WorldWideScience

Sample records for testing regression models

  1. "A regression error specification test (RESET) for generalized linear models".

    OpenAIRE

    Sunil Sapra

    2005-01-01

    Generalized linear models (GLMs) are generalizations of linear regression models, which allow fitting regression models to response data that follow a general exponential family. GLMs are used widely in social sciences for fitting regression models to count data, qualitative response data and duration data. While a variety of specification tests have been developed for the linear regression model and are routinely applied for testing for misspecification of functional form, omitted variables,...

  2. A test for the parameters of multiple linear regression models ...

    African Journals Online (AJOL)

    A test for the parameters of multiple linear regression models is developed for conducting tests simultaneously on all the parameters of multiple linear regression models. The test is robust relative to the assumptions of homogeneity of variances and absence of serial correlation of the classical F-test. Under certain null and ...

  3. General score tests for regression models incorporating 'robust' variance estimates

    OpenAIRE

    David Clayton; Joanna Howson

    2002-01-01

    Stata incorporates commands for carrying out two of the three general approaches to asymptotic significance testing in regression models, namely likelihood ratio (lrtest) and Wald tests (testparms). However, the third approach, using "score" tests, has no such general implementation. This omission is particularly serious when dealing with "clustered" data using the Huber-White approach. Here the likelihood ratio test is lost, leaving only the Wald test. This has relatively poor asymptotic pro...

  4. Robust Medical Test Evaluation Using Flexible Bayesian Semiparametric Regression Models

    Directory of Open Access Journals (Sweden)

    Adam J. Branscum

    2013-01-01

    Full Text Available The application of Bayesian methods is increasing in modern epidemiology. Although parametric Bayesian analysis has penetrated the population health sciences, flexible nonparametric Bayesian methods have received less attention. A goal in nonparametric Bayesian analysis is to estimate unknown functions (e.g., density or distribution functions rather than scalar parameters (e.g., means or proportions. For instance, ROC curves are obtained from the distribution functions corresponding to continuous biomarker data taken from healthy and diseased populations. Standard parametric approaches to Bayesian analysis involve distributions with a small number of parameters, where the prior specification is relatively straight forward. In the nonparametric Bayesian case, the prior is placed on an infinite dimensional space of all distributions, which requires special methods. A popular approach to nonparametric Bayesian analysis that involves Polya tree prior distributions is described. We provide example code to illustrate how models that contain Polya tree priors can be fit using SAS software. The methods are used to evaluate the covariate-specific accuracy of the biomarker, soluble epidermal growth factor receptor, for discerning lung cancer cases from controls using a flexible ROC regression modeling framework. The application highlights the usefulness of flexible models over a standard parametric method for estimating ROC curves.

  5. Approximate Tests of Hypotheses in Regression Models with Grouped Data

    Science.gov (United States)

    1979-02-01

    in terms of Kolmogoroff -Smirnov statistic in the next section. I 1 1 I t A 4. Simulations Two models have been considered for simulations. Model I. Yuk...Fort Meade, MD 20755 2 Commanding Officer Navy LibraryrnhOffice o Naval Research National Space Technology LaboratoryBranch Office *Attn: Navy

  6. Review Random regression test-day model for the analysis of dairy ...

    African Journals Online (AJOL)

    jannes

    Abstract. Genetic evaluation of dairy cattle using test-day models is now common internationally. In South. Africa a fixed regression test-day model is used to generate breeding values for dairy animals on a routine basis. The model is, however, often criticized for erroneously assuming a standard lactation curve for cows.

  7. Random regression test-day model for the analysis of dairy cattle ...

    African Journals Online (AJOL)

    Genetic evaluation of dairy cattle using test-day models is now common internationally. In South Africa a fixed regression test-day model is used to generate breeding values for dairy animals on a routine basis. The model is, however, often criticized for erroneously assuming a standard lactation curve for cows in similar ...

  8. Random regression test-day model for the analysis of dairy cattle ...

    African Journals Online (AJOL)

    Random regression test-day model for the analysis of dairy cattle production data in South Africa: Creating the framework. EF Dzomba, KA Nephawe, AN Maiwashe, SWP Cloete, M Chimonyo, CB Banga, CJC Muller, K Dzama ...

  9. Artificial regression based LM tests of mis-specification for ordered probit models

    OpenAIRE

    Murphy, Anthony

    1994-01-01

    Lagrange Multiplier (LM) tests for omitted variables, heteroscedasticity, incorrect functional form, and non-normality in the ordered probit model may be readily calculated using an artificial regression. The proposed artificial regression is both convenient and likely to have better small sample properties than the more common outer product gradient (OPG) form.

  10. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Science.gov (United States)

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  11. A comparison of procedures to test for moderators in mixed-effects meta-regression models

    NARCIS (Netherlands)

    Viechtbauer, W.; Lopez-Lopez, Jose Antonio; Sanchez-Meca, Julio; Marin-Martinez, Fulgencio

    2015-01-01

    Several alternative methods are available when testing for moderators in mixed-effects meta-regression models. A simulation study was carried out to compare different methods in terms of their Type I error and statistical power rates. We included the standard (Wald-type) test, the method proposed by

  12. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    Science.gov (United States)

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  13. Notes on power of normality tests of error terms in regression models

    Energy Technology Data Exchange (ETDEWEB)

    Střelec, Luboš [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, Brno, 61300 (Czech Republic)

    2015-03-10

    Normality is one of the basic assumptions in applying statistical procedures. For example in linear regression most of the inferential procedures are based on the assumption of normality, i.e. the disturbance vector is assumed to be normally distributed. Failure to assess non-normality of the error terms may lead to incorrect results of usual statistical inference techniques such as t-test or F-test. Thus, error terms should be normally distributed in order to allow us to make exact inferences. As a consequence, normally distributed stochastic errors are necessary in order to make a not misleading inferences which explains a necessity and importance of robust tests of normality. Therefore, the aim of this contribution is to discuss normality testing of error terms in regression models. In this contribution, we introduce the general RT class of robust tests for normality, and present and discuss the trade-off between power and robustness of selected classical and robust normality tests of error terms in regression models.

  14. Selection of locations of knots for linear splines in random regression test-day models.

    Science.gov (United States)

    Jamrozik, J; Bohmanova, J; Schaeffer, L R

    2010-04-01

    Using spline functions (segmented polynomials) in regression models requires the knowledge of the location of the knots. Knots are the points at which independent linear segments are connected. Optimal positions of knots for linear splines of different orders were determined in this study for different scenarios, using existing estimates of covariance functions and an optimization algorithm. The traits considered were test-day milk, fat and protein yields, and somatic cell score (SCS) in the first three lactations of Canadian Holsteins. Two ranges of days in milk (from 5 to 305 and from 5 to 365) were taken into account. In addition, four different populations of Holstein cows, from Australia, Canada, Italy and New Zealand, were examined with respect to first lactation (305 days) milk only. The estimates of genetic and permanent environmental covariance functions were based on single- and multiple-trait test-day models, with Legendre polynomials of order 4 as random regressions. A differential evolution algorithm was applied to find the best location of knots for splines of orders 4 to 7 and the criterion for optimization was the goodness-of-fit of the spline covariance function. Results indicated that the optimal position of knots for linear splines differed between genetic and permanent environmental effects, as well as between traits and lactations. Different populations also exhibited different patterns of optimal knot locations. With linear splines, different positions of knots should therefore be used for different effects and traits in random regression test-day models when analysing milk production traits.

  15. Flexible survival regression modelling

    DEFF Research Database (Denmark)

    Cortese, Giuliana; Scheike, Thomas H; Martinussen, Torben

    2009-01-01

    Regression analysis of survival data, and more generally event history data, is typically based on Cox's regression model. We here review some recent methodology, focusing on the limitations of Cox's regression model. The key limitation is that the model is not well suited to represent time-varyi...

  16. Testing for constant nonparametric effects in general semiparametric regression models with interactions

    KAUST Repository

    Wei, Jiawei

    2011-07-01

    We consider the problem of testing for a constant nonparametric effect in a general semi-parametric regression model when there is the potential for interaction between the parametrically and nonparametrically modeled variables. The work was originally motivated by a unique testing problem in genetic epidemiology (Chatterjee, et al., 2006) that involved a typical generalized linear model but with an additional term reminiscent of the Tukey one-degree-of-freedom formulation, and their interest was in testing for main effects of the genetic variables, while gaining statistical power by allowing for a possible interaction between genes and the environment. Later work (Maity, et al., 2009) involved the possibility of modeling the environmental variable nonparametrically, but they focused on whether there was a parametric main effect for the genetic variables. In this paper, we consider the complementary problem, where the interest is in testing for the main effect of the nonparametrically modeled environmental variable. We derive a generalized likelihood ratio test for this hypothesis, show how to implement it, and provide evidence that our method can improve statistical power when compared to standard partially linear models with main effects only. We use the method for the primary purpose of analyzing data from a case-control study of colorectal adenoma.

  17. Neoclassical versus Frontier Production Models ? Testing for the Skewness of Regression Residuals

    DEFF Research Database (Denmark)

    Kuosmanen, T; Fosgerau, Mogens

    2009-01-01

    The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose a theoreti......The empirical literature on production and cost functions is divided into two strands. The neoclassical approach concentrates on model parameters, while the frontier approach decomposes the disturbance term to a symmetric noise term and a positively skewed inefficiency term. We propose...... a theoretical justification for the skewness of the inefficiency term, arguing that this skewness is the key testable hypothesis of the frontier approach. We propose to test the regression residuals for skewness in order to distinguish the two competing approaches. Our test builds directly upon the asymmetry...

  18. Developing and testing a global-scale regression model to quantify mean annual streamflow

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  19. A note on Using regression models to analyze randomized trials: asymptotically valid hypothesis tests despite incorrectly specified models.

    Science.gov (United States)

    Kim, Jane Paik

    2013-03-01

    In the context of randomized trials, Rosenblum and van der Laan (2009, Biometrics 63, 937-945) considered the null hypothesis of no treatment effect on the mean outcome within strata of baseline variables. They showed that hypothesis tests based on linear regression models and generalized linear regression models are guaranteed to have asymptotically correct Type I error regardless of the actual data generating distribution, assuming the treatment assignment is independent of covariates. We consider another important outcome in randomized trials, the time from randomization until failure, and the null hypothesis of no treatment effect on the survivor function conditional on a set of baseline variables. By a direct application of arguments in Rosenblum and van der Laan (2009), we show that hypothesis tests based on multiplicative hazards models with an exponential link, i.e., proportional hazards models, and multiplicative hazards models with linear link functions where the baseline hazard is parameterized, are asymptotically valid under model misspecification provided that the censoring distribution is independent of the treatment assignment given the covariates. In the case of the Cox model and linear link model with unspecified baseline hazard function, the arguments in Rosenblum and van der Laan (2009) cannot be applied to show the robustness of a misspecified model. Instead, we adopt an approach used in previous literature (Struthers and Kalbfleisch, 1986, Biometrika 73, 363-369) to show that hypothesis tests based on these models, including models with interaction terms, have correct type I error. Copyright © 2013, The International Biometric Society.

  20. Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner

    Directory of Open Access Journals (Sweden)

    Luciano Fanton

    2012-01-01

    Full Text Available Ballistic characterization of an extended group of innovative HTPB-based solid fuel formulations for hybrid rocket propulsion was performed in a lab-scale burner. An optical time-resolved technique was used to assess the quasisteady regression history of single perforation, cylindrical samples. The effects of metalized additives and radiant heat transfer on the regression rate of such formulations were assessed. Under the investigated operating conditions and based on phenomenological models from the literature, analyses of the collected experimental data show an appreciable influence of the radiant heat flux from burnt gases and soot for both unloaded and loaded fuel formulations. Pure HTPB regression rate data are satisfactorily reproduced, while the impressive initial regression rates of metalized formulations require further assessment.

  1. Random regression models

    African Journals Online (AJOL)

    zlukovi

    modelled as a quadratic regression, nested within parity. The previous lactation length was ... This proportion was mainly covered by linear and quadratic coefficients. Results suggest that RRM could .... The multiple trait models in scalar notation are presented by equations (1, 2), while equation. (3) represents the random ...

  2. A unified framework for testing in the linear regression model under unknown order of fractional integration

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Kruse, Robinson; Sibbertsen, Philipp

    We consider hypothesis testing in a general linear time series regression framework when the possibly fractional order of integration of the error term is unknown. We show that the approach suggested by Vogelsang (1998a) for the case of integer integration does not apply to the case of fractional...

  3. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  4. Comparison of Fixed Regression and Random Regression Test-Day Models for genetic evaluation of milk yield trait in Holstein cows Razavi Khorasan province

    Directory of Open Access Journals (Sweden)

    Y Shamshirgaran

    2011-12-01

    Full Text Available The Fixed Regression Test-Day Model (FRM and Random Regression Test-Day Model (RRM for genetic evaluation of milk yield trait of dairy cattle in Khorasan Razavi province were studied. Breeding values and genetic parameters of milk yield trait from two models were compared. A total of 164391 monthly test day milk records (three times milking per day obtained from 19217 Holstein cows distributed in 172 herds and calved from 1991 to 2008, were used to estimate genetic parameters and to predict breeding values. The contemporary group of herd- year- month of production was fitted as fixed effects in the models. Also linear and quadratic forms of age at calving and Holstein gene percentage were fitted as covariate. The random factors of the models were additive genetic and permanent environmental effects. In the random regression model, orthogonal legendre polynomial up to order 4(cubic was implemented to take account of genetic and environmental aspects of milk production over the course of lactation. Heritability estimates resulted from the FRM was 0.15. The average heritability estimates resulted from the RRM of monthly test day milk production for the second half of the lactation was higher than that of the first half of lactation period. The highest and lowest heritability values were found for the first (0.102 and sixth (0.235 month of lactation. Breeding value of animals predicted from FRM and RRM were also compared. The results showed similar ranking of animals based on their breeding values from both models.

  5. Logistic regression models

    CERN Document Server

    Hilbe, Joseph M

    2009-01-01

    This book really does cover everything you ever wanted to know about logistic regression … with updates available on the author's website. Hilbe, a former national athletics champion, philosopher, and expert in astronomy, is a master at explaining statistical concepts and methods. Readers familiar with his other expository work will know what to expect-great clarity.The book provides considerable detail about all facets of logistic regression. No step of an argument is omitted so that the book will meet the needs of the reader who likes to see everything spelt out, while a person familiar with some of the topics has the option to skip "obvious" sections. The material has been thoroughly road-tested through classroom and web-based teaching. … The focus is on helping the reader to learn and understand logistic regression. The audience is not just students meeting the topic for the first time, but also experienced users. I believe the book really does meet the author's goal … .-Annette J. Dobson, Biometric...

  6. Tests of Simple Slopes in Multiple Regression Models with an Interaction: Comparison of Four Approaches.

    Science.gov (United States)

    Liu, Yu; West, Stephen G; Levy, Roy; Aiken, Leona S

    2017-01-01

    In multiple regression researchers often follow up significant tests of the interaction between continuous predictors X and Z with tests of the simple slope of Y on X at different sample-estimated values of the moderator Z (e.g., ±1 SD from the mean of Z). We show analytically that when X and Z are randomly sampled from the population, the variance expression of the simple slope at sample-estimated values of Z differs from the traditional variance expression obtained when the values of X and Z are fixed. A simulation study using randomly sampled predictors compared four approaches: (a) the Aiken and West ( 1991 ) test of simple slopes at fixed population values of Z, (b) the Aiken and West test at sample-estimated values of Z, (c) a 95% percentile bootstrap confidence interval approach, and (d) a fully Bayesian approach with diffuse priors. The results showed that approach (b) led to inflated Type 1 error rates and 95% confidence intervals with inadequate coverage rates, whereas other approaches maintained acceptable Type 1 error rates and adequate coverage of confidence intervals. Approach (c) had asymmetric rejection rates at small sample sizes. We used an empirical data set to illustrate these approaches.

  7. Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis

    NARCIS (Netherlands)

    Eekhout, I.; Wiel, M.A. van de; Heymans, M.W.

    2017-01-01

    Background. Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin’s Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels

  8. Structural Break Tests Robust to Regression Misspecification

    NARCIS (Netherlands)

    Abi Morshed, Alaa; Andreou, E.; Boldea, Otilia

    2016-01-01

    Structural break tests developed in the literature for regression models are sensitive to model misspecification. We show - analytically and through simulations - that the sup Wald test for breaks in the conditional mean and variance of a time series process exhibits severe size distortions when the

  9. Optimal Changepoint Tests for Normal Linear Regression

    OpenAIRE

    Donald W.K. Andrews; Inpyo Lee; Werner Ploberger

    1992-01-01

    This paper determines a class of finite sample optimal tests for the existence of a changepoint at an unknown time in a normal linear multiple regression model with known variance. Optimal tests for multiple changepoints are also derived. Power comparisons of several tests are provided based on simulations.

  10. A Simple Test for the Absence of Covariate Dependence in Hazard Regression Models

    OpenAIRE

    Bhattacharjee, Arnab

    2004-01-01

    This paper extends commonly used tests for equality of hazard rates in a two-sample or k-sample setup to a situation where the covariate under study is continuous. In other words, we test the hypothesis that the conditional hazard rate is the same for all covariate values, against the omnibus alternative as well as more specific alternatives, when the covariate is continuous. The tests developed are particularly useful for detecting trend in the underlying conditional hazard rates or chang...

  11. Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis.

    Science.gov (United States)

    Eekhout, Iris; van de Wiel, Mark A; Heymans, Martijn W

    2017-08-22

    Multiple imputation is a recommended method to handle missing data. For significance testing after multiple imputation, Rubin's Rules (RR) are easily applied to pool parameter estimates. In a logistic regression model, to consider whether a categorical covariate with more than two levels significantly contributes to the model, different methods are available. For example pooling chi-square tests with multiple degrees of freedom, pooling likelihood ratio test statistics, and pooling based on the covariance matrix of the regression model. These methods are more complex than RR and are not available in all mainstream statistical software packages. In addition, they do not always obtain optimal power levels. We argue that the median of the p-values from the overall significance tests from the analyses on the imputed datasets can be used as an alternative pooling rule for categorical variables. The aim of the current study is to compare different methods to test a categorical variable for significance after multiple imputation on applicability and power. In a large simulation study, we demonstrated the control of the type I error and power levels of different pooling methods for categorical variables. This simulation study showed that for non-significant categorical covariates the type I error is controlled and the statistical power of the median pooling rule was at least equal to current multiple parameter tests. An empirical data example showed similar results. It can therefore be concluded that using the median of the p-values from the imputed data analyses is an attractive and easy to use alternative method for significance testing of categorical variables.

  12. Testing discontinuities in nonparametric regression

    KAUST Repository

    Dai, Wenlin

    2017-01-19

    In nonparametric regression, it is often needed to detect whether there are jump discontinuities in the mean function. In this paper, we revisit the difference-based method in [13 H.-G. Müller and U. Stadtmüller, Discontinuous versus smooth regression, Ann. Stat. 27 (1999), pp. 299–337. doi: 10.1214/aos/1018031100

  13. Estimation of Genetic Parameters for First Lactation Monthly Test-day Milk Yields using Random Regression Test Day Model in Karan Fries Cattle

    Directory of Open Access Journals (Sweden)

    Ajay Singh

    2016-06-01

    Full Text Available A single trait linear mixed random regression test-day model was applied for the first time for analyzing the first lactation monthly test-day milk yield records in Karan Fries cattle. The test-day milk yield data was modeled using a random regression model (RRM considering different order of Legendre polynomial for the additive genetic effect (4th order and the permanent environmental effect (5th order. Data pertaining to 1,583 lactation records spread over a period of 30 years were recorded and analyzed in the study. The variance component, heritability and genetic correlations among test-day milk yields were estimated using RRM. RRM heritability estimates of test-day milk yield varied from 0.11 to 0.22 in different test-day records. The estimates of genetic correlations between different test-day milk yields ranged 0.01 (test-day 1 [TD-1] and TD-11 to 0.99 (TD-4 and TD-5. The magnitudes of genetic correlations between test-day milk yields decreased as the interval between test-days increased and adjacent test-day had higher correlations. Additive genetic and permanent environment variances were higher for test-day milk yields at both ends of lactation. The residual variance was observed to be lower than the permanent environment variance for all the test-day milk yields.

  14. Panel Smooth Transition Regression Models

    DEFF Research Database (Denmark)

    González, Andrés; Terasvirta, Timo; Dijk, Dick van

    We introduce the panel smooth transition regression model. This new model is intended for characterizing heterogeneous panels, allowing the regression coefficients to vary both across individuals and over time. Specifically, heterogeneity is allowed for by assuming that these coefficients are bou...

  15. Small-Sample Adjustments for Tests of Moderators and Model Fit in Robust Variance Estimation in Meta-Regression

    Science.gov (United States)

    Tipton, Elizabeth; Pustejovsky, James E.

    2015-01-01

    Randomized experiments are commonly used to evaluate the effectiveness of educational interventions. The goal of the present investigation is to develop small-sample corrections for multiple contrast hypothesis tests (i.e., F-tests) such as the omnibus test of meta-regression fit or a test for equality of three or more levels of a categorical…

  16. Random regression models to estimate genetic parameters for test-day milk yield in Brazilian Murrah buffaloes.

    Science.gov (United States)

    Sesana, R C; Bignardi, A B; Borquis, R R A; El Faro, L; Baldi, F; Albuquerque, L G; Tonhati, H

    2010-10-01

    The objective of this work was to estimate covariance functions for additive genetic and permanent environmental effects and, subsequently, to obtain genetic parameters for buffalo's test-day milk production using random regression models on Legendre polynomials (LPs). A total of 17 935 test-day milk yield (TDMY) from 1433 first lactations of Murrah buffaloes, calving from 1985 to 2005 and belonging to 12 herds located in São Paulo state, Brazil, were analysed. Contemporary groups (CGs) were defined by herd, year and month of milk test. Residual variances were modelled through variance functions, from second to fourth order and also by a step function with 1, 4, 6, 22 and 42 classes. The model of analyses included the fixed effect of CGs, number of milking, age of cow at calving as a covariable (linear and quadratic) and the mean trend of the population. As random effects were included the additive genetic and permanent environmental effects. The additive genetic and permanent environmental random effects were modelled by LP of days in milk from quadratic to seventh degree polynomial functions. The model with additive genetic and animal permanent environmental effects adjusted by quintic and sixth order LP, respectively, and residual variance modelled through a step function with six classes was the most adequate model to describe the covariance structure of the data. Heritability estimates decreased from 0.44 (first week) to 0.18 (fourth week). Unexpected negative genetic correlation estimates were obtained between TDMY records at first weeks with records from middle to the end of lactation, being the values varied from -0.07 (second with eighth week) to -0.34 (1st with 42nd week). TDMY heritability estimates were moderate in the course of the lactation, suggesting that this trait could be applied as selection criteria in milking buffaloes. Copyright 2010 Blackwell Verlag GmbH.

  17. Forecasting with Dynamic Regression Models

    CERN Document Server

    Pankratz, Alan

    2012-01-01

    One of the most widely used tools in statistical forecasting, single equation regression models is examined here. A companion to the author's earlier work, Forecasting with Univariate Box-Jenkins Models: Concepts and Cases, the present text pulls together recent time series ideas and gives special attention to possible intertemporal patterns, distributed lag responses of output to input series and the auto correlation patterns of regression disturbance. It also includes six case studies.

  18. Ridge Regression for Interactive Models.

    Science.gov (United States)

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are…

  19. Modified Regression Correlation Coefficient for Poisson Regression Model

    Science.gov (United States)

    Kaengthong, Nattacha; Domthong, Uthumporn

    2017-09-01

    This study gives attention to indicators in predictive power of the Generalized Linear Model (GLM) which are widely used; however, often having some restrictions. We are interested in regression correlation coefficient for a Poisson regression model. This is a measure of predictive power, and defined by the relationship between the dependent variable (Y) and the expected value of the dependent variable given the independent variables [E(Y|X)] for the Poisson regression model. The dependent variable is distributed as Poisson. The purpose of this research was modifying regression correlation coefficient for Poisson regression model. We also compare the proposed modified regression correlation coefficient with the traditional regression correlation coefficient in the case of two or more independent variables, and having multicollinearity in independent variables. The result shows that the proposed regression correlation coefficient is better than the traditional regression correlation coefficient based on Bias and the Root Mean Square Error (RMSE).

  20. Multimodality in GARCH regression models

    NARCIS (Netherlands)

    Ooms, M.; Doornik, J.A.

    2008-01-01

    It is shown empirically that mixed autoregressive moving average regression models with generalized autoregressive conditional heteroskedasticity (Reg-ARMA-GARCH models) can have multimodality in the likelihood that is caused by a dummy variable in the conditional mean. Maximum likelihood estimates

  1. Inferential Models for Linear Regression

    Directory of Open Access Journals (Sweden)

    Zuoyi Zhang

    2011-09-01

    Full Text Available Linear regression is arguably one of the most widely used statistical methods in applications.  However, important problems, especially variable selection, remain a challenge for classical modes of inference.  This paper develops a recently proposed framework of inferential models (IMs in the linear regression context.  In general, an IM is able to produce meaningful probabilistic summaries of the statistical evidence for and against assertions about the unknown parameter of interest and, moreover, these summaries are shown to be properly calibrated in a frequentist sense.  Here we demonstrate, using simple examples, that the IM framework is promising for linear regression analysis --- including model checking, variable selection, and prediction --- and for uncertain inference in general.

  2. Test day-milk yields variance component estimation using repeatability or random regression models in the Rendena breed

    Directory of Open Access Journals (Sweden)

    Roberto Mantovani

    2010-01-01

    Full Text Available This study has aimed to compare Repeatability (RP-TDm and Random-Regression Test Day models (RR-TDm in genetic evaluations of milk (M, fat (F and protein (P yields in Rendena breed. Variance estimations for Milk (M, Fat (F and Protein (P were obtained on a sample of 43,842 TD belonging to 2,692 animals controlled over 15 years (1990-2005. RP-TDm estimates of h2 were of 0.21 for M and 0.17 for both F and P, whereas RR-TDM provided a trend of h2 ranging from 0.15-0.34 for M, 0.15-0.31 for F and 0.10-0.24 for P. Both RP-TDm and RR-TDm results agreed with literature, even though RR-TDm provided a pattern of h2 along the lactation different from other studies, with the lowest h2 at the beginning and at the end of lactation. PSB, MAD and -2Log L parameters revealed lower power of RP-TDm as compare with the RR-TDm.

  3. Model checking for ROC regression analysis.

    Science.gov (United States)

    Cai, Tianxi; Zheng, Yingye

    2007-03-01

    The receiver operating characteristic (ROC) curve is a prominent tool for characterizing the accuracy of a continuous diagnostic test. To account for factors that might influence the test accuracy, various ROC regression methods have been proposed. However, as in any regression analysis, when the assumed models do not fit the data well, these methods may render invalid and misleading results. To date, practical model-checking techniques suitable for validating existing ROC regression models are not yet available. In this article, we develop cumulative residual-based procedures to graphically and numerically assess the goodness of fit for some commonly used ROC regression models, and show how specific components of these models can be examined within this framework. We derive asymptotic null distributions for the residual processes and discuss resampling procedures to approximate these distributions in practice. We illustrate our methods with a dataset from the cystic fibrosis registry.

  4. Testing for Stock Market Contagion: A Quantile Regression Approach

    NARCIS (Netherlands)

    S.Y. Park (Sung); W. Wang (Wendun); N. Huang (Naijing)

    2015-01-01

    markdownabstract__Abstract__ Regarding the asymmetric and leptokurtic behavior of financial data, we propose a new contagion test in the quantile regression framework that is robust to model misspecification. Unlike conventional correlation-based tests, the proposed quantile contagion test

  5. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    Science.gov (United States)

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  6. Regression Test Selection for C# Programs

    Directory of Open Access Journals (Sweden)

    Nashat Mansour

    2009-01-01

    Full Text Available We present a regression test selection technique for C# programs. C# is fairly new and is often used within the Microsoft .Net framework to give programmers a solid base to develop a variety of applications. Regression testing is done after modifying a program. Regression test selection refers to selecting a suitable subset of test cases from the original test suite in order to be rerun. It aims to provide confidence that the modifications are correct and did not affect other unmodified parts of the program. The regression test selection technique presented in this paper accounts for C#.Net specific features. Our technique is based on three phases; the first phase builds an Affected Class Diagram consisting of classes that are affected by the change in the source code. The second phase builds a C# Interclass Graph (CIG from the affected class diagram based on C# specific features. In this phase, we reduce the number of selected test cases. The third phase involves further reduction and a new metric for assigning weights to test cases for prioritizing the selected test cases. We have empirically validated the proposed technique by using case studies. The empirical results show the usefulness of the proposed regression testing technique for C#.Net programs.

  7. A Logistic Regression Model for Personnel Selection.

    Science.gov (United States)

    Raju, Nambury S.; And Others

    1991-01-01

    A two-parameter logistic regression model for personnel selection is proposed. The model was tested with a database of 84,808 military enlistees. The probability of job success was related directly to trait levels, addressing such topics as selection, validity generalization, employee classification, selection bias, and utility-based fair…

  8. Regression testing Ajax applications : Coping with dynamism

    NARCIS (Netherlands)

    Roest, D.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    Note: This paper is a pre-print of: Danny Roest, Ali Mesbah and Arie van Deursen. Regression Testing AJAX Applications: Coping with Dynamism. In Proceedings of the 3rd International Conference on Software Testing, Verification and Validation (ICST’10), Paris, France. IEEE Computer Society, 2010.

  9. Complex Regression Functional And Load Tests Development

    Directory of Open Access Journals (Sweden)

    Anton Andreevich Krasnopevtsev

    2015-10-01

    Full Text Available The article describes practical approaches for realization of automatized regression functional and load testing on random software-hardware complex, based on «MARSh 3.0» sample. Testing automatization is being realized for «MARSh 3.0» information security increase.

  10. Testing hypotheses for differences between linear regression lines

    Science.gov (United States)

    Stanley J. Zarnoch

    2009-01-01

    Five hypotheses are identified for testing differences between simple linear regression lines. The distinctions between these hypotheses are based on a priori assumptions and illustrated with full and reduced models. The contrast approach is presented as an easy and complete method for testing for overall differences between the regressions and for making pairwise...

  11. Hypothesis Testing of Parameters for Ordinary Linear Circular Regression

    Directory of Open Access Journals (Sweden)

    Abdul Ghapor Hussin

    2006-07-01

    Full Text Available This paper presents the hypothesis testing of parameters for ordinary linear circular regression model assuming the circular random error distributed as von Misses distribution. The main interests are in testing of the intercept and slope parameter of the regression line. As an illustration, this hypothesis testing will be used in analyzing the wind and wave direction data recorded by two different techniques which are HF radar system and anchored wave buoy.

  12. Automation of Flight Software Regression Testing

    Science.gov (United States)

    Tashakkor, Scott B.

    2016-01-01

    NASA is developing the Space Launch System (SLS) to be a heavy lift launch vehicle supporting human and scientific exploration beyond earth orbit. SLS will have a common core stage, an upper stage, and different permutations of boosters and fairings to perform various crewed or cargo missions. Marshall Space Flight Center (MSFC) is writing the Flight Software (FSW) that will operate the SLS launch vehicle. The FSW is developed in an incremental manner based on "Agile" software techniques. As the FSW is incrementally developed, testing the functionality of the code needs to be performed continually to ensure that the integrity of the software is maintained. Manually testing the functionality on an ever-growing set of requirements and features is not an efficient solution and therefore needs to be done automatically to ensure testing is comprehensive. To support test automation, a framework for a regression test harness has been developed and used on SLS FSW. The test harness provides a modular design approach that can compile or read in the required information specified by the developer of the test. The modularity provides independence between groups of tests and the ability to add and remove tests without disturbing others. This provides the SLS FSW team a time saving feature that is essential to meeting SLS Program technical and programmatic requirements. During development of SLS FSW, this technique has proved to be a useful tool to ensure all requirements have been tested, and that desired functionality is maintained, as changes occur. It also provides a mechanism for developers to check functionality of the code that they have developed. With this system, automation of regression testing is accomplished through a scheduling tool and/or commit hooks. Key advantages of this test harness capability includes execution support for multiple independent test cases, the ability for developers to specify precisely what they are testing and how, the ability to add

  13. Less Is More: Cross-Validation Testing of Simplified Nonlinear Regression Model Specifications for EQ-5D-5L Health State Values.

    Science.gov (United States)

    Rand-Hendriksen, Kim; Ramos-Goñi, Juan Manuel; Augestad, Liv Ariane; Luo, Nan

    The conventional method for modeling of the five-level EuroQol five-dimensional questionnaire (EQ-5D-5L) health state values in national valuation studies is an additive 20-parameter main-effects regression model. Statistical models with many parameters are at increased risk of overfitting-fitting to noise and measurement error, rather than the underlying relationship. To compare the 20-parameter main-effects model to simplified, nonlinear, multiplicative regression models in terms of how accurately they predict mean values of out-of-sample health states. We used data from the Spanish, Singaporean, and Chinese EQ-5D-5L valuation studies. Four models were compared: an 8-parameter model with single parameter per dimension, multiplied by cross-dimensional parameters for levels 2, 3, and 4; 9- and 11-parameter extensions with handling of differences in the wording of level 5; and the "standard" additive 20-parameter model. Fixed- and random-intercept variants of all models were tested using two cross-validation methods: leave-one-out at the level of valued health states, and of health state blocks used in EQ-5D-5L valuation studies. Mean absolute error, Lin concordance correlation coefficient, and Pearson R between observed health state means and out-of-sample predictions were compared. Predictive accuracy was generally best using random intercepts. The 8-, 9-, and 11-parameter models outperformed the 20-parameter model in predicting out-of-sample health states. Simplified nonlinear regression models look promising and should be investigated further using other EQ-5D-5L data sets. To reduce the risk of overfitting, cross-validation is recommended to inform model selection in future EQ-5D valuation studies. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  14. Joint action of chemicals in algal toxicity tests: Influence of response level and dose-response regression model

    DEFF Research Database (Denmark)

    Christensen, E.R.; Chen, D.; Nyholm, Niels

    2001-01-01

    . The response parameter was growth rate based on biomass, and several response levels were used. Dose–response curves were developed for dilution series using fixed ratios between concentrations in toxic units of the compounds. Probit and Weibull dose–response curves were then determined by nonlinear regression......The joint toxicity of nonylamine and decylamine and of atrazine and decylamine was evaluated in assays with the green alga Selenastrum capricornutum based on an isobologram method. In this method, curves of constant response, isoboles, are plotted versus concentrations of two toxicants...

  15. Gaussian Process Regression Model in Spatial Logistic Regression

    Science.gov (United States)

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  16. A Spreadsheet Model for Teaching Regression Analysis.

    Science.gov (United States)

    Wood, William C.; O'Hare, Sharon L.

    1992-01-01

    Presents a spreadsheet model that is useful in introducing students to regression analysis and the computation of regression coefficients. Includes spreadsheet layouts and formulas so that the spreadsheet can be implemented. (Author)

  17. Application of single-step genomic best linear unbiased prediction with a multiple-lactation random regression test-day model for Japanese Holsteins.

