rion, Greece (Greece); Gubanski, S [High Voltage Laboratory, Department of Electric Power Engineering, Chalmers University of Technology, S-41296, Gothenburg (Sweden)

    2005-10-07

    Room temperature vulcanized silicone rubber (RTV SIR) coatings are employed in order to improve the pollution performance of high voltage ceramic insulators by imparting surface hydrophobicity. In this paper, the performance of three RTV SIR coatings containing different fillers is investigated in a salt-fog test. Alumina trihydrate (ATH) and silica are the fillers included in the formulation, aiming to increase the material endurance to the energy supplied by the surface electrical activity during periods of hydrophobicity loss. The primary action of these fillers is to increase the material heat conductivity, i.e. the amount of energy conducted to the substrate. In addition, in the case of ATH relief is also achieved due to particle decomposition. The results indicate that for the compositions commercially available, where low amounts of fillers are used, and under the conditions of the test, ATH filled coatings performed better than the silica filled ones. This is attributed to ATH decomposition which further relieves the material structure and therefore decelerates material aging.

  19. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  20. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  1. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  2. Printable Transparent Conductive Films for Flexible Electronics.

    Science.gov (United States)

    Li, Dongdong; Lai, Wen-Yong; Zhang, Yi-Zhou; Huang, Wei

    2018-03-01

    Printed electronics are an important enabling technology for the development of low-cost, large-area, and flexible optoelectronic devices. Transparent conductive films (TCFs) made from solution-processable transparent conductive materials, such as metal nanoparticles/nanowires, carbon nanotubes, graphene, and conductive polymers, can simultaneously exhibit high mechanical flexibility, low cost, and better photoelectric properties compared to the commonly used sputtered indium-tin-oxide-based TCFs, and are thus receiving great attention. This Review summarizes recent advances of large-area flexible TCFs enabled by several roll-to-roll-compatible printed techniques including inkjet printing, screen printing, offset printing, and gravure printing using the emerging transparent conductive materials. The preparation of TCFs including ink formulation, substrate treatment, patterning, and postprocessing, and their potential applications in solar cells, organic light-emitting diodes, and touch panels are discussed in detail. The rational combination of a variety of printed techniques with emerging transparent conductive materials is believed to extend the opportunities for the development of printed electronics within the realm of flexible electronics and beyond. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electrical insulation and conduction coating for fusion experimental devices

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori; Tsujimura, Seiji; Toyoda, Masahiko; Inoue, Masahiko [Mitsubishi Heavy Industries, Ltd., Yokohama (Japan); Abe, Tetsuya; Murakami, Yoshio [Japan Atomic Energy Research Inst., Naka (Japan)

    1996-01-01

    The development of electrical insulation and conduction coating methods that can be applied to large components of fusion experimental devices has been investigated. A thermal spraying method is used to coat the insulation or conduction materials on the structural components because of its applicability for large surfaces. The insulation material chosen was Al{sub 2}O{sub 3}, while Cr{sub 3}C{sub 2}-NiCr and WC-NiCr were chosen as conduction materials. These materials were coated on stainless steel substrates to examine the basic characteristics of the coated layers, such as their adhesive strength to the substrate, thermal shock resistance, electrical resistance, dielectric breakdown voltage, and thermal conductivity. It was found that they have sufficient electrical insulation and conduction properties, respectively. In addition, the sliding tests of the coated layers showed adequate frictional properties. The spraying method was tested on a 100- x 1000-mm surface and found to be applicable for large surfaces of experimental fusion devices. 9 refs., 6 figs., 15 tabs.

  4. Motives of Socially Responsible Business Conduct

    NARCIS (Netherlands)

    Graafland, J.J.; Kaptein, M.; Mazereeuw V/d Duijn Schouten, C.

    2010-01-01

    The social and ecological challenges that governments face have raised their interest in socially responsible business conduct (SRBC). In this article we analyze the motives of executives to perform SRBC. We distinguish three types of motives: financial, ethical and altruistic motives. We test the

  5. Second progress report on pre-test calculations for the large block test

    International Nuclear Information System (INIS)

    Lee, K.H.

    1995-01-01

    The US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) is investigating the suitability of the Topopah Spring tuff in the thick vadose zone at Yucca Mountain, Nevada, as a host rock for permanent disposal of high-level radioactive waste. As part of the YMP, a group of field tests, called the Large Block Test (LBT), will be conducted on a large electrically heated block of Topopah Spring tuff. The block will be heated by electrical heaters. The goals of the LBT are to gain information on the coupled thermal-mechanical-hydrological-chemical processes that will be active in the near-field environment of a repository; to provide field data for testing and calibrating models; and to help in the development of measurement systems and techniques. In this second progress report, we present results of the final set of numerical modeling calculations performed in support of the LBT design. The results include block temperatures and heat fluxes across the surfaces. The results are applied primarily to the design of guard heaters to enforce adiabatic conditions along the block walls. Conduction-only runs are adequate to estimate the thermal behavior of the system, because earlier calculations showed that heat transfer in the block is expected to be dominated by conduction. In addition, conduction-only runs can be made at substantially shorter execution times than full hydrothermal runs. We also run a two-dimensional, hydrothermal, discrete fracture model, with 200-μm vertical fractures parallel to the heaters and occurring at a uniform spacing of 30 cm. The results show the development of distinct dryout and recondensation zones. The dryout zones are thickest at the fractures and thinnest in the matrix midway between the fractures

  6. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Almen, K.E.; Andersson, J.E.; Carlsson, L.; Hansson, K.; Larsson, N.A.

    1986-12-01

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10 -14 m/s to 1x10 -6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  7. US/Russian Joint Film Test

    Science.gov (United States)

    Slater, Richard

    1996-01-01

    A joint U.S./Russian film test was conducted during MIR Mission 18 to evaluate the effects of radiation on photographic film during long-duration space flights. Two duplicate sets of film were flown on this MIR mission: one set was processed and evaluated by the NASA/JSC Photographic Laboratory, and the other by the RKK Energia's Photographic Laboratory in Moscow. This preliminary report includes only the results of the JSC evaluation (excluding the SN-10 film which was not available for evaluation at the time this report was written). The final report will include an evaluation by JSC of the SN-10 film and an evaluation of the test data by the RKK Energia. ISC's evaluation of the test data showed the positive film flown was damaged very little when exposed to approximately 8 rads of radiation. Two of the three negative films were significantly damaged and the third film was damaged only moderately.

