WorldWideScience

Sample records for testing spectral models

  1. Construction of Spectral Discoloration Model for Red Lead Pigment by Aging Test and Simulating Degradation Experiment

    Directory of Open Access Journals (Sweden)

    Jinxing Liang

    2016-01-01

    Full Text Available The construction of spectral discoloration model, based on aging test and simulating degradation experiment, was proposed to detect the aging degree of red lead pigment in ancient murals and to reproduce the spectral data supporting digital restoration of the ancient murals. The degradation process of red lead pigment under the aging test conditions was revealed by X-ray diffraction, scanning electron microscopy, and spectrophotometer. The simulating degradation experiment was carried out by proportionally mixing red lead and lead dioxide with referring to the results of aging test. The experimental result indicated that the pure red lead was gradually turned into black lead dioxide, and the amount of tiny particles of the aging sample increased faced with aging process. Both the chroma and lightness of red lead pigment decreased with discoloration, and its hue essentially remains unchanged. In addition, the spectral reflectance curves of the aging samples almost started rising at about 550 nm with the inflection moving slightly from about 570 nm to 550 nm. The spectral reflectance of samples in long- and in short-wavelength regions was fitted well with the logarithmic and linear function. The spectral discoloration model was established, and the real aging red lead pigment in Dunhuang murals was measured and verified the effectiveness of the model.

  2. The development of a modified spectral ripple test.

    Science.gov (United States)

    Aronoff, Justin M; Landsberger, David M

    2013-08-01

    Poor spectral resolution can be a limiting factor for hearing impaired listeners, particularly for complex listening tasks such as speech understanding in noise. Spectral ripple tests are commonly used to measure spectral resolution, but these tests contain a number of potential confounds that can make interpretation of the results difficult. To measure spectral resolution while avoiding those confounds, a modified spectral ripple test with dynamically changing ripples was created, referred to as the spectral-temporally modulated ripple test (SMRT). This paper describes the SMRT and provides evidence that it is sensitive to changes in spectral resolution.

  3. Optimization of spectral printer modeling based on a modified cellular Yule-Nielsen spectral Neugebauer model.

    Science.gov (United States)

    Liu, Qiang; Wan, Xiaoxia; Xie, Dehong

    2014-06-01

    The study presented here optimizes several steps in the spectral printer modeling workflow based on a cellular Yule-Nielsen spectral Neugebauer (CYNSN) model. First, a printer subdividing method was developed that reduces the number of sub-models while maintaining the maximum device gamut. Second, the forward spectral prediction accuracy of the CYNSN model for each subspace of the printer was improved using back propagation artificial neural network (BPANN) estimated n values. Third, a sequential gamut judging method, which clearly reduced the complexity of the optimal sub-model and cell searching process during printer backward modeling, was proposed. After that, we further modified the use of the modeling color metric and comprehensively improved the spectral and perceptual accuracy of the spectral printer model. The experimental results show that the proposed optimization approaches provide obvious improvements in aspects of the modeling accuracy or efficiency for each of the corresponding steps, and an overall improvement of the optimized spectral printer modeling workflow was also demonstrated.

  4. Effects of spectral smearing on performance of the spectral ripple and spectro-temporal ripple tests.

    Science.gov (United States)

    Narne, Vijaya Kumar; Sharma, Mridula; Van Dun, Bram; Bansal, Shalini; Prabhu, Latika; Moore, Brian C J

    2016-12-01

    The main aim of this study was to use spectral smearing to evaluate the efficacy of a spectral ripple test (SRt) using stationary sounds and a recent variant with gliding ripples called the spectro-temporal ripple test (STRt) in measuring reduced spectral resolution. In experiment 1 the highest detectable ripple density was measured using four amounts of spectral smearing (unsmeared, mild, moderate, and severe). The thresholds worsened with increasing smearing and were similar for the SRt and the STRt across the three conditions with smearing. For unsmeared stimuli, thresholds were significantly higher (better) for the STRt than for the SRt. An amplitude fluctuation at the outputs of simulated (gammatone) auditory filters centered above 6400 Hz was identified as providing a potential detection cue for the STRt stimuli. Experiment 2 used notched noise with energy below and above the passband of the SRt and STRt stimuli to reduce confounding cues in the STRt. Thresholds were almost identical for the STRt and SRt for both unsmeared and smeared stimuli, indicating that the confounding cue for the STRt was eliminated by the notched noise. Thresholds obtained with notched noise present could be predicted reasonably accurately using an excitation-pattern model.

  5. MODELING SPECTRAL AND TEMPORAL MASKING IN THE HUMAN AUDITORY SYSTEM

    DEFF Research Database (Denmark)

    Dau, Torsten; Jepsen, Morten Løve; Ewert, Stephan D.

    2007-01-01

    An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997)] but inclu......An auditory signal processing model is presented that simulates psychoacoustical data from a large variety of experimental conditions related to spectral and temporal masking. The model is based on the modulation filterbank model by Dau et al. [J. Acoust. Soc. Am. 102, 2892-2905 (1997...... was tested in conditions of tone-in-noise masking, intensity discrimination, spectral masking with tones and narrowband noises, forward masking with (on- and off-frequency) noise- and pure-tone maskers, and amplitude modulation detection using different noise carrier bandwidths. One of the key properties...

  6. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  7. [Modeling and Simulation of Spectral Polarimetric BRDF].

    Science.gov (United States)

    Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu

    2016-01-01

    Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.

  8. Spectral Learning for Supervised Topic Models.

    Science.gov (United States)

    Ren, Yong; Wang, Yining; Zhu, Jun

    2018-03-01

    Supervised topic models simultaneously model the latent topic structure of large collections of documents and a response variable associated with each document. Existing inference methods are based on variational approximation or Monte Carlo sampling, which often suffers from the local minimum defect. Spectral methods have been applied to learn unsupervised topic models, such as latent Dirichlet allocation (LDA), with provable guarantees. This paper investigates the possibility of applying spectral methods to recover the parameters of supervised LDA (sLDA). We first present a two-stage spectral method, which recovers the parameters of LDA followed by a power update method to recover the regression model parameters. Then, we further present a single-phase spectral algorithm to jointly recover the topic distribution matrix as well as the regression weights. Our spectral algorithms are provably correct and computationally efficient. We prove a sample complexity bound for each algorithm and subsequently derive a sufficient condition for the identifiability of sLDA. Thorough experiments on synthetic and real-world datasets verify the theory and demonstrate the practical effectiveness of the spectral algorithms. In fact, our results on a large-scale review rating dataset demonstrate that our single-phase spectral algorithm alone gets comparable or even better performance than state-of-the-art methods, while previous work on spectral methods has rarely reported such promising performance.

  9. A mixed spectral-integration model for neutral mean wind flow over hills

    DEFF Research Database (Denmark)

    Corbett, Jean-Francois; Ott, Søren; Landberg, Lars

    2008-01-01

    equations are solved spectrally horizontally and by numerical integration vertically. Non-dimensional solutions are stored in look-up tables for quick re-use. Model results are compared to measurements, as well as other authors' flow models in three test cases. The model is implemented and tested in two...

  10. Description and availability of the SMARTS spectral model for photovoltaic applications

    Science.gov (United States)

    Myers, Daryl R.; Gueymard, Christian A.

    2004-11-01

    Limited spectral response range of photocoltaic (PV) devices requires device performance be characterized with respect to widely varying terrestrial solar spectra. The FORTRAN code "Simple Model for Atmospheric Transmission of Sunshine" (SMARTS) was developed for various clear-sky solar renewable energy applications. The model is partly based on parameterizations of transmittance functions in the MODTRAN/LOWTRAN band model family of radiative transfer codes. SMARTS computes spectra with a resolution of 0.5 nanometers (nm) below 400 nm, 1.0 nm from 400 nm to 1700 nm, and 5 nm from 1700 nm to 4000 nm. Fewer than 20 input parameters are required to compute spectral irradiance distributions including spectral direct beam, total, and diffuse hemispherical radiation, and up to 30 other spectral parameters. A spreadsheet-based graphical user interface can be used to simplify the construction of input files for the model. The model is the basis for new terrestrial reference spectra developed by the American Society for Testing and Materials (ASTM) for photovoltaic and materials degradation applications. We describe the model accuracy, functionality, and the availability of source and executable code. Applications to PV rating and efficiency and the combined effects of spectral selectivity and varying atmospheric conditions are briefly discussed.

  11. Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.

    Science.gov (United States)

    Liu, Da; Li, Jianxun

    2016-12-16

    Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.

  12. A three-dimensional spectral element model for the solution of the hydrostatic primitive equations

    CERN Document Server

    Iskandarani, M; Levin, J C

    2003-01-01

    We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...

  13. Examination of Spectral Transformations on Spectral Mixture Analysis

    Science.gov (United States)

    Deng, Y.; Wu, C.

    2018-04-01

    While many spectral transformation techniques have been applied on spectral mixture analysis (SMA), few study examined their necessity and applicability. This paper focused on exploring the difference between spectrally transformed schemes and untransformed scheme to find out which transformed scheme performed better in SMA. In particular, nine spectrally transformed schemes as well as untransformed scheme were examined in two study areas. Each transformed scheme was tested 100 times using different endmember classes' spectra under the endmember model of vegetation- high albedo impervious surface area-low albedo impervious surface area-soil (V-ISAh-ISAl-S). Performance of each scheme was assessed based on mean absolute error (MAE). Statistical analysis technique, Paired-Samples T test, was applied to test the significance of mean MAEs' difference between transformed and untransformed schemes. Results demonstrated that only NSMA could exceed the untransformed scheme in all study areas. Some transformed schemes showed unstable performance since they outperformed the untransformed scheme in one area but weakened the SMA result in another region.

  14. The next step in coastal numerical models: spectral/hp element methods?

    DEFF Research Database (Denmark)

    Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.

    2005-01-01

    In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....

  15. Validation of spectral gas radiation models under oxyfuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Johann Valentin

    2013-05-15

    Combustion of hydrocarbon fuels with pure oxygen results in a different flue gas composition than combustion with air. Standard computational-fluid-dynamics (CFD) spectral gas radiation models for air combustion are therefore out of their validity range in oxyfuel combustion. This thesis provides a common spectral basis for the validation of new spectral models. A literature review about fundamental gas radiation theory, spectral modeling and experimental methods provides the reader with a basic understanding of the topic. In the first results section, this thesis validates detailed spectral models with high resolution spectral measurements in a gas cell with the aim of recommending one model as the best benchmark model. In the second results section, spectral measurements from a turbulent natural gas flame - as an example for a technical combustion process - are compared to simulated spectra based on measured gas atmospheres. The third results section compares simplified spectral models to the benchmark model recommended in the first results section and gives a ranking of the proposed models based on their accuracy. A concluding section gives recommendations for the selection and further development of simplified spectral radiation models. Gas cell transmissivity spectra in the spectral range of 2.4 - 5.4 {mu}m of water vapor and carbon dioxide in the temperature range from 727 C to 1500 C and at different concentrations were compared in the first results section at a nominal resolution of 32 cm{sup -1} to line-by-line models from different databases, two statistical-narrow-band models and the exponential-wide-band model. The two statistical-narrow-band models EM2C and RADCAL showed good agreement with a maximal band transmissivity deviation of 3 %. The exponential-wide-band model showed a deviation of 6 %. The new line-by-line database HITEMP2010 had the lowest band transmissivity deviation of 2.2% and was therefore recommended as a reference model for the

  16. Spectral Cascade-Transport Turbulence Model Development for Two-Phase Flows

    Science.gov (United States)

    Brown, Cameron Scott

    -CFD codes. To aid in SCTM development and validation a spectral analysis of single and two-phase bubbly DNS data in different geometries was performed with investigation of the modulation of the turbulent kinetic energy spectrum slope due to the presence of bubbles. A new spectral analysis technique was developed to show that modifications to the energy spectrum slope are due to the presence of bubble wakes. Spectral analysis results are essential aids in turbulence model development and validation. Further work on the one-dimensional (1D) SCTM formulation was performed to improve model behavior for higher Reynolds number channel flow than previously examined, where the boundary layer close to the solid wall is now resolved and good agreement was achieved between the SCTM and DNS data. The SCTM was then implemented into the 3D MCFD package NPHASE-CMFD and tested for turbulent single-phase, monodispersed bubbly twophase, and polydispersed bubbly two-phase flow in various geometries. The SCTM predictions were compared with the k-a model, experimental data, and DNS data. The objective of the work is to improve and develop the SCTM and subsequently provide the numerical framework for the SCTM to be used in M-CFD predictions of multiphase flow in complex nuclear reactor geometries.

  17. Preliminary report on NTS spectral gamma logging and calibration models

    International Nuclear Information System (INIS)

    Mathews, M.A.; Warren, R.G.; Garcia, S.R.; Lavelle, M.J.

    1985-01-01

    Facilities are now available at the Nevada Test Site (NTS) in Building 2201 to calibrate spectral gamma logging equipment in environments of low radioactivity. Such environments are routinely encountered during logging of holes at the NTS. Four calibration models were delivered to Building 2201 in January 1985. Each model, or test pit, consists of a stone block with a 12-inch diameter cored borehole. Preliminary radioelement values from the core for the test pits range from 0.58 to 3.83% potassium (K), 0.48 to 29.11 ppm thorium (Th), and 0.62 to 40.42 ppm uranium (U). Two satellite holes, U19ab number2 and U19ab number3, were logged during the winter of 1984-1985. The response of these logs correlates with contents of the naturally radioactive elements K. Th. and U determined in samples from petrologic zones that occur within these holes. Based on these comparisons, the spectral gamma log aids in the recognition and mapping of subsurface stratigraphic units and alteration features associated with unusual concentration of these radioactive elements, such as clay-rich zones

  18. Spectral model for clear sky atmospheric longwave radiation

    Science.gov (United States)

    Li, Mengying; Liao, Zhouyi; Coimbra, Carlos F. M.

    2018-04-01

    An efficient spectrally resolved radiative model is used to calculate surface downwelling longwave (DLW) radiation (0 ∼ 2500 cm-1) under clear sky (cloud free) conditions at the ground level. The wavenumber spectral resolution of the model is 0.01 cm-1 and the atmosphere is represented by 18 non-uniform plane-parallel layers with pressure in each layer determined on a pressure-based coordinate system. The model utilizes the most up-to-date (2016) HITRAN molecular spectral data for 7 atmospheric gases: H2O, CO2, O3, CH4, N2O, O2 and N2. The MT_CKD model is used to calculate water vapor and CO2 continuum absorption coefficients. Longwave absorption and scattering coefficients for aerosols are modeled using Mie theory. For the non-scattering atmosphere (aerosol free), the surface DLW agrees within 2.91% with mean values from the InterComparison of Radiation Codes in Climate Models (ICRCCM) program, with spectral deviations below 0.035 W cm m-2. For a scattering atmosphere with typical aerosol loading, the DLW calculated by the proposed model agrees within 3.08% relative error when compared to measured values at 7 climatologically diverse SURFRAD stations. This relative error is smaller than a calibrated parametric model regressed from data for those same 7 stations, and within the uncertainty (+/- 5 W m-2) of pyrgeometers commonly used for meteorological and climatological applications. The DLW increases by 1.86 ∼ 6.57 W m-2 when compared with aerosol-free conditions, and this increment decreases with increased water vapor content due to overlap with water vapor bands. As expected, the water vapor content at the layers closest to the surface contributes the most to the surface DLW, especially in the spectral region 0 ∼ 700 cm-1. Additional water vapor content (mostly from the lowest 1 km of the atmosphere) contributes to the spectral range of 400 ∼ 650 cm-1. Low altitude aerosols ( ∼ 3.46 km or less) contribute to the surface value of DLW mostly in the

  19. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  20. Model Test Bed for Evaluating Wave Models and Best Practices for Resource Assessment and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Yang, Zhaoqing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Wang, Taiping [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Coastal Sciences Division; Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies; Dallman, Ann Renee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Water Power Technologies

    2016-03-01

    A wave model test bed is established to benchmark, test and evaluate spectral wave models and modeling methodologies (i.e., best practices) for predicting the wave energy resource parameters recommended by the International Electrotechnical Commission, IEC TS 62600-101Ed. 1.0 ©2015. Among other benefits, the model test bed can be used to investigate the suitability of different models, specifically what source terms should be included in spectral wave models under different wave climate conditions and for different classes of resource assessment. The overarching goal is to use these investigations to provide industry guidance for model selection and modeling best practices depending on the wave site conditions and desired class of resource assessment. Modeling best practices are reviewed, and limitations and knowledge gaps in predicting wave energy resource parameters are identified.

  1. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    OpenAIRE

    MURILLO, Carol Andrea; THOREL, Luc; CAICEDO, Bernardo

    2009-01-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge test...

  2. Toward an Empirically-based Parametric Explosion Spectral Model

    Science.gov (United States)

    Ford, S. R.; Walter, W. R.; Ruppert, S.; Matzel, E.; Hauk, T. F.; Gok, R.

    2010-12-01

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases (Pn, Pg, and Lg) that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. These parameters are then correlated with near-source geology and containment conditions. There is a correlation of high gas-porosity (low strength) with increased spectral slope. However, there are trade-offs between the slope and corner-frequency, which we try to independently constrain using Mueller-Murphy relations and coda-ratio techniques. The relationship between the parametric equation and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source, and aid in the prediction of observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing.

  3. A Spectral Evaluation of Models Performances in Mediterranean Oak Woodlands

    Science.gov (United States)

    Vargas, R.; Baldocchi, D. D.; Abramowitz, G.; Carrara, A.; Correia, A.; Kobayashi, H.; Papale, D.; Pearson, D.; Pereira, J.; Piao, S.; Rambal, S.; Sonnentag, O.

    2009-12-01

    Ecosystem processes are influenced by climatic trends at multiple temporal scales including diel patterns and other mid-term climatic modes, such as interannual and seasonal variability. Because interactions between biophysical components of ecosystem processes are complex, it is important to test how models perform in frequency (e.g. hours, days, weeks, months, years) and time (i.e. day of the year) domains in addition to traditional tests of annual or monthly sums. Here we present a spectral evaluation using wavelet time series analysis of model performance in seven Mediterranean Oak Woodlands that encompass three deciduous and four evergreen sites. We tested the performance of five models (CABLE, ORCHIDEE, BEPS, Biome-BGC, and JULES) on measured variables of gross primary production (GPP) and evapotranspiration (ET). In general, model performance fails at intermediate periods (e.g. weeks to months) likely because these models do not represent the water pulse dynamics that influence GPP and ET at these Mediterranean systems. To improve the performance of a model it is critical to identify first where and when the model fails. Only by identifying where a model fails we can improve the model performance and use them as prognostic tools and to generate further hypotheses that can be tested by new experiments and measurements.

  4. Spectral analysis of surface waves method to assess shear wave velocity within centrifuge models

    Science.gov (United States)

    Murillo, Carol Andrea; Thorel, Luc; Caicedo, Bernardo

    2009-06-01

    The method of the spectral analysis of surface waves (SASW) is tested out on reduced scale centrifuge models, with a specific device, called the mini Falling Weight, developed for this purpose. Tests are performed on layered materials made of a mixture of sand and clay. The shear wave velocity VS determined within the models using the SASW is compared with the laboratory measurements carried out using the bender element test. The results show that the SASW technique applied to centrifuge testing is a relevant method to characterize VS near the surface.

  5. Composite spectral functions for solving Volterra's population model

    International Nuclear Information System (INIS)

    Ramezani, M.; Razzaghi, M.; Dehghan, M.

    2007-01-01

    An approximate method for solving Volterra's population model for population growth of a species in a closed system is proposed. Volterra's model is a nonlinear integro-differential equation, where the integral term represents the effect of toxin. The approach is based upon composite spectral functions approximations. The properties of composite spectral functions consisting of few terms of orthogonal functions are presented and are utilized to reduce the solution of the Volterra's model to the solution of a system of algebraic equations. The method is easy to implement and yields very accurate result

  6. Testing the accuracy and stability of spectral methods in numerical relativity

    International Nuclear Information System (INIS)

    Boyle, Michael; Lindblom, Lee; Pfeiffer, Harald P.; Scheel, Mark A.; Kidder, Lawrence E.

    2007-01-01

    The accuracy and stability of the Caltech-Cornell pseudospectral code is evaluated using the Kidder, Scheel, and Teukolsky (KST) representation of the Einstein evolution equations. The basic 'Mexico City tests' widely adopted by the numerical relativity community are adapted here for codes based on spectral methods. Exponential convergence of the spectral code is established, apparently limited only by numerical roundoff error or by truncation error in the time integration. A general expression for the growth of errors due to finite machine precision is derived, and it is shown that this limit is achieved here for the linear plane-wave test

  7. Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.

    Science.gov (United States)

    Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth

    2012-07-01

    Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The spectral analysis of motion: An "open field" activity test example

    Directory of Open Access Journals (Sweden)

    Obradović Z.

    2013-01-01

    Full Text Available In this work we have described the new mathematical approach, with spectral analysis of the data to evaluate position and motion in the „„open field““ experiments. The aim of this work is to introduce several new parameters mathematically derived from experimental data by means of spectral analysis, and to quantitatively estimate the quality of the motion. Two original software packages (TRACKER and POSTPROC were used for transforming a video data to a log file, suitable for further computational analysis, and to perform analysis from the log file. As an example, results obtained from the experiments with Wistar rats in the „open field“ test are included. The test group of animals was treated with diazepam. Our results demonstrate that all the calculated parameters, such as movement variability, acceleration and deceleration, were significantly lower in the test group compared to the control group. We believe that the application of parameters obtained by spectral analysis could be of great significance in assessing the locomotion impairment in any kind of motion. [Projekat Ministarstva nauke Republike Srbije, br. III41007 i br. ON174028

  9. SPECTRAL COLOR INDICES BASED GEOSPATIAL MODELING OF SOIL ORGANIC MATTER IN CHITWAN DISTRICT, NEPAL

    Directory of Open Access Journals (Sweden)

    U. K. Mandal

    2016-06-01

    Full Text Available Space Technology provides a resourceful-cost effective means to assess soil nutrients essential for soil management plan. Soil organic matter (SOM is one of valuable controlling productivity of crops by providing nutrient in farming systems. Geospatial modeling of soil organic matter is essential if there is unavailability of soil test laboratories and its strong spatial correlation. In the present analysis, soil organic matter is modeled from satellite image derived spectral color indices. Brightness Index (BI, Coloration Index (CI, Hue Index (HI, Redness Index (RI and Saturation Index (SI were calculated by converting DN value to radiance and radiance to reflectance from Thematic Mapper image. Geospatial model was developed by regressing SOM with color indices and producing multiple regression model using stepwise regression technique. The multiple regression equation between SOM and spectral indices was significant with R = 0. 56 at 95% confidence level. The resulting MLR equation was then used for the spatial prediction for the entire study area. Redness Index was found higher significance in estimating the SOM. It was used to predict SOM as auxiliary variables using cokringing spatial interpolation technique. It was tested in seven VDCs of Chitwan district of Nepal using Thematic Mapper remotely sensed data. SOM was found to be measured ranging from 0.15% to 4.75 %, with a mean of 2.24 %. Remotely sensed data derived spectral color indices have the potential as useful auxiliary variables for estimating SOM content to generate soil fertility management plans.

  10. Gap timing and the spectral timing model.

    Science.gov (United States)

    Hopson, J W

    1999-04-01

    A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.

  11. Modelling the spectral irradiance distribution in sunny inland locations using an ANN-based methodology

    International Nuclear Information System (INIS)

    Torres-Ramírez, M.; Elizondo, D.; García-Domingo, B.; Nofuentes, G.; Talavera, D.L.

    2015-01-01

    This work is aimed at verifying that in sunny inland locations artificial intelligence techniques may provide an estimation of the spectral irradiance with adequate accuracy for photovoltaic applications. An ANN (artificial neural network) based method was developed, trained and tested to model the spectral distributions between wavelengths ranging from 350 to 1050 nm. Only commonly available input data such as geographical information regarding location, specific date and time together with horizontal global irradiance and ambient temperature are required. Historical information from a 24-month experimental campaign carried out in Jaén (Spain) provided the necessary data to train and test the ANN tool. A Kohonen self-organized map was used as innovative technique to classify the whole input dataset and build a small and representative training dataset. The shape of the spectral irradiance distribution, the in-plane global irradiance (G T ) and irradiation (H T ) and the APE (average photon energy) values obtained through the ANN method were statistically compared to the experimental ones. In terms of shape distribution fitting, the mean relative deformation error stays below 4.81%. The root mean square percentage error is around 6.89% and 0.45% when estimating G T and APE, respectively. Regarding H T , errors lie below 3.18% in all cases. - Highlights: • ANN-based model to estimate the spectral irradiance distribution in sunny inland locations. • MRDE value stay below 4.81% in spectral irradiance distribution shape fitting. • RMSPE is about 6.89% for the in-plane global irradiance and 0.45% for the average photon energy. • Errors stay below 3.18% for all the months of the year in incident irradiation terms. • Improvement of assessment of the impact of the solar spectrum in the performance of a PV module

  12. Standard Test Method for Determination of the Spectral Mismatch Parameter Between a Photovoltaic Device and a Photovoltaic Reference Cell

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure for the determination of a spectral mismatch parameter used in performance testing of photovoltaic devices. 1.2 The spectral mismatch parameter is a measure of the error, introduced in the testing of a photovoltaic device, caused by mismatch between the spectral responses of the photovoltaic device and the photovoltaic reference cell, as well as mismatch between the test light source and the reference spectral irradiance distribution to which the photovoltaic reference cell was calibrated. Examples of reference spectral irradiance distributions are Tables E490 or G173. 1.3 The spectral mismatch parameter can be used to correct photovoltaic performance data for spectral mismatch error. 1.4 This test method is intended for use with linear photovoltaic devices. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, a...

  13. Validation of buoyancy driven spectral tensor model using HATS data

    DEFF Research Database (Denmark)

    Chougule, A.; Mann, Jakob; Kelly, Mark C.

    2016-01-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...

  14. On global and regional spectral evaluation of global geopotential models

    International Nuclear Information System (INIS)

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  15. Comparison of the Spectral-Temporally Modulated Ripple Test With the Arizona Biomedical Institute Sentence Test in Cochlear Implant Users.

    Science.gov (United States)

    Lawler, Marshall; Yu, Jeffrey; Aronoff, Justin M

    Although speech perception is the gold standard for measuring cochlear implant (CI) users' performance, speech perception tests often require extensive adaptation to obtain accurate results, particularly after large changes in maps. Spectral ripple tests, which measure spectral resolution, are an alternate measure that has been shown to correlate with speech perception. A modified spectral ripple test, the spectral-temporally modulated ripple test (SMRT) has recently been developed, and the objective of this study was to compare speech perception and performance on the SMRT for a heterogeneous population of unilateral CI users, bilateral CI users, and bimodal users. Twenty-five CI users (eight using unilateral CIs, nine using bilateral CIs, and eight using a CI and a hearing aid) were tested on the Arizona Biomedical Institute Sentence Test (AzBio) with a +8 dB signal to noise ratio, and on the SMRT. All participants were tested with their clinical programs. There was a significant correlation between SMRT and AzBio performance. After a practice block, an improvement of one ripple per octave for SMRT corresponded to an improvement of 12.1% for AzBio. Additionally, there was no significant difference in slope or intercept between any of the CI populations. The results indicate that performance on the SMRT correlates with speech recognition in noise when measured across unilateral, bilateral, and bimodal CI populations. These results suggest that SMRT scores are strongly associated with speech recognition in noise ability in experienced CI users. Further studies should focus on increasing both the size and diversity of the tested participants, and on determining whether the SMRT technique can be used for early predictions of long-term speech scores, or for evaluating differences among different stimulation strategies or parameter settings.

  16. Analysis of errors in spectral reconstruction with a Laplace transform pair model

    International Nuclear Information System (INIS)

    Archer, B.R.; Bushong, S.C.

    1985-01-01

    The sensitivity of a Laplace transform pair model for spectral reconstruction to random errors in attenuation measurements of diagnostic x-ray units has been investigated. No spectral deformation or significant alteration resulted from the simulated attenuation errors. It is concluded that the range of spectral uncertainties to be expected from the application of this model is acceptable for most scientific applications. (author)

  17. A wave model test bed study for wave energy resource characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaoqing; Neary, Vincent S.; Wang, Taiping; Gunawan, Budi; Dallman, Annie R.; Wu, Wei-Cheng

    2017-12-01

    This paper presents a test bed study conducted to evaluate best practices in wave modeling to characterize energy resources. The model test bed off the central Oregon Coast was selected because of the high wave energy and available measured data at the site. Two third-generation spectral wave models, SWAN and WWIII, were evaluated. A four-level nested-grid approach—from global to test bed scale—was employed. Model skills were assessed using a set of model performance metrics based on comparing six simulated wave resource parameters to observations from a wave buoy inside the test bed. Both WWIII and SWAN performed well at the test bed site and exhibited similar modeling skills. The ST4 package with WWIII, which represents better physics for wave growth and dissipation, out-performed ST2 physics and improved wave power density and significant wave height predictions. However, ST4 physics tended to overpredict the wave energy period. The newly developed ST6 physics did not improve the overall model skill for predicting the six wave resource parameters. Sensitivity analysis using different wave frequencies and direction resolutions indicated the model results were not sensitive to spectral resolutions at the test bed site, likely due to the absence of complex bathymetric and geometric features.

  18. The influence of spectral nudging on typhoon formation in regional climate models

    Science.gov (United States)

    Feser, Frauke; Barcikowska, Monika

    2012-03-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden-Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  19. The influence of spectral nudging on typhoon formation in regional climate models

    International Nuclear Information System (INIS)

    Feser, Frauke; Barcikowska, Monika

    2012-01-01

    Regional climate models can successfully simulate tropical cyclones and typhoons. This has been shown and was evaluated for hindcast studies of the past few decades. But often global and regional weather phenomena are not simulated at the observed location, or occur too often or seldom even though the regional model is driven by global reanalysis data which constitute a near-realistic state of the global atmosphere. Therefore, several techniques have been developed in order to make the regional model follow the global state more closely. One is spectral nudging, which is applied for horizontal wind components with increasing strength for higher model levels in this study. The aim of this study is to show the influence that this method has on the formation of tropical cyclones (TC) in regional climate models. Two ensemble simulations (each with five simulations) were computed for Southeast Asia and the Northwestern Pacific for the typhoon season 2004, one with spectral nudging and one without. First of all, spectral nudging reduced the overall TC number by about a factor of 2. But the number of tracks which are similar to observed best track data (BTD) was greatly increased. Also, spatial track density patterns were found to be more similar when using spectral nudging. The tracks merge after a short time for the spectral nudging simulations and then follow the BTD closely; for the no nudge cases the similarity is greatly reduced. A comparison of seasonal precipitation, geopotential height, and temperature fields at several height levels with observations and reanalysis data showed overall a smaller ensemble spread, higher pattern correlations and reduced root mean square errors and biases for the spectral nudged simulations. Vertical temperature profiles for selected TCs indicate that spectral nudging is not inhibiting TC development at higher levels. Both the Madden–Julian Oscillation and monsoonal precipitation are reproduced realistically by the regional model

  20. Development of spectral analysis math models and software program and spectral analyzer, digital converter interface equipment design

    Science.gov (United States)

    Hayden, W. L.; Robinson, L. H.

    1972-01-01

    Spectral analyses of angle-modulated communication systems is studied by: (1) performing a literature survey of candidate power spectrum computational techniques, determining the computational requirements, and formulating a mathematical model satisfying these requirements; (2) implementing the model on UNIVAC 1230 digital computer as the Spectral Analysis Program (SAP); and (3) developing the hardware specifications for a data acquisition system which will acquire an input modulating signal for SAP. The SAP computational technique uses extended fast Fourier transform and represents a generalized approach for simple and complex modulating signals.

  1. Solution to the spectral filter problem of residual terrain modelling (RTM)

    Science.gov (United States)

    Rexer, Moritz; Hirt, Christian; Bucha, Blažej; Holmes, Simon

    2018-06-01

    In physical geodesy, the residual terrain modelling (RTM) technique is frequently used for high-frequency gravity forward modelling. In the RTM technique, a detailed elevation model is high-pass-filtered in the topography domain, which is not equivalent to filtering in the gravity domain. This in-equivalence, denoted as spectral filter problem of the RTM technique, gives rise to two imperfections (errors). The first imperfection is unwanted low-frequency (LF) gravity signals, and the second imperfection is missing high-frequency (HF) signals in the forward-modelled RTM gravity signal. This paper presents new solutions to the RTM spectral filter problem. Our solutions are based on explicit modelling of the two imperfections via corrections. The HF correction is computed using spectral domain gravity forward modelling that delivers the HF gravity signal generated by the long-wavelength RTM reference topography. The LF correction is obtained from pre-computed global RTM gravity grids that are low-pass-filtered using surface or solid spherical harmonics. A numerical case study reveals maximum absolute signal strengths of ˜ 44 mGal (0.5 mGal RMS) for the HF correction and ˜ 33 mGal (0.6 mGal RMS) for the LF correction w.r.t. a degree-2160 reference topography within the data coverage of the SRTM topography model (56°S ≤ φ ≤ 60°N). Application of the LF and HF corrections to pre-computed global gravity models (here the GGMplus gravity maps) demonstrates the efficiency of the new corrections over topographically rugged terrain. Over Switzerland, consideration of the HF and LF corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 4.41 to 3.27 mGal, which translates into ˜ 26% improvement. Over a second test area (Canada), our corrections reduced the RMS of the residuals between GGMplus and ground-truth gravity from 5.65 to 5.30 mGal (˜ 6% improvement). Particularly over Switzerland, geophysical signals (associated, e.g. with

  2. Remote sensing of oceanic primary production: Computations using a spectral model

    Digital Repository Service at National Institute of Oceanography (India)

    Sathyendranath, S.; Platt, T.; Caverhill, C.M.; Warnock, R.E.; Lewis, M.R.

    A spectral model of underwater irradiance is coupled with a spectral version of the photosynthesis-light relationship to compute oceanic primary production. The results are shown to be significantly different from those obtained using...

  3. A Statistical and Spectral Model for Representing Noisy Sounds with Short-Time Sinusoids

    Directory of Open Access Journals (Sweden)

    Myriam Desainte-Catherine

    2005-07-01

    Full Text Available We propose an original model for noise analysis, transformation, and synthesis: the CNSS model. Noisy sounds are represented with short-time sinusoids whose frequencies and phases are random variables. This spectral and statistical model represents information about the spectral density of frequencies. This perceptually relevant property is modeled by three mathematical parameters that define the distribution of the frequencies. This model also represents the spectral envelope. The mathematical parameters are defined and the analysis algorithms to extract these parameters from sounds are introduced. Then algorithms for generating sounds from the parameters of the model are presented. Applications of this model include tools for composers, psychoacoustic experiments, and pedagogy.

  4. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures of Nonconducting Specimens

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1971-01-01

    1.1 This test method describes an accurate technique for measuring the normal spectral emittance of electrically nonconducting materials in the temperature range from 1000 to 1800 K, and at wavelengths from 1 to 35 μm. It is particularly suitable for measuring the normal spectral emittance of materials such as ceramic oxides, which have relatively low thermal conductivity and are translucent to appreciable depths (several millimetres) below the surface, but which become essentially opaque at thicknesses of 10 mm or less. 1.2 This test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is particularly suitable for research laboratories, where the highest precision and accuracy are desired, and is not recommended for routine production or acceptance testing. Because of its high accuracy, this test method may be used as a reference method to be applied to production and acceptance testing in case of dispute. 1.3 This test metho...

  5. VNIR spectral modeling of Mars analogue rocks: first results

    Science.gov (United States)

    Pompilio, L.; Roush, T.; Pedrazzi, G.; Sgavetti, M.

    Knowledge regarding the surface composition of Mars and other bodies of the inner solar system is fundamental to understanding of their origin, evolution, and internal structures. Technological improvements of remote sensors and associated implications for planetary studies have encouraged increased laboratory and field spectroscopy research to model the spectral behavior of terrestrial analogues for planetary surfaces. This approach has proven useful during Martian surface and orbital missions, and petrologic studies of Martian SNC meteorites. Thermal emission data were used to suggest two lithologies occurring on Mars surface: basalt with abundant plagioclase and clinopyroxene and andesite, dominated by plagioclase and volcanic glass [1,2]. Weathered basalt has been suggested as an alternative to the andesite interpretation [3,4]. Orbital VNIR spectral imaging data also suggest the crust is dominantly basaltic, chiefly feldspar and pyroxene [5,6]. A few outcrops of ancient crust have higher concentrations of olivine and low-Ca pyroxene, and have been interpreted as cumulates [6]. Based upon these orbital observations future lander/rover missions can be expected to encounter particulate soils, rocks, and rock outcrops. Approaches to qualitative and quantitative analysis of remotely-acquired spectra have been successfully used to infer the presence and abundance of minerals and to discover compositionally associated spectral trends [7-9]. Both empirical [10] and mathematical [e.g. 11-13] methods have been applied, typically with full compositional knowledge, to chiefly particulate samples and as a result cannot be considered as objective techniques for predicting the compositional information, especially for understanding the spectral behavior of rocks. Extending the compositional modeling efforts to include more rocks and developing objective criteria in the modeling are the next required steps. This is the focus of the present investigation. We present results of

  6. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  7. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  8. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery

    International Nuclear Information System (INIS)

    Alakian, A.

    2008-03-01

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 μm] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  9. Technical progress report: Completion of spectral rotating shadowband radiometers and analysis of atmospheric radiation measurement spectral shortwave data

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, J.; Harrison, L. [State Univ. of New York, Albany, NY (United States)

    1996-04-01

    Our goal in the Atmospheric Radiation Measurement (ARM) Program is the improvement of radiation models used in general circulation models (GCMs), especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. At the Atmospheric Sciences Research Center (ASRC) in Albany, New York, we are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that we combine with National Weather Service surface and upper air data from the Albany airport as a test data set for ARM modelers. We have also developed algorithms to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifilter rotating shadowband radiometer (MFRSR) based on these Albany data sets. Much time has been spent developing techniques to retrieve column aerosol, water vapor, and ozone from the direct beam spectral measurements of the MFRSR. Additionally, we have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral reflectance.

  10. Spectral imaging toolbox: segmentation, hyperstack reconstruction, and batch processing of spectral images for the determination of cell and model membrane lipid order.

    Science.gov (United States)

    Aron, Miles; Browning, Richard; Carugo, Dario; Sezgin, Erdinc; Bernardino de la Serna, Jorge; Eggeling, Christian; Stride, Eleanor

    2017-05-12

    Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The

  11. Spectral Behavior of a Linearized Land-Atmosphere Model: Applications to Hydrometeorology

    Science.gov (United States)

    Gentine, P.; Entekhabi, D.; Polcher, J.

    2008-12-01

    The present study develops an improved version of the linearized land-atmosphere model first introduced by Lettau (1951). This model is used to investigate the spectral response of land-surface variables to a daily forcing of incoming radiation at the land-surface. An analytical solution of the problem is found in the form of temporal Fourier series and gives the atmospheric boundary-layer and soil profiles of state variables (potential temperature, specific humidity, sensible and latent heat fluxes). Moreover the spectral dependency of surface variables is expressed as function of land-surface parameters (friction velocity, vegetation height, aerodynamic resistance, stomatal conductance). This original approach has several advantages: First, the model only requires little data to work and perform well: only time series of incoming radiation at the land-surface, mean specific humidity and temperature at any given height are required. These inputs being widely available over the globe, the model can easily be run and tested under various conditions. The model will also help analysing the diurnal shape and frequency dependency of surface variables and soil-ABL profiles. In particular, a strong emphasis is being placed on the explanation and prediction of Evaporative Fraction (EF) and Bowen Ratio diurnal shapes. EF is shown to remain a diurnal constant under restricting conditions: fair and dry weather, with strong solar radiation and no clouds. Moreover, the EF pseudo-constancy value is found and given as function of surface parameters, such as aerodynamic resistance and stomatal conductance. Then, application of the model for the conception of remote-sensing tools, according to the temporal resolution of the sensor, will also be discussed. Finally, possible extensions and improvement of the model will be discussed.

  12. Nonlinear spectral mixing theory to model multispectral signatures

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C. [Los Alamos National Lab., NM (United States). Astrophysics and Radiation Measurements Group

    1996-02-01

    Nonlinear spectral mixing occurs due to multiple reflections and transmissions between discrete surfaces, e.g. leaves or facets of a rough surface. The radiosity method is an energy conserving computational method used in thermal engineering and it models nonlinear spectral mixing realistically and accurately. In contrast to the radiative transfer method the radiosity method takes into account the discreteness of the scattering surfaces (e.g. exact location, orientation and shape) such as leaves and includes mutual shading between them. An analytic radiosity-based scattering model for vegetation was developed and used to compute vegetation indices for various configurations. The leaf reflectance and transmittance was modeled using the PROSPECT model for various amounts of water, chlorophyll and variable leaf structure. The soil background was modeled using SOILSPEC with a linear mixture of reflectances of sand, clay and peat. A neural network and a geometry based retrieval scheme were used to retrieve leaf area index and chlorophyll concentration for dense canopies. Only simulated canopy reflectances in the 6 visible through short wave IR Landsat TM channels were used. The authors used an empirical function to compute the signal-to-noise ratio of a retrieved quantity.

  13. EXPLORING DATA-DRIVEN SPECTRAL MODELS FOR APOGEE M DWARFS

    Science.gov (United States)

    Lua Birky, Jessica; Hogg, David; Burgasser, Adam J.; Jessica Birky

    2018-01-01

    The Cannon (Ness et al. 2015; Casey et al. 2016) is a flexible, data-driven spectral modeling and parameter inference framework, demonstrated on high-resolution Apache Point Galactic Evolution Experiment (APOGEE; λ/Δλ~22,500, 1.5-1.7µm) spectra of giant stars to estimate stellar labels (Teff, logg, [Fe/H], and chemical abundances) to precisions higher than the model-grid pipeline. The lack of reliable stellar parameters reported by the APOGEE pipeline for temperatures less than ~3550K, motivates extension of this approach to M dwarf stars. Using a training set of 51 M dwarfs with spectral types ranging M0-M9 obtained from SDSS optical spectra, we demonstrate that the Cannon can infer spectral types to a precision of +/-0.6 types, making it an effective tool for classifying high-resolution near-infrared spectra. We discuss the potential for extending this work to determine the physical stellar labels Teff, logg, and [Fe/H].This work is supported by the SDSS Faculty and Student (FAST) initiative.

  14. A polychromatic adaption of the Beer-Lambert model for spectral decomposition

    Science.gov (United States)

    Sellerer, Thorsten; Ehn, Sebastian; Mechlem, Korbinian; Pfeiffer, Franz; Herzen, Julia; Noël, Peter B.

    2017-03-01

    We present a semi-empirical forward-model for spectral photon-counting CT which is fully compatible with state-of-the-art maximum-likelihood estimators (MLE) for basis material line integrals. The model relies on a minimum calibration effort to make the method applicable in routine clinical set-ups with the need for periodic re-calibration. In this work we present an experimental verifcation of our proposed method. The proposed method uses an adapted Beer-Lambert model, describing the energy dependent attenuation of a polychromatic x-ray spectrum using additional exponential terms. In an experimental dual-energy photon-counting CT setup based on a CdTe detector, the model demonstrates an accurate prediction of the registered counts for an attenuated polychromatic spectrum. Thereby deviations between model and measurement data lie within the Poisson statistical limit of the performed acquisitions, providing an effectively unbiased forward-model. The experimental data also shows that the model is capable of handling possible spectral distortions introduced by the photon-counting detector and CdTe sensor. The simplicity and high accuracy of the proposed model provides a viable forward-model for MLE-based spectral decomposition methods without the need of costly and time-consuming characterization of the system response.

  15. Analysis of petroleum contaminated soils by spectral modeling and pure response profile recovery of n-hexane

    International Nuclear Information System (INIS)

    Chakraborty, Somsubhra; Weindorf, David C.; Li, Bin; Ali, Md. Nasim; Majumdar, K.; Ray, D.P.

    2014-01-01

    This pilot study compared penalized spline regression (PSR) and random forest (RF) regression using visible and near-infrared diffuse reflectance spectroscopy (VisNIR DRS) derived spectra of 164 petroleum contaminated soils after two different spectral pretreatments [first derivative (FD) and standard normal variate (SNV) followed by detrending] for rapid quantification of soil petroleum contamination. Additionally, a new analytical approach was proposed for the recovery of the pure spectral and concentration profiles of n-hexane present in the unresolved mixture of petroleum contaminated soils using multivariate curve resolution alternating least squares (MCR-ALS). The PSR model using FD spectra (r 2  = 0.87, RMSE = 0.580 log 10  mg kg −1 , and residual prediction deviation = 2.78) outperformed all other models tested. Quantitative results obtained by MCR-ALS for n-hexane in presence of interferences (r 2  = 0.65 and RMSE 0.261 log 10  mg kg −1 ) were comparable to those obtained using FD (PSR) model. Furthermore, MCR ALS was able to recover pure spectra of n-hexane. - Highlights: • We predicted soil petroleum contamination with VisNIR DRS spectra. • We examined 2 spectral pretreatments and 2 multivariate models. • MCR-ALS was used for compositional and spectral resolution of n-hexane. • Penalized spline regression performed best for quantifying soil TPH. • MCR-ALS was promising for resolution of complex soil–petroleum mixture. - Use of VisNIR DRS for rapid quantification of soil TPH and resolution of complex soil petroleum mixtures

  16. Spectral modeling of radiation in combustion systems

    Science.gov (United States)

    Pal, Gopalendu

    Radiation calculations are important in combustion due to the high temperatures encountered but has not been studied in sufficient detail in the case of turbulent flames. Radiation calculations for such problems require accurate, robust, and computationally efficient models for the solution of radiative transfer equation (RTE), and spectral properties of radiation. One more layer of complexity is added in predicting the overall heat transfer in turbulent combustion systems due to nonlinear interactions between turbulent fluctuations and radiation. The present work is aimed at the development of finite volume-based high-accuracy thermal radiation modeling, including spectral radiation properties in order to accurately capture turbulence-radiation interactions (TRI) and predict heat transfer in turbulent combustion systems correctly and efficiently. The turbulent fluctuations of temperature and chemical species concentrations have strong effects on spectral radiative intensities, and TRI create a closure problem when the governing partial differential equations are averaged. Recently, several approaches have been proposed to take TRI into account. Among these attempts the most promising approaches are the probability density function (PDF) methods, which can treat nonlinear coupling between turbulence and radiative emission exactly, i.e., "emission TRI". The basic idea of the PDF method is to treat physical variables as random variables and to solve the PDF transport equation stochastically. The actual reacting flow field is represented by a large number of discrete stochastic particles each carrying their own random variable values and evolving with time. The mean value of any function of those random variables, such as the chemical source term, can be evaluated exactly by taking the ensemble average of particles. The local emission term belongs to this class and thus, can be evaluated directly and exactly from particle ensembles. However, the local absorption term

  17. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Directory of Open Access Journals (Sweden)

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  18. Development of a Three-Dimensional Spectral Element Model for NWP: Idealized Simulations on the Sphere

    Science.gov (United States)

    Viner, K.; Reinecke, P. A.; Gabersek, S.; Flagg, D. D.; Doyle, J. D.; Martini, M.; Ryglicki, D.; Michalakes, J.; Giraldo, F.

    2016-12-01

    NEPTUNE: the Navy Environmental Prediction sysTem Using the NUMA*corE, is a 3D spectral element atmospheric model composed of a full suite of physics parameterizations and pre- and post-processing infrastructure with plans for data assimilation and coupling components to a variety of Earth-system models. This talk will focus on the initial struggles and solutions in adapting NUMA for stable and accurate integration on the sphere using both the deep atmosphere equations and a newly developed shallow-atmosphere approximation, as demonstrated through idealized test cases. In addition, details of the physics-dynamics coupling methodology will be discussed. NEPTUNE results for test cases from the 2016 Dynamical Core Model Intercomparison Project (DCMIP-2016) will be shown and discussed. *NUMA: Nonhydrostatic Unified Model of the Atmosphere; Kelly and Giraldo 2012, JCP

  19. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  20. Asymptotic stability of spectral-based PDF modeling for homogeneous turbulent flows

    Science.gov (United States)

    Campos, Alejandro; Duraisamy, Karthik; Iaccarino, Gianluca

    2015-11-01

    Engineering models of turbulence, based on one-point statistics, neglect spectral information inherent in a turbulence field. It is well known, however, that the evolution of turbulence is dictated by a complex interplay between the spectral modes of velocity. For example, for homogeneous turbulence, the pressure-rate-of-strain depends on the integrated energy spectrum weighted by components of the wave vectors. The Interacting Particle Representation Model (IPRM) (Kassinos & Reynolds, 1996) and the Velocity/Wave-Vector PDF model (Van Slooten & Pope, 1997) emulate spectral information in an attempt to improve the modeling of turbulence. We investigate the evolution and asymptotic stability of the IPRM using three different approaches. The first approach considers the Lagrangian evolution of individual realizations (idealized as particles) of the stochastic process defined by the IPRM. The second solves Lagrangian evolution equations for clusters of realizations conditional on a given wave vector. The third evolves the solution of the Eulerian conditional PDF corresponding to the aforementioned clusters. This last method avoids issues related to discrete particle noise and slow convergence associated with Lagrangian particle-based simulations.

  1. Optical Modeling of Spectral Backscattering and Remote Sensing Reflectance From Emiliania huxleyi Blooms

    Directory of Open Access Journals (Sweden)

    Griet Neukermans

    2018-05-01

    Full Text Available In this study we develop an analytical model for spectral backscattering and ocean color remote sensing of blooms of the calcifying phytoplankton species Emiliania huxleyi. Blooms of this coccolithophore species are ubiquitous and particularly intense in temperate and subpolar ocean waters. We first present significant improvements to our previous analytical light backscattering model for E. huxleyi coccoliths and coccospheres by accounting for the elliptical shape of coccoliths and the multi-layered coccosphere architecture observed on detailed imagery of E. huxleyi liths and coccospheres. Our new model also includes a size distribution function that closely matches measured E. huxleyi size distributions. The model for spectral backscattering is then implemented in an analytical radiative transfer model to evaluate the variability of spectral remote sensing reflectance with respect to changes in the size distribution of the coccoliths and during a hypothetical E. huxleyi bloom decay event in which coccospheres shed their liths. Our modeled remote sensing reflectance spectra reproduced well the bright milky turquoise coloring of the open ocean typically associated with the final stages of E. huxleyi blooms, with peak reflectance at a wavelength of 0.49 μm. Our results also show that the magnitude of backscattering from coccoliths when attached to or freed from the coccosphere does not differ much, contrary to what is commonly assumed, and that the spectral shape of backscattering is mainly controlled by the size and morphology of the coccoliths, suggesting that they may be estimated from spectral backscattering.

  2. Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele

    2016-01-01

    We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998). In...

  3. Spectral algorithm for non-destructive damage localisation: Application to an ancient masonry arch model

    Science.gov (United States)

    Masciotta, Maria-Giovanna; Ramos, Luís F.; Lourenço, Paulo B.; Vasta, Marcello

    2017-02-01

    Structural monitoring and vibration-based damage identification methods are fundamental tools for condition assessment and early-stage damage identification, especially when dealing with the conservation of historical constructions and the maintenance of strategic civil structures. However, although the substantial advances in the field, several issues must still be addressed to broaden the application range of such tools and to assert their reliability. This study deals with the experimental validation of a novel method for non-destructive damage identification purposes. This method is based on the use of spectral output signals and has been recently validated by the authors through a numerical simulation. After a brief insight into the basic principles of the proposed approach, the spectral-based technique is applied to identify the experimental damage induced on a masonry arch through statically increasing loading. Once the direct and cross spectral density functions of the nodal response processes are estimated, the system's output power spectrum matrix is built and decomposed in eigenvalues and eigenvectors. The present study points out how the extracted spectral eigenparameters contribute to the damage analysis allowing to detect the occurrence of damage and to locate the target points where the cracks appear during the experimental tests. The sensitivity of the spectral formulation to the level of noise in the modal data is investigated and discussed. As a final evaluation criterion, the results from the spectrum-driven method are compared with the ones obtained from existing non-model based damage identification methods.

  4. Single-particle spectral density of the Hubbard model

    NARCIS (Netherlands)

    Mehlig, B.; Eskes, H.; Hayn, R.; Meinders, M.B.J.

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  5. SINGLE-PARTICLE SPECTRAL DENSITY OF THE HUBBARD-MODEL

    NARCIS (Netherlands)

    MEHLIG, B; ESKES, H; HAYN, R; MEINDERS, MBJ

    1995-01-01

    We calculate the single-particle spectral function for the Hubbard model within the framework of a projection technique equivalent to the two-pole approximation. We show that the two-pole approximation can be well understood as an average characterization of the upper and the lower Hubbard bands,

  6. A Perceptual Model for Sinusoidal Audio Coding Based on Spectral Integration

    Directory of Open Access Journals (Sweden)

    Jensen Søren Holdt

    2005-01-01

    Full Text Available Psychoacoustical models have been used extensively within audio coding applications over the past decades. Recently, parametric coding techniques have been applied to general audio and this has created the need for a psychoacoustical model that is specifically suited for sinusoidal modelling of audio signals. In this paper, we present a new perceptual model that predicts masked thresholds for sinusoidal distortions. The model relies on signal detection theory and incorporates more recent insights about spectral and temporal integration in auditory masking. As a consequence, the model is able to predict the distortion detectability. In fact, the distortion detectability defines a (perceptually relevant norm on the underlying signal space which is beneficial for optimisation algorithms such as rate-distortion optimisation or linear predictive coding. We evaluate the merits of the model by combining it with a sinusoidal extraction method and compare the results with those obtained with the ISO MPEG-1 Layer I-II recommended model. Listening tests show a clear preference for the new model. More specifically, the model presented here leads to a reduction of more than 20% in terms of number of sinusoids needed to represent signals at a given quality level.

  7. Chebyshev super spectral viscosity method for a fluidized bed model

    International Nuclear Information System (INIS)

    Sarra, Scott A.

    2003-01-01

    A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations

  8. Spectral image reconstruction using an edge preserving spatio-spectral Wiener estimation.

    Science.gov (United States)

    Urban, Philipp; Rosen, Mitchell R; Berns, Roy S

    2009-08-01

    Reconstruction of spectral images from camera responses is investigated using an edge preserving spatio-spectral Wiener estimation. A Wiener denoising filter and a spectral reconstruction Wiener filter are combined into a single spatio-spectral filter using local propagation of the noise covariance matrix. To preserve edges the local mean and covariance matrix of camera responses is estimated by bilateral weighting of neighboring pixels. We derive the edge-preserving spatio-spectral Wiener estimation by means of Bayesian inference and show that it fades into the standard Wiener reflectance estimation shifted by a constant reflectance in case of vanishing noise. Simulation experiments conducted on a six-channel camera system and on multispectral test images show the performance of the filter, especially for edge regions. A test implementation of the method is provided as a MATLAB script at the first author's website.

  9. Spectral signature verification using statistical analysis and text mining

    Science.gov (United States)

    DeCoster, Mallory E.; Firpi, Alexe H.; Jacobs, Samantha K.; Cone, Shelli R.; Tzeng, Nigel H.; Rodriguez, Benjamin M.