    Science.gov (United States)

    Baba, Toshimi; Gotoh, Yusaku; Yamaguchi, Satoshi; Nakagawa, Satoshi; Abe, Hayato; Masuda, Yutaka; Kawahara, Takayoshi

    2017-08-01

    This study aimed to evaluate a validation reliability of single-step genomic best linear unbiased prediction (ssGBLUP) with a multiple-lactation random regression test-day model and investigate an effect of adding genotyped cows on the reliability. Two data sets for test-day records from the first three lactations were used: full data from February 1975 to December 2015 (60 850 534 records from 2 853 810 cows) and reduced data cut off in 2011 (53 091 066 records from 2 502 307 cows). We used marker genotypes of 4480 bulls and 608 cows. Genomic enhanced breeding values (GEBV) of 305-day milk yield in all the lactations were estimated for at least 535 young bulls using two marker data sets: bull genotypes only and both bulls and cows genotypes. The realized reliability (R 2 ) from linear regression analysis was used as an indicator of validation reliability. Using only genotyped bulls, R 2 was ranged from 0.41 to 0.46 and it was always higher than parent averages. The very similar R 2 were observed when genotyped cows were added. An application of ssGBLUP to a multiple-lactation random regression model is feasible and adding a limited number of genotyped cows has no significant effect on reliability of GEBV for genotyped bulls. © 2016 Japanese Society of Animal Science.

  18. The use of a random regression model on the estimation of genetic parameters for weight at performance test in Appenninica sheep breed

    Directory of Open Access Journals (Sweden)

    Francesca M. Sarti

    2015-07-01

    Full Text Available The Appenninica breed is an Italian meat sheep; the rams are approved according to a phenotypic index that is based on an average daily gain at performance test. The 8546 live weights of 1930 Appenninica male lambs tested in the performance station of the ASSONAPA (National Sheep Breeders Association, Italy from 1986 to 2010 showed a great variability in age at weighing and in number of records by year. The goal of the study is to verify the feasibility of the estimation of a genetic index for weight in the Appenninica sheep by a mixed model, and to explore the use of random regression to avoid the corrections for weighing at different ages. The heritability and repeatability (mean±SE of the average live weight were 0.27±0.04 and 0.54±0.08 respectively; the heritabilities of weights recorded at different weighing days ranged from 0.27 to 0.58, while the heritabilities of weights at different ages showed a narrower variability (0.29÷0.41. The estimates of live weight heritability by random regressions ranged between 0.34 at 123 d of age and 0.52 at 411 d. The results proved that the random regression model is the most adequate to analyse the data of Appenninica breed.

  19. Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model

    DEFF Research Database (Denmark)

    Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø

    2011-01-01

    with fifth order LP for PE effect and genetic effect were adequate to fit the data. The average heritability differed over the lactation and was lowest at the beginning (0.098) and higher at the end of lactation (0.138 to 0.151). Genetic correlations between daily SCS were high for adjacent tests (nearly 1......The objective of this study was to estimate the genetic and permanent environmental (PE) covariance functions for test-day records of logarithm of somatic cell count (SCS) of the first lactation for Danish Holstein cattle, and to test the hypotheses that: genetic and environmental variances change...... over first lactation, genetic correlations are near unity between any time points in first lactation, and including a Wilmink term will improve the likelihood of more than an extra order Legendre polynomial. Ten data sets, consisting of 1,190,584 test day somatic cell count (SCC) records from 149...

  20. Regression testing in the TOTEM DCS

    Science.gov (United States)

    Rodríguez, F. Lucas; Atanassov, I.; Burkimsher, P.; Frost, O.; Taskinen, J.; Tulimaki, V.

    2012-12-01

    The Detector Control System of the TOTEM experiment at the LHC is built with the industrial product WinCC OA (PVSS). The TOTEM system is generated automatically through scripts using as input the detector Product Breakdown Structure (PBS) structure and its pinout connectivity, archiving and alarm metainformation, and some other heuristics based on the naming conventions. When those initial parameters and automation code are modified to include new features, the resulting PVSS system can also introduce side-effects. On a daily basis, a custom developed regression testing tool takes the most recent code from a Subversion (SVN) repository and builds a new control system from scratch. This system is exported in plain text format using the PVSS export tool, and compared with a system previously validated by a human. A report is sent to the developers with any differences highlighted, in readiness for validation and acceptance as a new stable version. This regression approach is not dependent on any development framework or methodology. This process has been satisfactory during several months, proving to be a very valuable tool before deploying new versions in the production systems.

  1. General regression and representation model for classification.

    Directory of Open Access Journals (Sweden)

    Jianjun Qian

    Full Text Available Recently, the regularized coding-based classification methods (e.g. SRC and CRC show a great potential for pattern classification. However, most existing coding methods assume that the representation residuals are uncorrelated. In real-world applications, this assumption does not hold. In this paper, we take account of the correlations of the representation residuals and develop a general regression and representation model (GRR for classification. GRR not only has advantages of CRC, but also takes full use of the prior information (e.g. the correlations between representation residuals and representation coefficients and the specific information (weight matrix of image pixels to enhance the classification performance. GRR uses the generalized Tikhonov regularization and K Nearest Neighbors to learn the prior information from the training data. Meanwhile, the specific information is obtained by using an iterative algorithm to update the feature (or image pixel weights of the test sample. With the proposed model as a platform, we design two classifiers: basic general regression and representation classifier (B-GRR and robust general regression and representation classifier (R-GRR. The experimental results demonstrate the performance advantages of proposed methods over state-of-the-art algorithms.

  2. Influence of regression model and incremental test protocol on the relationship between lactate threshold using the maximal-deviation method and performance in female runners.

    Science.gov (United States)

    Machado, Fabiana Andrade; Nakamura, Fábio Yuzo; Moraes, Solange Marta Franzói De

    2012-01-01

    This study examined the influence of the regression model and initial intensity of an incremental test on the relationship between the lactate threshold estimated by the maximal-deviation method and the endurance performance. Sixteen non-competitive, recreational female runners performed a discontinuous incremental treadmill test. The initial speed was set at 7 km · h⁻¹, and increased every 3 min by 1 km · h⁻¹ with a 30-s rest between the stages used for earlobe capillary blood sample collection. Lactate-speed data were fitted by an exponential-plus-constant and a third-order polynomial equation. The lactate threshold was determined for both regression equations, using all the coordinates, excluding the first and excluding the first and second initial points. Mean speed of a 10-km road race was the performance index (3.04 ± 0.22 m · s⁻¹). The exponentially-derived lactate threshold had a higher correlation (0.98 ≤ r ≤ 0.99) and smaller standard error of estimate (SEE) (0.04 ≤ SEE ≤ 0.05 m · s⁻¹) with performance than the polynomially-derived equivalent (0.83 ≤ r ≤ 0.89; 0.10 ≤ SEE ≤ 0.13 m · s⁻¹). The exponential lactate threshold was greater than the polynomial equivalent (P intensity of the incremental test and better than the polynomial equivalent.

  3. Variable importance in latent variable regression models

    NARCIS (Netherlands)

    Kvalheim, O.M.; Arneberg, R.; Bleie, O.; Rajalahti, T.; Smilde, A.K.; Westerhuis, J.A.

    2014-01-01

    The quality and practical usefulness of a regression model are a function of both interpretability and prediction performance. This work presents some new graphical tools for improved interpretation of latent variable regression models that can also assist in improved algorithms for variable

  4. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    STREAMFLOW AND WATER QUALITY REGRESSION MODELING OF IMO RIVER SYSTEM: A CASE STUDY. ... Journal of Modeling, Design and Management of Engineering Systems ... Possible sources of contamination of Imo-river system within Nekede and Obigbo hydrological stations watershed were traced.

  5. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    Science.gov (United States)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  6. Regression Models for Market-Shares

    DEFF Research Database (Denmark)

    Birch, Kristina; Olsen, Jørgen Kai; Tjur, Tue

    2005-01-01

    On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put on the interpretat......On the background of a data set of weekly sales and prices for three brands of coffee, this paper discusses various regression models and their relation to the multiplicative competitive-interaction model (the MCI model, see Cooper 1988, 1993) for market-shares. Emphasis is put...... on the interpretation of the parameters in relation to models for the total sales based on discrete choice models.Key words and phrases. MCI model, discrete choice model, market-shares, price elasitcity, regression model....

  7. Inferring gene regression networks with model trees

    Directory of Open Access Journals (Sweden)

    Aguilar-Ruiz Jesus S

    2010-10-01

    Full Text Available Abstract Background Novel strategies are required in order to handle the huge amount of data produced by microarray technologies. To infer gene regulatory networks, the first step is to find direct regulatory relationships between genes building the so-called gene co-expression networks. They are typically generated using correlation statistics as pairwise similarity measures. Correlation-based methods are very useful in order to determine whether two genes have a strong global similarity but do not detect local similarities. Results We propose model trees as a method to identify gene interaction networks. While correlation-based methods analyze each pair of genes, in our approach we generate a single regression tree for each gene from the remaining genes. Finally, a graph from all the relationships among output and input genes is built taking into account whether the pair of genes is statistically significant. For this reason we apply a statistical procedure to control the false discovery rate. The performance of our approach, named REGNET, is experimentally tested on two well-known data sets: Saccharomyces Cerevisiae and E.coli data set. First, the biological coherence of the results are tested. Second the E.coli transcriptional network (in the Regulon database is used as control to compare the results to that of a correlation-based method. This experiment shows that REGNET performs more accurately at detecting true gene associations than the Pearson and Spearman zeroth and first-order correlation-based methods. Conclusions REGNET generates gene association networks from gene expression data, and differs from correlation-based methods in that the relationship between one gene and others is calculated simultaneously. Model trees are very useful techniques to estimate the numerical values for the target genes by linear regression functions. They are very often more precise than linear regression models because they can add just different linear

  8. DYNA3D/ParaDyn Regression Test Suite Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-01

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of preliminary release 16.1 in September 2016. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark (√) in the corresponding column. The definition of “feature” has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors, except problems involving features only available in serial mode. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds; compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  9. Bias-corrected quantile regression estimation of censored regression models

    NARCIS (Netherlands)

    Cizek, Pavel; Sadikoglu, Serhan

    2018-01-01

    In this paper, an extension of the indirect inference methodology to semiparametric estimation is explored in the context of censored regression. Motivated by weak small-sample performance of the censored regression quantile estimator proposed by Powell (J Econom 32:143–155, 1986a), two- and

  10. Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

    Directory of Open Access Journals (Sweden)

    S. Meseret

    2015-09-01

    Full Text Available The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM against the random regression test-day model (RRM in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations.

  11. Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis

    Science.gov (United States)

    Meseret, S.; Tamir, B.; Gebreyohannes, G.; Lidauer, M.; Negussie, E.

    2015-01-01

    The development of effective genetic evaluations and selection of sires requires accurate estimates of genetic parameters for all economically important traits in the breeding goal. The main objective of this study was to assess the relative performance of the traditional lactation average model (LAM) against the random regression test-day model (RRM) in the estimation of genetic parameters and prediction of breeding values for Holstein Friesian herds in Ethiopia. The data used consisted of 6,500 test-day (TD) records from 800 first-lactation Holstein Friesian cows that calved between 1997 and 2013. Co-variance components were estimated using the average information restricted maximum likelihood method under single trait animal model. The estimate of heritability for first-lactation milk yield was 0.30 from LAM whilst estimates from the RRM model ranged from 0.17 to 0.29 for the different stages of lactation. Genetic correlations between different TDs in first-lactation Holstein Friesian ranged from 0.37 to 0.99. The observed genetic correlation was less than unity between milk yields at different TDs, which indicated that the assumption of LAM may not be optimal for accurate evaluation of the genetic merit of animals. A close look at estimated breeding values from both models showed that RRM had higher standard deviation compared to LAM indicating that the TD model makes efficient utilization of TD information. Correlations of breeding values between models ranged from 0.90 to 0.96 for different group of sires and cows and marked re-rankings were observed in top sires and cows in moving from the traditional LAM to RRM evaluations. PMID:26194217

  12. Methods of Detecting Outliers in A Regression Analysis Model ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-06-01

    Jun 1, 2013 ... Abstract. This study detects outliers in a univariate and bivariate data by using both Rosner's and. Grubb's test in a regression analysis model. The study shows how an observation that causes the least square point estimate of a Regression model to be substantially different from what it would be if the ...

  13. Methods of Detecting Outliers in A Regression Analysis Model. | Ogu ...

    African Journals Online (AJOL)

    This study detects outliers in a univariate and bivariate data by using both Rosner's and Grubb's test in a regression analysis model. The study shows how an observation that causes the least square point estimate of a Regression model to be substantially different from what it would be if the observation were removed from ...

  14. Security Regression Testing Framework For Web Application Development

    OpenAIRE

    Waheed, Usman

    2014-01-01

    A framework and process that explains how to perform security regression testing for web applications. This paper discusses and proposes a framework based on open source tools that can be used to perform automated security regression testing of web applications.

  15. Testing for marginal linear effects in quantile regression

    KAUST Repository

    Wang, Huixia Judy

    2017-10-23

    The paper develops a new marginal testing procedure to detect significant predictors that are associated with the conditional quantiles of a scalar response. The idea is to fit the marginal quantile regression on each predictor one at a time, and then to base the test on the t-statistics that are associated with the most predictive predictors. A resampling method is devised to calibrate this test statistic, which has non-regular limiting behaviour due to the selection of the most predictive variables. Asymptotic validity of the procedure is established in a general quantile regression setting in which the marginal quantile regression models can be misspecified. Even though a fixed dimension is assumed to derive the asymptotic results, the test proposed is applicable and computationally feasible for large dimensional predictors. The method is more flexible than existing marginal screening test methods based on mean regression and has the added advantage of being robust against outliers in the response. The approach is illustrated by using an application to a human immunodeficiency virus drug resistance data set.

  16. Nonparametric and semiparametric dynamic additive regression models

    DEFF Research Database (Denmark)

    Scheike, Thomas Harder; Martinussen, Torben

    Dynamic additive regression models provide a flexible class of models for analysis of longitudinal data. The approach suggested in this work is suited for measurements obtained at random time points and aims at estimating time-varying effects. Both fully nonparametric and semiparametric models can...

  17. Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia

    Science.gov (United States)

    Pradhan, Biswajeet

    2010-05-01

    This paper presents the results of the cross-validation of a multivariate logistic regression model using remote sensing data and GIS for landslide hazard analysis on the Penang, Cameron, and Selangor areas in Malaysia. Landslide locations in the study areas were identified by interpreting aerial photographs and satellite images, supported by field surveys. SPOT 5 and Landsat TM satellite imagery were used to map landcover and vegetation index, respectively. Maps of topography, soil type, lineaments and land cover were constructed from the spatial datasets. Ten factors which influence landslide occurrence, i.e., slope, aspect, curvature, distance from drainage, lithology, distance from lineaments, soil type, landcover, rainfall precipitation, and normalized difference vegetation index (ndvi), were extracted from the spatial database and the logistic regression coefficient of each factor was computed. Then the landslide hazard was analysed using the multivariate logistic regression coefficients derived not only from the data for the respective area but also using the logistic regression coefficients calculated from each of the other two areas (nine hazard maps in all) as a cross-validation of the model. For verification of the model, the results of the analyses were then compared with the field-verified landslide locations. Among the three cases of the application of logistic regression coefficient in the same study area, the case of Selangor based on the Selangor logistic regression coefficients showed the highest accuracy (94%), where as Penang based on the Penang coefficients showed the lowest accuracy (86%). Similarly, among the six cases from the cross application of logistic regression coefficient in other two areas, the case of Selangor based on logistic coefficient of Cameron showed highest (90%) prediction accuracy where as the case of Penang based on the Selangor logistic regression coefficients showed the lowest accuracy (79%). Qualitatively, the cross

  18. Applied Regression Modeling A Business Approach

    CERN Document Server

    Pardoe, Iain

    2012-01-01

    An applied and concise treatment of statistical regression techniques for business students and professionals who have little or no background in calculusRegression analysis is an invaluable statistical methodology in business settings and is vital to model the relationship between a response variable and one or more predictor variables, as well as the prediction of a response value given values of the predictors. In view of the inherent uncertainty of business processes, such as the volatility of consumer spending and the presence of market uncertainty, business professionals use regression a

  19. Regression models for predicting anthropometric measurements of ...

    African Journals Online (AJOL)

    ... System (ANFIS) was employed to select the two most influential of the five input measurements. This search was separately conducted for each of the output measurements. Regression models were developed from the collected anthropometric data. Also, the predictive performance of these models was examined using ...

  20. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    Science.gov (United States)

    Chen, Yanguang

    2016-01-01

    In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  1. Spatial Autocorrelation Approaches to Testing Residuals from Least Squares Regression.

    Directory of Open Access Journals (Sweden)

    Yanguang Chen

    Full Text Available In geo-statistics, the Durbin-Watson test is frequently employed to detect the presence of residual serial correlation from least squares regression analyses. However, the Durbin-Watson statistic is only suitable for ordered time or spatial series. If the variables comprise cross-sectional data coming from spatial random sampling, the test will be ineffectual because the value of Durbin-Watson's statistic depends on the sequence of data points. This paper develops two new statistics for testing serial correlation of residuals from least squares regression based on spatial samples. By analogy with the new form of Moran's index, an autocorrelation coefficient is defined with a standardized residual vector and a normalized spatial weight matrix. Then by analogy with the Durbin-Watson statistic, two types of new serial correlation indices are constructed. As a case study, the two newly presented statistics are applied to a spatial sample of 29 China's regions. These results show that the new spatial autocorrelation models can be used to test the serial correlation of residuals from regression analysis. In practice, the new statistics can make up for the deficiencies of the Durbin-Watson test.

  2. Multiple regression modeling of nonlinear data sets

    Science.gov (United States)

    Kravtsov, S.; Kondrashov, D.; Ghil, M.

    2003-04-01

    Application of multiple polynomial regression modeling to observational and model generated data sets is discussed. Here the form of classical multiple linear regression is generalized to a model that is still linear in its parameters, but includes general multivariate polynomials of predictor variables as the basis functions. The system's low-frequency evolution is assumed to be the result of deterministic, possibly nonlinear, dynamics excited by a temporally white, but geographically coherent and normally distributed white noise. In determining the appropriate structure of the latter, the multi-level generalization of multiple polynomial regression, where the residual stochastic forcing at a given level is subsequently modeled as a function of variables at this, and all preceding levels, has turned out to be useful. The number of levels is determined so that lag-0 covariance of the residual forcing converges to a constant matrix, while its lag-1 covariance vanishes. The method has been applied to the output from a three-layer quasi-geostrophic model, to the analysis of the Northern Hemisphere wintertime geopotential height anomalies, and to global sea-surface temperature (SST) data. In the former two cases, the nonlinear multi-regime structure of probability density function (PDF) constructed in the phase subspace of a few leading empirical orthogonal functions (EOFs), as well as the detailed spectrum of the data's temporal evolution, have been well reproduced by the regression simulations. We have given a simple dynamical interpretation of these results in terms of synoptic-eddy feedback on the system's low-frequency variability. In modeling of SST data, a simple way to include the seasonal cycle into the regression model has been developed. The regression simulation in this case produces ENSO events with maximum amplitude in December/January, while the positive events generally tend to have a larger amplitude than the negative events -- a feature that cannot be

  3. Mixed-effects regression models in linguistics

    CERN Document Server

    Heylen, Kris; Geeraerts, Dirk

    2018-01-01

    When data consist of grouped observations or clusters, and there is a risk that measurements within the same group are not independent, group-specific random effects can be added to a regression model in order to account for such within-group associations. Regression models that contain such group-specific random effects are called mixed-effects regression models, or simply mixed models. Mixed models are a versatile tool that can handle both balanced and unbalanced datasets and that can also be applied when several layers of grouping are present in the data; these layers can either be nested or crossed.  In linguistics, as in many other fields, the use of mixed models has gained ground rapidly over the last decade. This methodological evolution enables us to build more sophisticated and arguably more realistic models, but, due to its technical complexity, also introduces new challenges. This volume brings together a number of promising new evolutions in the use of mixed models in linguistics, but also addres...

  4. Impact of multicollinearity on small sample hydrologic regression models

    Science.gov (United States)

    Kroll, Charles N.; Song, Peter

    2013-06-01

    Often hydrologic regression models are developed with ordinary least squares (OLS) procedures. The use of OLS with highly correlated explanatory variables produces multicollinearity, which creates highly sensitive parameter estimators with inflated variances and improper model selection. It is not clear how to best address multicollinearity in hydrologic regression models. Here a Monte Carlo simulation is developed to compare four techniques to address multicollinearity: OLS, OLS with variance inflation factor screening (VIF), principal component regression (PCR), and partial least squares regression (PLS). The performance of these four techniques was observed for varying sample sizes, correlation coefficients between the explanatory variables, and model error variances consistent with hydrologic regional regression models. The negative effects of multicollinearity are magnified at smaller sample sizes, higher correlations between the variables, and larger model error variances (smaller R2). The Monte Carlo simulation indicates that if the true model is known, multicollinearity is present, and the estimation and statistical testing of regression parameters are of interest, then PCR or PLS should be employed. If the model is unknown, or if the interest is solely on model predictions, is it recommended that OLS be employed since using more complicated techniques did not produce any improvement in model performance. A leave-one-out cross-validation case study was also performed using low-streamflow data sets from the eastern United States. Results indicate that OLS with stepwise selection generally produces models across study regions with varying levels of multicollinearity that are as good as biased regression techniques such as PCR and PLS.

  5. Linear Regression Models for Estimating True Subsurface ...

    Indian Academy of Sciences (India)

    47

    For the fact that subsurface resistivity is nonlinear, the datasets were first. 14 transformed into logarithmic scale to satisfy the basic regression assumptions. Three. 15 models, one each for the three array types, are thus developed based on simple linear. 16 relationships between the dependent and independent variables.

  6. A Skew-Normal Mixture Regression Model

    Science.gov (United States)

    Liu, Min; Lin, Tsung-I

    2014-01-01

    A challenge associated with traditional mixture regression models (MRMs), which rest on the assumption of normally distributed errors, is determining the number of unobserved groups. Specifically, even slight deviations from normality can lead to the detection of spurious classes. The current work aims to (a) examine how sensitive the commonly…

  7. OPTIMAL DESIGNS FOR SPLINE WAVELET REGRESSION MODELS.

    Science.gov (United States)

    Maronge, Jacob M; Zhai, Yi; Wiens, Douglas P; Fang, Zhide

    2017-05-01

    In this article we investigate the optimal design problem for some wavelet regression models. Wavelets are very flexible in modeling complex relations, and optimal designs are appealing as a means of increasing the experimental precision. In contrast to the designs for the Haar wavelet regression model (Herzberg and Traves 1994; Oyet and Wiens 2000), the I-optimal designs we construct are different from the D-optimal designs. We also obtain c-optimal designs. Optimal (D- and I-) quadratic spline wavelet designs are constructed, both analytically and numerically. A case study shows that a significant saving of resources may be realized by employing an optimal design. We also construct model robust designs, to address response misspecification arising from fitting an incomplete set of wavelets.

  8. Multiple Imputations for Linear Regression Models

    OpenAIRE

    Brownstone, David

    1991-01-01

    Rubin (1987) has proposed multiple imputations as a general method for estimation in the presence of missing data. Rubin’s results only strictly apply to Bayesian models, but Schenker and Welsh (1988) directly prove the consistency  multiple imputations inference~ when there are missing values of the dependent variable in linear regression models. This paper extends and modifies Schenker and Welsh’s theorems to give conditions where multiple imputations yield consistent inferences for bo...

  9. Influence diagnostics in meta-regression model.

    Science.gov (United States)

    Shi, Lei; Zuo, ShanShan; Yu, Dalei; Zhou, Xiaohua

    2017-09-01

    This paper studies the influence diagnostics in meta-regression model including case deletion diagnostic and local influence analysis. We derive the subset deletion formulae for the estimation of regression coefficient and heterogeneity variance and obtain the corresponding influence measures. The DerSimonian and Laird estimation and maximum likelihood estimation methods in meta-regression are considered, respectively, to derive the results. Internal and external residual and leverage measure are defined. The local influence analysis based on case-weights perturbation scheme, responses perturbation scheme, covariate perturbation scheme, and within-variance perturbation scheme are explored. We introduce a method by simultaneous perturbing responses, covariate, and within-variance to obtain the local influence measure, which has an advantage of capable to compare the influence magnitude of influential studies from different perturbations. An example is used to illustrate the proposed methodology. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Testing the Perturbation Sensitivity of Abortion-Crime Regressions

    Directory of Open Access Journals (Sweden)

    Michał Brzeziński

    2012-06-01

    Full Text Available The hypothesis that the legalisation of abortion contributed significantly to the reduction of crime in the United States in 1990s is one of the most prominent ideas from the recent “economics-made-fun” movement sparked by the book Freakonomics. This paper expands on the existing literature about the computational stability of abortion-crime regressions by testing the sensitivity of coefficients’ estimates to small amounts of data perturbation. In contrast to previous studies, we use a new data set on crime correlates for each of the US states, the original model specifica-tion and estimation methodology, and an improved data perturbation algorithm. We find that the coefficients’ estimates in abortion-crime regressions are not computationally stable and, therefore, are unreliable.

  11. Geographically weighted regression model on poverty indicator

    Science.gov (United States)

    Slamet, I.; Nugroho, N. F. T. A.; Muslich

    2017-12-01

    In this research, we applied geographically weighted regression (GWR) for analyzing the poverty in Central Java. We consider Gaussian Kernel as weighted function. The GWR uses the diagonal matrix resulted from calculating kernel Gaussian function as a weighted function in the regression model. The kernel weights is used to handle spatial effects on the data so that a model can be obtained for each location. The purpose of this paper is to model of poverty percentage data in Central Java province using GWR with Gaussian kernel weighted function and to determine the influencing factors in each regency/city in Central Java province. Based on the research, we obtained geographically weighted regression model with Gaussian kernel weighted function on poverty percentage data in Central Java province. We found that percentage of population working as farmers, population growth rate, percentage of households with regular sanitation, and BPJS beneficiaries are the variables that affect the percentage of poverty in Central Java province. In this research, we found the determination coefficient R2 are 68.64%. There are two categories of district which are influenced by different of significance factors.

  12. Weighted Quantile Regression for AR model with Infinite Variance Errors.

    Science.gov (United States)

    Chen, Zhao; Li, Runze; Wu, Yaohua

    2012-09-01

    Autoregressive (AR) models with finite variance errors have been well studied. This paper is concerned with AR models with heavy-tailed errors, which is useful in various scientific research areas. Statistical estimation for AR models with infinite variance errors is very different from those for AR models with finite variance errors. In this paper, we consider a weighted quantile regression for AR models to deal with infinite variance errors. We further propose an induced smoothing method to deal with computational challenges in weighted quantile regression. We show that the difference between weighted quantile regression estimate and its smoothed version is negligible. We further propose a test for linear hypothesis on the regression coefficients. We conduct Monte Carlo simulation study to assess the finite sample performance of the proposed procedures. We illustrate the proposed methodology by an empirical analysis of a real-life data set.

  13. Wavelet regression model in forecasting crude oil price

    Science.gov (United States)

    Hamid, Mohd Helmie; Shabri, Ani

    2017-05-01

    This study presents the performance of wavelet multiple linear regression (WMLR) technique in daily crude oil forecasting. WMLR model was developed by integrating the discrete wavelet transform (DWT) and multiple linear regression (MLR) model. The original time series was decomposed to sub-time series with different scales by wavelet theory. Correlation analysis was conducted to assist in the selection of optimal decomposed components as inputs for the WMLR model. The daily WTI crude oil price series has been used in this study to test the prediction capability of the proposed model. The forecasting performance of WMLR model were also compared with regular multiple linear regression (MLR), Autoregressive Moving Average (ARIMA) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) using root mean square errors (RMSE) and mean absolute errors (MAE). Based on the experimental results, it appears that the WMLR model performs better than the other forecasting technique tested in this study.

  14. Adaptive regression for modeling nonlinear relationships

    CERN Document Server

    Knafl, George J

    2016-01-01

    This book presents methods for investigating whether relationships are linear or nonlinear and for adaptively fitting appropriate models when they are nonlinear. Data analysts will learn how to incorporate nonlinearity in one or more predictor variables into regression models for different types of outcome variables. Such nonlinear dependence is often not considered in applied research, yet nonlinear relationships are common and so need to be addressed. A standard linear analysis can produce misleading conclusions, while a nonlinear analysis can provide novel insights into data, not otherwise possible. A variety of examples of the benefits of modeling nonlinear relationships are presented throughout the book. Methods are covered using what are called fractional polynomials based on real-valued power transformations of primary predictor variables combined with model selection based on likelihood cross-validation. The book covers how to formulate and conduct such adaptive fractional polynomial modeling in the s...

  15. Bayesian Inference of a Multivariate Regression Model

    Directory of Open Access Journals (Sweden)

    Marick S. Sinay

    2014-01-01

    Full Text Available We explore Bayesian inference of a multivariate linear regression model with use of a flexible prior for the covariance structure. The commonly adopted Bayesian setup involves the conjugate prior, multivariate normal distribution for the regression coefficients and inverse Wishart specification for the covariance matrix. Here we depart from this approach and propose a novel Bayesian estimator for the covariance. A multivariate normal prior for the unique elements of the matrix logarithm of the covariance matrix is considered. Such structure allows for a richer class of prior distributions for the covariance, with respect to strength of beliefs in prior location hyperparameters, as well as the added ability, to model potential correlation amongst the covariance structure. The posterior moments of all relevant parameters of interest are calculated based upon numerical results via a Markov chain Monte Carlo procedure. The Metropolis-Hastings-within-Gibbs algorithm is invoked to account for the construction of a proposal density that closely matches the shape of the target posterior distribution. As an application of the proposed technique, we investigate a multiple regression based upon the 1980 High School and Beyond Survey.

  16. Regression Models For Saffron Yields in Iran

    Science.gov (United States)

    S. H, Sanaeinejad; S. N, Hosseini

    Saffron is an important crop in social and economical aspects in Khorassan Province (Northeast of Iran). In this research wetried to evaluate trends of saffron yield in recent years and to study the relationship between saffron yield and the climate change. A regression analysis was used to predict saffron yield based on 20 years of yield data in Birjand, Ghaen and Ferdows cities.Climatologically data for the same periods was provided by database of Khorassan Climatology Center. Climatologically data includedtemperature, rainfall, relative humidity and sunshine hours for ModelI, and temperature and rainfall for Model II. The results showed the coefficients of determination for Birjand, Ferdows and Ghaen for Model I were 0.69, 0.50 and 0.81 respectively. Also coefficients of determination for the same cities for model II were 0.53, 0.50 and 0.72 respectively. Multiple regression analysisindicated that among weather variables, temperature was the key parameter for variation ofsaffron yield. It was concluded that increasing temperature at spring was the main cause of declined saffron yield during recent years across the province. Finally, yield trend was predicted for the last 5 years using time series analysis.

  17. Multitask Quantile Regression under the Transnormal Model.

    Science.gov (United States)

    Fan, Jianqing; Xue, Lingzhou; Zou, Hui

    2016-01-01

    We consider estimating multi-task quantile regression under the transnormal model, with focus on high-dimensional setting. We derive a surprisingly simple closed-form solution through rank-based covariance regularization. In particular, we propose the rank-based ℓ1 penalization with positive definite constraints for estimating sparse covariance matrices, and the rank-based banded Cholesky decomposition regularization for estimating banded precision matrices. By taking advantage of alternating direction method of multipliers, nearest correlation matrix projection is introduced that inherits sampling properties of the unprojected one. Our work combines strengths of quantile regression and rank-based covariance regularization to simultaneously deal with nonlinearity and nonnormality for high-dimensional regression. Furthermore, the proposed method strikes a good balance between robustness and efficiency, achieves the "oracle"-like convergence rate, and provides the provable prediction interval under the high-dimensional setting. The finite-sample performance of the proposed method is also examined. The performance of our proposed rank-based method is demonstrated in a real application to analyze the protein mass spectroscopy data.

  18. Optimization of Regression Models of Experimental Data Using Confirmation Points

    Science.gov (United States)

    Ulbrich, N.

    2010-01-01

    A new search metric is discussed that may be used to better assess the predictive capability of different math term combinations during the optimization of a regression model of experimental data. The new search metric can be determined for each tested math term combination if the given experimental data set is split into two subsets. The first subset consists of data points that are only used to determine the coefficients of the regression model. The second subset consists of confirmation points that are exclusively used to test the regression model. The new search metric value is assigned after comparing two values that describe the quality of the fit of each subset. The first value is the standard deviation of the PRESS residuals of the data points. The second value is the standard deviation of the response residuals of the confirmation points. The greater of the two values is used as the new search metric value. This choice guarantees that both standard deviations are always less or equal to the value that is used during the optimization. Experimental data from the calibration of a wind tunnel strain-gage balance is used to illustrate the application of the new search metric. The new search metric ultimately generates an optimized regression model that was already tested at regression model independent confirmation points before it is ever used to predict an unknown response from a set of regressors.

  19. Regression models for the quantification of Parkinsonian bradykinesia.

    Science.gov (United States)

    Kim, Ji-Won; Kwon, Yuri; Yun, Ju-Seok; Heo, Jae-Hoon; Eom, Gwang-Moon; Tack, Gye-Rae; Lim, Tae-Hong; Koh, Seong-Beom

    2015-01-01

    The aim of this study was to develop regression models for the quantification of parkinsonian bradykinesia. Forty patients with Parkinson's disease participated in this study. Angular velocity was measured using gyro sensor during finger tapping, forearm-rotation, and toe tapping tasks and the severity of bradykinesia was rated by two independent neurologists. Various characteristic variables were derived from the sensor signal. Stepwise multiple linear regression analysis was performed to develop models predicting the bradykinesia score with the characteristic variables as input. To evaluate the ability of the regression models to discriminate different bradykinesia scores, ANOVA and post hoc test were performed. Major determinants of the bradykinesia score differed among clinical tasks and between raters. The regression models were better than any single characteristic variable in terms of the ability to differentiate bradykinesia scores. Specifically, the regression models could differentiate all pairs of the bradykinesia scores (pmultiple regression models reflecting these differences would be beneficial for the quantification of bradykinesia because the cardinal features included in the determination of bradykinesia score differ among tasks as well as among the raters.

  20. A Test for Multimodality of Regression Derivatives with an Application to Nonparametric Growth Regressions

    OpenAIRE

    Henderson, Daniel J.

    2008-01-01

    This paper presents a method to test for multimodality of an estimated kernel density of parameter estimates from a local-linear least-squares regression derivative. The procedure is laid out in seven simple steps and a suggestion for implementation is proposed. A Monte Carlo exercise is used to examine the finite sample properties of the test along with those from a calibrated version of it which corrects for the conservative nature of Silverman-type tests. The test is included in a study...