  8. Comparison and clinical utility evaluation of four multiple allergen simultaneous tests including two newly introduced fully automated analyzers

    Directory of Open Access Journals (Sweden)

    John Hoon Rim

    2016-04-01

    Full Text Available Background: We compared the diagnostic performances of two newly introduced fully automated multiple allergen simultaneous tests (MAST analyzers with two conventional MAST assays. Methods: The serum samples from a total of 53 and 104 patients were tested for food panels and inhalant panels, respectively, in four analyzers including AdvanSure AlloScreen (LG Life Science, Korea, AdvanSure Allostation Smart II (LG Life Science, PROTIA Allergy-Q (ProteomeTech, Korea, and RIDA Allergy Screen (R-Biopharm, Germany. We compared not only the total agreement percentages but also positive propensities among four analyzers. Results: Evaluation of AdvanSure Allostation Smart II as upgraded version of AdvanSure AlloScreen revealed good concordance with total agreement percentages of 93.0% and 92.2% in food and inhalant panel, respectively. Comparisons of AdvanSure Allostation Smart II or PROTIA Allergy-Q with RIDA Allergy Screen also showed good concordance performance with positive propensities of two new analyzers for common allergens (Dermatophagoides farina and Dermatophagoides pteronyssinus. The changes of cut-off level resulted in various total agreement percentage fluctuations among allergens by different analyzers, although current cut-off level of class 2 appeared to be generally suitable. Conclusions: AdvanSure Allostation Smart II and PROTIA Allergy-Q presented favorable agreement performances with RIDA Allergy Screen, although positive propensities were noticed in common allergens. Keywords: Multiple allergen simultaneous test, Automated analyzer

  9. Failure propagation tests and analysis at PNC

    International Nuclear Information System (INIS)

    Tanabe, H.; Miyake, O.; Daigo, Y.; Sato, M.

    1984-01-01

    Failure propagation tests have been conducted using the Large Leak Sodium Water Reaction Test Rig (SWAT-1) and the Steam Generator Safety Test Facility (SWAT-3) at PNC in order to establish the safety design of the LMFBR prototype Monju steam generators. Test objectives are to provide data for selecting a design basis leak (DBL), data on the time history of failure propagations, data on the mechanism of the failures, and data on re-use of tubes in the steam generators that have suffered leaks. Eighteen fundamental tests have been performed in an intermediate leak region using the SWAT-1 test rig, and ten failure propagation tests have been conducted in the region from a small leak to a large leak using the SWAT-3 test facility. From the test results it was concluded that a dominant mechanism was tube wastage, and it took more than one minute until each failure propagation occurred. Also, the total leak rate in full sequence simulation tests including a water dump was far less than that of one double-ended-guillotine (DEG) failure. Using such experimental data, a computer code, LEAP (Leak Enlargement and Propagation), has been developed for the purpose of estimating the possible maximum leak rate due to failure propagation. This paper describes the results of the failure propagation tests and the model structure and validation studies of the LEAP code. (author)

  10. New Technique for Cryogenically Cooling Small Test Articles

    Science.gov (United States)

    Rodriquez, Karen M.; Henderson, Donald J.

    2011-01-01

    Convective heat removal techniques to rapidly cool small test articles to Earth-Moon L2 temperatures of 77 K were accomplished through the use of liquid nitrogen (LN2). By maintaining a selected pressure range on the saturation curve, test articles were cooled below the LN2 boiling point at ambient pressure in less than 30 min. Difficulties in achieving test pressures while maintaining the temperature tolerance necessitated a modification to the original system to include a closed loop conductive cold plate and cryogenic shroud

  11. K Basin Sludge Conditioning Testing. Nitric Acid Dissolution Testing of K East Area Sludge Composite, Small- and Large-Scale Testing

    International Nuclear Information System (INIS)

    Carlson, C.D.; Delegard, C.H.; Burgeson, I.E.; Schmidt, A.J.; Silvers, K.L.

    1998-01-01

    This report describes work performed by Pacific Northwest National Laboratory (PNNL) for Numatec Hanford Corporation (NHC) to support the development of the K Basin Sludge Treatment System. For this work, testing was performed to examine the dissolution behavior of a K East Basin floor and Weasel Pit sludge composite, referred to as K East area sludge composite, in nitric acid at the following concentrations: 2 M, 4 M, 6 M and 7.8 M. With the exception of one high solids loading test the nitric acid was added at 4X the stoichiometric requirement (assuming 100% of the sludge was uranium metal). The dissolution tests were conducted at boiling temperatures for 24 hours. Most of the tests were conducted with approximately2.5 g of sludge (dry basis). The high solids loading test was conducted with approximately7 g of sludge. A large-scale dissolution test was conducted with 26.5 g of sludge and 620 mL of 6 M nitric acid. The objectives of this test were to (1) generate a sufficient quantity of acid-insoluble residual solids for use in leaching studies, and (2) examine the dissolution behavior of the sludge composite at a larger scale

  12. Investigated conductive fracture in the granitic rocks by flow-meter logging

    International Nuclear Information System (INIS)

    Ogata, Nobuhisa; Koide, Kaoru; Takeichi, Atsushi

    1997-01-01

    Test of the use of a measurement technique for the hydraulic conductivity of geological structures which act as flow paths or are impermeable to groundwater flow. In order to prove the value of flow-meter logging as an in-situ technique for detecting conductive fractures in granitic rocks, the method has been applied to a borehole near the Tono uranium mine, Gifu, Japan. This study in involved with detecting a conductive fracture and calculating the hydraulic conductivities. The results were as follows: (1) In a zone of groundwater inflow into the borehole, the hydraulic conductivity was calculated to be of the order of the 10 -3 - 10 -4 (cm/sec) from flow-meter logging. This value agreed with the results of a in-situ borehole permeability test carried out with a similar depth interval. (2) The study showed that flow-meter logging is effective for detecting the distribution of high conductivity fractures and calculating the hydraulic conductivity. (author)

  13. Tests for validation of fast neutron reactors safety

    International Nuclear Information System (INIS)

    Nagata, T.; Yamashita, H.