    2016-05-01

    In the spectral science community, numerous spectral signatures are stored in databases representative of many sample materials collected from a variety of spectrometers and spectroscopists. Due to the variety and variability of the spectra that comprise many spectral databases, it is necessary to establish a metric for validating the quality of spectral signatures. This has been an area of great discussion and debate in the spectral science community. This paper discusses a method that independently validates two different aspects of a spectral signature to arrive at a final qualitative assessment; the textual meta-data and numerical spectral data. Results associated with the spectral data stored in the Signature Database1 (SigDB) are proposed. The numerical data comprising a sample material's spectrum is validated based on statistical properties derived from an ideal population set. The quality of the test spectrum is ranked based on a spectral angle mapper (SAM) comparison to the mean spectrum derived from the population set. Additionally, the contextual data of a test spectrum is qualitatively analyzed using lexical analysis text mining. This technique analyzes to understand the syntax of the meta-data to provide local learning patterns and trends within the spectral data, indicative of the test spectrum's quality. Text mining applications have successfully been implemented for security2 (text encryption/decryption), biomedical3 , and marketing4 applications. The text mining lexical analysis algorithm is trained on the meta-data patterns of a subset of high and low quality spectra, in order to have a model to apply to the entire SigDB data set. The statistical and textual methods combine to assess the quality of a test spectrum existing in a database without the need of an expert user. This method has been compared to other validation methods accepted by the spectral science community, and has provided promising results when a baseline spectral signature is

  10. Stroke type differentiation using spectrally constrained multifrequency EIT: evaluation of feasibility in a realistic head model

    International Nuclear Information System (INIS)

    Malone, Emma; Jehl, Markus; Arridge, Simon; Betcke, Timo; Holder, David

    2014-01-01

    We investigate the application of multifrequency electrical impedance tomography (MFEIT) to imaging the brain in stroke patients. The use of MFEIT could enable early diagnosis and thrombolysis of ischaemic stroke, and therefore improve the outcome of treatment. Recent advances in the imaging methodology suggest that the use of spectral constraints could allow for the reconstruction of a one-shot image. We performed a simulation study to investigate the feasibility of imaging stroke in a head model with realistic conductivities. We introduced increasing levels of modelling errors to test the robustness of the method to the most common sources of artefact. We considered the case of errors in the electrode placement, spectral constraints, and contact impedance. The results indicate that errors in the position and shape of the electrodes can affect image quality, although our imaging method was successful in identifying tissues with sufficiently distinct spectra. (paper)

  11. Modeling Atmospheric Turbulence via Rapid Distortion Theory: Spectral Tensor of Velocity and Buoyancy

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Kelly, Mark C.

    2017-01-01

    A spectral tensor model is presented for turbulent fluctuations of wind velocity components and temperature, assuming uniform vertical gradients in mean temperature and mean wind speed. The model is built upon rapid distortion theory (RDT) following studies by Mann and by Hanazaki and Hunt, using...... the eddy lifetime parameterization of Mann to make the model stationary. The buoyant spectral tensor model is driven via five parameters: the viscous dissipation rate epsilon, length scale of energy-containing eddies L, a turbulence anisotropy parameter Gamma, gradient Richardson number (Ri) representing...

  12. Sandmeier model based topographic correction to lunar spectral profiler (SP) data from KAGUYA satellite.

    Science.gov (United States)

    Chen, Sheng-Bo; Wang, Jing-Ran; Guo, Peng-Ju; Wang, Ming-Chang

    2014-09-01

    The Moon may be considered as the frontier base for the deep space exploration. The spectral analysis is one of the key techniques to determine the lunar surface rock and mineral compositions. But the lunar topographic relief is more remarkable than that of the Earth. It is necessary to conduct the topographic correction for lunar spectral data before they are used to retrieve the compositions. In the present paper, a lunar Sandmeier model was proposed by considering the radiance effect from the macro and ambient topographic relief. And the reflectance correction model was also reduced based on the Sandmeier model. The Spectral Profile (SP) data from KAGUYA satellite in the Sinus Iridum quadrangle was taken as an example. And the digital elevation data from Lunar Orbiter Laser Altimeter are used to calculate the slope, aspect, incidence and emergence angles, and terrain-viewing factor for the topographic correction Thus, the lunar surface reflectance from the SP data was corrected by the proposed model after the direct component of irradiance on a horizontal surface was derived. As a result, the high spectral reflectance facing the sun is decreased and low spectral reflectance back to the sun is compensated. The statistical histogram of reflectance-corrected pixel numbers presents Gaussian distribution Therefore, the model is robust to correct lunar topographic effect and estimate lunar surface reflectance.

  13. Observer model optimization of a spectral mammography system

    Science.gov (United States)

    Fredenberg, Erik; Åslund, Magnus; Cederström, Björn; Lundqvist, Mats; Danielsson, Mats

    2010-04-01

    Spectral imaging is a method in medical x-ray imaging to extract information about the object constituents by the material-specific energy dependence of x-ray attenuation. Contrast-enhanced spectral imaging has been thoroughly investigated, but unenhanced imaging may be more useful because it comes as a bonus to the conventional non-energy-resolved absorption image at screening; there is no additional radiation dose and no need for contrast medium. We have used a previously developed theoretical framework and system model that include quantum and anatomical noise to characterize the performance of a photon-counting spectral mammography system with two energy bins for unenhanced imaging. The theoretical framework was validated with synthesized images. Optimal combination of the energy-resolved images for detecting large unenhanced tumors corresponded closely, but not exactly, to minimization of the anatomical noise, which is commonly referred to as energy subtraction. In that case, an ideal-observer detectability index could be improved close to 50% compared to absorption imaging. Optimization with respect to the signal-to-quantum-noise ratio, commonly referred to as energy weighting, deteriorated detectability. For small microcalcifications or tumors on uniform backgrounds, however, energy subtraction was suboptimal whereas energy weighting provided a minute improvement. The performance was largely independent of beam quality, detector energy resolution, and bin count fraction. It is clear that inclusion of anatomical noise and imaging task in spectral optimization may yield completely different results than an analysis based solely on quantum noise.

  14. Spectral action for Bianchi type-IX cosmological models

    International Nuclear Information System (INIS)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde

    2015-01-01

    A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w_1(t),w_2(t),w_3(t), and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a_0,a_2,a_4 of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki’s noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.

  15. Pervasive randomness in physics: an introduction to its modelling and spectral characterisation

    Science.gov (United States)

    Howard, Roy

    2017-10-01

    An introduction to the modelling and spectral characterisation of random phenomena is detailed at a level consistent with a first exposure to the subject at an undergraduate level. A signal framework for defining a random process is provided and this underpins an introduction to common random processes including the Poisson point process, the random walk, the random telegraph signal, shot noise, information signalling random processes, jittered pulse trains, birth-death random processes and Markov chains. An introduction to the spectral characterisation of signals and random processes, via either an energy spectral density or a power spectral density, is detailed. The important case of defining a white noise random process concludes the paper.

  16. Fermentation process tracking through enhanced spectral calibration modeling.

    Science.gov (United States)

    Triadaphillou, Sophia; Martin, Elaine; Montague, Gary; Norden, Alison; Jeffkins, Paul; Stimpson, Sarah

    2007-06-15

    The FDA process analytical technology (PAT) initiative will materialize in a significant increase in the number of installations of spectroscopic instrumentation. However, to attain the greatest benefit from the data generated, there is a need for calibration procedures that extract the maximum information content. For example, in fermentation processes, the interpretation of the resulting spectra is challenging as a consequence of the large number of wavelengths recorded, the underlying correlation structure that is evident between the wavelengths and the impact of the measurement environment. Approaches to the development of calibration models have been based on the application of partial least squares (PLS) either to the full spectral signature or to a subset of wavelengths. This paper presents a new approach to calibration modeling that combines a wavelength selection procedure, spectral window selection (SWS), where windows of wavelengths are automatically selected which are subsequently used as the basis of the calibration model. However, due to the non-uniqueness of the windows selected when the algorithm is executed repeatedly, multiple models are constructed and these are then combined using stacking thereby increasing the robustness of the final calibration model. The methodology is applied to data generated during the monitoring of broth concentrations in an industrial fermentation process from on-line near-infrared (NIR) and mid-infrared (MIR) spectrometers. It is shown that the proposed calibration modeling procedure outperforms traditional calibration procedures, as well as enabling the identification of the critical regions of the spectra with regard to the fermentation process.

  17. THE IMPACT OF ACCURATE EXTINCTION MEASUREMENTS FOR X-RAY SPECTRAL MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall K. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Valencic, Lynne A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Corrales, Lia, E-mail: lynne.a.valencic@nasa.gov [MIT Kavli Institute for Astrophysics and Space Research, 77 Massachusetts Avenue, 37-241, Cambridge, MA 02139 (United States)

    2016-02-20

    Interstellar extinction includes both absorption and scattering of photons from interstellar gas and dust grains, and it has the effect of altering a source's spectrum and its total observed intensity. However, while multiple absorption models exist, there are no useful scattering models in standard X-ray spectrum fitting tools, such as XSPEC. Nonetheless, X-ray halos, created by scattering from dust grains, are detected around even moderately absorbed sources, and the impact on an observed source spectrum can be significant, if modest, compared to direct absorption. By convolving the scattering cross section with dust models, we have created a spectral model as a function of energy, type of dust, and extraction region that can be used with models of direct absorption. This will ensure that the extinction model is consistent and enable direct connections to be made between a source's X-ray spectral fits and its UV/optical extinction.

  18. Spectral characteristics of natural and artificial earthquakes in the Lop Nor test site, China

    International Nuclear Information System (INIS)

    Korrat, I.M.; Gharib, A.A.; Abou Elenean, K.A.; Hussein, H.M.; ElGabry, M.N.

    2007-12-01

    A seismic discriminants based on the spectral seismogram and spectral magnitude techniques has been tested to discriminate between three events; a nuclear explosion which took place in Lop Nor, China with m b 6.1 and two earthquakes from the closest area with m b 5.5 and 5.3, respectively. The spectral seismogram of the three events shows that the frequency content of the nuclear explosion differs from that of the earthquakes where the P-wave is rich with high frequency content in the nuclear explosion than the corresponding earthquakes. It is also observed that the energy decays very rapidly for the nuclear explosion than that for the earthquakes. Furthermore, the spectral magnitudes reveal significant differences in the spectra between the nuclear explosion and the two earthquakes. These observed differences appear to be quite enough to provide a reliable discriminant. The estimated stress drop from the magnitude spectra indicates a higher stress drop of the nuclear explosion relative to the earthquakes of the same tectonic region. (author)

  19. Computer-assisted spectral design and synthesis

    Science.gov (United States)

    Vadakkumpadan, Fijoy; Wang, Qiqi; Sun, Yinlong

    2005-01-01

    In this paper, we propose a computer-assisted approach for spectral design and synthesis. This approach starts with some initial spectrum, modifies it interactively, evaluates the change, and decides the optimal spectrum. Given a requested change as function of wavelength, we model the change function using a Gaussian function. When there is the metameric constraint, from the Gaussian function of request change, we propose a method to generate the change function such that the result spectrum has the same color as the initial spectrum. We have tested the proposed method with different initial spectra and change functions, and implemented an interactive graphics environment for spectral design and synthesis. The proposed approach and graphics implementation for spectral design and synthesis can be helpful for a number of applications such as lighting of building interiors, textile coloration, and pigment development of automobile paints, and spectral computer graphics.

  20. Standard Test Method for Normal Spectral Emittance at Elevated Temperatures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1972-01-01

    1.1 This test method describes a highly accurate technique for measuring the normal spectral emittance of electrically conducting materials or materials with electrically conducting substrates, in the temperature range from 600 to 1400 K, and at wavelengths from 1 to 35 μm. 1.2 The test method requires expensive equipment and rather elaborate precautions, but produces data that are accurate to within a few percent. It is suitable for research laboratories where the highest precision and accuracy are desired, but is not recommended for routine production or acceptance testing. However, because of its high accuracy this test method can be used as a referee method to be applied to production and acceptance testing in cases of dispute. 1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this stan...

  1. Research on marine and freshwater fish identification model based on hyper-spectral imaging technology

    Science.gov (United States)

    Fu, Yan; Guo, Pei-yuan; Xiang, Ling-zi; Bao, Man; Chen, Xing-hai

    2013-08-01

    With the gradually mature of hyper spectral image technology, the application of the meat nondestructive detection and recognition has become one of the current research focuses. This paper for the study of marine and freshwater fish by the pre-processing and feature extraction of the collected spectral curve data, combined with BP network structure and LVQ network structure, a predictive model of hyper spectral image data of marine and freshwater fish has been initially established and finally realized the qualitative analysis and identification of marine and freshwater fish quality. The results of this study show that hyper spectral imaging technology combined with the BP and LVQ Artificial Neural Network Model can be used for the identification of marine and freshwater fish detection. Hyper-spectral data acquisition can be carried out without any pretreatment of the samples, thus hyper-spectral imaging technique is the lossless, high- accuracy and rapid detection method for quality of fish. In this study, only 30 samples are used for the exploratory qualitative identification of research, although the ideal study results are achieved, we will further increase the sample capacity to take the analysis of quantitative identification and verify the feasibility of this theory.

  2. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  3. Effect of gold photocathode contamination on a flat spectral response X-ray diode

    Science.gov (United States)

    Wang, Kun-lun; Zhang, Si-qun; Zhou, Shao-tong; Huang, Xian-bin; Ren, Xiao-dong; Dan, Jia-kun; Xu, Qiang

    2018-03-01

    A detector with an approximately flat spectral response is important for diagnosing intense thermal X-ray flux. A flat-spectral-response X-ray diode (FSR-XRD) utilizes a gold photocathode X-ray diode and a specially configured gold filter to give rise to a nearly flat spectral response in the photon energy range of 100-4000 eV. It has been observed that the spectral responses of several FSR-XRDs changed after a few shots of z-pinch experiments on the Primary Test Stand facility. This paper presents an analysis of the changes by fitting the spectral responses of the gold photocathodes using a model with a free parameter which characterizes the thickness of the contamination. The spectral responses of FSR-XRDs were calibrated with synchrotron radiation, and several cleaning methods were tested with the calibration. Considering the results of model and cleaning, it may be anticipated that contamination was the major reason of the response changing. Contamination worsened the flatness of the spectral response of the FSR-XRD and decreased the averaged response, hence it is important to avoid contamination. Current results indicate a requirement of further study of the contamination.

  4. Spectral action for Bianchi type-IX cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde [Division of Physics, Mathematics and Astronomy, California Institute of Technology,1200 E. California Blvd., Pasadena, CA 91125 (United States)

    2015-10-13

    A rationality result previously proved for Robertson-Walker metrics is extended to a homogeneous anisotropic cosmological model, namely the Bianchi type-IX minisuperspace. It is shown that the Seeley-de Witt coefficients appearing in the expansion of the spectral action for the Bianchi type-IX geometry are expressed in terms of polynomials with rational coefficients in the cosmic evolution factors w{sub 1}(t),w{sub 2}(t),w{sub 3}(t), and their higher derivates with respect to time. We begin with the computation of the Dirac operator of this geometry and calculate the coefficients a{sub 0},a{sub 2},a{sub 4} of the spectral action by using heat kernel methods and parametric pseudodifferential calculus. An efficient method is devised for computing the Seeley-de Witt coefficients of a geometry by making use of Wodzicki’s noncommutative residue, and it is confirmed that the method checks out for the cosmological model studied in this article. The advantages of the new method are discussed, which combined with symmetries of the Bianchi type-IX metric, yield an elegant proof of the rationality result.

  5. Comparison of Grid Nudging and Spectral Nudging Techniques for Dynamical Climate Downscaling within the WRF Model

    Science.gov (United States)

    Fan, X.; Chen, L.; Ma, Z.

    2010-12-01

    Climate downscaling has been an active research and application area in the past several decades focusing on regional climate studies. Dynamical downscaling, in addition to statistical methods, has been widely used in downscaling as the advanced modern numerical weather and regional climate models emerge. The utilization of numerical models enables that a full set of climate variables are generated in the process of downscaling, which are dynamically consistent due to the constraints of physical laws. While we are generating high resolution regional climate, the large scale climate patterns should be retained. To serve this purpose, nudging techniques, including grid analysis nudging and spectral nudging, have been used in different models. There are studies demonstrating the benefit and advantages of each nudging technique; however, the results are sensitive to many factors such as nudging coefficients and the amount of information to nudge to, and thus the conclusions are controversy. While in a companion work of developing approaches for quantitative assessment of the downscaled climate, in this study, the two nudging techniques are under extensive experiments in the Weather Research and Forecasting (WRF) model. Using the same model provides fair comparability. Applying the quantitative assessments provides objectiveness of comparison. Three types of downscaling experiments were performed for one month of choice. The first type is serving as a base whereas the large scale information is communicated through lateral boundary conditions only; the second is using the grid analysis nudging; and the third is using spectral nudging. Emphases are given to the experiments of different nudging coefficients and nudging to different variables in the grid analysis nudging; while in spectral nudging, we focus on testing the nudging coefficients, different wave numbers on different model levels to nudge.

  6. Design principles and field performance of a solar spectral irradiance meter

    Energy Technology Data Exchange (ETDEWEB)

    Tatsiankou, V.; Hinzer, K.; Haysom, J.; Schriemer, H.; Emery, K.; Beal, R.

    2016-08-01

    A solar spectral irradiance meter (SSIM), designed for measuring the direct normal irradiance (DNI) in six wavelength bands, has been combined with models to determine key atmospheric transmittances and the resulting spectral irradiance distribution of DNI under all sky conditions. The design principles of the SSIM, implementation of a parameterized transmittance model, and field performance comparisons of modeled solar spectra with reference radiometer measurements are presented. Two SSIMs were tested and calibrated at the National Renewable Energy Laboratory (NREL) against four spectroradiometers and an absolute cavity radiometer. The SSIMs' DNI was on average within 1% of the DNI values reported by one of NREL's primary absolute cavity radiometers. An additional SSIM was installed at the SUNLAB Outdoor Test Facility in September 2014, with ongoing collection of environmental and spectral data. The SSIM's performance in Ottawa was compared against a commercial pyrheliometer and a spectroradiometer over an eight month study. The difference in integrated daily spectral irradiance between the SSIM and the ASD spectroradiometer was found to be less than 1%. The cumulative energy density collected by the SSIM over this duration agreed with that measured by an Eppley model NIP pyrheliometer to within 0.5%. No degradation was observed.

  7. Improving Soft X-Ray Spectral Irradiance Models for Use Throughout the Solar System

    Science.gov (United States)

    Eparvier, F. G.; Thiemann, E.; Woods, T. N.

    2017-12-01

    Understanding the effects of solar variability on planetary atmospheres has been hindered by the lack of accurate models and measurements of the soft x-ray (SXR) spectral irradiance (0-6 nm). Most measurements of the SXR have been broadband and are difficult to interpret due to changing spectral distribution under the pass band of the instruments. Models that use reference spectra for quiet sun, active region, and flaring contributions to irradiance have been made, but with limited success. The recent Miniature X-ray Solar Spectrometer (MinXSS) CubeSat made spectral measurements in the 0.04 - 3 nm range from June 2016 to May 2017, observing the Sun at many different levels of activity. In addition, the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) has observed the Sun since May 2010, in both broad bands (including a band at 0-7 nm) and spectrally resolved (6-105 nm at 0.1 nm resolution). We will present an improved model of the SXR based on new reference spectra from MinXSS and SDO-EVE. The non-flaring portion of the model is driven by broadband SXR measurements for determining activity level and relative contributions of quiet and active sun. Flares are modeled using flare temperatures from the GOES X-Ray Sensors. The improved SXR model can be driven by any sensors that provide a measure of activity level and flare temperature from any vantage point in the solar system. As an example, a version of the model is using the broadband solar irradiance measurements from the MAVEN EUV Monitor at Mars will be presented.

  8. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  9. Skill Assessment of a Spectral Ocean-Atmosphere Radiative Model

    Science.gov (United States)

    Gregg, Watson, W.; Casey, Nancy W.

    2009-01-01

    Ocean phytoplankton, detrital material, and water absorb and scatter light spectrally. The Ocean- Atmosphere Spectral Irradiance Model (OASIM) is intended to provide surface irradiance over the oceans with sufficient spectral resolution to support ocean ecology, biogeochemistry, and heat exchange investigations, and of sufficient duration to support inter-annual and decadal investigations. OASIM total surface irradiance (integrated 200 nm to 4 microns) was compared to in situ data and three publicly available global data products at monthly 1-degree resolution. OASIM spectrally-integrated surface irradiance had root mean square (RMS) difference= 20.1 W/sq m (about 11%), bias=1.6 W/sq m (about 0.8%), regression slope= 1.01 and correlation coefficient= 0.89, when compared to 2322 in situ observations. OASIM had the lowest bias of any of the global data products evaluated (ISCCP-FD, NCEP, and ISLSCP 11), and the best slope (nearest to unity). It had the second best RMS, and the third best correlation coefficient. OASIM total surface irradiance compared well with ISCCP-FD (RMS= 20.7 W/sq m; bias=-11.4 W/sq m, r=0.98) and ISLSCP II (RMS =25.2 W/sq m; bias= -13.8 W/sq m; r=0.97), but less well with NCEP (RMS =43.0 W/sq m ;bias=-22.6 W/sq m; x=0.91). Comparisons of OASIM photosynthetically available radiation (PAR) with PAR derived from SeaWiFS showed low bias (-1.8 mol photons /sq m/d, or about 5%), RMS (4.25 mol photons /sq m/d ' or about 12%), near unity slope (1.03) and high correlation coefficient (0.97). Coupled with previous estimates of clear sky spectral irradiance in OASIM (6.6% RMS at 1 nm resolution), these results suggest that OASIM provides reasonable estimates of surface broadband and spectral irradiance in the oceans, and can support studies on ocean ecosystems, carbon cycling, and heat exchange.

  10. A generalization of the double-corner-frequency source spectral model and its use in the SCEC BBP validation exercise

    Science.gov (United States)

    Boore, David M.; Di Alessandro, Carola; Abrahamson, Norman A.

    2014-01-01

    The stochastic method of simulating ground motions requires the specification of the shape and scaling with magnitude of the source spectrum. The spectral models commonly used are either single-corner-frequency or double-corner-frequency models, but the latter have no flexibility to vary the high-frequency spectral levels for a specified seismic moment. Two generalized double-corner-frequency ω2 source spectral models are introduced, one in which two spectra are multiplied together, and another where they are added. Both models have a low-frequency dependence controlled by the seismic moment, and a high-frequency spectral level controlled by the seismic moment and a stress parameter. A wide range of spectral shapes can be obtained from these generalized spectral models, which makes them suitable for inversions of data to obtain spectral models that can be used in ground-motion simulations in situations where adequate data are not available for purely empirical determinations of ground motions, as in stable continental regions. As an example of the use of the generalized source spectral models, data from up to 40 stations from seven events, plus response spectra at two distances and two magnitudes from recent ground-motion prediction equations, were inverted to obtain the parameters controlling the spectral shapes, as well as a finite-fault factor that is used in point-source, stochastic-method simulations of ground motion. The fits to the data are comparable to or even better than those from finite-fault simulations, even for sites close to large earthquakes.

  11. Illuminating the origins of spectral properties of green fluorescent proteins via proteochemometric and molecular modeling.

    Science.gov (United States)

    Nantasenamat, Chanin; Simeon, Saw; Owasirikul, Wiwat; Songtawee, Napat; Lapins, Maris; Prachayasittikul, Virapong; Wikberg, Jarl E S

    2014-10-15

    Green fluorescent protein (GFP) has immense utility in biomedical imaging owing to its autofluorescent nature. In efforts to broaden the spectral diversity of GFP, there have been several reports of engineered mutants via rational design and random mutagenesis. Understanding the origins of spectral properties of GFP could be achieved by means of investigating its structure-activity relationship. The first quantitative structure-property relationship study for modeling the spectral properties, particularly the excitation and emission maximas, of GFP was previously proposed by us some years ago in which quantum chemical descriptors were used for model development. However, such simplified model does not consider possible effects that neighboring amino acids have on the conjugated π-system of GFP chromophore. This study describes the development of a unified proteochemometric model in which the GFP chromophore and amino acids in its vicinity are both considered in the same model. The predictive performance of the model was verified by internal and external validation as well as Y-scrambling. Our strategy provides a general solution for elucidating the contribution that specific ligand and protein descriptors have on the investigated spectral property, which may be useful in engineering novel GFP variants with desired characteristics. Copyright © 2014 Wiley Periodicals, Inc.

  12. Spectral model for long-term computation of thermodynamics and potential evaporation in shallow wetlands

    Science.gov (United States)

    de la Fuente, Alberto; Meruane, Carolina

    2017-09-01

    Altiplanic wetlands are unique ecosystems located in the elevated plateaus of Chile, Argentina, Peru, and Bolivia. These ecosystems are under threat due to changes in land use, groundwater extractions, and climate change that will modify the water balance through changes in precipitation and evaporation rates. Long-term prediction of the fate of aquatic ecosystems imposes computational constraints that make finding a solution impossible in some cases. In this article, we present a spectral model for long-term simulations of the thermodynamics of shallow wetlands in the limit case when the water depth tends to zero. This spectral model solves for water and sediment temperature, as well as heat, momentum, and mass exchanged with the atmosphere. The parameters of the model (water depth, thermal properties of the sediments, and surface albedo) and the atmospheric downscaling were calibrated using the MODIS product of the land surface temperature. Moreover, the performance of the daily evaporation rates predicted by the model was evaluated against daily pan evaporation data measured between 1964 and 2012. The spectral model was able to correctly represent both seasonal fluctuation and climatic trends observed in daily evaporation rates. It is concluded that the spectral model presented in this article is a suitable tool for assessing the global climate change effects on shallow wetlands whose thermodynamics is forced by heat exchanges with the atmosphere and modulated by the heat-reservoir role of the sediments.

  13. The delta-Sobolev approach for modeling solar spectral irradiance and radiance

    International Nuclear Information System (INIS)

    Xiang, Xuwu.

    1990-01-01

    The development and evaluation of a solar radiation model is reported, which gives irradiance and radiance results at the bottom and top of an atmosphere of specified optical depth for each of 145 spectral intervals from 0.29 to 4.05 microns. Absorption by water vapor, aerosols, ozone, and uniformly mixed gases; scattering by molecules and aerosols; and non-Lambertian surface reflectance are included in the model. For solving the radiative transfer equation, an innovative delta-Sobolev method is developed. It applies a delta-function modification to the conventional Sobolev solutions in a way analogous to the delta-Eddington method. The irradiance solution by the delta-Sobolev method turns out to be mathematically identical to the delta-Eddington approximation. The radiance solution by the delta-Sobolov method provides a convenient way to obtain the directional distribution pattern of the radiation transfer field, a feature unable to be obtained by most commonly used approximation methods. Such radiance solutions are also especially useful in models for satellite remote sensing. The model is tested against the rigorous Dave model, which solves the radiation transfer problem by the spherical harmonic method, an accurate but very time consuming process. Good agreement between the current model results and those of Dave's model are observed. The advantages of the delta-Sobolev model are simplicity, reasonable accuracy and capability for implementation on a minicomputer or microcomputer

  14. Spectral evolution of GRBs with negative spectral lag using Fermi GBM observations

    Science.gov (United States)

    Chakrabarti, Arundhati; Chaudhury, Kishor; Sarkar, Samir K.; Bhadra, Arunava

    2018-06-01

    The positive spectral lag of Gamma Ray Bursts (GRBs) is often explained in terms of hard-to-soft spectral evolution of GRB pulses. While positive lags of GRBs is very common, there are few GRB pulses that exhibits negative spectral lags. In the present work we examine whether negative lags of GRBs also can be interpreted in terms of spectral evolution of GRB pulses or not. Using Fermi-GBM data, we identify two GRBs, GRB 090426C and GRB 150213A, with clean pulses that exhibit negative spectral lag. An indication of soft to hard transition has been noticed for the negative spectral lag events from the spectral evolution study. The implication of the present findings on the models of GRB spectral lags are discussed.

  15. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    Science.gov (United States)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  16. A Bayesian approach to spectral quantitative photoacoustic tomography

    International Nuclear Information System (INIS)

    Pulkkinen, A; Kaipio, J P; Tarvainen, T; Cox, B T; Arridge, S R

    2014-01-01

    A Bayesian approach to the optical reconstruction problem associated with spectral quantitative photoacoustic tomography is presented. The approach is derived for commonly used spectral tissue models of optical absorption and scattering: the absorption is described as a weighted sum of absorption spectra of known chromophores (spatially dependent chromophore concentrations), while the scattering is described using Mie scattering theory, with the proportionality constant and spectral power law parameter both spatially-dependent. It is validated using two-dimensional test problems composed of three biologically relevant chromophores: fat, oxygenated blood and deoxygenated blood. Using this approach it is possible to estimate the Grüneisen parameter, the absolute chromophore concentrations, and the Mie scattering parameters associated with spectral photoacoustic tomography problems. In addition, the direct estimation of the spectral parameters is compared to estimates obtained by fitting the spectral parameters to estimates of absorption, scattering and Grüneisen parameter at the investigated wavelengths. It is shown with numerical examples that the direct estimation results in better accuracy of the estimated parameters. (papers)

  17. Modelling performance of a small array of Wave Energy Converters: Comparison of Spectral and Boussinesq models

    International Nuclear Information System (INIS)

    Greenwood, Charles; Christie, David; Venugopal, Vengatesan; Morrison, James; Vogler, Arne

    2016-01-01

    This paper presents results from numerical simulations of three Oscillating Wave Surge Converters (OWSC) using two different computational models, Boussinesq wave (BW) and Spectral wave (SW) of the commercial software suite MIKE. The simulation of a shallow water wave farm applies alternative methods for implementing a frequency dependent absorption in both the BW and SW models, where energy extraction is based on experimental data from a scaled Oyster device. The effects of including wave diffraction within the SW model is tested by using diffraction smoothing steps and various directional wave conditions. The results of this study reveal important information on the models realms of validity that is heavily dependent on the incident sea state and the removal of diffraction for the SW model. This yields an increase in simulation accuracy for far-field disturbances when diffraction is entirely removed. This highlights specific conditions where the BW and SW model may thrive but also regions where reduced performance is observed. The results presented in this paper have not been validated with real sea site wave device array performance, however, the methodology described would be useful to device developers to arrive at preliminary decisions on array configurations and to minimise negative environmental impacts.

  18. Wave propagation numerical models in damage detection based on the time domain spectral element method

    International Nuclear Information System (INIS)

    Ostachowicz, W; Kudela, P

    2010-01-01

    A Spectral Element Method is used for wave propagation modelling. A 3D solid spectral element is derived with shape functions based on Lagrange interpolation and Gauss-Lobatto-Legendre points. This approach is applied for displacement approximation suited for fundamental modes of Lamb waves as well as potential distribution in piezoelectric transducers. The novelty is the model geometry extension from flat to curved elements for application in shell-like structures. Exemplary visualisations of waves excited by the piezoelectric transducers in curved shell structure made of aluminium alloy are presented. Simple signal analysis of wave interaction with crack is performed. The crack is modelled by separation of appropriate nodes between elements. An investigation of influence of the crack length on wave propagation signals is performed. Additionally, some aspects of the spectral element method implementation are discussed.

  19. Spectral Quantitative Analysis Model with Combining Wavelength Selection and Topology Structure Optimization

    Directory of Open Access Journals (Sweden)

    Qian Wang

    2016-01-01

    Full Text Available Spectroscopy is an efficient and widely used quantitative analysis method. In this paper, a spectral quantitative analysis model with combining wavelength selection and topology structure optimization is proposed. For the proposed method, backpropagation neural network is adopted for building the component prediction model, and the simultaneousness optimization of the wavelength selection and the topology structure of neural network is realized by nonlinear adaptive evolutionary programming (NAEP. The hybrid chromosome in binary scheme of NAEP has three parts. The first part represents the topology structure of neural network, the second part represents the selection of wavelengths in the spectral data, and the third part represents the parameters of mutation of NAEP. Two real flue gas datasets are used in the experiments. In order to present the effectiveness of the methods, the partial least squares with full spectrum, the partial least squares combined with genetic algorithm, the uninformative variable elimination method, the backpropagation neural network with full spectrum, the backpropagation neural network combined with genetic algorithm, and the proposed method are performed for building the component prediction model. Experimental results verify that the proposed method has the ability to predict more accurately and robustly as a practical spectral analysis tool.

  20. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  1. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N Y [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N A [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I V; Bushnev, S V; Kondranin, T V [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V U [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1996-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  2. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  3. K-correlation power spectral density and surface scatter model

    Science.gov (United States)

    Dittman, Michael G.

    2006-08-01

    The K-Correlation or ABC model for surface power spectral density (PSD) and BRDF has been around for years. Eugene Church and John Stover, in particular, have published descriptions of its use in describing smooth surfaces. The model has, however, remained underused in the optical analysis community partially due to the lack of a clear summary tailored toward that application. This paper provides the K-Correlation PSD normalized to σ(λ) and BRDF normalized to TIS(σ,λ) in a format intended to be used by stray light analysts. It is hoped that this paper will promote use of the model by analysts and its incorporation as a standard tool into stray light modeling software.

  4. Spectral properties near the Mott transition in the two-dimensional Hubbard model

    Science.gov (United States)

    Kohno, Masanori

    2013-03-01

    Single-particle excitations near the Mott transition in the two-dimensional (2D) Hubbard model are investigated by using cluster perturbation theory. The Mott transition is characterized by the loss of the spectral weight from the dispersing mode that leads continuously to the spin-wave excitation of the Mott insulator. The origins of the dominant modes of the 2D Hubbard model near the Mott transition can be traced back to those of the one-dimensional Hubbard model. Various anomalous spectral features observed in cuprate high-temperature superconductors, such as the pseudogap, Fermi arc, flat band, doping-induced states, hole pockets, and spinon-like and holon-like branches, as well as giant kink and waterfall in the dispersion relation, are explained in a unified manner as properties near the Mott transition in a 2D system.

  5. Improvement of and Parameter Identification for the Bimodal Time-Varying Modified Kanai-Tajimi Power Spectral Model

    Directory of Open Access Journals (Sweden)

    Huiguo Chen

    2017-01-01

    Full Text Available Based on the Kanai-Tajimi power spectrum filtering method proposed by Du Xiuli et al., a genetic algorithm and a quadratic optimization identification technique are employed to improve the bimodal time-varying modified Kanai-Tajimi power spectral model and the parameter identification method proposed by Vlachos et al. Additionally, a method for modeling time-varying power spectrum parameters for ground motion is proposed. The 8244 Orion and Chi-Chi earthquake accelerograms are selected as examples for time-varying power spectral model parameter identification and ground motion simulations to verify the feasibility and effectiveness of the improved bimodal time-varying modified Kanai-Tajimi power spectral model. The results of this study provide important references for designing ground motion inputs for seismic analyses of major engineering structures.

  6. (LMRG): Microscope Resolution, Objective Quality, Spectral Accuracy and Spectral Un-mixing

    Science.gov (United States)

    Bayles, Carol J.; Cole, Richard W.; Eason, Brady; Girard, Anne-Marie; Jinadasa, Tushare; Martin, Karen; McNamara, George; Opansky, Cynthia; Schulz, Katherine; Thibault, Marc; Brown, Claire M.

    2012-01-01

    The second study by the LMRG focuses on measuring confocal laser scanning microscope (CLSM) resolution, objective lens quality, spectral imaging accuracy and spectral un-mixing. Affordable test samples for each aspect of the study were designed, prepared and sent to 116 labs from 23 countries across the globe. Detailed protocols were designed for the three tests and customized for most of the major confocal instruments being used by the study participants. One protocol developed for measuring resolution and objective quality was recently published in Nature Protocols (Cole, R. W., T. Jinadasa, et al. (2011). Nature Protocols 6(12): 1929–1941). The first study involved 3D imaging of sub-resolution fluorescent microspheres to determine the microscope point spread function. Results of the resolution studies as well as point spread function quality (i.e. objective lens quality) from 140 different objective lenses will be presented. The second study of spectral accuracy looked at the reflection of the laser excitation lines into the spectral detection in order to determine the accuracy of these systems to report back the accurate laser emission wavelengths. Results will be presented from 42 different spectral confocal systems. Finally, samples with double orange beads (orange core and orange coating) were imaged spectrally and the imaging software was used to un-mix fluorescence signals from the two orange dyes. Results from 26 different confocal systems will be summarized. Time will be left to discuss possibilities for the next LMRG study.

  7. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  8. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  9. Spectral SAR Ecotoxicology of Ionic Liquids: The Daphnia magna Case

    International Nuclear Information System (INIS)

    Putz, M.V.; Lacrama, A.M.; Ostafe, V.; Lacrama, A.M.

    2007-01-01

    Aiming to provide a unified theory of ionic liquids eco toxicity, the recent spectral structure activity relationship (S-SAR) algorithm is employed for testing the two additive models of anionic-cationic interaction containing ionic liquid activity: the causal and the endpoint, |0+> and |1+> models, respectively. As a working system, the Daphnia magna eco toxicity was characterized through the formulated and applied spectral chemical-eco biological interaction principles. Specific anionic-cationic-ionic-liquid rules of interaction along the developed mechanistic hypersurface map of the main eco toxicity paths together with the so-called resonance limitation of the standard statistical correlation analysis were revealed.

  10. A regular analogue of the Smilansky model: spectral properties

    Czech Academy of Sciences Publication Activity Database

    Barseghyan, Diana; Exner, Pavel

    2017-01-01

    Roč. 80, č. 2 (2017), s. 177-192 ISSN 0034-4877 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : discrete spectrum * eigenvalue estimates * Smilansky model * spectral transition Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 0.604, year: 2016

  11. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es; Sala, Gabriel, E-mail: ruben.nunez@ies-def.upm.es [Instituto de Energía Solar - Universidad Politécnica de Madrid, Instituto de Energía Solar, ETSI Telecomunicación, Ciudad Universitaria 28040 Madrid (Spain)

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  12. Spectral Elements Analysis for Viscoelastic Fluids at High Weissenberg Number Using Logarithmic conformation Tensor Model

    Science.gov (United States)

    Jafari, Azadeh; Deville, Michel O.; Fiétier, Nicolas

    2008-09-01

    This study discusses the capability of the constitutive laws for the matrix logarithm of the conformation tensor (LCT model) within the framework of the spectral elements method. The high Weissenberg number problems (HWNP) usually produce a lack of convergence of the numerical algorithms. Even though the question whether the HWNP is a purely numerical problem or rather a breakdown of the constitutive law of the model has remained somewhat of a mystery, it has been recognized that the selection of an appropriate constitutive equation constitutes a very crucial step although implementing a suitable numerical technique is still important for successful discrete modeling of non-Newtonian flows. The LCT model formulation of the viscoelastic equations originally suggested by Fattal and Kupferman is applied for 2-dimensional (2D) FENE-CR model. The Planar Poiseuille flow is considered as a benchmark problem to test this representation at high Weissenberg number. The numerical results are compared with numerical solution of the standard constitutive equation.

  13. Adaptive Spectral Doppler Estimation

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-01-01

    . The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to pro- vide good spectral resolution and contrast even when the ob- servation window is very short. The 2 adaptive techniques are tested......In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence...... and compared with the averaged periodogram (Welch’s method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set...

  14. Spectral Characteristics of Salinized Soils during Microbial Remediation Processes.

    Science.gov (United States)

    Ma, Chuang; Shen, Guang-rong; Zhi, Yue-e; Wang, Zi-jun; Zhu, Yun; Li, Xian-hua

    2015-09-01

    In this study, the spectral reflectance of saline soils, the associated soil salt content (SSC) and the concentrations of salt ions were measured and analysed by tracing the container microbial remediation experiments for saline soil (main salt is sodium chloride) of Dongying City, Shandong Province. The sensitive spectral reflectance bands of saline soils to SSC, Cl- and Na+ in the process of microbial remediation were analysed. The average-dimension reduction of these bands was conducted by using a combination of correlation coefficient and decision coefficient, and by gradually narrowing the sampling interval method. Results showed that the tendency and magnitude of the average spectral reflectance in all bands of saline soils during the total remediation processes were nearly consistent with SSC and with Cl- coocentration, respectively. The degree of salinity of the soil, including SSC and salt ion concentrations, had a significant positive correlation with the spectral reflectance of all bands, particularly in the near-infrared band. The optimal spectral bands of SSC were 1370 to 1445 nm and 1447 to 1608 nm, whereas the optimal spectral bands of Cl- and Na+ were 1336 to 1461 nm and 1471 to 1561 nm, respectively. The relationship model among SSC, soil salt ion concentrations (Cl- and Na+) and soil spectral reflectance of the corresponding optimal spectral band was established. The largest R2 of relationship model between SSC and the average reflectance of associated optimal band reached to 0.95, and RMSEC and RMSEP were 1.076 and 0.591, respectively. Significant statistical analysis of salt factors and soil reflectance for different microbial remediation processes indicated that the spectral response characteristics and sensitivity of SSC to soil reflectance, which implied the feasibility of high spectrum test on soil microbial remediation monitoring, also provided the basis for quick nondestructive monitoring soil bioremediation process by soil spectral

  15. Spectral Band Characterization for Hyperspectral Monitoring of Water Quality

    Science.gov (United States)

    Vermillion, Stephanie C.; Raqueno, Rolando; Simmons, Rulon

    2001-01-01

    A method for selecting the set of spectral characteristics that provides the smallest increase in prediction error is of interest to those using hyperspectral imaging (HSI) to monitor water quality. The spectral characteristics of interest to these applications are spectral bandwidth and location. Three water quality constituents of interest that are detectable via remote sensing are chlorophyll (CHL), total suspended solids (TSS), and colored dissolved organic matter (CDOM). Hyperspectral data provides a rich source of information regarding the content and composition of these materials, but often provides more data than an analyst can manage. This study addresses the spectral characteristics need for water quality monitoring for two reasons. First, determination of the greatest contribution of these spectral characteristics would greatly improve computational ease and efficiency. Second, understanding the spectral capabilities of different spectral resolutions and specific regions is an essential part of future system development and characterization. As new systems are developed and tested, water quality managers will be asked to determine sensor specifications that provide the most accurate and efficient water quality measurements. We address these issues using data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and a set of models to predict constituent concentrations.

  16. Standard Test Methods for Measurement of Electrical Performance and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 These test methods provide special techniques needed to determine the electrical performance and spectral response of two-terminal, multijunction photovoltaic (PV) devices, both cell and modules. 1.2 These test methods are modifications and extensions of the procedures for single-junction devices defined by Test Methods E948, E1021, and E1036. 1.3 These test methods do not include temperature and irradiance corrections for spectral response and current-voltage (I-V) measurements. Procedures for such corrections are available in Test Methods E948, E1021, and E1036. 1.4 These test methods may be applied to cells and modules intended for concentrator applications. 1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and ...

  17. A Spectral Geometrical Model for Compton Scatter Tomography Based on the SSS Approximation

    DEFF Research Database (Denmark)

    Kazantsev, Ivan G.; Olsen, Ulrik Lund; Poulsen, Henning Friis

    2016-01-01

    The forward model of single scatter in the Positron Emission Tomography for a detector system possessing an excellent spectral resolution under idealized geometrical assumptions is investigated. This model has the form of integral equations describing a flux of photons emanating from the same ann...

  18. Testing Constancy of the Error Covariance Matrix in Vector Models against Parametric Alternatives using a Spectral Decomposition

    DEFF Research Database (Denmark)

    Yang, Yukay

    I consider multivariate (vector) time series models in which the error covariance matrix may be time-varying. I derive a test of constancy of the error covariance matrix against the alternative that the covariance matrix changes over time. I design a new family of Lagrange-multiplier tests against...... to consider multivariate volatility modelling....

  19. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  20. Spectral nudging in regional climate modelling: How strongly should we nudge?

    OpenAIRE

    Omrani , Hiba; Drobinski , Philippe; Dubos , Thomas

    2012-01-01

    International audience; Spectral nudging is a technique consisting in driving regional climate models (RCMs) on selected spatial scales corresponding to those produced by the driving global circulation model (GCM). This technique prevents large and unrealistic departures between the GCM driving fields and the RCM fields at the GCM spatial scales. Theoretically, the relaxation of the RCM towards the GCM should be infinitely strong provided thre are perfect large-scale fields. In practice, the ...

  1. Planck 2013 results. IX. HFI spectral response

    CERN Document Server

    Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bridges, M; Bucher, M; Burigana, C; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Combet, C; Comis, B; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Désert, F -X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falgarone, E; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Galeotta, S; Ganga, K; Giard, M; Giraud-Héraud, Y; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Hurier, G; Jaffe, T R; Jaffe, A H; Jones, W C; Juvela, M; Keihänen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lamarre, J -M; Lasenby, A; Laureijs, R J; Lawrence, C R; Leahy, J P; Leonardi, R; Leroy, C; Lesgourgues, J; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maffei, B; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; McGehee, P; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Novikov, I; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Pasian, F; Patanchon, G; Perdereau, O; Perotto, L; Perrotta, F; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rusholme, B; Santos, D; Savini, G; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Tomasi, M; Tristram, M; Tucci, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (including out-of-band signal rejection) of all HFI detectors. This was determined by measuring the output of a continuously scanned Fourier transform spectrometer coupled with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. Ver...

  2. Spectral evolution of dwarf nova outbursts

    International Nuclear Information System (INIS)

    Cannizzo, J.K.; Kenyon, S.J.

    1987-01-01

    The disk instability model for dwarf nova eruptions is investigated by computing the spectral development of the accretion disk through a complete limit cycle. Observed stellar spectra are used to model the radiation emitted by optically thick annuli within the disc. The general findings agree with those of Smak (1984) and Pringle et al. (1986). It is suggested that the dwarf nova oscillations might be a source of information concerning the evolution of the inner disk and that detailed observations of this phenomenon can be used to test various outburst mechanisms. 74 references

  3. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.

    2014-10-01

    Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.

  4. Development of Response Spectral Ground Motion Prediction Equations from Empirical Models for Fourier Spectra and Duration of Ground Motion

    Science.gov (United States)

    Bora, S. S.; Scherbaum, F.; Kuehn, N. M.; Stafford, P.; Edwards, B.

    2014-12-01

    In a probabilistic seismic hazard assessment (PSHA) framework, it still remains a challenge to adjust ground motion prediction equations (GMPEs) for application in different seismological environments. In this context, this study presents a complete framework for the development of a response spectral GMPE easily adjustable to different seismological conditions; and which does not suffer from the technical problems associated with the adjustment in response spectral domain. Essentially, the approach consists of an empirical FAS (Fourier Amplitude Spectrum) model and a duration model for ground motion which are combined within the random vibration theory (RVT) framework to obtain the full response spectral ordinates. Additionally, FAS corresponding to individual acceleration records are extrapolated beyond the frequency range defined by the data using the stochastic FAS model, obtained by inversion as described in Edwards & Faeh, (2013). To that end, an empirical model for a duration, which is tuned to optimize the fit between RVT based and observed response spectral ordinate, at each oscillator frequency is derived. Although, the main motive of the presented approach was to address the adjustability issues of response spectral GMPEs; comparison, of median predicted response spectra with the other regional models indicate that presented approach can also be used as a stand-alone model. Besides that, a significantly lower aleatory variability (σbrands it to a potentially viable alternative to the classical regression (on response spectral ordinates) based GMPEs for seismic hazard studies in the near future. The dataset used for the presented analysis is a subset of the recently compiled database RESORCE-2012 across Europe, Middle East and the Mediterranean region.

  5. Development of a Fast and Accurate PCRTM Radiative Transfer Model in the Solar Spectral Region

    Science.gov (United States)

    Liu, Xu; Yang, Qiguang; Li, Hui; Jin, Zhonghai; Wu, Wan; Kizer, Susan; Zhou, Daniel K.; Yang, Ping

    2016-01-01

    A fast and accurate principal component-based radiative transfer model in the solar spectral region (PCRTMSOLAR) has been developed. The algorithm is capable of simulating reflected solar spectra in both clear sky and cloudy atmospheric conditions. Multiple scattering of the solar beam by the multilayer clouds and aerosols are calculated using a discrete ordinate radiative transfer scheme. The PCRTM-SOLAR model can be trained to simulate top-of-atmosphere radiance or reflectance spectra with spectral resolution ranging from 1 cm(exp -1) resolution to a few nanometers. Broadband radiances or reflectance can also be calculated if desired. The current version of the PCRTM-SOLAR covers a spectral range from 300 to 2500 nm. The model is valid for solar zenith angles ranging from 0 to 80 deg, the instrument view zenith angles ranging from 0 to 70 deg, and the relative azimuthal angles ranging from 0 to 360 deg. Depending on the number of spectral channels, the speed of the current version of PCRTM-SOLAR is a few hundred to over one thousand times faster than the medium speed correlated-k option MODTRAN5. The absolute RMS error in channel radiance is smaller than 10(exp -3) mW/cm)exp 2)/sr/cm(exp -1) and the relative error is typically less than 0.2%.

  6. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Science.gov (United States)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant-Friedrichs-Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  7. MODELLING OF CARBON MONOXIDE AIR POLLUTION IN LARG CITIES BY EVALUETION OF SPECTRAL LANDSAT8 IMAGES

    Directory of Open Access Journals (Sweden)

    M. Hamzelo

    2015-12-01

    Full Text Available Air pollution in large cities is one of the major problems that resolve and reduce it need multiple applications and environmental management. Of The main sources of this pollution is industrial activities, urban and transport that enter large amounts of contaminants into the air and reduces its quality. With Variety of pollutants and high volume manufacturing, local distribution of manufacturing centers, Testing and measuring emissions is difficult. Substances such as carbon monoxide, sulfur dioxide, and unburned hydrocarbons and lead compounds are substances that cause air pollution and carbon monoxide is most important. Today, data exchange systems, processing, analysis and modeling is of important pillars of management system and air quality control. In this study, using the spectral signature of carbon monoxide gas as the most efficient gas pollution LANDSAT8 images in order that have better spatial resolution than appropriate spectral bands and weather meters،SAM classification algorithm and Geographic Information System (GIS , spatial distribution of carbon monoxide gas in Tehran over a period of one year from the beginning of 2014 until the beginning of 2015 at 11 map have modeled and then to the model valuation ،created maps were compared with the map provided by the Tehran quality comparison air company. Compare involved plans did with the error matrix and results in 4 types of care; overall, producer, user and kappa coefficient was investigated. Results of average accuracy were about than 80%, which indicates the fit method and data used for modeling.

  8. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    Science.gov (United States)

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  9. A test-bed modeling study for wave resource assessment

    Science.gov (United States)

    Yang, Z.; Neary, V. S.; Wang, T.; Gunawan, B.; Dallman, A.

    2016-02-01

    Hindcasts from phase-averaged wave models are commonly used to estimate standard statistics used in wave energy resource assessments. However, the research community and wave energy converter industry is lacking a well-documented and consistent modeling approach for conducting these resource assessments at different phases of WEC project development, and at different spatial scales, e.g., from small-scale pilot study to large-scale commercial deployment. Therefore, it is necessary to evaluate current wave model codes, as well as limitations and knowledge gaps for predicting sea states, in order to establish best wave modeling practices, and to identify future research needs to improve wave prediction for resource assessment. This paper presents the first phase of an on-going modeling study to address these concerns. The modeling study is being conducted at a test-bed site off the Central Oregon Coast using two of the most widely-used third-generation wave models - WaveWatchIII and SWAN. A nested-grid modeling approach, with domain dimension ranging from global to regional scales, was used to provide wave spectral boundary condition to a local scale model domain, which has a spatial dimension around 60km by 60km and a grid resolution of 250m - 300m. Model results simulated by WaveWatchIII and SWAN in a structured-grid framework are compared to NOAA wave buoy data for the six wave parameters, including omnidirectional wave power, significant wave height, energy period, spectral width, direction of maximum directionally resolved wave power, and directionality coefficient. Model performance and computational efficiency are evaluated, and the best practices for wave resource assessments are discussed, based on a set of standard error statistics and model run times.

  10. Experimental investigation of simple solar radiation spectral model performances under a Mediterranean Algerian's climate

    International Nuclear Information System (INIS)

    Koussa, Mustapha; Saheb-Koussa, Djohra; Hadji, Seddik

    2017-01-01

    In this work, models are presented that, under cloudless atmosphere conditions, calculate solar spectral normal direct and horizontal diffuse irradiance. Based on different monochromatic transmission factors related to the main constituents of the atmosphere, the models evaluate the spectral irradiance between 0.29 and 4.0 μm. Absorption by water vapor, uniformly mixed gas, and ozone are considered as well as scattering by the atmospheric aerosols. Based on the equations relative to each one of the two retained models, a MATLAB program is developed to evaluate the spectral distribution of each solar irradiance component. Hence, the geographical coordinates of the site, and the monochromatic distribution of the extraterrestrial irradiance are used as input data. From three-year data measurement records made in Bouzareah site (temperate climate), thirty eight days characterized by a clear sky state have been selected from over different months of the year and the corresponding main meteorological parameters used as input parameters. So, because only the five-minute broadband data measurements are available, the modified numerical trapeze method is used to integrate the monochromatic curve values related to each solar irradiance component. Consequently, the precipitable water vapor amount, the Angstrom and Linke turbidity factors are evaluated and a multi-linear correlation relating the Linke turbidity factor to the precipitable water vapor and the Angstrom turbidity coefficient is established. Hence, according to the mean values of Linke and Angstrom turbidity factors and those of the precipitable water vapor, the site of Bouzareah is classified as a rural site. So, the effect of the main constituents of the atmosphere on the spectral distribution of solar irradiance is discussed and, it is also observed that the aerosol amount contained in the atmosphere affects most both of the diffuse and direct solar irradiance amount than that of the horizontal and inclined

  11. SpectralNET – an application for spectral graph analysis and visualization

    Directory of Open Access Journals (Sweden)

    Schreiber Stuart L

    2005-10-01

    Full Text Available Abstract Background Graph theory provides a computational framework for modeling a variety of datasets including those emerging from genomics, proteomics, and chemical genetics. Networks of genes, proteins, small molecules, or other objects of study can be represented as graphs of nodes (vertices and interactions (edges that can carry different weights. SpectralNET is a flexible application for analyzing and visualizing these biological and chemical networks. Results Available both as a standalone .NET executable and as an ASP.NET web application, SpectralNET was designed specifically with the analysis of graph-theoretic metrics in mind, a computational task not easily accessible using currently available applications. Users can choose either to upload a network for analysis using a variety of input formats, or to have SpectralNET generate an idealized random network for comparison to a real-world dataset. Whichever graph-generation method is used, SpectralNET displays detailed information about each connected component of the graph, including graphs of degree distribution, clustering coefficient by degree, and average distance by degree. In addition, extensive information about the selected vertex is shown, including degree, clustering coefficient, various distance metrics, and the corresponding components of the adjacency, Laplacian, and normalized Laplacian eigenvectors. SpectralNET also displays several graph visualizations, including a linear dimensionality reduction for uploaded datasets (Principal Components Analysis and a non-linear dimensionality reduction that provides an elegant view of global graph structure (Laplacian eigenvectors. Conclusion SpectralNET provides an easily accessible means of analyzing graph-theoretic metrics for data modeling and dimensionality reduction. SpectralNET is publicly available as both a .NET application and an ASP.NET web application from http://chembank.broad.harvard.edu/resources/. Source code is

  12. Spectral-element Method for 3D Marine Controlled-source EM Modeling

    Science.gov (United States)

    Liu, L.; Yin, C.; Zhang, B., Sr.; Liu, Y.; Qiu, C.; Huang, X.; Zhu, J.

    2017-12-01

    As one of the predrill reservoir appraisal methods, marine controlled-source EM (MCSEM) has been widely used in mapping oil reservoirs to reduce risk of deep water exploration. With the technical development of MCSEM, the need for improved forward modeling tools has become evident. We introduce in this paper spectral element method (SEM) for 3D MCSEM modeling. It combines the flexibility of finite-element and high accuracy of spectral method. We use Galerkin weighted residual method to discretize the vector Helmholtz equation, where the curl-conforming Gauss-Lobatto-Chebyshev (GLC) polynomials are chosen as vector basis functions. As a kind of high-order complete orthogonal polynomials, the GLC have the characteristic of exponential convergence. This helps derive the matrix elements analytically and improves the modeling accuracy. Numerical 1D models using SEM with different orders show that SEM method delivers accurate results. With increasing SEM orders, the modeling accuracy improves largely. Further we compare our SEM with finite-difference (FD) method for a 3D reservoir model (Figure 1). The results show that SEM method is more effective than FD method. Only when the mesh is fine enough, can FD achieve the same accuracy of SEM. Therefore, to obtain the same precision, SEM greatly reduces the degrees of freedom and cost. Numerical experiments with different models (not shown here) demonstrate that SEM is an efficient and effective tool for MSCEM modeling that has significant advantages over traditional numerical methods.This research is supported by Key Program of National Natural Science Foundation of China (41530320), China Natural Science Foundation for Young Scientists (41404093), and Key National Research Project of China (2016YFC0303100, 2017YFC0601900).