  1. Cox regression model with doubly truncated data.

    Science.gov (United States)

    Rennert, Lior; Xie, Sharon X

    2017-10-26

    Truncation is a well-known phenomenon that may be present in observational studies of time-to-event data. While many methods exist to adjust for either left or right truncation, there are very few methods that adjust for simultaneous left and right truncation, also known as double truncation. We propose a Cox regression model to adjust for this double truncation using a weighted estimating equation approach, where the weights are estimated from the data both parametrically and nonparametrically, and are inversely proportional to the probability that a subject is observed. The resulting weighted estimators of the hazard ratio are consistent. The parametric weighted estimator is asymptotically normal and a consistent estimator of the asymptotic variance is provided. For the nonparametric weighted estimator, we apply the bootstrap technique to estimate the variance and confidence intervals. We demonstrate through extensive simulations that the proposed estimators greatly reduce the bias compared to the unweighted Cox regression estimator which ignores truncation. We illustrate our approach in an analysis of autopsy-confirmed Alzheimer's disease patients to assess the effect of education on survival. © 2017, The International Biometric Society.

  2. Logistic Regression Model on Antenna Control Unit Autotracking Mode

    Science.gov (United States)

    2015-10-20

    y is the logarithm of odds, or log-odds, also known as the logit of probability. Our model derives the logit of probabilities as the linear...partitioned over the control set predictors. This linearity of the logit vs. predictor is an assumption essential to our model . Not only can we...412TW-PA-15240 Logistic Regression Model on Antenna Control Unit Autotracking Mode DANIEL T. LAIRD AIR FORCE TEST CENTER EDWARDS AFB, CA

  3. Joint regression analysis and AMMI model applied to oat improvement

    Science.gov (United States)

    Oliveira, A.; Oliveira, T. A.; Mejza, S.

    2012-09-01

    In our work we present an application of some biometrical methods useful in genotype stability evaluation, namely AMMI model, Joint Regression Analysis (JRA) and multiple comparison tests. A genotype stability analysis of oat (Avena Sativa L.) grain yield was carried out using data of the Portuguese Plant Breeding Board, sample of the 22 different genotypes during the years 2002, 2003 and 2004 in six locations. In Ferreira et al. (2006) the authors state the relevance of the regression models and of the Additive Main Effects and Multiplicative Interactions (AMMI) model, to study and to estimate phenotypic stability effects. As computational techniques we use the Zigzag algorithm to estimate the regression coefficients and the agricolae-package available in R software for AMMI model analysis.

  4. Detection of epistatic effects with logic regression and a classical linear regression model.

    Science.gov (United States)

    Malina, Magdalena; Ickstadt, Katja; Schwender, Holger; Posch, Martin; Bogdan, Małgorzata

    2014-02-01

    To locate multiple interacting quantitative trait loci (QTL) influencing a trait of interest within experimental populations, usually methods as the Cockerham's model are applied. Within this framework, interactions are understood as the part of the joined effect of several genes which cannot be explained as the sum of their additive effects. However, if a change in the phenotype (as disease) is caused by Boolean combinations of genotypes of several QTLs, this Cockerham's approach is often not capable to identify them properly. To detect such interactions more efficiently, we propose a logic regression framework. Even though with the logic regression approach a larger number of models has to be considered (requiring more stringent multiple testing correction) the efficient representation of higher order logic interactions in logic regression models leads to a significant increase of power to detect such interactions as compared to a Cockerham's approach. The increase in power is demonstrated analytically for a simple two-way interaction model and illustrated in more complex settings with simulation study and real data analysis.

  5. Entrepreneurial intention modeling using hierarchical multiple regression

    Directory of Open Access Journals (Sweden)

    Marina Jeger

    2014-12-01

    Full Text Available The goal of this study is to identify the contribution of effectuation dimensions to the predictive power of the entrepreneurial intention model over and above that which can be accounted for by other predictors selected and confirmed in previous studies. As is often the case in social and behavioral studies, some variables are likely to be highly correlated with each other. Therefore, the relative amount of variance in the criterion variable explained by each of the predictors depends on several factors such as the order of variable entry and sample specifics. The results show the modest predictive power of two dimensions of effectuation prior to the introduction of the theory of planned behavior elements. The article highlights the main advantages of applying hierarchical regression in social sciences as well as in the specific context of entrepreneurial intention formation, and addresses some of the potential pitfalls that this type of analysis entails.

  6. An Additive-Multiplicative Cox-Aalen Regression Model

    DEFF Research Database (Denmark)

    Scheike, Thomas H.; Zhang, Mei-Jie

    2002-01-01

    Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects......Aalen model; additive risk model; counting processes; Cox regression; survival analysis; time-varying effects...

  7. Polygraph Test Results Assessment by Regression Analysis Methods

    Directory of Open Access Journals (Sweden)

    K. A. Leontiev

    2014-01-01

    Full Text Available The paper considers a problem of defining the importance of asked questions for the examinee under judicial and psychophysiological polygraph examination by methods of mathematical statistics. It offers the classification algorithm based on the logistic regression as an optimum Bayesian classifier, considering weight coefficients of information for the polygraph-recorded physiological parameters with no condition for independence of the measured signs.Actually, binary classification is executed by results of polygraph examination with preliminary normalization and standardization of primary results, with check of a hypothesis that distribution of obtained data is normal, as well as with calculation of coefficients of linear regression between input values and responses by method of maximum likelihood. Further, the logistic curve divided signs into two classes of the "significant" and "insignificant" type.Efficiency of model is estimated by means of the ROC analysis (Receiver Operator Characteristics. It is shown that necessary minimum sample has to contain results of 45 measurements at least. This approach ensures a reliable result provided that an expert-polygraphologist possesses sufficient qualification and follows testing techniques.

  8. Direction of Effects in Multiple Linear Regression Models.

    Science.gov (United States)

    Wiedermann, Wolfgang; von Eye, Alexander

    2015-01-01

    Previous studies analyzed asymmetric properties of the Pearson correlation coefficient using higher than second order moments. These asymmetric properties can be used to determine the direction of dependence in a linear regression setting (i.e., establish which of two variables is more likely to be on the outcome side) within the framework of cross-sectional observational data. Extant approaches are restricted to the bivariate regression case. The present contribution extends the direction of dependence methodology to a multiple linear regression setting by analyzing distributional properties of residuals of competing multiple regression models. It is shown that, under certain conditions, the third central moments of estimated regression residuals can be used to decide upon direction of effects. In addition, three different approaches for statistical inference are discussed: a combined D'Agostino normality test, a skewness difference test, and a bootstrap difference test. Type I error and power of the procedures are assessed using Monte Carlo simulations, and an empirical example is provided for illustrative purposes. In the discussion, issues concerning the quality of psychological data, possible extensions of the proposed methods to the fourth central moment of regression residuals, and potential applications are addressed.

  9. Boosted Regression Tree Models to Explain Watershed ...

    Science.gov (United States)

    Boosted regression tree (BRT) models were developed to quantify the nonlinear relationships between landscape variables and nutrient concentrations in a mesoscale mixed land cover watershed during base-flow conditions. Factors that affect instream biological components, based on the Index of Biotic Integrity (IBI), were also analyzed. Seasonal BRT models at two spatial scales (watershed and riparian buffered area [RBA]) for nitrite-nitrate (NO2-NO3), total Kjeldahl nitrogen, and total phosphorus (TP) and annual models for the IBI score were developed. Two primary factors — location within the watershed (i.e., geographic position, stream order, and distance to a downstream confluence) and percentage of urban land cover (both scales) — emerged as important predictor variables. Latitude and longitude interacted with other factors to explain the variability in summer NO2-NO3 concentrations and IBI scores. BRT results also suggested that location might be associated with indicators of sources (e.g., land cover), runoff potential (e.g., soil and topographic factors), and processes not easily represented by spatial data indicators. Runoff indicators (e.g., Hydrological Soil Group D and Topographic Wetness Indices) explained a substantial portion of the variability in nutrient concentrations as did point sources for TP in the summer months. The results from our BRT approach can help prioritize areas for nutrient management in mixed-use and heavily impacted watershed

  10. The art of regression modeling in road safety

    CERN Document Server

    Hauer, Ezra

    2015-01-01

    This unique book explains how to fashion useful regression models from commonly available data to erect models essential for evidence-based road safety management and research. Composed from techniques and best practices presented over many years of lectures and workshops, The Art of Regression Modeling in Road Safety illustrates that fruitful modeling cannot be done without substantive knowledge about the modeled phenomenon. Class-tested in courses and workshops across North America, the book is ideal for professionals, researchers, university professors, and graduate students with an interest in, or responsibilities related to, road safety. This book also: · Presents for the first time a powerful analytical tool for road safety researchers and practitioners · Includes problems and solutions in each chapter as well as data and spreadsheets for running models and PowerPoint presentation slides · Features pedagogy well-suited for graduate courses and workshops including problems, solutions, and PowerPoint p...

  11. Power and Sample Size Calculations for Logistic Regression Tests for Differential Item Functioning

    Science.gov (United States)

    Li, Zhushan

    2014-01-01

    Logistic regression is a popular method for detecting uniform and nonuniform differential item functioning (DIF) effects. Theoretical formulas for the power and sample size calculations are derived for likelihood ratio tests and Wald tests based on the asymptotic distribution of the maximum likelihood estimators for the logistic regression model.…

  12. Omnibus hypothesis testing in dominance-based ordinal multiple regression.

    Science.gov (United States)

    Long, Jeffrey D

    2005-09-01

    Often quantitative data in the social sciences have only ordinal justification. Problems of interpretation can arise when least squares multiple regression (LSMR) is used with ordinal data. Two ordinal alternatives are discussed, dominance-based ordinal multiple regression (DOMR) and proportional odds multiple regression. The Q2 statistic is introduced for testing the omnibus null hypothesis in DOMR. A simulation study is discussed that examines the actual Type I error rate and power of Q2 in comparison to the LSMR omnibus F test under normality and non-normality. Results suggest that Q2 has favorable sampling properties as long as the sample size-to-predictors ratio is not too small, and Q2 can be a good alternative to the omnibus F test when the response variable is non-normal. Copyright 2005 APA, all rights reserved.

  13. Modeling maximum daily temperature using a varying coefficient regression model

    Science.gov (United States)

    Han Li; Xinwei Deng; Dong-Yum Kim; Eric P. Smith

    2014-01-01

    Relationships between stream water and air temperatures are often modeled using linear or nonlinear regression methods. Despite a strong relationship between water and air temperatures and a variety of models that are effective for data summarized on a weekly basis, such models did not yield consistently good predictions for summaries such as daily maximum temperature...

  14. Analysis of Success in General Chemistry Based on Diagnostic Testing Using Logistic Regression

    Science.gov (United States)

    Legg, Margaret J.; Legg, Jason C.; Greenbowe, Thomas J.

    2001-08-01

    Several chemistry diagnostic and placement exams are used to help place chemistry students in an appropriate course or to determine strengths and weaknesses for specific topics in chemistry or math. The purpose of obtaining pre-course measurements is to increase students' academic success. Often these tests are used to predict the chance a student has in passing a course. This paper discusses the statistical methods of logistic regression applied to predicting the probability of passing a course, based on the scores on the California Chemistry Diagnostic Test at two different institutions with two different instructors over multiple years. This technique describes the relation of a test score (a continuous variable) to the probability of passing the class (a binary variable). Many papers in the Journal of Chemical Education have used a simple linear regression technique to correlate placement test scores with the proportion of students passing a course. The model assumptions are difficult to satisfy when using simple linear regression. Simple linear regression is useful when continuous predictor variables predict a continuous response, whereas logistic regression is useful when continuous predictor variables predict a binary response. Differences between simple linear regression and logistic regression and methods for evaluating linear regression model assumptions are discussed in detail. The fundamental concepts behind regression are described, with the caveats of using regression equations for predictions. By using logistic regression, instructors will be able to provide students with an estimate of their probability of passing the course.

  15. Model performance analysis and model validation in logistic regression

    Directory of Open Access Journals (Sweden)

    Rosa Arboretti Giancristofaro

    2007-10-01

    Full Text Available In this paper a new model validation procedure for a logistic regression model is presented. At first, we illustrate a brief review of different techniques of model validation. Next, we define a number of properties required for a model to be considered "good", and a number of quantitative performance measures. Lastly, we describe a methodology for the assessment of the performance of a given model by using an example taken from a management study.

  16. Using Historical Data and Quasi-Likelihood Logistic Regression Modeling to Test Spatial Patterns of Channel Response to Peak Flows in a Mountain Watershed

    Science.gov (United States)

    Faustini, J. M.; Jones, J. A.

    2001-12-01

    This study used an empirical modeling approach to explore landscape controls on spatial variations in reach-scale channel response to peak flows in a mountain watershed. We used historical cross-section surveys spanning 20 years at five sites on 2nd to 5th-order channels and stream gaging records spanning up to 50 years. We related the observed proportion of cross-sections at a site exhibiting detectable change between consecutive surveys to the recurrence interval of the largest peak flow during the corresponding period using a quasi-likelihood logistic regression model. Stream channel response was linearly related to flood size or return period through the logit function, but the shape of the response function varied according to basin size, bed material, and the presence or absence of large wood. At the watershed scale, we hypothesized that the spatial scale and frequency of channel adjustment should increase in the downstream direction as sediment supply increases relative to transport capacity, resulting in more transportable sediment in the channel and hence increased bed mobility. Consistent with this hypothesis, cross sections from the 4th and 5th-order main stem channels exhibit more frequent detectable changes than those at two steep third-order tributary sites. Peak flows able to mobilize bed material sufficiently to cause detectable changes in 50% of cross-section profiles had an estimated recurrence interval of 3 years for the 4th and 5th-order channels and 4 to 6 years for the 3rd-order sites. This difference increased for larger magnitude channel changes; peak flows with recurrence intervals of about 7 years produced changes in 90% of cross sections at the main stem sites, but flows able to produce the same level of response at tributary sites were three times less frequent. At finer scales, this trend of increasing bed mobility in the downstream direction is modified by variations in the degree of channel confinement by bedrock and landforms, the

  17. Data analysis using regression and multilevel/hierarchical models

    National Research Council Canada - National Science Library

    Gelman, Andrew; Hill, Jennifer

    2007-01-01

    "Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive manual for the applied researcher who wants to perform data analysis using linear and nonlinear regression and multilevel models...

  18. Forecasting volatility with neural regression: a contribution to model adequacy.

    Science.gov (United States)

    Refenes, A N; Holt, W T

    2001-01-01

    Neural nets' usefulness for forecasting is limited by problems of overfitting and the lack of rigorous procedures for model identification, selection and adequacy testing. This paper describes a methodology for neural model misspecification testing. We introduce a generalization of the Durbin-Watson statistic for neural regression and discuss the general issues of misspecification testing using residual analysis. We derive a generalized influence matrix for neural estimators which enables us to evaluate the distribution of the statistic. We deploy Monte Carlo simulation to compare the power of the test for neural and linear regressors. While residual testing is not a sufficient condition for model adequacy, it is nevertheless a necessary condition to demonstrate that the model is a good approximation to the data generating process, particularly as neural-network estimation procedures are susceptible to partial convergence. The work is also an important step toward developing rigorous procedures for neural model identification, selection and adequacy testing which have started to appear in the literature. We demonstrate its applicability in the nontrivial problem of forecasting implied volatility innovations using high-frequency stock index options. Each step of the model building process is validated using statistical tests to verify variable significance and model adequacy with the results confirming the presence of nonlinear relationships in implied volatility innovations.

  19. Data correction for seven activity trackers based on regression models.

    Science.gov (United States)

    Andalibi, Vafa; Honko, Harri; Christophe, Francois; Viik, Jari

    2015-08-01

    Using an activity tracker for measuring activity-related parameters, e.g. steps and energy expenditure (EE), can be very helpful in assisting a person's fitness improvement. Unlike the measuring of number of steps, an accurate EE estimation requires additional personal information as well as accurate velocity of movement, which is hard to achieve due to inaccuracy of sensors. In this paper, we have evaluated regression-based models to improve the precision for both steps and EE estimation. For this purpose, data of seven activity trackers and two reference devices was collected from 20 young adult volunteers wearing all devices at once in three different tests, namely 60-minute office work, 6-hour overall activity and 60-minute walking. Reference data is used to create regression models for each device and relative percentage errors of adjusted values are then statistically compared to that of original values. The effectiveness of regression models are determined based on the result of a statistical test. During a walking period, EE measurement was improved in all devices. The step measurement was also improved in five of them. The results show that improvement of EE estimation is possible only with low-cost implementation of fitting model over the collected data e.g. in the app or in corresponding service back-end.

  20. Ordinal regression by a generalized force-based model.

    Science.gov (United States)

    Fernandez-Navarro, Francisco; Riccardi, Annalisa; Carloni, Sante

    2015-04-01

    This paper introduces a new instance-based algorithm for multiclass classification problems where the classes have a natural order. The proposed algorithm extends the state-of-the-art gravitational models by generalizing the scaling behavior of the class-pattern interaction force. Like the other gravitational models, the proposed algorithm classifies new patterns by comparing the magnitude of the force that each class exerts on a given pattern. To address ordinal problems, the algorithm assumes that, given a pattern, the forces associated to each class follow a unimodal distribution. For this reason, a weight matrix that allows to modify the metric in the attributes space and a vector of parameters that allows to modify the force law for each class have been introduced in the model definition. Furthermore, a probabilistic formulation of the error function allows the estimation of the model parameters using global and local optimization procedures toward minimization of the errors and penalization of the non unimodal outputs. One of the strengths of the model is its competitive grade of interpretability which is a requisite in most of real applications. The proposed algorithm is compared to other well-known ordinal regression algorithms on discretized regression datasets and real ordinal regression datasets. Experimental results demonstrate that the proposed algorithm can achieve competitive generalization performance and it is validated using nonparametric statistical tests.

  1. Extended cox regression model: The choice of timefunction

    Science.gov (United States)

    Isik, Hatice; Tutkun, Nihal Ata; Karasoy, Durdu

    2017-07-01

    Cox regression model (CRM), which takes into account the effect of censored observations, is one the most applicative and usedmodels in survival analysis to evaluate the effects of covariates. Proportional hazard (PH), requires a constant hazard ratio over time, is the assumptionofCRM. Using extended CRM provides the test of including a time dependent covariate to assess the PH assumption or an alternative model in case of nonproportional hazards. In this study, the different types of real data sets are used to choose the time function and the differences between time functions are analyzed and discussed.

  2. Power properties of invariant tests for spatial autocorrelation in linear regression

    NARCIS (Netherlands)

    Martellosio, F.

    2006-01-01

    Many popular tests for residual spatial autocorrelation in the context of the linear regression model belong to the class of invariant tests. This paper derives a number of exact properties of the power function of such tests. In particular, we extend the work of Krämer (2005, Journal of Statistical

  3. Stress Testing German Industry Sectors: Results from a Vine Copula Based Quantile Regression

    OpenAIRE

    Fischer, Matthias; Kraus, Daniel; Pfeuffer, Marius; Czado, Claudia

    2017-01-01

    Measuring interdependence between probabilities of default (PDs) in different industry sectors of an economy plays a crucial role in financial stress testing. Thereby, regression approaches may be employed to model the impact of stressed industry sectors as covariates on other response sectors. We identify vine copula based quantile regression as an eligible tool for conducting such stress tests as this method has good robustness properties, takes into account potential nonlinearities of cond...

  4. STREAMFLOW AND WATER QUALITY REGRESSION MODELING ...

    African Journals Online (AJOL)

    The upper reaches of Imo-river system between Nekede and Obigbo hydrological stations (a stretch of 24km) have been studied for the purpose of water quality and streamflow modeling. Model's applications on water supply to Nekede and Obigbo communities were equally explored with the development of mass curves.

  5. Parameters Estimation of Geographically Weighted Ordinal Logistic Regression (GWOLR) Model

    Science.gov (United States)

    Zuhdi, Shaifudin; Retno Sari Saputro, Dewi; Widyaningsih, Purnami

    2017-06-01

    A regression model is the representation of relationship between independent variable and dependent variable. The dependent variable has categories used in the logistic regression model to calculate odds on. The logistic regression model for dependent variable has levels in the logistics regression model is ordinal. GWOLR model is an ordinal logistic regression model influenced the geographical location of the observation site. Parameters estimation in the model needed to determine the value of a population based on sample. The purpose of this research is to parameters estimation of GWOLR model using R software. Parameter estimation uses the data amount of dengue fever patients in Semarang City. Observation units used are 144 villages in Semarang City. The results of research get GWOLR model locally for each village and to know probability of number dengue fever patient categories.

  6. Utilização de modelos de regressão aleatória para produção de leite no dia do controle, com diferentes estruturas de variâncias residuais Random regression test-day models for milk yield records, with different structure of residual variances

    Directory of Open Access Journals (Sweden)

    Lenira El Faro

    2003-10-01

    Full Text Available Foram utilizados quatorze modelos de regressão aleatória, para ajustar 86.598 dados de produção de leite no dia do controle de 2.155 primeiras lactações de vacas Caracu, truncadas aos 305 dias. Os modelos incluíram os efeitos fixos de grupo contemporâneo e a covariável idade da vaca ao parto. Uma regressão ortogonal de ordem cúbica foi usada para modelar a trajetória média da população. Os efeitos genéticos aditivos e de ambiente permanente foram modelados por meio de regressões aleatórias, usando polinômios ortogonais de Legendre, de ordens cúbicas. Diferentes estruturas de variâncias residuais foram testadas e consideradas por meio de classes contendo 1, 10, 15 e 43 variâncias residuais e de funções de variâncias (FV usando polinômios ordinários e ortogonais, cujas ordens variaram de quadrática até sêxtupla. Os modelos foram comparados usando o teste da razão de verossimilhança, o Critério de Informação de Akaike e o Critério de Informação Bayesiano de Schwar. Os testes indicaram que, quanto maior a ordem da função de variâncias, melhor o ajuste. Dos polinômios ordinários, a função de sexta ordem foi superior. Os modelos com classes de variâncias residuais foram aparentemente superiores àqueles com funções de variância. O modelo com homogeneidade de variâncias foi inadequado. O modelo com 15 classes heterogêneas foi o que melhor ajustou às variâncias residuais, entretanto, os parâmetros genéticos estimados foram muito próximos para os modelos com 10, 15 ou 43 classes de variâncias ou com FV de sexta ordem.Fourteen random regression models were used to adjust 86,595 test-day milk records of 2,155 first lactation of native Caracu cows. The models include fixed effects of contemporary group and age of cow as covariable. A cubic regression on Legendre orthogonal polynomial of days in milk was used to model the mean trend and the additive genetic and permanent environmental regressions

  7. Moderation analysis using a two-level regression model.

    Science.gov (United States)

    Yuan, Ke-Hai; Cheng, Ying; Maxwell, Scott

    2014-10-01

    Moderation analysis is widely used in social and behavioral research. The most commonly used model for moderation analysis is moderated multiple regression (MMR) in which the explanatory variables of the regression model include product terms, and the model is typically estimated by least squares (LS). This paper argues for a two-level regression model in which the regression coefficients of a criterion variable on predictors are further regressed on moderator variables. An algorithm for estimating the parameters of the two-level model by normal-distribution-based maximum likelihood (NML) is developed. Formulas for the standard errors (SEs) of the parameter estimates are provided and studied. Results indicate that, when heteroscedasticity exists, NML with the two-level model gives more efficient and more accurate parameter estimates than the LS analysis of the MMR model. When error variances are homoscedastic, NML with the two-level model leads to essentially the same results as LS with the MMR model. Most importantly, the two-level regression model permits estimating the percentage of variance of each regression coefficient that is due to moderator variables. When applied to data from General Social Surveys 1991, NML with the two-level model identified a significant moderation effect of race on the regression of job prestige on years of education while LS with the MMR model did not. An R package is also developed and documented to facilitate the application of the two-level model.

  8. Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting

    Directory of Open Access Journals (Sweden)

    Hong-Juan Li

    2013-04-01

    Full Text Available Electric load forecasting is an important issue for a power utility, associated with the management of daily operations such as energy transfer scheduling, unit commitment, and load dispatch. Inspired by strong non-linear learning capability of support vector regression (SVR, this paper presents a SVR model hybridized with the empirical mode decomposition (EMD method and auto regression (AR for electric load forecasting. The electric load data of the New South Wales (Australia market are employed for comparing the forecasting performances of different forecasting models. The results confirm the validity of the idea that the proposed model can simultaneously provide forecasting with good accuracy and interpretability.

  9. Testing of a Fiber Optic Wear, Erosion and Regression Sensor

    Science.gov (United States)

    Korman, Valentin; Polzin, Kurt A.

    2011-01-01

    The nature of the physical processes and harsh environments associated with erosion and wear in propulsion environments makes their measurement and real-time rate quantification difficult. A fiber optic sensor capable of determining the wear (regression, erosion, ablation) associated with these environments has been developed and tested in a number of different applications to validate the technique. The sensor consists of two fiber optics that have differing attenuation coefficients and transmit light to detectors. The ratio of the two measured intensities can be correlated to the lengths of the fiber optic lines, and if the fibers and the host parent material in which they are embedded wear at the same rate the remaining length of fiber provides a real-time measure of the wear process. Testing in several disparate situations has been performed, with the data exhibiting excellent qualitative agreement with the theoretical description of the process and when a separate calibrated regression measurement is available good quantitative agreement is obtained as well. The light collected by the fibers can also be used to optically obtain the spectra and measure the internal temperature of the wear layer.

  10. A New Approach in Regression Analysis for Modeling Adsorption Isotherms

    Science.gov (United States)

    Onjia, Antonije E.

    2014-01-01

    Numerous regression approaches to isotherm parameters estimation appear in the literature. The real insight into the proper modeling pattern can be achieved only by testing methods on a very big number of cases. Experimentally, it cannot be done in a reasonable time, so the Monte Carlo simulation method was applied. The objective of this paper is to introduce and compare numerical approaches that involve different levels of knowledge about the noise structure of the analytical method used for initial and equilibrium concentration determination. Six levels of homoscedastic noise and five types of heteroscedastic noise precision models were considered. Performance of the methods was statistically evaluated based on median percentage error and mean absolute relative error in parameter estimates. The present study showed a clear distinction between two cases. When equilibrium experiments are performed only once, for the homoscedastic case, the winning error function is ordinary least squares, while for the case of heteroscedastic noise the use of orthogonal distance regression or Margart's percent standard deviation is suggested. It was found that in case when experiments are repeated three times the simple method of weighted least squares performed as well as more complicated orthogonal distance regression method. PMID:24672394

  11. Development and Application of Nonlinear Land-Use Regression Models

    Science.gov (United States)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel

    2014-05-01

    the testing set. Missing data have been completed using multiple linear regression and annual average values of pollutant concentrations were computed. All sensors are dispersed homogeneously over the central urban area of Geneva. The main result of the study is that the nonlinear LUR models developed have demonstrated their efficiency in modelling complex phrenomena of air pollution in urban zones and significantly reduced the testing error in comparison with linear models. Further research deals with the development and application of other non-linear data-driven models (Kanevski et al. 2009). References Kanevski M., Pozdnoukhov A. and Timonin V. (2009). Machine Learning for Spatial Environmental Data. Theory, Applications and Software. EPLF Press, Lausanne.

  12. Bayesian extreme quantile regression for hidden Markov models

    OpenAIRE

    Koutsourelis, Antonios

    2012-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University The main contribution of this thesis is the introduction of Bayesian quantile regression for hidden Markov models, especially when we have to deal with extreme quantile regression analysis, as there is a limited research to inference conditional quantiles for hidden Markov models, under a Bayesian approach. The first objective is to compare Bayesian extreme quantile regression and th...

  13. Support Vector Regression Model for Direct Methanol Fuel Cell

    Science.gov (United States)

    Tang, J. L.; Cai, C. Z.; Xiao, T. T.; Huang, S. J.

    2012-07-01

    The purpose of this paper is to establish a direct methanol fuel cell (DMFC) prediction model by using the support vector regression (SVR) approach combined with particle swarm optimization (PSO) algorithm for its parameter selection. Two variables, cell temperature and cell current density were employed as input variables, cell voltage value of DMFC acted as output variable. Using leave-one-out cross-validation (LOOCV) test on 21 samples, the maximum absolute percentage error (APE) yields 5.66%, the mean absolute percentage error (MAPE) is only 0.93% and the correlation coefficient (R2) as high as 0.995. Compared with the result of artificial neural network (ANN) approach, it is shown that the modeling ability of SVR surpasses that of ANN. These suggest that SVR prediction model can be a good predictor to estimate the cell voltage for DMFC system.

  14. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions.

    Science.gov (United States)

    Ogutu, Joseph O; Schulz-Streeck, Torben; Piepho, Hans-Peter

    2012-05-21

    Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total genomic breeding value (GEBV). Accurate prediction of GEBVs is a central and recurring challenge in plant and animal breeding. The existence of a bewildering array of approaches for predicting breeding values using markers underscores the importance of identifying approaches able to efficiently and accurately predict breeding values. Here, we comparatively evaluate the predictive performance of six regularized linear regression methods-- ridge regression, ridge regression BLUP, lasso, adaptive lasso, elastic net and adaptive elastic net-- for predicting GEBV using dense SNP markers. We predicted GEBVs for a quantitative trait using a dataset on 3000 progenies of 20 sires and 200 dams and an accompanying genome consisting of five chromosomes with 9990 biallelic SNP-marker loci simulated for the QTL-MAS 2011 workshop. We applied all the six methods that use penalty-based (regularization) shrinkage to handle datasets with far more predictors than observations. The lasso, elastic net and their adaptive extensions further possess the desirable property that they simultaneously select relevant predictive markers and optimally estimate their effects. The regression models were trained with a subset of 2000 phenotyped and genotyped individuals and used to predict GEBVs for the remaining 1000 progenies without phenotypes. Predictive accuracy was assessed using the root mean squared error, the Pearson correlation between predicted GEBVs and (1) the true genomic value (TGV), (2) the true breeding value (TBV) and (3) the simulated phenotypic values based on fivefold cross-validation (CV). The elastic net, lasso, adaptive lasso and the adaptive elastic net all had

  15. Mixed Frequency Data Sampling Regression Models: The R Package midasr

    Directory of Open Access Journals (Sweden)

    Eric Ghysels

    2016-08-01

    Full Text Available When modeling economic relationships it is increasingly common to encounter data sampled at different frequencies. We introduce the R package midasr which enables estimating regression models with variables sampled at different frequencies within a MIDAS regression framework put forward in work by Ghysels, Santa-Clara, and Valkanov (2002. In this article we define a general autoregressive MIDAS regression model with multiple variables of different frequencies and show how it can be specified using the familiar R formula interface and estimated using various optimization methods chosen by the researcher. We discuss how to check the validity of the estimated model both in terms of numerical convergence and statistical adequacy of a chosen regression specification, how to perform model selection based on a information criterion, how to assess forecasting accuracy of the MIDAS regression model and how to obtain a forecast aggregation of different MIDAS regression models. We illustrate the capabilities of the package with a simulated MIDAS regression model and give two empirical examples of application of MIDAS regression.

  16. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Directory of Open Access Journals (Sweden)

    Camerin Hahn

    2012-01-01

    Full Text Available As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007. However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed.

  17. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    Science.gov (United States)

    Hahn, Camerin; Noghanian, Sima

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectric properties. We propose a systematic approach in designing phantoms that not only have dielectric properties close to breast tissues but also can be easily shaped to realistic physical models. The approach is based on regression model to match phantom's dielectric properties with the breast tissue dielectric properties found in Lazebnik et al. (2007). However, the methodology proposed here can be used to create phantoms for any tissue type as long as ex vivo, in vitro, or in vivo tissue dielectric properties are measured and available. Therefore, using this method, accurate benchmarking phantoms for testing emerging microwave imaging algorithms can be developed. PMID:22550473

  18. A generalized multivariate regression model for modelling ocean wave heights

    Science.gov (United States)

    Wang, X. L.; Feng, Y.; Swail, V. R.

    2012-04-01

    In this study, a generalized multivariate linear regression model is developed to represent the relationship between 6-hourly ocean significant wave heights (Hs) and the corresponding 6-hourly mean sea level pressure (MSLP) fields. The model is calibrated using the ERA-Interim reanalysis of Hs and MSLP fields for 1981-2000, and is validated using the ERA-Interim reanalysis for 2001-2010 and ERA40 reanalysis of Hs and MSLP for 1958-2001. The performance of the fitted model is evaluated in terms of Pierce skill score, frequency bias index, and correlation skill score. Being not normally distributed, wave heights are subjected to a data adaptive Box-Cox transformation before being used in the model fitting. Also, since 6-hourly data are being modelled, lag-1 autocorrelation must be and is accounted for. The models with and without Box-Cox transformation, and with and without accounting for autocorrelation, are inter-compared in terms of their prediction skills. The fitted MSLP-Hs relationship is then used to reconstruct historical wave height climate from the 6-hourly MSLP fields taken from the Twentieth Century Reanalysis (20CR, Compo et al. 2011), and to project possible future wave height climates using CMIP5 model simulations of MSLP fields. The reconstructed and projected wave heights, both seasonal means and maxima, are subject to a trend analysis that allows for non-linear (polynomial) trends.

  19. Geographical Weighted Regression Model for Poverty Analysis in Jambi Province

    Directory of Open Access Journals (Sweden)

    Inti Pertiwi Nashwari

    2017-07-01

    Full Text Available Agriculture sector has an important contribution to food security in Indonesia, but it also huge contribution to the number of poverty, especially in rural area. Studies using a global model might not be sufficient to pinpoint the factors having most impact on poverty due to spatial differences. Therefore, a Geographically Weighted Regression (GWR was used to analyze the factors influencing the poverty among food crops famers. Jambi Province is selected because have high number of poverty in rural area and the lowest farmer exchange term in Indonesia. The GWR was better than the global model, based on high value of R2, lowers AIC and MSE and Leung test. Location in upland area and road system had more influence to the poverty in the western-southern. Rainfall was significantly influence in eastern. The effect of each factor, however, was not generic, since the parameter estimate might have a positive or negative value.

  20. RRegrs: an R package for computer-aided model selection with multiple regression models.

    Science.gov (United States)

    Tsiliki, Georgia; Munteanu, Cristian R; Seoane, Jose A; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L

    2015-01-01

    Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of these methodologies in order to assist model selection and speed up the process of predictive model development. A tool accessible to all users, irrespectively of their statistical knowledge, would be valuable if it tests several simple and complex regression models and validation schemes, produce unified reports, and offer the option to be integrated into more extensive studies. Additionally, such methodology should be implemented as a free programming package, in order to be continuously adapted and redistributed by others. We propose an integrated framework for creating multiple regression models, called RRegrs. The tool offers the option of ten simple and complex regression methods combined with repeated 10-fold and leave-one-out cross-validation. Methods include Multiple Linear regression, Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso regression, and Support Vector Machines Recursive Feature Elimination. The new framework is an automated fully validated procedure which produces standardized reports to quickly oversee the impact of choices in modelling algorithms and assess the model and cross-validation results. The methodology was implemented as an open source R package, available at https://www.github.com/enanomapper/RRegrs, by reusing and extending on the caret package. The universality of the new methodology is demonstrated using five standard data sets from different scientific fields. Its efficiency in cheminformatics and QSAR

  1. Regression mixture models : Does modeling the covariance between independent variables and latent classes improve the results?

    NARCIS (Netherlands)

    Lamont, A.E.; Vermunt, J.K.; Van Horn, M.L.