    2001-01-01

    Japanese scientific research and design enterprises in cooperation with industrial and power generating corporations implement a project on creating a fast neutron reactor of the ultimate safety. One of the basic expected results from such a development is creation of a reactor core structure that is able to eliminate recriticality occurrence in the course of reactor accident involving fuel melting. One of the possible ways to solve this problem is to include pipes (meant for specifying directed (controlled) molten fuel relocation) into fuel assembly structure. In the course of conduction and subsequent implementation of such a design the basic issue is to experimentally confirm the operating capacity of FA having such a structure and that is called FAIDUS. Within EAGLE Project on experimental basis of IAE NNC RK an activity has been started on preparation and conduction of out-of-pile and in-pile tests. During tests a sodium coolant will be used. Studies are conducted by NNC RK in cooperation with the Japanese corporations JAPC and JNC. Basic objective of out-of-pile tests was to obtain preliminary information on fuel relocation behavior under conditions simulating accident involving melting of core consisting of FAIDUS FA, which will help to clarify simulation criteria and to develop the most optimum structure of the experimental channel for reactor experiments conduction. The basic objective of in-pile tests was the experimental confirmation of operating capacity of FAIDUS FA model under reactor conditions. According to the program two tests are planned to be performed at IGR reactor: tests for validation of fast neutron reactor safety, and out-of-pile tests at EAGLE experimental facility without sodium coolant

  14. Calculating lattice thermal conductivity: a synopsis

    Science.gov (United States)

    Fugallo, Giorgia; Colombo, Luciano

    2018-04-01

    We provide a tutorial introduction to the modern theoretical and computational schemes available to calculate the lattice thermal conductivity in a crystalline dielectric material. While some important topics in thermal transport will not be covered (including thermal boundary resistance, electronic thermal conduction, and thermal rectification), we aim at: (i) framing the calculation of thermal conductivity within the general non-equilibrium thermodynamics theory of transport coefficients, (ii) presenting the microscopic theory of thermal conduction based on the phonon picture and the Boltzmann transport equation, and (iii) outlining the molecular dynamics schemes to calculate heat transport. A comparative and critical addressing of the merits and drawbacks of each approach will be discussed as well.

  15. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  16. Considerations and Methods for Usability Testing with Children

    DEFF Research Database (Denmark)

    Andersen, Malene Hjortboe; Khalid, Md. Saifuddin; Brooks, Eva Irene

    2017-01-01

    of these methods is that they are designed for adults and are not necessarily appropriate to investigations including children. The guiding questions for this systematic literature review are (1) the motivation for conducting usability tests with children, and (2) the kind of methodological, practical, and ethical...

  17. High thermal conductivity materials for thermal management applications

    Science.gov (United States)

    Broido, David A.; Reinecke, Thomas L.; Lindsay, Lucas R.

    2018-05-29

    High thermal conductivity materials and methods of their use for thermal management applications are provided. In some embodiments, a device comprises a heat generating unit (304) and a thermally conductive unit (306, 308, 310) in thermal communication with the heat generating unit (304) for conducting heat generated by the heat generating unit (304) away from the heat generating unit (304), the thermally conductive unit (306, 308, 310) comprising a thermally conductive compound, alloy or composite thereof. The thermally conductive compound may include Boron Arsenide, Boron Antimonide, Germanium Carbide and Beryllium Selenide.

  18. Thermal conductivity of highly porous mullite material

    International Nuclear Information System (INIS)

    Barea, Rafael; Osendi, Maria Isabel; Ferreira, Jose M.F.; Miranzo, Pilar

    2005-01-01

    The thermal diffusivity of highly porous mullite materials (35-60 vol.% porosity) has been measured up to 1000 deg C by the laser flash method. These materials were fabricated by a direct consolidation method based on the swelling properties of starch granules in concentrated aqueous suspensions and showed mainly spherical shaped pores of about 30 μm in diameter. From the point of view of heat conduction, they behave as a bi-phase material of voids dispersed in the continuous mullite matrix. The temperature dependence of thermal conductivity for the different porosities was modeled by a simple equation that considers the contribution to heat conduction of the mullite matrix and the gas inside the pores, as well as the radiation. The thermal conductivity of the matrix was taken from the measurements done in a dense mullite while the conductivity in the voids was assumed to be that of the testing atmosphere

  19. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zinkle, S.J.; Eatherly, W.S. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  20. Origins of variation in conducted vasomotor responses

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Welsh, Donald G.; Holstein-Rathlou, Niels-Henrik

    2015-01-01

    , the efficacy of conducted responses varies significantly between different initiating stimuli within the same vascular bed as well as between different vascular beds following the same stimulus. The differences have stimulated proposals of different mechanisms to account for the experimentally observed...... variation. Using a computational approach that allows for introduction of structural and electrophysiological heterogeneity, we systematically tested variations in both arteriolar electrophysiology and modes of stimuli. Within the same vessel, our simulations show that conduction efficacy is influenced...

  1. Highly conductive polymers: superconductivity in nanochannels or an experimental artifact?

    International Nuclear Information System (INIS)

    Hayden, Harley; Park, Seongho; Zhirnov, Victor; Cavin, Ralph; Kohl, Paul A.

    2010-01-01

    There is a significant body of literature concerning the potential formation of electrically conductive moieties in polymeric materials. The conductive path is not associated with conjugation (such as in the case of 'conductive polymers') but rather associated with a new conductivity route. The objective of the experiments reported herein was to provide insight into the phenomenon of unusually high electrical conductivity in polymers that have been reported by several research groups. In some experiments, the test apparatus did indeed indicate high levels of conductance. Arguments pro and con for high conductivity based on known physical phenomena and the collected data were examined.

  2. In-pile measurement of the thermal conductivity of irradiated metallic fuel

    International Nuclear Information System (INIS)

    Bauer, T.H.; Holland, J.W.