  13. Spectral flow as a map between N=(2,0)-models

    International Nuclear Information System (INIS)

    Athanasopoulos, P.; Faraggi, A.E.; Gepner, D.

    2014-01-01

    The space of (2,0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO(10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z 2 ×Z 2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO(10) GUT group, dubbed spinor–vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2,2) theory can be used as a map between (2,0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way

  14. Spectral flow as a map between N = (2 , 0)-models

    Science.gov (United States)

    Athanasopoulos, P.; Faraggi, A. E.; Gepner, D.

    2014-07-01

    The space of (2 , 0) models is of particular interest among all heterotic-string models because it includes the models with the minimal SO (10) unification structure, which is well motivated by the Standard Model of particle physics data. The fermionic Z2 ×Z2 heterotic-string models revealed the existence of a new symmetry in the space of string configurations under the exchange of spinors and vectors of the SO (10) GUT group, dubbed spinor-vector duality. In this paper we generalize this idea to arbitrary internal rational conformal field theories (RCFTs). We explain how the spectral flow operator normally acting within a general (2 , 2) theory can be used as a map between (2 , 0) models. We describe the details, give an example and propose more simple currents that can be used in a similar way.

  15. Modeling Climate Responses to Spectral Solar Forcing on Centennial and Decadal Time Scales

    Science.gov (United States)

    Wen, G.; Cahalan, R.; Rind, D.; Jonas, J.; Pilewskie, P.; Harder, J.

    2012-01-01

    We report a series of experiments to explore clima responses to two types of solar spectral forcing on decadal and centennial time scales - one based on prior reconstructions, and another implied by recent observations from the SORCE (Solar Radiation and Climate Experiment) SIM (Spectral 1rradiance Monitor). We apply these forcings to the Goddard Institute for Space Studies (GISS) Global/Middle Atmosphere Model (GCMAM). that couples atmosphere with ocean, and has a model top near the mesopause, allowing us to examine the full response to the two solar forcing scenarios. We show different climate responses to the two solar forCing scenarios on decadal time scales and also trends on centennial time scales. Differences between solar maximum and solar minimum conditions are highlighted, including impacts of the time lagged reSponse of the lower atmosphere and ocean. This contrasts with studies that assume separate equilibrium conditions at solar maximum and minimum. We discuss model feedback mechanisms involved in the solar forced climate variations.

  16. Modelling Perception of Structure and Affect in Music: Spectral Centroid and Wishart's Red Bird

    Directory of Open Access Journals (Sweden)

    Roger T. Dean

    2011-12-01

    Full Text Available Pearce (2011 provides a positive and interesting response to our article on time series analysis of the influences of acoustic properties on real-time perception of structure and affect in a section of Trevor Wishart’s Red Bird (Dean & Bailes, 2010. We address the following topics raised in the response and our paper. First, we analyse in depth the possible influence of spectral centroid, a timbral feature of the acoustic stream distinct from the high level general parameter we used initially, spectral flatness. We find that spectral centroid, like spectral flatness, is not a powerful predictor of real-time responses, though it does show some features that encourage its continued consideration. Second, we discuss further the issue of studying both individual responses, and as in our paper, group averaged responses. We show that a multivariate Vector Autoregression model handles the grand average series quite similarly to those of individual members of our participant groups, and we analyse this in greater detail with a wide range of approaches in work which is in press and continuing. Lastly, we discuss the nature and intent of computational modelling of cognition using acoustic and music- or information theoretic data streams as predictors, and how the music- or information theoretic approaches may be applied to electroacoustic music, which is ‘sound-based’ rather than note-centred like Western classical music.

  17. Spectrally accurate contour dynamics

    International Nuclear Information System (INIS)

    Van Buskirk, R.D.; Marcus, P.S.

    1994-01-01

    We present an exponentially accurate boundary integral method for calculation the equilibria and dynamics of piece-wise constant distributions of potential vorticity. The method represents contours of potential vorticity as a spectral sum and solves the Biot-Savart equation for the velocity by spectrally evaluating a desingularized contour integral. We use the technique in both an initial-value code and a newton continuation method. Our methods are tested by comparing the numerical solutions with known analytic results, and it is shown that for the same amount of computational work our spectral methods are more accurate than other contour dynamics methods currently in use

  18. Ultrafast method of calculating the dynamic spectral line shapes for integrated modelling of plasmas

    International Nuclear Information System (INIS)

    Lisitsa, V.S.

    2009-01-01

    An ultrafast code for spectral line shape calculations is presented to be used in the integrated modelling of plasmas. The code is based on the close analogy between two mechanisms: (i) Dicke narrowing of the Doppler-broadened spectral lines and (ii) transition from static to impact regime in the Stark broadening. The analogy makes it possible to describe the dynamic Stark broadening in terms of an analytical functional of the static line shape. A comparison of new method with the widely used Frequency Fluctuating Method (FFM) developed by the Marseille University group (B. Talin, R. Stamm, et al.) shows good agreement, with the new method being faster than the standard FFM by nearly two orders of magnitude. The method proposed may significantly simplify the radiation transport modeling and opens new possibilities for integrated modeling of the edge and divertor plasma in tokamaks. (author)

  19. A case study of forward calculations of the gravity anomaly by spectral method for a three-dimensional parameterised fault model

    Science.gov (United States)

    Xu, Weimin; Chen, Shi

    2018-02-01

    Spectral methods provide many advantages for calculating gravity anomalies. In this paper, we derive a kernel function for a three-dimensional (3D) fault model in the wave number domain, and present the full Fortran source code developed for the forward computation of the gravity anomalies and related derivatives obtained from the model. The numerical error and computing speed obtained using the proposed spectral method are compared with those obtained using a 3D rectangular prism model solved in the space domain. The error obtained using the spectral method is shown to be dependent on the sequence length employed in the fast Fourier transform. The spectral method is applied to some examples of 3D fault models, and is demonstrated to be a straightforward and alternative computational approach to enhance computational speed and simplify the procedures for solving many gravitational potential forward problems involving complicated geological models. The proposed method can generate a great number of feasible geophysical interpretations based on a 3D model with only a few variables, and can thereby improve the efficiency of inversion.

  20. Remote Sensing of Landscapes with Spectral Images

    Science.gov (United States)

    Adams, John B.; Gillespie, Alan R.

    2006-05-01

    Remote Sensing of Landscapes with Spectral Images describes how to process and interpret spectral images using physical models to bridge the gap between the engineering and theoretical sides of remote-sensing and the world that we encounter when we venture outdoors. The emphasis is on the practical use of images rather than on theory and mathematical derivations. Examples are drawn from a variety of landscapes and interpretations are tested against the reality seen on the ground. The reader is led through analysis of real images (using figures and explanations); the examples are chosen to illustrate important aspects of the analytic framework. This textbook will form a valuable reference for graduate students and professionals in a variety of disciplines including ecology, forestry, geology, geography, urban planning, archeology and civil engineering. It is supplemented by a web-site hosting digital color versions of figures in the book as well as ancillary images (www.cambridge.org/9780521662214). Presents a coherent view of practical remote sensing, leading from imaging and field work to the generation of useful thematic maps Explains how to apply physical models to help interpret spectral images Supplemented by a website hosting digital colour versions of figures in the book, as well as additional colour figures

  1. The browning value changes and spectral analysis on the Maillard reaction product from glucose and methionine model system

    Science.gov (United States)

    Al-Baarri, A. N.; Legowo, A. M.; Widayat

    2018-01-01

    D-glucose has been understood to provide the various effect on the reactivity in Maillard reaction resulting in the changes in physical performance of food product. Therefore this research was done to analyse physical appearance of Maillard reaction product made of D-glucose and methionine as a model system. The changes in browning value and spectral analysis model system were determined. The glucose-methionine model system was produced through the heating treatment at 50°C and RH 70% for 24 hours. The data were collected for every three hour using spectrophotometer. As result, browning value was elevated with the increase of heating time and remarkably high if compare to the D-glucose only. Furthermore, the spectral analysis showed that methionine turned the pattern of peak appearance. As conclusion, methionine raised the browning value and changed the pattern of spectral analysis in Maillard reaction model system.

  2. Application of the three-component bidirectional reflectance distribution function model to Monte Carlo calculation of spectral effective emissivities of nonisothermal blackbody cavities.

    Science.gov (United States)

    Prokhorov, Alexander; Prokhorova, Nina I

    2012-11-20

    We applied the bidirectional reflectance distribution function (BRDF) model consisting of diffuse, quasi-specular, and glossy components to the Monte Carlo modeling of spectral effective emissivities for nonisothermal cavities. A method for extension of a monochromatic three-component (3C) BRDF model to a continuous spectral range is proposed. The initial data for this method are the BRDFs measured in the plane of incidence at a single wavelength and several incidence angles and directional-hemispherical reflectance measured at one incidence angle within a finite spectral range. We proposed the Monte Carlo algorithm for calculation of spectral effective emissivities for nonisothermal cavities whose internal surface is described by the wavelength-dependent 3C BRDF model. The results obtained for a cylindroconical nonisothermal cavity are discussed and compared with results obtained using the conventional specular-diffuse model.

  3. Phobos MRO/CRISM visible and near-infrared (0.5-2.5 μm) spectral modeling

    Science.gov (United States)

    Pajola, Maurizio; Roush, Ted; Dalle Ore, Cristina; Marzo, Giuseppe A.; Simioni, Emanuele

    2018-05-01

    This paper focuses on the spectral modeling of the surface of Phobos in the wavelength range between 0.5 and 2.5 μm. We exploit the Phobos Mars Reconnaissance Orbiter/Compact Reconnaissance Imaging Spectrometer for Mars (MRO/CRISM) dataset and extend the study area presented by Fraeman et al. (2012) including spectra from nearly the entire surface observed. Without a priori selection of surface locations we use the unsupervised K-means partitioning algorithm developed by Marzo et al. (2006) to investigate the spectral variability across Phobos surface. The statistical partitioning identifies seven clusters. We investigate the compositional information contained within the average spectra of four clusters using the radiative transfer model of Shkuratov et al. (1999). We use optical constants of Tagish Lake meteorite (TL), from Roush (2003), and pyroxene glass (PM80), from Jaeger et al. (1994) and Dorschner et al. (1995), as previously suggested by Pajola et al. (2013) as inputs for the calculations. The model results show good agreement in slope when compared to the averages of the CRISM spectral clusters. In particular, the best fitting model of the cluster with the steepest spectral slope yields relative abundances that are equal to those of Pajola et al. (2013), i.e. 20% PM80 and 80% TL, but grain sizes that are 12 μm smaller for PM80 and 4 μm smaller for TL (the grain sizes are 11 μm for PM80 and 20 μm for TL in Pajola et al. (2013), respectively). This modest discrepancy may arise from the fact that the areas observed by CRISM and those analyzed in Pajola et al. (2013) are on opposite locations on Phobos and are characterized by different morphological and weathering settings. Instead, as the clusters spectral slopes decrease, the best fits obtained show trends related to both relative abundance and grain size that is not observed for the cluster with the steepest spectral slope. With a decrease in slope there is general increase of relative percentage of

  4. A reconstruction algorithm for three-dimensional object-space data using spatial-spectral multiplexing

    Science.gov (United States)

    Wu, Zhejun; Kudenov, Michael W.

    2017-05-01

    This paper presents a reconstruction algorithm for the Spatial-Spectral Multiplexing (SSM) optical system. The goal of this algorithm is to recover the three-dimensional spatial and spectral information of a scene, given that a one-dimensional spectrometer array is used to sample the pupil of the spatial-spectral modulator. The challenge of the reconstruction is that the non-parametric representation of the three-dimensional spatial and spectral object requires a large number of variables, thus leading to an underdetermined linear system that is hard to uniquely recover. We propose to reparameterize the spectrum using B-spline functions to reduce the number of unknown variables. Our reconstruction algorithm then solves the improved linear system via a least- square optimization of such B-spline coefficients with additional spatial smoothness regularization. The ground truth object and the optical model for the measurement matrix are simulated with both spatial and spectral assumptions according to a realistic field of view. In order to test the robustness of the algorithm, we add Poisson noise to the measurement and test on both two-dimensional and three-dimensional spatial and spectral scenes. Our analysis shows that the root mean square error of the recovered results can be achieved within 5.15%.

  5. [Influence of Spectral Pre-Processing on PLS Quantitative Model of Detecting Cu in Navel Orange by LIBS].

    Science.gov (United States)

    Li, Wen-bing; Yao, Lin-tao; Liu, Mu-hua; Huang, Lin; Yao, Ming-yin; Chen, Tian-bing; He, Xiu-wen; Yang, Ping; Hu, Hui-qin; Nie, Jiang-hui

    2015-05-01

    Cu in navel orange was detected rapidly by laser-induced breakdown spectroscopy (LIBS) combined with partial least squares (PLS) for quantitative analysis, then the effect on the detection accuracy of the model with different spectral data ptetreatment methods was explored. Spectral data for the 52 Gannan navel orange samples were pretreated by different data smoothing, mean centralized and standard normal variable transform. Then 319~338 nm wavelength section containing characteristic spectral lines of Cu was selected to build PLS models, the main evaluation indexes of models such as regression coefficient (r), root mean square error of cross validation (RMSECV) and the root mean square error of prediction (RMSEP) were compared and analyzed. Three indicators of PLS model after 13 points smoothing and processing of the mean center were found reaching 0. 992 8, 3. 43 and 3. 4 respectively, the average relative error of prediction model is only 5. 55%, and in one word, the quality of calibration and prediction of this model are the best results. The results show that selecting the appropriate data pre-processing method, the prediction accuracy of PLS quantitative model of fruits and vegetables detected by LIBS can be improved effectively, providing a new method for fast and accurate detection of fruits and vegetables by LIBS.

  6. Average spectral power changes at the hippocampal electroencephalogram in schizophrenia model induced by ketamine.

    Science.gov (United States)

    Sampaio, Luis Rafael L; Borges, Lucas T N; Silva, Joyse M F; de Andrade, Francisca Roselin O; Barbosa, Talita M; Oliveira, Tatiana Q; Macedo, Danielle; Lima, Ricardo F; Dantas, Leonardo P; Patrocinio, Manoel Cláudio A; do Vale, Otoni C; Vasconcelos, Silvânia M M

    2018-02-01

    The use of ketamine (Ket) as a pharmacological model of schizophrenia is an important tool for understanding the main mechanisms of glutamatergic regulated neural oscillations. Thus, the aim of the current study was to evaluate Ket-induced changes in the average spectral power using the hippocampal quantitative electroencephalography (QEEG). To this end, male Wistar rats were submitted to a stereotactic surgery for the implantation of an electrode in the right hippocampus. After three days, the animals were divided into four groups that were treated for 10 consecutive days with Ket (10, 50, or 100 mg/kg). Brainwaves were captured on the 1st or 10th day, respectively, to acute or repeated treatments. The administration of Ket (10, 50, or 100 mg/kg), compared with controls, induced changes in the hippocampal average spectral power of delta, theta, alpha, gamma low or high waves, after acute or repeated treatments. Therefore, based on the alterations in the average spectral power of hippocampal waves induced by Ket, our findings might provide a basis for the use of hippocampal QEEG in animal models of schizophrenia. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  7. Regional Spectral Model Workshop in memory of John Roads and Masao Kanamitsu

    Science.gov (United States)

    Hann-Ming Henry Juang; Shyh-Chin Chen; Songyou Hong; Hideki Kanamaru; Thomas Reichler; Takeshi Enomoto; Dian Putrasahan; Bruce T. Anderson; Sasha Gershunov; Haiqin Li; Kei Yoshimura; Nikolaus Buenning; Diane Boomer

    2014-01-01

    The committee for the 12th International Regional Spectral Model (RSM) Workshop drew its members from the National Centers for Environmental Prediction (NCEP), the U.S. Forest Service, Yonsei University, the Cooperative Institute for Climate and Satellites, the University of Tokyo, the Food and Agriculture Organization of the United Nations (FAO), Hokkaido University,...

  8. Spectral element model for 2-D electrostatic fields in a linear synchronous motor

    NARCIS (Netherlands)

    van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained

  9. A new approach to passivity preserving model reduction : the dominant spectral zero method

    NARCIS (Netherlands)

    Ionutiu, R.; Rommes, J.; Antoulas, A.C.; Roos, J.; Costa, L.R.J.

    2010-01-01

    A new model reduction method for circuit simulation is presented, which preserves passivity by interpolating dominant spectral zeros. These are computed as poles of an associated Hamiltonian system, using an iterative solver: the subspace accelerated dominant pole algorithm (SADPA). Based on a

  10. A high-order 3-D spectral-element method for the forward modelling and inversion of gravimetric data—Application to the western Pyrenees

    Science.gov (United States)

    Martin, Roland; Chevrot, Sébastien; Komatitsch, Dimitri; Seoane, Lucia; Spangenberg, Hannah; Wang, Yi; Dufréchou, Grégory; Bonvalot, Sylvain; Bruinsma, Sean

    2017-04-01

    We image the internal density structure of the Pyrenees by inverting gravity data using an a priori density model derived by scaling a Vp model obtained by full waveform inversion of teleseismic P-waves. Gravity anomalies are computed via a 3-D high-order finite-element integration in the same high-order spectral-element grid as the one used to solve the wave equation and thus to obtain the velocity model. The curvature of the Earth and surface topography are taken into account in order to obtain a density model as accurate as possible. The method is validated through comparisons with exact semi-analytical solutions. We show that the spectral-element method drastically accelerates the computations when compared to other more classical methods. Different scaling relations between compressional velocity and density are tested, and the Nafe-Drake relation is the one that leads to the best agreement between computed and observed gravity anomalies. Gravity data inversion is then performed and the results allow us to put more constraints on the density structure of the shallow crust and on the deep architecture of the mountain range.

  11. Spectral-based features ranking for gamelan instruments identification using filter techniques

    Directory of Open Access Journals (Sweden)

    Diah P Wulandari

    2013-03-01

    Full Text Available In this paper, we describe an approach of spectral-based features ranking for Javanese gamelaninstruments identification using filter techniques. The model extracted spectral-based features set of thesignal using Short Time Fourier Transform (STFT. The rank of the features was determined using the fivealgorithms; namely ReliefF, Chi-Squared, Information Gain, Gain Ratio, and Symmetric Uncertainty. Then,we tested the ranked features by cross validation using Support Vector Machine (SVM. The experimentshowed that Gain Ratio algorithm gave the best result, it yielded accuracy of 98.93%.

  12. Computing Models of M-type Host Stars and their Panchromatic Spectral Output

    Science.gov (United States)

    Linsky, Jeffrey; Tilipman, Dennis; France, Kevin

    2018-06-01

    We have begun a program of computing state-of-the-art model atmospheres from the photospheres to the coronae of M stars that are the host stars of known exoplanets. For each model we are computing the emergent radiation at all wavelengths that are critical for assessingphotochemistry and mass-loss from exoplanet atmospheres. In particular, we are computing the stellar extreme ultraviolet radiation that drives hydrodynamic mass loss from exoplanet atmospheres and is essential for determing whether an exoplanet is habitable. The model atmospheres are computed with the SSRPM radiative transfer/statistical equilibrium code developed by Dr. Juan Fontenla. The code solves for the non-LTE statistical equilibrium populations of 18,538 levels of 52 atomic and ion species and computes the radiation from all species (435,986 spectral lines) and about 20,000,000 spectral lines of 20 diatomic species.The first model computed in this program was for the modestly active M1.5 V star GJ 832 by Fontenla et al. (ApJ 830, 152 (2016)). We will report on a preliminary model for the more active M5 V star GJ 876 and compare this model and its emergent spectrum with GJ 832. In the future, we will compute and intercompare semi-empirical models and spectra for all of the stars observed with the HST MUSCLES Treasury Survey, the Mega-MUSCLES Treasury Survey, and additional stars including Proxima Cen and Trappist-1.This multiyear theory program is supported by a grant from the Space Telescope Science Institute.

  13. Comparisons of calculated and measured spectral distributions of neutrons from a 14-MeV neutron source inside the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Barnes, J.M.; Alsmiller, R.G. Jr.; Emmett, M.B.; Drischler, J.D.

    1985-12-01

    A recent paper presented neutron spectral distributions (energy greater than or equal to0.91 MeV) measured at various locations around the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The neutron source for the series of measurements was a small D-T generator placed at various positions in the TFTR vacuum chamber. In the present paper the results of neutron transport calculations are presented and compared with these experimental data. The calculations were carried out using Monte Carlo methods and a very detailed model of the TFTR and the TFTR test cell. The calculated and experimental fluences per unit energy are compared in absolute units and are found to be in substantial agreement for five different combinations of source and detector positions

  14. LNG pool fire spectral data and calculation of emissive power

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2007-01-01

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6 m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H 2 O and CO 2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  15. Simulation for spectral response of solar-blind AlGaN based p-i-n photodiodes

    Science.gov (United States)

    Xue, Shiwei; Xu, Jintong; Li, Xiangyang

    2015-04-01

    In this article, we introduced how to build a physical model of refer to the device structure and parameters. Simulations for solar-blind AlGaN based p-i-n photodiodes spectral characteristics were conducted in use of Silvaco TCAD, where device structure and parameters are comprehensively considered. In simulation, the effects of polarization, Urbach tail, mobility, saturated velocities and lifetime in AlGaN device was considered. Especially, we focused on how the concentration-dependent Shockley-Read-Hall (SRH) recombination model affects simulation results. By simulating, we analyzed the effects in spectral response caused by TAUN0 and TAUP0, and got the values of TAUN0 and TAUP0 which can bring a result coincides with test results. After that, we changed their values and made the simulation results especially the part under 255 nm performed better. In conclusion, the spectral response between 200 nm and 320 nm of solar-blind AlGaN based p-i-n photodiodes were simulated and compared with test results. We also found that TAUN0 and TAUP0 have a large impact on spectral response of AlGaN material.

  16. Monte Carlo modelling of a-Si EPID response: The effect of spectral variations with field size and position

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Fielding, Andrew; Dance, David R.

    2006-01-01

    This study focused on predicting the electronic portal imaging device (EPID) image of intensity modulated radiation treatment (IMRT) fields in the absence of attenuation material in the beam with Monte Carlo methods. As IMRT treatments consist of a series of segments of various sizes that are not always delivered on the central axis, large spectral variations may be observed between the segments. The effect of these spectral variations on the EPID response was studied with fields of various sizes and off-axis positions. A detailed description of the EPID was implemented in a Monte Carlo model. The EPID model was validated by comparing the EPID output factors for field sizes between 1x1 and 26x26 cm 2 at the isocenter. The Monte Carlo simulations agreed with the measurements to within 1.5%. The Monte Carlo model succeeded in predicting the EPID response at the center of the fields of various sizes and offsets to within 1% of the measurements. Large variations (up to 29%) of the EPID response were observed between the various offsets. The EPID response increased with field size and with field offset for most cases. The Monte Carlo model was then used to predict the image of a simple test IMRT field delivered on the beam axis and with an offset. A variation of EPID response up to 28% was found between the on- and off-axis delivery. Finally, two clinical IMRT fields were simulated and compared to the measurements. For all IMRT fields, simulations and measurements agreed within 3%--0.2 cm for 98% of the pixels. The spectral variations were quantified by extracting from the spectra at the center of the fields the total photon yield (Y total ), the photon yield below 1 MeV (Y low ), and the percentage of photons below 1 MeV (P low ). For the studied cases, a correlation was shown between the EPID response variation and Y total , Y low , and P low

  17. Synthetic spectral analysis of a kinetic model for slow-magnetosonic waves in solar corona

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Wenzhi; He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, Beijing, 100871, China, E-mail: jshept@gmail.com (China); Zhang, Lei [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Vocks, Christian [Leibniz-Institut für Astrophysik Potsdam, 14482, Potsdam (Germany); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian-Albrechts-Universität zu Kiel, 24118 Kiel (Germany); Peter, Hardi [Max Plank Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)

    2016-03-25

    We propose a kinetic model of slow-magnetosonic waves to explain various observational features associated with the propagating intensity disturbances (PIDs) occurring in the solar corona. The characteristics of slow mode waves, e.g, inphase oscillations of density, velocity, and thermal speed, are reproduced in this kinetic model. Moreover, the red-blue (R-B) asymmetry of the velocity distribution as self-consistently generated in the model is found to be contributed from the beam component, as a result of the competition between Landau resonance and Coulomb collisions. Furthermore, we synthesize the spectral lines and make the spectral analysis, based on the kinetic simulation data of the flux tube plasmas and the hypothesis of the surrounding background plasmas. It is found that the fluctuations of parameters of the synthetic spectral lines are basically consistent with the observations: (1) the line intensity, Doppler shift, and line width are fluctuating in phase; (2) the R-B asymmetry usually oscillate out of phase with the former three parameters; (3) the blueward asymmetry is more evident than the redward asymmetry in the R-B fluctuations. The oscillations of line parameters become weakened for the case with denser surrounding background plasmas. Similar to the observations, there is no doubled-frequency oscillation of the line width for the case with flux-tube plasmas flowing bulkly upward among the static background plasmas. Therefore, we suggest that the “wave + beam flow” kinetic model may be a viable interpretation for the PIDs observed in the solar corona.

  18. Spectral re-distribution and surface loss effects in Swift XRT (XMM-Newton EPIC) MOS CCDs

    CERN Document Server

    Short, A D; Turner, M J L

    2002-01-01

    In the course of testing and selecting the EPIC MOS CCDs for the XMM-Newton observatory, the developed a Monte-Carlo model of the CCD response. Among other things, this model was used to investigate surface loss effects evident at low energies. By fitting laboratory data, these losses were characterised as a simple function of X-ray interaction depth and this result enabled the spectral re-distribution itself to be modelled as a simple analytical function. Subsequently, this analytical function has been used to generate the response matrix for the EPIC MOS instruments and will now be employed to model the spectral re-distribution for the Swift XRT CCD.

  19. Heterogeneous sharpness for cross-spectral face recognition

    Science.gov (United States)

    Cao, Zhicheng; Schmid, Natalia A.

    2017-05-01

    Matching images acquired in different electromagnetic bands remains a challenging problem. An example of this type of comparison is matching active or passive infrared (IR) against a gallery of visible face images, known as cross-spectral face recognition. Among many unsolved issues is the one of quality disparity of the heterogeneous images. Images acquired in different spectral bands are of unequal image quality due to distinct imaging mechanism, standoff distances, or imaging environment, etc. To reduce the effect of quality disparity on the recognition performance, one can manipulate images to either improve the quality of poor-quality images or to degrade the high-quality images to the level of the quality of their heterogeneous counterparts. To estimate the level of discrepancy in quality of two heterogeneous images a quality metric such as image sharpness is needed. It provides a guidance in how much quality improvement or degradation is appropriate. In this work we consider sharpness as a relative measure of heterogeneous image quality. We propose a generalized definition of sharpness by first achieving image quality parity and then finding and building a relationship between the image quality of two heterogeneous images. Therefore, the new sharpness metric is named heterogeneous sharpness. Image quality parity is achieved by experimentally finding the optimal cross-spectral face recognition performance where quality of the heterogeneous images is varied using a Gaussian smoothing function with different standard deviation. This relationship is established using two models; one of them involves a regression model and the other involves a neural network. To train, test and validate the model, we use composite operators developed in our lab to extract features from heterogeneous face images and use the sharpness metric to evaluate the face image quality within each band. Images from three different spectral bands visible light, near infrared, and short

  20. Buckling feedback of the spectral calculations

    International Nuclear Information System (INIS)

    Jing Xingqing; Shan Wenzhi; Luo Jingyu

    1992-01-01

    This paper studies the problems about buckling feedback of spectral calculations in physical calculations of the reactor and presents a useful method by which the buckling feedback of spectral calculations is implemented. The effect of the buckling feedback in spectra and the broad group cross section, convergence of buckling feedback iteration and the effect of the spectral zones dividing are discussed in the calculations. This method has been used for the physical design of HTR-10 MW Test Module

  1. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 1: model description and static tests

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de.

    1992-01-01

    An integrated 3-D model of a research PWR reactor core support internals structures was developed for its dynamic analyses. The static tests for the validation of the model are presented. There are about 90 super-elements with, approximately, 85000 degrees of freedom (DoF), 8200 masters DoF, 12000 elements with about 8400 thin shell elements. A DEC VAX computer 11/785 model and the ANSYS program were used. If impacts occurs the spectral seismic analysis will be changed to a non-linear one with direct integration of the displacement pulse derived from the seismic accelerogram. This last will be obtained from the seismic acceleration response spectra. (author)

  2. Remote sensing of potential and actual daily transpiration of plant canopies based on spectral reflectance and infrared thermal measurements: Concept with preliminary test

    International Nuclear Information System (INIS)

    Inoue, Y.; Moran, M.S.; Pinter, P.J.Jr.

    1994-01-01

    A new concept for estimating potential and actual values of daily transpiration rate of vegetation canopies is presented along with results of an initial test. The method is based on a physical foundation of spectral radiation balance for a vegetation canopy, the key inputs to the model being the remotely sensed spectral reflectance and the surface temperature of the plant canopy. The radiation interception or absorptance is estimated more directly from remotely sensed spectral data than it is from the leaf area index. The potential daily transpiration is defined as a linear function of the absorbed solar radiation, which can be estimated using a linear relationship between the fraction absorptance of solar radiation and the remotely sensed Soil Adjusted Vegetation Index for the canopy. The actual daily transpiration rate is estimated by combining this concept with the Jackson-Idso Crop Water Stress Index, which also can be calculated from remotely sensed plant leaf temperatures measured by infrared thermometry. An initial demonstration with data sets from an alfalfa crop and a rangeland suggests that the method may give reasonable estimates of potential and actual values of daily transpiration rate over diverse vegetation area based on simple remote sensing measurements and basic meteorological parameters

  3. Spectral tensor parameters for wind turbine load modeling from forested and agricultural landscapes

    DEFF Research Database (Denmark)

    Chougule, Abhijit S.; Mann, Jakob; Segalini, A.

    2015-01-01

    A velocity spectral tensor model was evaluated from the single-point measurements of wind speed. The model contains three parameters representing the dissipation rate of specific turbulent kinetic energy, a turbulence length scale and the turbulence anisotropy. Sonic anemometer measurements taken...... was better than that of the cross-wind component. No significant difference was found between the performance of the model at the forested and the agricultural areas. © 2014 The Authors. Wind Energy published by John Wiley & Sons, Ltd....

  4. Site Characterization in the Urban Area of Tijuana, B. C., Mexico by Means of: H/V Spectral Ratios, Spectral Analysis of Surface Waves, and Random Decrement Method

    Science.gov (United States)

    Tapia-Herrera, R.; Huerta-Lopez, C. I.; Martinez-Cruzado, J. A.

    2009-05-01

    Results of site characterization for an experimental site in the metropolitan area of Tijuana, B. C., Mexico are presented as part of the on-going research in which time series of earthquakes, ambient noise, and induced vibrations were processed with three different methods: H/V spectral ratios, Spectral Analysis of Surface Waves (SASW), and the Random Decrement Method, (RDM). Forward modeling using the wave propagation stiffness matrix method (Roësset and Kausel, 1981) was used to compute the theoretical SH/P, SV/P spectral ratios, and the experimental H/V spectral ratios were computed following the conventional concepts of Fourier analysis. The modeling/comparison between the theoretical and experimental H/V spectral ratios was carried out. For the SASW method the theoretical dispersion curves were also computed and compared with the experimental one, and finally the theoretical free vibration decay curve was compared with the experimental one obtained with the RDM. All three methods were tested with ambient noise, induced vibrations, and earthquake signals. Both experimental spectral ratios obtained with ambient noise as well as earthquake signals agree quite well with the theoretical spectral ratios, particularly at the fundamental vibration frequency of the recording site. Differences between the fundamental vibration frequencies are evident for sites located at alluvial fill (~0.6 Hz) and at sites located at conglomerate/sandstones fill (0.75 Hz). Shear wave velocities for the soft soil layers of the 4-layer discrete soil model ranges as low as 100 m/s and up to 280 m/s. The results with the SASW provided information that allows to identify low velocity layers, not seen before with the traditional seismic methods. The damping estimations obtained with the RDM are within the expected values, and the dominant frequency of the system also obtained with the RDM correlates within the range of plus-minus 20 % with the one obtained by means of the H/V spectral

  5. Spectral cumulus parameterization based on cloud-resolving model

    Science.gov (United States)

    Baba, Yuya

    2018-02-01

    We have developed a spectral cumulus parameterization using a cloud-resolving model. This includes a new parameterization of the entrainment rate which was derived from analysis of the cloud properties obtained from the cloud-resolving model simulation and was valid for both shallow and deep convection. The new scheme was examined in a single-column model experiment and compared with the existing parameterization of Gregory (2001, Q J R Meteorol Soc 127:53-72) (GR scheme). The results showed that the GR scheme simulated more shallow and diluted convection than the new scheme. To further validate the physical performance of the parameterizations, Atmospheric Model Intercomparison Project (AMIP) experiments were performed, and the results were compared with reanalysis data. The new scheme performed better than the GR scheme in terms of mean state and variability of atmospheric circulation, i.e., the new scheme improved positive bias of precipitation in western Pacific region, and improved positive bias of outgoing shortwave radiation over the ocean. The new scheme also simulated better features of convectively coupled equatorial waves and Madden-Julian oscillation. These improvements were found to be derived from the modification of parameterization for the entrainment rate, i.e., the proposed parameterization suppressed excessive increase of entrainment, thus suppressing excessive increase of low-level clouds.

  6. Downscale cascades in tracer transport test cases: an intercomparison of the dynamical cores in the Community Atmosphere Model CAM5

    Directory of Open Access Journals (Sweden)

    J. Kent

    2012-12-01

    Full Text Available The accurate modeling of cascades to unresolved scales is an important part of the tracer transport component of dynamical cores of weather and climate models. This paper aims to investigate the ability of the advection schemes in the National Center for Atmospheric Research's Community Atmosphere Model version 5 (CAM5 to model this cascade. In order to quantify the effects of the different advection schemes in CAM5, four two-dimensional tracer transport test cases are presented. Three of the tests stretch the tracer below the scale of coarse resolution grids to ensure the downscale cascade of tracer variance. These results are compared with a high resolution reference solution, which is simulated on a resolution fine enough to resolve the tracer during the test. The fourth test has two separate flow cells, and is designed so that any tracer in the western hemisphere should not pass into the eastern hemisphere. This is to test whether the diffusion in transport schemes, often in the form of explicit hyper-diffusion terms or implicit through monotonic limiters, contains unphysical mixing.

    An intercomparison of three of the dynamical cores of the National Center for Atmospheric Research's Community Atmosphere Model version 5 is performed. The results show that the finite-volume (CAM-FV and spectral element (CAM-SE dynamical cores model the downscale cascade of tracer variance better than the semi-Lagrangian transport scheme of the Eulerian spectral transform core (CAM-EUL. Each scheme tested produces unphysical mass in the eastern hemisphere of the separate cells test.

  7. The Pale Orange Dot: Spectral Effects of a Hazy Early Earth

    Science.gov (United States)

    Arney, G. N.; Meadows, V. S.; Domagal-Goldman, S. D.; Claire, M.; Schwieterman, E.

    2014-12-01

    Increasing evidence suggests Archean Earth had a photochemical hydrocarbon haze similar to Titan's (Zerkle et al. 2012), with important climate implications (Pavlov et al. 2001, Trainer et al. 2006, Haqq-Misra et al. 2008, Domagal-Goldman et al. 2008, Wolf and Toon 2012). Observations also suggest hazy exoplanets are common (Sing et al. 2011, Kreidberg et al 2014), so hazy planet spectra will be relevant to future exoplanet spectral characterization missions. Here, we consider the implications of hydrocarbon aerosols on the spectrum of Archean Earth, examining the effect of a haze layer on the detectability of spectral features from putative biosignatures and the Rayleigh scattering slope. We also examine haze's impact on the spectral energy distribution at the planetary surface, which may be important to the co-evolution of life with its environment. Because the atmospheric pressure and haze particle composition of the Archean Earth are poorly constrained, we test the impact of atmospheric pressure and particle density on haze formation. Our study uses a modified version of the 1-D photochemical code developed originally by Kasting et al. (1979) to generate a fractal haze in the model Archean atmosphere. The 1-D line-by-line fully multiple scattering Spectral Mapping Atmospheric Radiative Transfer Model (SMART) (Meadows and Crisp 1996) is then used to generate synthetic spectra of early Earth with haze. We find (Fig 1) that haze scattering significantly depletes the radiation at short wavelengths, strongly affecting the spectral region of the Rayleigh slope, a broadband change in spectral shape detectable at low spectral resolution. At the surface, the spectral energy distribution is shifted towards longer wavelengths, which may be important to photosynthetic life. Thus, the haze may have significant effects on biology, which in turn produces the methane that leads to haze formation, creating feedback loops between biology and the planet.

  8. A spectral nudging method for the ACCESS1.3 atmospheric model

    Science.gov (United States)

    Uhe, P.; Thatcher, M.

    2015-06-01

    A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS) version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10-30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.

  9. The spectral cell method in nonlinear earthquake modeling

    Science.gov (United States)

    Giraldo, Daniel; Restrepo, Doriam

    2017-12-01

    This study examines the applicability of the spectral cell method (SCM) to compute the nonlinear earthquake response of complex basins. SCM combines fictitious-domain concepts with the spectral-version of the finite element method to solve the wave equations in heterogeneous geophysical domains. Nonlinear behavior is considered by implementing the Mohr-Coulomb and Drucker-Prager yielding criteria. We illustrate the performance of SCM with numerical examples of nonlinear basins exhibiting physically and computationally challenging conditions. The numerical experiments are benchmarked with results from overkill solutions, and using MIDAS GTS NX, a finite element software for geotechnical applications. Our findings show good agreement between the two sets of results. Traditional spectral elements implementations allow points per wavelength as low as PPW = 4.5 for high-order polynomials. Our findings show that in the presence of nonlinearity, high-order polynomials (p ≥ 3) require mesh resolutions above of PPW ≥ 10 to ensure displacement errors below 10%.

  10. Efficient Hybrid-Spectral Model for Fully Nonlinear Numerical Wave Tank

    DEFF Research Database (Denmark)

    Christiansen, Torben; Bingham, Harry B.; Engsig-Karup, Allan Peter

    2013-01-01

    A new hybrid-spectral solution strategy is proposed for the simulation of the fully nonlinear free surface equations based on potential flow theory. A Fourier collocation method is adopted horisontally for the discretization of the free surface equations. This is combined with a modal Chebyshev Tau...... method in the vertical for the discretization of the Laplace equation in the fluid domain, which yields a sparse and spectrally accurate Dirichletto-Neumann operator. The Laplace problem is solved with an efficient Defect Correction method preconditioned with a spectral discretization of the linearised...... wave problem, ensuring fast convergence and optimal scaling with the problem size. Preliminary results for very nonlinear waves show expected convergence rates and a clear advantage of using spectral schemes....

  11. Spectral gamuts and spectral gamut mapping

    Science.gov (United States)

    Rosen, Mitchell R.; Derhak, Maxim W.

    2006-01-01

    All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.

  12. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    Science.gov (United States)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic

  13. Dynamical analysis of a PWR internals using super-elements in an integrated 3-D model model. Part 2: dynamical tests and seismic analysis

    International Nuclear Information System (INIS)

    Jesus Miranda, C.A. de.

    1992-01-01

    The results of the test analysis (frequencies) for the isolated super-elements and for the developed 3-D model of the internals core support structures of a PWR research reactor are presented. Once certified of the model effectiveness for this type of analysis the seismic spectral analysis was performed. From the results can be seen that the structures are rigid for this load, isolated or together with the other in the 3-D model, and there are no impacts among them during the earthquake (OBE). (author)

  14. Characterizing CDOM Spectral Variability Across Diverse Regions and Spectral Ranges

    Science.gov (United States)

    Grunert, Brice K.; Mouw, Colleen B.; Ciochetto, Audrey B.

    2018-01-01

    Satellite remote sensing of colored dissolved organic matter (CDOM) has focused on CDOM absorption (aCDOM) at a reference wavelength, as its magnitude provides insight into the underwater light field and large-scale biogeochemical processes. CDOM spectral slope, SCDOM, has been treated as a constant or semiconstant parameter in satellite retrievals of aCDOM despite significant regional and temporal variabilities. SCDOM and other optical metrics provide insights into CDOM composition, processing, food web dynamics, and carbon cycling. To date, much of this work relies on fluorescence techniques or aCDOM in spectral ranges unavailable to current and planned satellite sensors (e.g., global variability in SCDOM and fit deviations in the aCDOM spectra using the recently proposed Gaussian decomposition method. From this, we investigate if global variability in retrieved SCDOM and Gaussian components is significant and regionally distinct. We iteratively decreased the spectral range considered and analyzed the number, location, and magnitude of fitted Gaussian components to understand if a reduced spectral range impacts information obtained within a common spectral window. We compared the fitted slope from the Gaussian decomposition method to absorption-based indices that indicate CDOM composition to determine the ability of satellite-derived slope to inform the analysis and modeling of large-scale biogeochemical processes. Finally, we present implications of the observed variability for remote sensing of CDOM characteristics via SCDOM.

  15. Comparison of Analysis and Spectral Nudging Techniques for Dynamical Downscaling with the WRF Model over China

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2016-01-01

    Full Text Available To overcome the problem that the horizontal resolution of global climate models may be too low to resolve features which are important at the regional or local scales, dynamical downscaling has been extensively used. However, dynamical downscaling results generally drift away from large-scale driving fields. The nudging technique can be used to balance the performance of dynamical downscaling at large and small scales, but the performances of the two nudging techniques (analysis nudging and spectral nudging are debated. Moreover, dynamical downscaling is now performed at the convection-permitting scale to reduce the parameterization uncertainty and obtain the finer resolution. To compare the performances of the two nudging techniques in this study, three sensitivity experiments (with no nudging, analysis nudging, and spectral nudging covering a period of two months with a grid spacing of 6 km over continental China are conducted to downscale the 1-degree National Centers for Environmental Prediction (NCEP dataset with the Weather Research and Forecasting (WRF model. Compared with observations, the results show that both of the nudging experiments decrease the bias of conventional meteorological elements near the surface and at different heights during the process of dynamical downscaling. However, spectral nudging outperforms analysis nudging for predicting precipitation, and analysis nudging outperforms spectral nudging for the simulation of air humidity and wind speed.

  16. Spectral Inverse Quantum (Spectral-IQ Method for Modeling Mesoporous Systems: Application on Silica Films by FTIR

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2012-11-01

    Full Text Available The present work advances the inverse quantum (IQ structural criterion for ordering and characterizing the porosity of the mesosystems based on the recently advanced ratio of the particle-to-wave nature of quantum objects within the extended Heisenberg uncertainty relationship through employing the quantum fluctuation, both for free and observed quantum scattering information, as computed upon spectral identification of the wave-numbers specific to the maximum of absorption intensity record, and to left-, right- and full-width at the half maximum (FWHM of the concerned bands of a given compound. It furnishes the hierarchy for classifying the mesoporous systems from more particle-related (porous, tight or ionic bindings to more wave behavior (free or covalent bindings. This so-called spectral inverse quantum (Spectral-IQ particle-to-wave assignment was illustrated on spectral measurement of FT-IR (bonding bands’ assignment for samples synthesized within different basic environment and different thermal treatment on mesoporous materials obtained by sol-gel technique with n-dodecyl trimethyl ammonium bromide (DTAB and cetyltrimethylammonium bromide (CTAB and of their combination as cosolvents. The results were analyzed in the light of the so-called residual inverse quantum information, accounting for the free binding potency of analyzed samples at drying temperature, and were checked by cross-validation with thermal decomposition techniques by endo-exo thermo correlations at a higher temperature.

  17. A Skew-t space-varying regression model for the spectral analysis of resting state brain activity.

    Science.gov (United States)

    Ismail, Salimah; Sun, Wenqi; Nathoo, Farouk S; Babul, Arif; Moiseev, Alexader; Beg, Mirza Faisal; Virji-Babul, Naznin

    2013-08-01

    It is known that in many neurological disorders such as Down syndrome, main brain rhythms shift their frequencies slightly, and characterizing the spatial distribution of these shifts is of interest. This article reports on the development of a Skew-t mixed model for the spatial analysis of resting state brain activity in healthy controls and individuals with Down syndrome. Time series of oscillatory brain activity are recorded using magnetoencephalography, and spectral summaries are examined at multiple sensor locations across the scalp. We focus on the mean frequency of the power spectral density, and use space-varying regression to examine associations with age, gender and Down syndrome across several scalp regions. Spatial smoothing priors are incorporated based on a multivariate Markov random field, and the markedly non-Gaussian nature of the spectral response variable is accommodated by the use of a Skew-t distribution. A range of models representing different assumptions on the association structure and response distribution are examined, and we conduct model selection using the deviance information criterion. (1) Our analysis suggests region-specific differences between healthy controls and individuals with Down syndrome, particularly in the left and right temporal regions, and produces smoothed maps indicating the scalp topography of the estimated differences.

  18. SPECTRAL ANALYSIS OF EXCHANGE RATES

    Directory of Open Access Journals (Sweden)

    ALEŠA LOTRIČ DOLINAR

    2013-06-01

    Full Text Available Using spectral analysis is very common in technical areas but rather unusual in economics and finance, where ARIMA and GARCH modeling are much more in use. To show that spectral analysis can be useful in determining hidden periodic components for high-frequency finance data as well, we use the example of foreign exchange rates

  19. Spectral history model in DYN3D: Verification against coupled Monte-Carlo thermal-hydraulic code BGCore

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Margulis, M.; Fridman, E.; Shwageraus, E.

    2015-01-01

    Highlights: • Pu-239 based spectral history method was tested on 3D BWR single assembly case. • Burnup of a BWR fuel assembly was performed with the nodal code DYN3D. • Reference solution was obtained by coupled Monte-Carlo thermal-hydraulic code BGCore. • The proposed method accurately reproduces moderator density history effect for BWR test case. - Abstract: This research focuses on the verification of a recently developed methodology accounting for spectral history effects in 3D full core nodal simulations. The traditional deterministic core simulation procedure includes two stages: (1) generation of homogenized macroscopic cross section sets and (2) application of these sets to obtain a full 3D core solution with nodal codes. The standard approach adopts the branch methodology in which the branches represent all expected combinations of operational conditions as a function of burnup (main branch). The main branch is produced for constant, usually averaged, operating conditions (e.g. coolant density). As a result, the spectral history effects that associated with coolant density variation are not taken into account properly. Number of methods to solve this problem (such as micro-depletion and spectral indexes) were developed and implemented in modern nodal codes. Recently, we proposed a new and robust method to account for history effects. The methodology was implemented in DYN3D and involves modification of the few-group cross section sets. The method utilizes the local Pu-239 concentration as an indicator of spectral history. The method was verified for PWR and VVER applications. However, the spectrum variation in BWR core is more pronounced due to the stronger coolant density change. The purpose of the current work is investigating the applicability of the method to BWR analysis. The proposed methodology was verified against recently developed BGCore system, which couples Monte Carlo neutron transport with depletion and thermal-hydraulic solvers and

  20. Sparse modeling of EELS and EDX spectral imaging data by nonnegative matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, Motoki, E-mail: shiga_m@gifu-u.ac.jp [Department of Electrical, Electronic and Computer Engineering, Gifu University, 1-1, Yanagido, Gifu 501-1193 (Japan); Tatsumi, Kazuyoshi; Muto, Shunsuke [Advanced Measurement Technology Center, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Tsuda, Koji [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561 (Japan); Center for Materials Research by Information Integration, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan); Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi Koto-ku, Tokyo 135-0064 (Japan); Yamamoto, Yuta [High-Voltage Electron Microscope Laboratory, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Mori, Toshiyuki [Environment and Energy Materials Division, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Tanji, Takayoshi [Division of Materials Research, Institute of Materials and Systems for Sustainability, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2016-11-15

    Advances in scanning transmission electron microscopy (STEM) techniques have enabled us to automatically obtain electron energy-loss (EELS)/energy-dispersive X-ray (EDX) spectral datasets from a specified region of interest (ROI) at an arbitrary step width, called spectral imaging (SI). Instead of manually identifying the potential constituent chemical components from the ROI and determining the chemical state of each spectral component from the SI data stored in a huge three-dimensional matrix, it is more effective and efficient to use a statistical approach for the automatic resolution and extraction of the underlying chemical components. Among many different statistical approaches, we adopt a non-negative matrix factorization (NMF) technique, mainly because of the natural assumption of non-negative values in the spectra and cardinalities of chemical components, which are always positive in actual data. This paper proposes a new NMF model with two penalty terms: (i) an automatic relevance determination (ARD) prior, which optimizes the number of components, and (ii) a soft orthogonal constraint, which clearly resolves each spectrum component. For the factorization, we further propose a fast optimization algorithm based on hierarchical alternating least-squares. Numerical experiments using both phantom and real STEM-EDX/EELS SI datasets demonstrate that the ARD prior successfully identifies the correct number of physically meaningful components. The soft orthogonal constraint is also shown to be effective, particularly for STEM-EELS SI data, where neither the spatial nor spectral entries in the matrices are sparse. - Highlights: • Automatic resolution of chemical components from spectral imaging is considered. • We propose a new non-negative matrix factorization with two new penalties. • The first penalty is sparseness to choose the number of components from data. • Experimental results with real data demonstrate effectiveness of our method.

  1. A spectral nudging method for the ACCESS1.3 atmospheric model

    Directory of Open Access Journals (Sweden)

    P. Uhe

    2015-06-01

    Full Text Available A convolution-based method of spectral nudging of atmospheric fields is developed in the Australian Community Climate and Earth Systems Simulator (ACCESS version 1.3 which uses the UK Met Office Unified Model version 7.3 as its atmospheric component. The use of convolutions allow for flexibility in application to different atmospheric grids. An approximation using one-dimensional convolutions is applied, improving the time taken by the nudging scheme by 10–30 times compared with a version using a two-dimensional convolution, without measurably degrading its performance. Care needs to be taken in the order of the convolutions and the frequency of nudging to obtain the best outcome. The spectral nudging scheme is benchmarked against a Newtonian relaxation method, nudging winds and air temperature towards ERA-Interim reanalyses. We find that the convolution approach can produce results that are competitive with Newtonian relaxation in both the effectiveness and efficiency of the scheme, while giving the added flexibility of choosing which length scales to nudge.

  2. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Youshan, E-mail: ysliu@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Teng, Jiwen, E-mail: jwteng@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); Xu, Tao, E-mail: xutao@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 (China); CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, 100101 (China); Badal, José, E-mail: badal@unizar.es [Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2017-05-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  3. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling

    International Nuclear Information System (INIS)

    Liu, Youshan; Teng, Jiwen; Xu, Tao; Badal, José

    2017-01-01

    The mass-lumped method avoids the cost of inverting the mass matrix and simultaneously maintains spatial accuracy by adopting additional interior integration points, known as cubature points. To date, such points are only known analytically in tensor domains, such as quadrilateral or hexahedral elements. Thus, the diagonal-mass-matrix spectral element method (SEM) in non-tensor domains always relies on numerically computed interpolation points or quadrature points. However, only the cubature points for degrees 1 to 6 are known, which is the reason that we have developed a p-norm-based optimization algorithm to obtain higher-order cubature points. In this way, we obtain and tabulate new cubature points with all positive integration weights for degrees 7 to 9. The dispersion analysis illustrates that the dispersion relation determined from the new optimized cubature points is comparable to that of the mass and stiffness matrices obtained by exact integration. Simultaneously, the Lebesgue constant for the new optimized cubature points indicates its surprisingly good interpolation properties. As a result, such points provide both good interpolation properties and integration accuracy. The Courant–Friedrichs–Lewy (CFL) numbers are tabulated for the conventional Fekete-based triangular spectral element (TSEM), the TSEM with exact integration, and the optimized cubature-based TSEM (OTSEM). A complementary study demonstrates the spectral convergence of the OTSEM. A numerical example conducted on a half-space model demonstrates that the OTSEM improves the accuracy by approximately one order of magnitude compared to the conventional Fekete-based TSEM. In particular, the accuracy of the 7th-order OTSEM is even higher than that of the 14th-order Fekete-based TSEM. Furthermore, the OTSEM produces a result that can compete in accuracy with the quadrilateral SEM (QSEM). The high accuracy of the OTSEM is also tested with a non-flat topography model. In terms of computational

  4. The spectral dimension of random trees

    International Nuclear Information System (INIS)

    Destri, Claudio; Donetti, Luca

    2002-01-01

    We present a simple yet rigorous approach to the determination of the spectral dimension of random trees, based on the study of the massless limit of the Gaussian model on such trees. As a by-product, we obtain evidence in favour of a new scaling hypothesis for the Gaussian model on generic bounded graphs and in favour of a previously conjectured exact relation between spectral and connectivity dimensions on more general tree-like structures

  5. Spectral identification of plant communities for mapping of semi-natural grasslands

    DEFF Research Database (Denmark)

    Jacobsen, Anne; Nielsen, Allan Aasbjerg; Ejrnæs, Rasmus

    2000-01-01

    identification of plant communities was based on a hierarchical approach relating the test sites to i) management (Ma) and ii) flora (Fl) using spectral consistency and separability as the main criteria. Evaluation of spectral consistency was based on unsupervised clustering of test sites of Ma classes 1 to 7...... as a measure of plant community heterogeneity within management classes. The spectral analysis as well as the maximum likelihood classification indicated that the source of spectral variation within management classes might be related to vegetation composition....

  6. Spectral combination of spherical gravitational curvature boundary-value problems

    Science.gov (United States)

    PitoÅák, Martin; Eshagh, Mehdi; Šprlák, Michal; Tenzer, Robert; Novák, Pavel

    2018-04-01

    Four solutions of the spherical gravitational curvature boundary-value problems can be exploited for the determination of the Earth's gravitational potential. In this article we discuss the combination of simulated satellite gravitational curvatures, i.e., components of the third-order gravitational tensor, by merging these solutions using the spectral combination method. For this purpose, integral estimators of biased- and unbiased-types are derived. In numerical studies, we investigate the performance of the developed mathematical models for the gravitational field modelling in the area of Central Europe based on simulated satellite measurements. Firstly, we verify the correctness of the integral estimators for the spectral downward continuation by a closed-loop test. Estimated errors of the combined solution are about eight orders smaller than those from the individual solutions. Secondly, we perform a numerical experiment by considering the Gaussian noise with the standard deviation of 6.5× 10-17 m-1s-2 in the input data at the satellite altitude of 250 km above the mean Earth sphere. This value of standard deviation is equivalent to a signal-to-noise ratio of 10. Superior results with respect to the global geopotential model TIM-r5 are obtained by the spectral downward continuation of the vertical-vertical-vertical component with the standard deviation of 2.104 m2s-2, but the root mean square error is the largest and reaches 9.734 m2s-2. Using the spectral combination of all gravitational curvatures the root mean square error is more than 400 times smaller but the standard deviation reaches 17.234 m2s-2. The combination of more components decreases the root mean square error of the corresponding solutions while the standard deviations of the combined solutions do not improve as compared to the solution from the vertical-vertical-vertical component. The presented method represents a weight mean in the spectral domain that minimizes the root mean square error

  7. Determination of the spectral behaviour of atmospheric soot using different particle models

    Science.gov (United States)

    Skorupski, Krzysztof

    2017-08-01

    In the atmosphere, black carbon aggregates interact with both organic and inorganic matter. In many studies they are modeled using different, less complex, geometries. However, some common simplification might lead to many inaccuracies in the following light scattering simulations. The goal of this study was to compare the spectral behavior of different, commonly used soot particle models. For light scattering simulations, in the visible spectrum, the ADDA algorithm was used. The results prove that the relative extinction error δCext, in some cases, can be unexpectedly large. Therefore, before starting excessive simulations, it is important to know what error might occur.