    2016-01-01

    Regression mixture models are increasingly used as an exploratory approach to identify heterogeneity in the effects of a predictor on an outcome. In this simulation study, we tested the effects of violating an implicit assumption often made in these models; that is, independent variables in the

  2. Correlation-regression model for physico-chemical quality of ...

    African Journals Online (AJOL)

    abusaad

    Multiple regression models can predict EC at 5% level of significance. Nitrate, chlorides, TDS and ... Key words: Groundwater, water quality, bore well, water supply, correlation, regression. INTRODUCTION. Groundwater is the prime .... reservoir located 10 to 25 km away from the city and through more than 1850 bore wells ...

  3. Using the Regression Model in multivariate data analysis

    Directory of Open Access Journals (Sweden)

    Constantin Cristinel

    2017-07-01

    Full Text Available This paper is about an instrumental research regarding the using of Linear Regression Model for data analysis. The research uses a model based on real data and stress the necessity of a correct utilisation of such models in order to obtain accurate information for the decision makers. The main scope is to help practitioners and researchers in their efforts to build prediction models based on linear regressions. The conclusion reveals the necessity to use quantitative data for a correct model specification and to validate the model according to the assumptions of the least squares method.

  4. Testing the equality of nonparametric regression curves based on ...

    African Journals Online (AJOL)

    Abstract. In this work we propose a new methodology for the comparison of two regression functions f1 and f2 in the case of homoscedastic error structure and a fixed design. Our approach is based on the empirical Fourier coefficients of the regression functions f1 and f2 respectively. As our main results we obtain the ...

  5. Tutorial on Using Regression Models with Count Outcomes Using R

    Directory of Open Access Journals (Sweden)

    A. Alexander Beaujean

    2016-02-01

    Full Text Available Education researchers often study count variables, such as times a student reached a goal, discipline referrals, and absences. Most researchers that study these variables use typical regression methods (i.e., ordinary least-squares either with or without transforming the count variables. In either case, using typical regression for count data can produce parameter estimates that are biased, thus diminishing any inferences made from such data. As count-variable regression models are seldom taught in training programs, we present a tutorial to help educational researchers use such methods in their own research. We demonstrate analyzing and interpreting count data using Poisson, negative binomial, zero-inflated Poisson, and zero-inflated negative binomial regression models. The count regression methods are introduced through an example using the number of times students skipped class. The data for this example are freely available and the R syntax used run the example analyses are included in the Appendix.

  6. Genomic selection using regularized linear regression models: ridge regression, lasso, elastic net and their extensions

    Science.gov (United States)

    2012-01-01

    Background Genomic selection (GS) is emerging as an efficient and cost-effective method for estimating breeding values using molecular markers distributed over the entire genome. In essence, it involves estimating the simultaneous effects of all genes or chromosomal segments and combining the estimates to predict the total genomic breeding value (GEBV). Accurate prediction of GEBVs is a central and recurring challenge in plant and animal breeding. The existence of a bewildering array of approaches for predicting breeding values using markers underscores the importance of identifying approaches able to efficiently and accurately predict breeding values. Here, we comparatively evaluate the predictive performance of six regularized linear regression methods-- ridge regression, ridge regression BLUP, lasso, adaptive lasso, elastic net and adaptive elastic net-- for predicting GEBV using dense SNP markers. Methods We predicted GEBVs for a quantitative trait using a dataset on 3000 progenies of 20 sires and 200 dams and an accompanying genome consisting of five chromosomes with 9990 biallelic SNP-marker loci simulated for the QTL-MAS 2011 workshop. We applied all the six methods that use penalty-based (regularization) shrinkage to handle datasets with far more predictors than observations. The lasso, elastic net and their adaptive extensions further possess the desirable property that they simultaneously select relevant predictive markers and optimally estimate their effects. The regression models were trained with a subset of 2000 phenotyped and genotyped individuals and used to predict GEBVs for the remaining 1000 progenies without phenotypes. Predictive accuracy was assessed using the root mean squared error, the Pearson correlation between predicted GEBVs and (1) the true genomic value (TGV), (2) the true breeding value (TBV) and (3) the simulated phenotypic values based on fivefold cross-validation (CV). Results The elastic net, lasso, adaptive lasso and the

  7. BayesX: Analyzing Bayesian Structural Additive Regression Models

    Directory of Open Access Journals (Sweden)

    Andreas Brezger

    2005-09-01

    Full Text Available There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC simulation techniques which allow realistic modeling of complex problems. This paper describes the capabilities of the free software package BayesX for estimating regression models with structured additive predictor based on MCMC inference. The program extends the capabilities of existing software for semiparametric regression included in S-PLUS, SAS, R or Stata. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are generalized additive (mixed models, dynamic models, varying coefficient models, geoadditive models, geographically weighted regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma, negative Binomial, zero inflated Poisson and zero inflated negative binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories can be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazard rate models.

  8. Adaptive Regression and Classification Models with Applications in Insurance

    Directory of Open Access Journals (Sweden)

    Jekabsons Gints

    2014-07-01

    Full Text Available Nowadays, in the insurance industry the use of predictive modeling by means of regression and classification techniques is becoming increasingly important and popular. The success of an insurance company largely depends on the ability to perform such tasks as credibility estimation, determination of insurance premiums, estimation of probability of claim, detecting insurance fraud, managing insurance risk. This paper discusses regression and classification modeling for such types of prediction problems using the method of Adaptive Basis Function Construction

  9. Synthesis analysis of regression models with a continuous outcome.

    Science.gov (United States)

    Zhou, Xiao-Hua; Hu, Nan; Hu, Guizhou; Root, Martin

    2009-05-15

    To estimate the multivariate regression model from multiple individual studies, it would be challenging to obtain results if the input from individual studies only provide univariate or incomplete multivariate regression information. Samsa et al. (J. Biomed. Biotechnol. 2005; 2:113-123) proposed a simple method to combine coefficients from univariate linear regression models into a multivariate linear regression model, a method known as synthesis analysis. However, the validity of this method relies on the normality assumption of the data, and it does not provide variance estimates. In this paper we propose a new synthesis method that improves on the existing synthesis method by eliminating the normality assumption, reducing bias, and allowing for the variance estimation of the estimated parameters. (c) 2009 John Wiley & Sons, Ltd.

  10. Regression Model Optimization for the Analysis of Experimental Data

    Science.gov (United States)

    Ulbrich, N.

    2009-01-01

    A candidate math model search algorithm was developed at Ames Research Center that determines a recommended math model for the multivariate regression analysis of experimental data. The search algorithm is applicable to classical regression analysis problems as well as wind tunnel strain gage balance calibration analysis applications. The algorithm compares the predictive capability of different regression models using the standard deviation of the PRESS residuals of the responses as a search metric. This search metric is minimized during the search. Singular value decomposition is used during the search to reject math models that lead to a singular solution of the regression analysis problem. Two threshold dependent constraints are also applied. The first constraint rejects math models with insignificant terms. The second constraint rejects math models with near-linear dependencies between terms. The math term hierarchy rule may also be applied as an optional constraint during or after the candidate math model search. The final term selection of the recommended math model depends on the regressor and response values of the data set, the user s function class combination choice, the user s constraint selections, and the result of the search metric minimization. A frequently used regression analysis example from the literature is used to illustrate the application of the search algorithm to experimental data.

  11. Complex Environmental Data Modelling Using Adaptive General Regression Neural Networks

    Science.gov (United States)

    Kanevski, Mikhail

    2015-04-01

    The research deals with an adaptation and application of Adaptive General Regression Neural Networks (GRNN) to high dimensional environmental data. GRNN [1,2,3] are efficient modelling tools both for spatial and temporal data and are based on nonparametric kernel methods closely related to classical Nadaraya-Watson estimator. Adaptive GRNN, using anisotropic kernels, can be also applied for features selection tasks when working with high dimensional data [1,3]. In the present research Adaptive GRNN are used to study geospatial data predictability and relevant feature selection using both simulated and real data case studies. The original raw data were either three dimensional monthly precipitation data or monthly wind speeds embedded into 13 dimensional space constructed by geographical coordinates and geo-features calculated from digital elevation model. GRNN were applied in two different ways: 1) adaptive GRNN with the resulting list of features ordered according to their relevancy; and 2) adaptive GRNN applied to evaluate all possible models N [in case of wind fields N=(2^13 -1)=8191] and rank them according to the cross-validation error. In both cases training were carried out applying leave-one-out procedure. An important result of the study is that the set of the most relevant features depends on the month (strong seasonal effect) and year. The predictabilities of precipitation and wind field patterns, estimated using the cross-validation and testing errors of raw and shuffled data, were studied in detail. The results of both approaches were qualitatively and quantitatively compared. In conclusion, Adaptive GRNN with their ability to select features and efficient modelling of complex high dimensional data can be widely used in automatic/on-line mapping and as an integrated part of environmental decision support systems. 1. Kanevski M., Pozdnoukhov A., Timonin V. Machine Learning for Spatial Environmental Data. Theory, applications and software. EPFL Press

  12. Real estate value prediction using multivariate regression models

    Science.gov (United States)

    Manjula, R.; Jain, Shubham; Srivastava, Sharad; Rajiv Kher, Pranav

    2017-11-01

    The real estate market is one of the most competitive in terms of pricing and the same tends to vary significantly based on a lot of factors, hence it becomes one of the prime fields to apply the concepts of machine learning to optimize and predict the prices with high accuracy. Therefore in this paper, we present various important features to use while predicting housing prices with good accuracy. We have described regression models, using various features to have lower Residual Sum of Squares error. While using features in a regression model some feature engineering is required for better prediction. Often a set of features (multiple regressions) or polynomial regression (applying a various set of powers in the features) is used for making better model fit. For these models are expected to be susceptible towards over fitting ridge regression is used to reduce it. This paper thus directs to the best application of regression models in addition to other techniques to optimize the result.

  13. A Spreadsheet Tool for Learning the Multiple Regression F-Test, T-Tests, and Multicollinearity

    Science.gov (United States)

    Martin, David

    2008-01-01

    This note presents a spreadsheet tool that allows teachers the opportunity to guide students towards answering on their own questions related to the multiple regression F-test, the t-tests, and multicollinearity. The note demonstrates approaches for using the spreadsheet that might be appropriate for three different levels of statistics classes,…

  14. Alternative regression models to assess increase in childhood BMI

    Directory of Open Access Journals (Sweden)

    Mansmann Ulrich

    2008-09-01

    Full Text Available Abstract Background Body mass index (BMI data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations. Methods Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs, quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS. We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity. Results GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models. Conclusion GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.

  15. Analysis of Sting Balance Calibration Data Using Optimized Regression Models

    Science.gov (United States)

    Ulbrich, N.; Bader, Jon B.

    2010-01-01

    Calibration data of a wind tunnel sting balance was processed using a candidate math model search algorithm that recommends an optimized regression model for the data analysis. During the calibration the normal force and the moment at the balance moment center were selected as independent calibration variables. The sting balance itself had two moment gages. Therefore, after analyzing the connection between calibration loads and gage outputs, it was decided to choose the difference and the sum of the gage outputs as the two responses that best describe the behavior of the balance. The math model search algorithm was applied to these two responses. An optimized regression model was obtained for each response. Classical strain gage balance load transformations and the equations of the deflection of a cantilever beam under load are used to show that the search algorithm s two optimized regression models are supported by a theoretical analysis of the relationship between the applied calibration loads and the measured gage outputs. The analysis of the sting balance calibration data set is a rare example of a situation when terms of a regression model of a balance can directly be derived from first principles of physics. In addition, it is interesting to note that the search algorithm recommended the correct regression model term combinations using only a set of statistical quality metrics that were applied to the experimental data during the algorithm s term selection process.

  16. Bayesian Regression of Thermodynamic Models of Redox Active Materials

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Katherine [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    Finding a suitable functional redox material is a critical challenge to achieving scalable, economically viable technologies for storing concentrated solar energy in the form of a defected oxide. Demonstrating e ectiveness for thermal storage or solar fuel is largely accomplished by using a thermodynamic model derived from experimental data. The purpose of this project is to test the accuracy of our regression model on representative data sets. Determining the accuracy of the model includes parameter tting the model to the data, comparing the model using di erent numbers of param- eters, and analyzing the entropy and enthalpy calculated from the model. Three data sets were considered in this project: two demonstrating materials for solar fuels by wa- ter splitting and the other of a material for thermal storage. Using Bayesian Inference and Markov Chain Monte Carlo (MCMC), parameter estimation was preformed on the three data sets. Good results were achieved, except some there was some deviations on the edges of the data input ranges. The evidence values were then calculated in a variety of ways and used to compare models with di erent number of parameters. It was believed that at least one of the parameters was unnecessary and comparing evidence values demonstrated that the parameter was need on one data set and not signi cantly helpful on another. The entropy was calculated by taking the derivative in one variable and integrating over another. and its uncertainty was also calculated by evaluating the entropy over multiple MCMC samples. Afterwards, all the parts were written up as a tutorial for the Uncertainty Quanti cation Toolkit (UQTk).

  17. Regression models for public health surveillance data: a simulation study.

    Science.gov (United States)

    Kim, H; Kriebel, D

    2009-11-01

    Poisson regression is now widely used in epidemiology, but researchers do not always evaluate the potential for bias in this method when the data are overdispersed. This study used simulated data to evaluate sources of overdispersion in public health surveillance data and compare alternative statistical models for analysing such data. If count data are overdispersed, Poisson regression will not correctly estimate the variance. A model called negative binomial 2 (NB2) can correct for overdispersion, and may be preferred for analysis of count data. This paper compared the performance of Poisson and NB2 regression with simulated overdispersed injury surveillance data. Monte Carlo simulation was used to assess the utility of the NB2 regression model as an alternative to Poisson regression for data which had several different sources of overdispersion. Simulated injury surveillance datasets were created in which an important predictor variable was omitted, as well as with an incorrect offset (denominator). The simulations evaluated the ability of Poisson regression and NB2 to correctly estimate the true determinants of injury and their confidence intervals. The NB2 model was effective in reducing overdispersion, but it could not reduce bias in point estimates which resulted from omitting a covariate which was a confounder, nor could it reduce bias from using an incorrect offset. One advantage of NB2 over Poisson for overdispersed data was that the confidence interval for a covariate was considerably wider with the former, providing an indication that the Poisson model did not fit well. When overdispersion is detected in a Poisson regression model, the NB2 model should be fit as an alternative. If there is no longer overdispersion, then the NB2 results may be preferred. However, it is important to remember that NB2 cannot correct for bias from omitted covariates or from using an incorrect offset.

  18. Regression model for tuning the PID controller with fractional order time delay system

    Directory of Open Access Journals (Sweden)

    S.P. Agnihotri

    2014-12-01

    Full Text Available In this paper a regression model based for tuning proportional integral derivative (PID controller with fractional order time delay system is proposed. The novelty of this paper is that tuning parameters of the fractional order time delay system are optimally predicted using the regression model. In the proposed method, the output parameters of the fractional order system are used to derive the regression function. Here, the regression model depends on the weights of the exponential function. By using the iterative algorithm, the best weight of the regression model is evaluated. Using the regression technique, fractional order time delay systems are tuned and the stability parameters of the system are maintained. The effectiveness and feasibility of the proposed technique is demonstrated through the MATLAB/Simulink platform, as well as testing and comparison using the classical PID controller, Ziegler–Nichols tuning method, Wang tuning method and curve fitting technique base tuning method.

  19. Using probit regression to disclose the analytical performance of qualitative and semi-quantitative tests.

    Science.gov (United States)

    Åsberg, Arne; Johnsen, Harald; Mikkelsen, Gustav; Hov, Gunhild Garmo

    2016-11-01

    The analytical performance of qualitative and semi-quantitative tests is usually studied by calculating the fraction of positive results after replicate testing of a few specimens with known concentrations of the analyte. We propose using probit regression to model the probability of positive results as a function of the analyte concentration, based on testing many specimens once with a qualitative and a quantitative test. We collected laboratory data where urine specimens had been analyzed by both a urine albumin ('protein') dipstick test (Combur-Test strips) and a quantitative test (BN ProSpec System). For each dipstick cut-off level probit regression was used to estimate the probability of positive results as a function of urine albumin concentration. We also used probit regression to estimate the standard deviation of the continuous measurement signal that lies behind the binary test response. Finally, we used probit regression to estimate the probability of reading a specific semi-quantitative dipstick result as a function of urine albumin concentration. Based on analyses of 3259 specimens, the concentration of urine albumin with a 0.5 (50%) probability of positive result was 57 mg/L at the lowest possible cut-off limit, and 246 and 750 mg/L at the next (higher) levels. The corresponding standard deviations were 29, 83, and 217 mg/L, respectively. Semi-quantitatively, the maximum probability of these three readings occurred at a u-albumin of 117, 420, and 1200 mg/L, respectively. Probit regression is a useful tool to study the analytical performance of qualitative and semi-quantitative tests.

  20. Regression modeling of consumption or exposure variables classified by type.

    Science.gov (United States)

    Dorfman, A; Kimball, A W; Friedman, L A

    1985-12-01

    Consumption or exposure variables, as potential risk factors, are commonly measured and related to health effects. The measurements may be continuous or discrete, may be grouped into categories and may, in addition, be classified by type. Data analyses utilizing regression methods for the assessment of these risk factors present many problems of modeling and interpretation. Various models are proposed and evaluated, and recommendations are made. Use of the models is illustrated with Cox regression analyses of coronary heart disease mortality after 24 years of follow-up of subjects in the Framingham Study, with the focus being on alcohol consumption among these subjects.

  1. Buffalos milk yield analysis using random regression models

    Directory of Open Access Journals (Sweden)

    A.S. Schierholt

    2010-02-01

    Full Text Available Data comprising 1,719 milk yield records from 357 females (predominantly Murrah breed, daughters of 110 sires, with births from 1974 to 2004, obtained from the Programa de Melhoramento Genético de Bubalinos (PROMEBUL and from records of EMBRAPA Amazônia Oriental - EAO herd, located in Belém, Pará, Brazil, were used to compare random regression models for estimating variance components and predicting breeding values of the sires. The data were analyzed by different models using the Legendre’s polynomial functions from second to fourth orders. The random regression models included the effects of herd-year, month of parity date of the control; regression coefficients for age of females (in order to describe the fixed part of the lactation curve and random regression coefficients related to the direct genetic and permanent environment effects. The comparisons among the models were based on the Akaike Infromation Criterion. The random effects regression model using third order Legendre’s polynomials with four classes of the environmental effect were the one that best described the additive genetic variation in milk yield. The heritability estimates varied from 0.08 to 0.40. The genetic correlation between milk yields in younger ages was close to the unit, but in older ages it was low.

  2. Tree-based model checking for logistic regression.

    Science.gov (United States)

    Su, Xiaogang

    2007-05-10

    A tree procedure is proposed to check the adequacy of a fitted logistic regression model. The proposed method not only makes natural assessment for the logistic model, but also provides clues to amend its lack-of-fit. The resulting tree-augmented logistic model facilitates a refined model with meaningful interpretation. We demonstrate its use via simulation studies and an application to the Pima Indians diabetes data. Copyright 2006 John Wiley & Sons, Ltd.

  3. CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Hansen, Lars Kai

    2004-01-01

    We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least squares...

  4. Current and Predicted Fertility using Poisson Regression Model ...

    African Journals Online (AJOL)

    AJRH Managing Editor

    Our study which formulates a model to predict future fertility in Nigeria was basically conceived to fill the gap. Understanding population, its determinants, growth ...... extreme cases. In conclusion, it is evident from this study that. Poisson regression model is an applicable tool for predicting number of children a woman is.

  5. Linear regression models for quantitative assessment of left ...

    African Journals Online (AJOL)

    Changes in left ventricular structures and function have been reported in cardiomyopathies. No prediction models have been established in this environment. This study established regression models for prediction of left ventricular structures in normal subjects. A sample of normal subjects was drawn from a large urban ...

  6. Uncertainties in spatially aggregated predictions from a logistic regression model

    NARCIS (Netherlands)

    Horssen, P.W. van; Pebesma, E.J.; Schot, P.P.

    2002-01-01

    This paper presents a method to assess the uncertainty of an ecological spatial prediction model which is based on logistic regression models, using data from the interpolation of explanatory predictor variables. The spatial predictions are presented as approximate 95% prediction intervals. The

  7. Geographically Weighted Logistic Regression Applied to Credit Scoring Models

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Melo Albuquerque

    Full Text Available Abstract This study used real data from a Brazilian financial institution on transactions involving Consumer Direct Credit (CDC, granted to clients residing in the Distrito Federal (DF, to construct credit scoring models via Logistic Regression and Geographically Weighted Logistic Regression (GWLR techniques. The aims were: to verify whether the factors that influence credit risk differ according to the borrower’s geographic location; to compare the set of models estimated via GWLR with the global model estimated via Logistic Regression, in terms of predictive power and financial losses for the institution; and to verify the viability of using the GWLR technique to develop credit scoring models. The metrics used to compare the models developed via the two techniques were the AICc informational criterion, the accuracy of the models, the percentage of false positives, the sum of the value of false positive debt, and the expected monetary value of portfolio default compared with the monetary value of defaults observed. The models estimated for each region in the DF were distinct in their variables and coefficients (parameters, with it being concluded that credit risk was influenced differently in each region in the study. The Logistic Regression and GWLR methodologies presented very close results, in terms of predictive power and financial losses for the institution, and the study demonstrated viability in using the GWLR technique to develop credit scoring models for the target population in the study.

  8. Maximum Entropy Discrimination Poisson Regression for Software Reliability Modeling.

    Science.gov (United States)

    Chatzis, Sotirios P; Andreou, Andreas S

    2015-11-01

    Reliably predicting software defects is one of the most significant tasks in software engineering. Two of the major components of modern software reliability modeling approaches are: 1) extraction of salient features for software system representation, based on appropriately designed software metrics and 2) development of intricate regression models for count data, to allow effective software reliability data modeling and prediction. Surprisingly, research in the latter frontier of count data regression modeling has been rather limited. More specifically, a lack of simple and efficient algorithms for posterior computation has made the Bayesian approaches appear unattractive, and thus underdeveloped in the context of software reliability modeling. In this paper, we try to address these issues by introducing a novel Bayesian regression model for count data, based on the concept of max-margin data modeling, effected in the context of a fully Bayesian model treatment with simple and efficient posterior distribution updates. Our novel approach yields a more discriminative learning technique, making more effective use of our training data during model inference. In addition, it allows of better handling uncertainty in the modeled data, which can be a significant problem when the training data are limited. We derive elegant inference algorithms for our model under the mean-field paradigm and exhibit its effectiveness using the publicly available benchmark data sets.

  9. Calibration of stormwater quality regression models: a random process?

    Science.gov (United States)

    Dembélé, A; Bertrand-Krajewski, J-L; Barillon, B

    2010-01-01

    Regression models are among the most frequently used models to estimate pollutants event mean concentrations (EMC) in wet weather discharges in urban catchments. Two main questions dealing with the calibration of EMC regression models are investigated: i) the sensitivity of models to the size and the content of data sets used for their calibration, ii) the change of modelling results when models are re-calibrated when data sets grow and change with time when new experimental data are collected. Based on an experimental data set of 64 rain events monitored in a densely urbanised catchment, four TSS EMC regression models (two log-linear and two linear models) with two or three explanatory variables have been derived and analysed. Model calibration with the iterative re-weighted least squares method is less sensitive and leads to more robust results than the ordinary least squares method. Three calibration options have been investigated: two options accounting for the chronological order of the observations, one option using random samples of events from the whole available data set. Results obtained with the best performing non linear model clearly indicate that the model is highly sensitive to the size and the content of the data set used for its calibration.

  10. A bivariate cumulative probit regression model for ordered categorical data.

    Science.gov (United States)

    Kim, K

    1995-06-30

    This paper proposes a latent variable regression model for bivariate ordered categorical data and develops the necessary numerical procedure for parameter estimation. The proposed model is an extension of the standard bivariate probit model for dichotomous data to ordered categorical data with more than two categories for each margin. In addition, the proposed model allows for different covariates for the margins, which is characteristic of data from typical ophthalmological studies. It utilizes the stochastic ordering implicit in the data and the correlation coefficient of the bivariate normal distribution in expressing intra-subject dependency. Illustration of the proposed model uses data from the Wisconsin Epidemiologic Study of Diabetic Retinopathy for identifying risk factors for diabetic retinopathy among younger-onset diabetics. The proposed regression model also applies to other clinical or epidemiological studies that involve paired organs.

  11. Sugarcane Land Classification with Satellite Imagery using Logistic Regression Model

    Science.gov (United States)

    Henry, F.; Herwindiati, D. E.; Mulyono, S.; Hendryli, J.

    2017-03-01

    This paper discusses the classification of sugarcane plantation area from Landsat-8 satellite imagery. The classification process uses binary logistic regression method with time series data of normalized difference vegetation index as input. The process is divided into two steps: training and classification. The purpose of training step is to identify the best parameter of the regression model using gradient descent algorithm. The best fit of the model can be utilized to classify sugarcane and non-sugarcane area. The experiment shows high accuracy and successfully maps the sugarcane plantation area which obtained best result of Cohen’s Kappa value 0.7833 (strong) with 89.167% accuracy.

  12. A fitter use of Monte Carlo simulations in regression models

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2011-12-01

    Full Text Available In this article, I focus on the use of Monte Carlo simulations (MCS within regression models, being this application very frequent in biology, ecology and economy as well. I'm interested in enhancing a typical fault in this application of MCS, i.e. the inner correlations among independent variables are not used when generating random numbers that fit their distributions. By means of an illustrative example, I provide proof that the misuse of MCS in regression models produces misleading results. Furthermore, I also provide a solution for this topic.

  13. Regression modeling strategies with applications to linear models, logistic and ordinal regression, and survival analysis

    CERN Document Server

    Harrell , Jr , Frank E

    2015-01-01

    This highly anticipated second edition features new chapters and sections, 225 new references, and comprehensive R software. In keeping with the previous edition, this book is about the art and science of data analysis and predictive modeling, which entails choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for fitting nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap.  The reader will gain a keen understanding of predictive accuracy, and the harm of categorizing continuous predictors or outcomes.  This text realistically...

  14. Imputation by PLS regression for generalized linear mixed models

    OpenAIRE

    Guyon, Emilie; Pommeret, Denys

    2011-01-01

    The problem of handling missing data in generalized linear mixed models with correlated covariates is considered when the missing mechanism concerns both the response variable and the covariates. An imputation algorithm combining multiple imputation and Partial Least Squares (PLS) regression is proposed. The method relies on two steps. In a first step, using a linearization technique, the generalized linear mixed model is approximated by a linear mixed model. A latent variable is introduced a...

  15. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  16. Detecting influential observations in nonlinear regression modeling of groundwater flow

    Science.gov (United States)

    Yager, R.M.

    1998-01-01

    Nonlinear regression is used to estimate optimal parameter values in models of groundwater flow to ensure that differences between predicted and observed heads and flows do not result from nonoptimal parameter values. Parameter estimates can be affected, however, by observations that disproportionately influence the regression, such as outliers that exert undue leverage on the objective function. Certain statistics developed for linear regression can be used to detect influential observations in nonlinear regression if the models are approximately linear. This paper discusses the application of Cook's D, which measures the effect of omitting a single observation on a set of estimated parameter values, and the statistical parameter DFBETAS, which quantifies the influence of an observation on each parameter. The influence statistics were used to (1) identify the influential observations in the calibration of a three-dimensional, groundwater flow model of a fractured-rock aquifer through nonlinear regression, and (2) quantify the effect of omitting influential observations on the set of estimated parameter values. Comparison of the spatial distribution of Cook's D with plots of model sensitivity shows that influential observations correspond to areas where the model heads are most sensitive to certain parameters, and where predicted groundwater flow rates are largest. Five of the six discharge observations were identified as influential, indicating that reliable measurements of groundwater flow rates are valuable data in model calibration. DFBETAS are computed and examined for an alternative model of the aquifer system to identify a parameterization error in the model design that resulted in overestimation of the effect of anisotropy on horizontal hydraulic conductivity.

  17. Logistic regression models for polymorphic and antagonistic pleiotropic gene action on human aging and longevity

    DEFF Research Database (Denmark)

    Tan, Qihua; Bathum, L; Christiansen, L

    2003-01-01

    In this paper, we apply logistic regression models to measure genetic association with human survival for highly polymorphic and pleiotropic genes. By modelling genotype frequency as a function of age, we introduce a logistic regression model with polytomous responses to handle the polymorphic...... situation. Genotype and allele-based parameterization can be used to investigate the modes of gene action and to reduce the number of parameters, so that the power is increased while the amount of multiple testing minimized. A binomial logistic regression model with fractional polynomials is used to capture...

  18. Spatial stochastic regression modelling of urban land use

    Science.gov (United States)

    Arshad, S. H. M.; Jaafar, J.; Abiden, M. Z. Z.; Latif, Z. A.; Rasam, A. R. A.

    2014-02-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable.

  19. Applications of some discrete regression models for count data

    Directory of Open Access Journals (Sweden)

    B. M. Golam Kibria

    2006-01-01

    Full Text Available In this paper we have considered several regression models to fit the count data that encounter in the field of Biometrical, Environmental, Social Sciences and Transportation Engineering. We have fitted Poisson (PO, Negative Binomial (NB, Zero-Inflated Poisson (ZIP and Zero-Inflated Negative Binomial (ZINB regression models to run-off-road (ROR crash data which collected on arterial roads in south region (rural of Florida State. To compare the performance of these models, we analyzed data with moderate to high percentage of zero counts. Because the variances were almost three times greater than the means, it appeared that both NB and ZINB models performed better than PO and ZIP models for the zero inflated and over dispersed count data.

  20. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models.

    Science.gov (United States)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  1. Climate variations and salmonellosis transmission in Adelaide, South Australia: a comparison between regression models

    Science.gov (United States)

    Zhang, Ying; Bi, Peng; Hiller, Janet

    2008-01-01

    This is the first study to identify appropriate regression models for the association between climate variation and salmonellosis transmission. A comparison between different regression models was conducted using surveillance data in Adelaide, South Australia. By using notified salmonellosis cases and climatic variables from the Adelaide metropolitan area over the period 1990-2003, four regression methods were examined: standard Poisson regression, autoregressive adjusted Poisson regression, multiple linear regression, and a seasonal autoregressive integrated moving average (SARIMA) model. Notified salmonellosis cases in 2004 were used to test the forecasting ability of the four models. Parameter estimation, goodness-of-fit and forecasting ability of the four regression models were compared. Temperatures occurring 2 weeks prior to cases were positively associated with cases of salmonellosis. Rainfall was also inversely related to the number of cases. The comparison of the goodness-of-fit and forecasting ability suggest that the SARIMA model is better than the other three regression models. Temperature and rainfall may be used as climatic predictors of salmonellosis cases in regions with climatic characteristics similar to those of Adelaide. The SARIMA model could, thus, be adopted to quantify the relationship between climate variations and salmonellosis transmission.

  2. Many regression algorithms, one unified model: A review.

    Science.gov (United States)

    Stulp, Freek; Sigaud, Olivier

    2015-09-01

    Regression is the process of learning relationships between inputs and continuous outputs from example data, which enables predictions for novel inputs. The history of regression is closely related to the history of artificial neural networks since the seminal work of Rosenblatt (1958). The aims of this paper are to provide an overview of many regression algorithms, and to demonstrate how the function representation whose parameters they regress fall into two classes: a weighted sum of basis functions, or a mixture of linear models. Furthermore, we show that the former is a special case of the latter. Our ambition is thus to provide a deep understanding of the relationship between these algorithms, that, despite being derived from very different principles, use a function representation that can be captured within one unified model. Finally, step-by-step derivations of the algorithms from first principles and visualizations of their inner workings allow this article to be used as a tutorial for those new to regression. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Time series regression model for infectious disease and weather.

    Science.gov (United States)

    Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro

    2015-10-01

    Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

    Directory of Open Access Journals (Sweden)

    Soyoung Park

    2017-07-01

    Full Text Available This study mapped and analyzed groundwater potential using two different models, logistic regression (LR and multivariate adaptive regression splines (MARS, and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70% were used for model training, whereas the other 365 locations (30% were used for model validation. We analyzed 16 groundwater influence factors including altitude, slope degree, slope aspect, plan curvature, profile curvature, topographic wetness index, stream power index, sediment transport index, distance from drainage, drainage density, lithology, distance from fault, fault density, distance from lineament, lineament density, and land cover. Groundwater potential maps (GPMs were constructed using LR and MARS models and tested using a receiver operating characteristics curve. Based on this analysis, the area under the curve (AUC for the success rate curve of GPMs created using the MARS and LR models was 0.867 and 0.838, and the AUC for the prediction rate curve was 0.836 and 0.801, respectively. This implies that the MARS model is useful and effective for groundwater potential analysis in the study area.

  5. Illustrating bayesian evaluation of informative hypotheses for regression models.

    NARCIS (Netherlands)

    Kluytmans, A.; Schoot, R. van de; Mulder, J.; Hoijtink, H.

    2012-01-01

    In the present article we illustrate a Bayesian method of evaluating informative hypotheses for regression models. Our main aim is to make this method accessible to psychological researchers without a mathematical or Bayesian background. The use of informative hypotheses is illustrated using two

  6. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2010-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  7. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2009-01-01

    In this paper two kernel-based nonparametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a viable alternative to the method of De Gooijer and Zerom (2003). By

  8. Efficient estimation of an additive quantile regression model

    NARCIS (Netherlands)

    Cheng, Y.; de Gooijer, J.G.; Zerom, D.

    2011-01-01

    In this paper, two non-parametric estimators are proposed for estimating the components of an additive quantile regression model. The first estimator is a computationally convenient approach which can be viewed as a more viable alternative to existing kernel-based approaches. The second estimator

  9. Two-Sample Tests for High-Dimensional Linear Regression with an Application to Detecting Interactions.

    Science.gov (United States)

    Xia, Yin; Cai, Tianxi; Cai, T Tony

    2018-01-01

    Motivated by applications in genomics, we consider in this paper global and multiple testing for the comparisons of two high-dimensional linear regression models. A procedure for testing the equality of the two regression vectors globally is proposed and shown to be particularly powerful against sparse alternatives. We then introduce a multiple testing procedure for identifying unequal coordinates while controlling the false discovery rate and false discovery proportion. Theoretical justifications are provided to guarantee the validity of the proposed tests and optimality results are established under sparsity assumptions on the regression coefficients. The proposed testing procedures are easy to implement. Numerical properties of the procedures are investigated through simulation and data analysis. The results show that the proposed tests maintain the desired error rates under the null and have good power under the alternative at moderate sample sizes. The procedures are applied to the Framingham Offspring study to investigate the interactions between smoking and cardiovascular related genetic mutations important for an inflammation marker.

  10. Modeling energy expenditure in children and adolescents using quantile regression

    OpenAIRE

    Yang, Yunwen; Adolph, Anne L; Puyau, Maurice R.; Vohra, Firoz A.; Butte, Nancy F.; Zakeri, Issa F.

    2013-01-01

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obese children. First, QR models will be developed to predict minute-by-minute awake EE at different quantile levels based on heart rate (HR) and physical activity (PA) accelerometry counts, and child ...