    1995-01-01

    Transient test data and posttest measurements from recent in-pile overpower transient experiments are used for an in situ determination of metallic fuel thermal conductivity. For test pins that undergo melting but remain intact, a technique is described that relates fuel thermal conductivity to peak pin power during the transient and a posttest measured melt radius. Conductivity estimates and their uncertainty are made for a database of four irradiated Integral Fast Reactor-type metal fuel pins of relatively low burnup (<3 at.%). In the assessment of results, averages and trends of measured fuel thermal conductivity are correlated to local burnup. Emphasis is placed on the changes of conductivity that take place with burnup-induced swelling and sodium logging. Measurements are used to validate simple empirically based analytical models that describe thermal conductivity of porous media and that are recommended for general thermal analyses of irradiated metallic fuel

  3. Electric vehicle test report Cutler-Hammer Corvette

    Science.gov (United States)

    1981-01-01

    Vehicles were characterized for the state of the art assessment of electric vehicles. The vehicle evaluated was a Chevrolet Corvette converted to electric operation. The original internal combustion engine was replaced by an electric traction motor. Eighteen batteries supplied the electrical energy. A controller, an onboard battery charger, and several dashboard instruments completed the conversion. The emphasis was on the electrical portion of the drive train, although some analysis and discussion of the mechanical elements are included. Tests were conducted both on the road (actually a mile long runway) and in a chassis dynamometer equipped laboratory. The majority of the tests performed were according to SAE Procedure J227a and included maximum effort accelerations, constant speed range, and cyclic range. Some tests that are not a part of the SAE Procedure J227a are described and the analysis of the data from all tests is discussed.

  4. Interdisciplinary hydrogeologic site characterization at the Nevada Test Site

    International Nuclear Information System (INIS)

    Hawkins, W.L.; Wagoner, J.L.; Drellack, S.L.

    1992-01-01

    The Nevada Test Site was established in 1950 as a continental area for testing nuclear devices. Hydrogeologic investigations began in earnest with the US Geological Survey mapping much of the area from 1960 to 1965. Since 1963, all nuclear detonations have been underground. Most tests are conducted in vertical shafts, but a small percentage are conducted in tunnels. The majority of detonation points are above the water table, primarily in volcanic rocks, but sometimes in alluvium. Hydrogeologic investigations began in earnest with the US Geological Survey's mapping of much of the NTS region from 1960 to 1965. Following the BANEBERRY test in December 1970, which produced an accidental release of radioactivity to the atmosphere, the US Department of Energy (then the Atomic Energy Commission) established the Containment Evaluation Panel (CEP). Results of interdisciplinary hydrogeologic investigations for each test location are included in a Containment Prospectus which is thoroughly reviewed by the CEP

  5. Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic Arrays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array. 1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  6. Facing the Challenge--Conduct Disorders and Aggression.

    Science.gov (United States)

    Arllen, Nancy L.; Gable, Robert A.

    This paper examines the nature of student conduct disorders, including both the origin and treatment of such disorders. In Part I, distinguishing characteristics of the syndrome are discussed and issues related to philosophy, definition, and delivery of services are considered. Two major subcategories of conduct disorder, socialized and…

  7. Understanding Molecular Conduction: Old Wine in a New Bottle?

    Science.gov (United States)

    Ghosh, Avik

    2007-03-01

    Molecules provide an opportunity to test our understanding of fundamental non-equilibrium transport processes, as well as explore new device possibilities. We have developed a unified approach to nanoscale conduction, coupling bandstructure and electrostatics of the channel and contacts with a quantum kinetic theory of current flow. This allows us to describe molecular conduction at various levels of detail, -- from quantum corrected compact models, to semi-empirical models for quick physical insights, and `first-principles' calculations of current-voltage (I-V) characteristics with no adjustable parameters. Using this suite of tools, we can quantitatively explain various experimental I-Vs, including complex reconstructed silicon substrates. We find that conduction in most molecules is contact dominated, and limited by fundamental electrostatic and thermodynamic restrictions quite analogous to those faced by the silicon industry, barring a few interesting exceptions. The distinction between molecular and silicon electronics must therefore be probed at a more fundamental level. Ultra-short molecules are unique in that they possess large Coulomb energies as well as anomalous vibronic couplings with current flow -- in other words, strong non-equilibrium electron-electron and electron-phonon correlations. These effects yield prominent experimental signatures, but require a completely different modeling approach -- in fact, popular approaches to include correlation typically do not work for non-equilibrium. Molecules exhibit rich physics, including the ability to function both as weakly interacting current conduits (quantum wires) as well as strongly correlated charge storage centers (quantum dots). Theoretical treatment of the intermediate coupling regime is particularly challenging, with a large `fine structure constant' for transport that negates orthodox theories of Coulomb Blockade and phonon-assisted tunneling. It is in this regime that the scientific and

  8. Harmonization of malaria rapid diagnostic tests: best practices in labelling including instructions for use.

    Science.gov (United States)

    Jacobs, Jan; Barbé, Barbara; Gillet, Philippe; Aidoo, Michael; Serra-Casas, Elisa; Van Erps, Jan; Daviaud, Joelle; Incardona, Sandra; Cunningham, Jane; Visser, Theodoor

    2014-12-17

    Rapid diagnostic tests (RDTs) largely account for the scale-up of malaria diagnosis in endemic settings. However, diversity in labelling including the instructions for use (IFU) limits their interchangeability and user-friendliness. Uniform, easy to follow and consistent labelling, aligned with international standards and appropriate for the level of the end user's education and training, is crucial but a consolidated resource of information regarding best practices for IFU and labelling of RDT devices, packaging and accessories is not available. The Roll Back Malaria Partnership (RBM) commissioned the compilation of international standards and regulatory documents and published literature containing specifications and/or recommendations for RDT design, packaging and labelling of in vitro diagnostics (IVD) (which includes RDTs), complemented with a questionnaire based survey of RDT manufacturers and implementers. A summary of desirable RDT labelling characteristics was compiled, which was reviewed and discussed during a RBM Stakeholder consultation meeting and subsequently amended and refined by a dedicated task force consisting of country programme implementers, experts in RDT implementation, IVD regulatory experts and manufacturers. This process led to the development of consensus documents with a list of suggested terms and abbreviations as well as specifications for labelling of box, device packaging, cassettes, buffer bottle and accessories (lancets, alcohol swabs, transfer devices, desiccants). Emphasis was placed on durability (permanent printing or water-resistant labels), legibility (font size, letter type), comprehension (use of symbols) and ease of reference (e.g. place of labelling on the box or cassette packaging allowing quick oversight). A generic IFU template was developed, comprising background information, a template for procedure and reading/interpretation, a selection of appropriate references and a symbol key of internationally recognized