  8. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    International Nuclear Information System (INIS)

    Skerovic, V; Zarubica, V; Aleksic, M; Zekovic, L; Belca, I

    2010-01-01

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  9. Developement of the method for realization of spectral irradiance scale featuring system of spectral comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Skerovic, V; Zarubica, V; Aleksic, M [Directorate of measures and precious metals, Optical radiation Metrology department, Mike Alasa 14, 11000 Belgrade (Serbia); Zekovic, L; Belca, I, E-mail: vladanskerovic@dmdm.r [Faculty of Physics, Department for Applied physics and metrology, Studentski trg 12-16, 11000 Belgrade (Serbia)

    2010-10-15

    Realization of the scale of spectral responsivity of the detectors in the Directorate of Measures and Precious Metals (DMDM) is based on silicon detectors traceable to LNE-INM. In order to realize the unit of spectral irradiance in the laboratory for photometry and radiometry of the Bureau of Measures and Precious Metals, the new method based on the calibration of the spectroradiometer by comparison with standard detector has been established. The development of the method included realization of the System of Spectral Comparisons (SSC), together with the detector spectral responsivity calibrations by means of a primary spectrophotometric system. The linearity testing and stray light analysis were preformed to characterize the spectroradiometer. Measurement of aperture diameter and calibration of transimpedance amplifier were part of the overall experiment. In this paper, the developed method is presented and measurement results with the associated measurement uncertainty budget are shown.

  10. Spectral Neugebauer-based color halftone prediction model accounting for paper fluorescence.

    Science.gov (United States)

    Hersch, Roger David

    2014-08-20

    We present a spectral model for predicting the fluorescent emission and the total reflectance of color halftones printed on optically brightened paper. By relying on extended Neugebauer models, the proposed model accounts for the attenuation by the ink halftones of both the incident exciting light in the UV wavelength range and the emerging fluorescent emission in the visible wavelength range. The total reflectance is predicted by adding the predicted fluorescent emission relative to the incident light and the pure reflectance predicted with an ink-spreading enhanced Yule-Nielsen modified Neugebauer reflectance prediction model. The predicted fluorescent emission spectrum as a function of the amounts of cyan, magenta, and yellow inks is very accurate. It can be useful to paper and ink manufacturers who would like to study in detail the contribution of the fluorescent brighteners and the attenuation of the fluorescent emission by ink halftones.

  11. Spectral analysis and markov switching model of Indonesia business cycle

    Science.gov (United States)

    Fajar, Muhammad; Darwis, Sutawanir; Darmawan, Gumgum

    2017-03-01

    This study aims to investigate the Indonesia business cycle encompassing the determination of smoothing parameter (λ) on Hodrick-Prescott filter. Subsequently, the components of the filter output cycles were analyzed using a spectral method useful to know its characteristics, and Markov switching regime modeling is made to forecast the probability recession and expansion regimes. The data used in the study is real GDP (1983Q1 - 2016Q2). The results of the study are: a) Hodrick-Prescott filter on real GDP of Indonesia to be optimal when the value of the smoothing parameter is 988.474, b) Indonesia business cycle has amplitude varies between±0.0071 to±0.01024, and the duration is between 4 to 22 quarters, c) the business cycle can be modelled by MSIV-AR (2) but regime periodization is generated this model not perfect exactly with real regime periodzation, and d) Based on the model MSIV-AR (2) obtained long-term probabilities in the expansion regime: 0.4858 and in the recession regime: 0.5142.

  12. A mass and energy conserving spectral element atmospheric dynamical core on the cubed-sphere grid

    International Nuclear Information System (INIS)

    Taylor, M A; Edwards, J; Thomas, S; Nair, R

    2007-01-01

    We present results from a conservative formulation of the spectral element method applied to global atmospheric circulation modeling. Exact local conservation of both mass and energy is obtained via a new compatible formulation of the spectral element method. Compatibility insures that the key integral property of the divergence and gradient operators required to show conservation also hold in discrete form. The spectral element method is used on a cubed-sphere grid to discretize the horizontal directions on the sphere. It can be coupled to any conservative vertical/radial discretization. The accuracy and conservation properties of the method are illustrated using a baroclinic instability test case

  13. Spacetime Discontinuous Galerkin FEM: Spectral Response

    International Nuclear Information System (INIS)

    Abedi, R; Omidi, O; Clarke, P L

    2014-01-01

    Materials in nature demonstrate certain spectral shapes in terms of their material properties. Since successful experimental demonstrations in 2000, metamaterials have provided a means to engineer materials with desired spectral shapes for their material properties. Computational tools are employed in two different aspects for metamaterial modeling: 1. Mircoscale unit cell analysis to derive and possibly optimize material's spectral response; 2. macroscale to analyze their interaction with conventional material. We compare two different approaches of Time-Domain (TD) and Frequency Domain (FD) methods for metamaterial applications. Finally, we discuss advantages of the TD method of Spacetime Discontinuous Galerkin finite element method (FEM) for spectral analysis of metamaterials

  14. Spectral functions for the flat plasma sheet model

    International Nuclear Information System (INIS)

    Pirozhenko, I G

    2006-01-01

    The present work is based on Bordag M et al 2005 (J. Phys. A: Math. Gen. 38 11027) where the spectral analysis of the electromagnetic field on the background of an infinitely thin flat plasma layer is carried out. The solutions to Maxwell equations with the appropriate matching conditions at the plasma layer are derived and the spectrum of electromagnetic oscillations is determined. The spectral zeta function and the integrated heat kernel are constructed for different branches of the spectrum in an explicit form. The asymptotic expansion of the integrated heat kernel at small values of the evolution parameter is derived. The local heat kernels are considered also

  15. Extracting the noise spectral densities parameters of JFET transistor by modeling a nuclear electronics channel response

    International Nuclear Information System (INIS)

    Assaf, J.

    2009-07-01

    Mathematical model for the RMS noise of JFET transistor has been realized. Fitting the model according to the experimental results gives the noise spectral densities values. Best fitting was for the model of three noise sources and real preamplifier transfer function. After gamma irradiation, an additional and important noise sources appeared and two point defects are estimated through the fitting process. (author)

  16. Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky's truncation coefficients

    Science.gov (United States)

    Bucha, Blažej; Hirt, Christian; Kuhn, Michael

    2018-04-01

    Spectral gravity forward modelling is a technique that converts a band-limited topography into its implied gravitational field. This conversion implicitly relies on global integration of topographic masses. In this paper, a modification of the spectral technique is presented that provides gravity effects induced only by the masses located inside or outside a spherical cap centred at the evaluation point. This is achieved by altitude-dependent Molodensky's truncation coefficients, for which we provide infinite series expansions and recurrence relations with a fixed number of terms. Both representations are generalized for an arbitrary integer power of the topography and arbitrary radial derivative. Because of the altitude-dependency of the truncation coefficients, a straightforward synthesis of the near- and far-zone gravity effects at dense grids on irregular surfaces (e.g. the Earth's topography) is computationally extremely demanding. However, we show that this task can be efficiently performed using an analytical continuation based on the gradient approach, provided that formulae for radial derivatives of the truncation coefficients are available. To demonstrate the new cap-modified spectral technique, we forward model the Earth's degree-360 topography, obtaining near- and far-zone effects on gravity disturbances expanded up to degree 3600. The computation is carried out on the Earth's surface and the results are validated against an independent spatial-domain Newtonian integration (1 μGal RMS agreement). The new technique is expected to assist in mitigating the spectral filter problem of residual terrain modelling and in the efficient construction of full-scale global gravity maps of highest spatial resolution.

  17. Sensitivity experiments to mountain representations in spectral models

    Directory of Open Access Journals (Sweden)

    U. Schlese

    2000-06-01

    Full Text Available This paper describes a set of sensitivity experiments to several formulations of orography. Three sets are considered: a "Standard" orography consisting of an envelope orography produced originally for the ECMWF model, a"Navy" orography directly from the US Navy data and a "Scripps" orography based on the data set originally compiled several years ago at Scripps. The last two are mean orographies which do not use the envelope enhancement. A new filtering technique for handling the problem of Gibbs oscillations in spectral models has been used to produce the "Navy" and "Scripps" orographies, resulting in smoother fields than the "Standard" orography. The sensitivity experiments show that orography is still an important factor in controlling the model performance even in this class of models that use a semi-lagrangian formulation for water vapour, that in principle should be less sensitive to Gibbs oscillations than the Eulerian formulation. The largest impact can be seen in the stationary waves (asymmetric part of the geopotential at 500 mb where the differences in total height and spatial pattern generate up to 60 m differences, and in the surface fields where the Gibbs removal procedure is successful in alleviating the appearance of unrealistic oscillations over the ocean. These results indicate that Gibbs oscillations also need to be treated in this class of models. The best overall result is obtained using the "Navy" data set, that achieves a good compromise between amplitude of the stationary waves and smoothness of the surface fields.

  18. Assessing the sensitivity and robustness of prediction models for apple firmness using spectral scattering technique

    Science.gov (United States)

    Spectral scattering is useful for nondestructive sensing of fruit firmness. Prediction models, however, are typically built using multivariate statistical methods such as partial least squares regression (PLSR), whose performance generally depends on the characteristics of the data. The aim of this ...

  19. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  20. Effective spectral function for quasielastic scattering on nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bodek, A.; Coopersmith, B. [University of Rochester, Department of Physics and Astronomy, Rochester, NY (United States); Christy, M.E. [Hampton University, Hampton, VA (United States)

    2014-10-15

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d{sup 2}σ/dQ{sup 2}dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  1. Effective spectral function for quasielastic scattering on nuclei

    International Nuclear Information System (INIS)

    Bodek, A.; Coopersmith, B.; Christy, M.E.

    2014-01-01

    Spectral functions that are used in neutrino event, generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the ν dependence of predictions of these spectral functions for the QE differential cross sections (d 2 σ/dQ 2 dν) are in disagreement with the prediction of the ψ' superscaling function which is extracted from fits to quasielastic electron scattering data on nuclear targets. It is known that spectral functions do not fully describe quasielastic scattering because they only model the initial state. Final state interactions distort the shape of the differential cross section at the peak and increase the cross section at the tails of the distribution. We show that the kinematic distributions predicted by the ψ' superscaling formalism can be well described with a modified effective spectral function (ESF). By construction, models using ESF in combination with the transverse enhancement contribution correctly predict electron QE scattering data. (orig.)

  2. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  3. Spectral characterization of natural backgrounds

    Science.gov (United States)

    Winkelmann, Max

    2017-10-01

    As the distribution and use of hyperspectral sensors is constantly increasing, the exploitation of spectral features is a threat for camouflaged objects. To improve camouflage materials at first the spectral behavior of backgrounds has to be known to adjust and optimize the spectral reflectance of camouflage materials. In an international effort, the NATO CSO working group SCI-295 "Development of Methods for Measurements and Evaluation of Natural Background EO Signatures" is developing a method how this characterization of backgrounds has to be done. It is obvious that the spectral characterization of a background will be quite an effort. To compare and exchange data internationally the measurements will have to be done in a similar way. To test and further improve this method an international field trial has been performed in Storkow, Germany. In the following we present first impressions and lessons learned from this field campaign and describe the data that has been measured.

  4. [Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01].

    Science.gov (United States)

    Qin, Xian-Lin; Zhu, Xi; Yang, Fei; Zhao, Kai-Rui; Pang, Yong; Li, Zeng-Yuan; Li, Xu-Zhi; Zhang, Jiu-Xing

    2013-07-01

    To obtain the sensitive spectral bands for detection of information on 4 kinds of burning status, i. e. flaming, smoldering, smoke, and fire scar, with satellite data, analysis was conducted to identify suitable satellite spectral bands for detection of information on these 4 kinds of burning status by using hyper-spectrum images of Tiangong-01 (TG-01) and employing a method combining statistics and spectral analysis. The results show that: in the hyper-spectral images of TG-01, the spectral bands differ obviously for detection of these 4 kinds of burning status; in all hyper-spectral short-wave infrared channels, the reflectance of flaming is higher than that of all other 3 kinds of burning status, and the reflectance of smoke is the lowest; the reflectance of smoke is higher than that of all other 3 kinds of burning status in the channels corresponding to hyper-spectral visible near-infrared and panchromatic sensors. For spectral band selection, more suitable spectral bands for flaming detection are 1 000.0-1 956.0 and 2 020.0-2 400.0 nm; the suitable spectral bands for identifying smoldering are 930.0-1 000.0 and 1 084.0-2 400.0 nm; the suitable spectral bands for smoke detection is in 400.0-920.0 nm; for fire scar detection, it is suitable to select bands with central wavelengths of 900.0-930.0 and 1 300.0-2 400.0 nm, and then to combine them to construct a detection model.

  5. Spectral response analysis of PVDF capacitive sensors

    Science.gov (United States)

    Reyes-Ramírez, B.; García-Segundo, C.; García-Valenzuela, A.

    2013-06-01

    We investigate the spectral response to ultrasound waves in water of low-noise capacitive sensors based on PVDF polymer piezoelectric films. First, we analyze theoretically the mechanical-to-electrical transduction as a function of the frequency of ultrasonic signals and derive an analytic expression of the sensor's transfer function. Then we present experimental results of the frequency response of a home-made PDVF in water to test signals from 1 to 20 MHz induced by a commercial hydrophone powered by a signal generator and compare with our theoretical model.

  6. Martian Radiative Transfer Modeling Using the Optimal Spectral Sampling Method

    Science.gov (United States)

    Eluszkiewicz, J.; Cady-Pereira, K.; Uymin, G.; Moncet, J.-L.

    2005-01-01

    The large volume of existing and planned infrared observations of Mars have prompted the development of a new martian radiative transfer model that could be used in the retrievals of atmospheric and surface properties. The model is based on the Optimal Spectral Sampling (OSS) method [1]. The method is a fast and accurate monochromatic technique applicable to a wide range of remote sensing platforms (from microwave to UV) and was originally developed for the real-time processing of infrared and microwave data acquired by instruments aboard the satellites forming part of the next-generation global weather satellite system NPOESS (National Polarorbiting Operational Satellite System) [2]. As part of our on-going research related to the radiative properties of the martian polar caps, we have begun the development of a martian OSS model with the goal of using it to perform self-consistent atmospheric corrections necessary to retrieve caps emissivity from the Thermal Emission Spectrometer (TES) spectra. While the caps will provide the initial focus area for applying the new model, it is hoped that the model will be of interest to the wider Mars remote sensing community.

  7. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    Science.gov (United States)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  8. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  9. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    Science.gov (United States)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface

  10. Onboard spectral imager data processor

    Science.gov (United States)

    Otten, Leonard J.; Meigs, Andrew D.; Franklin, Abraham J.; Sears, Robert D.; Robison, Mark W.; Rafert, J. Bruce; Fronterhouse, Donald C.; Grotbeck, Ronald L.

    1999-10-01

    Previous papers have described the concept behind the MightySat II.1 program, the satellite's Fourier Transform imaging spectrometer's optical design, the design for the spectral imaging payload, and its initial qualification testing. This paper discusses the on board data processing designed to reduce the amount of downloaded data by an order of magnitude and provide a demonstration of a smart spaceborne spectral imaging sensor. Two custom components, a spectral imager interface 6U VME card that moves data at over 30 MByte/sec, and four TI C-40 processors mounted to a second 6U VME and daughter card, are used to adapt the sensor to the spacecraft and provide the necessary high speed processing. A system architecture that offers both on board real time image processing and high-speed post data collection analysis of the spectral data has been developed. In addition to the on board processing of the raw data into a usable spectral data volume, one feature extraction technique has been incorporated. This algorithm operates on the basic interferometric data. The algorithm is integrated within the data compression process to search for uploadable feature descriptions.

  11. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  12. Combined Spectral and Spatial Modeling of Corn Yield Based on Aerial Images and Crop Surface Models Acquired with an Unmanned Aircraft System

    Directory of Open Access Journals (Sweden)

    Jakob Geipel

    2014-10-01

    Full Text Available Precision Farming (PF management strategies are commonly based on estimations of within-field yield potential, often derived from remotely-sensed products, e.g., Vegetation Index (VI maps. These well-established means, however, lack important information, like crop height. Combinations of VI-maps and detailed 3D Crop Surface Models (CSMs enable advanced methods for crop yield prediction. This work utilizes an Unmanned Aircraft System (UAS to capture standard RGB imagery datasets for corn grain yield prediction at three early- to mid-season growth stages. The imagery is processed into simple VI-orthoimages for crop/non-crop classification and 3D CSMs for crop height determination at different spatial resolutions. Three linear regression models are tested on their prediction ability using site-specific (i unclassified mean heights, (ii crop-classified mean heights and (iii a combination of crop-classified mean heights with according crop coverages. The models show determination coefficients \\({R}^{2}\\ of up to 0.74, whereas model (iii performs best with imagery captured at the end of stem elongation and intermediate spatial resolution (0.04m\\(\\cdot\\px\\(^{-1}\\.Following these results, combined spectral and spatial modeling, based on aerial images and CSMs, proves to be a suitable method for mid-season corn yield prediction.

  13. Temporal Evolution of Ion Spectral Structures During a Geomagnetic Storm: Observations and Modeling

    Science.gov (United States)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2018-01-01

    Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1 to 50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet inner edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. As the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. We use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.

  14. Analyzing availability using transfer function models and cross spectral analysis

    International Nuclear Information System (INIS)

    Singpurwalla, N.D.

    1980-01-01

    The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems

  15. Evaluating the capabilities of vegetation spectral indices on chlorophyll content estimation at Sentinel-2 spectral resolutions

    Science.gov (United States)

    Sun, Qi; Jiao, Quanjun; Dai, Huayang

    2018-03-01

    Chlorophyll is an important pigment in green plants for photosynthesis and obtaining the energy for growth and development. The rapid, nondestructive and accurate estimation of chlorophyll content is significant for understanding the crops growth, monitoring the disease and insect, and assessing the yield of crops. Sentinel-2 equipped with the Multi-Spectral Instrument (MSI), which will provide images with high spatial, spectral and temporal resolution. It covers the VNIR/SWIR spectral region in 13 bands and incorporates two new spectral bands in the red-edge region and a spatial resolution of 20nm, which can be used to derive vegetation indices using red-edge bands. In this paper, we will focus on assessing the potential of vegetation spectral indices for retrieving chlorophyll content from Sentinel-2 at different angles. Subsequently, we used in-situ spectral data and Sentinel-2 data to test the relationship between VIs and chlorophyll content. The REP, MTCI, CIred-edge, CIgreen, Macc01, TCARI/OSAVI [705,750], NDRE1 and NDRE2 were calculated. NDRE2 index displays a strongly similar result for hyperspectral and simulated Sentinel-2 spectral bands (R2 =0.53, R2 =0.51, for hyperspectral and Sentinel-2, respectively). At different observation angles, NDRE2 has the smallest difference in performance (R2 = 0.51, R2 =0.64, at 0° and 15° , respectively).

  16. A Spectral-SAR Model for the Anionic-Cationic Interaction in Ionic Liquids: Application to Vibrio fischeri Ecotoxicity

    Directory of Open Access Journals (Sweden)

    Vasile Ostafe

    2007-08-01

    Full Text Available Within the recently launched the spectral-structure activity relationship (S-SARanalysis, the vectorial anionic-cationic model of a generic ionic liquid is proposed, alongwith the associated algebraic correlation factor in terms of the measured and predictedactivity norms. The reliability of the present scheme is tested by assessing the Hanschfactors, i.e. lipophylicity, polarizability and total energy, to predict the ecotoxicityendpoints of wide types of ionic liquids with ammonium, pyridinium, phosphonium,choline and imidazolium cations on the aquatic bacteria Vibrio fischeri. The results, whileconfirming the cationic dominant influence when only lipophylicity is considered,demonstrate that the anionic effect dominates all other more specific interactions. It wasalso proved that the S-SAR vectorial model predicts considerably higher activity for theionic liquids than for its anionic and cationic subsystems separately, in all consideredcases. Moreover, through applying the least norm-correlation path principle, the completetoxicological hierarchies are presented, unfolding the ecological rules of combined cationicand anionic influences in ionic liquid toxicity.

  17. Contraction Options and Optimal Multiple-Stopping in Spectrally Negative Lévy Models

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Kazutoshi, E-mail: kyamazak@kansai-u.ac.jp [Kansai University, Department of Mathematics, Faculty of Engineering Science (Japan)

    2015-08-15

    This paper studies the optimal multiple-stopping problem arising in the context of the timing option to withdraw from a project in stages. The profits are driven by a general spectrally negative Lévy process. This allows the model to incorporate sudden declines of the project values, generalizing greatly the classical geometric Brownian motion model. We solve the one-stage case as well as the extension to the multiple-stage case. The optimal stopping times are of threshold-type and the value function admits an expression in terms of the scale function. A series of numerical experiments are conducted to verify the optimality and to evaluate the efficiency of the algorithm.

  18. Contraction Options and Optimal Multiple-Stopping in Spectrally Negative Lévy Models

    International Nuclear Information System (INIS)

    Yamazaki, Kazutoshi

    2015-01-01

    This paper studies the optimal multiple-stopping problem arising in the context of the timing option to withdraw from a project in stages. The profits are driven by a general spectrally negative Lévy process. This allows the model to incorporate sudden declines of the project values, generalizing greatly the classical geometric Brownian motion model. We solve the one-stage case as well as the extension to the multiple-stage case. The optimal stopping times are of threshold-type and the value function admits an expression in terms of the scale function. A series of numerical experiments are conducted to verify the optimality and to evaluate the efficiency of the algorithm

  19. Estimation of spectral kurtosis

    Science.gov (United States)

    Sutawanir

    2017-03-01

    Rolling bearings are the most important elements in rotating machinery. Bearing frequently fall out of service for various reasons: heavy loads, unsuitable lubrications, ineffective sealing. Bearing faults may cause a decrease in performance. Analysis of bearing vibration signals has attracted attention in the field of monitoring and fault diagnosis. Bearing vibration signals give rich information for early detection of bearing failures. Spectral kurtosis, SK, is a parameter in frequency domain indicating how the impulsiveness of a signal varies with frequency. Faults in rolling bearings give rise to a series of short impulse responses as the rolling elements strike faults, SK potentially useful for determining frequency bands dominated by bearing fault signals. SK can provide a measure of the distance of the analyzed bearings from a healthy one. SK provides additional information given by the power spectral density (psd). This paper aims to explore the estimation of spectral kurtosis using short time Fourier transform known as spectrogram. The estimation of SK is similar to the estimation of psd. The estimation falls in model-free estimation and plug-in estimator. Some numerical studies using simulations are discussed to support the methodology. Spectral kurtosis of some stationary signals are analytically obtained and used in simulation study. Kurtosis of time domain has been a popular tool for detecting non-normality. Spectral kurtosis is an extension of kurtosis in frequency domain. The relationship between time domain and frequency domain analysis is establish through power spectrum-autocovariance Fourier transform. Fourier transform is the main tool for estimation in frequency domain. The power spectral density is estimated through periodogram. In this paper, the short time Fourier transform of the spectral kurtosis is reviewed, a bearing fault (inner ring and outer ring) is simulated. The bearing response, power spectrum, and spectral kurtosis are plotted to

  20. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya [Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080 (India); Chluba, Jens, E-mail: mayuris@rri.res.in [Jodrell Bank Centre for Astrophysics, University of Manchester, Oxford Road, M13 9PL (United Kingdom)

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  1. SPATIAL AND SPECTRAL MODELING OF THE GAMMA-RAY DISTRIBUTION IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Foreman, Gary; Chu, You-Hua; Gruendl, Robert; Fields, Brian; Ricker, Paul [Department of Astronomy, University of Illinois, 1002 W. Green St., Urbana, IL 61801 (United States); Hughes, Annie, E-mail: gforema2@illinois.edu [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2015-07-20

    We perform spatial and spectral analyses of the LMC gamma-ray emission collected over 66 months by the Fermi Gamma-ray Space Telescope. In our spatial analysis, we model the LMC cosmic-ray distribution and gamma-ray production using observed maps of the LMC interstellar medium, star formation history, interstellar radiation field, and synchrotron emission. We use bootstrapping of the data to quantify the robustness of spatial model performance. We model the LMC gamma-ray spectrum using fitting functions derived from the physics of π{sup 0} decay, Bremsstrahlung, and inverse Compton scattering. We find the integrated gamma-ray flux of the LMC from 200 MeV to 20 GeV to be 1.37 ± 0.02 × 10{sup −7} ph cm{sup −2} s{sup −1}, of which we attribute about 6% to inverse Compton scattering and 44% to Bremsstrahlung. From our work, we conclude that the spectral index of the LMC cosmic-ray proton population is 2.4 ± 0.2, and we find that cosmic-ray energy loss through gamma-ray production is concentrated within a few 100 pc of acceleration sites. Assuming cosmic-ray energy equipartition with magnetic fields, we estimate LMC cosmic rays encounter an average magnetic field strength ∼3 μG.

  2. Validation of a clinical assessment of spectral-ripple resolution for cochlear implant users.

    Science.gov (United States)

    Drennan, Ward R; Anderson, Elizabeth S; Won, Jong Ho; Rubinstein, Jay T

    2014-01-01

    Nonspeech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech-recognition performance in cochlear implant (CI) users. However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were (1) To determine whether this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple-discrimination test; (2) To evaluate test-retest reliability for the clinical ripple measure; and (3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as consonant-nucleus-consonant word recognition in quiet. The adaptive version of spectral ripple used a two-up, one-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared with ripple-discrimination thresholds (in ripples per octave) from the adaptive test. The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r = 0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). The clinical ripple test is a reliable nonlinguistic measure of spectral resolution, optimized for use with CI users in a clinical setting. The test

  3. Radiative characteristics of a thin solid fuel at discrete levels of pyrolysis: Angular, spectral, and thermal dependencies

    Science.gov (United States)

    Pettegrew, Richard Dale

    Numerical models of solid fuel combustion rely on accurate radiative property values to properly account for radiative heat transfer to and from the surface. The spectral properties can change significantly over the temperature range from ambient to burnout temperature. The variations of these properties are due to mass loss (as the sample pyrolyzes), chemical changes, and surface finish changes. In addition, band-integrated properties can vary due to the shift in the peak of the Planck curve as the temperature increases, which results in differing weightings of the spectral values. These effects were quantified for a thin cellulosic fuel commonly used in microgravity combustion studies (KimWipesRTM). Pyrolytic effects were simulated by heat-treating the samples in a constant temperature oven for varying times. Spectral data was acquired using a Fourier Transform Infrared (FTIR) spectrometer, along with an integrating sphere. Data was acquired at different incidence angles by mounting the samples at different angles inside the sphere. Comparisons of samples of similar area density created using different heat-treatment regimens showed that thermal history of the samples was irrelevant in virtually all spectral regions, with overall results correlating well with changes in area density. Spectral, angular, and thermal dependencies were determined for a representative data set, showing that the spectral absorptance decreases as the temperature increases, and decreases as the incidence angle varies from normal. Changes in absorptance are primarily offset by corresponding changes in transmittances, with reflectance values shown to be low over the tested spectral region of 2.50 mum to 24.93 mum. Band-integrated values were calculated as a function of temperature for the entire tested spectral region, as well as limited bands relevant for thermal imaging applications. This data was used to demonstrate the significant error that is likely if incorrect emittance values are

  4. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.

    Science.gov (United States)

    Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B

    2011-03-01

    To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2

  5. Technology for detecting spectral radiance by a snapshot multi-imaging spectroradiometer

    Science.gov (United States)

    Zuber, Ralf; Stührmann, Ansgar; Gugg-Helminger, Anton; Seckmeyer, Gunther

    2017-12-01

    Technologies to determine spectral sky radiance distributions have evolved in recent years and have enabled new applications in remote sensing, for sky radiance measurements, in biological/diagnostic applications and luminance measurements. Most classical spectral imaging radiance technologies are based on mechanical and/or spectral scans. However, these methods require scanning time in which the spectral radiance distribution might change. To overcome this limitation, different so-called snapshot spectral imaging technologies have been developed that enable spectral and spatial non-scanning measurements. We present a new setup based on a facet mirror that is already used in imaging slicing spectrometers. By duplicating the input image instead of slicing it and using a specially designed entrance slit, we are able to select nearly 200 (14 × 14) channels within the field of view (FOV) for detecting spectral radiance in different directions. In addition, a megapixel image of the FOV is captured by an additional RGB camera. This image can be mapped onto the snapshot spectral image. In this paper, the mechanical setup, technical design considerations and first measurement results of a prototype are presented. For a proof of concept, the device is radiometrically calibrated and a 10 mm × 10 mm test pattern measured within a spectral range of 380 nm-800 nm with an optical bandwidth of 10 nm (full width at half maximum or FWHM). To show its potential in the UV spectral region, zenith sky radiance measurements in the UV of a clear sky were performed. Hence, the prototype was equipped with an entrance optic with a FOV of 0.5° and modified to obtain a radiometrically calibrated spectral range of 280 nm-470 nm with a FWHM of 3 nm. The measurement results have been compared to modeled data processed by UVSPEC, which showed deviations of less than 30%. This is far from being ideal, but an acceptable result with respect to available state

  6. Testing of motor unit synchronization model for localized muscle fatigue.

    Science.gov (United States)

    Naik, Ganesh R; Kumar, Dinesh K; Yadav, Vivek; Wheeler, Katherine; Arjunan, Sridhar

    2009-01-01

    Spectral compression of surface electromyogram (sEMG) is associated with onset of localized muscle fatigue. The spectral compression has been explained based on motor unit synchronization theory. According to this theory, motor units are pseudo randomly excited during muscle contraction, and with the onset of muscle fatigue the recruitment pattern changes such that motor unit firings become more synchronized. While this is widely accepted, there is little experimental proof of this phenomenon. This paper has used source dependence measures developed in research related to independent component analysis (ICA) to test this theory.

  7. Scattering and absorption measurements of cervical tissues measures using low cost multi-spectral imaging

    Science.gov (United States)

    Bernat, Amir S.; Bar-Am, Kfir; Cataldo, Leigh; Bolton, Frank J.; Kahn, Bruce S.; Levitz, David

    2018-02-01

    Cervical cancer is a leading cause of death for women in low resource settings. In order to better detect cervical dysplasia, a low cost multi-spectral colposcope was developed utilizing low costs LEDs and an area scan camera. The device is capable of both traditional colposcopic imaging and multi-spectral image capture. Following initial bench testing, the device was deployed to a gynecology clinic where it was used to image patients in a colposcopy setting. Both traditional colposcopic images and spectral data from patients were uploaded to a cloud server for remote analysis. Multi-spectral imaging ( 30 second capture) took place before any clinical procedure; the standard of care was followed thereafter. If acetic acid was used in the standard of care, a post-acetowhitening colposcopic image was also captured. In analyzing the data, normal and abnormal regions were identified in the colposcopic images by an expert clinician. Spectral data were fit to a theoretical model based on diffusion theory, yielding information on scattering and absorption parameters. Data were grouped according to clinician labeling of the tissue, as well as any additional clinical test results available (Pap, HPV, biopsy). Altogether, N=20 patients were imaged in this study, with 9 of them abnormal. In comparing normal and abnormal regions of interest from patients, substantial differences were measured in blood content, while differences in oxygen saturation parameters were more subtle. These results suggest that optical measurements made using low cost spectral imaging systems can distinguish between normal and pathological tissues.

  8. THE HUBBLE WIDE FIELD CAMERA 3 TEST OF SURFACES IN THE OUTER SOLAR SYSTEM: SPECTRAL VARIATION ON KUIPER BELT OBJECTS

    International Nuclear Information System (INIS)

    Fraser, Wesley C.; Brown, Michael E.; Glass, Florian

    2015-01-01

    Here, we present additional photometry of targets observed as part of the Hubble Wide Field Camera 3 (WFC3) Test of Surfaces in the Outer Solar System. Twelve targets were re-observed with the WFC3 in the optical and NIR wavebands designed to complement those used during the first visit. Additionally, all of the observations originally presented by Fraser and Brown were reanalyzed through the same updated photometry pipeline. A re-analysis of the optical and NIR color distribution reveals a bifurcated optical color distribution and only two identifiable spectral classes, each of which occupies a broad range of colors and has correlated optical and NIR colors, in agreement with our previous findings. We report the detection of significant spectral variations on five targets which cannot be attributed to photometry errors, cosmic rays, point-spread function or sensitivity variations, or other image artifacts capable of explaining the magnitude of the variation. The spectrally variable objects are found to have a broad range of dynamical classes and absolute magnitudes, exhibit a broad range of apparent magnitude variations, and are found in both compositional classes. The spectrally variable objects with sufficiently accurate colors for spectral classification maintain their membership, belonging to the same class at both epochs. 2005 TV189 exhibits a sufficiently broad difference in color at the two epochs that span the full range of colors of the neutral class. This strongly argues that the neutral class is one single class with a broad range of colors, rather than the combination of multiple overlapping classes

  9. TP89 - SIRZ Decomposition Spectral Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Seetho, Isacc M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Azevedo, Steve [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, Jerel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Brown, William D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martz, Jr., Harry E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-08

    The primary objective of this test plan is to provide X-ray CT measurements of known materials for the purposes of generating and testing MicroCT and EDS spectral estimates. These estimates are to be used in subsequent Ze/RhoE decomposition analyses of acquired data.

  10. The quantum-chemical modeling of structure and spectral characteristics for molecular complexes in system «penton-terlon»

    Directory of Open Access Journals (Sweden)

    Andrey V. Tokar

    2014-03-01

    Full Text Available The structure and spectral properties for molecular complexes, which formed by added monomer form of pentaplast as well as N-phenylbenzamide with some species of intermolecular interaction in system «penton-terlon» have been investigated at ab initio level of theory. It is shown, that the main contribution in total energy of molecules have included by dispersion forces, which realized between Chlorine atom of CH2Cl-group and Hydrogen atoms of benzene rings with amide fragment. The proposed theoretical models are validated in reflection of spectral and energetic characteristics of investigating system. Finally, the results of calculations are in good agreement with that data, which have been obtained for such type modeling previously.

  11. Soil classification basing on the spectral characteristics of topsoil samples

    Science.gov (United States)

    Liu, Huanjun; Zhang, Xiaokang; Zhang, Xinle

    2016-04-01

    Soil taxonomy plays an important role in soil utility and management, but China has only course soil map created based on 1980s data. New technology, e.g. spectroscopy, could simplify soil classification. The study try to classify soils basing on the spectral characteristics of topsoil samples. 148 topsoil samples of typical soils, including Black soil, Chernozem, Blown soil and Meadow soil, were collected from Songnen plain, Northeast China, and the room spectral reflectance in the visible and near infrared region (400-2500 nm) were processed with weighted moving average, resampling technique, and continuum removal. Spectral indices were extracted from soil spectral characteristics, including the second absorption positions of spectral curve, the first absorption vale's area, and slope of spectral curve at 500-600 nm and 1340-1360 nm. Then K-means clustering and decision tree were used respectively to build soil classification model. The results indicated that 1) the second absorption positions of Black soil and Chernozem were located at 610 nm and 650 nm respectively; 2) the spectral curve of the meadow is similar to its adjacent soil, which could be due to soil erosion; 3) decision tree model showed higher classification accuracy, and accuracy of Black soil, Chernozem, Blown soil and Meadow are 100%, 88%, 97%, 50% respectively, and the accuracy of Blown soil could be increased to 100% by adding one more spectral index (the first two vole's area) to the model, which showed that the model could be used for soil classification and soil map in near future.

  12. Protanopia (red color-blindness) in medaka: a simple system for producing color-blind fish and testing their spectral sensitivity.

    Science.gov (United States)

    Homma, Noriko; Harada, Yumi; Uchikawa, Tamaki; Kamei, Yasuhiro; Fukamachi, Shoji

    2017-02-06

    Color perception is important for fish to survive and reproduce in nature. Visual pigments in the retinal photoreceptor cells are responsible for receiving light stimuli, but the function of the pigments in vivo has not been directly investigated in many animals due to the lack of color-blind lines and appropriate color-perception tests. In this study, we established a system for producing color-blind fish and testing their spectral sensitivity. First, we disrupted long-wavelength-sensitive (LWS) opsins of medaka (Oryzias latipes) using the CRISPR/Cas9 system to make red-color-blind lines. Single guide RNAs were designed using the consensus sequences between the paralogous LWSa and LWSb genes to simultaneously introduce double-frameshift mutations. Next, we developed a non-invasive and no-prior-learning test for spectral sensitivity by applying an optomotor response (OMR) test under an Okazaki Large Spectrograph (OLS), termed the O-O test. We constructed an electrical-rotary cylinder with black/white stripes, into which a glass aquarium containing one or more fish was placed under various monochromatic light conditions. The medaka were irradiated by the OLS every 10 nm, from wavelengths of 700 nm to 900 nm, and OMR was evaluated under each condition. We confirmed that the lws - medaka were indeed insensitive to red light (protanopia). While the control fish responded to wavelengths of up to 830 nm (λ = 830 nm), the lws - mutants responded up to λ = 740 nm; however, this difference was not observed after adaptation to dark: both the control and lws - fish could respond up to λ = 820 ~ 830 nm. These results suggest that the lws - mutants lost photopic red-cone vision, but retained scotopic rod vision. Considering that the peak absorption spectra (λ max ) of medaka LWSs are about 560 nm, but the light-adapted control medaka could respond behaviorally to light at λ = 830 nm, red-cone vision could cover an unexpectedly wide range of

  13. Earthquake likelihood model testing

    Science.gov (United States)

    Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A.

    2007-01-01

    INTRODUCTIONThe Regional Earthquake Likelihood Models (RELM) project aims to produce and evaluate alternate models of earthquake potential (probability per unit volume, magnitude, and time) for California. Based on differing assumptions, these models are produced to test the validity of their assumptions and to explore which models should be incorporated in seismic hazard and risk evaluation. Tests based on physical and geological criteria are useful but we focus on statistical methods using future earthquake catalog data only. We envision two evaluations: a test of consistency with observed data and a comparison of all pairs of models for relative consistency. Both tests are based on the likelihood method, and both are fully prospective (i.e., the models are not adjusted to fit the test data). To be tested, each model must assign a probability to any possible event within a specified region of space, time, and magnitude. For our tests the models must use a common format: earthquake rates in specified “bins” with location, magnitude, time, and focal mechanism limits.Seismology cannot yet deterministically predict individual earthquakes; however, it should seek the best possible models for forecasting earthquake occurrence. This paper describes the statistical rules of an experiment to examine and test earthquake forecasts. The primary purposes of the tests described below are to evaluate physical models for earthquakes, assure that source models used in seismic hazard and risk studies are consistent with earthquake data, and provide quantitative measures by which models can be assigned weights in a consensus model or be judged as suitable for particular regions.In this paper we develop a statistical method for testing earthquake likelihood models. A companion paper (Schorlemmer and Gerstenberger 2007, this issue) discusses the actual implementation of these tests in the framework of the RELM initiative.Statistical testing of hypotheses is a common task and a

  14. Testing of the method for water microleakage detection from OH hydroxyl spectral lines at the L-2M stellarator

    International Nuclear Information System (INIS)

    Voronov, G. S.; Berezhetskii, M. S.; Bondar’, Yu. F.; Vafin, I. Yu.; Vasil’kov, D. G.; Voronova, E. V.; Grebenshchikov, S. E.; Grishina, I. A.; Larionova, N. F.; Letunov, A. A.; Logvinenko, V. P.; Meshcheryakov, A. I.; Pleshkov, E. I.; Khol’nov, Yu. V.; Fedyanin, O. I.; Tsygankov, V. A.; Shchepetov, S. V.; Kurnaev, V. A.; Vizgalov, I. V.; Urusov, V. A.

    2013-01-01

    Results are presented from L-2M stellarator experiments on testing a possible method for detection of water microleakages in the cooling system of the first wall and vacuum chamber of ITER. The method consists in the spectroscopic detection of spectral lines of the OH hydroxyl, which forms via the dissociation of water molecules in plasma. Emission in the spectral band of 305–310 nm can be detected even at water leakage rates less than 10 −4 Pa m 3 /s. Chemical reactions between water and boron compounds on the vacuum chamber wall delay the detection of leakages up to ∼2000 s. A similar phenomenon can be expected when a leakage will occur in ITER, where the materials suggested for the first wall (Be, Li) can also chemically react with water.

  15. Regional Spectral Model simulations of the summertime regional climate over Taiwan and adjacent areas

    Science.gov (United States)

    Ching-Teng Lee; Ming-Chin Wu; Shyh-Chin Chen

    2005-01-01

    The National Centers for Environmental Prediction (NCEP) regional spectral model (RSM) version 97 was used to investigate the regional summertime climate over Taiwan and adjacent areas for June-July-August of 1990 through 2000. The simulated sea-level-pressure and wind fields of RSM1 with 50-km grid space are similar to the reanalysis, but the strength of the...

  16. Spectral response modeling and analysis of p–n–p In0.53Ga0.47As/InP HPTs

    International Nuclear Information System (INIS)

    Chen Jun; Lv Jiabing

    2016-01-01

    We report our results on the modeling of the spectral response of the near-infrared (NIR) lattice-matched p–n–p In 0.53 Ga 0.47 As/InP heterojunction phototransistors (HPTs). The spectral response model is developed from the solution of the steady state continuity equations that dominate the excess optically generated minority-carriers in the active regions of the HPTs with accurate boundary conditions. In addition, a detailed optical-power absorption profile is constructed for the device modeling. The calculated responsivity is in good agreement with the measured one for the incident radiation at 980 nm, 1310 nm, and 1550 nm. Furthermore, the variation in the responsivity of the device with the base region width is analyzed. (paper)

  17. Spectral Target Detection using Schroedinger Eigenmaps

    Science.gov (United States)

    Dorado-Munoz, Leidy P.

    Applications of optical remote sensing processes include environmental monitoring, military monitoring, meteorology, mapping, surveillance, etc. Many of these tasks include the detection of specific objects or materials, usually few or small, which are surrounded by other materials that clutter the scene and hide the relevant information. This target detection process has been boosted lately by the use of hyperspectral imagery (HSI) since its high spectral dimension provides more detailed spectral information that is desirable in data exploitation. Typical spectral target detectors rely on statistical or geometric models to characterize the spectral variability of the data. However, in many cases these parametric models do not fit well HSI data that impacts the detection performance. On the other hand, non-linear transformation methods, mainly based on manifold learning algorithms, have shown a potential use in HSI transformation, dimensionality reduction and classification. In target detection, non-linear transformation algorithms are used as preprocessing techniques that transform the data to a more suitable lower dimensional space, where the statistical or geometric detectors are applied. One of these non-linear manifold methods is the Schroedinger Eigenmaps (SE) algorithm that has been introduced as a technique for semi-supervised classification. The core tool of the SE algorithm is the Schroedinger operator that includes a potential term that encodes prior information about the materials present in a scene, and enables the embedding to be steered in some convenient directions in order to cluster similar pixels together. A completely novel target detection methodology based on SE algorithm is proposed for the first time in this thesis. The proposed methodology does not just include the transformation of the data to a lower dimensional space but also includes the definition of a detector that capitalizes on the theory behind SE. The fact that target pixels and

  18. 40 CFR Table E-2 to Subpart E of... - Spectral Energy Distribution and Permitted Tolerance for Conducting Radiative Tests

    Science.gov (United States)

    2010-07-01

    ... Permitted Tolerance for Conducting Radiative Tests E Table E-2 to Subpart E of Part 53 Protection of... Reference Methods and Class I and Class II Equivalent Methods for PM2.5 or PM10â2.5 Pt. 53, Subpt. E, Table E-2 Table E-2 to Subpart E of Part 53—Spectral Energy Distribution and Permitted Tolerance for...

  19. Spectral scattering characteristics of space target in near-UV to visible bands.

    Science.gov (United States)

    Bai, Lu; Wu, Zhensen; Cao, Yunhua; Huang, Xun

    2014-04-07

    In this study, the spectral scattering characteristics of a space target are calculated in the near-UV to visible bands on the basis of measured data of spectral hemispheric reflectivity in the upper half space. Further, the bidirectional reflection distribution function (BRDF) model proposed by Davies is modified to describe the light scattering properties of a target surface. This modification aims to improve the characteristics identifying ability for different space targets. By using this modified Davies spectrum BRDF model, the spectral scattering characteristics of each subsurface can be obtained. A mathematical model of spectral scattering properties of the space target is built by summing all the contributing surface grid reflection scattering components, considering the impact of surface shadow effect.Moreover, the spectral scattering characteristics of the space target calculated with both the traditional and modified Davies BRDF models are compared. The results show that in the fixed and modified cases, the hemispheric reflectivity significantly affects the spectral scattering irradiance of the target.

  20. Radiation from an equilibrium CO2-N2 plasma in the [250-850 nm] spectral region: II. Spectral modelling

    International Nuclear Information System (INIS)

    Silva, M Lino da; Vacher, D; Andre, P; Faure, G; Dudeck, M

    2008-01-01

    In the first part of this work, described in a previous paper, the thermodynamic conditions in an atmospheric pressure inductively coupled CO 2 -N 2 plasma have been determined, and the radiation emission spectrum has been measured and calibrated in the [250-850 nm] spectral region. In the second part of this work, a synthetic radiation spectrum is obtained taking into account (a) the geometry of the plasma torch and (b) the local thermodynamic conditions of the plasma. This synthetic spectrum has then been compared against the measured spectrum. The good agreement between the two spectra allows validating the spectral database of the line-by-line code SPARTAN for the simulation of the radiative emission of CO 2 -N 2 plasmas from the near-UV to the near-IR spectral region.

  1. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearing.

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-07-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes.

  2. Comparing auditory filter bandwidths, spectral ripple modulation detection, spectral ripple discrimination, and speech recognition: Normal and impaired hearinga)

    Science.gov (United States)

    Davies-Venn, Evelyn; Nelson, Peggy; Souza, Pamela

    2015-01-01

    Some listeners with hearing loss show poor speech recognition scores in spite of using amplification that optimizes audibility. Beyond audibility, studies have suggested that suprathreshold abilities such as spectral and temporal processing may explain differences in amplified speech recognition scores. A variety of different methods has been used to measure spectral processing. However, the relationship between spectral processing and speech recognition is still inconclusive. This study evaluated the relationship between spectral processing and speech recognition in listeners with normal hearing and with hearing loss. Narrowband spectral resolution was assessed using auditory filter bandwidths estimated from simultaneous notched-noise masking. Broadband spectral processing was measured using the spectral ripple discrimination (SRD) task and the spectral ripple depth detection (SMD) task. Three different measures were used to assess unamplified and amplified speech recognition in quiet and noise. Stepwise multiple linear regression revealed that SMD at 2.0 cycles per octave (cpo) significantly predicted speech scores for amplified and unamplified speech in quiet and noise. Commonality analyses revealed that SMD at 2.0 cpo combined with SRD and equivalent rectangular bandwidth measures to explain most of the variance captured by the regression model. Results suggest that SMD and SRD may be promising clinical tools for diagnostic evaluation and predicting amplification outcomes. PMID:26233047

  3. iSEDfit: Bayesian spectral energy distribution modeling of galaxies

    Science.gov (United States)

    Moustakas, John

    2017-08-01

    iSEDfit uses Bayesian inference to extract the physical properties of galaxies from their observed broadband photometric spectral energy distribution (SED). In its default mode, the inputs to iSEDfit are the measured photometry (fluxes and corresponding inverse variances) and a measurement of the galaxy redshift. Alternatively, iSEDfit can be used to estimate photometric redshifts from the input photometry alone. After the priors have been specified, iSEDfit calculates the marginalized posterior probability distributions for the physical parameters of interest, including the stellar mass, star-formation rate, dust content, star formation history, and stellar metallicity. iSEDfit also optionally computes K-corrections and produces multiple "quality assurance" (QA) plots at each stage of the modeling procedure to aid in the interpretation of the prior parameter choices and subsequent fitting results. The software is distributed as part of the impro IDL suite.

  4. Correction for spectral mismatch effects on the calibration of a solar cell when using a solar simulator

    Energy Technology Data Exchange (ETDEWEB)

    Seaman, C.H.

    1981-01-15

    A general expression has been derived to enable calculation of the calibration error resulting from simulator-solar AMX spectral mismatch and from reference cell-test cell spectral mismatch. The information required includes the relative spectral response of the reference cell, the relative spectral response of the cell under test, and the relative spectral irradiance of the simulator (over the spectral range defined by cell response). The spectral irradiance of the solar AMX is assumed to be known.

  5. Understanding Soliton Spectral Tunneling as a Spectral Coupling Effect

    DEFF Research Database (Denmark)

    Guo, Hairun; Wang, Shaofei; Zeng, Xianglong

    2013-01-01

    Soliton eigenstate is found corresponding to a dispersive phase profile under which the soliton phase changes induced by the dispersion and nonlinearity are instantaneously counterbalanced. Much like a waveguide coupler relying on a spatial refractive index profile that supports mode coupling...... between channels, here we suggest that the soliton spectral tunneling effect can be understood supported by a spectral phase coupler. The dispersive wave number in the spectral domain must have a coupler-like symmetric profile for soliton spectral tunneling to occur. We show that such a spectral coupler...

  6. EXOPLANETARY DETECTION BY MULTIFRACTAL SPECTRAL ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sahil; Wettlaufer, John S. [Program in Applied Mathematics, Yale University, New Haven, CT (United States); Sordo, Fabio Del [Department of Astronomy, Yale University, New Haven, CT (United States)

    2017-01-01

    Owing to technological advances, the number of exoplanets discovered has risen dramatically in the last few years. However, when trying to observe Earth analogs, it is often difficult to test the veracity of detection. We have developed a new approach to the analysis of exoplanetary spectral observations based on temporal multifractality, which identifies timescales that characterize planetary orbital motion around the host star and those that arise from stellar features such as spots. Without fitting stellar models to spectral data, we show how the planetary signal can be robustly detected from noisy data using noise amplitude as a source of information. For observation of transiting planets, combining this method with simple geometry allows us to relate the timescales obtained to primary and secondary eclipse of the exoplanets. Making use of data obtained with ground-based and space-based observations we have tested our approach on HD 189733b. Moreover, we have investigated the use of this technique in measuring planetary orbital motion via Doppler shift detection. Finally, we have analyzed synthetic spectra obtained using the SOAP 2.0 tool, which simulates a stellar spectrum and the influence of the presence of a planet or a spot on that spectrum over one orbital period. We have demonstrated that, so long as the signal-to-noise-ratio ≥ 75, our approach reconstructs the planetary orbital period, as well as the rotation period of a spot on the stellar surface.

  7. VALIDATION OF A CLINICAL ASSESSMENT OF SPECTRAL RIPPLE RESOLUTION FOR COCHLEAR-IMPLANT USERS

    Science.gov (United States)

    Drennan, Ward. R.; Anderson, Elizabeth S.; Won, Jong Ho; Rubinstein, Jay T.

    2013-01-01

    Objectives Non-speech psychophysical tests of spectral resolution, such as the spectral-ripple discrimination task, have been shown to correlate with speech recognition performance in cochlear implant (CI) users (Henry et al., 2005; Won et al. 2007, 2011; Drennan et al. 2008; Anderson et al. 2011). However, these tests are best suited for use in the research laboratory setting and are impractical for clinical use. A test of spectral resolution that is quicker and could more easily be implemented in the clinical setting has been developed. The objectives of this study were 1) To determine if this new clinical ripple test would yield individual results equivalent to the longer, adaptive version of the ripple discrimination test; 2) To evaluate test-retest reliability for the clinical ripple measure; and 3) To examine the relationship between clinical ripple performance and monosyllabic word recognition in quiet for a group of CI listeners. Design Twenty-eight CI recipients participated in the study. Each subject was tested on both the adaptive and the clinical versions of spectral ripple discrimination, as well as CNC word recognition in quiet. The adaptive version of spectral ripple employed a 2-up, 1-down procedure for determining spectral ripple discrimination threshold. The clinical ripple test used a method of constant stimuli, with trials for each of 12 fixed ripple densities occurring six times in random order. Results from the clinical ripple test (proportion correct) were then compared to ripple discrimination thresholds (in ripples per octave) from the adaptive test. Results The clinical ripple test showed strong concurrent validity, evidenced by a good correlation between clinical ripple and adaptive ripple results (r=0.79), as well as a correlation with word recognition (r = 0.7). Excellent test-retest reliability was also demonstrated with a high test-retest correlation (r = 0.9). Conclusions The clinical ripple test is a reliable non-linguistic measure

  8. Thermal hydraulic test of advanced fuel bundle with spectral shift rod (SSR) for BWR. Effect of thermal hydraulic parameters on steady state characteristics

    International Nuclear Information System (INIS)

    Kondo, Takao; Kitou, Kazuaki; Chaki, Masao; Ohga, Yukiharu; Makigami, Takeshi

    2011-01-01

    Japanese national project of next generation light water reactor (LWR) development started in 2008. Under this project, spectral shift rod (SSR) is being developed. SSR, which replaces conventional water rod (WR) of boiling water reactor (BWR) fuel bundle, was invented to enhance the BWR's merit, spectral shift effect for uranium saving. In SSR, water boils by neutron and gamma-ray direct heating and water level is formed as a boundary of the upper steam region and the lower water region. This SSR water level can be controlled by core flow rate, which amplifies the change of average core void fraction, resulting in the amplified spectral shift effect. This paper presents the steady state test results of the base geometry case in SSR thermal hydraulic test, which was conducted under the national project of next generation LWR. In the test, thermal hydraulic parameters, such as flow rate, pressure, inlet subcooling and heater rod power are changed to evaluate these effects on SSR water level and other SSR characteristics. In the test results, SSR water level rose as flow rate rose, which showed controllability of SSR water level by flow rate. The sensitivities of other thermal hydraulic parameters on SSR water level were also evaluated. The obtained data of parameter's sensitivities is various enough for the further analytical evaluation. The fluctuation of SSR water level was also measured to be small enough. As a result, it was confirmed that SSR's steady state performance was as planned and that SSR design concept is feasible. (author)

  9. Spectral characteristics of seismic noise using data of Kazakhstan monitoring stations

    International Nuclear Information System (INIS)

    Mikhajlova, N.N.; Komarov, I.I.

    2006-01-01

    Spectral specifications of seismic noise research for PS23-Makanchi, Karatau, Akbulak, AS057-Borovoye and new three-component station AS059-Aktyubinsk was done. Spectral noise density models were obtained for day and night time and spectral density values variation. Noise close to low-level universal noise model is peculiar for all stations, which provides their high efficiency while seismic monitoring. Noise parameters dependence on seismic receivers installation conditions was investigated separately. Based on three stations (Makanchi, Borovoye, and Aktyubinsk), spectral density change features are shown after borehole equipment installation. (author)

  10. Relationship between channel interaction and spectral-ripple discrimination in cochlear implant users.

    Science.gov (United States)

    Jones, Gary L; Won, Jong Ho; Drennan, Ward R; Rubinstein, Jay T

    2013-01-01

    Cochlear implant (CI) users can achieve remarkable speech understanding, but there is great variability in outcomes that is only partially accounted for by age, residual hearing, and duration of deafness. Results might be improved with the use of psychophysical tests to predict which sound processing strategies offer the best potential outcomes. In particular, the spectral-ripple discrimination test offers a time-efficient, nonlinguistic measure that is correlated with perception of both speech and music by CI users. Features that make this "one-point" test time-efficient, and thus potentially clinically useful, are also connected to controversy within the CI field about what the test measures. The current work examined the relationship between thresholds in the one-point spectral-ripple test, in which stimuli are presented acoustically, and interaction indices measured under the controlled conditions afforded by direct stimulation with a research processor. Results of these studies include the following: (1) within individual subjects there were large variations in the interaction index along the electrode array, (2) interaction indices generally decreased with increasing electrode separation, and (3) spectral-ripple discrimination improved with decreasing mean interaction index at electrode separations of one, three, and five electrodes. These results indicate that spectral-ripple discrimination thresholds can provide a useful metric of the spectral resolution of CI users.