  11. Regression and multivariate models for predicting particulate matter concentration level.

    Science.gov (United States)

    Nazif, Amina; Mohammed, Nurul Izma; Malakahmad, Amirhossein; Abualqumboz, Motasem S

    2018-01-01

    The devastating health effects of particulate matter (PM 10 ) exposure by susceptible populace has made it necessary to evaluate PM 10 pollution. Meteorological parameters and seasonal variation increases PM 10 concentration levels, especially in areas that have multiple anthropogenic activities. Hence, stepwise regression (SR), multiple linear regression (MLR) and principal component regression (PCR) analyses were used to analyse daily average PM 10 concentration levels. The analyses were carried out using daily average PM 10 concentration, temperature, humidity, wind speed and wind direction data from 2006 to 2010. The data was from an industrial air quality monitoring station in Malaysia. The SR analysis established that meteorological parameters had less influence on PM 10 concentration levels having coefficient of determination (R 2 ) result from 23 to 29% based on seasoned and unseasoned analysis. While, the result of the prediction analysis showed that PCR models had a better R 2 result than MLR methods. The results for the analyses based on both seasoned and unseasoned data established that MLR models had R 2 result from 0.50 to 0.60. While, PCR models had R 2 result from 0.66 to 0.89. In addition, the validation analysis using 2016 data also recognised that the PCR model outperformed the MLR model, with the PCR model for the seasoned analysis having the best result. These analyses will aid in achieving sustainable air quality management strategies.

  12. Regression Models and Fuzzy Logic Prediction of TBM Penetration Rate

    Directory of Open Access Journals (Sweden)

    Minh Vu Trieu

    2017-03-01

    Full Text Available This paper presents statistical analyses of rock engineering properties and the measured penetration rate of tunnel boring machine (TBM based on the data of an actual project. The aim of this study is to analyze the influence of rock engineering properties including uniaxial compressive strength (UCS, Brazilian tensile strength (BTS, rock brittleness index (BI, the distance between planes of weakness (DPW, and the alpha angle (Alpha between the tunnel axis and the planes of weakness on the TBM rate of penetration (ROP. Four (4 statistical regression models (two linear and two nonlinear are built to predict the ROP of TBM. Finally a fuzzy logic model is developed as an alternative method and compared to the four statistical regression models. Results show that the fuzzy logic model provides better estimations and can be applied to predict the TBM performance. The R-squared value (R2 of the fuzzy logic model scores the highest value of 0.714 over the second runner-up of 0.667 from the multiple variables nonlinear regression model.

  13. On concurvity in nonlinear and nonparametric regression models

    Directory of Open Access Journals (Sweden)

    Sonia Amodio

    2014-12-01

    Full Text Available When data are affected by multicollinearity in the linear regression framework, then concurvity will be present in fitting a generalized additive model (GAM. The term concurvity describes nonlinear dependencies among the predictor variables. As collinearity results in inflated variance of the estimated regression coefficients in the linear regression model, the result of the presence of concurvity leads to instability of the estimated coefficients in GAMs. Even if the backfitting algorithm will always converge to a solution, in case of concurvity the final solution of the backfitting procedure in fitting a GAM is influenced by the starting functions. While exact concurvity is highly unlikely, approximate concurvity, the analogue of multicollinearity, is of practical concern as it can lead to upwardly biased estimates of the parameters and to underestimation of their standard errors, increasing the risk of committing type I error. We compare the existing approaches to detect concurvity, pointing out their advantages and drawbacks, using simulated and real data sets. As a result, this paper will provide a general criterion to detect concurvity in nonlinear and non parametric regression models.

  14. Empirical Bayes estimation for additive hazards regression models.

    Science.gov (United States)

    Sinha, Debajyoti; McHenry, M Brent; Lipsitz, Stuart R; Ghosh, Malay

    2009-09-01

    We develop a novel empirical Bayesian framework for the semiparametric additive hazards regression model. The integrated likelihood, obtained by integration over the unknown prior of the nonparametric baseline cumulative hazard, can be maximized using standard statistical software. Unlike the corresponding full Bayes method, our empirical Bayes estimators of regression parameters, survival curves and their corresponding standard errors have easily computed closed-form expressions and require no elicitation of hyperparameters of the prior. The method guarantees a monotone estimator of the survival function and accommodates time-varying regression coefficients and covariates. To facilitate frequentist-type inference based on large-sample approximation, we present the asymptotic properties of the semiparametric empirical Bayes estimates. We illustrate the implementation and advantages of our methodology with a reanalysis of a survival dataset and a simulation study.

  15. Parâmetros genéticos para a produção de leite de controles individuais de vacas da raça Gir estimados com modelos de repetibilidade e regressão aleatória Estimation of genetic parameters for test day milk records of first lactation Gyr cows using repeatability and random regression animal models

    Directory of Open Access Journals (Sweden)

    Claudio Napolis Costa

    2005-10-01

    número de estimativas negativas entre as PLC do início e fim da lactação do que a FAS. Exceto para a FAS, observou-se redução das estimativas de correlação genética próximas à unidade entre as PLC adjacentes para valores negativos entre as PLC no início e no fim da lactação. Entre os polinômios de Legendre, o de quinta ordem apresentou um melhor o ajuste das PLC. Os resultados indicam o potencial de uso de regressão aleatória, com os modelos LP5 e a FAS apresentando-se como os mais adequados para a modelagem das variâncias genética e de efeito permanente das PLC da raça Gir.Data comprising 8,183 test day records of 1,273 first lactations of Gyr cows from herds supervised by ABCZ were used to estimate variance components and genetic parameters for milk yield using repeatability and random regression animal models by REML. Genetic modelling of logarithmic (FAS, exponential (FW curves was compared to orthogonal Legendre polynomials (LP of order 3 to 5. Residual variance was assumed to be constant in all (ME=1 or some periods of lactation (ME=4. Lactation milk yield in 305-d was also adjusted by an animal model. Genetic variance, heritability and repeatability for test day milk yields estimated by a repeatability animal model were 1.74 kg2, 0.27, and 0.76, respectively. Genetic variance and heritability estimates for lactation milk yield were respectively 121,094.6 and 0.22. Heritability estimates from FAS and FW, respectively, decreased from 0,59 and 0.74 at the beginning of lactation to 0.20 at the end of the period. Except for a fifth-order LP with ME=1, heritability estimates decreased from around 0,70 at early lactation to 0,30 at the end of lactation. Residual variance estimates were slightly smaller for logarithimic than for exponential curves both for homogeneous and heterogeneous variance assumptions. Estimates of residual variance in all stages of lactation decreased as the order of LP increased and depended on the assumption about ME

  16. Hierarchical Neural Regression Models for Customer Churn Prediction

    Directory of Open Access Journals (Sweden)

    Golshan Mohammadi

    2013-01-01

    Full Text Available As customers are the main assets of each industry, customer churn prediction is becoming a major task for companies to remain in competition with competitors. In the literature, the better applicability and efficiency of hierarchical data mining techniques has been reported. This paper considers three hierarchical models by combining four different data mining techniques for churn prediction, which are backpropagation artificial neural networks (ANN, self-organizing maps (SOM, alpha-cut fuzzy c-means (α-FCM, and Cox proportional hazards regression model. The hierarchical models are ANN + ANN + Cox, SOM + ANN + Cox, and α-FCM + ANN + Cox. In particular, the first component of the models aims to cluster data in two churner and nonchurner groups and also filter out unrepresentative data or outliers. Then, the clustered data as the outputs are used to assign customers to churner and nonchurner groups by the second technique. Finally, the correctly classified data are used to create Cox proportional hazards model. To evaluate the performance of the hierarchical models, an Iranian mobile dataset is considered. The experimental results show that the hierarchical models outperform the single Cox regression baseline model in terms of prediction accuracy, Types I and II errors, RMSE, and MAD metrics. In addition, the α-FCM + ANN + Cox model significantly performs better than the two other hierarchical models.

  17. Analysis of dental caries using generalized linear and count regression models

    Directory of Open Access Journals (Sweden)

    Javali M. Phil

    2013-11-01

    Full Text Available Generalized linear models (GLM are generalization of linear regression models, which allow fitting regression models to response data in all the sciences especially medical and dental sciences that follow a general exponential family. These are flexible and widely used class of such models that can accommodate response variables. Count data are frequently characterized by overdispersion and excess zeros. Zero-inflated count models provide a parsimonious yet powerful way to model this type of situation. Such models assume that the data are a mixture of two separate data generation processes: one generates only zeros, and the other is either a Poisson or a negative binomial data-generating process. Zero inflated count regression models such as the zero-inflated Poisson (ZIP, zero-inflated negative binomial (ZINB regression models have been used to handle dental caries count data with many zeros. We present an evaluation framework to the suitability of applying the GLM, Poisson, NB, ZIP and ZINB to dental caries data set where the count data may exhibit evidence of many zeros and over-dispersion. Estimation of the model parameters using the method of maximum likelihood is provided. Based on the Vuong test statistic and the goodness of fit measure for dental caries data, the NB and ZINB regression models perform better than other count regression models.

  18. Regression Tests and the Efficiency of Fixed Odds Betting Markets

    NARCIS (Netherlands)

    Koning, Ruud H.

    The informational content of odds posted in sports betting market has been an ongoing topic of research. In this paper, I test whether fixed odds betting markets in soccer are informationally efficient. The contributions of the paper are threefold: first, I propose a simple yet flexible statistical

  19. Regression Model Term Selection for the Analysis of Strain-Gage Balance Calibration Data

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Volden, Thomas R.

    2010-01-01

    The paper discusses the selection of regression model terms for the analysis of wind tunnel strain-gage balance calibration data. Different function class combinations are presented that may be used to analyze calibration data using either a non-iterative or an iterative method. The role of the intercept term in a regression model of calibration data is reviewed. In addition, useful algorithms and metrics originating from linear algebra and statistics are recommended that will help an analyst (i) to identify and avoid both linear and near-linear dependencies between regression model terms and (ii) to make sure that the selected regression model of the calibration data uses only statistically significant terms. Three different tests are suggested that may be used to objectively assess the predictive capability of the final regression model of the calibration data. These tests use both the original data points and regression model independent confirmation points. Finally, data from a simplified manual calibration of the Ames MK40 balance is used to illustrate the application of some of the metrics and tests to a realistic calibration data set.

  20. Learning Supervised Topic Models for Classification and Regression from Crowds

    DEFF Research Database (Denmark)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete

    2017-01-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most...... annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression...

  1. Multi-platform SCADA GUI Regression Testing at CERN

    CERN Document Server

    Burkimsher, P C; Klikovits, S

    2011-01-01

    The JCOP Framework is a toolkit used widely at CERN for the development of industrial control systems in several domains (i.e. experiments, accelerators and technical infrastructure). The software development started 10 years ago and there is now a large base of production systems running it. For the success of the project, it was essential to formalize and automate the quality assurance process. This paper will present the overall testing strategy and will describe in detail mechanisms used for GUI testing. The choice of a commercial tool (Squish) and the architectural features making it appropriate for our multi-platform environment will be described. Practical difficulties encountered when using the tool in the CERN context are discussed as well as how these were addressed. In the light of initial experience, the test code itself has been recently reworked in object-oriented style to facilitate future maintenance and extension. The current reporting process is described, as well as future plans for easy re...

  2. Analysis of Nonlinear Regression Models: A Cautionary Note

    Science.gov (United States)

    Peddada, Shyamal D.; Haseman, Joseph K.

    2005-01-01

    Regression models are routinely used in many applied sciences for describing the relationship between a response variable and an independent variable. Statistical inferences on the regression parameters are often performed using the maximum likelihood estimators (MLE). In the case of nonlinear models the standard errors of MLE are often obtained by linearizing the nonlinear function around the true parameter and by appealing to large sample theory. In this article we demonstrate, through computer simulations, that the resulting asymptotic Wald confidence intervals cannot be trusted to achieve the desired confidence levels. Sometimes they could underestimate the true nominal level and are thus liberal. Hence one needs to be cautious in using the usual linearized standard errors of MLE and the associated confidence intervals. PMID:18648618

  3. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  4. Non-Parametric Identification and Estimation of Truncated Regression Models

    OpenAIRE

    Songnian Chen

    2010-01-01

    In this paper, we consider non-parametric identification and estimation of truncated regression models in both cross-sectional and panel data settings. For the cross-sectional case, Lewbel and Linton (2002) considered non-parametric identification and estimation through continuous variation under a log-concavity condition on the error distribution. We obtain non-parametric identification under weaker conditions. In particular, we obtain non-parametric identification through discrete variation...

  5. Modeling energy expenditure in children and adolescents using quantile regression.

    Science.gov (United States)

    Yang, Yunwen; Adolph, Anne L; Puyau, Maurice R; Vohra, Firoz A; Butte, Nancy F; Zakeri, Issa F

    2013-07-15

    Advanced mathematical models have the potential to capture the complex metabolic and physiological processes that result in energy expenditure (EE). Study objective is to apply quantile regression (QR) to predict EE and determine quantile-dependent variation in covariate effects in nonobese and obese children. First, QR models will be developed to predict minute-by-minute awake EE at different quantile levels based on heart rate (HR) and physical activity (PA) accelerometry counts, and child characteristics of age, sex, weight, and height. Second, the QR models will be used to evaluate the covariate effects of weight, PA, and HR across the conditional EE distribution. QR and ordinary least squares (OLS) regressions are estimated in 109 children, aged 5-18 yr. QR modeling of EE outperformed OLS regression for both nonobese and obese populations. Average prediction errors for QR compared with OLS were not only smaller at the median τ = 0.5 (18.6 vs. 21.4%), but also substantially smaller at the tails of the distribution (10.2 vs. 39.2% at τ = 0.1 and 8.7 vs. 19.8% at τ = 0.9). Covariate effects of weight, PA, and HR on EE for the nonobese and obese children differed across quantiles (P PA and HR with EE were stronger for the obese than nonobese population (P EE compared with conventional OLS regression, especially at the tails of the distribution, and revealed substantially different covariate effects of weight, PA, and HR on EE in nonobese and obese children.

  6. Beta Regression Finite Mixture Models of Polarization and Priming

    Science.gov (United States)

    Smithson, Michael; Merkle, Edgar C.; Verkuilen, Jay

    2011-01-01

    This paper describes the application of finite-mixture general linear models based on the beta distribution to modeling response styles, polarization, anchoring, and priming effects in probability judgments. These models, in turn, enhance our capacity for explicitly testing models and theories regarding the aforementioned phenomena. The mixture…

  7. Preference learning with evolutionary Multivariate Adaptive Regression Spline model

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor; Christensen, Mads Græsbøll

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through combining an evolutionary method with Multivariate Adaptive Regression Spline (MARS). Collecting users' feedback through pairwise preferences is recommended over other ranking approaches as this method is more appealing...... for human decision making. Learning models from pairwise preference data is however an NP-hard problem. Therefore, constructing models that can effectively learn such data is a challenging task. Models are usually constructed with accuracy being the most important factor. Another vitally important aspect...... that is usually given less attention is expressiveness, i.e. how easy it is to explain the relationship between the model input and output. Most machine learning techniques are focused either on performance or on expressiveness. This paper employ MARS models which have the advantage of being a powerful method...

  8. Using Fuzzy Logic in Test Case Prioritization for Regression Testing Programs with Assertions

    Directory of Open Access Journals (Sweden)

    Ali M. Alakeel

    2014-01-01

    Full Text Available Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore, software developers place assertions within their code in positions that are considered to be error prone or that have the potential to lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion. To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test cases.

  9. Wheat flour dough Alveograph characteristics predicted by Mixolab regression models.

    Science.gov (United States)

    Codină, Georgiana Gabriela; Mironeasa, Silvia; Mironeasa, Costel; Popa, Ciprian N; Tamba-Berehoiu, Radiana

    2012-02-01

    In Romania, the Alveograph is the most used device to evaluate the rheological properties of wheat flour dough, but lately the Mixolab device has begun to play an important role in the breadmaking industry. These two instruments are based on different principles but there are some correlations that can be found between the parameters determined by the Mixolab and the rheological properties of wheat dough measured with the Alveograph. Statistical analysis on 80 wheat flour samples using the backward stepwise multiple regression method showed that Mixolab values using the ‘Chopin S’ protocol (40 samples) and ‘Chopin + ’ protocol (40 samples) can be used to elaborate predictive models for estimating the value of the rheological properties of wheat dough: baking strength (W), dough tenacity (P) and extensibility (L). The correlation analysis confirmed significant findings (P linear equations were obtained. Linear regression models gave multiple regression coefficients with R²(adjusted) > 0.70 for P, R²(adjusted) > 0.70 for W and R²(adjusted) > 0.38 for L, at a 95% confidence interval. Copyright © 2011 Society of Chemical Industry.

  10. Regularized multivariate regression models with skew-t error distributions

    KAUST Repository

    Chen, Lianfu

    2014-06-01

    We consider regularization of the parameters in multivariate linear regression models with the errors having a multivariate skew-t distribution. An iterative penalized likelihood procedure is proposed for constructing sparse estimators of both the regression coefficient and inverse scale matrices simultaneously. The sparsity is introduced through penalizing the negative log-likelihood by adding L1-penalties on the entries of the two matrices. Taking advantage of the hierarchical representation of skew-t distributions, and using the expectation conditional maximization (ECM) algorithm, we reduce the problem to penalized normal likelihood and develop a procedure to minimize the ensuing objective function. Using a simulation study the performance of the method is assessed, and the methodology is illustrated using a real data set with a 24-dimensional response vector. © 2014 Elsevier B.V.

  11. Bayes Estimation of Two-Phase Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Mayuri Pandya

    2011-01-01

    Full Text Available Let the regression model be Yi=β1Xi+εi, where εi are i. i. d. N (0,σ2 random errors with variance σ2>0 but later it was found that there was a change in the system at some point of time m and it is reflected in the sequence after Xm by change in slope, regression parameter β2. The problem of study is when and where this change has started occurring. This is called change point inference problem. The estimators of m, β1,β2 are derived under asymmetric loss functions, namely, Linex loss & General Entropy loss functions. The effects of correct and wrong prior information on the Bayes estimates are studied.

  12. Modeling the number of car theft using Poisson regression

    Science.gov (United States)

    Zulkifli, Malina; Ling, Agnes Beh Yen; Kasim, Maznah Mat; Ismail, Noriszura

    2016-10-01

    Regression analysis is the most popular statistical methods used to express the relationship between the variables of response with the covariates. The aim of this paper is to evaluate the factors that influence the number of car theft using Poisson regression model. This paper will focus on the number of car thefts that occurred in districts in Peninsular Malaysia. There are two groups of factor that have been considered, namely district descriptive factors and socio and demographic factors. The result of the study showed that Bumiputera composition, Chinese composition, Other ethnic composition, foreign migration, number of residence with the age between 25 to 64, number of employed person and number of unemployed person are the most influence factors that affect the car theft cases. These information are very useful for the law enforcement department, insurance company and car owners in order to reduce and limiting the car theft cases in Peninsular Malaysia.

  13. Application of wavelet-based multiple linear regression model to rainfall forecasting in Australia

    Science.gov (United States)

    He, X.; Guan, H.; Zhang, X.; Simmons, C.

    2013-12-01

    In this study, a wavelet-based multiple linear regression model is applied to forecast monthly rainfall in Australia by using monthly historical rainfall data and climate indices as inputs. The wavelet-based model is constructed by incorporating the multi-resolution analysis (MRA) with the discrete wavelet transform and multiple linear regression (MLR) model. The standardized monthly rainfall anomaly and large-scale climate index time series are decomposed using MRA into a certain number of component subseries at different temporal scales. The hierarchical lag relationship between the rainfall anomaly and each potential predictor is identified by cross correlation analysis with a lag time of at least one month at different temporal scales. The components of predictor variables with known lag times are then screened with a stepwise linear regression algorithm to be selectively included into the final forecast model. The MRA-based rainfall forecasting method is examined with 255 stations over Australia, and compared to the traditional multiple linear regression model based on the original time series. The models are trained with data from the 1959-1995 period and then tested in the 1996-2008 period for each station. The performance is compared with observed rainfall values, and evaluated by common statistics of relative absolute error and correlation coefficient. The results show that the wavelet-based regression model provides considerably more accurate monthly rainfall forecasts for all of the selected stations over Australia than the traditional regression model.

  14. Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS

    OpenAIRE

    Soyoung Park; Se-Yeong Hamm; Hang-Tak Jeon; Jinsoo Kim

    2017-01-01

    This study mapped and analyzed groundwater potential using two different models, logistic regression (LR) and multivariate adaptive regression splines (MARS), and compared the results. A spatial database was constructed for groundwater well data and groundwater influence factors. Groundwater well data with a high potential yield of ≥70 m3/d were extracted, and 859 locations (70%) were used for model training, whereas the other 365 locations (30%) were used for model validation. We analyzed 16...

  15. Dynamic logistic regression and dynamic model averaging for binary classification.

    Science.gov (United States)

    McCormick, Tyler H; Raftery, Adrian E; Madigan, David; Burd, Randall S

    2012-03-01

    We propose an online binary classification procedure for cases when there is uncertainty about the model to use and parameters within a model change over time. We account for model uncertainty through dynamic model averaging, a dynamic extension of Bayesian model averaging in which posterior model probabilities may also change with time. We apply a state-space model to the parameters of each model and we allow the data-generating model to change over time according to a Markov chain. Calibrating a "forgetting" factor accommodates different levels of change in the data-generating mechanism. We propose an algorithm that adjusts the level of forgetting in an online fashion using the posterior predictive distribution, and so accommodates various levels of change at different times. We apply our method to data from children with appendicitis who receive either a traditional (open) appendectomy or a laparoscopic procedure. Factors associated with which children receive a particular type of procedure changed substantially over the 7 years of data collection, a feature that is not captured using standard regression modeling. Because our procedure can be implemented completely online, future data collection for similar studies would require storing sensitive patient information only temporarily, reducing the risk of a breach of confidentiality. © 2011, The International Biometric Society.

  16. Learning Supervised Topic Models for Classification and Regression from Crowds.

    Science.gov (United States)

    Rodrigues, Filipe; Lourenco, Mariana; Ribeiro, Bernardete; Pereira, Francisco C

    2017-12-01

    The growing need to analyze large collections of documents has led to great developments in topic modeling. Since documents are frequently associated with other related variables, such as labels or ratings, much interest has been placed on supervised topic models. However, the nature of most annotation tasks, prone to ambiguity and noise, often with high volumes of documents, deem learning under a single-annotator assumption unrealistic or unpractical for most real-world applications. In this article, we propose two supervised topic models, one for classification and another for regression problems, which account for the heterogeneity and biases among different annotators that are encountered in practice when learning from crowds. We develop an efficient stochastic variational inference algorithm that is able to scale to very large datasets, and we empirically demonstrate the advantages of the proposed model over state-of-the-art approaches.

  17. Unified regression model of binding equilibria in crowded environments

    Science.gov (United States)

    Lee, Byoungkoo; LeDuc, Philip R.; Schwartz, Russell

    2011-01-01

    Molecular crowding is a critical feature distinguishing intracellular environments from idealized solution-based environments and is essential to understanding numerous biochemical reactions, from protein folding to signal transduction. Many biochemical reactions are dramatically altered by crowding, yet it is extremely difficult to predict how crowding will quantitatively affect any particular reaction systems. We previously developed a novel stochastic off-lattice model to efficiently simulate binding reactions across wide parameter ranges in various crowded conditions. We now show that a polynomial regression model can incorporate several interrelated parameters influencing chemistry under crowded conditions. The unified model of binding equilibria accurately reproduces the results of particle simulations over a broad range of variation of six physical parameters that collectively yield a complicated, non-linear crowding effect. The work represents an important step toward the long-term goal of computationally tractable predictive models of reaction chemistry in the cellular environment. PMID:22355615

  18. Genetic evaluation of European quails by random regression models

    Directory of Open Access Journals (Sweden)

    Flaviana Miranda Gonçalves

    2012-09-01

    Full Text Available The objective of this study was to compare different random regression models, defined from different classes of heterogeneity of variance combined with different Legendre polynomial orders for the estimate of (covariance of quails. The data came from 28,076 observations of 4,507 female meat quails of the LF1 lineage. Quail body weights were determined at birth and 1, 14, 21, 28, 35 and 42 days of age. Six different classes of residual variance were fitted to Legendre polynomial functions (orders ranging from 2 to 6 to determine which model had the best fit to describe the (covariance structures as a function of time. According to the evaluated criteria (AIC, BIC and LRT, the model with six classes of residual variances and of sixth-order Legendre polynomial was the best fit. The estimated additive genetic variance increased from birth to 28 days of age, and dropped slightly from 35 to 42 days. The heritability estimates decreased along the growth curve and changed from 0.51 (1 day to 0.16 (42 days. Animal genetic and permanent environmental correlation estimates between weights and age classes were always high and positive, except for birth weight. The sixth order Legendre polynomial, along with the residual variance divided into six classes was the best fit for the growth rate curve of meat quails; therefore, they should be considered for breeding evaluation processes by random regression models.

  19. Regression Modeling of Competing Risks Data Based on Pseudovalues of the Cumulative Incidence Function

    DEFF Research Database (Denmark)

    Klein, John P.; Andersen, Per Kragh

    2005-01-01

    Bone marrow transplantation; Generalized estimating equations; Jackknife statistics; Regression models......Bone marrow transplantation; Generalized estimating equations; Jackknife statistics; Regression models...

  20. Interpreting parameters in the logistic regression model with random effects

    DEFF Research Database (Denmark)

    Larsen, Klaus; Petersen, Jørgen Holm; Budtz-Jørgensen, Esben

    2000-01-01

    interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects......interpretation, interval odds ratio, logistic regression, median odds ratio, normally distributed random effects...

  1. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  2. A new inverse regression model applied to radiation biodosimetry

    Science.gov (United States)

    Higueras, Manuel; Puig, Pedro; Ainsbury, Elizabeth A.; Rothkamm, Kai

    2015-01-01

    Biological dosimetry based on chromosome aberration scoring in peripheral blood lymphocytes enables timely assessment of the ionizing radiation dose absorbed by an individual. Here, new Bayesian-type count data inverse regression methods are introduced for situations where responses are Poisson or two-parameter compound Poisson distributed. Our Poisson models are calculated in a closed form, by means of Hermite and negative binomial (NB) distributions. For compound Poisson responses, complete and simplified models are provided. The simplified models are also expressible in a closed form and involve the use of compound Hermite and compound NB distributions. Three examples of applications are given that demonstrate the usefulness of these methodologies in cytogenetic radiation biodosimetry and in radiotherapy. We provide R and SAS codes which reproduce these examples. PMID:25663804

  3. On Regression Modeling of Human Immunodeficiency Virus Patients

    OpenAIRE

    Hadeel S. Al-Kutubi

    2009-01-01

    Problem statement: The main propose of this study was to evaluate the HIV patients for the period 1990-2008 depend on three variables age, gender and ethnicity. Approach: The data was analyzed using regression and correlation methods to get the mathematical model that explain the relationship and the effect between the age, gender and ethnicity. SSPS program V. 17.0 was used throughout this study to analyze the data and to generate the various Tables. Results: Using SPSS program to obtain reg...

  4. The robustness of the F-test to spatial autocorrelation among regression disturbances

    Directory of Open Access Journals (Sweden)

    Walter Kramer

    2007-10-01

    Full Text Available It is shown that the null distribution of the F-test in a linear regression is rather non-robust to spatial autocorrelation among the regression disturbances. In particular, the true size of the test tends to either zero or unity when the spatial autocorrelation coefficient approaches the boundary of the parameter space.

  5. Natural interpretations in Tobit regression models using marginal estimation methods.

    Science.gov (United States)

    Wang, Wei; Griswold, Michael E

    2015-09-01

    The Tobit model, also known as a censored regression model to account for left- and/or right-censoring in the dependent variable, has been used in many areas of applications, including dental health, medical research and economics. The reported Tobit model coefficient allows estimation and inference of an exposure effect on the latent dependent variable. However, this model does not directly provide overall exposure effects estimation on the original outcome scale. We propose a direct-marginalization approach using a reparameterized link function to model exposure and covariate effects directly on the truncated dependent variable mean. We also discuss an alternative average-predicted-value, post-estimation approach which uses model-predicted values for each person in a designated reference group under different exposure statuses to estimate covariate-adjusted overall exposure effects. Simulation studies were conducted to show the unbiasedness and robustness properties for both approaches under various scenarios. Robustness appears to diminish when covariates with substantial effects are imbalanced between exposure groups; we outline an approach for model choice based on information criterion fit statistics. The methods are applied to the Genetic Epidemiology Network of Arteriopathy (GENOA) cohort study to assess associations between obesity and cognitive function in the non-Hispanic white participants. © The Author(s) 2015.

  6. Determining the number of breaks in a piecewise linear regression model

    OpenAIRE

    Strikholm, Birgit

    2006-01-01

    In this paper we propose a sequential method for determining the number of breaks in piecewise linear structural break models. An advantage of the method is that it is based on standard statistical inference. Tests available for testing linearity against switching regression type nonlinearity are applied sequentially to determine the number of regimes in the structural break model. A simulation study is performed in order to investigate the finite-sample behaviour of the procedure and to comp...

  7. Additive Intensity Regression Models in Corporate Default Analysis

    DEFF Research Database (Denmark)

    Lando, David; Medhat, Mamdouh; Nielsen, Mads Stenbo

    2013-01-01

    We consider additive intensity (Aalen) models as an alternative to the multiplicative intensity (Cox) models for analyzing the default risk of a sample of rated, nonfinancial U.S. firms. The setting allows for estimating and testing the significance of time-varying effects. We use a variety of mo...

  8. Regression Models for Predicting Force Coefficients of Aerofoils

    Directory of Open Access Journals (Sweden)

    Mohammed ABDUL AKBAR

    2015-09-01

    Full Text Available Renewable sources of energy are attractive and advantageous in a lot of different ways. Among the renewable energy sources, wind energy is the fastest growing type. Among wind energy converters, Vertical axis wind turbines (VAWTs have received renewed interest in the past decade due to some of the advantages they possess over their horizontal axis counterparts. VAWTs have evolved into complex 3-D shapes. A key component in predicting the output of VAWTs through analytical studies is obtaining the values of lift and drag coefficients which is a function of shape of the aerofoil, ‘angle of attack’ of wind and Reynolds’s number of flow. Sandia National Laboratories have carried out extensive experiments on aerofoils for the Reynolds number in the range of those experienced by VAWTs. The volume of experimental data thus obtained is huge. The current paper discusses three Regression analysis models developed wherein lift and drag coefficients can be found out using simple formula without having to deal with the bulk of the data. Drag coefficients and Lift coefficients were being successfully estimated by regression models with R2 values as high as 0.98.

  9. Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments

    Science.gov (United States)

    Khoshravesh, Mojtaba; Sefidkouhi, Mohammad Ali Gholami; Valipour, Mohammad

    2017-07-01

    The proper evaluation of evapotranspiration is essential in food security investigation, farm management, pollution detection, irrigation scheduling, nutrient flows, carbon balance as well as hydrologic modeling, especially in arid environments. To achieve sustainable development and to ensure water supply, especially in arid environments, irrigation experts need tools to estimate reference evapotranspiration on a large scale. In this study, the monthly reference evapotranspiration was estimated by three different regression models including the multivariate fractional polynomial (MFP), robust regression, and Bayesian regression in Ardestan, Esfahan, and Kashan. The results were compared with Food and Agriculture Organization (FAO)-Penman-Monteith (FAO-PM) to select the best model. The results show that at a monthly scale, all models provided a closer agreement with the calculated values for FAO-PM ( R 2 > 0.95 and RMSE < 12.07 mm month-1). However, the MFP model gives better estimates than the other two models for estimating reference evapotranspiration at all stations.

  10. Application of evolutionary algorithm-based symbolic regression to language assessment: Toward nonlinear modeling

    OpenAIRE

    Vahid Aryadoust

    2015-01-01

    This study applies evolutionary algorithm-based (EA-based) symbolic regression to assess the ability of metacognitive strategy use tested by the metacognitive awareness listening questionnaire (MALQ) and lexico-grammatical knowledge to predict listening comprehension proficiency among English learners. Initially, the psychometric validity of the MALQ subscales, the lexico-grammatical test, and the listening test was examined using the logistic Rasch model and the Rasch-Andrich rating scale mo...

  11. A Gompertz regression model for fern spores germination

    Directory of Open Access Journals (Sweden)

    Gabriel y Galán, Jose María

    2015-06-01

    Full Text Available Germination is one of the most important biological processes for both seed and spore plants, also for fungi. At present, mathematical models of germination have been developed in fungi, bryophytes and several plant species. However, ferns are the only group whose germination has never been modelled. In this work we develop a regression model of the germination of fern spores. We have found that for Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei and Polypodium feuillei species the Gompertz growth model describe satisfactorily cumulative germination. An important result is that regression parameters are independent of fern species and the model is not affected by intraspecific variation. Our results show that the Gompertz curve represents a general germination model for all the non-green spore leptosporangiate ferns, including in the paper a discussion about the physiological and ecological meaning of the model.La germinación es uno de los procesos biológicos más relevantes tanto para las plantas con esporas, como para las plantas con semillas y los hongos. Hasta el momento, se han desarrollado modelos de germinación para hongos, briofitos y diversas especies de espermatófitos. Los helechos son el único grupo de plantas cuya germinación nunca ha sido modelizada. En este trabajo se desarrolla un modelo de regresión para explicar la germinación de las esporas de helechos. Observamos que para las especies Blechnum serrulatum, Blechnum yungense, Cheilanthes pilosa, Niphidium macbridei y Polypodium feuillei el modelo de crecimiento de Gompertz describe satisfactoriamente la germinación acumulativa. Un importante resultado es que los parámetros de la regresión son independientes de la especie y que el modelo no está afectado por variación intraespecífica. Por lo tanto, los resultados del trabajo muestran que la curva de Gompertz puede representar un modelo general para todos los helechos leptosporangiados

  12. Collision prediction models using multivariate Poisson-lognormal regression.

    Science.gov (United States)

    El-Basyouny, Karim; Sayed, Tarek

    2009-07-01

    This paper advocates the use of multivariate Poisson-lognormal (MVPLN) regression to develop models for collision count data. The MVPLN approach presents an opportunity to incorporate the correlations across collision severity levels and their influence on safety analyses. The paper introduces a new multivariate hazardous location identification technique, which generalizes the univariate posterior probability of excess that has been commonly proposed and applied in the literature. In addition, the paper presents an alternative approach for quantifying the effect of the multivariate structure on the precision of expected collision frequency. The MVPLN approach is compared with the independent (separate) univariate Poisson-lognormal (PLN) models with respect to model inference, goodness-of-fit, identification of hot spots and precision of expected collision frequency. The MVPLN is modeled using the WinBUGS platform which facilitates computation of posterior distributions as well as providing a goodness-of-fit measure for model comparisons. The results indicate that the estimates of the extra Poisson variation parameters were considerably smaller under MVPLN leading to higher precision. The improvement in precision is due mainly to the fact that MVPLN accounts for the correlation between the latent variables representing property damage only (PDO) and injuries plus fatalities (I+F). This correlation was estimated at 0.758, which is highly significant, suggesting that higher PDO rates are associated with higher I+F rates, as the collision likelihood for both types is likely to rise due to similar deficiencies in roadway design and/or other unobserved factors. In terms of goodness-of-fit, the MVPLN model provided a superior fit than the independent univariate models. The multivariate hazardous location identification results demonstrated that some hazardous locations could be overlooked if the analysis was restricted to the univariate models.