  9. Thermal conductivity model for nanofiber networks

    Science.gov (United States)

    Zhao, Xinpeng; Huang, Congliang; Liu, Qingkun; Smalyukh, Ivan I.; Yang, Ronggui

    2018-02-01

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  10. Thermal conductivity model for nanofiber networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinpeng [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Huang, Congliang [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China; Liu, Qingkun [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Smalyukh, Ivan I. [Department of Physics, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Yang, Ronggui [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA; Buildings and Thermal Systems Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA

    2018-02-28

    Understanding thermal transport in nanofiber networks is essential for their applications in thermal management, which are used extensively as mechanically sturdy thermal insulation or high thermal conductivity materials. In this study, using the statistical theory and Fourier's law of heat conduction while accounting for both the inter-fiber contact thermal resistance and the intrinsic thermal resistance of nanofibers, an analytical model is developed to predict the thermal conductivity of nanofiber networks as a function of their geometric and thermal properties. A scaling relation between the thermal conductivity and the geometric properties including volume fraction and nanofiber length of the network is revealed. This model agrees well with both numerical simulations and experimental measurements found in the literature. This model may prove useful in analyzing the experimental results and designing nanofiber networks for both high and low thermal conductivity applications.

  11. What we can learn from measurements of air electric conductivity in 222Rn-rich atmosphere

    Science.gov (United States)

    Seran, E.; Godefroy, M.; Pili, E.; Michielsen, N.; Bondiguel, S.

    2017-02-01

    Electric conductivity of air is an important characteristic of the electric properties of an atmosphere. Testing instruments to measure electric conductivity ranging from 10-13 to 10-9 S m-1 in natural conditions found in the Earth atmosphere is not an easy task. One possibility is to use stratospheric balloon flights; another (and a simpler one) is to look for terrestrial environments with significant radioactive decay. In this paper we present measurements carried out with different types of conductivity sensors in two 222Rn-rich environments, i.e., in the Roselend underground tunnel (French Alps) and in the Institute of Radioprotection and Nuclear Safety BACCARA (BAnC de CAllibrage du RAdon) chamber. The concept of the conductivity sensor is based on the classical time relaxation method. New elements in our design include isolation of the sensor sensitive part (electrode) from the external electric field and sensor miniaturization. This greatly extends the application domain of the sensor and permits to measure air electric conductivity when the external electric field is high and varies from few tens of V m-1 to up to few tens of kV m-1. This is suitable to propose the instrument for a planetary mission. Two-fold objectives were attained as the outcome of these tests and their analysis. First was directly related to the performances of the conductivity sensors and the efficiency of the conductivity sensor design to shield the external electric field. Second objective aimed at understanding the decay mechanisms of 222Rn and its progeny in atmosphere and the impact of the enclosed space on the efficiency of gas ionization.

  12. IN SITU FIELD TESTING OF PROCESSES

    International Nuclear Information System (INIS)

    YANG, J.S.Y.

    2004-01-01

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes2. The scientific analysis of data for inputs to model calibration and validation as documented in2 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses

  13. Commercial versus in-situ usability testing of healthcare information systems: towards "public" usability testing in healthcare organizations.

    Science.gov (United States)

    Kushniruk, Andre W; Borycki, Elizabeth M; Kannry, Joseph

    2013-01-01

    The need for improved usability in healthcare IT has been widely recognized. In addition, methods from usability engineering, including usability testing and usability inspection have received greater attention. Many vendors of healthcare software are now employing usability testing methods in the design and development of their products. However, despite this, the usability of healthcare IT is still considered to be problematic and many healthcare organizations that have purchased systems that have been tested at vendor testing sites are still reporting a range of usability and safety issues. In this paper we explore the distinction between commercial usability testing (conducted at centralized vendor usability laboratories and limited beta test sites) and usability testing that is carried out locally within healthcare organizations that have purchased vendor systems and products (i.e. public "in-situ" usability testing). In this paper it will be argued that both types of testing (i.e. commercial vendor-based testing) and in-situ testing are needed to ensure system usability and safety.

  14. Stakeholder views on pharmacogenomic testing.

    Science.gov (United States)

    Patel, Haridarshan N; Ursan, Iulia D; Zueger, Patrick M; Cavallari, Larisa H; Pickard, A Simon

    2014-02-01

    Pharmacogenomics has an important role in the evolution of personalized medicine, and its widespread uptake may ultimately depend on the interests and perspectives of key players in health care. Our aim was to summarize studies on stakeholder perspectives and attitudes toward pharmacogenomic testing. Thus, we conducted a review of original research studies that reported stakeholder views on pharmacogenomic testing using a structured approach in PubMed, International Pharmaceutical Abstracts, Cumulative Index to Nursing and Allied Health Literature, and EMBASE. A standardized data abstraction form was developed that included stakeholder group of interest-patients, general public, providers, and payers. Stakeholder views regarding barriers to pharmacogenetic implementation were organized into the following themes: ancillary information-related, clinical, economic, educational, ethical or legal, medical mistrust, and practicality. Of 34 studies that met our inclusion criteria, 37 perspectives were reported (15 on providers, 9 on the general public, 9 on patients, and 4 on payers). The most common topics that arose in studies of providers related to clinical usefulness of genetic data (n=11) and educational needs (n=11). Among the general public, the most common concerns were medical mistrust (n=5), insufficient education (n=5), and practicality (n=5). The most prevalent issues from the patient perspective were ethical or legal (n=6) and economic (n=5) issues. Among payers, leading issues were practicality (n=4) and clinical usefulness (n=3). There was overlap in the topics and concerns across stakeholder perspectives, including lack of knowledge about pharmacogenomic testing. Views on issues related to privacy, cost, and test result dissemination varied by stakeholder perspective. Limited research had been conducted in underrepresented groups. Efforts to address the issues raised by stakeholders may facilitate the implementation of pharmacogenomic testing into

  15. LS-DYNA Analysis of a Full-Scale Helicopter Crash Test

    Science.gov (United States)

    Annett, Martin S.