  11. Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic

    Directory of Open Access Journals (Sweden)

    P. Berg

    2013-06-01

    Full Text Available The performance of the Rossby Centre regional climate model RCA4 is investigated for the Arctic CORDEX (COordinated Regional climate Downscaling EXperiment region, with an emphasis on its suitability to be coupled to a regional ocean and sea ice model. Large biases in mean sea level pressure (MSLP are identified, with pronounced too-high pressure centred over the North Pole in summer of over 5 hPa, and too-low pressure in winter of a similar magnitude. These lead to biases in the surface winds, which will potentially lead to strong sea ice biases in a future coupled system. The large-scale circulation is believed to be the major reason for the biases, and an implementation of spectral nudging is applied to remedy the problems by constraining the large-scale components of the driving fields within the interior domain. It is found that the spectral nudging generally corrects for the MSLP and wind biases, while not significantly affecting other variables, such as surface radiative components, two-metre temperature and precipitation.

  12. The True Ultracool Binary Fraction Using Spectral Binaries

    Science.gov (United States)

    Bardalez Gagliuffi, Daniella; Burgasser, Adam J.; Schmidt, Sarah J.; Gagné, Jonathan; Faherty, Jacqueline K.; Cruz, Kelle; Gelino, Chris

    2018-01-01

    Brown dwarfs bridge the gap between stars and giant planets. While the essential mechanisms governing their formation are not well constrained, binary statistics are a direct outcome of the formation process, and thus provide a means to test formation theories. Observational constraints on the brown dwarf binary fraction place it at 10 ‑ 20%, dominated by imaging studies (85% of systems) with the most common separation at 4 AU. This coincides with the resolution limit of state-of-the-art imaging techniques, suggesting that the binary fraction is underestimated. We have developed a separation-independent method to identify and characterize tightly-separated (dwarfs as spectral binaries by identifying traces of methane in the spectra of late-M and early-L dwarfs. Imaging follow-up of 17 spectral binaries yielded 3 (18%) resolved systems, corroborating the observed binary fraction, but 5 (29%) known binaries were missed, reinforcing the hypothesis that the short-separation systems are undercounted. In order to find the true binary fraction of brown dwarfs, we have compiled a volume-limited, spectroscopic sample of M7-L5 dwarfs and searched for T dwarf companions. In the 25 pc volume, 4 candidates were found, three of which are already confirmed, leading to a spectral binary fraction of 0.95 ± 0.50%, albeit for a specific combination of spectral types. To extract the true binary fraction and determine the biases of the spectral binary method, we have produced a binary population simulation based on different assumptions of the mass function, age distribution, evolutionary models and mass ratio distribution. Applying the correction fraction resulting from this method to the observed spectral binary fraction yields a true binary fraction of 27 ± 4%, which is roughly within 1σ of the binary fraction obtained from high resolution imaging studies, radial velocity and astrometric monitoring. This method can be extended to identify giant planet companions to young brown

  13. Application of a Spectral Wave Model to Assess Breakwater Configurations at a Small Craft Harbour on Lake Ontario

    Directory of Open Access Journals (Sweden)

    Amelia H. Cooper

    2016-08-01

    Full Text Available A surface wave model using three nested grids is applied to the eastern end of Lake Ontario to investigate wave propagation from an open lake environment to a small craft harbour protected by a breakwater. The Simulating WAves Nearshore (SWAN spectral wave model, coupled with the Delft3D hydrodynamic model, is applied to simulate a series of storms in November, 2013. The model results are compared to observations from two pressure sensors, and used to quantify wave properties around existing and future breakwaters to evaluate the bulk changes to the harbour configuration. Overall, the results indicate that the rubblemound breakwater reduces wave heights in the existing harbour by 63% compared to no breakwater, and that the addition of a surface breakwater extension could reduce wave heights by an additional 54%. Wave height attenuation was found to be highly dependent on the incident wave direction relative to breakwater orientation. The spectral wave model is useful for simulating wave transformation for broad directional spectra in wind-sea conditions over large scales to semi-protected areas such as small craft harbours.

  14. FIREFLY (Fitting IteRativEly For Likelihood analYsis): a full spectral fitting code

    Science.gov (United States)

    Wilkinson, David M.; Maraston, Claudia; Goddard, Daniel; Thomas, Daniel; Parikh, Taniya

    2017-12-01

    We present a new spectral fitting code, FIREFLY, for deriving the stellar population properties of stellar systems. FIREFLY is a chi-squared minimization fitting code that fits combinations of single-burst stellar population models to spectroscopic data, following an iterative best-fitting process controlled by the Bayesian information criterion. No priors are applied, rather all solutions within a statistical cut are retained with their weight. Moreover, no additive or multiplicative polynomials are employed to adjust the spectral shape. This fitting freedom is envisaged in order to map out the effect of intrinsic spectral energy distribution degeneracies, such as age, metallicity, dust reddening on galaxy properties, and to quantify the effect of varying input model components on such properties. Dust attenuation is included using a new procedure, which was tested on Integral Field Spectroscopic data in a previous paper. The fitting method is extensively tested with a comprehensive suite of mock galaxies, real galaxies from the Sloan Digital Sky Survey and Milky Way globular clusters. We also assess the robustness of the derived properties as a function of signal-to-noise ratio (S/N) and adopted wavelength range. We show that FIREFLY is able to recover age, metallicity, stellar mass, and even the star formation history remarkably well down to an S/N ∼ 5, for moderately dusty systems. Code and results are publicly available.1

  15. Sensitivity Evaluation of Spectral Nudging Schemes in Historical Dynamical Downscaling for South Asia

    Directory of Open Access Journals (Sweden)

    Mehwish Ramzan

    2017-01-01

    Full Text Available Sensitivity experiments testing two scale-selective bias correction (SSBC methods have been carried out to identify an optimal spectral nudging scheme for historical dynamically downscaled simulations of South Asia, using the coordinated regional climate downscaling experiment (CORDEX protocol and the regional spectral model (RSM. Two time periods were selected under the category of short-term extreme summer and long-term decadal analysis. The new SSBC version applied nudging to full wind components, with an increased relaxation time in the lower model layers, incorporating a vertical weighted damping coefficient. An evaluation of the extraordinary weather conditions experienced in South Asia in the summer of 2005 confirmed the advantages of the new SSBC when modeling monsoon precipitation. Furthermore, the new SSBC scheme was found to predict precipitation and wind patterns more accurately than the older version in decadal analysis, which applies nudging only to the rotational wind field, with a constant strength at all heights.

  16. Phase extracting algorithms analysis in the white-light spectral interferometry

    Science.gov (United States)

    Guo, Tong; Li, Bingtong; Li, Minghui; Chen, Jinping; Fu, Xing; Hu, Xiaotang

    2018-01-01

    As an optical testing method, white-light spectral interferometry has the characteristics of non-contact, high precision. The phase information can be obtained by analyzing the spectral interference signal of the tested sample, and then the absolute distance is calculated. Fourier transform method, temporal phase-shifting method, spatial phase-shifting method and envelope method can be used to extract the phase information of the spectral interference signal. In this paper, the performance of four methods to extract phase information is simulated and analyzed by using the ideal spectral interference signal. It turns out that temporal phase-shifting method has the performance of high precision, the results of Fourier transform method and envelop method are distorted at the edge of the signal, and spatial phase-shifting method has the worst precision. Adding different levels of white noise to the ideal signal, temporal phase-shifting method is most accurate, while Fourier transform method and envelope method are relatively poor. Finally, the absolute distance measurement experiment is carried out on the constructed test system, and the results are consistent with the simulation ones.

  17. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  18. Piecewise spectrally band-pass for compressive coded aperture spectral imaging

    International Nuclear Information System (INIS)

    Qian Lu-Lu; Lü Qun-Bo; Huang Min; Xiang Li-Bin

    2015-01-01

    Coded aperture snapshot spectral imaging (CASSI) has been discussed in recent years. It has the remarkable advantages of high optical throughput, snapshot imaging, etc. The entire spatial-spectral data-cube can be reconstructed with just a single two-dimensional (2D) compressive sensing measurement. On the other hand, for less spectrally sparse scenes, the insufficiency of sparse sampling and aliasing in spatial-spectral images reduce the accuracy of reconstructed three-dimensional (3D) spectral cube. To solve this problem, this paper extends the improved CASSI. A band-pass filter array is mounted on the coded mask, and then the first image plane is divided into some continuous spectral sub-band areas. The entire 3D spectral cube could be captured by the relative movement between the object and the instrument. The principle analysis and imaging simulation are presented. Compared with peak signal-to-noise ratio (PSNR) and the information entropy of the reconstructed images at different numbers of spectral sub-band areas, the reconstructed 3D spectral cube reveals an observable improvement in the reconstruction fidelity, with an increase in the number of the sub-bands and a simultaneous decrease in the number of spectral channels of each sub-band. (paper)

  19. Hadronic spectral functions in nuclear matter

    International Nuclear Information System (INIS)

    Post, M.; Leupold, S.; Mosel, U.

    2004-01-01

    We study the in-medium properties of mesons (π,η,ρ) and baryon resonances in cold nuclear matter within a coupled-channel analysis. The meson self energies are generated by particle-hole excitations. Thus multi-peak spectra are obtained for the mesonic spectral functions. In turn this leads to medium-modifications of the baryon resonances. Special care is taken to respect the analyticity of the spectral functions and to take into account effects from short-range correlations both for positive and negative parity states. Our model produces sensible results for pion and Δ dynamics in nuclear matter. We find a strong interplay of the ρ meson and the D 13 (1520), which moves spectral strength of the ρ spectrum to smaller invariant masses and leads to a broadening of the baryon resonance. The optical potential for the η meson resulting from our model is rather attractive whereas the in-medium properties modifications of the S 11 (1535) are found to be quite small

  20. Effective Spectral Function for Quasielastic Scattering on Nuclei

    OpenAIRE

    Bodek, A.; Christy, M. E.; Coopersmith, B.

    2014-01-01

    Spectral functions that are used in neutrino event generators to model quasielastic (QE) scattering from nuclear targets include Fermi gas, Local Thomas Fermi gas (LTF), Bodek-Ritchie Fermi gas with high momentum tail, and the Benhar-Fantoni two dimensional spectral function. We find that the $\

  1. Spectral partitioning and swells in the black sea

    NARCIS (Netherlands)

    van Vledder, G.P.; Akpınar, Adem; Lynett, P.

    2016-01-01

    The swell climate of the Black Sea has been determined using a long-term 31-year wave hindcast with the thirdgeneration spectral wave model SWAN in combination with spectral partitioning. This technique enables decomposing wave spectra into individual wave systems representing wind seas or swells

  2. Localness of energy cascade in hydrodynamic turbulence, II. Sharp spectral filter

    Energy Technology Data Exchange (ETDEWEB)

    Aluie, Hussein [Los Alamos National Laboratory; Eyink, Gregory L [JOHNS HOPKINS UNIV.

    2009-01-01

    We investigate the scale-locality of subgrid-scale (SGS) energy flux and interband energy transfers defined by the sharp spectral filter. We show by rigorous bounds, physical arguments, and numerical simulations that the spectral SGS flux is dominated by local triadic interactions in an extended turbulent inertial range. Interband energy transfers are also shown to be dominated by local triads if the spectral bands have constant width on a logarithmic scale. We disprove in particular an alternative picture of 'local transfer by nonlocal triads,' with the advecting wavenumber mode at the energy peak. Although such triads have the largest transfer rates of all individual wavenumber triads, we show rigorously that, due to their restricted number, they make an asymptotically negligible contribution to energy flux and log-banded energy transfers at high wavenumbers in the inertial range. We show that it is only the aggregate effect of a geometrically increasing number of local wavenumber triads which can sustain an energy cascade to small scales. Furthermore, nonlocal triads are argued to contribute even less to the space-average energy flux than is implied by our rigorous bounds, because of additional cancellations from scale-decorrelation effects. We can thus recover the -4/3 scaling of nonlocal contributions to spectral energy flux predicted by Kraichnan's abridged Lagrangian-history direct-interaction approximation and test-field model closures. We support our results with numerical data from a 512{sup 3} pseudospectral simulation of isotropic turbulence with phase-shift dealiasing. We also discuss a rigorous counterexample of Eyink [Physica D 78, 222 (1994)], which showed that nonlocal wavenumber triads may dominate in the sharp spectral flux (but not in the SGS energy flux for graded filters). We show that this mathematical counter example fails to satisfy reasonable physical requirements for a turbulent velocity field, which are employed in our

  3. Radiative modeling and characterization of aerosol plumes hyper-spectral imagery; Modelisation radiative et caracterisation des panaches d'aerosols en imagerie hyperspectrale

    Energy Technology Data Exchange (ETDEWEB)

    Alakian, A

    2008-03-15

    This thesis aims at characterizing aerosols from plumes (biomass burning, industrial discharges, etc.) with hyper-spectral imagery. We want to estimate the optical properties of emitted particles and also their micro-physical properties such as number, size distribution and composition. To reach our goal, we have built a forward semi-analytical model, named APOM (Aerosol Plume Optical Model), which allows to simulate the radiative effects of aerosol plumes in the spectral range [0,4-2,5 {mu}m] for nadir viewing sensors. Mathematical formulation and model coefficients are obtained from simulations performed with the radiative transfer code COMANCHE. APOM is assessed on simulated data and proves to be accurate with modeling errors between 1% and 3%. Three retrieval methods using APOM have been developed: L-APOM, M-APOM and A-APOM. These methods take advantage of spectral and spatial dimensions in hyper-spectral images. L-APOM and M-APOM assume a priori knowledge on particles but can estimate their optical and micro-physical properties. Their performances on simulated data are quite promising. A-APOM method does not require any a priori knowledge on particles but only estimates their optical properties. However, it still needs improvements before being usable. On real images, inversion provides satisfactory results for plumes above water but meets some difficulties for plumes above vegetation, which underlines some possibilities of improvement for the retrieval algorithm. (author)

  4. Spectral Efficiency of OCDMA Systems With Coherent Pulsed Sources

    Science.gov (United States)

    Rochette, Martin; Rusch, Leslie A.

    2005-03-01

    We present a model to evaluate the upper limit of the spectral efficiency of optical code-division multiple-access (OCDMA) systems with coherent sources. Phase-encoded and direct-sequence OCDMA systems are evaluated using this model. The results show that a spectral efficiency of 2.24x10^-2 b/s.Hz can be achieved with a maximum bit error rate of 10^-10 in these systems of the number of users. This result demonstrates that the maximum spectral efficiency of OCDMA systems with coherent sources is at least a factor of 5 higher than OCDMA systems with incoherent sources.

  5. Real-time detection of natural objects using AM-coded spectral matching imager

    Science.gov (United States)

    Kimachi, Akira

    2005-01-01

    This paper describes application of the amplitude-modulation (AM)-coded spectral matching imager (SMI) to real-time detection of natural objects such as human beings, animals, vegetables, or geological objects or phenomena, which are much more liable to change with time than artificial products while often exhibiting characteristic spectral functions associated with some specific activity states. The AM-SMI produces correlation between spectral functions of the object and a reference at each pixel of the correlation image sensor (CIS) in every frame, based on orthogonal amplitude modulation (AM) of each spectral channel and simultaneous demodulation of all channels on the CIS. This principle makes the SMI suitable to monitoring dynamic behavior of natural objects in real-time by looking at a particular spectral reflectance or transmittance function. A twelve-channel multispectral light source was developed with improved spatial uniformity of spectral irradiance compared to a previous one. Experimental results of spectral matching imaging of human skin and vegetable leaves are demonstrated, as well as a preliminary feasibility test of imaging a reflective object using a test color chart.

  6. ULTRAVIOLET RAMAN SPECTRAL SIGNATURE ACQUISITION: UV RAMAN SPECTRAL FINGERPRINTS.

    Energy Technology Data Exchange (ETDEWEB)

    SEDLACEK,III, A.J.FINFROCK,C.

    2002-09-01

    As a member of the science-support part of the ITT-lead LISA development program, BNL is tasked with the acquisition of UV Raman spectral fingerprints and associated scattering cross-sections for those chemicals-of-interest to the program's sponsor. In support of this role, the present report contains the first installment of UV Raman spectral fingerprint data on the initial subset of chemicals. Because of the unique nature associated with the acquisition of spectral fingerprints for use in spectral pattern matching algorithms (i.e., CLS, PLS, ANN) great care has been undertaken to maximize the signal-to-noise and to minimize unnecessary spectral subtractions, in an effort to provide the highest quality spectral fingerprints. This report is divided into 4 sections. The first is an Experimental section that outlines how the Raman spectra are performed. This is then followed by a section on Sample Handling. Following this, the spectral fingerprints are presented in the Results section where the data reduction process is outlined. Finally, a Photographs section is included.

  7. The Flare Irradiance Spectral Model (FISM) and its Contributions to Space Weather Research, the Flare Energy Budget, and Instrument Design

    Science.gov (United States)

    Chamberlin, Phillip

    2008-01-01

    The Flare Irradiance Spectral Model (FISM) is an empirical model of the solar irradiance spectrum from 0.1 to 190 nm at 1 nm spectral resolution and on a 1-minute time cadence. The goal of FISM is to provide accurate solar spectral irradiances over the vacuum ultraviolet (VUV: 0-200 nm) range as input for ionospheric and thermospheric models. The seminar will begin with a brief overview of the FISM model, and also how the Solar Dynamics Observatory (SDO) EUV Variability Experiment (EVE) will contribute to improving FISM. Some current studies will then be presented that use FISM estimations of the solar VUV irradiance to quantify the contributions of the increased irradiance from flares to Earth's increased thermospheric and ionospheric densites. Initial results will also be presented from a study looking at the electron density increases in the Martian atmosphere during a solar flare. Results will also be shown quantifying the VUV contributions to the total flare energy budget for both the impulsive and gradual phases of solar flares. Lastly, an example of how FISM can be used to simplify the design of future solar VUV irradiance instruments will be discussed, using the future NOAA GOES-R Extreme Ultraviolet and X-Ray Sensors (EXIS) space weather instrument.

  8. KiDS-450: testing extensions to the standard cosmological model

    Science.gov (United States)

    Joudaki, Shahab; Mead, Alexander; Blake, Chris; Choi, Ami; de Jong, Jelte; Erben, Thomas; Fenech Conti, Ian; Herbonnet, Ricardo; Heymans, Catherine; Hildebrandt, Hendrik; Hoekstra, Henk; Joachimi, Benjamin; Klaes, Dominik; Köhlinger, Fabian; Kuijken, Konrad; McFarland, John; Miller, Lance; Schneider, Peter; Viola, Massimo

    2017-10-01

    We test extensions to the standard cosmological model with weak gravitational lensing tomography using 450 deg2 of imaging data from the Kilo Degree Survey (KiDS). In these extended cosmologies, which include massive neutrinos, non-zero curvature, evolving dark energy, modified gravity and running of the scalar spectral index, we also examine the discordance between KiDS and cosmic microwave background (CMB) measurements from Planck. The discordance between the two data sets is largely unaffected by a more conservative treatment of the lensing systematics and the removal of angular scales most sensitive to non-linear physics. The only extended cosmology that simultaneously alleviates the discordance with Planck and is at least moderately favoured by the data includes evolving dark energy with a time-dependent equation of state (in the form of the w0 - wa parametrization). In this model, the respective S_8=σ _8√{Ω m/0.3} constraints agree at the 1σ level, and there is 'substantial concordance' between the KiDS and Planck data sets when accounting for the full parameter space. Moreover, the Planck constraint on the Hubble constant is wider than in Λ cold dark matter (ΛCDM) and in agreement with the Riess et al. (2016) direct measurement of H0. The dark energy model is moderately favoured as compared to ΛCDM when combining the KiDS and Planck measurements, and marginalized constraints in the w0-wa plane are discrepant with a cosmological constant at the 3σ level. KiDS further constrains the sum of neutrino masses to 4.0 eV (95% CL), finds no preference for time or scale-dependent modifications to the metric potentials, and is consistent with flatness and no running of the spectral index.

  9. Exploiting physical constraints for multi-spectral exo-planet detection

    Science.gov (United States)

    Thiébaut, Éric; Devaney, Nicholas; Langlois, Maud; Hanley, Kenneth

    2016-07-01

    We derive a physical model of the on-axis PSF for a high contrast imaging system such as GPI or SPHERE. This model is based on a multi-spectral Taylor series expansion of the diffraction pattern and predicts that the speckles should be a combination of spatial modes with deterministic chromatic magnification and weighting. We propose to remove most of the residuals by fitting this model on a set of images at multiple wavelengths and times. On simulated data, we demonstrate that our approach achieves very good speckle suppression without additional heuristic parameters. The residual speckles1, 2 set the most serious limitation in the detection of exo-planets in high contrast coronographic images provided by instruments such as SPHERE3 at the VLT, GPI4, 5 at Gemini, or SCExAO6 at Subaru. A number of post-processing methods have been proposed to remove as much as possible of the residual speckles while preserving the signal from the planets. These methods exploit the fact that the speckles and the planetary signal have different temporal and spectral behaviors. Some methods like LOCI7 are based on angular differential imaging8 (ADI), spectral differential imaging9, 10 (SDI), or on a combination of ADI and SDI.11 Instead of working on image differences, we propose to tackle the exo-planet detection as an inverse problem where a model of the residual speckles is fit on the set of multi-spectral images and, possibly, multiple exposures. In order to reduce the number of degrees of freedom, we impose specific constraints on the spatio-spectral distribution of stellar speckles. These constraints are deduced from a multi-spectral Taylor series expansion of the diffraction pattern for an on-axis source which implies that the speckles are a combination of spatial modes with deterministic chromatic magnification and weighting. Using simulated data, the efficiency of speckle removal by fitting the proposed multi-spectral model is compared to the result of using an approximation

  10. Combining Spectral Data and a DSM from UAS-Images for Improved Classification of Non-Submerged Aquatic Vegetation

    Directory of Open Access Journals (Sweden)

    Eva Husson

    2017-03-01

    Full Text Available Monitoring of aquatic vegetation is an important component in the assessment of freshwater ecosystems. Remote sensing with unmanned aircraft systems (UASs can provide sub-decimetre-resolution aerial images and is a useful tool for detailed vegetation mapping. In a previous study, non-submerged aquatic vegetation was successfully mapped using automated classification of spectral and textural features from a true-colour UAS-orthoimage with 5-cm pixels. In the present study, height data from a digital surface model (DSM created from overlapping UAS-images has been incorporated together with the spectral and textural features from the UAS-orthoimage to test if classification accuracy can be improved further. We studied two levels of thematic detail: (a Growth forms including the classes of water, nymphaeid, and helophyte; and (b dominant taxa including seven vegetation classes. We hypothesized that the incorporation of height data together with spectral and textural features would increase classification accuracy as compared to using spectral and textural features alone, at both levels of thematic detail. We tested our hypothesis at five test sites (100 m × 100 m each with varying vegetation complexity and image quality using automated object-based image analysis in combination with Random Forest classification. Overall accuracy at each of the five test sites ranged from 78% to 87% at the growth-form level and from 66% to 85% at the dominant-taxon level. In comparison to using spectral and textural features alone, the inclusion of height data increased the overall accuracy significantly by 4%–21% for growth-forms and 3%–30% for dominant taxa. The biggest improvement gained by adding height data was observed at the test site with the most complex vegetation. Height data derived from UAS-images has a large potential to efficiently increase the accuracy of automated classification of non-submerged aquatic vegetation, indicating good possibilities

  11. Insight on the anisotropic nature of the D'' layer through the analysis of SKS-SKKS splitting obtained via 3D spectral element modeling

    Science.gov (United States)

    Tesoniero, A.; Leng, K.; Long, M. D.; Nissen-Meyer, T.

    2017-12-01

    Constraining the nature of the anisotropy in the core-mantle boundary region is a key factor for properly predicting the flow of the lowermost mantle. The lack of seismic waves sampling this region and their uneven azimuthal distribution hamper a correct representation of mantle dynamics. We present preliminary results for a series of SKS-SKKS splitting analysis based on numerical forward synthetic tests in a realistic 3-D Earth model using the software AXISEM3D, a newly developed efficient hybrid spectral element method solver for 3-D structures. The anisotropic property of the computational domain in the bottom 300km of the Earth's mantle is fully described with a fourth-order elastic tensor with 21 independent coefficients. We tested a single crystal mineralogy of postperovskite with different orientations that are consistent with realistic mantle flow models and accounted for a wide coverage of azimuthal seismic raypaths. We take advantage of the computational efficiency of the method to achieve resolutions for seismic periods as low as 8s. Our preliminary results, based on forward full waveform modeling, represent a step forward for validating hypotheses for the anisotropy in the D'' layer derived by direct splitting measurements and ray-theoretical mineral physics based modeling tests. Our study also highlights the capability of AXISEM3D to handle high degrees of model complexity in full anisotropy and its potentials for future endeavours.

  12. X-ray Emitting GHz-Peaked Spectrum Galaxies: Testing a Dynamical-Radiative Model with Broad-Band Spectra

    International Nuclear Information System (INIS)

    Ostorero, L.; Moderski, R.; Stawarz, L.; Diaferio, A.; Kowalska, I.; Cheung, C.C.; Kataoka, J.; Begelman, M.C.; Wagner, S.J.

    2010-01-01

    In a dynamical-radiative model we recently developed to describe the physics of compact, GHz-Peaked-Spectrum (GPS) sources, the relativistic jets propagate across the inner, kpc-sized region of the host galaxy, while the electron population of the expanding lobes evolves and emits synchrotron and inverse-Compton (IC) radiation. Interstellar-medium gas clouds engulfed by the expanding lobes, and photoionized by the active nucleus, are responsible for the radio spectral turnover through free-free absorption (FFA) of the synchrotron photons. The model provides a description of the evolution of the GPS spectral energy distribution (SED) with the source expansion, predicting significant and complex high-energy emission, from the X-ray to the γ-ray frequency domain. Here, we test this model with the broad-band SEDs of a sample of eleven X-ray emitting GPS galaxies with Compact-Symmetric-Object (CSO) morphology, and show that: (i) the shape of the radio continuum at frequencies lower than the spectral turnover is indeed well accounted for by the FFA mechanism; (ii) the observed X-ray spectra can be interpreted as non-thermal radiation produced via IC scattering of the local radiation fields off the lobe particles, providing a viable alternative to the thermal, accretion-disk dominated scenario. We also show that the relation between the hydrogen column densities derived from the X-ray (N H ) and radio (N HI ) data of the sources is suggestive of a positive correlation, which, if confirmed by future observations, would provide further support to our scenario of high-energy emitting lobes.

  13. Impacts of spectral nudging on the simulated surface air temperature in summer compared with the selection of shortwave radiation and land surface model physics parameterization in a high-resolution regional atmospheric model

    Science.gov (United States)

    Park, Jun; Hwang, Seung-On

    2017-11-01

    The impact of a spectral nudging technique for the dynamical downscaling of the summer surface air temperature in a high-resolution regional atmospheric model is assessed. The performance of this technique is measured by comparing 16 analysis-driven simulation sets of physical parameterization combinations of two shortwave radiation and four land surface model schemes of the model, which are known to be crucial for the simulation of the surface air temperature. It is found that the application of spectral nudging to the outermost domain has a greater impact on the regional climate than any combination of shortwave radiation and land surface model physics schemes. The optimal choice of two model physics parameterizations is helpful for obtaining more realistic spatiotemporal distributions of land surface variables such as the surface air temperature, precipitation, and surface fluxes. However, employing spectral nudging adds more value to the results; the improvement is greater than using sophisticated shortwave radiation and land surface model physical parameterizations. This result indicates that spectral nudging applied to the outermost domain provides a more accurate lateral boundary condition to the innermost domain when forced by analysis data by securing the consistency with large-scale forcing over a regional domain. This consequently indirectly helps two physical parameterizations to produce small-scale features closer to the observed values, leading to a better representation of the surface air temperature in a high-resolution downscaled climate.

  14. Intermediate spectral theory and quantum dynamics

    CERN Document Server

    de Oliveira, Cesar R

    2008-01-01

    The spectral theory of linear operators plays a key role in the mathematical formulation of quantum theory. Furthermore, such a rigorous mathematical foundation leads to a more profound insight into the nature of quantum mechanics. This textbook provides a concise and comprehensible introduction to the spectral theory of (unbounded) self-adjoint operators and its application in quantum dynamics. The book places emphasis on the symbiotic relationship of these two domains by (1) presenting the basic mathematics of nonrelativistic quantum mechanics of one particle, i.e., developing the spectral theory of self-adjoint operators in infinite-dimensional Hilbert spaces from the beginning, and (2) giving an overview of many of the basic functional aspects of quantum theory, from its physical principles to the mathematical models. The book is intended for graduate (or advanced undergraduate) students and researchers interested in mathematical physics. It starts with linear operator theory, spectral questions and self-...

  15. Reducing the spectral index in supernatural inflation

    International Nuclear Information System (INIS)

    Lin, C.-M.; Cheung, Kingman

    2009-01-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is n s > or approx. 1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to n s =0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  16. Reducing the spectral index in supernatural inflation

    Science.gov (United States)

    Lin, Chia-Min; Cheung, Kingman

    2009-04-01

    Supernatural inflation is an attractive model based on just a flat direction with soft supersymmetry breaking mass terms in the framework of supersymmetry. The beauty of the model is that it needs no fine-tuning. However, the prediction of the spectral index is ns≳1, in contrast to experimental data. In this paper, we discuss supernatural inflation with the spectral index reduced to ns=0.96 without any fine-tuning, considering the general feature that a flat direction is lifted by a nonrenormalizable term with an A-term.

  17. Online Multi-Spectral Meat Inspection

    DEFF Research Database (Denmark)

    Nielsen, Jannik Boll; Larsen, Anders Boesen Lindbo

    2013-01-01

    We perform an explorative study on multi-spectral image data from a prototype device developed for fast online quality inspection of meat products. Because the camera setup is built for speed, we sacrifice exact pixel correspondences between the different bands of the multi-spectral images. Our...... work is threefold as we 1) investigate the color distributions and construct a model to describe pork loins, 2) classify the different components in pork loins (meat, fat, membrane), and 3) detect foreign objects on the surface of pork loins. Our investigation shows that the color distributions can...

  18. Study of Shortwave Spectra in Fully 3D Environment: Synergy Between Scanning Radars and Spectral Radiation Measurements

    Science.gov (United States)

    Wiscombe, Warren J.

    2012-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  19. Prediction of spectral acceleration response ordinates based on PGA attenuation

    Science.gov (United States)

    Graizer, V.; Kalkan, E.

    2009-01-01

    Developed herein is a new peak ground acceleration (PGA)-based predictive model for 5% damped pseudospectral acceleration (SA) ordinates of free-field horizontal component of ground motion from shallow-crustal earthquakes. The predictive model of ground motion spectral shape (i.e., normalized spectrum) is generated as a continuous function of few parameters. The proposed model eliminates the classical exhausted matrix of estimator coefficients, and provides significant ease in its implementation. It is structured on the Next Generation Attenuation (NGA) database with a number of additions from recent Californian events including 2003 San Simeon and 2004 Parkfield earthquakes. A unique feature of the model is its new functional form explicitly integrating PGA as a scaling factor. The spectral shape model is parameterized within an approximation function using moment magnitude, closest distance to the fault (fault distance) and VS30 (average shear-wave velocity in the upper 30 m) as independent variables. Mean values of its estimator coefficients were computed by fitting an approximation function to spectral shape of each record using robust nonlinear optimization. Proposed spectral shape model is independent of the PGA attenuation, allowing utilization of various PGA attenuation relations to estimate the response spectrum of earthquake recordings.

  20. Spectral dimension of quantum geometries

    International Nuclear Information System (INIS)

    Calcagni, Gianluca; Oriti, Daniele; Thürigen, Johannes

    2014-01-01

    The spectral dimension is an indicator of geometry and topology of spacetime and a tool to compare the description of quantum geometry in various approaches to quantum gravity. This is possible because it can be defined not only on smooth geometries but also on discrete (e.g., simplicial) ones. In this paper, we consider the spectral dimension of quantum states of spatial geometry defined on combinatorial complexes endowed with additional algebraic data: the kinematical quantum states of loop quantum gravity (LQG). Preliminarily, the effects of topology and discreteness of classical discrete geometries are studied in a systematic manner. We look for states reproducing the spectral dimension of a classical space in the appropriate regime. We also test the hypothesis that in LQG, as in other approaches, there is a scale dependence of the spectral dimension, which runs from the topological dimension at large scales to a smaller one at short distances. While our results do not give any strong support to this hypothesis, we can however pinpoint when the topological dimension is reproduced by LQG quantum states. Overall, by exploring the interplay of combinatorial, topological and geometrical effects, and by considering various kinds of quantum states such as coherent states and their superpositions, we find that the spectral dimension of discrete quantum geometries is more sensitive to the underlying combinatorial structures than to the details of the additional data associated with them. (paper)

  1. Assessing therapeutic relevance of biologically interesting, ampholytic substances based on their physicochemical and spectral characteristics with chemometric tools

    Science.gov (United States)

    Judycka, U.; Jagiello, K.; Bober, L.; Błażejowski, J.; Puzyn, T.

    2018-06-01

    Chemometric tools were applied to investigate the biological behaviour of ampholytic substances in relation to their physicochemical and spectral properties. Results of the Principal Component Analysis suggest that size of molecules and their electronic and spectral characteristics are the key properties required to predict therapeutic relevance of the compounds examined. These properties were used for developing the structure-activity classification model. The classification model allows assessing the therapeutic behaviour of ampholytic substances on the basis of solely values of descriptors that can be obtained computationally. Thus, the prediction is possible without necessity of carrying out time-consuming and expensive laboratory tests, which is its main advantage.

  2. Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

    Science.gov (United States)

    Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude

  3. Lossless compression of multispectral images using spectral information

    Science.gov (United States)

    Ma, Long; Shi, Zelin; Tang, Xusheng

    2009-10-01

    Multispectral images are available for different purposes due to developments in spectral imaging systems. The sizes of multispectral images are enormous. Thus transmission and storage of these volumes of data require huge time and memory resources. That is why compression algorithms must be developed. A salient property of multispectral images is that strong spectral correlation exists throughout almost all bands. This fact is successfully used to predict each band based on the previous bands. We propose to use spectral linear prediction and entropy coding with context modeling for encoding multispectral images. Linear prediction predicts the value for the next sample and computes the difference between predicted value and the original value. This difference is usually small, so it can be encoded with less its than the original value. The technique implies prediction of each image band by involving number of bands along the image spectra. Each pixel is predicted using information provided by pixels in the previous bands in the same spatial position. As done in the JPEG-LS, the proposed coder also represents the mapped residuals by using an adaptive Golomb-Rice code with context modeling. This residual coding is context adaptive, where the context used for the current sample is identified by a context quantization function of the three gradients. Then, context-dependent Golomb-Rice code and bias parameters are estimated sample by sample. The proposed scheme was compared with three algorithms applied to the lossless compression of multispectral images, namely JPEG-LS, Rice coding, and JPEG2000. Simulation tests performed on AVIRIS images have demonstrated that the proposed compression scheme is suitable for multispectral images.

  4. "Calibration" system for spectral measurements and its experimental results

    Science.gov (United States)

    Bruchkouskaya, Sviatlana I.; Katkovsky, Leonid V.; Belyaev, Boris I.; Malyshev, Vladislav B.

    2017-04-01

    "Calibration" system has been developed at A. N. Sevchenko Research Institute of Applied Physical Problems of the Belarusian State University. It was designed for measuring the characteristics of spectral reflectance of all types of natural surfaces (test sites) in ground conditions or on board of aircraft carriers and has the following components: - Photospectroradiometr (PhSR) of high resolution with a range of 400-900 nm, equipped with a digital time-lapse video system; - Two-channel modular spectroradiometer (TMS) with a range of 400-900 nm, designed for simultaneous measurements of reflected light brightness of the underlying surface and the incident radiation from the upper hemisphere; - Two portable spectroradiometers (PSR-700 and PSR-1300) with a spectral range 800-1500 nm; 1200-2500 nm; - Scanning solar spectropolarimeter (SSP-600) with a range of 350-950 nm for measurements of direct sunlight and scattered by the atmosphere at different angles; "Calibration" system provides spectral resolution of 5.2 nm in a range of 400-900 nm, 10 nm in a range of 800-1500 nm and 15 nm in a range of 1200-2500 nm. Measurements of the optical characteristics of solar radiation (for determining parameters of the atmosphere) and that of underlying surface are synchronous. There is also a set of special nozzles for measurements of spectral brightness coefficients, polarization characteristics and spectral albedo. Spectra and images are geotagged to the navigation data (time, GPS). For the measurements of spectral reflection dependencies within "Monitoring-SG" framework expeditions to the Kuril Islands, Kursk aerospace test site and Kamchatka Peninsula were conducted in 2015 and 2016. The spectra of different underlying surfaces have been obtained: soils, plants and water objects, sedimentary and volcanic rocks. These surveys are a valuable material for further researches and selection of test facilities for flight calibration of space imaging systems. Information obtained

  5. MEM spectral analysis for predicting influenza epidemics in Japan.

    Science.gov (United States)

    Sumi, Ayako; Kamo, Ken-ichi

    2012-03-01

    The prediction of influenza epidemics has long been the focus of attention in epidemiology and mathematical biology. In this study, we tested whether time series analysis was useful for predicting the incidence of influenza in Japan. The method of time series analysis we used consists of spectral analysis based on the maximum entropy method (MEM) in the frequency domain and the nonlinear least squares method in the time domain. Using this time series analysis, we analyzed the incidence data of influenza in Japan from January 1948 to December 1998; these data are unique in that they covered the periods of pandemics in Japan in 1957, 1968, and 1977. On the basis of the MEM spectral analysis, we identified the periodic modes explaining the underlying variations of the incidence data. The optimum least squares fitting (LSF) curve calculated with the periodic modes reproduced the underlying variation of the incidence data. An extension of the LSF curve could be used to predict the incidence of influenza quantitatively. Our study suggested that MEM spectral analysis would allow us to model temporal variations of influenza epidemics with multiple periodic modes much more effectively than by using the method of conventional time series analysis, which has been used previously to investigate the behavior of temporal variations in influenza data.

  6. Temperature profile retrieval in axisymmetric combustion plumes using multilayer perceptron modeling and spectral feature selection in the infrared CO2 emission band.

    Science.gov (United States)

    García-Cuesta, Esteban; de Castro, Antonio J; Galván, Inés M; López, Fernando

    2014-01-01

    In this work, a methodology based on the combined use of a multilayer perceptron model fed using selected spectral information is presented to invert the radiative transfer equation (RTE) and to recover the spatial temperature profile inside an axisymmetric flame. The spectral information is provided by the measurement of the infrared CO2 emission band in the 3-5 μm spectral region. A guided spectral feature selection was carried out using a joint criterion of principal component analysis and a priori physical knowledge of the radiative problem. After applying this guided feature selection, a subset of 17 wavenumbers was selected. The proposed methodology was applied over synthetic scenarios. Also, an experimental validation was carried out by measuring the spectral emission of the exhaust hot gas plume in a microjet engine with a Fourier transform-based spectroradiometer. Temperatures retrieved using the proposed methodology were compared with classical thermocouple measurements, showing a good agreement between them. Results obtained using the proposed methodology are very promising and can encourage the use of sensor systems based on the spectral measurement of the CO2 emission band in the 3-5 μm spectral window to monitor combustion processes in a nonintrusive way.

  7. The Chandra Source Catalog: Spectral Properties

    Science.gov (United States)

    Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula

    2009-09-01

    The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).

  8. Spectral analysis and filter theory in applied geophysics

    CERN Document Server

    Buttkus, Burkhard

    2000-01-01

    This book is intended to be an introduction to the fundamentals and methods of spectral analysis and filter theory and their appli­ cations in geophysics. The principles and theoretical basis of the various methods are described, their efficiency and effectiveness eval­ uated, and instructions provided for their practical application. Be­ sides the conventional methods, newer methods arediscussed, such as the spectral analysis ofrandom processes by fitting models to the ob­ served data, maximum-entropy spectral analysis and maximum-like­ lihood spectral analysis, the Wiener and Kalman filtering methods, homomorphic deconvolution, and adaptive methods for nonstation­ ary processes. Multidimensional spectral analysis and filtering, as well as multichannel filters, are given extensive treatment. The book provides a survey of the state-of-the-art of spectral analysis and fil­ ter theory. The importance and possibilities ofspectral analysis and filter theory in geophysics for data acquisition, processing an...

  9. Model-Based Security Testing

    Directory of Open Access Journals (Sweden)

    Ina Schieferdecker

    2012-02-01

    Full Text Available Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.

  10. A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas

    International Nuclear Information System (INIS)

    Vay, Jean-Luc; Haber, Irving; Godfrey, Brendan B.

    2013-01-01

    Pseudo-spectral electromagnetic solvers (i.e. representing the fields in Fourier space) have extraordinary precision. In particular, Haber et al. presented in 1973 a pseudo-spectral solver that integrates analytically the solution over a finite time step, under the usual assumption that the source is constant over that time step. Yet, pseudo-spectral solvers have not been widely used, due in part to the difficulty for efficient parallelization owing to global communications associated with global FFTs on the entire computational domains. A method for the parallelization of electromagnetic pseudo-spectral solvers is proposed and tested on single electromagnetic pulses, and on Particle-In-Cell simulations of the wakefield formation in a laser plasma accelerator. The method takes advantage of the properties of the Discrete Fourier Transform, the linearity of Maxwell’s equations and the finite speed of light for limiting the communications of data within guard regions between neighboring computational domains. Although this requires a small approximation, test results show that no significant error is made on the test cases that have been presented. The proposed method opens the way to solvers combining the favorable parallel scaling of standard finite-difference methods with the accuracy advantages of pseudo-spectral methods

  11. Improving the representation of clouds, radiation, and precipitation using spectral nudging in the Weather Research and Forecasting model

    Science.gov (United States)

    Spectral nudging – a scale-selective interior constraint technique – is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonst...

  12. Test Section Turbulence in the AEDC/VKF Supersonic/Hypersonic Wind Tunnels

    Science.gov (United States)

    1981-07-01

    8 4.3 Ins t rumen ta t ion ....................................................... 18...Pressure Fluctuation Spectral Content in AEDC Tunnels A and B (Based on FY79 Pitot Probe), Af = 200 Hz...intensity, spatial distribution, and spectral content , has become increasingly important in the analysis of test data. The sector- supported model in the

  13. A Method of Particle Swarm Optimized SVM Hyper-spectral Remote Sensing Image Classification

    International Nuclear Information System (INIS)

    Liu, Q J; Jing, L H; Wang, L M; Lin, Q Z

    2014-01-01

    Support Vector Machine (SVM) has been proved to be suitable for classification of remote sensing image and proposed to overcome the Hughes phenomenon. Hyper-spectral sensors are intrinsically designed to discriminate among a broad range of land cover classes which may lead to high computational time in SVM mutil-class algorithms. Model selection for SVM involving kernel and the margin parameter values selection which is usually time-consuming, impacts training efficiency of SVM model and final classification accuracies of SVM hyper-spectral remote sensing image classifier greatly. Firstly, based on combinatorial optimization theory and cross-validation method, particle swarm algorithm is introduced to the optimal selection of SVM (PSSVM) kernel parameter σ and margin parameter C to improve the modelling efficiency of SVM model. Then an experiment of classifying AVIRIS in India Pine site of USA was performed for evaluating the novel PSSVM, as well as traditional SVM classifier with general Grid-Search cross-validation method (GSSVM). And then, evaluation indexes including SVM model training time, classification Overall Accuracy (OA) and Kappa index of both PSSVM and GSSVM are all analyzed quantitatively. It is demonstrated that OA of PSSVM on test samples and whole image are 85% and 82%, the differences with that of GSSVM are both within 0.08% respectively. And Kappa indexes reach 0.82 and 0.77, the differences with that of GSSVM are both within 0.001. While the modelling time of PSSVM can be only 1/10 of that of GSSVM, and the modelling. Therefore, PSSVM is an fast and accurate algorithm for hyper-spectral image classification and is superior to GSSVM

  14. Validation of the α-μ Model of the Power Spectral Density of GPS Ionospheric Amplitude Scintillation

    Directory of Open Access Journals (Sweden)

    Kelias Oliveira

    2014-01-01

    Full Text Available The α-μ model has become widely used in statistical analyses of radio channels, due to the flexibility provided by its two degrees of freedom. Among several applications, it has been used in the characterization of low-latitude amplitude scintillation, which frequently occurs during the nighttime of particular seasons of high solar flux years, affecting radio signals that propagate through the ionosphere. Depending on temporal and spatial distributions, ionospheric scintillation may cause availability and precision problems to users of global navigation satellite systems. The present work initially stresses the importance of the flexibility provided by α-μ model in comparison with the limitations of a single-parameter distribution for the representation of first-order statistics of amplitude scintillation. Next, it focuses on the statistical evaluation of the power spectral density of ionospheric amplitude scintillation. The formulation based on the α-μ model is developed and validated using experimental data obtained in São José dos Campos (23.1°S; 45.8°W; dip latitude 17.3°S, Brazil, located near the southern crest of the ionospheric equatorial ionization anomaly. These data were collected between December 2001 and January 2002, a period of high solar flux conditions. The results show that the proposed model fits power spectral densities estimated from field data quite well.

  15. Modeling Chemical Interaction Profiles: I. Spectral Data-Activity Relationship and Structure-Activity Relationship Models for Inhibitors and Non-inhibitors of Cytochrome P450 CYP3A4 and CYP2D6 Isozymes

    Directory of Open Access Journals (Sweden)

    Richard D. Beger

    2012-03-01

    Full Text Available An interagency collaboration was established to model chemical interactions that may cause adverse health effects when an exposure to a mixture of chemicals occurs. Many of these chemicals—drugs, pesticides, and environmental pollutants—interact at the level of metabolic biotransformations mediated by cytochrome P450 (CYP enzymes. In the present work, spectral data-activity relationship (SDAR and structure-activity relationship (SAR approaches were used to develop machine-learning classifiers of inhibitors and non-inhibitors of the CYP3A4 and CYP2D6 isozymes. The models were built upon 602 reference pharmaceutical compounds whose interactions have been deduced from clinical data, and 100 additional chemicals that were used to evaluate model performance in an external validation (EV test. SDAR is an innovative modeling approach that relies on discriminant analysis applied to binned nuclear magnetic resonance (NMR spectral descriptors. In the present work, both 1D 13C and 1D 15N-NMR spectra were used together in a novel implementation of the SDAR technique. It was found that increasing the binning size of 1D 13C-NMR and 15N-NMR spectra caused an increase in the tenfold cross-validation (CV performance in terms of both the rate of correct classification and sensitivity. The results of SDAR modeling were verified using SAR. For SAR modeling, a decision forest approach involving from 6 to 17 Mold2 descriptors in a tree was used. Average rates of correct classification of SDAR and SAR models in a hundred CV tests were 60% and 61% for CYP3A4, and 62% and 70% for CYP2D6, respectively. The rates of correct classification of SDAR and SAR models in the EV test were 73% and 86% for CYP3A4, and 76% and 90% for CYP2D6, respectively. Thus, both SDAR and SAR methods demonstrated a comparable performance in modeling a large set of structurally diverse data. Based on unique NMR structural descriptors, the new SDAR modeling method complements the existing SAR

  16. The spectral energy distributions of isolated neutron stars in the resonant cyclotron scattering model

    Science.gov (United States)

    Tong, Hao; Xu, Renxin

    2013-03-01

    The X-ray dim isolated neutron stars (XDINSs) are peculiar pulsar-like objects, characterized by their very well Planck-like spectrum. In studying their spectral energy distributions, the optical/UV excess is a long standing problem. Recently, Kaplan et al. (2011) have measured the optical/UV excess for all seven sources, which is understandable in the resonant cyclotron scattering (RCS) model previously addressed. The RCS model calculations show that the RCS process can account for the observed optical/UV excess for most sources. The flat spectrum of RX J2143.0+0654 may due to contribution from bremsstrahlung emission of the electron system in addition to the RCS process.

  17. The spectral imaging facility: Setup characterization

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, Simone, E-mail: simone.deangelis@iaps.inaf.it; De Sanctis, Maria Cristina; Manzari, Paola Olga [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Ammannito, Eleonora [Institute for Space Astrophysics and Planetology, INAF-IAPS, Via Fosso del Cavaliere, 100, 00133 Rome (Italy); Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, Los Angeles, California 90095-1567 (United States); Di Iorio, Tatiana [ENEA, UTMEA-TER, Rome (Italy); Liberati, Fabrizio [Opto Service SrL, Campagnano di Roma (RM) (Italy); Tarchi, Fabio; Dami, Michele; Olivieri, Monica; Pompei, Carlo [Selex ES, Campi Bisenzio (Italy); Mugnuolo, Raffaele [Italian Space Agency, ASI, Spatial Geodesy Center, Matera (Italy)

    2015-09-15

    The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.

  18. Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    International Nuclear Information System (INIS)

    Rosenberg, D; Pouquet, A; Mininni, P D

    2007-01-01

    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang (OT) vortex made up of a magnetic X-point centred on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsaesser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context (Rosenberg et al 2006 J. Comput. Phys. 215 59-80); the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the OT solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo-spectral solutions quite well. We show that low-order truncation-even with a comparable number of global degrees of freedom-fails to correctly model some strong (sup-norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics

  19. Angle of arrival estimation using spectral interferometry

    International Nuclear Information System (INIS)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R.; Krishna Mohan, R.

    2010-01-01

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  20. Angle of arrival estimation using spectral interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Barber, Z.W.; Harrington, C.; Thiel, C.W.; Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Krishna Mohan, R., E-mail: krishna@spectrum.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    We have developed a correlative signal processing concept based on a Mach-Zehnder interferometer and spatial-spectral (S2) materials that enables direct mapping of RF spectral phase as well as power spectral recording. This configuration can be used for precise frequency resolved time delay estimation between signals received by a phased antenna array system that in turn could be utilized to estimate the angle of arrival. We present an analytical theoretical model and a proof-of-principle demonstration of the concept of time difference of arrival estimation with a cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm.

  1. Melting spectral functions of the scalar and vector mesons in a holographic QCD model

    International Nuclear Information System (INIS)

    Fujita, Mitsutoshi; Kikuchi, Toru; Fukushima, Kenji; Misumi, Tatsuhiro; Murata, Masaki

    2010-01-01

    We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and compare their qualitative features of the melting temperature and growing width. We find that the axial-vector meson melts earlier than the vector meson, while there appears only a slight difference between the scalar and pseudoscalar mesons, which also melt earlier than the vector meson.

  2. Wide-field Spatio-Spectral Interferometry: Bringing High Resolution to the Far- Infrared

    Science.gov (United States)

    Leisawitx, David

    Wide-field spatio-spectral interferometry combines spatial and spectral interferometric data to provide integral field spectroscopic information over a wide field of view. This technology breaks through a mission cost barrier that stands in the way of resolving spatially and measuring spectroscopically at far-infrared wavelengths objects that will lead to a deep understanding of planetary system and galaxy formation processes. A space-based far-IR interferometer will combine Spitzer s superb sensitivity with a two order of magnitude gain in angular resolution, and with spectral resolution in the thousands. With the possible exception of detector technology, which is advancing with support from other research programs, the greatest challenge for far-IR interferometry is to demonstrate that the interferometer will actually produce the images and spectra needed to satisfy mission science requirements. With past APRA support, our team has already developed the highly specialized hardware testbed, image projector, computational model, and image construction software required for the proposed effort, and we have access to an ideal test facility.

  3. Semiconductor Laser Multi-Spectral Sensing and Imaging

    Directory of Open Access Journals (Sweden)

    Han Q. Le

    2010-01-01

    Full Text Available Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO. These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  4. Semiconductor laser multi-spectral sensing and imaging.

    Science.gov (United States)

    Le, Han Q; Wang, Yang

    2010-01-01

    Multi-spectral laser imaging is a technique that can offer a combination of the laser capability of accurate spectral sensing with the desirable features of passive multispectral imaging. The technique can be used for detection, discrimination, and identification of objects by their spectral signature. This article describes and reviews the development and evaluation of semiconductor multi-spectral laser imaging systems. Although the method is certainly not specific to any laser technology, the use of semiconductor lasers is significant with respect to practicality and affordability. More relevantly, semiconductor lasers have their own characteristics; they offer excellent wavelength diversity but usually with modest power. Thus, system design and engineering issues are analyzed for approaches and trade-offs that can make the best use of semiconductor laser capabilities in multispectral imaging. A few systems were developed and the technique was tested and evaluated on a variety of natural and man-made objects. It was shown capable of high spectral resolution imaging which, unlike non-imaging point sensing, allows detecting and discriminating objects of interest even without a priori spectroscopic knowledge of the targets. Examples include material and chemical discrimination. It was also shown capable of dealing with the complexity of interpreting diffuse scattered spectral images and produced results that could otherwise be ambiguous with conventional imaging. Examples with glucose and spectral imaging of drug pills were discussed. Lastly, the technique was shown with conventional laser spectroscopy such as wavelength modulation spectroscopy to image a gas (CO). These results suggest the versatility and power of multi-spectral laser imaging, which can be practical with the use of semiconductor lasers.

  5. A Cost Effective Multi-Spectral Scanner for Natural Gas Detection

    Energy Technology Data Exchange (ETDEWEB)

    Yudaya Sivathanu; Jongmook Lim; Vinoo Narayanan; Seonghyeon Park

    2005-12-07

    The objective of this project is to design, fabricate and demonstrate a cost effective, multi-spectral scanner for natural gas leak detection in transmission and distribution pipelines. During the first year of the project, a laboratory version of the multi-spectral scanner was designed, fabricated, and tested at EnUrga Inc. The multi-spectral scanner was also evaluated using a blind Department of Energy study at the Rocky Mountain Oilfield Testing Center. The performance of the scanner was inconsistent during the blind study. However, most of the leaks were outside the view of the multi-spectral scanner that was developed during the first year of the project. Therefore, a definite evaluation of the capability of the scanner was not obtained. Despite the results, sufficient number of plumes was detected fully confirming the feasibility of the multi-spectral scanner. During the second year, the optical design of the scanner was changed to improve the sensitivity of the system. Laboratory tests show that the system can reliably detect small leaks (20 SCFH) at 30 to 50 feet. A prototype scanner was built and evaluated during the second year of the project. Only laboratory evaluations were completed during the second year. The laboratory evaluations show the feasibility of using the scanner to determine natural gas pipeline leaks. Further field evaluations and optimization of the scanner are required before commercialization of the scanner can be initiated.

  6. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    Energy Technology Data Exchange (ETDEWEB)

    Pajola, M.; Magrin, S.; Bertini, I.; Barbieri, C. [Center of Studies and Activities for Space, CISAS, ' G. Colombo' , University of Padova, I-35131 Padova (Italy); Lazzarin, M.; La Forgia, F. [Department of Physics and Astronomy, University of Padova, I-35131 Padova (Italy); Dalle Ore, C. M. [Carl Sagan Center, SETI Institute, Mountain View, CA 94043 (United States); Cruikshank, D. P.; Roush, T. L., E-mail: maurizio.pajola@studenti.unipd.it, E-mail: maurizio.pajola@gmail.com, E-mail: Maurizio.Pajola@jpl.nasa.gov [NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2013-11-10

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional

  7. PHOBOS AS A D-TYPE CAPTURED ASTEROID, SPECTRAL MODELING FROM 0.25 TO 4.0 μm

    International Nuclear Information System (INIS)

    Pajola, M.; Magrin, S.; Bertini, I.; Barbieri, C.; Lazzarin, M.; La Forgia, F.; Dalle Ore, C. M.; Cruikshank, D. P.; Roush, T. L.