  13. THE REGRESSION MODEL OF IRAN LIBRARIES ORGANIZATIONAL CLIMATE.

    Science.gov (United States)

    Jahani, Mohammad Ali; Yaminfirooz, Mousa; Siamian, Hasan

    2015-10-01

    The purpose of this study was to drawing a regression model of organizational climate of central libraries of Iran's universities. This study is an applied research. The statistical population of this study consisted of 96 employees of the central libraries of Iran's public universities selected among the 117 universities affiliated to the Ministry of Health by Stratified Sampling method (510 people). Climate Qual localized questionnaire was used as research tools. For predicting the organizational climate pattern of the libraries is used from the multivariate linear regression and track diagram. of the 9 variables affecting organizational climate, 5 variables of innovation, teamwork, customer service, psychological safety and deep diversity play a major role in prediction of the organizational climate of Iran's libraries. The results also indicate that each of these variables with different coefficient have the power to predict organizational climate but the climate score of psychological safety (0.94) plays a very crucial role in predicting the organizational climate. Track diagram showed that five variables of teamwork, customer service, psychological safety, deep diversity and innovation directly effects on the organizational climate variable that contribution of the team work from this influence is more than any other variables. Of the indicator of the organizational climate of climateQual, the contribution of the team work from this influence is more than any other variables that reinforcement of teamwork in academic libraries can be more effective in improving the organizational climate of this type libraries.

  14. RRegrs: an R package for computer-aided model selection with multiple regression models

    OpenAIRE

    Tsiliki, Georgia; Munteanu, Cristian R.; Seoane, Jose A.; Fernandez-Lozano, Carlos; Sarimveis, Haralambos; Willighagen, Egon L.

    2015-01-01

    Background Predictive regression models can be created with many different modelling approaches. Choices need to be made for data set splitting, cross-validation methods, specific regression parameters and best model criteria, as they all affect the accuracy and efficiency of the produced predictive models, and therefore, raising model reproducibility and comparison issues. Cheminformatics and bioinformatics are extensively using predictive modelling and exhibit a need for standardization of ...

  15. Modelling Nitrogen Oxides in Los Angeles Using a Hybrid Dispersion/Land Use Regression Model

    Science.gov (United States)

    Wilton, Darren C.

    The goal of this dissertation is to develop models capable of predicting long term annual average NOx concentrations in urban areas. Predictions from simple meteorological dispersion models and seasonal proxies for NO2 oxidation were included as covariates in a land use regression (LUR) model for NOx in Los Angeles, CA. The NO x measurements were obtained from a comprehensive measurement campaign that is part of the Multi-Ethnic Study of Atherosclerosis Air Pollution Study (MESA Air). Simple land use regression models were initially developed using a suite of GIS-derived land use variables developed from various buffer sizes (R²=0.15). Caline3, a simple steady-state Gaussian line source model, was initially incorporated into the land-use regression framework. The addition of this spatio-temporally varying Caline3 covariate improved the simple LUR model predictions. The extent of improvement was much more pronounced for models based solely on the summer measurements (simple LUR: R²=0.45; Caline3/LUR: R²=0.70), than it was for models based on all seasons (R²=0.20). We then used a Lagrangian dispersion model to convert static land use covariates for population density, commercial/industrial area into spatially and temporally varying covariates. The inclusion of these covariates resulted in significant improvement in model prediction (R²=0.57). In addition to the dispersion model covariates described above, a two-week average value of daily peak-hour ozone was included as a surrogate of the oxidation of NO2 during the different sampling periods. This additional covariate further improved overall model performance for all models. The best model by 10-fold cross validation (R²=0.73) contained the Caline3 prediction, a static covariate for length of A3 roads within 50 meters, the Calpuff-adjusted covariates derived from both population density and industrial/commercial land area, and the ozone covariate. This model was tested against annual average NOx

  16. Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.

    Science.gov (United States)

    Ferrari, Alberto

    2017-01-01

    Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.

  17. Spatial modelling of population concentration using geographically weighted regression method

    Directory of Open Access Journals (Sweden)

    Bajat Branislav

    2011-01-01

    Full Text Available This paper presents possibilities of applying the geographically weighted regression method in mapping population change index. During the last decade, this contemporary spatial modeling method has been increasingly used in geographical analyses. On the example of the researched region of Timočka Krajina (defined for the needs of elaborating the Regional Spatial Plan, the possibilities for applying this method in disaggregation of traditional models of population density, which are created using the choropleth maps at the level of statistical spatial units, are shown. The applied method is based on the use of ancillary spatial predictors which are in correlation with a targeted variable, the population change index. For this purpose, spatial databases have been used such as digital terrain model, distances from the network of I and II category state roads, as well as soil sealing databases. Spatial model has been developed in the GIS software environment using commercial GIS applications, as well as open source GIS software. Population change indexes for the period 1961-2002 have been mapped based on population census data, while the data on planned population forecast have been used for the period 2002-2027.

  18. Characteristics and Properties of a Simple Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Kowal Robert

    2016-12-01

    Full Text Available A simple linear regression model is one of the pillars of classic econometrics. Despite the passage of time, it continues to raise interest both from the theoretical side as well as from the application side. One of the many fundamental questions in the model concerns determining derivative characteristics and studying the properties existing in their scope, referring to the first of these aspects. The literature of the subject provides several classic solutions in that regard. In the paper, a completely new design is proposed, based on the direct application of variance and its properties, resulting from the non-correlation of certain estimators with the mean, within the scope of which some fundamental dependencies of the model characteristics are obtained in a much more compact manner. The apparatus allows for a simple and uniform demonstration of multiple dependencies and fundamental properties in the model, and it does it in an intuitive manner. The results were obtained in a classic, traditional area, where everything, as it might seem, has already been thoroughly studied and discovered.

  19. An Overview on Regression Models for Discrete Longitudinal Responses

    OpenAIRE

    Sutradhar, Brajendra C.

    2003-01-01

    In the longitudinal regression setup, interest may be focused primarily on the regression parameters for the marginal expectations of the longitudinal responses, the longitudinal correlation parameters being of secondary interest. Second, interest may be focused on both the regression and the longitudinal correlation parameters. Under the first setup, there exists a "working'' correlation matrix based generalized estimating equation (GEE) approach for the estimation of the regression paramete...

  20. Random regression models for daily feed intake in Danish Duroc pigs

    DEFF Research Database (Denmark)

    Strathe, Anders Bjerring; Mark, Thomas; Jensen, Just

    The objective of this study was to develop random regression models and estimate covariance functions for daily feed intake (DFI) in Danish Duroc pigs. A total of 476201 DFI records were available on 6542 Duroc boars between 70 to 160 days of age. The data originated from the National test statio...

  1. Clinical trials: odds ratios and multiple regression models--why and how to assess them

    NARCIS (Netherlands)

    Sobh, Mohamad; Cleophas, Ton J.; Hadj-Chaib, Amel; Zwinderman, Aeilko H.

    2008-01-01

    Odds ratios (ORs), unlike chi2 tests, provide direct insight into the strength of the relationship between treatment modalities and treatment effects. Multiple regression models can reduce the data spread due to certain patient characteristics and thus improve the precision of the treatment

  2. Meta-Modeling by Symbolic Regression and Pareto Simulated Annealing

    NARCIS (Netherlands)

    Stinstra, E.; Rennen, G.; Teeuwen, G.J.A.

    2006-01-01

    The subject of this paper is a new approach to Symbolic Regression.Other publications on Symbolic Regression use Genetic Programming.This paper describes an alternative method based on Pareto Simulated Annealing.Our method is based on linear regression for the estimation of constants.Interval

  3. Linear regression model for investment analysis of an oil company

    Directory of Open Access Journals (Sweden)

    Edson Vinicius Pontes Bastos

    2015-04-01

    Full Text Available Changes in global economic environment meant that companies, particularly publicly traded, seek adaptations to global market model, which gives preference to the analysis of stock indicators profitability. In this sense, we carried out a quantitative study, based on data published by Petrobras SA, concerning the balance sheet comprising the period 2009 to 2013. Data analysis was carried out through statistical methods of covariance, correlation and linear regression. Among the findings of the paper, we emphasize that more than prove the good relations between the good historical results, the joint techniques of statistical methods serve as warnings to indicate to managers that something is not going as expected, thus helping the decision to promote a change in internal company policies, specifically in the way of investment allocation.

  4. The R Package threg to Implement Threshold Regression Models

    Directory of Open Access Journals (Sweden)

    Tao Xiao

    2015-08-01

    This new package includes four functions: threg, and the methods hr, predict and plot for threg objects returned by threg. The threg function is the model-fitting function which is used to calculate regression coefficient estimates, asymptotic standard errors and p values. The hr method for threg objects is the hazard-ratio calculation function which provides the estimates of hazard ratios at selected time points for specified scenarios (based on given categories or value settings of covariates. The predict method for threg objects is used for prediction. And the plot method for threg objects provides plots for curves of estimated hazard functions, survival functions and probability density functions of the first-hitting-time; function curves corresponding to different scenarios can be overlaid in the same plot for comparison to give additional research insights.

  5. SPSS macros to compare any two fitted values from a regression model.

    Science.gov (United States)

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  6. Relationship between academic stress and suicidal ideation: testing for depression as a mediator using multiple regression.

    Science.gov (United States)

    Ang, Rebecca P; Huan, Vivien S

    2006-01-01

    Relations among academic stress, depression, and suicidal ideation were examined in 1,108 Asian adolescents 12-18 years old from a secondary school in Singapore. Using Baron and Kenny's [J Pers Soc Psychol 51:1173-1192, 1986] framework, this study tested the prediction that adolescent depression mediated the relationship between academic stress and suicidal ideation in a four-step process. The previously significant relationship between academic stress and suicidal ideation was significantly reduced in magnitude when depression was included in the model providing evidence in this sample that adolescent depression was a partial mediator. The applied and practical implications for intervention and prevention work in schools are discussed. The present investigation also served as a demonstration to illustrate how multiple regression analyses can be used as one possible method for testing mediation effects within child psychology and psychiatry.

  7. Multiple linear regression and regression with time series error models in forecasting PM10concentrations in Peninsular Malaysia.

    Science.gov (United States)

    Ng, Kar Yong; Awang, Norhashidah

    2018-01-06

    Frequent haze occurrences in Malaysia have made the management of PM 10 (particulate matter with aerodynamic less than 10 μm) pollution a critical task. This requires knowledge on factors associating with PM 10 variation and good forecast of PM 10 concentrations. Hence, this paper demonstrates the prediction of 1-day-ahead daily average PM 10 concentrations based on predictor variables including meteorological parameters and gaseous pollutants. Three different models were built. They were multiple linear regression (MLR) model with lagged predictor variables (MLR1), MLR model with lagged predictor variables and PM 10 concentrations (MLR2) and regression with time series error (RTSE) model. The findings revealed that humidity, temperature, wind speed, wind direction, carbon monoxide and ozone were the main factors explaining the PM 10 variation in Peninsular Malaysia. Comparison among the three models showed that MLR2 model was on a same level with RTSE model in terms of forecasting accuracy, while MLR1 model was the worst.

  8. Modelling of binary logistic regression for obesity among secondary students in a rural area of Kedah

    Science.gov (United States)

    Kamaruddin, Ainur Amira; Ali, Zalila; Noor, Norlida Mohd.; Baharum, Adam; Ahmad, Wan Muhamad Amir W.

    2014-07-01

    Logistic regression analysis examines the influence of various factors on a dichotomous outcome by estimating the probability of the event's occurrence. Logistic regression, also called a logit model, is a statistical procedure used to model dichotomous outcomes. In the logit model the log odds of the dichotomous outcome is modeled as a linear combination of the predictor variables. The log odds ratio in logistic regression provides a description of the probabilistic relationship of the variables and the outcome. In conducting logistic regression, selection procedures are used in selecting important predictor variables, diagnostics are used to check that assumptions are valid which include independence of errors, linearity in the logit for continuous variables, absence of multicollinearity, and lack of strongly influential outliers and a test statistic is calculated to determine the aptness of the model. This study used the binary logistic regression model to investigate overweight and obesity among rural secondary school students on the basis of their demographics profile, medical history, diet and lifestyle. The results indicate that overweight and obesity of students are influenced by obesity in family and the interaction between a student's ethnicity and routine meals intake. The odds of a student being overweight and obese are higher for a student having a family history of obesity and for a non-Malay student who frequently takes routine meals as compared to a Malay student.

  9. Order Selection for General Expression of Nonlinear Autoregressive Model Based on Multivariate Stepwise Regression

    Science.gov (United States)

    Shi, Jinfei; Zhu, Songqing; Chen, Ruwen

    2017-12-01

    An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.

  10. Application of Soft Computing Techniques and Multiple Regression Models for CBR prediction of Soils

    Directory of Open Access Journals (Sweden)

    Fatimah Khaleel Ibrahim

    2017-08-01

    Full Text Available The techniques of soft computing technique such as Artificial Neutral Network (ANN have improved the predicting capability and have actually discovered application in Geotechnical engineering. The aim of this research is to utilize the soft computing technique and Multiple Regression Models (MLR for forecasting the California bearing ratio CBR( of soil from its index properties. The indicator of CBR for soil could be predicted from various soils characterizing parameters with the assist of MLR and ANN methods. The data base that collected from the laboratory by conducting tests on 86 soil samples that gathered from different projects in Basrah districts. Data gained from the experimental result were used in the regression models and soft computing techniques by using artificial neural network. The liquid limit, plastic index , modified compaction test and the CBR test have been determined. In this work, different ANN and MLR models were formulated with the different collection of inputs to be able to recognize their significance in the prediction of CBR. The strengths of the models that were developed been examined in terms of regression coefficient (R2, relative error (RE% and mean square error (MSE values. From the results of this paper, it absolutely was noticed that all the proposed ANN models perform better than that of MLR model. In a specific ANN model with all input parameters reveals better outcomes than other ANN models.

  11. Testing the transferability of regression equations derived from small sub-catchments to a large area in central Sweden

    Directory of Open Access Journals (Sweden)

    C. Xu

    2003-01-01

    Full Text Available There is an ever increasing need to apply hydrological models to catchments where streamflow data are unavailable or to large geographical regions where calibration is not feasible. Estimation of model parameters from spatial physical data is the key issue in the development and application of hydrological models at various scales. To investigate the suitability of transferring the regression equations relating model parameters to physical characteristics developed from small sub-catchments to a large region for estimating model parameters, a conceptual snow and water balance model was optimised on all the sub-catchments in the region. A multiple regression analysis related model parameters to physical data for the catchments and the regression equations derived from the small sub-catchments were used to calculate regional parameter values for the large basin using spatially aggregated physical data. For the model tested, the results support the suitability of transferring the regression equations to the larger region. Keywords: water balance modelling,large scale, multiple regression, regionalisation

  12. Multiple linear combination (MLC) regression tests for common variants adapted to linkage disequilibrium structure.

    Science.gov (United States)

    Yoo, Yun Joo; Sun, Lei; Poirier, Julia G; Paterson, Andrew D; Bull, Shelley B

    2017-02-01

    By jointly analyzing multiple variants within a gene, instead of one at a time, gene-based multiple regression can improve power, robustness, and interpretation in genetic association analysis. We investigate multiple linear combination (MLC) test statistics for analysis of common variants under realistic trait models with linkage disequilibrium (LD) based on HapMap Asian haplotypes. MLC is a directional test that exploits LD structure in a gene to construct clusters of closely correlated variants recoded such that the majority of pairwise correlations are positive. It combines variant effects within the same cluster linearly, and aggregates cluster-specific effects in a quadratic sum of squares and cross-products, producing a test statistic with reduced degrees of freedom (df) equal to the number of clusters. By simulation studies of 1000 genes from across the genome, we demonstrate that MLC is a well-powered and robust choice among existing methods across a broad range of gene structures. Compared to minimum P-value, variance-component, and principal-component methods, the mean power of MLC is never much lower than that of other methods, and can be higher, particularly with multiple causal variants. Moreover, the variation in gene-specific MLC test size and power across 1000 genes is less than that of other methods, suggesting it is a complementary approach for discovery in genome-wide analysis. The cluster construction of the MLC test statistics helps reveal within-gene LD structure, allowing interpretation of clustered variants as haplotypic effects, while multiple regression helps to distinguish direct and indirect associations. © 2016 The Authors Genetic Epidemiology Published by Wiley Periodicals, Inc.

  13. Testing contingency hypotheses in budgetary research: An evaluation of the use of moderated regression analysis

    NARCIS (Netherlands)

    Hartmann, Frank G.H.; Moers, Frank

    1999-01-01

    In the contingency literature on the behavioral and organizational effects of budgeting, use of the Moderated Regression Analysis (MRA) technique is prevalent. This technique is used to test contingency hypotheses that predict interaction effects between budgetary and contextual variables. This

  14. An Ordered Regression Model to Predict Transit Passengers’ Behavioural Intentions

    Energy Technology Data Exchange (ETDEWEB)

    Oña, J. de; Oña, R. de; Eboli, L.; Forciniti, C.; Mazzulla, G.

    2016-07-01

    Passengers’ behavioural intentions after experiencing transit services can be viewed as signals that show if a customer continues to utilise a company’s service. Users’ behavioural intentions can depend on a series of aspects that are difficult to measure directly. More recently, transit passengers’ behavioural intentions have been just considered together with the concepts of service quality and customer satisfaction. Due to the characteristics of the ways for evaluating passengers’ behavioural intentions, service quality and customer satisfaction, we retain that this kind of issue could be analysed also by applying ordered regression models. This work aims to propose just an ordered probit model for analysing service quality factors that can influence passengers’ behavioural intentions towards the use of transit services. The case study is the LRT of Seville (Spain), where a survey was conducted in order to collect the opinions of the passengers about the existing transit service, and to have a measure of the aspects that can influence the intentions of the users to continue using the transit service in the future. (Author)

  15. Reflexion on linear regression trip production modelling method for ensuring good model quality

    Science.gov (United States)

    Suprayitno, Hitapriya; Ratnasari, Vita

    2017-11-01

    Transport Modelling is important. For certain cases, the conventional model still has to be used, in which having a good trip production model is capital. A good model can only be obtained from a good sample. Two of the basic principles of a good sampling is having a sample capable to represent the population characteristics and capable to produce an acceptable error at a certain confidence level. It seems that this principle is not yet quite understood and used in trip production modeling. Therefore, investigating the Trip Production Modelling practice in Indonesia and try to formulate a better modeling method for ensuring the Model Quality is necessary. This research result is presented as follows. Statistics knows a method to calculate span of prediction value at a certain confidence level for linear regression, which is called Confidence Interval of Predicted Value. The common modeling practice uses R2 as the principal quality measure, the sampling practice varies and not always conform to the sampling principles. An experiment indicates that small sample is already capable to give excellent R2 value and sample composition can significantly change the model. Hence, good R2 value, in fact, does not always mean good model quality. These lead to three basic ideas for ensuring good model quality, i.e. reformulating quality measure, calculation procedure, and sampling method. A quality measure is defined as having a good R2 value and a good Confidence Interval of Predicted Value. Calculation procedure must incorporate statistical calculation method and appropriate statistical tests needed. A good sampling method must incorporate random well distributed stratified sampling with a certain minimum number of samples. These three ideas need to be more developed and tested.

  16. Testing linear models for ability parameters in item response models

    NARCIS (Netherlands)

    Glas, Cornelis A.W.; Hendrawan, I.

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum

  17. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    Science.gov (United States)

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  18. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    OpenAIRE

    Wei-Bo Chen; Wen-Cheng Liu

    2015-01-01

    In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS) and a multilinear regression (MLR) model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical ...

  19. Testing the water-energy theory on American palms (Arecaceae using geographically weighted regression.

    Directory of Open Access Journals (Sweden)

    Wolf L Eiserhardt

    Full Text Available Water and energy have emerged as the best contemporary environmental correlates of broad-scale species richness patterns. A corollary hypothesis of water-energy dynamics theory is that the influence of water decreases and the influence of energy increases with absolute latitude. We report the first use of geographically weighted regression for testing this hypothesis on a continuous species richness gradient that is entirely located within the tropics and subtropics. The dataset was divided into northern and southern hemispheric portions to test whether predictor shifts are more pronounced in the less oceanic northern hemisphere. American palms (Arecaceae, n = 547 spp., whose species richness and distributions are known to respond strongly to water and energy, were used as a model group. The ability of water and energy to explain palm species richness was quantified locally at different spatial scales and regressed on latitude. Clear latitudinal trends in agreement with water-energy dynamics theory were found, but the results did not differ qualitatively between hemispheres. Strong inherent spatial autocorrelation in local modeling results and collinearity of water and energy variables were identified as important methodological challenges. We overcame these problems by using simultaneous autoregressive models and variation partitioning. Our results show that the ability of water and energy to explain species richness changes not only across large climatic gradients spanning tropical to temperate or arctic zones but also within megathermal climates, at least for strictly tropical taxa such as palms. This finding suggests that the predictor shifts are related to gradual latitudinal changes in ambient energy (related to solar flux input rather than to abrupt transitions at specific latitudes, such as the occurrence of frost.

  20. Stability indicating analysis of bisacodyl by partial least squares regression, spectral residual augmented classical least squares and support vector regression chemometric models: A comparative study

    Directory of Open Access Journals (Sweden)

    Ibrahim A. Naguib

    2011-12-01

    Full Text Available Partial least squares regression (PLSR, spectral residual augmented classical least squares (SRACLS and support vector regression (SVR are three different chemometric models. These models are subjected to a comparative study that highlights their inherent characteristics via applying them to analysis of bisacodyl in the presence of its reported degradation products monoacetyl bisacodyl (I and desacetyl bisacodyl (II, in raw material. For proper analysis, a 3 factor 3 level experimental design was established resulting in a training set of 9 mixtures containing different ratios of the interfering species. A linear test set consisting of 6 mixtures was used to validate the prediction ability of the suggested models. To test the generalisation ability of the models, some extra mixtures were prepared that are outside the concentration space of the training set. To test the ability of models to handle nonlinearity in spectral response, another set of nonlinear samples was prepared. The paper highlights model transfer to other labs under other conditions as well. This paper aims to manifest the advantages of SRACLS and SVR over PLSR model, where SRACLS can tackle future changes without the need for tedious recalibration, while SVR is a more robust and general model, with high ability to model nonlinearity in spectral response, though like PLSR is needing recalibration. The results presented indicate the ability of the three models to analyse bisacodyl in the presence of its degradation products in raw material with high accuracy and precision; where SVR gives the best results at all tested conditions compared to other models.

  1. Linear regression

    CERN Document Server

    Olive, David J

    2017-01-01

    This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response trans...

  2. The Application of the Cumulative Logistic Regression Model to Automated Essay Scoring

    Science.gov (United States)

    Haberman, Shelby J.; Sinharay, Sandip

    2010-01-01

    Most automated essay scoring programs use a linear regression model to predict an essay score from several essay features. This article applied a cumulative logit model instead of the linear regression model to automated essay scoring. Comparison of the performances of the linear regression model and the cumulative logit model was performed on a…

  3. Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models.

    Science.gov (United States)

    Zeng, Ping; Zhou, Xiang

    2017-09-06

    Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.Genetic prediction of complex traits with polygenic architecture has wide application from animal breeding to disease prevention. Here, Zeng and Zhou develop a non-parametric genetic prediction method based on latent Dirichlet Process regression models.

  4. Color Image Segmentation Using Fuzzy C-Regression Model

    Directory of Open Access Journals (Sweden)

    Min Chen

    2017-01-01

    Full Text Available Image segmentation is one important process in image analysis and computer vision and is a valuable tool that can be applied in fields of image processing, health care, remote sensing, and traffic image detection. Given the lack of prior knowledge of the ground truth, unsupervised learning techniques like clustering have been largely adopted. Fuzzy clustering has been widely studied and successfully applied in image segmentation. In situations such as limited spatial resolution, poor contrast, overlapping intensities, and noise and intensity inhomogeneities, fuzzy clustering can retain much more information than the hard clustering technique. Most fuzzy clustering algorithms have originated from fuzzy c-means (FCM and have been successfully applied in image segmentation. However, the cluster prototype of the FCM method is hyperspherical or hyperellipsoidal. FCM may not provide the accurate partition in situations where data consists of arbitrary shapes. Therefore, a Fuzzy C-Regression Model (FCRM using spatial information has been proposed whose prototype is hyperplaned and can be either linear or nonlinear allowing for better cluster partitioning. Thus, this paper implements FCRM and applies the algorithm to color segmentation using Berkeley’s segmentation database. The results show that FCRM obtains more accurate results compared to other fuzzy clustering algorithms.

  5. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics.

    Science.gov (United States)

    Su, Liyun; Zhao, Yanyong; Yan, Tianshun; Li, Fenglan

    2012-01-01

    Multivariate local polynomial fitting is applied to the multivariate linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to non-parametric technique of local polynomial estimation, it is unnecessary to know the form of heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we verify that the regression coefficients is asymptotic normal based on numerical simulations and normal Q-Q plots of residuals. Finally, the simulation results and the local polynomial estimation of real data indicate that our approach is surely effective in finite-sample situations.

  6. The microcomputer scientific software series 2: general linear model--regression.

    Science.gov (United States)

    Harold M. Rauscher

    1983-01-01

    The general linear model regression (GLMR) program provides the microcomputer user with a sophisticated regression analysis capability. The output provides a regression ANOVA table, estimators of the regression model coefficients, their confidence intervals, confidence intervals around the predicted Y-values, residuals for plotting, a check for multicollinearity, a...

  7. Linear and evolutionary polynomial regression models to forecast coastal dynamics: Comparison and reliability assessment

    Science.gov (United States)

    Bruno, Delia Evelina; Barca, Emanuele; Goncalves, Rodrigo Mikosz; de Araujo Queiroz, Heithor Alexandre; Berardi, Luigi; Passarella, Giuseppe

    2018-01-01

    In this paper, the Evolutionary Polynomial Regression data modelling strategy has been applied to study small scale, short-term coastal morphodynamics, given its capability for treating a wide database of known information, non-linearly. Simple linear and multilinear regression models were also applied to achieve a balance between the computational load and reliability of estimations of the three models. In fact, even though it is easy to imagine that the more complex the model, the more the prediction improves, sometimes a "slight" worsening of estimations can be accepted in exchange for the time saved in data organization and computational load. The models' outcomes were validated through a detailed statistical, error analysis, which revealed a slightly better estimation of the polynomial model with respect to the multilinear model, as expected. On the other hand, even though the data organization was identical for the two models, the multilinear one required a simpler simulation setting and a faster run time. Finally, the most reliable evolutionary polynomial regression model was used in order to make some conjecture about the uncertainty increase with the extension of extrapolation time of the estimation. The overlapping rate between the confidence band of the mean of the known coast position and the prediction band of the estimated position can be a good index of the weakness in producing reliable estimations when the extrapolation time increases too much. The proposed models and tests have been applied to a coastal sector located nearby Torre Colimena in the Apulia region, south Italy.

  8. Analysis of Multivariate Experimental Data Using A Simplified Regression Model Search Algorithm

    Science.gov (United States)

    Ulbrich, Norbert Manfred

    2013-01-01

    A new regression model search algorithm was developed in 2011 that may be used to analyze both general multivariate experimental data sets and wind tunnel strain-gage balance calibration data. The new algorithm is a simplified version of a more complex search algorithm that was originally developed at the NASA Ames Balance Calibration Laboratory. The new algorithm has the advantage that it needs only about one tenth of the original algorithm's CPU time for the completion of a search. In addition, extensive testing showed that the prediction accuracy of math models obtained from the simplified algorithm is similar to the prediction accuracy of math models obtained from the original algorithm. The simplified algorithm, however, cannot guarantee that search constraints related to a set of statistical quality requirements are always satisfied in the optimized regression models. Therefore, the simplified search algorithm is not intended to replace the original search algorithm. Instead, it may be used to generate an alternate optimized regression model of experimental data whenever the application of the original search algorithm either fails or requires too much CPU time. Data from a machine calibration of NASA's MK40 force balance is used to illustrate the application of the new regression model search algorithm.

  9. Evaluation of weighted regression and sample size in developing a taper model for loblolly pine

    Science.gov (United States)

    Kenneth L. Cormier; Robin M. Reich; Raymond L. Czaplewski; William A. Bechtold

    1992-01-01

    A stem profile model, fit using pseudo-likelihood weighted regression, was used to estimate merchantable volume of loblolly pine (Pinus taeda L.) in the southeast. The weighted regression increased model fit marginally, but did not substantially increase model performance. In all cases, the unweighted regression models performed as well as the...

  10. A Unified Approach to Power Calculation and Sample Size Determination for Random Regression Models

    Science.gov (United States)

    Shieh, Gwowen

    2007-01-01

    The underlying statistical models for multiple regression analysis are typically attributed to two types of modeling: fixed and random. The procedures for calculating power and sample size under the fixed regression models are well known. However, the literature on random regression models is limited and has been confined to the case of all…

  11. Multiplicative random regression model for heterogeneous variance adjustment in genetic evaluation for milk yield in Simmental.

    Science.gov (United States)

    Lidauer, M H; Emmerling, R; Mäntysaari, E A

    2008-06-01

    A multiplicative random regression (M-RRM) test-day (TD) model was used to analyse daily milk yields from all available parities of German and Austrian Simmental dairy cattle. The method to account for heterogeneous variance (HV) was based on the multiplicative mixed model approach of Meuwissen. The variance model for the heterogeneity parameters included a fixed region x year x month x parity effect and a random herd x test-month effect with a within-herd first-order autocorrelation between test-months. Acceleration of variance model solutions after each multiplicative model cycle enabled fast convergence of adjustment factors and reduced total computing time significantly. Maximum Likelihood estimation of within-strata residual variances was enhanced by inclusion of approximated information on loss in degrees of freedom due to estimation of location parameters. This improved heterogeneity estimates for very small herds. The multiplicative model was compared with a model that assumed homogeneous variance. Re-estimated genetic variances, based on Mendelian sampling deviations, were homogeneous for the M-RRM TD model but heterogeneous for the homogeneous random regression TD model. Accounting for HV had large effect on cow ranking but moderate effect on bull ranking.

  12. MODELING SNAKE MICROHABITAT FROM RADIOTELEMETRY STUDIES USING POLYTOMOUS LOGISTIC REGRESSION

    Science.gov (United States)

    Multivariate analysis of snake microhabitat has historically used techniques that were derived under assumptions of normality and common covariance structure (e.g., discriminant function analysis, MANOVA). In this study, polytomous logistic regression (PLR which does not require ...

  13. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    Science.gov (United States)

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  14. Gene-based multiple regression association testing for combined examination of common and low frequency variants in quantitative trait analysis.

    Science.gov (United States)

    Yoo, Yun Joo; Sun, Lei; Bull, Shelley B

    2013-01-01

    Multi-marker methods for genetic association analysis can be performed for common and low frequency SNPs to improve power. Regression models are an intuitive way to formulate multi-marker tests. In previous studies we evaluated regression-based multi-marker tests for common SNPs, and through identification of bins consisting of correlated SNPs, developed a multi-bin linear combination (MLC) test that is a compromise between a 1 df linear combination test and a multi-df global test. Bins of SNPs in high linkage disequilibrium (LD) are identified, and a linear combination of individual SNP statistics is constructed within each bin. Then association with the phenotype is represented by an overall statistic with df as many or few as the number of bins. In this report we evaluate multi-marker tests for SNPs that occur at low frequencies. There are many linear and quadratic multi-marker tests that are suitable for common or low frequency variant analysis. We compared the performance of the MLC tests with various linear and quadratic statistics in joint or marginal regressions. For these comparisons, we performed a simulation study of genotypes and quantitative traits for 85 genes with many low frequency SNPs based on HapMap Phase III. We compared the tests using (1) set of all SNPs in a gene, (2) set of common SNPs in a gene (MAF ≥ 5%), (3) set of low frequency SNPs (1% ≤ MAF analysis using all SNPs including common and low frequency SNPs is a good and robust choice whereas using common SNPs alone or low frequency SNP alone can lose power. MLC tests performed well in combined analysis except where two low frequency causal SNPs with opposing effects are positively correlated. Overall, across different sets of analysis, the joint regression Wald test showed consistently good performance whereas other statistics including the ones based on marginal regression had lower power for some situations.

  15. Mixture Markov regression model with application to mosquito surveillance data analysis.

    Science.gov (United States)

    Gao, Xin; Cao, Yurong R; Ogden, Nicholas; Aubin, Louise; Zhu, Huaiping P

    2017-05-01

    A mixture Markov regression model is proposed to analyze heterogeneous time series data. Mixture quasi-likelihood is formulated to model time series with mixture components and exogenous variables. The parameters are estimated by quasi-likelihood estimating equations. A modified EM algorithm is developed for the mixture time series model. The model and proposed algorithm are tested on simulated data and applied to mosquito surveillance data in Peel Region, Canada. © 2017 Her Majesty the Queen in Right of Canada. Reproduced with the permission of the Minister of Health.

  16. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  17. A Note on Three Statistical Tests in the Logistic Regression DIF Procedure

    Science.gov (United States)

    Paek, Insu

    2012-01-01

    Although logistic regression became one of the well-known methods in detecting differential item functioning (DIF), its three statistical tests, the Wald, likelihood ratio (LR), and score tests, which are readily available under the maximum likelihood, do not seem to be consistently distinguished in DIF literature. This paper provides a clarifying…

  18. Extending the linear model with R generalized linear, mixed effects and nonparametric regression models

    CERN Document Server

    Faraway, Julian J

    2005-01-01

    Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway''s critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author''s treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the ...

  19. A Multiple Linear Regression Model for Tropical Cyclone Intensity Estimation from Satellite Infrared Images

    Directory of Open Access Journals (Sweden)

    Yong Zhao

    2016-03-01

    Full Text Available An objectively trained model for tropical cyclone intensity estimation from routine satellite infrared images over the Northwestern Pacific Ocean is presented in this paper. The intensity is correlated to some critical signals extracted from the satellite infrared images, by training the 325 tropical cyclone cases from 1996 to 2007 typhoon seasons. To begin with, deviation angles and radial profiles of infrared images are calculated to extract as much potential predicators for intensity as possible. These predicators are examined strictly and included into (or excluded from the initial predicator pool for regression manually. Then, the “thinned” potential predicators are regressed to the intensity by performing a stepwise regression procedure, according to their accumulated variance contribution rates to the model. Finally, the regressed model is verified using 52 cases from 2008 to 2009 typhoon seasons. The R2 and Root Mean Square Error are 0.77 and 12.01 knot in the independent validation tests, respectively. Analysis results demonstrate that this model performs well for strong typhoons, but produces relatively large errors for weak tropical cyclones.