    2010-01-01

    A full-scale crash test of an MD-500 helicopter was conducted in December 2009 at NASA Langley's Landing and Impact Research facility (LandIR). The MD-500 helicopter was fitted with a composite honeycomb Deployable Energy Absorber (DEA) and tested under vertical and horizontal impact velocities of 26 ft/sec and 40 ft/sec, respectively. The objectives of the test were to evaluate the performance of the DEA concept under realistic crash conditions and to generate test data for validation of a system integrated LS-DYNA finite element model. In preparation for the full-scale crash test, a series of sub-scale and MD-500 mass simulator tests was conducted to evaluate the impact performances of various components, including a new crush tube and the DEA blocks. Parameters defined within the system integrated finite element model were determined from these tests. The objective of this paper is to summarize the finite element models developed and analyses performed, beginning with pre-test and continuing through post test validation.

  16. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    Energy Technology Data Exchange (ETDEWEB)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik (Clay Technology AB, Lund (Sweden))

    2010-12-15

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  17. Stress-strain relation of bentonite at undrained shear. Laboratory tests to investigate the influence of material composition and test technique

    International Nuclear Information System (INIS)

    Dueck, Ann; Boergesson, Lennart; Johannesson, Lars-Erik

    2010-12-01

    This report describes a laboratory study conducted to update the material model of the buffer material used in the analyses of the effect of a rock shear through a deposition hole. The study considers some new conditions and is especially focused on the reference case with MX-80Ca developed for SR-Site (MX-80 ion exchanged to Ca). The material model is based on relations between density, swelling pressure, shear strength and rate of strain. The reference model is described by Boergesson et al. (2010). The laboratory study is focused on undrained stress-strain-strength properties, which have been studied mainly by conducting triaxial tests and unconfined compression tests. The test results are compared to the earlier measurements and models which show that the new results fit very well into the general picture and models. For the new conditions suitable values of constants included in the model are proposed

  18. Hydraulic conductivity of compacted clay frozen and thawed in situ

    International Nuclear Information System (INIS)

    Benson, C.H.; Othman, M.A.

    1993-01-01

    A large specimen of compacted clay (diameter = 298 mm; thickness = 914 mm) was subjected to freeze-thaw in the field for 60 days. Afterward, the hydraulic conductivity was measured. The hydraulic conductivity of the entire specimen remained essentially unchanged, but increases in hydraulic conductivity of 1.5-2 orders of magnitude were observed above the freezing plane. The increase in hydraulic conductivity was highest at the top of the specimen and decreased with depth. Changes in hydraulic conductivity also occurred at depths 150 mm below the freezing plane, where desiccation occurred because of water redistribution. Numerous horizontal and vertical cracks formed in the soil mass. Dissection of the sample after permeation revealed that the cracks were laden with water. Cracking was greatest at the surface and became less frequent with depth. For depths greater than 150 mm below the freezing plane, cracking was absent. The frequency of cracks is consistent with principles of mechanistic models of soil freezing. The results of laboratory tests were used to predict the hydraulic conductivity of the large specimen. Tests were conducted on specimens subjected to various freeze-thaw cycles, temperature gradients, and states of stress. It was found that the predicted hydraulic conductivities were lower than those measured on the large specimen, but they closely resembled the trend in hydraulic conductivity with depth

  19. History and Benefits of Engine Level Testing Throughout the Space Shuttle Main Engine Program

    Science.gov (United States)

    VanHooser, Katherine; Kan, Kenneth; Maddux, Lewis; Runkle, Everett

    2010-01-01

    Rocket engine testing is important throughout a program s life and is essential to the overall success of the program. Space Shuttle Main Engine (SSME) testing can be divided into three phases: development, certification, and operational. Development tests are conducted on the basic design and are used to develop safe start and shutdown transients and to demonstrate mainstage operation. This phase helps form the foundation of the program, demands navigation of a very steep learning curve, and yields results that shape the final engine design. Certification testing involves multiple engine samples and more aggressive test profiles that explore the boundaries of the engine to vehicle interface requirements. The hardware being tested may have evolved slightly from that in the development phase. Operational testing is conducted with mature hardware and includes acceptance testing of flight assets, resolving anomalies that occur in flight, continuing to expand the performance envelope, and implementing design upgrades. This paper will examine these phases of testing and their importance to the SSME program. Examples of tests conducted in each phase will also be presented.

  20. 2014 ITS World Congress Connected Vehicle Test Bed Demonstration Traveler Situation Data

    Data.gov (United States)

    Department of Transportation — During the 2014 ITS World Congress a demonstration of the connected vehicle infrastructure in the City of Detroit was conducted. The test site included approximately...

  1. 2014 ITS World Congress Connected Vehicle Test Bed Demonstration Intersection Situation Data

    Data.gov (United States)

    Department of Transportation — During the 2014 ITS World Congress a demonstration of the connected vehicle infrastructure in the City of Detroit was conducted. The test site included approximately...

  2. Spent fuel cladding containment credit test

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1983-01-01

    As an initial step in addressing the effectiveness of breached cladding as a barrier to radionuclide release from the repository during the post-containment period, preliminary scoping tests have been initiated which compare radionuclide releases from spent fuel specimens with artificially induced cladding defects of various severities. The artificially induced defects are all more severe than the typical in-reactor type breaches which are expected to be the principal type of breach entering the repository for terminal storage. These preliminary scoping tests being conducted by Westinghouse Hanford Company for the Lawrence Livermore National Laboratory Waste Package Development Program in support of the Tuff repository project at the Nevada Test Site are described. Also included in this presentation are selected initial results from these tests. 22 figures

  3. Single-event effect ground test issues

    International Nuclear Information System (INIS)

    Koga, R.

    1996-01-01

    Ground-based single event effect (SEE) testing of microcircuits permits characterization of device susceptibility to various radiation induced disturbances, including: (1) single event upset (SEU) and single event latchup (SEL) in digital microcircuits; (2) single event gate rupture (SEGR), and single event burnout (SEB) in power transistors; and (3) bit errors in photonic devices. These characterizations can then be used to generate predictions of device performance in the space radiation environment. This paper provides a general overview of ground-based SEE testing and examines in critical depth several underlying conceptual constructs relevant to the conduct of such tests and to the proper interpretation of results. These more traditional issues are contrasted with emerging concerns related to the testing of modern, advanced microcircuits

  4. Two-dimensional modeling of conduction-mode laser welding

    International Nuclear Information System (INIS)

    Russo, A.J.