    2013-01-01

    This paper describes the spectral modeling of the surface of Phobos in the wavelength range between 0.25 and 4.0 μm. We use complementary data to cover this spectral range: the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System on board the ESA Rosetta spacecraft) reflectance spectrum that Pajola et al. merged with the VSK-KRFM-ISM (Videospectrometric Camera (VSK)-Combined Radiometer and Photometer for Mars (KRFM)-Imaging Spectrometer for Mars (ISM) on board the USSR Phobos 2 spacecraft) spectra by Murchie and Erard and the IRTF (NASA Infrared Telescope Facility, Hawaii, USA) spectra published by Rivkin et al. The OSIRIS data allow the characterization of an area of Phobos covering from 86.°8 N to 90° S in latitude and from 126° W to 286° W in longitude. This corresponds chiefly to the trailing hemisphere, but with a small sampling of the leading hemisphere as well. We compared the OSIRIS results with the Trojan D-type asteroid 624 Hektor and show that the overall slope and curvature of the two bodies over the common wavelength range are very similar. This favors Phobos being a captured D-type asteroid as previously suggested. We modeled the OSIRIS data using two models, the first one with a composition that includes organic carbonaceous material, serpentine, olivine, and basalt glass, and the second one consisting of Tagish Lake meteorite and magnesium-rich pyroxene glass. The results of these models were extended to longer wavelengths to compare the VSK-KRFM-ISM and IRTF data. The overall shape of the second model spectrum between 0.25 and 4.0 μm shows curvature and an albedo level that match both the OSIRIS and Murchie and Erard data and the Rivkin et al. data much better than the first model. The large interval fit is encouraging and adds weight to this model, making it our most promising fit for Phobos. Since Tagish Lake is commonly used as a spectral analog for D-type asteroids, this provides additional support for compositional

  8. Increasing the Accuracy of Mapping Urban Forest Carbon Density by Combining Spatial Modeling and Spectral Unmixing Analysis

    Directory of Open Access Journals (Sweden)

    Hua Sun

    2015-11-01

    Full Text Available Accurately mapping urban vegetation carbon density is challenging because of complex landscapes and mixed pixels. In this study, a novel methodology was proposed that combines a linear spectral unmixing analysis (LSUA with a linear stepwise regression (LSR, a logistic model-based stepwise regression (LMSR and k-Nearest Neighbors (kNN, to map the forest carbon density of Shenzhen City of China, using Landsat 8 imagery and sample plot data collected in 2014. The independent variables that contributed to statistically significantly improving the fit of a model to data and reducing the sum of squared errors were first selected from a total of 284 spectral variables derived from the image bands. The vegetation fraction from LSUA was then added as an independent variable. The results obtained using cross-validation showed that: (1 Compared to the methods without the vegetation information, adding the vegetation fraction increased the accuracy of mapping carbon density by 1%–9.3%; (2 As the observed values increased, the LSR and kNN residuals showed overestimates and underestimates for the smaller and larger observations, respectively, while LMSR improved the systematical over and underestimations; (3 LSR resulted in illogically negative and unreasonably large estimates, while KNN produced the greatest values of root mean square error (RMSE. The results indicate that combining the spatial modeling method LMSR and the spectral unmixing analysis LUSA, coupled with Landsat imagery, is most promising for increasing the accuracy of urban forest carbon density maps. In addition, this method has considerable potential for accurate, rapid and nondestructive prediction of urban and peri-urban forest carbon stocks with an acceptable level of error and low cost.

  9. Do Test Design and Uses Influence Test Preparation? Testing a Model of Washback with Structural Equation Modeling

    Science.gov (United States)

    Xie, Qin; Andrews, Stephen

    2013-01-01

    This study introduces Expectancy-value motivation theory to explain the paths of influences from perceptions of test design and uses to test preparation as a special case of washback on learning. Based on this theory, two conceptual models were proposed and tested via Structural Equation Modeling. Data collection involved over 870 test takers of…

  10. Spectral history modeling in the reactor dynamics code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Yurii

    2014-01-01

    A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history. A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry. The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters.

  11. Bridging the spectral divide: a case study with PAGES2k, the CESM Last Millennium Ensemble and proxy system models

    Science.gov (United States)

    Zhu, F.; Emile-Geay, J.; Ault, T.; McKay, N.; Dee, S.

    2017-12-01

    A grand challenge for paleoclimatology is to constrain climate model behavior on timescales longer than the instrumental record. Of particular interest is the spectrum of temperature as sensed by climate proxies. The "continuum" of climate variability [Huybers & Curry, Nature 2006] is often characterized by its scaling exponent β , where the spectral density S and the frequency f satisfy the power law S ∝ f-β . Recent studies have voiced concern that climate models underestimate scaling behavior compared to proxies [Laepple & Huybers, PNAS 2014]. Part of this discrepancy is known to lie in the complex processes whereby proxies transform climate signals [Dee et al, EPSL in press], yet many questions remain open. Here we leverage a recent multiproxy compilation [PAGES 2k Consortium, Sci Data 2017] to characterize scaling behavior over the Common Era using an interpolation-free method [Kirchner & Neal, PNAS 2013]. Proxy spectra are compared to spectra derived from the CESM Last Millennium Ensemble [Otto-Bliesner et al, BAMS 2016], using: (a) a naive model where proxies are assumed linearly related to annual temperature vs (b) proxy system models [Evans et al, QSR 2013] of varying complexity. Scaling behavior varies considerably by archive: on average the strongest centennial slopes are observed for lake sediments (β =1.2), while the smallest are observed for glacier ice (β =0.24). Results confirm that the CESM Last Millennium simulation (LM) exhibits decadal-centennial scaling closer to proxy spectra than the pre-industrial control run (PI): the latter shows a "blue" spectrum (β 0), suggesting that forcings are essential to reduce the spectral divide. Yet, even with forcings, LM spectra are flatter than the proxy spectra. Subsequent work will investigate the roles of seasonal sensitivity (trees, foraminifera, alkenones), multivariate influences (corals, trees), detrending (trees) and post-depositional processes (ice cores, lake & marine sediments) on spectral

  12. A fully Bayesian method for jointly fitting instrumental calibration and X-ray spectral models

    International Nuclear Information System (INIS)

    Xu, Jin; Yu, Yaming; Van Dyk, David A.; Kashyap, Vinay L.; Siemiginowska, Aneta; Drake, Jeremy; Ratzlaff, Pete; Connors, Alanna; Meng, Xiao-Li

    2014-01-01

    Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem. The method is 'pragmatic' in that it introduced an ad hoc technique that simplified computation by neglecting the potential information in the data for narrowing the uncertainty for the calibration product. Following that work, we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray (or γ-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully Bayesian method is that it allows the data to provide information not only for estimation of the source parameters but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method allows rigorous inference about the effective area by quantifying which possible curves are most consistent with the data.

  13. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling

    Science.gov (United States)

    Labrosse, N.; Heinzel, P.; Vial, J.-C,; Kucera, T.; Parenti, S.; Gunar, S.; Schmieder, B.; Kilper, G.

    2010-01-01

    This review paper outlines background information and covers recent advances made via the analysis of spectra and images of prominence plasma and the increased sophistication of non-LTE (i.e. when there is a departure from Local Thermodynamic Equilibrium) radiative transfer models. We first describe the spectral inversion techniques that have been used to infer the plasma parameters important for the general properties of the prominence plasma in both its cool core and the hotter prominence-corona transition region. We also review studies devoted to the observation of bulk motions of the prominence plasma and to the determination of prominence mass. However, a simple inversion of spectroscopic data usually fails when the lines become optically thick at certain wavelengths. Therefore, complex

  14. A Comparative Study of Spectral Auroral Intensity Predictions From Multiple Electron Transport Models

    Science.gov (United States)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Hecht, James; Solomon, Stanley; Jahn, Jorg-Micha

    2018-01-01

    It is important to routinely examine and update models used to predict auroral emissions resulting from precipitating electrons in Earth's magnetotail. These models are commonly used to invert spectral auroral ground-based images to infer characteristics about incident electron populations when in situ measurements are unavailable. In this work, we examine and compare auroral emission intensities predicted by three commonly used electron transport models using varying electron population characteristics. We then compare model predictions to same-volume in situ electron measurements and ground-based imaging to qualitatively examine modeling prediction error. Initial comparisons showed differences in predictions by the GLobal airglOW (GLOW) model and the other transport models examined. Chemical reaction rates and radiative rates in GLOW were updated using recent publications, and predictions showed better agreement with the other models and the same-volume data, stressing that these rates are important to consider when modeling auroral processes. Predictions by each model exhibit similar behavior for varying atmospheric constants, energies, and energy fluxes. Same-volume electron data and images are highly correlated with predictions by each model, showing that these models can be used to accurately derive electron characteristics and ionospheric parameters based solely on multispectral optical imaging data.

  15. From spectral holeburning memory to spatial-spectral microwave signal processing

    International Nuclear Information System (INIS)

    Babbitt, Wm Randall; Barber, Zeb W; Harrington, Calvin; Mohan, R Krishna; Sharpe, Tia; Bekker, Scott H; Chase, Michael D; Merkel, Kristian D; Stiffler, Colton R; Traxinger, Aaron S; Woidtke, Alex J

    2014-01-01

    Many storage and processing systems based on spectral holeburning have been proposed that access the broad bandwidth and high dynamic range of spatial-spectral materials, but only recently have practical systems been developed that exceed the performance and functional capabilities of electronic devices. This paper reviews the history of the proposed applications of spectral holeburning and spatial-spectral materials, from frequency domain optical memory to microwave photonic signal processing systems. The recent results of a 20 GHz bandwidth high performance spectrum monitoring system with the additional capability of broadband direction finding demonstrates the potential for spatial-spectral systems to be the practical choice for solving demanding signal processing problems in the near future. (paper)

  16. Characterization of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams

    International Nuclear Information System (INIS)

    Ding Chaoliang; Lue Baida; Pan Liuzhan

    2009-01-01

    The unified theory of coherence and polarization proposed by Wolf is extended from stochastic stationary electromagnetic beams to stochastic spatially and spectrally partially coherent electromagnetic pulsed beams. Taking the stochastic electromagnetic Gaussian Schell-model pulsed (GSMP) beam as a typical example of stochastic spatially and spectrally partially coherent electromagnetic pulsed beams, the expressions for the spectral density, spectral degree of polarization and spectral degree of coherence of stochastic electromagnetic GSMP beams propagating in free space are derived. Some special cases are analyzed. The illustrative examples are given and the results are interpreted physically.

  17. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, S. R.; Wilson, P. P. H. [Engineering Physics Department, University of Wisconsin - Madison, 1500 Engineering Dr., Madison, WI 53706 (United States); Evans, T. M. [Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830 (United States)

    2013-07-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  18. A spectral analysis of the domain decomposed Monte Carlo method for linear systems

    International Nuclear Information System (INIS)

    Slattery, S. R.; Wilson, P. P. H.; Evans, T. M.

    2013-01-01

    The domain decomposed behavior of the adjoint Neumann-Ulam Monte Carlo method for solving linear systems is analyzed using the spectral properties of the linear operator. Relationships for the average length of the adjoint random walks, a measure of convergence speed and serial performance, are made with respect to the eigenvalues of the linear operator. In addition, relationships for the effective optical thickness of a domain in the decomposition are presented based on the spectral analysis and diffusion theory. Using the effective optical thickness, the Wigner rational approximation and the mean chord approximation are applied to estimate the leakage fraction of stochastic histories from a domain in the decomposition as a measure of parallel performance and potential communication costs. The one-speed, two-dimensional neutron diffusion equation is used as a model problem to test the models for symmetric operators. In general, the derived approximations show good agreement with measured computational results. (authors)

  19. Terahertz Josephson spectral analysis and its applications

    Science.gov (United States)

    Snezhko, A. V.; Gundareva, I. I.; Lyatti, M. V.; Volkov, O. Y.; Pavlovskiy, V. V.; Poppe, U.; Divin, Y. Y.

    2017-04-01

    Principles of Hilbert-transform spectral analysis (HTSA) are presented and advantages of the technique in the terahertz (THz) frequency range are discussed. THz HTSA requires Josephson junctions with high values of characteristic voltages I c R n and dynamics described by a simple resistively shunted junction (RSJ) model. To meet these requirements, [001]- and [100]-tilt YBa2Cu3O7-x bicrystal junctions with deviations from the RSJ model less than 1% have been developed. Demonstrators of Hilbert-transform spectrum analyzers with various cryogenic environments, including integration into Stirling coolers, are described. Spectrum analyzers have been characterized in the spectral range from 50 GHz to 3 THz. Inside a power dynamic range of five orders, an instrumental function of the analyzers has been found to have a Lorentz form around a single frequency of 1.48 THz with a spectral resolution as low as 0.9 GHz. Spectra of THz radiation from optically pumped gas lasers and semiconductor frequency multipliers have been studied with these spectrum analyzers and the regimes of these radiation sources were optimized for a single-frequency operation. Future applications of HTSA will be related with quick and precise spectral characterization of new radiation sources and identification of substances in the THz frequency range.

  20. Modelling Diverse Soil Attributes with Visible to Longwave Infrared Spectroscopy Using PLSR Employed by an Automatic Modelling Engine

    Directory of Open Access Journals (Sweden)

    Veronika Kopačková

    2017-02-01

    Full Text Available The study tested a data mining engine (PARACUDA® to predict various soil attributes (BC, CEC, BS, pH, Corg, Pb, Hg, As, Zn and Cu using reflectance data acquired for both optical and thermal infrared regions. The engine was designed to utilize large data in parallel and automatic processing to build and process hundreds of diverse models in a unified manner while avoiding bias and deviations caused by the operator(s. The system is able to systematically assess the effect of diverse preprocessing techniques; additionally, it analyses other parameters, such as different spectral resolutions and spectral coverages that affect soil properties. Accordingly, the system was used to extract models across both optical and thermal infrared spectral regions, which holds significant chromophores. In total, 2880 models were evaluated where each model was generated with a different preprocessing scheme of the input spectral data. The models were assessed using statistical parameters such as coefficient of determination (R2, square error of prediction (SEP, relative percentage difference (RPD and by physical explanation (spectral assignments. It was found that the smoothing procedure is the most beneficial preprocessing stage, especially when combined with spectral derivation (1st or 2nd derivatives. Automatically and without the need of an operator, the data mining engine enabled the best prediction models to be found from all the combinations tested. Furthermore, the data mining approach used in this study and its processing scheme proved to be efficient tools for getting a better understanding of the geochemical properties of the samples studied (e.g., mineral associations.

  1. Microscopic nucleon spectral function for finite nuclei featuring two- and three-nucleon short-range correlations: The model versus ab initio calculations for three-nucleon systems

    Science.gov (United States)

    Ciofi degli Atti, Claudio; Mezzetti, Chiara Benedetta; Morita, Hiko

    2017-04-01

    Background: Two-nucleon (2 N ) short-range correlations (SRC) in nuclei have been recently thoroughly investigated, both theoretically and experimentally and the study of three-nucleon (3 N ) SRC, which could provide important information on short-range hadronic structure, is underway. Novel theoretical ideas concerning 2 N and 3 N SRC are put forward in the present paper. Purpose: The general features of a microscopic one-nucleon spectral function which includes the effects of both 2 N and 3 N SRC and its comparison with ab initio spectral functions of the three-nucleon systems are illustrated. Methods: A microscopic and parameter-free one-nucleon spectral function expressed in terms of a convolution integral involving ab initio relative and center-of-mass (c.m.) momentum distributions of a 2 N pair and aimed at describing two- and three-nucleon short-range correlations, is obtained by using: (i) the two-nucleon momentum distributions obtained within ab initio approaches based upon nucleon-nucleon interactions of the Argonne family; (ii) the exact relation between one- and two-nucleon momentum distributions; (iii) the fundamental property of factorization of the nuclear wave function at short internucleon ranges. Results: The comparison between the ab initio spectral function of 3He and the one based upon the convolution integral shows that when the latter contains only two-nucleon short-range correlations the removal energy location of the peaks and the region around them exhibited by the ab initio spectral function are correctly predicted, unlike the case of the high and low removal energy tails; the inclusion of the effects of three-nucleon correlations brings the convolution model spectral function in much better agreement with the ab initio one; it is also found that whereas the three-nucleon short-range correlations dominate the high energy removal energy tail of the spectral function, their effects on the one-nucleon momentum distribution are almost one

  2. Limitations of Spectral Electromyogramic Analysis to Determine the Onset of Neuromuscular Fatigue Threshold during Incremental Ergometer Cycling

    Directory of Open Access Journals (Sweden)

    Iban Latasa, Alfredo Cordova, Armando Malanda, Javier Navallas, Ana Lavilla-Oiz, Javier Rodriguez-Falces

    2016-03-01

    Full Text Available Recently, a new method has been proposed to detect the onset of neuromuscular fatigue during an incremental cycling test by assessing the changes in spectral electromyographic (sEMG frequencies within individual exercise periods of the test. The method consists on determining the highest power output that can be sustained without a significant decrease in spectral frequencies. This study evaluated the validity of the new approach by assessing the changes in spectral indicators both throughout the whole test and within individual exercise periods of the test. Fourteen cyclists performed incremental cycle ergometer rides to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. The mean and median frequencies (Fmean and Fmedian, respectively of the sEMG power spectrum were calculated. The main findings were: (1 Examination of spectral indicators within individual exercise periods of the test showed that neither Fmean nor Fmedian decreased significantly during the last (most fatiguing exercise periods. (2 Examination of the whole incremental test showed that the behaviour of Fmean and Fmedian with increasing power output was highly inconsistent and varied greatly among subjects. (3 Over the whole incremental test, half of the participants exhibited a positive relation between spectral indicators and workload, whereas the other half demonstrated the opposite behavior. Collectively, these findings indicate that spectral sEMG indexes do not provide a reliable measure of the fatigue state of the muscle during an incremental cycling test. Moreover, it is concluded that it is not possible to determine the onset of neuromuscular fatigue during an incremental cycling test by examining spectral indicators within individual exercise periods of the test.

  3. Recent developments in the super transition array model for spectral simulation of LTE plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1992-01-01

    Recently developed sub-picosecond pulse lasers have been used to create hot, near solid density plasmas. Since these plasmas are nearly in local thermodynamic equilibrium (LTE), their emission spectra involve a huge number of populated configurations. A typical spectrum is a combination of many unresolved clusters of emission, each containing an immense number of overlapping, unresolvable bound-bound and bound-free transitions. Under LTE, or near LTE conditions, traditional detailed configuration or detailed term spectroscopic models are not capable of handling the vast number of transitions involved. The average atom (AA) model, on the other hand, accounts for all relevant transitions, but in an oversimplified fashion that ignores all spectral structure. The Super Transition Array (STA) model, which has been developed in recent years, combines the simplicity and comprehensiveness of the AA model with the accuracy of detailed term accounting. The resolvable structure of spectral clusters is revealed by successively increasing the number of distinct STA's, until convergence is attained. The limit of this procedure is a detailed unresolved transition array (UTA) spectrum, with a term-broadened line for each accessible configuration-to-configuration transition, weighted by the relevant Boltzman population. In practice, this UTA spectrum is actually obtained using only a few thousand to tens of thousands of STA's (as opposed, typically, to billions of UTAs). The central result of STA theory is a set of formulas for the moments (total intensity, average transition energy, variance) of an STA. In calculating the moments, detailed relativistic first order quantum transition energies and probabilities are used. The energy appearing in the Boltzman factor associated with each level in a superconfiguration is the zero order result corrected by a superconfiguration averaged first order correction. Examples and application to recent measurements are presented

  4. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints.

    Science.gov (United States)

    Panagou, Efstathios Z; Mohareb, Fady R; Argyri, Anthoula A; Bessant, Conrad M; Nychas, George-John E

    2011-06-01

    A series of partial least squares (PLS) models were employed to correlate spectral data from FTIR analysis with beef fillet spoilage during aerobic storage at different temperatures (0, 5, 10, 15, and 20 °C) using the dataset presented by Argyri et al. (2010). The performance of the PLS models was compared with a three-layer feed-forward artificial neural network (ANN) developed using the same dataset. FTIR spectra were collected from the surface of meat samples in parallel with microbiological analyses to enumerate total viable counts. Sensory evaluation was based on a three-point hedonic scale classifying meat samples as fresh, semi-fresh, and spoiled. The purpose of the modelling approach employed in this work was to classify beef samples in the respective quality class as well as to predict their total viable counts directly from FTIR spectra. The results obtained demonstrated that both approaches showed good performance in discriminating meat samples in one of the three predefined sensory classes. The PLS classification models showed performances ranging from 72.0 to 98.2% using the training dataset, and from 63.1 to 94.7% using independent testing dataset. The ANN classification model performed equally well in discriminating meat samples, with correct classification rates from 98.2 to 100% and 63.1 to 73.7% in the train and test sessions, respectively. PLS and ANN approaches were also applied to create models for the prediction of microbial counts. The performance of these was based on graphical plots and statistical indices (bias factor, accuracy factor, root mean square error). Furthermore, results demonstrated reasonably good correlation of total viable counts on meat surface with FTIR spectral data with PLS models presenting better performance indices compared to ANN. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Spectral Imaging by Upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    We present a method to obtain spectrally resolved images using upconversion. By this method an image is spectrally shifted from one spectral region to another wavelength. Since the process is spectrally sensitive it allows for a tailored spectral response. We believe this will allow standard...... silicon based cameras designed for visible/near infrared radiation to be used for spectral images in the mid infrared. This can lead to much lower costs for such imaging devices, and a better performance....

  6. Spectral-Temporal Modulated Ripple Discrimination by Children With Cochlear Implants.

    Science.gov (United States)

    Landsberger, David M; Padilla, Monica; Martinez, Amy S; Eisenberg, Laurie S

    A postlingually implanted adult typically develops hearing with an intact auditory system, followed by periods of deafness (or near deafness) and adaptation to the implant. For an early implanted child whose brain is highly plastic, the auditory system matures with consistent input from a cochlear implant. It is likely that the auditory system of early implanted cochlear implant users is fundamentally different than postlingually implanted adults. The purpose of this study is to compare the basic psychophysical capabilities and limitations of these two populations on a spectral resolution task to determine potential effects of early deprivation and plasticity. Performance on a spectral resolution task (Spectral-temporally Modulated Ripple Test [SMRT]) was measured for 20 bilaterally implanted, prelingually deafened children (between 5 and 13 years of age) and 20 hearing children within the same age range. Additionally, 15 bilaterally implanted, postlingually deafened adults, and 10 hearing adults were tested on the same task. Cochlear implant users (adults and children) were tested bilaterally, and with each ear alone. Hearing listeners (adults and children) were tested with the unprocessed SMRT and with a vocoded version that simulates an 8-channel cochlear implant. For children with normal hearing, a positive correlation was found between age and SMRT score for both the unprocessed and vocoded versions. Older hearing children performed similarly to hearing adults in both the unprocessed and vocoded test conditions. However, for children with cochlear implants, no significant relationship was found between SMRT score and chronological age, age at implantation, or years of implant experience. Performance by children with cochlear implants was poorer than performance by cochlear implanted adults. It was also found that children implanted sequentially tended to have better scores with the first implant compared with the second implant. This difference was not

  7. Quantum gravity boundary terms from the spectral action of noncommutative space.

    Science.gov (United States)

    Chamseddine, Ali H; Connes, Alain

    2007-08-17

    We study the boundary terms of the spectral action of the noncommutative space, defined by the spectral triple dictated by the physical spectrum of the standard model, unifying gravity with all other fundamental interactions. We prove that the spectral action predicts uniquely the gravitational boundary term required for consistency of quantum gravity with the correct sign and coefficient. This is a remarkable result given the lack of freedom in the spectral action to tune this term.

  8. Infrared and Raman spectroscopy: principles and spectral interpretation

    National Research Council Canada - National Science Library

    Larkin, Peter

    2011-01-01

    "Infrared and Raman Spectroscopy: Principles and Spectral Interpretation explains the background, core principles and tests the readers understanding of the important techniques of Infrared and Raman Spectroscopy...

  9. Spectral functions and transport coefficients from the functional renormalization group

    Energy Technology Data Exchange (ETDEWEB)

    Tripolt, Ralf-Arno

    2015-06-03

    In this thesis we present a new method to obtain real-time quantities like spectral functions and transport coefficients at finite temperature and density using the Functional Renormalization Group approach. Our non-perturbative method is thermodynamically consistent, symmetry preserving and based on an analytic continuation from imaginary to real time on the level of the flow equations. We demonstrate the applicability of this method by calculating mesonic spectral functions as well as the shear viscosity for the quark-meson model. In particular, results are presented for the pion and sigma spectral function at finite temperature and chemical potential, with a focus on the regime near the critical endpoint in the phase diagram of the quark-meson model. Moreover, the different time-like and space-like processes, which give rise to a complex structure of the spectral functions, are discussed. Finally, based on the momentum dependence of the spectral functions, we calculate the shear viscosity and the shear viscosity to entropy density ratio using the corresponding Green-Kubo formula.

  10. Spectral domain optical coherence tomography as an effective screening test for hydroxychloroquine retinopathy (the “flying saucer” sign

    Directory of Open Access Journals (Sweden)

    Eric Chen

    2010-10-01

    Full Text Available Eric Chen, David M Brown, Matthew S Benz, Richard H Fish, Tien P Wong, Rosa Y Kim, James C MajorRetina Consultants of Houston, The Methodist Hospital, Houston, Texas, USAPurpose: While the long-term incidence of hydroxychloroquine (HCQ retinopathy is low, there remains no definitive clinical screening test to recognize HCQ toxicity before ophthalmoscopic fundus changes or visual symptoms. Patients receiving HCQ were evaluated with spectral domain optical coherence tomography (SD OCT to assess the feasibility of identifying HCQ retinopathy at an early stage.Methods: Twenty-five patients referred for the evaluation of hydroxychloroquine toxicity underwent a comprehensive ocular examination, Humphrey visual field (HVF perimetry, time domain OCT, and SD OCT. Some patients with screening abnormalities also underwent further diagnostic testing at the discretion of the treating providers.Results: Five patients were found to have SD OCT findings corresponding to HCQ toxicity and retinal damage as seen by clinical exam and/or HVF perimetry. Two patients with advanced toxicity were found to have significant outer retina disruption in the macula on SD OCT. Three patients with early HCQ toxicity and HVF 10-2 perifoveal defects were found to have loss of the perifoveal photoreceptor inner segment/outer segment (IS/OS junction with intact outer retina directly under the fovea, creating the “flying saucer” sign. While two of these three patients had early ophthalmoscopic fundus changes, one had none.Conclusion: Outer retinal abnormalities including perifoveal photoreceptor IS/OS junction disruption can be identified by SD OCT in early HCQ toxicity, sometimes even before ophthalmoscopic fundus changes are apparent. SD OCT may have a potential complementary role in screening for HCQ retinopathy due to its quick acquisition and because it is more objective than automated perimetry.Keywords: drug toxicity, hydroxychloroquine, photoreceptors, screening test

  11. Loglinear Rasch model tests

    NARCIS (Netherlands)

    Kelderman, Hendrikus

    1984-01-01

    Existing statistical tests for the fit of the Rasch model have been criticized, because they are only sensitive to specific violations of its assumptions. Contingency table methods using loglinear models have been used to test various psychometric models. In this paper, the assumptions of the Rasch

  12. Analytic models of spectral responses of fiber-grating-based interferometers on FMC theory.

    Science.gov (United States)

    Zeng, Xiangkai; Wei, Lai; Pan, Yingjun; Liu, Shengping; Shi, Xiaohui

    2012-02-13

    In this paper the analytic models (AMs) of the spectral responses of fiber-grating-based interferometers are derived from the Fourier mode coupling (FMC) theory proposed recently. The interferometers include Fabry-Perot cavity, Mach-Zehnder and Michelson interferometers, which are constructed by uniform fiber Bragg gratings and long-period fiber gratings, and also by Gaussian-apodized ones. The calculated spectra based on the analytic models are achieved, and compared with the measured cases and those on the transfer matrix (TM) method. The calculations and comparisons have confirmed that the AM-based spectrum is in excellent agreement with the TM-based one and the measured case, of which the efficiency is improved up to ~2990 times that of the TM method for non-uniform-grating-based in-fiber interferometers.

  13. Hybrid spectral CT reconstruction.

    Directory of Open Access Journals (Sweden)

    Darin P Clark

    Full Text Available Current photon counting x-ray detector (PCD technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID. In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM. Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with

  14. Hybrid spectral CT reconstruction

    Science.gov (United States)

    Clark, Darin P.

    2017-01-01

    Current photon counting x-ray detector (PCD) technology faces limitations associated with spectral fidelity and photon starvation. One strategy for addressing these limitations is to supplement PCD data with high-resolution, low-noise data acquired with an energy-integrating detector (EID). In this work, we propose an iterative, hybrid reconstruction technique which combines the spectral properties of PCD data with the resolution and signal-to-noise characteristics of EID data. Our hybrid reconstruction technique is based on an algebraic model of data fidelity which substitutes the EID data into the data fidelity term associated with the PCD reconstruction, resulting in a joint reconstruction problem. Within the split Bregman framework, these data fidelity constraints are minimized subject to additional constraints on spectral rank and on joint intensity-gradient sparsity measured between the reconstructions of the EID and PCD data. Following a derivation of the proposed technique, we apply it to the reconstruction of a digital phantom which contains realistic concentrations of iodine, barium, and calcium encountered in small-animal micro-CT. The results of this experiment suggest reliable separation and detection of iodine at concentrations ≥ 5 mg/ml and barium at concentrations ≥ 10 mg/ml in 2-mm features for EID and PCD data reconstructed with inherent spatial resolutions of 176 μm and 254 μm, respectively (point spread function, FWHM). Furthermore, hybrid reconstruction is demonstrated to enhance spatial resolution within material decomposition results and to improve low-contrast detectability by as much as 2.6 times relative to reconstruction with PCD data only. The parameters of the simulation experiment are based on an in vivo micro-CT experiment conducted in a mouse model of soft-tissue sarcoma. Material decomposition results produced from this in vivo data demonstrate the feasibility of distinguishing two K-edge contrast agents with a spectral

  15. The Chandra Source Catalog 2.0: Spectral Properties

    Science.gov (United States)

    McCollough, Michael L.; Siemiginowska, Aneta; Burke, Douglas; Nowak, Michael A.; Primini, Francis Anthony; Laurino, Omar; Nguyen, Dan T.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula; Chandra Source Catalog Team

    2018-01-01

    The second release of the Chandra Source Catalog (CSC) contains all sources identified from sixteen years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package) using wstat as a fit statistic and Bayesian draws method to determine errors. Three models were fit to each source: an absorbed power-law, blackbody, and Bremsstrahlung emission. The fitted parameter values for the power-law, blackbody, and Bremsstrahlung models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy fluxes computed from the normalizations of predefined absorbed power-law, black-body, Bremsstrahlung, and APEC models needed to match the observed net X-ray counts. For sources that have been observed multiple times we performed a Bayesian Blocks analysis will have been performed (see the Primini et al. poster) and the most significant block will have a joint fit performed for the mentioned spectral models. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard). This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.

  16. Optical verification tests of the NISP/Euclid grism qualification model

    Science.gov (United States)

    Caillat, Amandine; Costille, Anne; Pascal, Sandrine; Vives, Sébastien; Rossin, Christelle; Sanchez, Patrice; Foulon, Benjamin

    2016-07-01

    The Euclid space mission aims at elucidating dark matter and dark energy mysteries thanks to two scientific instruments: VIS, the visible camera and NISP, the Near Infrared Spectro-Photometer. Millions of galaxies spectra will be recorded thanks to its spectroscopic mode using four grisms developed under LAM (Laboratoire d'Astrophysique de Marseille) responsibility. These dispersive optical components are made of a grating on a prism and include also, specifically for NISP, three other optical functions: spectral filtering, focus adjustment and spectral wavefront correction. Therefore, these optical elements are very challenging to manufacture (four industrial partners work on a single optical component) and to test before integration into NISP. In this paper, first we describe the optical specifications and the manufacturing process. Second, we explain the optical validation tests campaign: optical setups, measurements and data processing procedures used to validate these complex optical components, particularly for transmitted efficiency and wavefront error for which specifications are very stringent. Finally, we present the first results obtained on the grism EQM which manufacturing is on-going and almost finished.

  17. Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study.

    Science.gov (United States)

    Blocquet, M; Guo, F; Mendez, M; Ward, M; Coudert, S; Batut, S; Hecquet, C; Blond, N; Fittschen, C; Schoemaecker, C

    2018-05-01

    The characteristics of indoor light (intensity, spectral, spatial distribution) originating from outdoors have been studied using experimental and modeling tools. They are influenced by many parameters such as building location, meteorological conditions, and the type of window. They have a direct impact on indoor air quality through a change in chemical processes by varying the photolysis rates of indoor pollutants. Transmittances of different windows have been measured and exhibit different wavelength cutoffs, thus influencing the potential of different species to be photolysed. The spectral distribution of light entering indoors through the windows was measured under different conditions and was found to be weakly dependent on the time of day for indirect cloudy, direct sunshine, partly cloudy conditions contrary to the light intensity, in agreement with calculations of the transmittance as a function of the zenithal angle and the calculated outdoor spectral distribution. The same conclusion can be drawn concerning the position within the room. The impact of these light characteristics on the indoor chemistry has been studied using the INCA-Indoor model by considering the variation in the photolysis rates of key indoor species. Depending on the conditions, photolysis processes can lead to a significant production of radicals and secondary species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling

    KAUST Repository

    Liu, Shaolin

    2017-09-28

    The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.

  19. Scintillation index and performance analysis of wireless optical links over non-Kolmogorov weak turbulence based on generalized atmospheric spectral model.

    Science.gov (United States)

    Cang, Ji; Liu, Xu

    2011-09-26

    Based on the generalized spectral model for non-Kolmogorov atmospheric turbulence, analytic expressions of the scintillation index (SI) are derived for plane, spherical optical waves and a partially coherent Gaussian beam propagating through non-Kolmogorov turbulence horizontally in the weak fluctuation regime. The new expressions relate the SI to the finite turbulence inner and outer scales, spatial coherence of the source and spectral power-law and then used to analyze the effects of atmospheric condition and link length on the performance of wireless optical communication links. © 2011 Optical Society of America

  20. Transport survey calculations using the spectral collocation method

    International Nuclear Information System (INIS)

    Painter, S.L.; Lyon, J.F.

    1989-01-01

    A novel transport survey code has been developed and is being used to study the sensitivity of stellarator reactor performance to various transport assumptions. Instead of following one of the usual approaches, the steady-state transport equation are solved in integral form using the spectral collocation method. This approach effectively combine the computational efficiency of global models with the general nature of 1-D solutions. A compact torsatron reactor test case was used to study the convergence properties and flexibility of the new method. The heat transport model combined Shaing's model for ripple-induced neoclassical transport, the Chang-Hinton model for axisymmetric neoclassical transport, and neoalcator scaling for anomalous electron heat flux. Alpha particle heating, radiation losses, classical electron-ion heat flow, and external heating were included. For the test problem, the method exhibited some remarkable convergence properties. As the number of basis functions was increased, the maximum, pointwise error in the integrated power balance decayed exponentially until the numerical noise level as reached. Better than 10% accuracy in the globally-averaged quantities was achieved with only 5 basis functions; better than 1% accuracy was achieved with 10 basis functions. The numerical method was also found to be very general. Extreme temperature gradients at the plasma edge which sometimes arise from the neoclassical models and are difficult to resolve with finite-difference methods were easily resolved. 8 refs., 6 figs

  1. Testing the potential of multi-spectral remote sensing for retrospectively estimating fire severity in African savannahs

    Science.gov (United States)

    Alistair M.S. Smith; Martin J. Wooster; Nick A. Drake; Frederick M. Dipotso; Michael J. Falkowski; Andrew T. Hudak

    2005-01-01

    The remote sensing of fire severity is a noted goal in studies of forest and grassland wildfires. Experiments were conducted to discover and evaluate potential relationships between the characteristics of African savannah fires and post-fire surface spectral reflectance in the visible to shortwave infrared spectral region. Nine instrumented experimental fires were...

  2. Far-infrared Spectral Radiance Observations and Modeling of Arctic Cirrus: Preliminary Results From RHUBC

    Science.gov (United States)

    Humpage, Neil; Green, Paul D.; Harries, John E.

    2009-03-01

    Recent studies have highlighted the important contribution of the far-infrared (electromagnetic radiation with wavelengths greater than 12 μm) to the Earth's radiative energy budget. In a cloud-free atmosphere, a significant fraction of the Earth's cooling to space from the mid- and upper troposphere takes place via the water vapor pure rotational band between 17 and 33 μm. Cirrus clouds also play an important role in the Earth's outgoing longwave radiation. The effect of cirrus on far-infrared radiation is of particular interest, since the refractive index of ice depends strongly on wavelength in this spectral region. The scattering properties of ice crystals are directly related to the refractive index, so consequently the spectral signature of cirrus measured in the FIR is sensitive to the cloud microphysical properties [1, 2]. By examining radiances measured at wavelengths between the strong water vapor absorption lines in the FIR, the understanding of the relationship between cirrus microphysics and the radiative transfer of thermal energy through cirrus may be improved. Until recently, very few observations of FIR spectral radiances had been made. The Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) was developed by Imperial College to address this lack of observational data. TAFTS observes both zenith and nadir radiances at 0.1 cm-1 resolution, between 80 and 600 cm-1. During February and March 2007, TAFTS was involved in RHUBC (the Radiative Heating in Under-explored Bands Campaign), an ARM funded field campaign based at the ACRF-North Slope of Alaska site near Barrow, situated at 71° latitude. Infrared zenith spectral observations were taken by both TAFTS and the AERI-ER (spectral range 400-3300 cm-1) from the ground during both cloud-free and cirrus conditions. A wide range of other instrumentation was also available at the site, including a micropulse lidar, 35 GHz radar and the University of Colorado/NOAA Ground-based Scanning Radiometer

  3. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  4. Herschel SPIRE FTS spectral line source calibrators

    DEFF Research Database (Denmark)

    Hopwood, Rosalind; Polehampton, Edward; Valtchanov, Ivan

    2015-01-01

    We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape.......We present a summary of the Herschel SPIRE/FTS calibration programme to monitor the repeatability of spectral lines. Observations of planetary nebulae and post-AGB stars are used to assess repeatability and model the asymmetry of the instrument line shape....

  5. Spectral-Element Seismic Wave Propagation Codes for both Forward Modeling in Complex Media and Adjoint Tomography

    Science.gov (United States)

    Smith, J. A.; Peter, D. B.; Tromp, J.; Komatitsch, D.; Lefebvre, M. P.

    2015-12-01

    We present both SPECFEM3D_Cartesian and SPECFEM3D_GLOBE open-source codes, representing high-performance numerical wave solvers simulating seismic wave propagation for local-, regional-, and global-scale application. These codes are suitable for both forward propagation in complex media and tomographic imaging. Both solvers compute highly accurate seismic wave fields using the continuous Galerkin spectral-element method on unstructured meshes. Lateral variations in compressional- and shear-wave speeds, density, as well as 3D attenuation Q models, topography and fluid-solid coupling are all readily included in both codes. For global simulations, effects due to rotation, ellipticity, the oceans, 3D crustal models, and self-gravitation are additionally included. Both packages provide forward and adjoint functionality suitable for adjoint tomography on high-performance computing architectures. We highlight the most recent release of the global version which includes improved performance, simultaneous MPI runs, OpenCL and CUDA support via an automatic source-to-source transformation library (BOAST), parallel I/O readers and writers for databases using ADIOS and seismograms using the recently developed Adaptable Seismic Data Format (ASDF) with built-in provenance. This makes our spectral-element solvers current state-of-the-art, open-source community codes for high-performance seismic wave propagation on arbitrarily complex 3D models. Together with these solvers, we provide full-waveform inversion tools to image the Earth's interior at unprecedented resolution.

  6. Traceability in Model-Based Testing

    Directory of Open Access Journals (Sweden)

    Mathew George

    2012-11-01

    Full Text Available The growing complexities of software and the demand for shorter time to market are two important challenges that face today’s IT industry. These challenges demand the increase of both productivity and quality of software. Model-based testing is a promising technique for meeting these challenges. Traceability modeling is a key issue and challenge in model-based testing. Relationships between the different models will help to navigate from one model to another, and trace back to the respective requirements and the design model when the test fails. In this paper, we present an approach for bridging the gaps between the different models in model-based testing. We propose relation definition markup language (RDML for defining the relationships between models.

  7. Improved Frequency Fluctuation Model for Spectral Line Shape Calculations in Fusion Plasmas

    International Nuclear Information System (INIS)

    Ferri, S.; Calisti, A.; Mosse, C.; Talin, B.; Lisitsa, V.

    2010-01-01

    A very fast method to calculate spectral line shapes emitted by plasmas accounting for charge particle dynamics and effects of an external magnetic field is proposed. This method relies on a new formulation of the Frequency Fluctuation Model (FFM), which yields to an expression of the dynamic line profile as a functional of the static distribution function of frequencies. This highly efficient formalism, not limited to hydrogen-like systems, allows to calculate pure Stark and Stark-Zeeman line shapes for a wide range of density, temperature and magnetic field values, which is of importance in plasma physics and astrophysics. Various applications of this method are presented for conditions related to fusion plasmas.

  8. Towards realistic modelling of spectral line formation - lessons learnt from red giants

    Science.gov (United States)

    Lind, Karin

    2015-08-01

    Many decades of quantitative spectroscopic studies of red giants have revealed much about the formation histories and interlinks between the main components of the Galaxy and its satellites. Telescopes and instrumentation are now able to deliver high-resolution data of superb quality for large stellar samples and Galactic archaeology has entered a new era. At the same time, we have learnt how simplifying physical assumptions in the modelling of spectroscopic data can bias the interpretations, in particular one-dimensional homogeneity and local thermodynamic equilibrium (LTE). I will present lessons learnt so far from non-LTE spectral line formation in 3D radiation-hydrodynamic atmospheres of red giants, the smaller siblings of red supergiants.

  9. Quantitative Spectral Radiance Measurements in the HYMETS Arc Jet

    Science.gov (United States)

    Danehy, Paul M.; Hires, Drew V.; Johansen, Craig T.; Bathel, Brett F.; Jones, Stephen B.; Gragg, Jeffrey G.; Splinter, Scott C.

    2012-01-01

    Calibrated spectral radiance measurements of gaseous emission spectra have been obtained from the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. A fiber-optic coupled spectrometer collected natural luminosity from the flow. Spectral radiance measurements are reported between 340 and 1000 nm. Both Silicon Carbide (SiC) and Phenolic Impregnated Carbon Ablator (PICA) samples were placed in the flow. Test gases studied included a mostly-N2 atmosphere (95% nitrogen, 5% argon), a simulated Earth Air atmosphere (75% nitrogen, 20% oxygen, 5% argon) and a simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon). The bulk enthalpy of the flow was varied as was the location of the measurement. For the intermediate flow enthalpy tested (20 MJ/kg), emission from the Mars simulant gas was about 10 times higher than the Air flow and 15 times higher than the mostly-N2 atmosphere. Shock standoff distances were estimated from the spectral radiance measurements. Within-run, run-to-run and day-to-day repeatability of the emission were studied, with significant variations (15-100%) noted.

  10. Fast Spectral Velocity Estimation Using Adaptive Techniques: In-Vivo Results

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jakobsson, Andreas; Udesen, Jesper

    2007-01-01

    Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window(OW) is very sbort. In this paper two adaptive techniques are tested and compared to the averaged perlodogram (Welch) for blood velocity estimation. The Blood Power...... the blood process over slow-time and averaging over depth to find the power spectral density estimate. In this paper, the two adaptive methods are explained, and performance Is assessed in controlled steady How experiments and in-vivo measurements. The three methods were tested on a circulating How rig...... with a blood mimicking fluid flowing in the tube. The scanning section is submerged in water to allow ultrasound data acquisition. Data was recorded using a BK8804 linear array transducer and the RASMUS ultrasound scanner. The controlled experiments showed that the OW could be significantly reduced when...

  11. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  12. Laboratory calibration of density-dependent lines in the extreme ultraviolet spectral region

    Science.gov (United States)

    Lepson, J. K.; Beiersdorfer, P.; Gu, M. F.; Desai, P.; Bitter, M.; Roquemore, L.; Reinke, M. L.

    2012-05-01

    We have been making spectral measurements in the extreme ultraviolet (EUV) from different laboratory sources in order to investigate the electron density dependence of various astrophysically important emission lines and to test the atomic models underlying the diagnostic line ratios. The measurement are being performed at the Livermore EBIT-I electron beam ion trap, the National Spherical Torus Experiment (NSTX) at Princeton, and the Alcator C-Mod tokamak at the Massachusetts Institute of Technology, which together span an electron density of four orders of magnitude and which allow us to test the various models at high and low density limits. Here we present measurements of Fe XXII and Ar XIV, which include new data from an ultra high resolution (λ/Δλ >4000) spectrometer at the EBIT-I facility. We found good agreement between the measurements and modeling calculations for Fe XXII, but poorer agreement for Ar XIV.

  13. Biologically-inspired data decorrelation for hyper-spectral imaging

    Directory of Open Access Journals (Sweden)

    Ghita Ovidiu

    2011-01-01

    Full Text Available Abstract Hyper-spectral data allows the construction of more robust statistical models to sample the material properties than the standard tri-chromatic color representation. However, because of the large dimensionality and complexity of the hyper-spectral data, the extraction of robust features (image descriptors is not a trivial issue. Thus, to facilitate efficient feature extraction, decorrelation techniques are commonly applied to reduce the dimensionality of the hyper-spectral data with the aim of generating compact and highly discriminative image descriptors. Current methodologies for data decorrelation such as principal component analysis (PCA, linear discriminant analysis (LDA, wavelet decomposition (WD, or band selection methods require complex and subjective training procedures and in addition the compressed spectral information is not directly related to the physical (spectral characteristics associated with the analyzed materials. The major objective of this article is to introduce and evaluate a new data decorrelation methodology using an approach that closely emulates the human vision. The proposed data decorrelation scheme has been employed to optimally minimize the amount of redundant information contained in the highly correlated hyper-spectral bands and has been comprehensively evaluated in the context of non-ferrous material classification

  14. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F; Plessier, R; Till, M; Marie, B; Djavdan, E [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1997-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  15. A comparison between weighted sum of gray and spectral CK radiation models for heat transfer calculations in furnaces

    Energy Technology Data Exchange (ETDEWEB)

    El Ammouri, F.; Plessier, R.; Till, M.; Marie, B.; Djavdan, E. [Air Liquide Centre de Recherche Claude Delorme, 78 - Jouy-en-Josas (France)

    1996-12-31

    Coupled reactive fluid dynamics and radiation calculations are performed in air and oxy-fuel furnaces using two gas radiative property models. The first one is the weighted sum of gray gases model (WSGG) and the second one is the correlated-k (CK) method which is a spectral model based on the cumulative distribution function of the absorption coefficient inside a narrow band. The WSGG model, generally used in industrial configurations, is less time consuming than the CK model. However it is found that it over-predicts radiative fluxes by about 12 % in industrial furnaces. (authors) 27 refs.

  16. Road simulation for four-wheel vehicle whole input power spectral density

    Science.gov (United States)

    Wang, Jiangbo; Qiang, Baomin

    2017-05-01

    As the vibration of running vehicle mainly comes from road and influence vehicle ride performance. So the road roughness power spectral density simulation has great significance to analyze automobile suspension vibration system parameters and evaluate ride comfort. Firstly, this paper based on the mathematical model of road roughness power spectral density, established the integral white noise road random method. Then in the MATLAB/Simulink environment, according to the research method of automobile suspension frame from simple two degree of freedom single-wheel vehicle model to complex multiple degrees of freedom vehicle model, this paper built the simple single incentive input simulation model. Finally the spectrum matrix was used to build whole vehicle incentive input simulation model. This simulation method based on reliable and accurate mathematical theory and can be applied to the random road simulation of any specified spectral which provides pavement incentive model and foundation to vehicle ride performance research and vibration simulation.

  17. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Theoretical description of spectral line profiles of parent molecules in cometary comae

    International Nuclear Information System (INIS)

    Hu, Hong-Yao; Larson, H.P.; Hsieh, K.C.

    1991-01-01

    The present overview of cometary spectral-line profiles obtainable through advancements in high-resolution spectroscopic studies, which allow the retrieval of coma kinematic properties from velocity-resolved spectral-line profiles, incorporates the most important gas dynamic processes into an outflow model which is tailored to the interpretation of spectroscopic observations of parent molecules. The model is then used to study the influence on parent-molecule spectral line profile formation of the field-of-view, the expansion velocity, the kinetic temperature, and the anisotropic outflow distributions. 31 refs

  19. A search for spectral lines in gamma-ray bursts using TGRS

    International Nuclear Information System (INIS)

    Kurczynski, P.; Palmer, D.; Seifert, H.; Teegarden, B. J.; Gehrels, N.; Cline, T. L.; Ramaty, R.; Hurley, K.; Madden, N. W.; Pehl, R. H.

    1998-01-01

    We present the results of an ongoing search for narrow spectral lines in gamma-ray burst data. TGRS, the Transient Gamma-Ray Spectrometer aboard the Wind satellite is a high energy-resolution Ge device. Thus it is uniquely situated among the array of space-based, burst sensitive instruments to look for line features in gamma-ray burst spectra. Our search strategy adopts a two tiered approach. An automated 'quick look' scan searches spectra for statistically significant deviations from the continuum. We analyzed all possible time accumulations of spectra as well as individual spectra for each burst. Follow-up analysis of potential line candidates uses model fitting with F-test and χ 2 tests for statistical significance

  20. Stark width regularities within spectral series of the lithium isoelectronic sequence

    Science.gov (United States)

    Tapalaga, Irinel; Trklja, Nora; Dojčinović, Ivan P.; Purić, Jagoš

    2018-03-01

    Stark width regularities within spectral series of the lithium isoelectronic sequence have been studied in an approach that includes both neutrals and ions. The influence of environmental conditions and certain atomic parameters on the Stark widths of spectral lines has been investigated. This study gives a simple model for the calculation of Stark broadening data for spectral lines within the lithium isoelectronic sequence. The proposed model requires fewer parameters than any other model. The obtained relations were used for predictions of Stark widths for transitions that have not yet been measured or calculated. In the framework of the present research, three algorithms for fast data processing have been made and they enable quality control and provide verification of the theoretically calculated results.

  1. Spectral methods for the detection of network community structure: a comparative analysis

    International Nuclear Information System (INIS)

    Shen, Hua-Wei; Cheng, Xue-Qi

    2010-01-01

    Spectral analysis has been successfully applied to the detection of community structure of networks, respectively being based on the adjacency matrix, the standard Laplacian matrix, the normalized Laplacian matrix, the modularity matrix, the correlation matrix and several other variants of these matrices. However, the comparison between these spectral methods is less reported. More importantly, it is still unclear which matrix is more appropriate for the detection of community structure. This paper answers the question by evaluating the effectiveness of these five matrices against benchmark networks with heterogeneous distributions of node degree and community size. Test results demonstrate that the normalized Laplacian matrix and the correlation matrix significantly outperform the other three matrices at identifying the community structure of networks. This indicates that it is crucial to take into account the heterogeneous distribution of node degree when using spectral analysis for the detection of community structure. In addition, to our surprise, the modularity matrix exhibits very similar performance to the adjacency matrix, which indicates that the modularity matrix does not gain benefits from using the configuration model as a reference network with the consideration of the node degree heterogeneity

  2. Spectral functions from Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Silver, R.N.

    1989-01-01

    In his review, D. Scalapino identified two serious limitations on the application of Quantum Monte Carlo (QMC) methods to the models of interest in High T c Superconductivity (HTS). One is the ''sign problem''. The other is the ''analytic continuation problem'', which is how to extract electron spectral functions from QMC calculations of the imaginary time Green's functions. Through-out this Symposium on HTS, the spectral functions have been the focus for the discussion of normal state properties including the applicability of band theory, Fermi liquid theory, marginal Fermi liquids, and novel non-perturbative states. 5 refs., 1 fig

  3. Trojan Asteroids: Spectral Groups, Volatiles, and Rotational Variation

    Science.gov (United States)

    Emery, J. P.; Takir, D.; Stamper, N. G.; Lucas, M. P.

    2017-12-01

    Trojan asteroids comprise a substantial population of primitive bodies confined to Jupiter's stable Lagrange regions. ecause they likely became trapped in these orbits at the end of the initial phase of planetary formation and subsequent migration, the compositions of Trojans provide unique perspectives on chemical and dynamical processes that shaped the Solar System. Ices and organics are of particular interest for understanding Trojan histories. Published near-infrared (0.7 to 4.0 mm) spectra of Trojans show no absorption bands due to H2O or organics. However, if the Trojan asteroids formed at or beyond their present heliocentric distance of 5.2 AU and never spent significant amounts of time closer to the Sun, they should contain H2O ice. Two VNIR spectral groups exist within the Trojans: 2/3 of large Trojans form a cluster with very red (D-type-like) spectral slopes, while the other 1/3 cluster around less-red (P-type-like) slopes. Visible colors of smaller Trojans suggest that the ratio of red to less-red Trojans decreases with decreasing size, from which Wong and Brown (2015; AJ 150:174) suggest that the interiors of all Trojans are represented by the less-red spectral group. In order to further test the hypothesis that Trojans contain H­2O ice and complex organics and to test the result from visible colors that the spectral group ratio changes with size, we have measured near-infrared (0.8 - 2.5 μm) spectra of small ( 35 to 75 km) Trojans from both swarms using the SpeX spectrograph at the NASA Infrared Telescope Facility (IRTF). We have also measured 2 - 4 μm spectra of several Trojans to search for spectral signatures of H2O and organics. We confirm that the two spectral groups persist to smaller sizes, and we still detect no absorption features that would be diagnostic of composition. The spectrum of two large Trojans show evidence of spectral slope variations with rotation, but spectra of several others do not. We will present the new spectra and

  4. Spectral integration of broadband signals in diotoc and dichotic masking experiments

    NARCIS (Netherlands)

    Langhans, A.; Kohlrausch, A.G.

    1992-01-01

    The method of Gässler [Acustica 4, 408–414 (1954)] was used to measure the audibility of multicomponent signals as a function of their bandwidth against a broadband, white-noise masker. Test signals were composed of 1 to 41 sinusoids with a spectral spacing of 10 Hz and were always spectrally

  5. Coupling of WRF meteorological model to WAM spectral wave model through sea surface roughness at the Balearic Sea: impact on wind and wave forecasts

    Science.gov (United States)

    Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.

    2012-04-01

    Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over sea z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent air flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the sea surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that sea surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer sea surface roughness description. Coupling WRF and WAM is thus a common way to improve the sea surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave interactions. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological processes (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the

  6. THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Fischer, W. J. [Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Ali, B. [Space Science Institute, 4750 Walnut Street, Boulder, CO 80301 (United States); Stutz, A. M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Stanke, T. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Megeath, S. T.; Booker, J. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Osorio, M. [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Hartmann, L.; Calvet, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Poteet, C. A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Allen, L., E-mail: furlan@ipac.caltech.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel , and submillimeter photometry from APEX, our SEDs cover 1.2–870 μ m and sample the peak of the protostellar envelope emission at ∼100 μ m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  7. Spectral Envelope Transformation in Singing Voice for Advanced Pitch Shifting

    Directory of Open Access Journals (Sweden)

    José L. Santacruz

    2016-11-01

    Full Text Available The aim of the present work is to perform a step towards more natural pitch shifting techniques in singing voice for its application in music production and entertainment systems. In this paper, we present an advanced method to achieve natural modifications when applying a pitch shifting process to singing voice by modifying the spectral envelope of the audio excerpt. To this end, an all-pole model has been selected to model the spectral envelope, which is estimated using a constrained non-linear optimization. The analysis of the global variations of the spectral envelope was carried out by identifying changes of the parameters of the model along with the changes of the pitch. With the obtained spectral envelope transformation functions, we applied our pitch shifting scheme to some sustained vowels in order to compare results with the same transformation made by using the Flex Pitch plugin of Logic Pro X and pitch synchronous overlap and add technique (PSOLA. This comparison has been carried out by means of both an objective and a subjective evaluation. The latter was done with a survey open to volunteers on our website.

  8. High spectral resolution infrared observations of V1057 Cygni

    International Nuclear Information System (INIS)

    Hartmann, L.; Kenyon, S.J.

    1987-01-01

    High-resolution near-infrared spectra of V1057 Cygni obtained in 1986 with the KPNO 4-m Fourier transform spectrometer provide support for a previously proposed accretion disk model. The model predicts that the observed rotational broadening of spectral lines should be smaller in the infrared than in the optical. The present observations show that V1057 Cyg rotates more slowly at 2.3 microns than at 6000 A by an amount quantitatively consistent with the simple disk models. The absence of any radial velocity variations in either the infrared or optical spectral regions supports the suggestion that the accreted material arises from a remnant disk of protostellar material. 19 references

  9. Coherence method of identifying signal noise model

    International Nuclear Information System (INIS)

    Vavrin, J.