  20. The prediction of intelligence in preschool children using alternative models to regression.

    Science.gov (United States)

    Finch, W Holmes; Chang, Mei; Davis, Andrew S; Holden, Jocelyn E; Rothlisberg, Barbara A; McIntosh, David E

    2011-12-01

    Statistical prediction of an outcome variable using multiple independent variables is a common practice in the social and behavioral sciences. For example, neuropsychologists are sometimes called upon to provide predictions of preinjury cognitive functioning for individuals who have suffered a traumatic brain injury. Typically, these predictions are made using standard multiple linear regression models with several demographic variables (e.g., gender, ethnicity, education level) as predictors. Prior research has shown conflicting evidence regarding the ability of such models to provide accurate predictions of outcome variables such as full-scale intelligence (FSIQ) test scores. The present study had two goals: (1) to demonstrate the utility of a set of alternative prediction methods that have been applied extensively in the natural sciences and business but have not been frequently explored in the social sciences and (2) to develop models that can be used to predict premorbid cognitive functioning in preschool children. Predictions of Stanford-Binet 5 FSIQ scores for preschool-aged children is used to compare the performance of a multiple regression model with several of these alternative methods. Results demonstrate that classification and regression trees provided more accurate predictions of FSIQ scores than does the more traditional regression approach. Implications of these results are discussed.

  1. Comparison of Bayesian regression models and partial least squares regression for the development of infrared prediction equations.

    Science.gov (United States)

    Bonfatti, V; Tiezzi, F; Miglior, F; Carnier, P

    2017-09-01

    The objective of this study was to compare the prediction accuracy of 92 infrared prediction equations obtained by different statistical approaches. The predicted traits included fatty acid composition (n = 1,040); detailed protein composition (n = 1,137); lactoferrin (n = 558); pH and coagulation properties (n = 1,296); curd yield and composition obtained by a micro-cheese making procedure (n = 1,177); and Ca, P, Mg, and K contents (n = 689). The statistical methods used to develop the prediction equations were partial least squares regression (PLSR), Bayesian ridge regression, Bayes A, Bayes B, Bayes C, and Bayesian least absolute shrinkage and selection operator. Model performances were assessed, for each trait and model, in training and validation sets over 10 replicates. In validation sets, Bayesian regression models performed significantly better than PLSR for the prediction of 33 out of 92 traits, especially fatty acids, whereas they yielded a significantly lower prediction accuracy than PLSR in the prediction of 8 traits: the percentage of C18:1n-7 trans-9 in fat; the content of unglycosylated κ-casein and its percentage in protein; the content of α-lactalbumin; the percentage of αS2-casein in protein; and the contents of Ca, P, and Mg. Even though Bayesian methods produced a significant enhancement of model accuracy in many traits compared with PLSR, most variations in the coefficient of determination in validation sets were smaller than 1 percentage point. Over traits, the highest predictive ability was obtained by Bayes C even though most of the significant differences in accuracy between Bayesian regression models were negligible. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. USE OF THE SIMPLE LINEAR REGRESSION MODEL IN MACRO-ECONOMICAL ANALYSES

    Directory of Open Access Journals (Sweden)

    Constantin ANGHELACHE

    2011-10-01

    Full Text Available The article presents the fundamental aspects of the linear regression, as a toolbox which can be used in macroeconomic analyses. The article describes the estimation of the parameters, the statistical tests used, the homoscesasticity and heteroskedasticity. The use of econometrics instrument in macroeconomics is an important factor that guarantees the quality of the models, analyses, results and possible interpretation that can be drawn at this level.

  3. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

    OpenAIRE

    Kleijnen, J.P.C.

    2006-01-01

    Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these classic assumptions in simulation practice?(ii) How can these assumptions be tested? (iii) If assumptions are violated, can the simulation's I/O data be transformed such that the assumptions hold?(i...

  4. Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling

    Directory of Open Access Journals (Sweden)

    Eric R. Edelman

    2017-06-01

    Full Text Available For efficient utilization of operating rooms (ORs, accurate schedules of assigned block time and sequences of patient cases need to be made. The quality of these planning tools is dependent on the accurate prediction of total procedure time (TPT per case. In this paper, we attempt to improve the accuracy of TPT predictions by using linear regression models based on estimated surgeon-controlled time (eSCT and other variables relevant to TPT. We extracted data from a Dutch benchmarking database of all surgeries performed in six academic hospitals in The Netherlands from 2012 till 2016. The final dataset consisted of 79,983 records, describing 199,772 h of total OR time. Potential predictors of TPT that were included in the subsequent analysis were eSCT, patient age, type of operation, American Society of Anesthesiologists (ASA physical status classification, and type of anesthesia used. First, we computed the predicted TPT based on a previously described fixed ratio model for each record, multiplying eSCT by 1.33. This number is based on the research performed by van Veen-Berkx et al., which showed that 33% of SCT is generally a good approximation of anesthesia-controlled time (ACT. We then systematically tested all possible linear regression models to predict TPT using eSCT in combination with the other available independent variables. In addition, all regression models were again tested without eSCT as a predictor to predict ACT separately (which leads to TPT by adding SCT. TPT was most accurately predicted using a linear regression model based on the independent variables eSCT, type of operation, ASA classification, and type of anesthesia. This model performed significantly better than the fixed ratio model and the method of predicting ACT separately. Making use of these more accurate predictions in planning and sequencing algorithms may enable an increase in utilization of ORs, leading to significant financial and productivity related

  5. Análises da persistência na lactação de vacas da raça Holandesa, usando produção no dia do controle e modelo de regressão aleatória Analysis of persistency in the lactation of Holstein cows using test-day yield and random regression model

    Directory of Open Access Journals (Sweden)

    Jaime Araujo Cobuci

    2004-06-01

    Full Text Available Foram utilizados 87.045 registros de produção de leite, na primeira lactação, de 11.023 vacas da raça Holandesa, obtidos nos anos de 1997 a 2001, em diferentes rebanhos distribuídos em dez núcleos do Estado de Minas Gerais. Foram avaliados seis tipos de mensuração da persistência na lactação utilizando-se os valores genéticos da produção de leite, obtidos por meio do modelo de regressão aleatória - MRA. Utilizou-se a função de Wilmink na descrição dos efeitos aleatórios e fixos, pelo MRA. As estimativas de herdabilidade e de correlação genética, para as várias mensurações da persistência na lactação, variaram em decorrência da definição da persistência. As estimativas de herdabilidade para persistência na lactação variaram de 0,11 a 0,27 e as estimativas de correlação genética entre as mensurações da persistência na lactação e produção de leite até 305 dias, de -0,31 a 0,55, indicando que a persistência na lactação é uma característica de moderada herdabilidade e pouco correlacionada com a produção de leite até 305 dias. A seleção de animais para persistência na lactação, com o objetivo de alterar a forma da curva de lactação, pode ser eficiente.A total of 87,045 milk yield records of 11,023 first-parity Holstein cows was utilized, obtained from 1997 to 2001 from different herds of 10 Minas Gerais locations. Six types of persistency measures in lactation were evaluated using milk yield breeding values, obtained by means of Random Regression Model - RRM. The Wilmink function was used to describe the random and fixed effects by RRM. Heritability estimates and genetic correlations for various persistency measures in lactation were dependent on the definition of persistency. The heritability estimates for persistency in lactation ranged from 0.11 to 0.27 and the genetic variations among persistency measures in lactation and milk yield up to d 305 ranged from -0.31 to 0.55, showing that

  6. Landslide susceptibility mapping along road corridors in the Indian Himalayas using Bayesian logistic regression models

    Science.gov (United States)

    Das, Iswar; Stein, Alfred; Kerle, Norman; Dadhwal, Vinay K.

    2012-12-01

    Landslide susceptibility mapping (LSM) along road corridors in the Indian Himalayas is an essential exercise that helps planners and decision makers in determining the severity of probable slope failure areas. Logistic regression is commonly applied for this purpose, as it is a robust and straightforward technique that is relatively easy to handle. Ordinary logistic regression as a data-driven technique, however, does not allow inclusion of prior information. This study presents Bayesian logistic regression (BLR) for landslide susceptibility assessment along road corridors. The methodology is tested in a landslide-prone area in the Bhagirathi river valley in the Indian Himalayas. Parameter estimates from BLR are compared with those obtained from ordinary logistic regression. By means of iterative Markov Chain Monte Carlo simulation, BLR provides a rich set of results on parameter estimation. We assessed model performance by the receiver operator characteristics curve analysis, and validated the model using 50% of the landslide cells kept apart for testing and validation. The study concludes that BLR performs better in posterior parameter estimation in general and the uncertainty estimation in particular.

  7. Prediction models for clustered data: comparison of a random intercept and standard regression model.

    Science.gov (United States)

    Bouwmeester, Walter; Twisk, Jos W R; Kappen, Teus H; van Klei, Wilton A; Moons, Karel G M; Vergouwe, Yvonne

    2013-02-15

    When study data are clustered, standard regression analysis is considered inappropriate and analytical techniques for clustered data need to be used. For prediction research in which the interest of predictor effects is on the patient level, random effect regression models are probably preferred over standard regression analysis. It is well known that the random effect parameter estimates and the standard logistic regression parameter estimates are different. Here, we compared random effect and standard logistic regression models for their ability to provide accurate predictions. Using an empirical study on 1642 surgical patients at risk of postoperative nausea and vomiting, who were treated by one of 19 anesthesiologists (clusters), we developed prognostic models either with standard or random intercept logistic regression. External validity of these models was assessed in new patients from other anesthesiologists. We supported our results with simulation studies using intra-class correlation coefficients (ICC) of 5%, 15%, or 30%. Standard performance measures and measures adapted for the clustered data structure were estimated. The model developed with random effect analysis showed better discrimination than the standard approach, if the cluster effects were used for risk prediction (standard c-index of 0.69 versus 0.66). In the external validation set, both models showed similar discrimination (standard c-index 0.68 versus 0.67). The simulation study confirmed these results. For datasets with a high ICC (≥15%), model calibration was only adequate in external subjects, if the used performance measure assumed the same data structure as the model development method: standard calibration measures showed good calibration for the standard developed model, calibration measures adapting the clustered data structure showed good calibration for the prediction model with random intercept. The models with random intercept discriminate better than the standard model only

  8. Bilinear regression model with Kronecker and linear structures for ...

    African Journals Online (AJOL)

    On the basis of n independent observations from a matrix normal distribution, estimating equations in a flip-flop relation are established and the consistency of estimators is studied. Keywords: Bilinear regression; Estimating equations; Flip- flop algorithm; Kronecker product structure; Linear structured covariance matrix; ...

  9. Developing synergy regression models with space-borne ALOS ...

    Indian Academy of Sciences (India)

    Optical remote sensing data have been widely used to derive forestbiophysical parameters inspite of their poor sensitivity towards the forest properties. Microwave remotesensing provides a better alternative owing to its inherent ability to penetrate the forest vegetation.This study aims at developing optimal regression ...

  10. Parametric vs. Nonparametric Regression Modelling within Clinical Decision Support

    Czech Academy of Sciences Publication Activity Database

    Kalina, Jan; Zvárová, Jana

    2017-01-01

    Roč. 5, č. 1 (2017), s. 21-27 ISSN 1805-8698 R&D Projects: GA ČR GA17-01251S Institutional support: RVO:67985807 Keywords : decision support systems * decision rules * statistical analysis * nonparametric regression Subject RIV: IN - Informatics, Computer Science OBOR OECD: Statistics and probability

  11. 231 Using Multiple Regression Analysis in Modelling the Role of ...

    African Journals Online (AJOL)

    User

    concern especially its role in the economy of Cross River State. This paper seeks to evaluate the ... development, tourism development and local economy development using multiple regression analysis. The result shows ... potential tourist attraction which parade modern facilities such as, digital satellite, television system ...

  12. Variation in the Slope Coefficient of the Fama Regression for Testing Uncovered Interest Rate Parity: Evidence from Fixed and Time-varying Coefficient Approaches

    NARCIS (Netherlands)

    C. de Koning (Camiel); S. Straetmans

    1997-01-01

    textabstractWe investigate the potential presence of time variation in the coefficients of the ''Fama regression'' for Uncovered Interest Rate Parity. We implement coefficient constancy tests, rolling regression techniques, and stochastic coefficient models based on state space modelling. Among six

  13. EPS-LASSO: Test for High-Dimensional Regression Under Extreme Phenotype Sampling of Continuous Traits.

    Science.gov (United States)

    Xu, Chao; Fang, Jian; Shen, Hui; Wang, Yu-Ping; Deng, Hong-Wen

    2018-01-25

    Extreme phenotype sampling (EPS) is a broadly-used design to identify candidate genetic factors contributing to the variation of quantitative traits. By enriching the signals in extreme phenotypic samples, EPS can boost the association power compared to random sampling. Most existing statistical methods for EPS examine the genetic factors individually, despite many quantitative traits have multiple genetic factors underlying their variation. It is desirable to model the joint effects of genetic factors, which may increase the power and identify novel quantitative trait loci under EPS. The joint analysis of genetic data in high-dimensional situations requires specialized techniques, e.g., the least absolute shrinkage and selection operator (LASSO). Although there are extensive research and application related to LASSO, the statistical inference and testing for the sparse model under EPS remain unknown. We propose a novel sparse model (EPS-LASSO) with hypothesis test for high-dimensional regression under EPS based on a decorrelated score function. The comprehensive simulation shows EPS-LASSO outperforms existing methods with stable type I error and FDR control. EPS-LASSO can provide a consistent power for both low- and high-dimensional situations compared with the other methods dealing with high-dimensional situations. The power of EPS-LASSO is close to other low-dimensional methods when the causal effect sizes are small and is superior when the effects are large. Applying EPS-LASSO to a transcriptome-wide gene expression study for obesity reveals 10 significant body mass index associated genes. Our results indicate that EPS-LASSO is an effective method for EPS data analysis, which can account for correlated predictors. The source code is available at https://github.com/xu1912/EPSLASSO. hdeng2@tulane.edu. Supplementary data are available at Bioinformatics online.

  14. A review of land-use regression models to assess spatial variation of outdoor air pollution

    National Research Council Canada - National Science Library

    Hoek, Gerard; Beelen, Rob; de Hoogh, Kees; Vienneau, Danielle; Gulliver, John; Fischer, Paul; Briggs, David

    2008-01-01

    .... Current approaches for assessing intra-urban air pollution contrasts include the use of exposure indicator variables, interpolation methods, dispersion models and land-use regression (LUR) models...

  15. Semiparametric nonlinear quantile regression model for financial returns

    Czech Academy of Sciences Publication Activity Database

    Avdulaj, Krenar; Baruník, Jozef

    2017-01-01

    Roč. 21, č. 1 (2017), s. 81-97 ISSN 1081-1826 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : copula quantile regression * realized volatility * value-at-risk Subject RIV: AH - Economics Impact factor: 0.649, year: 2016 http:// library .utia.cas.cz/separaty/2017/E/avdulaj-0472346.pdf

  16. Comparison of IRT Likelihood Ratio Test and Logistic Regression DIF Detection Procedures

    Science.gov (United States)

    Atar, Burcu; Kamata, Akihito

    2011-01-01

    The Type I error rates and the power of IRT likelihood ratio test and cumulative logit ordinal logistic regression procedures in detecting differential item functioning (DIF) for polytomously scored items were investigated in this Monte Carlo simulation study. For this purpose, 54 simulation conditions (combinations of 3 sample sizes, 2 sample…

  17. Application of range-test in multiple linear regression analysis in ...

    African Journals Online (AJOL)

    Application of range-test in multiple linear regression analysis in the presence of outliers is studied in this paper. First, the plot of the explanatory variables (i.e. Administration, Social/Commercial, Economic services and Transfer) on the dependent variable (i.e. GDP) was done to identify the statistical trend over the years.

  18. An Explanation of the Effectiveness of Latent Semantic Indexing by Means of a Bayesian Regression Model.

    Science.gov (United States)

    Story, Roger E.

    1996-01-01

    Discussion of the use of Latent Semantic Indexing to determine relevancy in information retrieval focuses on statistical regression and Bayesian methods. Topics include keyword searching; a multiple regression model; how the regression model can aid search methods; and limitations of this approach, including complexity, linearity, and…

  19. Use of multiple linear regression and logistic regression models to investigate changes in birthweight for term singleton infants in Scotland.

    Science.gov (United States)

    Bonellie, Sandra R

    2012-10-01

    To illustrate the use of regression and logistic regression models to investigate changes over time in size of babies particularly in relation to social deprivation, age of the mother and smoking. Mean birthweight has been found to be increasing in many countries in recent years, but there are still a group of babies who are born with low birthweights. Population-based retrospective cohort study. Multiple linear regression and logistic regression models are used to analyse data on term 'singleton births' from Scottish hospitals between 1994-2003. Mothers who smoke are shown to give birth to lighter babies on average, a difference of approximately 0.57 Standard deviations lower (95% confidence interval. 0.55-0.58) when adjusted for sex and parity. These mothers are also more likely to have babies that are low birthweight (odds ratio 3.46, 95% confidence interval 3.30-3.63) compared with non-smokers. Low birthweight is 30% more likely where the mother lives in the most deprived areas compared with the least deprived, (odds ratio 1.30, 95% confidence interval 1.21-1.40). Smoking during pregnancy is shown to have a detrimental effect on the size of infants at birth. This effect explains some, though not all, of the observed socioeconomic birthweight. It also explains much of the observed birthweight differences by the age of the mother.   Identifying mothers at greater risk of having a low birthweight baby as important implications for the care and advice this group receives. © 2012 Blackwell Publishing Ltd.

  20. Loglinear Rasch model tests

    NARCIS (Netherlands)

    Kelderman, Hendrikus

    1984-01-01

    Existing statistical tests for the fit of the Rasch model have been criticized, because they are only sensitive to specific violations of its assumptions. Contingency table methods using loglinear models have been used to test various psychometric models. In this paper, the assumptions of the Rasch

  1. Heterogeneous Breast Phantom Development for Microwave Imaging Using Regression Models

    OpenAIRE

    Camerin Hahn; Sima Noghanian

    2012-01-01

    As new algorithms for microwave imaging emerge, it is important to have standard accurate benchmarking tests. Currently, most researchers use homogeneous phantoms for testing new algorithms. These simple structures lack the heterogeneity of the dielectric properties of human tissue and are inadequate for testing these algorithms for medical imaging. To adequately test breast microwave imaging algorithms, the phantom has to resemble different breast tissues physically and in terms of dielectri...

  2. Robust colour calibration of an imaging system using a colour space transform and advanced regression modelling.

    Science.gov (United States)

    Jackman, Patrick; Sun, Da-Wen; Elmasry, Gamal

    2012-08-01

    A new algorithm for the conversion of device dependent RGB colour data into device independent L*a*b* colour data without introducing noticeable error has been developed. By combining a linear colour space transform and advanced multiple regression methodologies it was possible to predict L*a*b* colour data with less than 2.2 colour units of error (CIE 1976). By transforming the red, green and blue colour components into new variables that better reflect the structure of the L*a*b* colour space, a low colour calibration error was immediately achieved (ΔE(CAL) = 14.1). Application of a range of regression models on the data further reduced the colour calibration error substantially (multilinear regression ΔE(CAL) = 5.4; response surface ΔE(CAL) = 2.9; PLSR ΔE(CAL) = 2.6; LASSO regression ΔE(CAL) = 2.1). Only the PLSR models deteriorated substantially under cross validation. The algorithm is adaptable and can be easily recalibrated to any working computer vision system. The algorithm was tested on a typical working laboratory computer vision system and delivered only a very marginal loss of colour information ΔE(CAL) = 2.35. Colour features derived on this system were able to safely discriminate between three classes of ham with 100% correct classification whereas colour features measured on a conventional colourimeter were not. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Genetic Algorithm Based Outlier Detection Using Bayesian Information Criterion in Multiple Regression Models Having Multicollinearity Problems

    OpenAIRE

    ALMA, Özlem GÜRÜNLÜ; Kurt, Serdar; Aybars UĞUR

    2010-01-01

    Multiple linear regression models are widely used applied statistical techniques and they are most useful devices for extracting and understanding the essential features of datasets. However, in multiple linear regression models problems arise when a serious outlier observation or multicollinearity present in the data. In regression however, the situation is somewhat more complex in the sense that some outlying points will have more influence on the regression than others. An important proble...

  4. The research of PM2.5 concentrations model based on regression calculation model

    Science.gov (United States)

    Li, Junmin; Wang, Luping

    2017-01-01

    In this paper, we mainly use the urban air quality monitoring data as the study data, the relationship between PM2.5 concentrations and several major air pollutant concentrations, meteorological elements in the same period are analyzed respectively. Through the analysis, we find that there is a significant correlation characteristic between the concentrations of PM2.5 and the concentrations of PM10, SO2, NO2, O3, CO, temperature and humidity. So, we take these factors as the variables; make a multiple linear regression analysis about PM2.5 concentrations, set up the urban PM2.5 concentrations regression calculation model. Through the estimation results of the model. In comparisons with the observed results, two results are basically identical, which shows that the regression model has a good fitting effect and use value.

  5. A generalized exponential time series regression model for electricity prices

    DEFF Research Database (Denmark)

    Haldrup, Niels; Knapik, Oskar; Proietti, Tomasso

    We consider the issue of modeling and forecasting daily electricity spot prices on the Nord Pool Elspot power market. We propose a method that can handle seasonal and non-seasonal persistence by modelling the price series as a generalized exponential process. As the presence of spikes can distort...... on the estimated model, the best linear predictor is constructed. Our modeling approach provides good fit within sample and outperforms competing benchmark predictors in terms of forecasting accuracy. We also find that building separate models for each hour of the day and averaging the forecasts is a better...... strategy than forecasting the daily average directly....

  6. Forecast Model of Urban Stagnant Water Based on Logistic Regression

    Directory of Open Access Journals (Sweden)

    Liu Pan

    2017-01-01

    Full Text Available With the development of information technology, the construction of water resource system has been gradually carried out. In the background of big data, the work of water information needs to carry out the process of quantitative to qualitative change. Analyzing the correlation of data and exploring the deep value of data which are the key of water information’s research. On the basis of the research on the water big data and the traditional data warehouse architecture, we try to find out the connection of different data source. According to the temporal and spatial correlation of stagnant water and rainfall, we use spatial interpolation to integrate data of stagnant water and rainfall which are from different data source and different sensors, then use logistic regression to find out the relationship between them.

  7. Capacitance Regression Modelling Analysis on Latex from Selected Rubber Tree Clones

    Science.gov (United States)

    Rosli, A. D.; Hashim, H.; Khairuzzaman, N. A.; Mohd Sampian, A. F.; Baharudin, R.; Abdullah, N. E.; Sulaiman, M. S.; Kamaru'zzaman, M.

    2015-11-01

    This paper investigates the capacitance regression modelling performance of latex for various rubber tree clones, namely clone 2002, 2008, 2014 and 3001. Conventionally, the rubber tree clones identification are based on observation towards tree features such as shape of leaf, trunk, branching habit and pattern of seeds texture. The former method requires expert persons and very time-consuming. Currently, there is no sensing device based on electrical properties that can be employed to measure different clones from latex samples. Hence, with a hypothesis that the dielectric constant of each clone varies, this paper discusses the development of a capacitance sensor via Capacitance Comparison Bridge (known as capacitance sensor) to measure an output voltage of different latex samples. The proposed sensor is initially tested with 30ml of latex sample prior to gradually addition of dilution water. The output voltage and capacitance obtained from the test are recorded and analyzed using Simple Linear Regression (SLR) model. This work outcome infers that latex clone of 2002 has produced the highest and reliable linear regression line with determination coefficient of 91.24%. In addition, the study also found that the capacitive elements in latex samples deteriorate if it is diluted with higher volume of water.

  8. Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media

    Science.gov (United States)

    Cooley, R.L.; Christensen, S.

    2006-01-01

    Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is

  9. Evaluation of graphical diagnostics for assessing goodness of fit of logistic regression models.

    Science.gov (United States)

    Pavan Kumar, Venkata V; Duffull, Stephen B

    2011-04-01

    The aim of the current work was to evaluate graphical diagnostics for assessment of the fit of logistic regression models. Assessment of goodness of fit of a model to the data set is essential to ensure the model provides an acceptable description of the binary variables seen. For logistic regression the most common diagnostic used for this purpose is binning the data and comparing the empirical probability of the occurrence of a dependent variable with the model predicted probability against the mean covariate value in the bin. Although intuitively appealing this method, which we term simple binning, may not have consistent properties for diagnosing model problems. In this report we describe and evaluate two different diagnostic procedures, random binning and simplified Bayes marginal model plots. These procedures were assessed via simulation under three different designs. Design 1: studies which were balanced on binary variables and a continuous covariate. Design 2: studies that were balanced on binary variables but unbalanced on the continuous covariate. Design 3: studies that were unbalanced on both the binary variables and the covariate. Each simulated study consisted of 500 individuals. Thirty studies were simulated. The covariate of interest was dose which could range from 0 to 20 units. The data were simulated with the dose being related to the outcome according to an E (max) model on the logit scale. A logit E (max) model (correct model) and a logit linear model (wrong model) were fitted to all data sets. The performance of the above diagnostics, in addition to simple binning, was compared. For all designs the proposed diagnostics performed at least as well and in many instances better than simple binning. In case of design 1 random binning and simple binning are identical. In the case of designs 2 and 3 random binning and simplified Bayes marginal model plots were superior in assessing the model fit when compared to simple binning. For the examples tested

  10. Combined D-optimal design and generalized regression neural network for modeling of plasma etching rate

    Directory of Open Access Journals (Sweden)

    You Hailong

    2014-01-01

    Full Text Available Plasma etching process plays a critical role in semiconductor manufacturing. Because physical and chemical mechanisms involved in plasma etching are extremely complicated, models supporting process control are difficult to construct. This paper uses a 35-run D-optimal design to efficiently collect data under well planned conditions for important controllable variables such as power, pressure, electrode gap and gas flows of Cl2 and He and the response, etching rate, for building an empirical underlying model. Since the relationship between the control and response variables could be highly nonlinear, a generalized regression neural network is used to select important model variables and their combination effects and to fit the model. Compared with the response surface methodology, the proposed method has better prediction performance in training and testing samples. A success application of the model to control the plasma etching process demonstrates the effectiveness of the methods.

  11. Bias-correction of regression models: a case study on hERG inhibition.

    Science.gov (United States)

    Hansen, Katja; Rathke, Fabian; Schroeter, Timon; Rast, Georg; Fox, Thomas; Kriegl, Jan M; Mika, Sebastian

    2009-06-01

    In the present work we develop a predictive QSAR model for the blockade of the hERG channel. Additionally, this specific end point is used as a test scenario to develop and evaluate several techniques for fusing predictions from multiple regression models. hERG inhibition models which are presented here are based on a combined data set of roughly 550 proprietary and 110 public domain compounds. Models are built using various statistical learning techniques and different sets of molecular descriptors. Single Support Vector Regression, Gaussian Process, or Random Forest models achieve root mean-squared errors of roughly 0.6 log units as determined from leave-group-out cross-validation. An analysis of the evaluation strategy on the performance estimates shows that standard leave-group-out cross-validation yields overly optimistic results. As an alternative, a clustered cross-validation scheme is introduced to obtain a more realistic estimate of the model performance. The evaluation of several techniques to combine multiple prediction models shows that the root mean squared error as determined from clustered cross-validation can be reduced from 0.73 +/- 0.01 to 0.57 +/- 0.01 using a local bias correction strategy.

  12. Statistical power to detect violation of the proportional hazards assumption when using the Cox regression model.

    Science.gov (United States)

    Austin, Peter C

    2018-01-01

    The use of the Cox proportional hazards regression model is widespread. A key assumption of the model is that of proportional hazards. Analysts frequently test the validity of this assumption using statistical significance testing. However, the statistical power of such assessments is frequently unknown. We used Monte Carlo simulations to estimate the statistical power of two different methods for detecting violations of this assumption. When the covariate was binary, we found that a model-based method had greater power than a method based on cumulative sums of martingale residuals. Furthermore, the parametric nature of the distribution of event times had an impact on power when the covariate was binary. Statistical power to detect a strong violation of the proportional hazards assumption was low to moderate even when the number of observed events was high. In many data sets, power to detect a violation of this assumption is likely to be low to modest.

  13. Predicting recycling behaviour: Comparison of a linear regression model and a fuzzy logic model.

    Science.gov (United States)

    Vesely, Stepan; Klöckner, Christian A; Dohnal, Mirko

    2016-03-01

    In this paper we demonstrate that fuzzy logic can provide a better tool for predicting recycling behaviour than the customarily used linear regression. To show this, we take a set of empirical data on recycling behaviour (N=664), which we randomly divide into two halves. The first half is used to estimate a linear regression model of recycling behaviour, and to develop a fuzzy logic model of recycling behaviour. As the first comparison, the fit of both models to the data included in estimation of the models (N=332) is evaluated. As the second comparison, predictive accuracy of both models for "new" cases (hold-out data not included in building the models, N=332) is assessed. In both cases, the fuzzy logic model significantly outperforms the regression model in terms of fit. To conclude, when accurate predictions of recycling and possibly other environmental behaviours are needed, fuzzy logic modelling seems to be a promising technique. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Misspecified poisson regression models for large-scale registry data

    DEFF Research Database (Denmark)

    Grøn, Randi; Gerds, Thomas A.; Andersen, Per K.

    2016-01-01

    working models that are then likely misspecified. To support and improve conclusions drawn from such models, we discuss methods for sensitivity analysis, for estimation of average exposure effects using aggregated data, and a semi-parametric bootstrap method to obtain robust standard errors. The methods...

  15. Covariance Functions and Random Regression Models in the ...

    African Journals Online (AJOL)

    ARC-IRENE

    many, highly correlated measures (Meyer, 1998a). Several approaches have been proposed to deal with such data, from simplest repeatability models (SRM) to complex multivariate models (MTM). The SRM considers different measurements at different stages (ages) as a realization of the same genetic trait with constant.

  16. Sperm Retrieval in Patients with Klinefelter Syndrome: A Skewed Regression Model Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Chehrazi

    2017-03-01

    Full Text Available Background The most common chromosomal abnormality due to non-obstructive azoospermia (NOA is Klinefelter syndrome (KS which occurs in 1-1.72 out of 500-1000 male infants. The probability of retrieving sperm as the outcome could be asymmetrically different between patients with and without KS, therefore logistic regression analysis is not a well-qualified test for this type of data. This study has been designed to evaluate skewed regression model analysis for data collected from microsurgical testicular sperm extraction (micro-TESE among azoospermic patients with and without non-mosaic KS syndrome. Materials and Methods This cohort study compared the micro-TESE outcome between 134 men with classic KS and 537 men with NOA and normal karyotype who were referred to Royan Institute between 2009 and 2011. In addition to our main outcome, which was sperm retrieval, we also used logistic and skewed regression analyses to compare the following demographic and hormonal factors: age, level of follicle stimulating hormone (FSH, luteinizing hormone (LH, and testosterone between the two groups. Results A comparison of the micro-TESE between the KS and control groups showed a success rate of 28.4% (38/134 for the KS group and 22.2% (119/537 for the control group. In the KS group, a significantly difference (P<0.001 existed between testosterone levels for the successful sperm retrieval group (3.4 ± 0.48 mg/mL compared to the unsuccessful sperm retrieval group (2.33 ± 0.23 mg/mL. The index for quasi Akaike information criterion (QAIC had a goodness of fit of 74 for the skewed model which was lower than logistic regression (QAIC=85. Conclusion According to the results, skewed regression is more efficient in estimating sperm retrieval success when the data from patients with KS are analyzed. This finding should be investigated by conducting additional studies with different data structures.

  17. GIS-Based Analytical Tools for Transport Planning: Spatial Regression Models for Transportation Demand Forecast

    Directory of Open Access Journals (Sweden)

    Simone Becker Lopes

    2014-04-01

    Full Text Available Considering the importance of spatial issues in transport planning, the main objective of this study was to analyze the results obtained from different approaches of spatial regression models. In the case of spatial autocorrelation, spatial dependence patterns should be incorporated in the models, since that dependence may affect the predictive power of these models. The results obtained with the spatial regression models were also compared with the results of a multiple linear regression model that is typically used in trips generation estimations. The findings support the hypothesis that the inclusion of spatial effects in regression models is important, since the best results were obtained with alternative models (spatial regression models or the ones with spatial variables included. This was observed in a case study carried out in the city of Porto Alegre, in the state of Rio Grande do Sul, Brazil, in the stages of specification and calibration of the models, with two distinct datasets.

  18. Logistic Regression Modeling of Diminishing Manufacturing Sources for Integrated Circuits

    National Research Council Canada - National Science Library

    Gravier, Michael

    1999-01-01

    .... This thesis draws on available data from the electronics integrated circuit industry to attempt to assess whether statistical modeling offers a viable method for predicting the presence of DMSMS...

  19. Regression Models Using Fully Discharged Voltage and Internal Resistance for State of Health Estimation of Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Kuo-Hsin Tseng

    2015-04-01

    Full Text Available Accurate estimation of lithium-ion battery life is essential to assure the reliable operation of the energy supply system. This study develops regression models for battery prognostics using statistical methods. The resultant regression models can not only monitor a battery’s degradation trend but also accurately predict its remaining useful life (RUL at an early stage. Three sets of test data are employed in the training stage for regression models. Another set of data is then applied to the regression models for validation. The fully discharged voltage (Vdis and internal resistance (R are adopted as aging parameters in two different mathematical models, with polynomial and exponential functions. A particle swarm optimization (PSO process is applied to search for optimal coefficients of the regression models. Simulations indicate that the regression models using Vdis and R as aging parameters can build a real state of health profile more accurately than those using cycle number, N. The Monte Carlo method is further employed to make the models adaptive. The subsequent results, however, show that this results in an insignificant improvement of the battery life prediction. A reasonable speculation is that the PSO process already yields the major model coefficients.

  20. A note on the maximum likelihood estimator in the gamma regression model

    Directory of Open Access Journals (Sweden)

    Jerzy P. Rydlewski

    2009-01-01

    Full Text Available This paper considers a nonlinear regression model, in which the dependent variable has the gamma distribution. A model is considered in which the shape parameter of the random variable is the sum of continuous and algebraically independent functions. The paper proves that there is exactly one maximum likelihood estimator for the gamma regression model.

  1. Genetic parameters for various random regression models to describe the weight data of pigs

    NARCIS (Netherlands)

    Huisman, A.E.; Veerkamp, R.F.; Arendonk, van J.A.M.

    2002-01-01

    Various random regression models have been advocated for the fitting of covariance structures. It was suggested that a spline model would fit better to weight data than a random regression model that utilizes orthogonal polynomials. The objective of this study was to investigate which kind of random

  2. Genetic parameters for different random regression models to describe weight data of pigs

    NARCIS (Netherlands)

    Huisman, A.E.; Veerkamp, R.F.; Arendonk, van J.A.M.

    2001-01-01

    Various random regression models have been advocated for the fitting of covariance structures. It was suggested that a spline model would fit better to weight data than a random regression model that utilizes orthogonal polynomials. The objective of this study was to investigate which kind of random

  3. Spatial Double Generalized Beta Regression Models: Extensions and Application to Study Quality of Education in Colombia

    Science.gov (United States)

    Cepeda-Cuervo, Edilberto; Núñez-Antón, Vicente

    2013-01-01

    In this article, a proposed Bayesian extension of the generalized beta spatial regression models is applied to the analysis of the quality of education in Colombia. We briefly revise the beta distribution and describe the joint modeling approach for the mean and dispersion parameters in the spatial regression models' setting. Finally, we motivate…

  4. A computational approach to compare regression modelling strategies in prediction research

    NARCIS (Netherlands)

    Pajouheshnia, R.; Pestman, W.R.; Teerenstra, S.; Groenwold, R.H.