    1984-01-01

    WELD2D is a two-dimensional finite difference computer program suitable for modeling the conduction-mode welding process when the molten weld pool motion can be neglected. The code is currently structured to treat butt-welded geometries in a plane normal to the beam motion so that dissimilar materials may be considered. The surface heat transfer models used in the code include a Gaussian beam or uniform laser source, and a free electron theory reflectance calculation. Temperature-dependent material parameters are used in the reflectance calculation. Measured cold reflection data are used to include surface roughness or oxide effects until melt occurs, after which the surface is assumed to be smooth and clean. Blackbody reradiation and a simple natural convection model are also included in the upper surface boundary condition. Either an implicit or explicit finite-difference representation of the heat conduction equation in an enthalpy form is solved at each time step. This enables phase transition energies to be easily and accurately incorporated into the formulation. Temperature-dependent 9second-order polynominal dependence) thermal conductivities are used in the conduction calculations. Constant values of specific heat are used for each material phase. At present, material properties for six metals are included in the code. These are: aluminium, nickel, steel, molybdenum, copper and silicon

  5. Progress Report on the ISCR Pilot Test Conducted at the Former CCC/USDA Grain Storage Facility in Montgomery City, Missouri, as of April 2013

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division. Applied Geoscience and Environmental Restoration Program

    2013-06-01

    interpreted to represent contaminant source areas. The pilot test is being implemented on behalf of the CCC/USDA by Argonne National Laboratory. Approximately 80,000 lb of the EHC material was injected by using direct-push techniques at 99 locations in the target areas, from November 9 to December 15, 2012 (Argonne 2012). To determine the geochemical effects of the pilot injections and their impact on the levels of contamination in the test areas, an extended monitoring program (Argonne 2012) is being implemented. The program includes an initial “baseline” sampling event to document pre-treatment conditions and periodic post-injection monitoring events, approximately 1, 2, 4, 6, 9, and 12 months after the completion of the injection program (Argonne 2012). This report provides a brief summary of the specific activities conducted, with a compilation of the monitoring data obtained, during the baseline sampling event (October 2012) and the first, second, and third post-injection monitoring events (in January, February, and April 2013).

  6. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Conductivity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have conductivity data. *These services are for testing and evaluation use...

  7. Analysis of pumping tests of partially penetrating wells in an unconfined aquifer using inverse numerical optimization

    Science.gov (United States)

    Hvilshøj, S.; Jensen, K. H.; Barlebo, H. C.; Madsen, B.

    1999-08-01

    Inverse numerical modeling was applied to analyze pumping tests of partially penetrating wells carried out in three wells established in an unconfined aquifer in Vejen, Denmark, where extensive field investigations had previously been carried out, including tracer tests, mini-slug tests, and other hydraulic tests. Drawdown data from multiple piezometers located at various horizontal and vertical distances from the pumping well were included in the optimization. Horizontal and vertical hydraulic conductivities, specific storage, and specific yield were estimated, assuming that the aquifer was either a homogeneous system with vertical anisotropy or composed of two or three layers of different hydraulic properties. In two out of three cases, a more accurate interpretation was obtained for a multi-layer model defined on the basis of lithostratigraphic information obtained from geological descriptions of sediment samples, gammalogs, and flow-meter tests. Analysis of the pumping tests resulted in values for horizontal hydraulic conductivities that are in good accordance with those obtained from slug tests and mini-slug tests. Besides the horizontal hydraulic conductivity, it is possible to determine the vertical hydraulic conductivity, specific yield, and specific storage based on a pumping test of a partially penetrating well. The study demonstrates that pumping tests of partially penetrating wells can be analyzed using inverse numerical models. The model used in the study was a finite-element flow model combined with a non-linear regression model. Such a model can accommodate more geological information and complex boundary conditions, and the parameter-estimation procedure can be formalized to obtain optimum estimates of hydraulic parameters and their standard deviations.

  8. Complex conductivity of organic-rich shales

    Science.gov (United States)

    Woodruff, W. F.; Revil, A.; Torres-Verdin, C.

    2013-12-01

    components of the formation factor and connectivity (tortuosity) tensors Fij and Tij (affecting the bulk and surface conductivity, respectively) are correlated as Fij=TijΦ. Both conductivity and connectivity tensors share the same eigenvectors; the anisotropy ratio is equivalent in TI media. At high pore water salinity, surface and quadrature conductivity share the same bulk tortuosity; when surface conductivity dominates (low salinity), conductivity is controlled by the surface conductance, and the tortuosity of electrical current along mineral surfaces usually higher than that of the pore water. We developed two distinct SIP measurement protocols to obtain the tensor: (1) azimuthal sampling and inversion of phasor potentials through the full-field solution of the Laplace equation; (2) direct measurement of complex conductivity eigenvalues by polarized, single-component stimulus current. Experiments also include unsaturated and saturated measurements with three brines of known salinity and pH, at log-distributed frequencies ranging 1 mHz to 45 kHz. Both azimuthal spectra and eigenvalue spectra validate the theoretical model and illustrate the effectiveness of the protocols themselves. We obtain the textural tensors and invert key parameters including Archie exponents and CEC, and characterize the relaxation phenomena associated with kerogen content and maturity for multiphase fluid systems.

  9. Damage detection and conductivity evolution in carbon nanofiber epoxy via electrical impedance tomography

    International Nuclear Information System (INIS)

    Tallman, T N; Wang, K W; Gungor, S; Bakis, C E

    2014-01-01

    Utilizing electrically conductive nanocomposites for integrated self-sensing and health monitoring is a promising area of structural health monitoring (SHM) research wherein local changes in conductivity coincide with damage. In this research we conduct proof of concept investigations using electrical impedance tomography (EIT) for damage detection by identifying conductivity changes and by imaging conductivity evolution in a carbon nanofiber (CNF) filled epoxy composite. CNF/epoxy is examined because fibrous composites can be manufactured with a CNF/epoxy matrix thereby enabling the entire matrix to become self-sensing. We also study the mechanisms of conductivity evolution in CNF/epoxy through electrical impedance spectroscopy (EIS) testing. The results of these tests indicate that thermal expansion is responsible for conductivity evolution in a CNF/epoxy composite. (paper)

  10. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...