    1981-01-01

    The noise analysis method is discussed in identifying perturbance models and their parameters by a stochastic analysis of the noise model of variables measured on a reactor. The analysis of correlations is made in the frequency region using coherence analysis methods. In identifying an actual specific perturbance, its model should be determined and recognized in a compound model of the perturbance system using the results of observation. The determination of the optimum estimate of the perturbance system model is based on estimates of related spectral densities which are determined from the spectral density matrix of the measured variables. Partial and multiple coherence, partial transfers, the power spectral densities of the input and output variables of the noise model are determined from the related spectral densities. The possibilities of applying the coherence identification methods were tested on a simple case of a simulated stochastic system. Good agreement was found of the initial analytic frequency filters and the transfers identified. (B.S.)

  10. An expert computer program for classifying stars on the MK spectral classification system

    International Nuclear Information System (INIS)

    Gray, R. O.; Corbally, C. J.

    2014-01-01

    This paper describes an expert computer program (MKCLASS) designed to classify stellar spectra on the MK Spectral Classification system in a way similar to humans—by direct comparison with the MK classification standards. Like an expert human classifier, the program first comes up with a rough spectral type, and then refines that spectral type by direct comparison with MK standards drawn from a standards library. A number of spectral peculiarities, including barium stars, Ap and Am stars, λ Bootis stars, carbon-rich giants, etc., can be detected and classified by the program. The program also evaluates the quality of the delivered spectral type. The program currently is capable of classifying spectra in the violet-green region in either the rectified or flux-calibrated format, although the accuracy of the flux calibration is not important. We report on tests of MKCLASS on spectra classified by human classifiers; those tests suggest that over the entire HR diagram, MKCLASS will classify in the temperature dimension with a precision of 0.6 spectral subclass, and in the luminosity dimension with a precision of about one half of a luminosity class. These results compare well with human classifiers.

  11. An expert computer program for classifying stars on the MK spectral classification system

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R. O. [Department of Physics and Astronomy, Appalachian State University, Boone, NC 26808 (United States); Corbally, C. J. [Vatican Observatory Research Group, Tucson, AZ 85721-0065 (United States)

    2014-04-01

    This paper describes an expert computer program (MKCLASS) designed to classify stellar spectra on the MK Spectral Classification system in a way similar to humans—by direct comparison with the MK classification standards. Like an expert human classifier, the program first comes up with a rough spectral type, and then refines that spectral type by direct comparison with MK standards drawn from a standards library. A number of spectral peculiarities, including barium stars, Ap and Am stars, λ Bootis stars, carbon-rich giants, etc., can be detected and classified by the program. The program also evaluates the quality of the delivered spectral type. The program currently is capable of classifying spectra in the violet-green region in either the rectified or flux-calibrated format, although the accuracy of the flux calibration is not important. We report on tests of MKCLASS on spectra classified by human classifiers; those tests suggest that over the entire HR diagram, MKCLASS will classify in the temperature dimension with a precision of 0.6 spectral subclass, and in the luminosity dimension with a precision of about one half of a luminosity class. These results compare well with human classifiers.

  12. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  13. Sensitive detection of aerosol effect on simulated IASI spectral radiance

    International Nuclear Information System (INIS)

    Quan, X.; Huang, H.-L.; Zhang, L.; Weisz, E.; Cao, X.

    2013-01-01

    Guided by radiative transfer modeling of the effects of dust (aerosol) on satellite thermal infrared radiance by many different imaging radiometers, in this article, we present the aerosol-effected satellite radiative signal changes in the top of atmosphere (TOA). The simulation of TOA radiance for Infrared Atmospheric Sounding Interferometer (IASI) is performed by using the RTTOV fast radiative transfer model. The model computation is carried out with setting representative geographical atmospheric models and typical default aerosol climatological models under clear sky condition. The radiative differences (in units of equivalent black body brightness temperature differences (BTDs)) between simulated radiances without consideration of the impact of aerosol (Aerosol-free) and with various aerosol models (Aerosol-modified) are calculated for the whole IASI spectrum between 3.62 and 15.5 μm. The comparisons of BTDs are performed through 11 aerosol models in 5 classified atmospheric models. The results show that the Desert aerosol model has the most significant impact on IASI spectral simulated radiances than the other aerosol models (Continental, Urban, Maritime types and so on) in Mid-latitude Summer, contributing to the mineral aerosol components contained. The value of BTDs could reach up to 1 K at peak points. The atmospheric window spectral region between 900 and 1100 cm −1 (9.09–11.11 μm) is concentrated after the investigation for the largest values of aerosol-affected radiance differences. BTDs in IASI spectral region between 645 and 1200 cm −1 occupies the largest oscillation and the major part of the whole spectrum. The IASI highest window peak-points channels (such as 9.4 and 10.2 μm) are obtained finally, which are the most sensitive ones to the simulated IASI radiance. -- Highlights: ► Sensitive study of aerosol effect on simulated IASI spectral radiance is performed. ► The aerosol components have influenced IASI spectral regions

  14. SOSPEX, an interactive tool to explore SOFIA spectral cubes

    Science.gov (United States)

    Fadda, Dario; Chambers, Edward T.

    2018-01-01

    We present SOSPEX (SOFIA SPectral EXplorer), an interactive tool to visualize and analyze spectral cubes obtained with the FIFI-LS and GREAT instruments onboard the SOFIA Infrared Observatory. This software package is written in Python 3 and it is available either through Github or Anaconda.Through this GUI it is possible to explore directly the spectral cubes produced by the SOFIA pipeline and archived in the SOFIA Science Archive. Spectral cubes are visualized showing their spatial and spectral dimensions in two different windows. By selecting a part of the spectrum, the flux from the corresponding slice of the cube is visualized in the spatial window. On the other hand, it is possible to define apertures on the spatial window to show the corresponding spectral energy distribution in the spectral window.Flux isocontours can be overlapped to external images in the spatial window while line names, atmospheric transmission, or external spectra can be overplotted on the spectral window. Atmospheric models with specific parameters can be retrieved, compared to the spectra and applied to the uncorrected FIFI-LS cubes in the cases where the standard values give unsatisfactory results. Subcubes can be selected and saved as FITS files by cropping or cutting the original cubes. Lines and continuum can be fitted in the spectral window saving the results in Jyson files which can be reloaded later. Finally, in the case of spatially extended observations, it is possible to compute spectral momenta as a function of the position to obtain velocity dispersion maps or velocity diagrams.

  15. Spectral methods and their implementation to solution of aerodynamic and fluid mechanic problems

    Science.gov (United States)

    Streett, C. L.

    1987-01-01

    Fundamental concepts underlying spectral collocation methods, especially pertaining to their use in the solution of partial differential equations, are outlined. Theoretical accuracy results are reviewed and compared with results from test problems. A number of practical aspects of the construction and use of spectral methods are detailed, along with several solution schemes which have found utility in applications of spectral methods to practical problems. Results from a few of the successful applications of spectral methods to problems of aerodynamic and fluid mechanic interest are then outlined, followed by a discussion of the problem areas in spectral methods and the current research under way to overcome these difficulties.

  16. 3D airborne EM modeling based on the spectral-element time-domain (SETD) method

    Science.gov (United States)

    Cao, X.; Yin, C.; Huang, X.; Liu, Y.; Zhang, B., Sr.; Cai, J.; Liu, L.

    2017-12-01

    In the field of 3D airborne electromagnetic (AEM) modeling, both finite-difference time-domain (FDTD) method and finite-element time-domain (FETD) method have limitations that FDTD method depends too much on the grids and time steps, while FETD requires large number of grids for complex structures. We propose a time-domain spectral-element (SETD) method based on GLL interpolation basis functions for spatial discretization and Backward Euler (BE) technique for time discretization. The spectral-element method is based on a weighted residual technique with polynomials as vector basis functions. It can contribute to an accurate result by increasing the order of polynomials and suppressing spurious solution. BE method is a stable tine discretization technique that has no limitation on time steps and can guarantee a higher accuracy during the iteration process. To minimize the non-zero number of sparse matrix and obtain a diagonal mass matrix, we apply the reduced order integral technique. A direct solver with its speed independent of the condition number is adopted for quickly solving the large-scale sparse linear equations system. To check the accuracy of our SETD algorithm, we compare our results with semi-analytical solutions for a three-layered earth model within the time lapse 10-6-10-2s for different physical meshes and SE orders. The results show that the relative errors for magnetic field B and magnetic induction are both around 3-5%. Further we calculate AEM responses for an AEM system over a 3D earth model in Figure 1. From numerical experiments for both 1D and 3D model, we draw the conclusions that: 1) SETD can deliver an accurate results for both dB/dt and B; 2) increasing SE order improves the modeling accuracy for early to middle time channels when the EM field diffuses fast so the high-order SE can model the detailed variation; 3) at very late time channels, increasing SE order has little improvement on modeling accuracy, but the time interval plays

  17. Investigation of retinal morphology alterations using spectral domain optical coherence tomography in a mouse model of retinal branch and central retinal vein occlusion.

    Directory of Open Access Journals (Sweden)

    Andreas Ebneter

    Full Text Available Retinal vein occlusion is a leading cause of visual impairment. Experimental models of this condition based on laser photocoagulation of retinal veins have been described and extensively exploited in mammals and larger rodents such as the rat. However, few reports exist on the use of this paradigm in the mouse. The objective of this study was to investigate a model of branch and central retinal vein occlusion in the mouse and characterize in vivo longitudinal retinal morphology alterations using spectral domain optical coherence tomography. Retinal veins were experimentally occluded using laser photocoagulation after intravenous application of Rose Bengal, a photo-activator dye enhancing thrombus formation. Depending on the number of veins occluded, variable amounts of capillary dropout were seen on fluorescein angiography. Vascular endothelial growth factor levels were markedly elevated early and peaked at day one. Retinal thickness measurements with spectral domain optical coherence tomography showed significant swelling (p<0.001 compared to baseline, followed by gradual thinning plateauing two weeks after the experimental intervention (p<0.001. Histological findings at day seven correlated with spectral domain optical coherence tomography imaging. The inner layers were predominantly affected by degeneration with the outer nuclear layer and the photoreceptor outer segments largely preserved. The application of this retinal vein occlusion model in the mouse carries several advantages over its use in other larger species, such as access to a vast range of genetically modified animals. Retinal changes after experimental retinal vein occlusion in this mouse model can be non-invasively quantified by spectral domain optical coherence tomography, and may be used to monitor effects of potential therapeutic interventions.

  18. New Spectral Model for Constraining Torus Covering Factors from Broadband X-Ray Spectra of Active Galactic Nuclei

    Science.gov (United States)

    Baloković, M.; Brightman, M.; Harrison, F. A.; Comastri, A.; Ricci, C.; Buchner, J.; Gandhi, P.; Farrah, D.; Stern, D.

    2018-02-01

    The basic unified model of active galactic nuclei (AGNs) invokes an anisotropic obscuring structure, usually referred to as a torus, to explain AGN obscuration as an angle-dependent effect. We present a new grid of X-ray spectral templates based on radiative transfer calculations in neutral gas in an approximately toroidal geometry, appropriate for CCD-resolution X-ray spectra (FWHM ≥ 130 eV). Fitting the templates to broadband X-ray spectra of AGNs provides constraints on two important geometrical parameters of the gas distribution around the supermassive black hole: the average column density and the covering factor. Compared to the currently available spectral templates, our model is more flexible, and capable of providing constraints on the main torus parameters in a wider range of AGNs. We demonstrate the application of this model using hard X-ray spectra from NuSTAR (3–79 keV) for four AGNs covering a variety of classifications: 3C 390.3, NGC 2110, IC 5063, and NGC 7582. This small set of examples was chosen to illustrate the range of possible torus configurations, from disk-like to sphere-like geometries with column densities below, as well as above, the Compton-thick threshold. This diversity of torus properties challenges the simple assumption of a standard geometrically and optically thick toroidal structure commonly invoked in the basic form of the unified model of AGNs. Finding broad consistency between our constraints and those from infrared modeling, we discuss how the approach from the X-ray band complements similar measurements of AGN structures at other wavelengths.

  19. Continental Spatio-temporal Data Analysis with Linear Spectral Mixture Model using FOSS

    Science.gov (United States)

    Kumar, U.; Nemani, R. R.; Ganguly, S.; Milesi, C.; Raja, K. S.; Wang, W.; Votava, P.; Michaelis, A.

    2015-12-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global endmembers of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  20. Continental Spatio-Temporal Data Analysis with Linear Spectral Mixture Model Using FOSS

    Science.gov (United States)

    Kumar, Uttam; Nemani, Ramakrishna; Ganguly, Sangram; Milesi, Cristina; Raja, Kumar; Wang, Weile; Votava, Petr; Michaelis, Andrew

    2015-01-01

    This work demonstrates the development and implementation of a Fully Constrained Least Squares (FCLS) unmixing model developed in C++ programming language with OpenCV package and boost C++ libraries in the NASA Earth Exchange (NEX). Visualization of the results is supported by GRASS GIS and statistical analysis is carried in R in a Linux system environment. FCLS was first tested on computer simulated data with Gaussian noise of various signal-to-noise ratio, and Landsat data of an agricultural scenario and an urban environment using a set of global end members of substrate (soils, sediments, rocks, and non-photosynthetic vegetation), vegetation that includes green photosynthetic plants and dark objects which encompasses absorptive substrate materials, clear water, deep shadows, etc. For the agricultural scenario, a spectrally diverse collection of 11 scenes of Level 1 terrain corrected, cloud free Landsat-5 TM data of Fresno, California, USA were unmixed and the results were validated with the corresponding ground data. To study an urbanized landscape, a clear sky Landsat-5 TM data were unmixed and validated with coincident World View-2 abundance maps (of 2 m spatial resolution) for an area of San Francisco, California, USA. The results were evaluated using descriptive statistics, correlation coefficient, RMSE, probability of success, boxplot and bivariate distribution function. Finally, FCLS was used for sub-pixel land cover analysis of the monthly WELD (Wen-enabled Landsat data) repository from 2008 to 2011 of North America. The abundance maps in conjunction with DMSP-OLS nighttime lights data were used to extract the urban land cover features and analyze their spatial-temporal growth.

  1. Numerical Simulations of Microseisms in a NE Atlantic 3D Geological Model, using a Spectral-Element Method

    Science.gov (United States)

    Ying, Yingzi; Bean, Christopher J.

    2014-05-01

    Ocean-generated microseisms are faint Earth tremors associated with the interaction between ocean water waves and the solid Earth. The microseism noise recorded as low frequency ground vibrations by seismometers contains significant information about the Earth's interior and the sea states. In this work, we first aim to investigate the forward propagation of microseisms in a deep-ocean environment. We employ a 3D North-East Atlantic geological model and simulate wave propagation in a coupled fluid-solid domain, using a spectral-element method. The aim is to investigate the effects of the continental shelf on microseism wave propagation. A second goal of this work is to perform noise simulation to calculate synthetic ensemble averaged cross-correlations of microseism noise signals with time reversal method. The algorithm can relieve computational cost by avoiding time stacking and get cross-correlations between the designated master station and all the remaining slave stations, at one time. The origins of microseisms are non-uniform, so we also test the effect of simulated noise source distribution on the determined cross-correlations.

  2. Irregular conformal block, spectral curve and flow equations

    International Nuclear Information System (INIS)

    Choi, Sang Kwan; Rim, Chaiho; Zhang, Hong

    2016-01-01

    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of irregular conformal block using the spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2) for the gauge theory) and third order (W_3 symmetry, SU(3)) differential equations of a polynomial with finite degree. The conformal and W symmetry generate the flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.

  3. The MARS Photon Processing Cameras for Spectral CT

    CERN Document Server

    Doesburg, Robert Michael Nicholas; Butler, APH; Renaud, PF

    This thesis is about the development of the MARS camera: a stan- dalone portable digital x-ray camera with spectral sensitivity. It is built for use in the MARS Spectral system from the Medipix2 and Medipix3 imaging chips. Photon counting detectors and Spectral CT are introduced, and Medipix is identified as a powerful new imaging device. The goals and strategy for the MARS camera are discussed. The Medipix chip physical, electronic and functional aspects, and ex- perience gained, are described. The camera hardware, firmware and supporting PC software are presented. Reports of experimental work on the process of equalisation from noise, and of tests of charge sum- ming mode, conclude the main body of the thesis. The camera has been actively used since late 2009 in pre-clinical re- search. A list of publications that derive from the use of the camera and the MARS Spectral scanner demonstrates the practical benefits already obtained from this work. Two of the publications are first- author, eight are co-authore...

  4. Spectral colors capture and reproduction based on digital camera

    Science.gov (United States)

    Chen, Defen; Huang, Qingmei; Li, Wei; Lu, Yang

    2018-01-01

    The purpose of this work is to develop a method for the accurate reproduction of the spectral colors captured by digital camera. The spectral colors being the purest color in any hue, are difficult to reproduce without distortion on digital devices. In this paper, we attempt to achieve accurate hue reproduction of the spectral colors by focusing on two steps of color correction: the capture of the spectral colors and the color characterization of digital camera. Hence it determines the relationship among the spectral color wavelength, the RGB color space of the digital camera device and the CIEXYZ color space. This study also provides a basis for further studies related to the color spectral reproduction on digital devices. In this paper, methods such as wavelength calibration of the spectral colors and digital camera characterization were utilized. The spectrum was obtained through the grating spectroscopy system. A photo of a clear and reliable primary spectrum was taken by adjusting the relative parameters of the digital camera, from which the RGB values of color spectrum was extracted in 1040 equally-divided locations. Calculated using grating equation and measured by the spectrophotometer, two wavelength values were obtained from each location. The polynomial fitting method for the camera characterization was used to achieve color correction. After wavelength calibration, the maximum error between the two sets of wavelengths is 4.38nm. According to the polynomial fitting method, the average color difference of test samples is 3.76. This has satisfied the application needs of the spectral colors in digital devices such as display and transmission.

  5. Women's preferences of dynamic spectral imaging colposcopy

    NARCIS (Netherlands)

    Louwers, J.A.; Zaal, Afra; Kocken, M.; Papagiannakis, E.; Meijer, C.J.; Verheijen, RHM

    2015-01-01

    Background: The focus of testing the dynamic spectral imaging (DSI) colposcope has been on the technical characteristics and clinical performance. However, aspects from a patient’s perspective are just as important. Methods: This study was designed as a substudy of the DSI validation study, a

  6. Water vapor transmittance models for narrow bands in the 13 to 19 μm spectral region

    International Nuclear Information System (INIS)

    Weichel, R.L.

    1983-10-01

    The purpose of this report is to document the development of water vapor transmittance models for narrow bands (satellite sensor channels) in the 13 to 19 μm spectral region. The models are the result of research efforts of the author in 1971-1972 while on active duty with the US Air Force at the Air Force Global Weather Central (AFGWC). The models were developed for application in studies involving a temperature profiling sensor system carried aboard the satellites of the Defense Meteorological Satellite Program (DMSP), formerly DAPP. Recently, (Lovill et al., 1978; Luther et al., 1981) the models were implemented for studies concerned with methodologies to retrieve total atmospheric column ozone from measurements of newer DMSP Block 5D series satellite sensors with similar channels (see Nichols, 1975)

  7. TESTING GARCH-X TYPE MODELS

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Søndergaard; Rahbek, Anders

    2017-01-01

    We present novel theory for testing for reduction of GARCH-X type models with an exogenous (X) covariate to standard GARCH type models. To deal with the problems of potential nuisance parameters on the boundary of the parameter space as well as lack of identification under the null, we exploit...... a noticeable property of specific zero-entries in the inverse information of the GARCH-X type models. Specifically, we consider sequential testing based on two likelihood ratio tests and as demonstrated the structure of the inverse information implies that the proposed test neither depends on whether...... the nuisance parameters lie on the boundary of the parameter space, nor on lack of identification. Our general results on GARCH-X type models are applied to Gaussian based GARCH-X models, GARCH-X models with Student's t-distributed innovations as well as the integer-valued GARCH-X (PAR-X) models....

  8. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    International Nuclear Information System (INIS)

    Destainville, N

    2003-01-01

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium

  9. Spectral mimetic least-squares method for div-curl systems

    NARCIS (Netherlands)

    Gerritsma, Marc; Palha, Artur; Lirkov, I.; Margenov, S.

    2018-01-01

    In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test

  10. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Science.gov (United States)

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  11. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    Science.gov (United States)

    Michael C. Dietze; Rodrigo Vargas; Andrew D. Richardson; Paul C. Stoy; Alan G. Barr; Ryan S. Anderson; M. Altaf Arain; Ian T. Baker; T. Andrew Black; Jing M. Chen; Philippe Ciais; Lawrence B. Flanagan; Christopher M. Gough; Robert F. Grant; David Hollinger; R. Cesar Izaurralde; Christopher J. Kucharik; Peter Lafleur; Shugang Liu; Erandathie Lokupitiya; Yiqi Luo; J. William Munger; Changhui Peng; Benjamin Poulter; David T. Price; Daniel M. Ricciuto; William J. Riley; Alok Kumar Sahoo; Kevin Schaefer; Andrew E. Suyker; Hanqin Tian; Christina Tonitto; Hans Verbeeck; Shashi B. Verma; Weifeng Wang; Ensheng Weng

    2011-01-01

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Despite the fact that ecosystems respond to drivers at multiple time scales, most assessments of model performance do not discriminate different time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the...

  12. Phylogenetic Structure of Foliar Spectral Traits in Tropical Forest Canopies

    Directory of Open Access Journals (Sweden)

    Kelly M. McManus

    2016-02-01

    Full Text Available The Spectranomics approach to tropical forest remote sensing has established a link between foliar reflectance spectra and the phylogenetic composition of tropical canopy tree communities vis-à-vis the taxonomic organization of biochemical trait variation. However, a direct relationship between phylogenetic affiliation and foliar reflectance spectra of species has not been established. We sought to develop this relationship by quantifying the extent to which underlying patterns of phylogenetic structure drive interspecific variation among foliar reflectance spectra within three Neotropical canopy tree communities with varying levels of soil fertility. We interpreted the resulting spectral patterns of phylogenetic signal in the context of foliar biochemical traits that may contribute to the spectral-phylogenetic link. We utilized a multi-model ensemble to elucidate trait-spectral relationships, and quantified phylogenetic signal for spectral wavelengths and traits using Pagel’s lambda statistic. Foliar reflectance spectra showed evidence of phylogenetic influence primarily within the visible and shortwave infrared spectral regions. These regions were also selected by the multi-model ensemble as those most important to the quantitative prediction of several foliar biochemical traits. Patterns of phylogenetic organization of spectra and traits varied across sites and with soil fertility, indicative of the complex interactions between the environmental and phylogenetic controls underlying patterns of biodiversity.

  13. Spectral analysis of the electromyograph of the erector spinae muscle before and after a dynamic manual load-lifting test

    Directory of Open Access Journals (Sweden)

    A.C. Cardozo

    2004-07-01

    Full Text Available The aim of the present study was to assess the spectral behavior of the erector spinae muscle during isometric contractions performed before and after a dynamic manual load-lifting test carried out by the trunk in order to determine the capacity of muscle to perform this task. Nine healthy female students participated in the experiment. Their average age, height, and body mass (± SD were 20 ± 1 years, 1.6 ± 0.03 m, and 53 ± 4 kg, respectively. The development of muscle fatigue was assessed by spectral analysis (median frequency and root mean square with time. The test consisted of repeated bending movements from the trunk, starting from a 45º angle of flexion, with the application of approximately 15, 25 and 50% of maximum individual load, to the stand up position. The protocol used proved to be more reliable with loads exceeding 50% of the maximum for the identification of muscle fatigue by electromyography as a function of time. Most of the volunteers showed an increase in root mean square versus time on both the right (N = 7 and the left (N = 6 side, indicating a tendency to become fatigued. With respect to the changes in median frequency of the electromyographic signal, the loads used in this study had no significant effect on either the right or the left side of the erector spinae muscle at this frequency, suggesting that a higher amount and percentage of loads would produce more substantial results in the study of isotonic contractions.

  14. Ultra-wideband spectral analysis using S2 technology

    International Nuclear Information System (INIS)

    Krishna Mohan, R.; Chang, T.; Tian, M.; Bekker, S.; Olson, A.; Ostrander, C.; Khallaayoun, A.; Dollinger, C.; Babbitt, W.R.; Cole, Z.; Reibel, R.R.; Merkel, K.D.; Sun, Y.; Cone, R.; Schlottau, F.; Wagner, K.H.

    2007-01-01

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution (∼25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 μs) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed

  15. Ultra-wideband spectral analysis using S2 technology

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Mohan, R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States)]. E-mail: krishna@spectrum.montana.edu; Chang, T. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Tian, M. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Bekker, S. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Olson, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Ostrander, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Khallaayoun, A. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Dollinger, C. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cole, Z. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Reibel, R.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Merkel, K.D. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); S2 Corporation, Bozeman, MT 59718 (United States); Sun, Y. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Cone, R. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Schlottau, F. [University of Colorado, Boulder, CO 80309 (United States); Wagner, K.H. [University of Colorado, Boulder, CO 80309 (United States)

    2007-11-15

    This paper outlines the efforts to develop an ultra-wideband spectrum analyzer that takes advantage of the broad spectral response and fine spectral resolution ({approx}25 kHz) of spatial-spectral (S2) materials. The S2 material can process the full spectrum of broadband microwave transmissions, with adjustable time apertures (down to 100 {mu}s) and fast update rates (up to 1 kHz). A cryogenically cooled Tm:YAG crystal that operates on microwave signals modulated onto a stabilized optical carrier at 793 nm is used as the core for the spectrum analyzer. Efforts to develop novel component technologies that enhance the performance of the system and meet the application requirements are discussed, including an end-to-end device model for parameter optimization. We discuss the characterization of new ultra-wide bandwidth S2 materials. Detection and post-processing module development including the implementation of a novel spectral recovery algorithm using field programmable gate array technology (FPGA) is also discussed.

  16. Viriato: a Fourier-Hermite spectral code for strongly magnetised fluid-kinetic plasma dynamics

    Science.gov (United States)

    Loureiro, Nuno; Dorland, William; Fazendeiro, Luis; Kanekar, Anjor; Mallet, Alfred; Zocco, Alessandro

    2015-11-01

    We report on the algorithms and numerical methods used in Viriato, a novel fluid-kinetic code that solves two distinct sets of equations: (i) the Kinetic Reduced Electron Heating Model equations [Zocco & Schekochihin, 2011] and (ii) the kinetic reduced MHD (KRMHD) equations [Schekochihin et al., 2009]. Two main applications of these equations are magnetised (Alfvnénic) plasma turbulence and magnetic reconnection. Viriato uses operator splitting to separate the dynamics parallel and perpendicular to the ambient magnetic field (assumed strong). Along the magnetic field, Viriato allows for either a second-order accurate MacCormack method or, for higher accuracy, a spectral-like scheme. Perpendicular to the field Viriato is pseudo-spectral, and the time integration is performed by means of an iterative predictor-corrector scheme. In addition, a distinctive feature of Viriato is its spectral representation of the parallel velocity-space dependence, achieved by means of a Hermite representation of the perturbed distribution function. A series of linear and nonlinear benchmarks and tests are presented, with focus on 3D decaying kinetic turbulence. Work partially supported by Fundação para a Ciência e Tecnologia via Grants UID/FIS/50010/2013 and IF/00530/2013.

  17. Spectral Variation of NLS1 Galaxy PMN J0948+0022

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Four well-sampled Spectral Energy Distributions (SEDs) of PMN J0948+0022 are fitted with the syn+SSC+EC model to derive the physical parameters of its jets and to investigate the spectral variations of its SEDs. A tentative correlation between the peak luminosity (c) and peak frequency (c) of its ...

  18. The Effect of Epidermal Structures on Leaf Spectral Signatures of Ice Plants (Aizoaceae

    Directory of Open Access Journals (Sweden)

    René Hans-Jürgen Heim

    2015-12-01

    Full Text Available Epidermal structures (ES of leaves are known to affect the functional properties and spectral responses. Spectral studies focused mostly on the effect of hairs or wax layers only. We studied a wider range of different ES and their impact on spectral properties. Additionally, we identified spectral regions that allow distinguishing different ES. We used a field spectrometer to measure ex situ leaf spectral responses from 350 nm–2500 nm. A spectral library for 25 species of the succulent family Aizoaceae was assembled. Five functional types were defined based on ES: flat epidermal cell surface, convex to papillary epidermal cell surface, bladder cells, hairs and wax cover. We tested the separability of ES using partial least squares discriminant analysis (PLS-DA based on the spectral data. Subsequently, variable importance (VIP was calculated to identify spectral regions relevant for discriminating our functional types (classes. Classification performance was high, with a kappa value of 0.9 indicating well-separable spectral classes. VIP calculations identified six spectral regions of increased importance for the classification. We confirmed and extended previous findings regarding the visible-near-infrared spectral region. Our experiments also confirmed that epidermal leaf traits can be classified due to clearly distinguishable spectral signatures across species and genera within the Aizoaceae.

  19. Numerical Modeling of 3D Seismic Wave Propagation around Yogyakarta, the Southern Part of Central Java, Indonesia, Using Spectral-Element Method on MPI-GPU Cluster

    Science.gov (United States)

    Sudarmaji; Rudianto, Indra; Eka Nurcahya, Budi

    2018-04-01

    A strong tectonic earthquake with a magnitude of 5.9 Richter scale has been occurred in Yogyakarta and Central Java on May 26, 2006. The earthquake has caused severe damage in Yogyakarta and the southern part of Central Java, Indonesia. The understanding of seismic response of earthquake among ground shaking and the level of building damage is important. We present numerical modeling of 3D seismic wave propagation around Yogyakarta and the southern part of Central Java using spectral-element method on MPI-GPU (Graphics Processing Unit) computer cluster to observe its seismic response due to the earthquake. The homogeneous 3D realistic model is generated with detailed topography surface. The influences of free surface topography and layer discontinuity of the 3D model among the seismic response are observed. The seismic wave field is discretized using spectral-element method. The spectral-element method is solved on a mesh of hexahedral elements that is adapted to the free surface topography and the internal discontinuity of the model. To increase the data processing capabilities, the simulation is performed on a GPU cluster with implementation of MPI (Message Passing Interface).

  20. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  1. Spectrally selective glazings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  2. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners.

    Science.gov (United States)

    Won, Jong Ho; Jones, Gary L; Drennan, Ward R; Jameyson, Elyse M; Rubinstein, Jay T

    2011-10-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an "ideal observer," showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. © 2011 Acoustical Society of America

  3. Evaluation of discrimination measures to characterize spectrally similar leaves of African Savannah trees

    CSIR Research Space (South Africa)

    Dudeni, N

    2009-08-01

    Full Text Available tree species. SDA builds a step-by-step model which evaluates the contribution of each spectral band with respect to the discriminatory power of the model. The discriminatory power of the model is measured by the Wilk’s lambda. A spectral band... therefore enters the model if it, according to the Wilk’s lambda criterion, contributes more to the discrimination of the tree species, while it is removed if it contributes least to the discriminatory power of the model. A discriminant model can generally...

  4. Twisted Spectral Triple for the Standard Model and Spontaneous Breaking of the Grand Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Devastato, Agostino, E-mail: agostino.devastato@na.infn.it; Martinetti, Pierre, E-mail: martinetti@dima.unige.it [Università di Napoli Federico II, Dipartimento di Fisica (Italy)

    2017-03-15

    Grand symmetry models in noncommutative geometry, characterized by a non-trivial action of functions on spinors, have been introduced to generate minimally (i.e. without adding new fermions) and in agreement with the first order condition an extra scalar field beyond the standard model, which both stabilizes the electroweak vacuum and makes the computation of the mass of the Higgs compatible with its experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to cure a technical problem due to the non-trivial action on spinors, that is the appearance together with the extra scalar field of unbounded vectorial terms. The twist makes these terms bounded and - thanks to a twisted version of the first-order condition that we introduce here - also permits to understand the breaking to the standard model as a dynamical process induced by the spectral action, as conjectured in [24]. This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-commutativegeometryofthestandardmodel,withtwoHiggs-likefields: scalar and vector.

  5. Evidence for large temperature fluctuations in quasar accretion disks from spectral variability

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; Agol, Eric [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Dexter, Jason, E-mail: jruan@astro.washington.edu [Departments of Physics and Astronomy, University of California, Berkeley, CA 94720 (United States)

    2014-03-10

    The well-known bluer-when-brighter trend observed in quasar variability is a signature of the complex processes in the accretion disk and can be a probe of the quasar variability mechanism. Using a sample of 604 variable quasars with repeat spectra in the Sloan Digital Sky Survey-I/II (SDSS), we construct difference spectra to investigate the physical causes of this bluer-when-brighter trend. The continuum of our composite difference spectrum is well fit by a power law, with a spectral index in excellent agreement with previous results. We measure the spectral variability relative to the underlying spectra of the quasars, which is independent of any extinction, and compare to model predictions. We show that our SDSS spectral variability results cannot be produced by global accretion rate fluctuations in a thin disk alone. However, we find that a simple model of an inhomogeneous disk with localized temperature fluctuations will produce power-law spectral variability over optical wavelengths. We show that the inhomogeneous disk will provide good fits to our observed spectral variability if the disk has large temperature fluctuations in many independently varying zones, in excellent agreement with independent constraints from quasar microlensing disk sizes, their strong UV spectral continuum, and single-band variability amplitudes. Our results provide an independent constraint on quasar variability models and add to the mounting evidence that quasar accretion disks have large localized temperature fluctuations.

  6. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    Science.gov (United States)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  7. Simplification and Validation of a Spectral-Tensor Model for Turbulence Including Atmospheric Stability

    Science.gov (United States)

    Chougule, Abhijit; Mann, Jakob; Kelly, Mark; Larsen, Gunner C.

    2018-02-01

    A spectral-tensor model of non-neutral, atmospheric-boundary-layer turbulence is evaluated using Eulerian statistics from single-point measurements of the wind speed and temperature at heights up to 100 m, assuming constant vertical gradients of mean wind speed and temperature. The model has been previously described in terms of the dissipation rate ɛ , the length scale of energy-containing eddies L , a turbulence anisotropy parameter Γ, the Richardson number Ri, and the normalized rate of destruction of temperature variance η _θ ≡ ɛ _θ /ɛ . Here, the latter two parameters are collapsed into a single atmospheric stability parameter z / L using Monin-Obukhov similarity theory, where z is the height above the Earth's surface, and L is the Obukhov length corresponding to Ri,η _θ. Model outputs of the one-dimensional velocity spectra, as well as cospectra of the streamwise and/or vertical velocity components, and/or temperature, and cross-spectra for the spatial separation of all three velocity components and temperature, are compared with measurements. As a function of the four model parameters, spectra and cospectra are reproduced quite well, but horizontal temperature fluxes are slightly underestimated in stable conditions. In moderately unstable stratification, our model reproduces spectra only up to a scale ˜ 1 km. The model also overestimates coherences for vertical separations, but is less severe in unstable than in stable cases.

  8. Testing homogeneity in Weibull-regression models.

    Science.gov (United States)

    Bolfarine, Heleno; Valença, Dione M

    2005-10-01

    In survival studies with families or geographical units it may be of interest testing whether such groups are homogeneous for given explanatory variables. In this paper we consider score type tests for group homogeneity based on a mixing model in which the group effect is modelled as a random variable. As opposed to hazard-based frailty models, this model presents survival times that conditioned on the random effect, has an accelerated failure time representation. The test statistics requires only estimation of the conventional regression model without the random effect and does not require specifying the distribution of the random effect. The tests are derived for a Weibull regression model and in the uncensored situation, a closed form is obtained for the test statistic. A simulation study is used for comparing the power of the tests. The proposed tests are applied to real data sets with censored data.

  9. Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Jinkui Liu

    2012-01-01

    Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.

  10. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  11. Bounding spectral gaps of Markov chains: a novel exact multi-decomposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Destainville, N [Laboratoire de Physique Theorique - IRSAMC, CNRS/Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2003-04-04

    We propose an exact technique to calculate lower bounds of spectral gaps of discrete time reversible Markov chains on finite state sets. Spectral gaps are a common tool for evaluating convergence rates of Markov chains. As an illustration, we successfully use this technique to evaluate the 'absorption time' of the 'Backgammon model', a paradigmatic model for glassy dynamics. We also discuss the application of this technique to the 'contingency table problem', a notoriously difficult problem from probability theory. The interest of this technique is that it connects spectral gaps, which are quantities related to dynamics, with static quantities, calculated at equilibrium.

  12. SNSEDextend: SuperNova Spectral Energy Distributions extrapolation toolkit

    Science.gov (United States)

    Pierel, Justin D. R.; Rodney, Steven A.; Avelino, Arturo; Bianco, Federica; Foley, Ryan J.; Friedman, Andrew; Hicken, Malcolm; Hounsell, Rebekah; Jha, Saurabh W.; Kessler, Richard; Kirshner, Robert; Mandel, Kaisey; Narayan, Gautham; Filippenko, Alexei V.; Scolnic, Daniel; Strolger, Louis-Gregory

    2018-05-01

    SNSEDextend extrapolates core-collapse and Type Ia Spectral Energy Distributions (SEDs) into the UV and IR for use in simulations and photometric classifications. The user provides a library of existing SED templates (such as those in the authors' SN SED Repository) along with new photometric constraints in the UV and/or NIR wavelength ranges. The software then extends the existing template SEDs so their colors match the input data at all phases. SNSEDextend can also extend the SALT2 spectral time-series model for Type Ia SN for a "first-order" extrapolation of the SALT2 model components, suitable for use in survey simulations and photometric classification tools; as the code does not do a rigorous re-training of the SALT2 model, the results should not be relied on for precision applications such as light curve fitting for cosmology.

  13. Two hierarchies of integrable lattice equations associated with a discrete matrix spectral problem

    International Nuclear Information System (INIS)

    Li Xinyue; Xu Xixiang; Zhao Qiulan

    2008-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice models are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws of the positive hierarchy, then, the integrable coupling systems of the positive hierarchy are derived from enlarging Lax pair

  14. On the classification of the spectrally stable standing waves of the Hartree problem

    Science.gov (United States)

    Georgiev, Vladimir; Stefanov, Atanas

    2018-05-01

    We consider the fractional Hartree model, with general power non-linearity and arbitrary spatial dimension. We construct variationally the "normalized" solutions for the corresponding Choquard-Pekar model-in particular a number of key properties, like smoothness and bell-shapedness are established. As a consequence of the construction, we show that these solitons are spectrally stable as solutions to the time-dependent Hartree model. In addition, we analyze the spectral stability of the Moroz-Van Schaftingen solitons of the classical Hartree problem, in any dimensions and power non-linearity. A full classification is obtained, the main conclusion of which is that only and exactly the "normalized" solutions (which exist only in a portion of the range) are spectrally stable.

  15. Bumblebees (Bombus terrestris) and honeybees (Apis mellifera) prefer similar colours of higher spectral purity over trained colours.

    Science.gov (United States)

    Rohde, Katja; Papiorek, Sarah; Lunau, Klaus

    2013-03-01

    Differences in the concentration of pigments as well as their composition and spatial arrangement cause intraspecific variation in the spectral signature of flowers. Known colour preferences and requirements for flower-constant foraging bees predict different responses to colour variability. In experimental settings, we simulated small variations of unicoloured petals and variations in the spatial arrangement of colours within tricoloured petals using artificial flowers and studied their impact on the colour choices of bumblebees and honeybees. Workers were trained to artificial flowers of a given colour and then given the simultaneous choice between three test colours: either the training colour, one colour of lower and one of higher spectral purity, or the training colour, one colour of lower and one of higher dominant wavelength; in all cases the perceptual contrast between the training colour and the additional test colours was similarly small. Bees preferred artificial test flowers which resembled the training colour with the exception that they preferred test colours with higher spectral purity over trained colours. Testing the behaviour of bees at artificial flowers displaying a centripetal or centrifugal arrangement of three equally sized colours with small differences in spectral purity, bees did not prefer any type of artificial flowers, but preferentially choose the most spectrally pure area for the first antenna contact at both types of artificial flowers. Our results indicate that innate preferences for flower colours of high spectral purity in pollinators might exert selective pressure on the evolution of flower colours.

  16. A fully-coupled discontinuous Galerkin spectral element method for two-phase flow in petroleum reservoirs

    Science.gov (United States)

    Taneja, Ankur; Higdon, Jonathan

    2018-01-01

    A high-order spectral element discontinuous Galerkin method is presented for simulating immiscible two-phase flow in petroleum reservoirs. The governing equations involve a coupled system of strongly nonlinear partial differential equations for the pressure and fluid saturation in the reservoir. A fully implicit method is used with a high-order accurate time integration using an implicit Rosenbrock method. Numerical tests give the first demonstration of high order hp spatial convergence results for multiphase flow in petroleum reservoirs with industry standard relative permeability models. High order convergence is shown formally for spectral elements with up to 8th order polynomials for both homogeneous and heterogeneous permeability fields. Numerical results are presented for multiphase fluid flow in heterogeneous reservoirs with complex geometric or geologic features using up to 11th order polynomials. Robust, stable simulations are presented for heterogeneous geologic features, including globally heterogeneous permeability fields, anisotropic permeability tensors, broad regions of low-permeability, high-permeability channels, thin shale barriers and thin high-permeability fractures. A major result of this paper is the demonstration that the resolution of the high order spectral element method may be exploited to achieve accurate results utilizing a simple cartesian mesh for non-conforming geological features. Eliminating the need to mesh to the boundaries of geological features greatly simplifies the workflow for petroleum engineers testing multiple scenarios in the face of uncertainty in the subsurface geology.

  17. Modelling the cosmic spectral energy distribution and extragalactic background light over all time

    Science.gov (United States)

    Andrews, S. K.; Driver, S. P.; Davies, L. J. M.; Lagos, C. d. P.; Robotham, A. S. G.

    2018-02-01

    We present a phenomological model of the cosmic spectral energy distribution (CSED) and the integrated galactic light (IGL) over all cosmic time. This model, based on an earlier model by Driver et al., attributes the cosmic star formation history (CSFH) to two processes - first, chaotic clump accretion and major mergers, resulting in the early-time formation of bulges and secondly, cold gas accretion, resulting in late-time disc formation. Under the assumption of a Universal Chabrier initial mass function, we combine the Bruzual & Charlot stellar libraries, the Charlot & Fall dust attenuation prescription and template spectra for emission by dust and active galactic nuclei to predict the CSED - pre- and post-dust attenuation - and the IGL throughout cosmic time. The phenomological model, as constructed, adopts a number of basic axioms and empirical results and has minimal free parameters. We compare the model output, as well as predictions from the semi-analytic model GALFORM to recent estimates of the CSED out to z = 1. By construction, our empirical model reproduces the full energy output of the Universe from the ultraviolet to the far-infrared extremely well. We use the model to derive predictions of the stellar and dust mass densities, again finding good agreement. We find that GALFORM predicts the CSED for z < 0.3 in good agreement with the observations. This agreement becomes increasingly poor towards z = 1, when the model CSED is ˜50 per cent fainter. The latter is consistent with the model underpredicting the CSFH. As a consequence, GALFORM predicts a ˜30 per cent fainter IGL.

  18. Hybrid Spectral Unmixing: Using Artificial Neural Networks for Linear/Non-Linear Switching

    Directory of Open Access Journals (Sweden)

    Asmau M. Ahmed

    2017-07-01

    Full Text Available Spectral unmixing is a key process in identifying spectral signature of materials and quantifying their spatial distribution over an image. The linear model is expected to provide acceptable results when two assumptions are satisfied: (1 The mixing process should occur at macroscopic level and (2 Photons must interact with single material before reaching the sensor. However, these assumptions do not always hold and more complex nonlinear models are required. This study proposes a new hybrid method for switching between linear and nonlinear spectral unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained with parameters within a window of the pixel under consideration. These parameters are computed to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance, Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component Analysis while the abundances were estimated using the method identified by the neural networks (Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear Mixing Model or Generalized Bilinear Model. Results show that the hybrid method performs better than each of the individual techniques with high overall accuracy, while the abundance estimation error is significantly lower than that obtained using the individual methods. Experiments on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid switch method is efficient for solving spectral unmixing of hyperspectral images as compared to individual algorithms.

  19. Krein Spectral Triples and the Fermionic Action

    International Nuclear Information System (INIS)

    Dungen, Koen van den

    2016-01-01

    Motivated by the space of spinors on a Lorentzian manifold, we define Krein spectral triples, which generalise spectral triples from Hilbert spaces to Krein spaces. This Krein space approach allows for an improved formulation of the fermionic action for almost-commutative manifolds. We show by explicit calculation that this action functional recovers the correct Lagrangians for the cases of electrodynamics, the electro-weak theory, and the Standard Model. The description of these examples does not require a real structure, unless one includes Majorana masses, in which case the internal spaces also exhibit a Krein space structure.

  20. Normal spectral emissivity measurement of molten copper using an electromagnetic levitator superimposed with a static magnetic field

    International Nuclear Information System (INIS)

    Kurosawa, Ryo; Inoue, Takamitsu; Baba, Yuya; Sugioka, Ken-ichi; Kubo, Masaki; Tsukada, Takao; Fukuyama, Hiroyuki

    2013-01-01

    The normal spectral emissivity of molten copper was determined in the wavelength range of 780–920 nm and in the temperature range of 1288–1678 K, by directly measuring the radiance emitted by an electromagnetically levitated molten copper droplet under a static magnetic field of 1.5 T. The spectrometer for radiance measurement was calibrated using the relation between the theoretical blackbody radiance from Planck's law and the light intensity of a quasi-blackbody radiation source measured using a spectrometer at a given temperature. As a result, the normal spectral emissivity of molten copper was determined as 0.075 ± 0.011 at a wavelength of 807 nm, and it was found that its temperature dependence is negligible in the entire measurement temperature range tested. In addition, the results of the normal spectral emissivity and its wavelength dependence were discussed, in comparison with those obtained using the Drude free-electron model. (paper)

  1. Constraints on Dark Matter Interactions with Standard Model Particles from Cosmic Microwave Background Spectral Distortions.

    Science.gov (United States)

    Ali-Haïmoud, Yacine; Chluba, Jens; Kamionkowski, Marc

    2015-08-14

    We propose a new method to constrain elastic scattering between dark matter (DM) and standard model particles in the early Universe. Direct or indirect thermal coupling of nonrelativistic DM with photons leads to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB), the amplitude of which can be as large as a few times the DM-to-photon-number ratio. We compute CMB spectral distortions due to DM-proton, DM-electron, and DM-photon scattering for generic energy-dependent cross sections and DM mass m_{χ}≳1 keV. Using Far-Infrared Absolute Spectrophotometer measurements, we set constraints on the cross sections for m_{χ}≲0.1 MeV. In particular, for energy-independent scattering we obtain σ_{DM-proton}≲10^{-24} cm^{2} (keV/m_{χ})^{1/2}, σ_{DM-electron}≲10^{-27} cm^{2} (keV/m_{χ})^{1/2}, and σ_{DM-photon}≲10^{-39} cm^{2} (m_{χ}/keV). An experiment with the characteristics of the Primordial Inflation Explorer would extend the regime of sensitivity up to masses m_{χ}~1 GeV.

  2. Spectral design flexibility of LED brings better life

    Science.gov (United States)

    Ou, Haiyan; Corell, Dennis; Ou, Yiyu; Poulsen, Peter B.; Dam-Hansen, Carsten; Petersen, Paul-Michael

    2012-03-01

    Light-emitting diodes (LEDs) are penetrating into the huge market of general lighting because they are energy saving and environmentally friendly. The big advantage of LED light sources, compared to traditional incandescent lamps and fluorescent light tubes, is the flexible spectral design to make white light using different color mixing schemes. The spectral design flexibility of white LED light sources will promote them for novel applications to improve the life quality of human beings. As an initial exploration to make use of the spectral design flexibility, we present an example: 'no blue' white LED light source for sufferers of disease Porphyria. An LED light source prototype, made of high brightness commercial LEDs applying an optical filter, was tested by a patient suffering from Porphyria. Preliminary results have shown that the sufferer could withstand the light source for much longer time than the standard light source. At last future perspectives on spectral design flexibility of LED light sources improving human being's life will be discussed, with focus on the light and health. The good health is ensured by the spectrum optimized so that vital hormones (melatonin and serotonin) are produced during times when they support human daily rhythm.

  3. An experiment with spectral analysis of emotional speech affected by orthodontic appliances

    Science.gov (United States)

    Přibil, Jiří; Přibilová, Anna; Ďuračková, Daniela

    2012-11-01

    The contribution describes the effect of the fixed and removable orthodontic appliances on spectral properties of emotional speech. Spectral changes were analyzed and evaluated by spectrograms and mean Welch’s periodograms. This alternative approach to the standard listening test enables to obtain objective comparison based on statistical analysis by ANOVA and hypothesis tests. Obtained results of analysis performed on short sentences of a female speaker in four emotional states (joyous, sad, angry, and neutral) show that, first of all, the removable orthodontic appliance affects the spectrograms of produced speech.

  4. Spectacle and SpecViz: New Spectral Analysis and Visualization Tools

    Science.gov (United States)

    Earl, Nicholas; Peeples, Molly; JDADF Developers

    2018-01-01

    A new era of spectroscopic exploration of our universe is being ushered in with advances in instrumentation and next-generation space telescopes. The advent of new spectroscopic instruments has highlighted a pressing need for tools scientists can use to analyze and explore these new data. We have developed Spectacle, a software package for analyzing both synthetic spectra from hydrodynamic simulations as well as real COS data with an aim of characterizing the behavior of the circumgalactic medium. It allows easy reduction of spectral data and analytic line generation capabilities. Currently, the package is focused on automatic determination of absorption regions and line identification with custom line list support, simultaneous line fitting using Voigt profiles via least-squares or MCMC methods, and multi-component modeling of blended features. Non-parametric measurements, such as equivalent widths, delta v90, and full-width half-max are available. Spectacle also provides the ability to compose compound models used to generate synthetic spectra allowing the user to define various LSF kernels, uncertainties, and to specify sampling.We also present updates to the visualization tool SpecViz, developed in conjunction with the JWST data analysis tools development team, to aid in the exploration of spectral data. SpecViz is an open source, Python-based spectral 1-D interactive visualization and analysis application built around high-performance interactive plotting. It supports handling general and instrument-specific data and includes advanced tool-sets for filtering and detrending one-dimensional data, along with the ability to isolate absorption regions using slicing and manipulate spectral features via spectral arithmetic. Multi-component modeling is also possible using a flexible model fitting tool-set that supports custom models to be used with various fitting routines. It also features robust user extensions such as custom data loaders and support for user

  5. Leak detection in pipelines through spectral analysis of pressure signals

    Directory of Open Access Journals (Sweden)

    Souza A.L.

    2000-01-01

    Full Text Available The development and test of a technique for leak detection in pipelines is presented. The technique is based on the spectral analysis of pressure signals measured in pipeline sections where the formation of stationary waves is favoured, allowing leakage detection during the start/stop of pumps. Experimental tests were performed in a 1250 m long pipeline for various operational conditions of the pipeline (liquid flow rate and leakage configuration. Pressure transients were obtained by four transducers connected to a PC computer. The obtained results show that the spectral analysis of pressure transients, together with the knowledge of reflection points provide a simple and efficient way of identifying leaks during the start/stop of pumps in pipelines.

  6. SDP_mharwit_1: Demonstration of HIFI Linear Polarization Analysis of Spectral Features

    Science.gov (United States)

    Harwit, M.

    2010-03-01

    We propose to observe the polarization of the 621 GHz water vapor maser in VY Canis Majoris to demonstrate the capability of HIFI to make polarization observations of Far-Infrared/Submillimeter spectral lines. The proposed Demonstration Phase would: - Show that HIFI is capable of interesting linear polarization measurements of spectral lines; - Test out the highest spectral resolving power to sort out closely spaced Doppler components; - Determine whether the relative intensities predicted by Neufeld and Melnick are correct; - Record the degree and direction of linear polarization for the closely-Doppler shifted peaks.

  7. Basis material decomposition in spectral CT using a semi-empirical, polychromatic adaption of the Beer-Lambert model

    Science.gov (United States)

    Ehn, S.; Sellerer, T.; Mechlem, K.; Fehringer, A.; Epple, M.; Herzen, J.; Pfeiffer, F.; Noël, P. B.

    2017-01-01

    Following the development of energy-sensitive photon-counting detectors using high-Z sensor materials, application of spectral x-ray imaging methods to clinical practice comes into reach. However, these detectors require extensive calibration efforts in order to perform spectral imaging tasks like basis material decomposition. In this paper, we report a novel approach to basis material decomposition that utilizes a semi-empirical estimator for the number of photons registered in distinct energy bins in the presence of beam-hardening effects which can be termed as a polychromatic Beer-Lambert model. A maximum-likelihood estimator is applied to the model in order to obtain estimates of the underlying sample composition. Using a Monte-Carlo simulation of a typical clinical CT acquisition, the performance of the proposed estimator was evaluated. The estimator is shown to be unbiased and efficient according to the Cramér-Rao lower bound. In particular, the estimator is capable of operating with a minimum number of calibration measurements. Good results were obtained after calibration using less than 10 samples of known composition in a two-material attenuation basis. This opens up the possibility for fast re-calibration in the clinical routine which is considered an advantage of the proposed method over other implementations reported in the literature.

  8. Spectral multitude and spectral dynamics reflect changing conjugation length in single molecules of oligophenylenevinylenes

    KAUST Repository

    Kobayashi, Hiroyuki; Tsuchiya, Kousuke; Ogino, Kenji; Vacha, Martin

    2012-01-01

    Single-molecule study of phenylenevinylene oligomers revealed distinct spectral forms due to different conjugation lengths which are determined by torsional defects. Large spectral jumps between different spectral forms were ascribed to torsional flips of a single phenylene ring. These spectral changes reflect the dynamic nature of electron delocalization in oligophenylenevinylenes and enable estimation of the phenylene torsional barriers. © 2012 The Owner Societies.

  9. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Science.gov (United States)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  10. Model-based security testing

    OpenAIRE

    Schieferdecker, Ina; Großmann, Jürgen; Schneider, Martin

    2012-01-01

    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security...

  11. Crucial test of the Dirac cosmologies

    International Nuclear Information System (INIS)

    Steigman, G.

    1978-01-01

    In a cosmology consistent with the Cosmological Principle (large scale, statistical isotropy and homogeneity of the universe), a Planck spectrum is not preserved as the universe evolves unless the number of photons in a comoving volume is conserved. It is shown that a large class of cosmological models based on Dirac's Large Numbers Hypothesis (LNH) violate this constraint. The observed isotropy and spectral distribution of the microwave background radiation thus provide a crucial test of such cosmologies. After reviewing the LNH, the general evolution of radiation spectra in cosmologies consistent with the cosmological principle is outlined. It is shown that the predicted deviations from a Planck spectrum for Dirac cosmologies (as well as for ''tired-light'' cosmologies) are enormous. The Planckian (or near-Planckian) spectral form for the microwave radiation provides a crucial test, failed by such cosmologies

  12. Spectral density and a family of Dirac operators

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1985-01-01

    The spectral density for a class Dirac operators is investigated by relating its even and odd parts to the Riemann zeta-function and to the eta-invariant by Atiyah, Padoti and Singer. Asymptotic expansions are studied and a 'hidden' supersymmetry is revealed and used to relate the Dirac operator to a supersymmetric quantum mechanics. A general method for the computation of the odd spectral density is developed, and various applications are discussed. In particular the connection to the fermion number and a relation between the odd spectral density and some ratios of Jost functions and relative phase shifts are pointed out. Chiral symmetry breaking is investigated using methods analogous to those applied in the investigation of the fermion number, and related to supersymmetry breaking in the corresponding quantum mechanical model. (orig.)

  13. Pristine Survey : High-Resolution Spectral Analyses of New Metal-poor Stars

    Science.gov (United States)

    Venn, Kim; Starkenburg, Else; Martin, Nicolas; Kielty, Collin; Youakim, Kris; Arnetsen, Anke

    2018-06-01

    The Pristine survey (Starkenburg et al. 2017) is a new and very successful metal-poor star survey. Combining high-quality narrow-band CaHK CFHT/MegaCam photometry with existing broadband photometry from SDSS, then very metal-poor stars have been found as confirmed from low-resolution spectroscopy (Youakim et al. 2017). Furthermore, we have extended this survey towards the Galactic bulge in a pilot program to test the capabilities in the highly crowded and (inhomogeneously) extincted bulge (Arentsen et al. 2018). High resolution spectral follow-up analyses have been initiated at the CFHT with Espadons (Vevolution or changes in the IMF, e.g., carbon enrichment, high [alpha/Fe] ratios vs alpha-challenged stars, and details in the neutron capture element ratios. While these early studies are being carried out using classical model atmospheres and synthetic spectral fitting (Venn et al. 2017, 2018), we are also exploring the use of a neural network for the fast, efficient, and precise determination of these stellar parameters and chemical abundances (e.g., StarNet, Fabbro et al. 2018).

  14. [Review of digital ground object spectral library].

    Science.gov (United States)

    Zhou, Xiao-Hu; Zhou, Ding-Wu

    2009-06-01

    A higher spectral resolution is the main direction of developing remote sensing technology, and it is quite important to set up the digital ground object reflectance spectral database library, one of fundamental research fields in remote sensing application. Remote sensing application has been increasingly relying on ground object spectral characteristics, and quantitative analysis has been developed to a new stage. The present article summarized and systematically introduced the research status quo and development trend of digital ground object reflectance spectral libraries at home and in the world in recent years. Introducing the spectral libraries has been established, including desertification spectral database library, plants spectral database library, geological spectral database library, soil spectral database library, minerals spectral database library, cloud spectral database library, snow spectral database library, the atmosphere spectral database library, rocks spectral database library, water spectral database library, meteorites spectral database library, moon rock spectral database library, and man-made materials spectral database library, mixture spectral database library, volatile compounds spectral database library, and liquids spectral database library. In the process of establishing spectral database libraries, there have been some problems, such as the lack of uniform national spectral database standard and uniform standards for the ground object features as well as the comparability between different databases. In addition, data sharing mechanism can not be carried out, etc. This article also put forward some suggestions on those problems.

  15. Photoreceptor spectral sensitivity in the bumblebee, Bombus impatiens (Hymenoptera: Apidae.

    Directory of Open Access Journals (Sweden)

    Peter Skorupski

    Full Text Available The bumblebee Bombus impatiens is increasingly used as a model in comparative studies of colour vision, or in behavioural studies relying on perceptual discrimination of colour. However, full spectral sensitivity data on the photoreceptor inputs underlying colour vision are not available for B. impatiens. Since most known bee species are trichromatic, with photoreceptor spectral sensitivity peaks in the UV, blue and green regions of the spectrum, data from a related species, where spectral sensitivity measurements have been made, are often applied to B impatiens. Nevertheless, species differences in spectral tuning of equivalent photoreceptor classes may result in peaks that differ by several nm, which may have small but significant effects on colour discrimination ability. We therefore used intracellular recording to measure photoreceptor spectral sensitivity in B. impatiens. Spectral peaks were estimated at 347, 424 and 539 nm for UV, blue and green receptors, respectively, suggesting that this species is a UV-blue-green trichromat. Photoreceptor spectral sensitivity peaks are similar to previous measurements from Bombus terrestris, although there is a significant difference in the peak sensitivity of the blue receptor, which is shifted in the short wave direction by 12-13 nm in B. impatiens compared to B. terrestris.

  16. Synthetic radiation diagnostics in PIConGPU. Integrating spectral detectors into particle-in-cell codes

    Energy Technology Data Exchange (ETDEWEB)

    Pausch, Richard; Burau, Heiko; Huebl, Axel; Steiniger, Klaus [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Technische Universitaet Dresden (Germany); Debus, Alexander; Widera, Rene; Bussmann, Michael [Helmholtz-Zentrum Dresden-Rossendorf (Germany)

    2016-07-01

    We present the in-situ far field radiation diagnostics in the particle-in-cell code PIConGPU. It was developed to close the gap between simulated plasma dynamics and radiation observed in laser plasma experiments. Its predictive capabilities, both qualitative and quantitative, have been tested against analytical models. Now, we apply this synthetic spectral diagnostics to investigate plasma dynamics in laser wakefield acceleration, laser foil irradiation and plasma instabilities. Our method is based on the far field approximation of the Lienard-Wiechert potential and allows predicting both coherent and incoherent radiation spectrally from infrared to X-rays. Its capability to resolve the radiation polarization and to determine the temporal and spatial origin of the radiation enables us to correlate specific spectral signatures with characteristic dynamics in the plasma. Furthermore, its direct integration into the highly-scalable GPU framework of PIConGPU allows computing radiation spectra for thousands of frequencies, hundreds of detector positions and billions of particles efficiently. In this talk we will demonstrate these capabilities on resent simulations of laser wakefield acceleration (LWFA) and high harmonics generation during target normal sheath acceleration (TNSA).

  17. Configuration-seniority spectral distributions in Ni62

    International Nuclear Information System (INIS)

    Spitz, S.; Quesne, C.

    1976-01-01

    Configuration-seniority spectral distributions are used to analyse some properties of Ni 62 , and the results compared with those of shell model. The goodness of the symplectic symmetry is discussed by investigating the distributions with fixed seniority in every orbit

  18. Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model

    Directory of Open Access Journals (Sweden)

    W. H. Swartz

    2012-07-01

    Full Text Available The 11-yr solar cycle in solar spectral irradiance (SSI inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOSCCM. The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3–6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7 in the tropics. The peak zonal mean tropical temperature response using the SORCE SSI is nearly 2 K per 100 units F10.7 – 3 times larger than the simulation using the NRL SSI. The GEOSCCM and the Goddard Space Flight Center (GSFC 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. This is important in that it means that chemistry-transport models should simulate the solar cycle in ozone well, while general circulation models without coupled chemistry will underestimate the temperature response to the solar cycle significantly in the middle atmosphere. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm

  19. Fourier series models through transformation | Omekara | Global ...

    African Journals Online (AJOL)

    As a result, the square transformation which outperforms the others is adopted. Consequently, each of the multiplicative and additive FSA models fitted to the transformed data are then subjected to a test for white noise based on spectral analysis. The result of this test shows that only the multiplicative model is adequate.

  20. Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF

    Science.gov (United States)

    Tang, Jianping; Wang, Shuyu; Niu, Xiaorui; Hui, Pinhong; Zong, Peishu; Wang, Xueyuan

    2017-04-01

    In this study, the impact of the spectral nudging method on regional climate simulation over the Coordinated Regional Climate Downscaling Experiment East Asia (CORDEX-EA) region is investigated using the Weather Research and Forecasting model (WRF). Driven by the ERA-Interim reanalysis, five continuous simulations covering 1989-2007 are conducted by the WRF model, in which four runs adopt the interior spectral nudging with different wavenumbers, nudging variables and nudging coefficients. Model validation shows that WRF has the ability to simulate spatial distributions and temporal variations of the surface climate (air temperature and precipitation) over CORDEX-EA domain. Comparably the spectral nudging technique is effective in improving the model's skill in the following aspects: (1), the simulated biases and root mean square errors of annual mean temperature and precipitation are obviously reduced. The SN3-UVT (spectral nudging with wavenumber 3 in both zonal and meridional directions applied to U, V and T) and SN6 (spectral nudging with wavenumber 6 in both zonal and meridional directions applied to U and V) experiments give the best simulations for temperature and precipitation respectively. The inter-annual and seasonal variances produced by the SN experiments are also closer to the ERA-Interim observation. (2), the application of spectral nudging in WRF is helpful for simulating the extreme temperature and precipitation, and the SN3-UVT simulation shows a clear advantage over the other simulations in depicting both the spatial distributions and inter-annual variances of temperature and precipitation extremes. With the spectral nudging, WRF is able to preserve the variability in the large scale climate information, and therefore adjust the temperature and precipitation variabilities toward the observation.

  1. [Study on spectral detection of green plant target].

    Science.gov (United States)

    Deng, Wei; Zhao, Chun-jiang; He, Xiong-kui; Chen, Li-ping; Zhang, Lu-da; Wu, Guang-wei; Mueller, J; Zhai, Chang-yuan

    2010-08-01

    Weeds grow scatteredly in fields, where many insentient objects exist, for example, withered grasses, dry twig and barriers. In order to improve the precision level of spraying, it is important to study green plant detecting technology. The present paper discussed detecting method of green plant by using spectral recognizing technology, because of the real-time feature of spectral recognition. By analyzing the reflectivity difference between each of the two sides of the "red edge" of the spectrum from plants and surrounding environment, green plant discriminat index (GPDI) is defined as the value which equals the reflectivity ratio at the wavelength of 850 nm divided by the reflectivity ratio at the wavelength of 650 nm. The original spectral data of green plants and the background were measured by using the handhold FieldSpec 3 Spectroradiometer manufactured by ASD Inc. in USA. The spectral data were processed to get the reflectivity of each measured objects and to work out the GPDI thereof as well. The classification model of green plant and its background was built up using decision tree method in order to obtain the threshold of GPDI to distinguish green plants and the background. The threshold of GPDI was chosen as 5.54. The detected object was recognized as green plant when it is GPDI>GPDITH, and vice versa. Through another test, the accuracy rate was verified which was 100% by using the threshold. The authors designed and developed the green plant detector based on single chip microcomputer (SCM) "AT89S51" and photodiode "OPT101" to realize detecting green plants from the background. After passing through two optical filters, the center wavelengths of which are 650 and 850 nm respectively, the reflected light from measured targets was detected by two photodiodes and converted into electrical signals. These analog signals were then converted to digital signals via an analog-to-digital converter (ADS7813) after being amplified by a signal amplifier (OP400

  2. Spectral solution of the inverse Mie problem

    Science.gov (United States)

    Romanov, Andrey V.; Konokhova, Anastasiya I.; Yastrebova, Ekaterina S.; Gilev, Konstantin V.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.; Yurkin, Maxim A.

    2017-10-01

    We developed a fast method to determine size and refractive index of homogeneous spheres from the power Fourier spectrum of their light-scattering patterns (LSPs), measured with the scanning flow cytometer. Specifically, we used two spectral parameters: the location of the non-zero peak and zero-frequency amplitude, and numerically inverted the map from the space of particle characteristics (size and refractive index) to the space of spectral parameters. The latter parameters can be reliably resolved only for particle size parameter greater than 11, and the inversion is unique only in the limited range of refractive index with upper limit between 1.1 and 1.25 (relative to the medium) depending on the size parameter and particular definition of uniqueness. The developed method was tested on two experimental samples, milk fat globules and spherized red blood cells, and resulted in accuracy not worse than the reference method based on the least-square fit of the LSP with the Mie theory. Moreover, for particles with significant deviation from the spherical shape the spectral method was much closer to the Mie-fit result than the estimated uncertainty of the latter. The spectral method also showed adequate results for synthetic LSPs of spheroids with aspect ratios up to 1.4. Overall, we present a general framework, which can be used to construct an inverse algorithm for any other experimental signals.

  3. Evidence of across-channel processing for spectral-ripple discrimination in cochlear implant listeners a

    Science.gov (United States)

    Ho Won, Jong; Jones, Gary L.; Drennan, Ward R.; Jameyson, Elyse M.; Rubinstein, Jay T.

    2011-01-01

    Spectral-ripple discrimination has been used widely for psychoacoustical studies in normal-hearing, hearing-impaired, and cochlear implant listeners. The present study investigated the perceptual mechanism for spectral-ripple discrimination in cochlear implant listeners. The main goal of this study was to determine whether cochlear implant listeners use a local intensity cue or global spectral shape for spectral-ripple discrimination. The effect of electrode separation on spectral-ripple discrimination was also evaluated. Results showed that it is highly unlikely that cochlear implant listeners depend on a local intensity cue for spectral-ripple discrimination. A phenomenological model of spectral-ripple discrimination, as an “ideal observer,” showed that a perceptual mechanism based on discrimination of a single intensity difference cannot account for performance of cochlear implant listeners. Spectral modulation depth and electrode separation were found to significantly affect spectral-ripple discrimination. The evidence supports the hypothesis that spectral-ripple discrimination involves integrating information from multiple channels. PMID:21973363

  4. A new fit-for-purpose model testing framework: Decision Crash Tests

    Science.gov (United States)

    Tolson, Bryan; Craig, James

    2016-04-01

    Decision-makers in water resources are often burdened with selecting appropriate multi-million dollar strategies to mitigate the impacts of climate or land use change. Unfortunately, the suitability of existing hydrologic simulation models to accurately inform decision-making is in doubt because the testing procedures used to evaluate model utility (i.e., model validation) are insufficient. For example, many authors have identified that a good standard framework for model testing called the Klemes Crash Tests (KCTs), which are the classic model validation procedures from Klemeš (1986) that Andréassian et al. (2009) rename as KCTs, have yet to become common practice in hydrology. Furthermore, Andréassian et al. (2009) claim that the progression of hydrological science requires widespread use of KCT and the development of new crash tests. Existing simulation (not forecasting) model testing procedures such as KCTs look backwards (checking for consistency between simulations and past observations) rather than forwards (explicitly assessing if the model is likely to support future decisions). We propose a fundamentally different, forward-looking, decision-oriented hydrologic model testing framework based upon the concept of fit-for-purpose model testing that we call Decision Crash Tests or DCTs. Key DCT elements are i) the model purpose (i.e., decision the model is meant to support) must be identified so that model outputs can be mapped to management decisions ii) the framework evaluates not just the selected hydrologic model but the entire suite of model-building decisions associated with model discretization, calibration etc. The framework is constructed to directly and quantitatively evaluate model suitability. The DCT framework is applied to a model building case study on the Grand River in Ontario, Canada. A hypothetical binary decision scenario is analysed (upgrade or not upgrade the existing flood control structure) under two different sets of model building

  5. Research on oral test modeling based on multi-feature fusion

    Science.gov (United States)

    Shi, Yuliang; Tao, Yiyue; Lei, Jun

    2018-04-01

    In this paper, the spectrum of speech signal is taken as an input of feature extraction. The advantage of PCNN in image segmentation and other processing is used to process the speech spectrum and extract features. And a new method combining speech signal processing and image processing is explored. At the same time of using the features of the speech map, adding the MFCC to establish the spectral features and integrating them with the features of the spectrogram to further improve the accuracy of the spoken language recognition. Considering that the input features are more complicated and distinguishable, we use Support Vector Machine (SVM) to construct the classifier, and then compare the extracted test voice features with the standard voice features to achieve the spoken standard detection. Experiments show that the method of extracting features from spectrograms using PCNN is feasible, and the fusion of image features and spectral features can improve the detection accuracy.

  6. Spectral dimension of elastic Sierpinski gaskets with general elastic forces

    International Nuclear Information System (INIS)

    Liu, S.H.; Liu, A.J.

    1985-01-01

    The spectral dimension is calculated for a Sierpinski gasket with the most general elastic restoring forces allowed by symmetry. The elastic forces consist of bond-stretching and angle-bending components. The spectral dimension is the same as that for the bond-stretching-force (central-force) model. This demonstrates that on the Sierpinski gasket the two types of forces belong to the same universality class

  7. 46 CFR 154.449 - Model test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Model test. 154.449 Section 154.449 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR SELF... § 154.449 Model test. The following analyzed data of a model test of structural elements for independent...

  8. Single nuclear transfer strengths and sum rules in the interacting boson-fermion model and in the spectral averaging theory

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1991-01-01

    In the interacting boson-fermion model of collective nuclei, in the symmetry limits of the model appropriate for vibrational, rotational and γ-unstable nuclei, for one-particle transfer, the selection rules, model predictions for the allowed strengths and comparison of theory with experiment are briefly reviewed. In the spectral-averaging theory, with the specific example of orbit occupancies, the smoothed forms (linear or better ratio of Gaussians) as determined by central limit theorems, how they provide a good criterion for selecting effective interactions and the convolution structure of occupancy densities in huge spaces are described. Complementary information provided by nuclear models and statistical laws is broughtout. (author). 63 refs., 5 figs

  9. A time-spectral approach to numerical weather prediction

    Science.gov (United States)

    Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai

    2018-05-01

    Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.

  10. Transmission spectroscopy with the ACE-FTS infrared spectral atlas of Earth: A model validation and feasibility study

    Science.gov (United States)

    Schreier, Franz; Städt, Steffen; Hedelt, Pascal; Godolt, Mareike

    2018-06-01

    Infrared solar occultation measurements are well established for remote sensing of Earth's atmosphere, and the corresponding primary transit spectroscopy has turned out to be valuable for characterization of extrasolar planets. Our objective is an assessment of the detectability of molecular signatures in Earth's transit spectra. To this end, we take a limb sequence of representative cloud-free transmission spectra recorded by the space-borne ACE-FTS Earth observation mission (Hughes et al., ACE infrared spectral atlases of the Earth's atmosphere, JQSRT 2014) and combine these spectra to the effective height of the atmosphere. These data are compared to spectra modeled with an atmospheric radiative transfer line-by-line infrared code to study the impact of individual molecules, spectral resolution, the choice of auxiliary data, and numerical approximations. Moreover, the study serves as a validation of our infrared radiative transfer code. The largest impact is due to water, carbon dioxide, ozone, methane, nitrous oxide, nitrogen, nitric acid, oxygen, and some chlorofluorocarbons (CFC11 and CFC12). The effect of further molecules considered in the modeling is either marginal or absent. The best matching model has a mean residuum of 0.4 km and a maximum difference of 2 km to the measured effective height. For a quantitative estimate of visibility and detectability we consider the maximum change of the residual spectrum, the relative change of the residual norm, the additional transit depth, and signal-to-noise ratios for a JWST setup. In conclusion, our study provides a list of molecules that are relevant for modeling transmission spectra of Earth-like exoplanets and discusses the feasibility of retrieval.

  11. Calculating spectral direct solar irradiance, diffuse and global in Heredia, Costa Rica

    International Nuclear Information System (INIS)

    Wright, Jaime

    2008-01-01

    A spectral model under conditions of clear skies has described the flow of solar irradiation and is verified experimentally in Heredia, Costa Rica. A description of the model is presented by comparing its results with experimental measurements. The model has calculated the spectral flows of the global solar irradiation, direct and diffuse incident on a horizontal surface. Necessary input data include latitude, altitude, surface albedo as characteristics of a locality, and atmospheric characteristics: turbidity, precipitable water vapor, total ozone content and the optical thickness of a particular subject. The results show satisfactory values. (author) [es

  12. Tree-Based Global Model Tests for Polytomous Rasch Models

    Science.gov (United States)

    Komboz, Basil; Strobl, Carolin; Zeileis, Achim

    2018-01-01

    Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these…

  13. Spectral evolution of active galactic nuclei: A unified description of the X-ray and gamma-ray backgrounds

    International Nuclear Information System (INIS)

    Letter, D.; Boldt, E.

    1982-01-01

    A model for spectral evolution is presented whereby active galactic nuclei (AGN) of the type observed individually have emerged from an earlier stage at zroughly-equal4 in which they are the thermal X-ray sources responsible for most of the comic X-ray background (CXB). We pursue the conjecture that these precursor objects are initially supermassive Schwarzschild black holes with accretion disks radiating near the Eddington luminosity limit. It is noted that after approx.10 8 years these central black holes are spun up to a ''canonical'' Kerr equilibriuim state (a/M = 0.998) and shown how they can lead to spectral evolution involving nonthermal emission extending to gamma-rays, at the expense of reduced thermal disk radiation. A superposition of sources in the precursor stage can thereby account for that major portion of the CXB remaining after the contributions of usual AGN are considered, while a superposition of AGN sources at z<1 can account for the gamima-ray background. Extensive X-ray measurements carried out with the HEAO 1 and HEAO 2 missions, as well as gamma-ray and optical data, are shown to compare favorably with principal features of this model. Several further observational tests are suggested for establishing the validity of this scenario for AGN spectral evolution

  14. 46 CFR 154.431 - Model test.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Model test. 154.431 Section 154.431 Shipping COAST GUARD... Model test. (a) The primary and secondary barrier of a membrane tank, including the corners and joints...(c). (b) Analyzed data of a model test for the primary and secondary barrier of the membrane tank...

  15. Assessment of Spectral and Temporal Resolution in Cochlear Implant Users Using Psychoacoustic Discrimination and Speech Cue Categorization.

    Science.gov (United States)

    Winn, Matthew B; Won, Jong Ho; Moon, Il Joon

    This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of

  16. The Python Spectral Analysis Tool (PySAT): A Powerful, Flexible, Preprocessing and Machine Learning Library and Interface

    Science.gov (United States)

    Anderson, R. B.; Finch, N.; Clegg, S. M.; Graff, T. G.; Morris, R. V.; Laura, J.; Gaddis, L. R.

    2017-12-01

    Machine learning is a powerful but underutilized approach that can enable planetary scientists to derive meaningful results from the rapidly-growing quantity of available spectral data. For example, regression methods such as Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO), can be used to determine chemical concentrations from ChemCam and SuperCam Laser-Induced Breakdown Spectroscopy (LIBS) data [1]. Many scientists are interested in testing different spectral data processing and machine learning methods, but few have the time or expertise to write their own software to do so. We are therefore developing a free open-source library of software called the Python Spectral Analysis Tool (PySAT) along with a flexible, user-friendly graphical interface to enable scientists to process and analyze point spectral data without requiring significant programming or machine-learning expertise. A related but separately-funded effort is working to develop a graphical interface for orbital data [2]. The PySAT point-spectra tool includes common preprocessing steps (e.g. interpolation, normalization, masking, continuum removal, dimensionality reduction), plotting capabilities, and capabilities to prepare data for machine learning such as creating stratified folds for cross validation, defining training and test sets, and applying calibration transfer so that data collected on different instruments or under different conditions can be used together. The tool leverages the scikit-learn library [3] to enable users to train and compare the results from a variety of multivariate regression methods. It also includes the ability to combine multiple "sub-models" into an overall model, a method that has been shown to improve results and is currently used for ChemCam data [4]. Although development of the PySAT point-spectra tool has focused primarily on the analysis of LIBS spectra, the relevant steps and methods are applicable to any spectral data. The

  17. Middle Atmosphere Dynamics with Gravity Wave Interactions in the Numerical Spectral Model: Tides and Planetary Waves

    Science.gov (United States)

    Mayr, Hans G.; Mengel, J. G.; Chan, K. L.; Huang, F. T.

    2010-01-01

    As Lindzen (1981) had shown, small-scale gravity waves (GW) produce the observed reversals of the zonal-mean circulation and temperature variations in the upper mesosphere. The waves also play a major role in modulating and amplifying the diurnal tides (DT) (e.g., Waltersheid, 1981; Fritts and Vincent, 1987; Fritts, 1995a). We summarize here the modeling studies with the mechanistic numerical spectral model (NSM) with Doppler spread parameterization for GW (Hines, 1997a, b), which describes in the middle atmosphere: (a) migrating and non-migrating DT, (b) planetary waves (PW), and (c) global-scale inertio gravity waves. Numerical experiments are discussed that illuminate the influence of GW filtering and nonlinear interactions between DT, PW, and zonal mean variations. Keywords: Theoretical modeling, Middle atmosphere dynamics, Gravity wave interactions, Migrating and non-migrating tides, Planetary waves, Global-scale inertio gravity waves.

  18. Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance

    Directory of Open Access Journals (Sweden)

    R. Román

    2013-01-01

    Full Text Available This paper presents a study of a strong desert dust episode over the Iberian Peninsula, and its effect on the spectral ultraviolet (UV irradiance in Granada, Spain. Remote sensing measurements, forecast models, and synoptic analysis are used to identify a Saharan desert dust outbreak that affected the Iberian Peninsula starting 20 July 2009. Additionally, a Bentham DMc150 spectroradiometer is employed to obtain global, direct and diffuse spectral UV irradiances every 15 minutes in Granada. The desert dust caused a large attenuation of the direct UV irradiance (up to 55%, while the diffuse UV irradiance increased up to 40% at 400 nm. The UVSPEC/LibRadtran radiative transfer model is used to study the spectral dependence of the experimental UV irradiance ratios (ratios of spectral irradiance for the day with the highest aerosol load to that measured in days with low–moderate load. The spectral increase or decrease of the UV direct irradiance ratios depends on a new parameter: a threshold wavelength. The spectral dependence of the UV diffuse irradiance ratio can be explained because under the influence of the intense dust outbreak, the Mie scattering by aerosols at shorter wavelengths is stronger than the Rayleigh scattering by gases. Finally, the sensitivity analysis of the aerosol absorption properties shows a substantial attenuation of UV spectral irradiance with a weak spectral dependence.

  19. The Effects of Spectral Nudging on Arctic Temperature and Precipitation Extremes as Produced by the Pan-Arctic WRF

    Science.gov (United States)

    Glisan, J. M.; Gutowski, W. J.; Higgins, M.; Cassano, J. J.

    2011-12-01

    Pan-Arctic WRF (PAW) simulations produced using the 50-km wr50a domain developed for the fully-coupled Regional Arctic Climate Model (RACM) were found to produce deep atmospheric circulation biases over the northern Pacific Ocean, manifested in pressure, geopotential height, and temperature fields. Various remedies were unsuccessfully tested to correct these large biases, such as modifying the physical domain or using different initial/boundary conditions. Spectral (interior) nudging was introduced as a way of constraining the model to be more consistent with observed behavior. However, such control over numerical model behavior raises concerns over how much nudging may affect unforced variability and extremes. Strong nudging may reduce or filter out extreme events, since the nudging pushes the model toward a relatively smooth, large-scale state. The question then becomes - what is the minimum spectral nudging needed to correct the biases occurring on the RACM domain while not limiting PAW simulation of extreme events? To determine this, case studies were devised, using a six-member PAW ensemble on the RACM grid with varying spectral nudging strength. Two simulations were run, one in the cold season (January 2007) and one in a warm season (July 2007). Precipitation and 2-m temperature fields were extracted from the output and analyzed to determine how changing spectral nudging strength impacts both temporal and spatial temperature and precipitation extremes. The maximum and minimum temperatures at each point from among the ensemble members were examined, on the 95th confidence interval. The maximum and minimums over the simulation period will also be considered. Results suggest that there is a marked lack of sensitivity to the degrees of nudging. Moreover, it appears nudging strength can be considerably smaller than the standard strength and still produce reliably good simulations.

  20. Spectral and spectral-frequency methods of investigating atmosphereless bodies of the Solar system

    International Nuclear Information System (INIS)

    Busarev, Vladimir V; Prokof'eva-Mikhailovskaya, Valentina V; Bochkov, Valerii V

    2007-01-01

    A method of reflectance spectrophotometry of atmosphereless bodies of the Solar system, its specificity, and the means of eliminating basic spectral noise are considered. As a development, joining the method of reflectance spectrophotometry with the frequency analysis of observational data series is proposed. The combined spectral-frequency method allows identification of formations with distinctive spectral features, and estimations of their sizes and distribution on the surface of atmospherelss celestial bodies. As applied to investigations of asteroids 21 Lutetia and 4 Vesta, the spectral frequency method has given us the possibility of obtaining fundamentally new information about minor planets. (instruments and methods of investigation)

  1. Bayesian models based on test statistics for multiple hypothesis testing problems.

    Science.gov (United States)

    Ji, Yuan; Lu, Yiling; Mills, Gordon B

    2008-04-01

    We propose a Bayesian method for the problem of multiple hypothesis testing that is routinely encountered in bioinformatics research, such as the differential gene expression analysis. Our algorithm is based on modeling the distributions of test statistics under both null and alternative hypotheses. We substantially reduce the complexity of the process of defining posterior model probabilities by modeling the test statistics directly instead of modeling the full data. Computationally, we apply a Bayesian FDR approach to control the number of rejections of null hypotheses. To check if our model assumptions for the test statistics are valid for various bioinformatics experiments, we also propose a simple graphical model-assessment tool. Using extensive simulations, we demonstrate the performance of our models and the utility of the model-assessment tool. In the end, we apply the proposed methodology to an siRNA screening and a gene expression experiment.

  2. Model-based testing for software safety

    NARCIS (Netherlands)

    Gurbuz, Havva Gulay; Tekinerdogan, Bedir

    2017-01-01

    Testing safety-critical systems is crucial since a failure or malfunction may result in death or serious injuries to people, equipment, or environment. An important challenge in testing is the derivation of test cases that can identify the potential faults. Model-based testing adopts models of a

  3. SPECTRAL EVOLUTION OF THE 2010 SEPTEMBER GAMMA-RAY FLARE FROM THE CRAB NEBULA

    International Nuclear Information System (INIS)

    Vittorini, V.; Tavani, M.; Donnarumma, I.; Trois, A.; Del Monte, E.; Evangelista, Y.; Lazzarotto, F.; Pacciani, L.; Pucella, G.; Striani, E.; Caraveo, P.; Giuliani, A.; Mereghetti, S.; Pellizzoni, A.; Ferrari, A.; Barbiellini, G.; Bulgarelli, A.; Cattaneo, P. W.; Colafrancesco, S.; Pilia, M.

    2011-01-01

    Strong gamma-ray flares from the Crab Nebula have been recently discovered by AGILE and confirmed by Fermi-LAT. We study here the spectral evolution in the gamma-ray energy range above 50 MeV of the 2010 September flare that was simultaneously detected by AGILE and Fermi-LAT. We revisit the AGILE spectral data and present an emission model based on rapid (within 1 day) acceleration followed by synchrotron cooling. We show that this model successfully explains both the published AGILE and Fermi-LAT spectral data showing a rapid rise and a decay within 2 and 3 days. Our analysis constrains the acceleration timescale and mechanism, the properties of the particle distribution function, and the local magnetic field. The combination of very rapid acceleration, emission well above 100 MeV, and the spectral evolution consistent with synchrotron cooling contradicts the idealized scenario predicting an exponential cutoff at photon energies above 100 MeV. We also consider a variation of our model based on even shorter acceleration and decay timescales, which can be consistent with the published averaged properties.

  4. Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework.

    Science.gov (United States)

    Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian

    2015-05-04

    A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.

  5. Soot and Spectral Radiation Modeling in ECN Spray A and in Engines

    Energy Technology Data Exchange (ETDEWEB)

    Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Ferreyro-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States); Ge, Wenjun [University of California Merced (United States)

    2017-04-03

    The amount of soot formed in a turbulent combustion system is determined by a complex system of coupled nonlinear chemical and physical processes. Different physical subprocesses can dominate, depending on the hydrodynamic and thermochemical environments. Similarly, the relative importance of reabsorption, spectral radiation properties, and molecular gas radiation versus soot radiation varies with thermochemical conditions, and in ways that are difficult to predict for the highly nonhomogeneous in-cylinder mixtures in engines. Here it is shown that transport and mixing play relatively more important roles as rate-determining processes in soot formation at engine-relevant conditions. It is also shown that molecular gas radiation and spectral radiation properties are important for engine-relevant conditions.

  6. Refining comparative proteomics by spectral counting to account for shared peptides and multiple search engines.

    Science.gov (United States)

    Chen, Yao-Yi; Dasari, Surendra; Ma, Ze-Qiang; Vega-Montoto, Lorenzo J; Li, Ming; Tabb, David L

    2012-09-01

    Spectral counting has become a widely used approach for measuring and comparing protein abundance in label-free shotgun proteomics. However, when analyzing complex samples, the ambiguity of matching between peptides and proteins greatly affects the assessment of peptide and protein inventories, differentiation, and quantification. Meanwhile, the configuration of database searching algorithms that assign peptides to MS/MS spectra may produce different results in comparative proteomic analysis. Here, we present three strategies to improve comparative proteomics through spectral counting. We show that comparing spectral counts for peptide groups rather than for protein groups forestalls problems introduced by shared peptides. We demonstrate the advantage and flexibility of this new method in two datasets. We present four models to combine four popular search engines that lead to significant gains in spectral counting differentiation. Among these models, we demonstrate a powerful vote counting model that scales well for multiple search engines. We also show that semi-tryptic searching outperforms tryptic searching for comparative proteomics. Overall, these techniques considerably improve protein differentiation on the basis of spectral count tables.

  7. A spectral mean for random closed curves

    NARCIS (Netherlands)

    M.N.M. van Lieshout (Marie-Colette)

    2016-01-01

    textabstractWe propose a spectral mean for closed sets described by sample points on their boundaries subject to mis-alignment and noise. We derive maximum likelihood estimators for the model and noise parameters in the Fourier domain. We estimate the unknown mean boundary curve by

  8. Auralization of Accelerating Passenger Cars Using Spectral Modeling Synthesis

    Directory of Open Access Journals (Sweden)

    Reto Pieren

    2015-12-01

    Full Text Available While the technique of auralization has been in use for quite some time in architectural acoustics, the application to environmental noise has been discovered only recently. With road traffic noise being the dominant noise source in most countries, particular interest lies in the synthesis of realistic pass-by sounds. This article describes an auralizator for pass-bys of accelerating passenger cars. The key element is a synthesizer that simulates the acoustical emission of different vehicles, driving on different surfaces, under different operating conditions. Audio signals for the emitted tire noise, as well as the propulsion noise are generated using spectral modeling synthesis, which gives complete control of the signal characteristics. The sound of propulsion is synthesized as a function of instantaneous engine speed, engine load and emission angle, whereas the sound of tires is created in dependence of vehicle speed and emission angle. The sound propagation is simulated by applying a series of time-variant digital filters. To obtain the corresponding steering parameters of the synthesizer, controlled experiments were carried out. The tire noise parameters were determined from coast-by measurements of passenger cars with idling engines. To obtain the propulsion noise parameters, measurements at different engine speeds, engine loads and emission angles were performed using a chassis dynamometer. The article shows how, from the measured data, the synthesizer parameters are calculated using audio signal processing.

  9. Convergence of spectral methods for nonlinear conservation laws. Final report

    International Nuclear Information System (INIS)

    Tadmor, E.

    1987-08-01

    The convergence of the Fourier method for scalar nonlinear conservation laws which exhibit spontaneous shock discontinuities is discussed. Numerical tests indicate that the convergence may (and in fact in some cases must) fail, with or without post-processing of the numerical solution. Instead, a new kind of spectrally accurate vanishing viscosity is introduced to augment the Fourier approximation of such nonlinear conservation laws. Using compensated compactness arguments, it is shown that this spectral viscosity prevents oscillations, and convergence to the unique entropy solution follows

  10. Dirac operators and spectral triples for some fractal sets built on curves

    DEFF Research Database (Denmark)

    Christensen, Erik; Ivan, Cristina; Lapidus, Michel L.

    2008-01-01

    A spectral triple is an object which is described using an algebra of operators on a Hilbert space and an unbounded self-adjoint operator, called a Dirac operator. This model may be applied to the study of classical geometrical objects .The article contains a construction of a spectral triple ass...... associated to some classical fractal subsets of the plane, and it is demonstrated that you can read of many classical geometrical structures, such as distance, measure and Hausdorff dimension from the spectral triple....

  11. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  12. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  13. The exponential function expansion of the intra-nodal cross sections for the spectral history gradient correction

    International Nuclear Information System (INIS)

    Cho, J. Y.; Noh, J. M.; Cheong, H. K.; Choo, H. K.

    1998-01-01

    In order to simplify the previous spectral history effect correction based on the polynomial expansion nodal method, a new spectral history effect correction is proposed. The new spectral history correction eliminates four microscopic depletion points out of total 13 depletion points in the previous correction by approximating the group cross sections with exponential function. The neutron flux to homogenize the group cross sections for the correction of the spectral history effect is calculated by the analytic function expansion nodal method in stead of the conventional polynomial expansion nodal method. This spectral history correction model is verified against the three MOX benchmark cores: a checkerboard type, a small core with 25 fuel assemblies, and a large core with 177 fuel assemblies. The benchmark results prove that this new spectral history correction model is superior to the previous one even with the reduced number of the local microscopic depletion points

  14. Observation-Based Modeling for Model-Based Testing

    NARCIS (Netherlands)

    Kanstrén, T.; Piel, E.; Gross, H.G.

    2009-01-01

    One of the single most important reasons that modeling and modelbased testing are not yet common practice in industry is the perceived difficulty of making the models up to the level of detail and quality required for their automated processing. Models unleash their full potential only through

  15. USGS Digital Spectral Library splib06a

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Wise, Richard A.; Livo, K. Eric; Hoefen, Todd M.; Kokaly, Raymond F.; Sutley, Stephen J.

    2007-01-01

    ), one simply needs a diagnostic absorption band. The mapping system uses continuum-removed reference spectral features fitted to features in observed spectra. Spectral features for such algorithms can be obtained from a spectrum of a sample containing large amounts of contaminants, including those that add other spectral features, as long as the shape of the diagnostic feature of interest is not modified. If, however, the data are needed for radiative transfer models to derive mineral abundances from reflectance spectra, then completely uncontaminated spectra are required. This library contains spectra that span a range of quality, with purity indicators to flag spectra for (or against) particular uses. Acquiring spectral measurements and performing sample characterizations for this library has taken about 15 person-years of effort. Software to manage the library and provide scientific analysis capability is provided (Clark, 1980, 1993). A personal computer (PC) reader for the library is also available (Livo and others, 1993). The program reads specpr binary files (Clark, 1980, 1993) and plots spectra. Another program that reads the specpr format is written in IDL (Kokaly, 2005). In our view, an ideal spectral library consists of samples covering a very wide range of materials, has large wavelength range with very high precision, and has enough sample analyses and documentation to establish the quality of the spectra. Time and available resources limit what can be achieved. Ideally, for each mineral, the sample analysis would include X-ray diffraction (XRD), electron microprobe (EM) or X-ray fluorescence (XRF), and petrographic microscopic analyses. For some minerals, such as iron oxides, additional analyses such as Mossbauer would be helpful. We have found that to make the basic spectral measurements, provide XRD, EM or XRF analyses, and microscopic analyses, document the results, and complete an entry of one spectral library sample, all takes about

  16. Testing the Standard Model

    CERN Document Server

    Riles, K

    1998-01-01

    The Large Electron Project (LEP) accelerator near Geneva, more than any other instrument, has rigorously tested the predictions of the Standard Model of elementary particles. LEP measurements have probed the theory from many different directions and, so far, the Standard Model has prevailed. The rigour of these tests has allowed LEP physicists to determine unequivocally the number of fundamental 'generations' of elementary particles. These tests also allowed physicists to ascertain the mass of the top quark in advance of its discovery. Recent increases in the accelerator's energy allow new measurements to be undertaken, measurements that may uncover directly or indirectly the long-sought Higgs particle, believed to impart mass to all other particles.

  17. Spectral stratigraphy

    Science.gov (United States)

    Lang, Harold R.

    1991-01-01

    A new approach to stratigraphic analysis is described which uses photogeologic and spectral interpretation of multispectral remote sensing data combined with topographic information to determine the attitude, thickness, and lithology of strata exposed at the surface. The new stratigraphic procedure is illustrated by examples in the literature. The published results demonstrate the potential of spectral stratigraphy for mapping strata, determining dip and strike, measuring and correlating stratigraphic sequences, defining lithofacies, mapping biofacies, and interpreting geological structures.

  18. Direct Test of the Brown Dwarf Evolutionary Models Through Secondary Eclipse Spectroscopy of LHS 6343

    Science.gov (United States)

    Albert, Loic

    2015-10-01

    As the number of field Brown Dwarfs counts in the thousands, interpreting their physical parameters (mass, temperature, radius, luminosity, age, metallicity) relies as heavily as ever on atmosphere and evolutionary models. Fortunately, models are largely successful in explaining observations (colors, spectral types, luminosity), so they appear well calibrated in a relative sense. However, an absolute model-independent calibration is still lacking. Eclipsing BDs systems are a unique laboratory in this respect but until recently only one such system was known, 2M0535-05 - a very young (1 Gyr) - was identified (62.1+/-1.2 MJup, 0.783+/-0.011 RJup) transiting LHS6343 with a 12.7-day period. We propose to use WFC3 in drift scan mode and 5 HST orbits to determine the spectral type (a proxy for temperature) as well as the near-infrared luminosity of this brown dwarf. We conducted simulations that predict a signal-to-noise ratio ranging between 10 and 30 per resolution element in the peaks of the spectrum. These measurements, coupled with existing luminosity measurements with Spitzer at 3.6 and 4.5 microns, will allow us to trace the spectral energy distribution of the Brown Dwarf and directly calculate its blackbody temperature. It will be the first field Brown Dwarfs with simultaneous measurements of its radius, mass, luminosity and temperature all measured independently of models.

  19. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    Science.gov (United States)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  20. Spectral unmixing: estimating partial abundances

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-01-01

    Full Text Available techniques is complicated when considering very similar spectral signatures. Iron-bearing oxide/hydroxide/sulfate minerals have similar spectral signatures. The study focuses on how could estimates of abundances of spectrally similar iron-bearing oxide...

  1. Comparison of Landsat 8 OLI and Landsat 7 ETM+ for estimating grassland LAI using model inversion and spectral indices: case study of Mpumalanga, South Africa

    CSIR Research Space (South Africa)

    Masemola, Cecilia

    2016-06-01

    Full Text Available the radiative transfer model (RTM) and spectral indices approaches for estimating LAI on rangeland systems in South Africa. The RTM was inverted using artificial neural network (ANN) and lookup table (LUT) algorithms. The accuracy of the models was higher...

  2. Relationship between behavioral and physiological spectral-ripple discrimination.

    Science.gov (United States)

    Won, Jong Ho; Clinard, Christopher G; Kwon, Seeyoun; Dasika, Vasant K; Nie, Kaibao; Drennan, Ward R; Tremblay, Kelly L; Rubinstein, Jay T

    2011-06-01

    Previous studies have found a significant correlation between spectral-ripple discrimination and speech and music perception in cochlear implant (CI) users. This relationship could be of use to clinicians and scientists who are interested in using spectral-ripple stimuli in the assessment and habilitation of CI users. However, previous psychoacoustic tasks used to assess spectral discrimination are not suitable for all populations, and it would be beneficial to develop methods that could be used to test all age ranges, including pediatric implant users. Additionally, it is important to understand how ripple stimuli are processed in the central auditory system and how their neural representation contributes to behavioral performance. For this reason, we developed a single-interval, yes/no paradigm that could potentially be used both behaviorally and electrophysiologically to estimate spectral-ripple threshold. In experiment 1, behavioral thresholds obtained using the single-interval method were compared to thresholds obtained using a previously established three-alternative forced-choice method. A significant correlation was found (r = 0.84, p = 0.0002) in 14 adult CI users. The spectral-ripple threshold obtained using the new method also correlated with speech perception in quiet and noise. In experiment 2, the effect of the number of vocoder-processing channels on the behavioral and physiological threshold in normal-hearing listeners was determined. Behavioral thresholds, using the new single-interval method, as well as cortical P1-N1-P2 responses changed as a function of the number of channels. Better behavioral and physiological performance (i.e., better discrimination ability at higher ripple densities) was observed as more channels added. In experiment 3, the relationship between behavioral and physiological data was examined. Amplitudes of the P1-N1-P2 "change" responses were significantly correlated with d' values from the single-interval behavioral

  3. Project STOP (Spectral Thermal Optimization Program)

    Science.gov (United States)

    Goldhammer, L. J.; Opjorden, R. W.; Goodelle, G. S.; Powe, J. S.

    1977-01-01

    The spectral thermal optimization of solar cell configurations for various solar panel applications is considered. The method of optimization depends upon varying the solar cell configuration's optical characteristics to minimize panel temperatures, maximize power output and decrease the power delta from beginning of life to end of life. Four areas of primary investigation are: (1) testing and evaluation of ultraviolet resistant coverslide adhesives, primarily FEP as an adhesive; (2) examination of solar cell absolute spectral response and corresponding cell manufacturing processes that affect it; (3) experimental work with solar cell manufacturing processes that vary cell reflectance (solar absorptance); and (4) experimental and theoretical studies with various coverslide filter designs, mainly a red rejection filter. The Hughes' solar array prediction program has been modified to aid in evaluating the effect of each of the above four areas on the output of a solar panel in orbit.

  4. Development of an Automated LIBS Analytical Test System Integrated with Component Control and Spectrum Analysis Capabilities

    International Nuclear Information System (INIS)

    Ding Yu; Tian Di; Chen Feipeng; Chen Pengfei; Qiao Shujun; Yang Guang; Li Chunsheng

    2015-01-01

    The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy expandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data. (paper)

  5. Test-driven modeling of embedded systems

    DEFF Research Database (Denmark)

    Munck, Allan; Madsen, Jan

    2015-01-01

    To benefit maximally from model-based systems engineering (MBSE) trustworthy high quality models are required. From the software disciplines it is known that test-driven development (TDD) can significantly increase the quality of the products. Using a test-driven approach with MBSE may have...... a similar positive effect on the quality of the system models and the resulting products and may therefore be desirable. To define a test-driven model-based systems engineering (TD-MBSE) approach, we must define this approach for numerous sub disciplines such as modeling of requirements, use cases...... suggest that our method provides a sound foundation for rapid development of high quality system models....

  6. Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library

    Science.gov (United States)

    Yee, Samuel W.; Petigura, Erik A.; von Braun, Kaspar

    2017-02-01

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution (R ≈ 60,000), high signal-to-noise ratio (S/N ≈ 150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ˜M5-F1 (T eff ≈ 3000-7000 K, R ⋆ ≈ 0.1-16 R ⊙). We also present “Empirical SpecMatch” (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100 K in effective temperature (T eff), 15% in stellar radius (R ⋆), and 0.09 dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ˜K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70 K in T eff, 10% in R ⋆, and 0.12 dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.

  7. Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Samuel W.; Petigura, Erik A. [California Institute of Technology (United States); Von Braun, Kaspar, E-mail: syee@caltech.edu [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2017-02-10

    Classification of stars, by comparing their optical spectra to a few dozen spectral standards, has been a workhorse of observational astronomy for more than a century. Here, we extend this technique by compiling a library of optical spectra of 404 touchstone stars observed with Keck/HIRES by the California Planet Search. The spectra have high resolution ( R ≈ 60,000), high signal-to-noise ratio (S/N ≈ 150/pixel), and are registered onto a common wavelength scale. The library stars have properties derived from interferometry, asteroseismology, LTE spectral synthesis, and spectrophotometry. To address a lack of well-characterized late-K dwarfs in the literature, we measure stellar radii and temperatures for 23 nearby K dwarfs, using modeling of the spectral energy distribution and Gaia parallaxes. This library represents a uniform data set spanning the spectral types ∼M5–F1 ( T {sub eff} ≈ 3000–7000 K, R {sub ⋆} ≈ 0.1–16 R {sub ⊙}). We also present “Empirical SpecMatch” (SpecMatch-Emp), a tool for parameterizing unknown spectra by comparing them against our spectral library. For FGKM stars, SpecMatch-Emp achieves accuracies of 100 K in effective temperature ( T {sub eff}), 15% in stellar radius ( R {sub ⋆}), and 0.09 dex in metallicity ([Fe/H]). Because the code relies on empirical spectra it performs particularly well for stars ∼K4 and later, which are challenging to model with existing spectral synthesizers, reaching accuracies of 70 K in T {sub eff}, 10% in R {sub ⋆}, and 0.12 dex in [Fe/H]. We also validate the performance of SpecMatch-Emp, finding it to be robust at lower spectral resolution and S/N, enabling the characterization of faint late-type stars. Both the library and stellar characterization code are publicly available.

  8. A spectral mean for random closed curves

    NARCIS (Netherlands)

    van Lieshout, Maria Nicolette Margaretha

    2016-01-01

    We propose a spectral mean for closed sets described by sample points on their boundaries subject to mis-alignment and noise. We derive maximum likelihood estimators for the model and noise parameters in the Fourier domain. We estimate the unknown mean boundary curve by back-transformation and

  9. Frequency-chirped readout of spatial-spectral absorption features

    International Nuclear Information System (INIS)

    Chang, Tiejun; Mohan, R. Krishna; Harris, Todd L.; Merkel, Kristian D.; Tian Mingzhen; Babbitt, Wm. Randall

    2004-01-01

    This paper examines the physical mechanisms of reading out spatial-spectral absorption features in an inhomogeneously broadened medium using linear frequency-chirped electric fields. A Maxwell-Bloch model using numerical calculation for angled beams with arbitrary phase modulation is used to simulate the chirped field readout process. The simulation results indicate that any spatial-spectral absorption feature can be read out with a chirped field with the appropriate bandwidth, duration, and intensity. Mapping spectral absorption features into temporal intensity modulations depends on the chirp rate of the field. However, when probing a spatial-spectral grating with a chirped field, a beat signal representing the grating period can be created by interfering the emitted photon echo chirped field with a reference chirped field, regardless of the chirp rate. Comparisons are made between collinear and angled readout configurations. Readout signal strength and spurious signal distortions are investigated as functions of the grating strength and the Rabi frequency of the readout pulse. Using a collinear readout geometry, distortions from optical nutation on the transmitted field and higher-order harmonics are observed, both of which are avoided in an angled beam geometry

  10. Introduction to spectral theory

    CERN Document Server

    Levitan, B M

    1975-01-01

    This monograph is devoted to the spectral theory of the Sturm- Liouville operator and to the spectral theory of the Dirac system. In addition, some results are given for nth order ordinary differential operators. Those parts of this book which concern nth order operators can serve as simply an introduction to this domain, which at the present time has already had time to become very broad. For the convenience of the reader who is not familar with abstract spectral theory, the authors have inserted a chapter (Chapter 13) in which they discuss this theory, concisely and in the main without proofs, and indicate various connections with the spectral theory of differential operators.

  11. Spectral curves of surface reflectance in some Antarctic regions

    International Nuclear Information System (INIS)

    Lupi, A.; Tomasi, C.; Orsini, A.; Cacciari, A.; Vitale, V.; Georgiadis, T.; Casacchia, R.; Salvatori, R.; Salvi, S.

    2001-01-01

    Four surface reflectance models of solar radiation were determined by examining several sets of field measurements taken for clear-sky conditions at various sites in Antarctica. Each model consists of the mean spectral curve of surface reflectance in the 0.25-2.7 μm wavelength range and of the dependence curve of total abedo on the solar elevation angle h, within the range from 5 0 to 55 0 . The TNB (Terra Nova Bay) model refers to a rocky terrain where granites are predominant; the NIS (Nansen Ice Sheet) model to a glacier surface made uneven by sastrugi and streaked by irregular fractures; the HAP (High Altitude Plateau) model to a flat ice surface covered by fresh snow and scored by light sastrugi; and the RIS (Ross Ice Shelf) model to an area covered by the sea ice pack presenting many discontinuities in the reflectance features, due to melt water lakes, puddles, refrozen ice and snow pots. The reflectance curve obtained for the TNB model presents gradually increasing values as wavelength increases through the visible spectral range and almost constant values at infrared wavelengths, giving a total albedo value equal to 0.264 at = 30 0 , which increases by about 80% through the lower range of h and decreases by 12% through the upper range. The reflectance curves of the NIS, HAP and RIS models are all peaked at visible wavelengths and exhibit decreasing values throughout the infrared spectral range, giving values of total albedo equal to 0.464, 0.738 and 0.426 at h 30 0 , respectively. These values were estimated to increase by 8-14% as h decreases from 30 0 to 5 0 and to decrease by 2-4% only as h increases from 30 0 to 55 0

  12. Predicting Soil Organic Carbon at Field Scale Using a National Soil Spectral Library

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2013-01-01

    and the spectral library, 2718 samples) and (iii) three sub-sets selected from the spectral library. In an attempt to improve prediction accuracy, sub-sets of the soil spectral library were made using three different sample selection methods: those geographically closest (84 samples), those with the same landscape......Visible and near infrared diffuse reflectance (vis-NIR) spectroscopy is a low-cost, efficient and accurate soil analysis technique and is thus becoming increasingly popular. Soil spectral libraries are commonly constructed as the basis for estimating soil texture and properties. In this study......, partial least squares regression was used to develop models to predict the soil organic carbon (SOC) content of 35 soil samples from one field using (i) the Danish soil spectral library (2688 samples), (ii) a spiked spectral library (a combination of 30 samples selected from the local area...

  13. Robust emotion recognition using spectral and prosodic features

    CERN Document Server

    Rao, K Sreenivasa

    2013-01-01

    In this brief, the authors discuss recently explored spectral (sub-segmental and pitch synchronous) and prosodic (global and local features at word and syllable levels in different parts of the utterance) features for discerning emotions in a robust manner. The authors also delve into the complementary evidences obtained from excitation source, vocal tract system and prosodic features for the purpose of enhancing emotion recognition performance. Features based on speaking rate characteristics are explored with the help of multi-stage and hybrid models for further improving emotion recognition performance. Proposed spectral and prosodic features are evaluated on real life emotional speech corpus.

  14. PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS

    International Nuclear Information System (INIS)

    Burrows, A.; Spiegel, D. S.; Rauscher, E.; Menou, K.

    2010-01-01

    Using a three-dimensional general circulation model, we create dynamical model atmospheres of a representative transiting giant exoplanet, HD 209458b. We post-process these atmospheres with an opacity code to obtain transit radius spectra during the primary transit. Using a spectral atmosphere code, we integrate over the face of the planet seen by an observer at various orbital phases and calculate light curves as a function of wavelength and for different photometric bands. The products of this study are generic predictions for the phase variations of a zero-eccentricity giant planet's transit spectrum and of its light curves. We find that for these models the temporal variations in all quantities and the ingress/egress contrasts in the transit radii are small (<1.0%). Moreover, we determine that the day/night contrasts and phase shifts of the brightness peaks relative to the ephemeris are functions of photometric band. The J, H, and K bands are shifted most, while the IRAC bands are shifted least. Therefore, we verify that the magnitude of the downwind shift in the planetary 'hot spot' due to equatorial winds is strongly wavelength dependent. The phase and wavelength dependence of light curves, as well as the associated day/night contrasts, can be used to constrain the circulation regime of irradiated giant planets and to probe different pressure levels of a hot Jupiter atmosphere. We posit that though our calculations focus on models of HD 209458b, similar calculations for other transiting hot Jupiters in low-eccentricity orbits should yield transit spectra and light curves of a similar character.

  15. A methodology for spectral wave model evaluation

    Science.gov (United States)

    Siqueira, S. A.; Edwards, K. L.; Rogers, W. E.

    2017-12-01

    climate, omitting the energy in the frequency band between the two lower limits tested can lead to an incomplete characterization of model performance. This methodology was developed to aid in selecting a comparison frequency range that does not needlessly increase computational expense and does not exclude energy to the detriment of model performance analysis.

  16. Investigating cardiorespiratory interaction by cross-spectral analysis of event series

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Pikovsky, Arkady S.; Kurths, Jürgen

    2000-02-01

    The human cardiovascular and respiratory systems interact with each other and show effects of modulation and synchronization. Here we present a cross-spectral technique that specifically considers the event-like character of the heartbeat and avoids typical restrictions of other spectral methods. Using models as well as experimental data, we demonstrate how modulation and synchronization can be distinguished. Finally, we compare the method to traditional techniques and to the analysis of instantaneous phases.

  17. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  18. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  19. Spectral Decomposition Algorithm (SDA)

    Data.gov (United States)

    National Aeronautics and Space Administration — Spectral Decomposition Algorithm (SDA) is an unsupervised feature extraction technique similar to PCA that was developed to better distinguish spectral features in...

  20. Simulating high-frequency seismograms in complicated media: A spectral approach

    International Nuclear Information System (INIS)

    Orrey, J.L.; Archambeau, C.B.

    1993-01-01

    The main attraction of using a spectral method instead of a conventional finite difference or finite element technique for full-wavefield forward modeling in elastic media is the increased accuracy of a spectral approximation. While a finite difference method accurate to second order typically requires 8 to 10 computational grid points to resolve the smallest wavelengths on a 1-D grid, a spectral method that approximates the wavefield by trignometric functions theoretically requires only 2 grid points per minimum wavelength and produces no numerical dispersion from the spatial discretization. The resultant savings in computer memory, which is very significant in 2 and 3 dimensions, allows for larger scale and/or higher frequency simulations