  11. Review on mathematical basis for thermal conduction equation

    Energy Technology Data Exchange (ETDEWEB)

    Park, D. G.; Kim, H. M

    2007-10-15

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation.

  12. Review on mathematical basis for thermal conduction equation

    International Nuclear Information System (INIS)

    Park, D. G.; Kim, H. M.

    2007-10-01

    In the view point of thermal conductivity measurement technology, It is very useful to understand mathematical theory of thermal conduction equation in order to evaluation of measurement data and to solve diverse technical problem in measurement. To approach this mathematical theory, thermal conduction equation is derived by Fourier thermal conduction law. Since thermal conduction equation depends on the Lapacian operator basically, mathematical meaning of Lapalacian and various diffusion equation including Laplacian have been studied. Stum-Liouville problem and Bessel function were studied in this report to understand analytical solution of various diffusion equation

  13. Conducting qualitative research within Clinical Trials Units: avoiding potential pitfalls.

    Science.gov (United States)

    Cooper, Cindy; O'Cathain, Alicia; Hind, Danny; Adamson, Joy; Lawton, Julia; Baird, Wendy

    2014-07-01

    The value of using qualitative research within or alongside randomised controlled trials (RCTs) is becoming more widely accepted. Qualitative research may be conducted concurrently with pilot or full RCTs to understand the feasibility and acceptability of the interventions being tested, or to improve trial conduct. Clinical Trials Units (CTUs) in the United Kingdom (UK) manage large numbers of RCTs and, increasingly, manage the qualitative research or collaborate with qualitative researchers external to the CTU. CTUs are beginning to explicitly manage the process, for example, through the use of standard operating procedures for designing and implementing qualitative research with trials. We reviewed the experiences of two UK Clinical Research Collaboration (UKCRC) registered CTUs of conducting qualitative research concurrently with RCTs. Drawing on experiences gained from 15 studies, we identify the potential for the qualitative research to undermine the successful completion or scientific integrity of RCTs. We show that potential problems can arise from feedback of interim or final qualitative findings to members of the trial team or beyond, in particular reporting qualitative findings whilst the trial is on-going. The problems include: We make recommendations for improving the management of qualitative research within CTUs. Copyright © 2014. Published by Elsevier Inc.

  14. The Organic Chemistry of Conducting Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Laren Malcolm [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-12-01

    For the last several years, we have examined the fundamental principles of conduction in one-dimensional systems, i.e., molecular “wires”. It is, of course, widely recognized that such systems, as components of electronically conductive materials, function in a two- and three-dimensional milieu. Thus interchain hopping and grain-boundary resistivity are limiting conductivity factors in highly conductive materials, and overall conductivity is a function of through-chain and boundary hopping. We have given considerable attention to the basic principles underlying charge transport (the “rules of the game”) in two-dimensional systems by using model systems which allow direct observation of such processes, including the examination of tunneling and hopping as components of charge transfer. In related work, we have spent considerable effort on the chemistry of conjugated heteropolymers, most especially polythiophens, with the aim of using these most efficient of readily available electroactive polymers in photovoltaic devices.

  15. Test of understanding of vectors: A reliable multiple-choice vector concept test

    Science.gov (United States)

    Barniol, Pablo; Zavala, Genaro

    2014-06-01

    In this article we discuss the findings of our research on students' understanding of vector concepts in problems without physical context. First, we develop a complete taxonomy of the most frequent errors made by university students when learning vector concepts. This study is based on the results of several test administrations of open-ended problems in which a total of 2067 students participated. Using this taxonomy, we then designed a 20-item multiple-choice test [Test of understanding of vectors (TUV)] and administered it in English to 423 students who were completing the required sequence of introductory physics courses at a large private Mexican university. We evaluated the test's content validity, reliability, and discriminatory power. The results indicate that the TUV is a reliable assessment tool. We also conducted a detailed analysis of the students' understanding of the vector concepts evaluated in the test. The TUV is included in the Supplemental Material as a resource for other researchers studying vector learning, as well as instructors teaching the material.

  16. PID Testing Method Suitable for Process Control of Solar Cells Mass Production

    Directory of Open Access Journals (Sweden)

    Xianfang Gou

    2015-01-01

    Full Text Available Voltage bias of several hundred volts which are applied between solar cells and module frames may lead to significant power losses, so-called potential-induced degradation (PID, in normal photovoltaic (PV installations system. Modules and minimodules are used to conduct PID test of solar cells. The test procedure is time consuming and of high cost, which cannot be used as process monitoring method during solar cells fabrication. In this paper, three kinds of test including minimodule, Rsh, and V-Q test are conducted on solar cells or wafers with SiNx of different refractive index. All comparisons between test results of Rsh, V-Q, and minimodule tests have shown equal results. It is shown that Rsh test can be used as quality inspection of solar cells and V-Q test of coated wafer can be used as process control of solar cells.

  17. A preliminary study on the thermal conductivity and flammability of WPC based on some tropical woods

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Chua, P.H.; Lee, E.E.N.

    1985-01-01

    Selected local woods and their wood-polymer combinations or composites (WPC) were tested for their thermal conductivity and their fire resistance. WPC were prepared by polymerizing monomers 'in situ' in oven dried woods by gamma radiation. The monomers included acrylonitrile (AN), 60% styrene-40% acrylonitrile (STAN), methyl methacrylate (MMA), 95% methyl methacrylate-5% dioxane (MD), and vinylidene chloride (VDC). A reduction in thermal conductivity was exhibited by all the composites prepared. W-PAN showed the greatest reduction in thermal conductivity and W-PSTAN in general showed the least. An explanation is suggested for this behaviour. The polymers PMMA and PMD were found to enhance flammability of the woods while PVDC, PAN, and PSTAN imparted fire resistance to the woods. Of the six local woods studied, Ramin-and-Keruing-polymer composites showed the highest flammable tendencies obtained. The correlation of thermal conductivity to flammability is discussed. (author)

  18. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  19. Deep Borehole Field Test Research Activities at LBNL

    Energy Technology Data Exchange (ETDEWEB)

    Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tsang, Chin-Fu [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kneafsey, Timothy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Borglin, Sharon [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piceno, Yvette [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Andersen, Gary [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nakagawa, Seiji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nihei, Kurt [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Rutqvist, Jonny [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Doughty, Christine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reagan, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the pr