    2016-01-01

    BACKGROUND: It is often unclear which approach to fit, assess and adjust a model will yield the most accurate prediction model. We present an extension of an approach for comparing modelling strategies in linear regression to the setting of logistic regression and demonstrate its application in

  5. The assessment of groundwater nitrate contamination by using logistic regression model in a representative rural area

    Science.gov (United States)

    Ko, K.; Cheong, B.; Koh, D.

    2010-12-01

    Groundwater has been used a main source to provide a drinking water in a rural area with no regional potable water supply system in Korea. More than 50 percent of rural area residents depend on groundwater as drinking water. Thus, research on predicting groundwater pollution for the sustainable groundwater usage and protection from potential pollutants was demanded. This study was carried out to know the vulnerability of groundwater nitrate contamination reflecting the effect of land use in Nonsan city of a representative rural area of South Korea. About 47% of the study area is occupied by cultivated land with high vulnerable area to groundwater nitrate contamination because it has higher nitrogen fertilizer input of 62.3 tons/km2 than that of country’s average of 44.0 tons/km2. The two vulnerability assessment methods, logistic regression and DRASTIC model, were tested and compared to know more suitable techniques for the assessment of groundwater nitrate contamination in Nonsan area. The groundwater quality data were acquired from the collection of analyses of 111 samples of small potable supply system in the study area. The analyzed values of nitrate were classified by land use such as resident, upland, paddy, and field area. One dependent and two independent variables were addressed for logistic regression analysis. One dependent variable was a binary categorical data with 0 or 1 whether or not nitrate exceeding thresholds of 1 through 10 mg/L. The independent variables were one continuous data of slope indicating topography and multiple categorical data of land use which are classified by resident, upland, paddy, and field area. The results of the Levene’s test and T-test for slope and land use were showed the significant difference of mean values among groups in 95% confidence level. From the logistic regression, we could know the negative correlation between slope and nitrate which was caused by the decrease of contaminants inputs into groundwater with

  6. Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning

    Directory of Open Access Journals (Sweden)

    Muammer Nalbant

    2007-06-01

    Full Text Available Surface roughness, an indicator of surface quality, is one of the most specified customer requirements in machining of parts. In this study, the experimental results corresponding to the effects of different insert nose radii of cutting tools (0.4, 0.8, 1.2 mm, various depth of cuts (0.75, 1.25, 1.75, 2.25, 2.75 mm, and different feedrates (100, 130, 160, 190, 220 mm/min on the surface quality of the AISI 1030 steel workpieces have been investigated using multiple regression analysis and artificial neural networks (ANN. Regression analysis and neural network-based models used for the prediction of surface roughness were compared for various cutting conditions in turning. The data set obtained from the measurements of surface roughness was employed to and tests the neural network model. The trained neural network models were used in predicting surface roughness for cutting conditions. A comparison of neural network models with regression model was carried out. Coefficient of determination was 0.98 in multiple regression model. The scaled conjugate gradient (SCG model with 9 neurons in hidden layer has produced absolute fraction of variance (R2 values of 0.999 for the training data, and 0.998 for the test data. Predictive neural network model showed better predictions than various regression models for surface roughness. However, both methods can be used for the prediction of surface roughness in turning.

  7. Data to support "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations & Biological Condition"

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets are included here to support the manuscript "Boosted Regression Tree Models to Explain Watershed Nutrient Concentrations and Biological Condition". This...

  8. Flexible hazard regression modeling for medical cost data.

    Science.gov (United States)

    Jain, Arvind K; Strawderman, Robert L

    2002-03-01

    The modeling of lifetime (i.e. cumulative) medical cost data in the presence of censored follow-up is complicated by induced informative censoring, rendering standard survival analysis tools invalid. With few exceptions, recently proposed nonparametric estimators for such data do not extend easily to handle covariate information. We propose to model the hazard function for lifetime cost endpoints using an adaptation of the HARE methodology (Kooperberg, Stone, and Truong, Journal of the American Statistical Association, 1995, 90, 78-94). Linear splines and their tensor products are used to adaptively build a model that incorporates covariates and covariate-by-cost interactions without restrictive parametric assumptions. The informative censoring problem is handled using inverse probability of censoring weighted estimating equations. The proposed method is illustrated using simulation and also with data on the cost of dialysis for patients with end-stage renal disease.

  9. Multiple Linear Regression Model Based on Neural Network and Its Application in the MBR Simulation

    Directory of Open Access Journals (Sweden)

    Chunqing Li

    2012-01-01

    Full Text Available The computer simulation of the membrane bioreactor MBR has become the research focus of the MBR simulation. In order to compensate for the defects, for example, long test period, high cost, invisible equipment seal, and so forth, on the basis of conducting in-depth study of the mathematical model of the MBR, combining with neural network theory, this paper proposed a three-dimensional simulation system for MBR wastewater treatment, with fast speed, high efficiency, and good visualization. The system is researched and developed with the hybrid programming of VC++ programming language and OpenGL, with a multifactor linear regression model of affecting MBR membrane fluxes based on neural network, applying modeling method of integer instead of float and quad tree recursion. The experiments show that the three-dimensional simulation system, using the above models and methods, has the inspiration and reference for the future research and application of the MBR simulation technology.

  10. Random regression models for milk, fat and protein in Colombian Buffaloes

    Directory of Open Access Journals (Sweden)

    Naudin Hurtado-Lugo

    2015-01-01

    Full Text Available Objective. Covariance functions for additive genetic and permanent environmental effects and, subsequently, genetic parameters for test-day milk (MY, fat (FY protein (PY yields and mozzarella cheese (MP in buffaloes from Colombia were estimate by using Random regression models (RRM with Legendre polynomials (LP. Materials and Methods. Test-day records of MY, FY, PY and MP from 1884 first lactations of buffalo cows from 228 sires were analyzed. The animals belonged to 14 herds in Colombia between 1995 and 2011. Ten monthly classes of days in milk were considered for test-day yields. The contemporary groups were defined as herd-year-month of milk test-day. Random additive genetic, permanent environmental and residual effects were included in the model. Fixed effects included the contemporary group, linear and quadratic effects of age at calving, and the average lactation curve of the population, which was modeled by third-order LP. Random additive genetic and permanent environmental effects were estimated by RRM using third- to- sixth-order LP. Residual variances were modeled using homogeneous and heterogeneous structures. Results. The heritabilities for MY, FY, PY and MP ranged from 0.38 to 0.05, 0.67 to 0.11, 0.50 to 0.07 and 0.50 to 0.11, respectively. Conclusions. In general, the RRM are adequate to describe the genetic variation in test-day of MY, FY, PY and MP in Colombian buffaloes.

  11. Application of Random-Effects Probit Regression Models.

    Science.gov (United States)

    Gibbons, Robert D.; Hedeker, Donald

    1994-01-01

    Develops random-effects probit model for case in which outcome of interest is series of correlated binary responses, obtained as product of longitudinal response process where individual is repeatedly classified on binary outcome variable or in multilevel or clustered problems in which individuals within groups are considered to share…

  12. Multiple Linear Regression Model for Estimating the Price of a ...

    African Journals Online (AJOL)

    In the modeling, the Ordinary Least Squares (OLS) normality assumption which could introduce errors in the statistical analyses was dealt with by log transformation of the data, ensuring the data is normally distributed and there is no correlation between them. Minimisation of Sum of Squares Error method was used to ...

  13. Short-term Forecasting of the Prevalence of Trachoma: Expert Opinion, Statistical Regression, versus Transmission Models

    Science.gov (United States)

    Liu, Fengchen; Porco, Travis C.; Amza, Abdou; Kadri, Boubacar; Nassirou, Baido; West, Sheila K.; Bailey, Robin L.; Keenan, Jeremy D.; Solomon, Anthony W.; Emerson, Paul M.; Gambhir, Manoj; Lietman, Thomas M.

    2015-01-01

    Background Trachoma programs rely on guidelines made in large part using expert opinion of what will happen with and without intervention. Large community-randomized trials offer an opportunity to actually compare forecasting methods in a masked fashion. Methods The Program for the Rapid Elimination of Trachoma trials estimated longitudinal prevalence of ocular chlamydial infection from 24 communities treated annually with mass azithromycin. Given antibiotic coverage and biannual assessments from baseline through 30 months, forecasts of the prevalence of infection in each of the 24 communities at 36 months were made by three methods: the sum of 15 experts’ opinion, statistical regression of the square-root-transformed prevalence, and a stochastic hidden Markov model of infection transmission (Susceptible-Infectious-Susceptible, or SIS model). All forecasters were masked to the 36-month results and to the other forecasts. Forecasts of the 24 communities were scored by the likelihood of the observed results and compared using Wilcoxon’s signed-rank statistic. Findings Regression and SIS hidden Markov models had significantly better likelihood than community expert opinion (p = 0.004 and p = 0.01, respectively). All forecasts scored better when perturbed to decrease Fisher’s information. Each individual expert’s forecast was poorer than the sum of experts. Interpretation Regression and SIS models performed significantly better than expert opinion, although all forecasts were overly confident. Further model refinements may score better, although would need to be tested and compared in new masked studies. Construction of guidelines that rely on forecasting future prevalence could consider use of mathematical and statistical models. PMID:26302380

  14. Short-term Forecasting of the Prevalence of Trachoma: Expert Opinion, Statistical Regression, versus Transmission Models.

    Science.gov (United States)

    Liu, Fengchen; Porco, Travis C; Amza, Abdou; Kadri, Boubacar; Nassirou, Baido; West, Sheila K; Bailey, Robin L; Keenan, Jeremy D; Solomon, Anthony W; Emerson, Paul M; Gambhir, Manoj; Lietman, Thomas M

    2015-08-01

    Trachoma programs rely on guidelines made in large part using expert opinion of what will happen with and without intervention. Large community-randomized trials offer an opportunity to actually compare forecasting methods in a masked fashion. The Program for the Rapid Elimination of Trachoma trials estimated longitudinal prevalence of ocular chlamydial infection from 24 communities treated annually with mass azithromycin. Given antibiotic coverage and biannual assessments from baseline through 30 months, forecasts of the prevalence of infection in each of the 24 communities at 36 months were made by three methods: the sum of 15 experts' opinion, statistical regression of the square-root-transformed prevalence, and a stochastic hidden Markov model of infection transmission (Susceptible-Infectious-Susceptible, or SIS model). All forecasters were masked to the 36-month results and to the other forecasts. Forecasts of the 24 communities were scored by the likelihood of the observed results and compared using Wilcoxon's signed-rank statistic. Regression and SIS hidden Markov models had significantly better likelihood than community expert opinion (p = 0.004 and p = 0.01, respectively). All forecasts scored better when perturbed to decrease Fisher's information. Each individual expert's forecast was poorer than the sum of experts. Regression and SIS models performed significantly better than expert opinion, although all forecasts were overly confident. Further model refinements may score better, although would need to be tested and compared in new masked studies. Construction of guidelines that rely on forecasting future prevalence could consider use of mathematical and statistical models. Clinicaltrials.gov NCT00792922.

  15. Acoustic Model Testing Chronology

    Science.gov (United States)

    Nesman, Tom

    2017-01-01

    Scale models have been used for decades to replicate liftoff environments and in particular acoustics for launch vehicles. It is assumed, and analyses supports, that the key characteristics of noise generation, propagation, and measurement can be scaled. Over time significant insight was gained not just towards understanding the effects of thruster details, pad geometry, and sound mitigation but also to the physical processes involved. An overview of a selected set of scale model tests are compiled here to illustrate the variety of configurations that have been tested and the fundamental knowledge gained. The selected scale model tests are presented chronologically.

  16. Graphical diagnostics to check model misspecification for the proportional odds regression model.

    Science.gov (United States)

    Liu, Ivy; Mukherjee, Bhramar; Suesse, Thomas; Sparrow, David; Park, Sung Kyun

    2009-02-01

    The cumulative logit or the proportional odds regression model is commonly used to study covariate effects on ordinal responses. This paper provides some graphical and numerical methods for checking the adequacy of the proportional odds regression model. The methods focus on evaluating functional misspecification for specific covariate effects, but misspecification of the link function can also be dealt with under the same framework. For the logistic regression model with binary responses, Arbogast and Lin (Statist. Med. 2005; 24:229-247) developed similar graphical and numerical methods for assessing the adequacy of the model using the cumulative sums of residuals. The paper generalizes their methods to ordinal responses and illustrates them using an example from the VA Normative Aging Study. Simulation studies comparing the performance of the different diagnostic methods indicate that some of the graphical methods are more powerful in detecting model misspecification than the Hosmer-Lemeshow-type goodness-of-fit statistics for the class of models studied. Copyright (c) 2008 John Wiley & Sons, Ltd.

  17. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    Directory of Open Access Journals (Sweden)

    Chuanglin Fang

    2015-11-01

    Full Text Available Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI values at the city level, and employed Ordinary Least Squares (OLS, Spatial Lag Model (SAR, and Geographically Weighted Regression (GWR to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

  18. Testing and Estimating Shape-Constrained Nonparametric Density and Regression in the Presence of Measurement Error

    KAUST Repository

    Carroll, Raymond J.

    2011-03-01

    In many applications we can expect that, or are interested to know if, a density function or a regression curve satisfies some specific shape constraints. For example, when the explanatory variable, X, represents the value taken by a treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a monotone function of X. Indeed, if this regression mean is not monotone (in the appropriate direction) then the medical or commercial value of the treatment is likely to be significantly curtailed, at least for values of X that lie beyond the point at which monotonicity fails. In the case of a density, common shape constraints include log-concavity and unimodality. If we can correctly guess the shape of a curve, then nonparametric estimators can be improved by taking this information into account. Addressing such problems requires a method for testing the hypothesis that the curve of interest satisfies a shape constraint, and, if the conclusion of the test is positive, a technique for estimating the curve subject to the constraint. Nonparametric methodology for solving these problems already exists, but only in cases where the covariates are observed precisely. However in many problems, data can only be observed with measurement errors, and the methods employed in the error-free case typically do not carry over to this error context. In this paper we develop a novel approach to hypothesis testing and function estimation under shape constraints, which is valid in the context of measurement errors. Our method is based on tilting an estimator of the density or the regression mean until it satisfies the shape constraint, and we take as our test statistic the distance through which it is tilted. Bootstrap methods are used to calibrate the test. The constrained curve estimators that we develop are also based on tilting, and in that context our work has points of contact with methodology in the error-free case.

  19. Direct modeling of regression effects for transition probabilities in the progressive illness-death model

    DEFF Research Database (Denmark)

    Azarang, Leyla; Scheike, Thomas; de Uña-Álvarez, Jacobo

    2017-01-01

    In this work, we present direct regression analysis for the transition probabilities in the possibly non-Markov progressive illness–death model. The method is based on binomial regression, where the response is the indicator of the occupancy for the given state along time. Randomly weighted score...... equations that are able to remove the bias due to censoring are introduced. By solving these equations, one can estimate the possibly time-varying regression coefficients, which have an immediate interpretation as covariate effects on the transition probabilities. The performance of the proposed estimator...... is investigated through simulations. We apply the method to data from the Registry of Systematic Lupus Erythematosus RELESSER, a multicenter registry created by the Spanish Society of Rheumatology. Specifically, we investigate the effect of age at Lupus diagnosis, sex, and ethnicity on the probability of damage...

  20. METAINTER: meta-analysis of multiple regression models in genome-wide association studies.

    Science.gov (United States)

    Vaitsiakhovich, Tatsiana; Drichel, Dmitriy; Herold, Christine; Lacour, André; Becker, Tim

    2015-01-15

    Meta-analysis of summary statistics is an essential approach to guarantee the success of genome-wide association studies (GWAS). Application of the fixed or random effects model to single-marker association tests is a standard practice. More complex methods of meta-analysis involving multiple parameters have not been used frequently, a gap that could be explained by the lack of a respective meta-analysis pipeline. Meta-analysis based on combining p-values can be applied to any association test. However, to be powerful, meta-analysis methods for high-dimensional models should incorporate additional information such as study-specific properties of parameter estimates, their effect directions, standard errors and covariance structure. We modified 'method for the synthesis of linear regression slopes' recently proposed in the educational sciences to the case of multiple logistic regression, and implemented it in a meta-analysis tool called METAINTER. The software handles models with an arbitrary number of parameters, and can directly be applied to analyze the results of single-SNP tests, global haplotype tests, tests for and under gene-gene or gene-environment interaction. Via simulations for two-single nucleotide polymorphisms (SNP) models we have shown that the proposed meta-analysis method has correct type I error rate. Moreover, power estimates come close to that of the joint analysis of the entire sample. We conducted a real data analysis of six GWAS of type 2 diabetes, available from dbGaP (http://www.ncbi.nlm.nih.gov/gap). For each study, a genome-wide interaction analysis of all SNP pairs was performed by logistic regression tests. The results were then meta-analyzed with METAINTER. The software is freely available and distributed under the conditions specified on http://metainter.meb.uni-bonn.de. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e

  1. Shaofu Zhuyu Decoction Regresses Endometriotic Lesions in a Rat Model

    Directory of Open Access Journals (Sweden)

    Guanghui Zhu

    2018-01-01

    Full Text Available The current therapies for endometriosis are restricted by various side effects and treatment outcome has been less than satisfactory. Shaofu Zhuyu Decoction (SZD, a classic traditional Chinese medicinal (TCM prescription for dysmenorrhea, has been widely used in clinical practice by TCM doctors to relieve symptoms of endometriosis. The present study aimed to investigate the effects of SZD on a rat model of endometriosis. Forty-eight female Sprague-Dawley rats with regular estrous cycles went through autotransplantation operation to establish endometriosis model. Then 38 rats with successful ectopic implants were randomized into two groups: vehicle- and SZD-treated groups. The latter were administered SZD through oral gavage for 4 weeks. By the end of the treatment period, the volume of the endometriotic lesions was measured, the histopathological properties of the ectopic endometrium were evaluated, and levels of proliferating cell nuclear antigen (PCNA, CD34, and hypoxia inducible factor- (HIF- 1α in the ectopic endometrium were detected with immunohistochemistry. Furthermore, apoptosis was assessed using the terminal deoxynucleotidyl transferase (TdT deoxyuridine 5′-triphosphate (dUTP nick-end labeling (TUNEL assay. In this study, SZD significantly reduced the size of ectopic lesions in rats with endometriosis, inhibited cell proliferation, increased cell apoptosis, and reduced microvessel density and HIF-1α expression. It suggested that SZD could be an effective therapy for the treatment and prevention of endometriosis recurrence.

  2. On weak exogeneity of the student's t and elliptical linear regression models

    OpenAIRE

    Jiro Hodoshima

    2004-01-01

    This paper studies weak exogeneity of conditioning variables for the inference of a subset of parameters of the conditional student's t and elliptical linear regression models considered by Spanos (1994). Weak exogeneity of the conditioning variables is shown to hold for the inference of regression parameters of the conditional student's t and elliptical linear regression models. A new definition of weak exogeneity is given which utilizes block-diagonality of the conditional information matri...

  3. Top-down induction of model trees with regression and splitting nodes.

    Science.gov (United States)

    Malerba, Donato; Esposito, Floriana; Ceci, Michelangelo; Appice, Annalisa

    2004-05-01

    Model trees are an extension of regression trees that associate leaves with multiple regression models. In this paper, a method for the data-driven construction of model trees is presented, namely, the Stepwise Model Tree Induction (SMOTI) method. Its main characteristic is the induction of trees with two types of nodes: regression nodes, which perform only straight-line regression, and splitting nodes, which partition the feature space. The multiple linear model associated with each leaf is then built stepwise by combining straight-line regressions reported along the path from the root to the leaf. In this way, internal regression nodes contribute to the definition of multiple models and have a "global" effect, while straight-line regressions at leaves have only "local" effects. Experimental results on artificially generated data sets show that SMOTI outperforms two model tree induction systems, M5' and RETIS, in accuracy. Results on benchmark data sets used for studies on both regression and model trees show that SMOTI performs better than RETIS in accuracy, while it is not possible to draw statistically significant conclusions on the comparison with M5'. Model trees induced by SMOTI are generally simple and easily interpretable and their analysis often reveals interesting patterns.

  4. Using the classical linear regression model in analysis of the dependences of conveyor belt life

    Directory of Open Access Journals (Sweden)

    Miriam Andrejiová

    2013-12-01

    Full Text Available The paper deals with the classical linear regression model of the dependence of conveyor belt life on some selected parameters: thickness of paint layer, width and length of the belt, conveyor speed and quantity of transported material. The first part of the article is about regression model design, point and interval estimation of parameters, verification of statistical significance of the model, and about the parameters of the proposed regression model. The second part of the article deals with identification of influential and extreme values that can have an impact on estimation of regression model parameters. The third part focuses on assumptions of the classical regression model, i.e. on verification of independence assumptions, normality and homoscedasticity of residuals.

  5. Water Quality Modeling in Reservoirs Using Multivariate Linear Regression and Two Neural Network Models

    Directory of Open Access Journals (Sweden)

    Wei-Bo Chen

    2015-01-01

    Full Text Available In this study, two artificial neural network models (i.e., a radial basis function neural network, RBFN, and an adaptive neurofuzzy inference system approach, ANFIS and a multilinear regression (MLR model were developed to simulate the DO, TP, Chl a, and SD in the Mingder Reservoir of central Taiwan. The input variables of the neural network and the MLR models were determined using linear regression. The performances were evaluated using the RBFN, ANFIS, and MLR models based on statistical errors, including the mean absolute error, the root mean square error, and the correlation coefficient, computed from the measured and the model-simulated DO, TP, Chl a, and SD values. The results indicate that the performance of the ANFIS model is superior to those of the MLR and RBFN models. The study results show that the neural network using the ANFIS model is suitable for simulating the water quality variables with reasonable accuracy, suggesting that the ANFIS model can be used as a valuable tool for reservoir management in Taiwan.

  6. Efficient inference of parsimonious phenomenological models of cellular dynamics using S-systems and alternating regression.

    Directory of Open Access Journals (Sweden)

    Bryan C Daniels

    Full Text Available The nonlinearity of dynamics in systems biology makes it hard to infer them from experimental data. Simple linear models are computationally efficient, but cannot incorporate these important nonlinearities. An adaptive method based on the S-system formalism, which is a sensible representation of nonlinear mass-action kinetics typically found in cellular dynamics, maintains the efficiency of linear regression. We combine this approach with adaptive model selection to obtain efficient and parsimonious representations of cellular dynamics. The approach is tested by inferring the dynamics of yeast glycolysis from simulated data. With little computing time, it produces dynamical models with high predictive power and with structural complexity adapted to the difficulty of the inference problem.

  7. 10 km running performance predicted by a multiple linear regression model with allometrically adjusted variables.

    Science.gov (United States)

    Abad, Cesar C C; Barros, Ronaldo V; Bertuzzi, Romulo; Gagliardi, João F L; Lima-Silva, Adriano E; Lambert, Mike I; Pires, Flavio O

    2016-06-01

    The aim of this study was to verify the power of VO 2max , peak treadmill running velocity (PTV), and running economy (RE), unadjusted or allometrically adjusted, in predicting 10 km running performance. Eighteen male endurance runners performed: 1) an incremental test to exhaustion to determine VO 2max and PTV; 2) a constant submaximal run at 12 km·h -1 on an outdoor track for RE determination; and 3) a 10 km running race. Unadjusted (VO 2max , PTV and RE) and adjusted variables (VO 2max 0.72 , PTV 0.72 and RE 0.60 ) were investigated through independent multiple regression models to predict 10 km running race time. There were no significant correlations between 10 km running time and either the adjusted or unadjusted VO 2max . Significant correlations (p 0.84 and power > 0.88. The allometrically adjusted predictive model was composed of PTV 0.72 and RE 0.60 and explained 83% of the variance in 10 km running time with a standard error of the estimate (SEE) of 1.5 min. The unadjusted model composed of a single PVT accounted for 72% of the variance in 10 km running time (SEE of 1.9 min). Both regression models provided powerful estimates of 10 km running time; however, the unadjusted PTV may provide an uncomplicated estimation.

  8. Artificial neural network and regression models for flow velocity at sediment incipient deposition

    Science.gov (United States)

    Safari, Mir-Jafar-Sadegh; Aksoy, Hafzullah; Mohammadi, Mirali

    2016-10-01

    A set of experiments for the determination of flow characteristics at sediment incipient deposition has been carried out in a trapezoidal cross-section channel. Using experimental data, a regression model is developed for computing velocity of flow in a trapezoidal cross-section channel at the incipient deposition condition and is presented together with already available regression models of rectangular, circular, and U-shape channels. A generalized regression model is also provided by combining the available data of any cross-section. For comparison of the models, a powerful tool, the artificial neural network (ANN) is used for modelling incipient deposition of sediment in rigid boundary channels. Three different ANN techniques, namely, the feed-forward back propagation (FFBP), generalized regression (GR), and radial basis function (RBF), are applied using six input variables; flow discharge, flow depth, channel bed slope, hydraulic radius, relative specific mass of sediment and median size of sediment particles; all taken from laboratory experiments. Hydrodynamic forces acting on sediment particles in the flow are considered in the regression models indirectly for deriving particle Froude number and relative particle size, both being dimensionless. The accuracy of the models is studied by the root mean square error (RMSE), the mean absolute percentage error (MAPE), the discrepancy ratio (Dr) and the concordance coefficient (CC). Evaluation of the models finds ANN models superior and some regression models with an acceptable performance. Therefore, it is concluded that appropriately constructed ANN and regression models can be developed and used for the rigid boundary channel design.

  9. Using regression models in design-based estimation of spatial means of soil properties

    NARCIS (Netherlands)

    Brus, D.J.

    2000-01-01

    The precision of design-based sampling strategies can be increased by using regression models at the estimation stage. A general regression estimator is given that can be used for a wide variety of models and any well-defined sampling design. It equals the estimator plus an adjustment term that

  10. Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Brus, D.J.; Roelsma, J.

    2010-01-01

    For Dutch sandy regions, linear regression models have been developed that predict nitrate concentrations in the upper groundwater on the basis of residual nitrate contents in the soil in autumn. The objective of our study was to validate these regression models for one particular sandy region

  11. Technology diffusion in hospitals : A log odds random effects regression model

    NARCIS (Netherlands)

    Blank, J.L.T.; Valdmanis, V.G.

    2013-01-01

    This study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to describe the

  12. Technology diffusion in hospitals: A log odds random effects regression model

    NARCIS (Netherlands)

    J.L.T. Blank (Jos); V.G. Valdmanis (Vivian G.)

    2015-01-01

    textabstractThis study identifies the factors that affect the diffusion of hospital innovations. We apply a log odds random effects regression model on hospital micro data. We introduce the concept of clustering innovations and the application of a log odds random effects regression model to

  13. A general equation to obtain multiple cut-off scores on a test from multinomial logistic regression.

    Science.gov (United States)

    Bersabé, Rosa; Rivas, Teresa

    2010-05-01

    The authors derive a general equation to compute multiple cut-offs on a total test score in order to classify individuals into more than two ordinal categories. The equation is derived from the multinomial logistic regression (MLR) model, which is an extension of the binary logistic regression (BLR) model to accommodate polytomous outcome variables. From this analytical procedure, cut-off scores are established at the test score (the predictor variable) at which an individual is as likely to be in category j as in category j+1 of an ordinal outcome variable. The application of the complete procedure is illustrated by an example with data from an actual study on eating disorders. In this example, two cut-off scores on the Eating Attitudes Test (EAT-26) scores are obtained in order to classify individuals into three ordinal categories: asymptomatic, symptomatic and eating disorder. Diagnoses were made from the responses to a self-report (Q-EDD) that operationalises DSM-IV criteria for eating disorders. Alternatives to the MLR model to set multiple cut-off scores are discussed.

  14. Verbal Selective Reminding Test (six-trial administration): Regression-based norms for a portuguese version.

    Science.gov (United States)

    Neves, Mariana Rigueiro; Sousa, Cláudia; Passos, Ana Margarida; Ferreira, Aristides I; Sá, Maria José

    2017-06-30

    The Verbal Selective Reminding Test (VSRT) is a widely used measure to evaluate verbal learning and memory associated with different neurological conditions. The goal of this study was to extend the use of the six-version trial of this test to the Portuguese population, through the production of adjusted normative data. The normative sample consists of 309 healthy participants aged between 20 and 70, with an educational level ranging from 4 to 23 years of formal. Gender, education, and age effects were explored. In addition, the reliability of the test was also analyzed and normative data produced. Gender, age, and education were significantly associated with VSRT performance. The test revealed excellent inter-rater reliability and good test-retest reliability. The normative data is presented as a regression-based formula to adjust test scores for gender, education and age. The correspondence between adjusted scores and percentile distribution was calculated. Since a test with appropriate norms is fundamental to an appropriate assessment of memory functioning, the normative data produced in this study improves the applicability of VRST for both clinical and research proposes in the Portuguese population. Further studies might also explore the adequacy of these norms for other Portuguese-speaking countries.

  15. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Directory of Open Access Journals (Sweden)

    Lawrence Rudner

    2016-06-01

    Full Text Available In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Naïve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.

  16. Accuracy of Bayes and Logistic Regression Subscale Probabilities for Educational and Certification Tests

    Directory of Open Access Journals (Sweden)

    Lawrence Rudner

    2016-07-01

    Full Text Available In the machine learning literature, it is commonly accepted as fact that as calibration sample sizes increase, Na ve Bayes classifiers initially outperform Logistic Regression classifiers in terms of classification accuracy. Applied to subtests from an on-line final examination and from a highly regarded certification examination, this study shows that the conclusion also applies to the probabilities estimated from short subtests of mental abilities and that small samples can yield excellent accuracy. The calculated Bayes probabilities can be used to provide meaningful examinee feedback regardless of whether the test was originally designed to be unidimensional.

  17. Linking Simple Economic Theory Models and the Cointegrated Vector AutoRegressive Model

    DEFF Research Database (Denmark)

    Møller, Niels Framroze

    , it is demonstrated how other controversial hypotheses such as Rational Expectations can be formulated directly as restrictions on the CVAR-parameters. A simple example of a "Neoclassical synthetic" AS-AD model is also formulated. Finally, the partial- general equilibrium distinction is related to the CVAR as well......This paper attempts to clarify the connection between simple economic theory models and the approach of the Cointegrated Vector-Auto-Regressive model (CVAR). By considering (stylized) examples of simple static equilibrium models, it is illustrated in detail, how the theoretical model and its....... Further fundamental extensions and advances to more sophisticated theory models, such as those related to dynamics and expectations (in the structural relations) are left for future papers...

  18. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  19. Evaluation of Regression and Neuro_Fuzzy Models in Estimating Saturated Hydraulic Conductivity

    Directory of Open Access Journals (Sweden)

    J. Behmanesh

    2015-06-01

    Full Text Available Study of soil hydraulic properties such as saturated and unsaturated hydraulic conductivity is required in the environmental investigations. Despite numerous research, measuring saturated hydraulic conductivity using by direct methods are still costly, time consuming and professional. Therefore estimating saturated hydraulic conductivity using rapid and low cost methods such as pedo-transfer functions with acceptable accuracy was developed. The purpose of this research was to compare and evaluate 11 pedo-transfer functions and Adaptive Neuro-Fuzzy Inference System (ANFIS to estimate saturated hydraulic conductivity of soil. In this direct, saturated hydraulic conductivity and physical properties in 40 points of Urmia were calculated. The soil excavated was used in the lab to determine its easily accessible parameters. The results showed that among existing models, Aimrun et al model had the best estimation for soil saturated hydraulic conductivity. For mentioned model, the Root Mean Square Error and Mean Absolute Error parameters were 0.174 and 0.028 m/day respectively. The results of the present research, emphasises the importance of effective porosity application as an important accessible parameter in accuracy of pedo-transfer functions. sand and silt percent, bulk density and soil particle density were selected to apply in 561 ANFIS models. In training phase of best ANFIS model, the R2 and RMSE were calculated 1 and 1.2×10-7 respectively. These amounts in the test phase were 0.98 and 0.0006 respectively. Comparison of regression and ANFIS models showed that the ANFIS model had better results than regression functions. Also Nuro-Fuzzy Inference System had capability to estimatae with high accuracy in various soil textures.

  20. Predictive market segmentation model: An application of logistic regression model and CHAID procedure

    Directory of Open Access Journals (Sweden)

    Soldić-Aleksić Jasna

    2009-01-01

    Full Text Available Market segmentation presents one of the key concepts of the modern marketing. The main goal of market segmentation is focused on creating groups (segments of customers that have similar characteristics, needs, wishes and/or similar behavior regarding the purchase of concrete product/service. Companies can create specific marketing plan for each of these segments and therefore gain short or long term competitive advantage on the market. Depending on the concrete marketing goal, different segmentation schemes and techniques may be applied. This paper presents a predictive market segmentation model based on the application of logistic regression model and CHAID analysis. The logistic regression model was used for the purpose of variables selection (from the initial pool of eleven variables which are statistically significant for explaining the dependent variable. Selected variables were afterwards included in the CHAID procedure that generated the predictive market segmentation model. The model results are presented on the concrete empirical example in the following form: summary model results, CHAID tree, Gain chart, Index chart, risk and classification tables.

  1. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    Science.gov (United States)

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  2. Regression models to predict hip joint centers in pathological hip population.

    Science.gov (United States)

    Mantovani, Giulia; Ng, K C Geoffrey; Lamontagne, Mario

    2016-02-01

    The purpose was to investigate the validity of Harrington's and Davis's hip joint center (HJC) regression equations on a population affected by a hip deformity, (i.e., femoroacetabular impingement). Sixty-seven participants (21 healthy controls, 46 with a cam-type deformity) underwent pelvic CT imaging. Relevant bony landmarks and geometric HJCs were digitized from the images, and skin thickness was measured for the anterior and posterior superior iliac spines. Non-parametric statistical and Bland-Altman tests analyzed differences between the predicted HJC (from regression equations) and the actual HJC (from CT images). The error from Davis's model (25.0 ± 6.7 mm) was larger than Harrington's (12.3 ± 5.9 mm, pmodels. Measured skin thickness was 9.7 ± 7.0mm and 19.6 ± 10.9 mm for the anterior and posterior bony landmarks, respectively, and correlated with body mass index. Skin thickness estimates can be considered to reduce the systematic error introduced by surface markers. New adult-specific regression equations were developed from the CT dataset, with the hypothesis that they could provide better estimates when tuned to a larger adult-specific dataset. The linear models were validated on external datasets and using leave-one-out cross-validation techniques; Prediction errors were comparable to those of Harrington's model, despite the adult-specific population and the larger sample size, thus, prediction accuracy obtained from these parameters could not be improved. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. An Introduction to Logistic Regression.

    Science.gov (United States)

    Cizek, Gregory J.; Fitzgerald, Shawn M.

    1999-01-01

    Where linearity cannot be assumed, logistic regression may be appropriate. This article describes conditions and tests for using logistic regression; introduces the logistic-regression model, the use of logistic-regression software, and some applications in published literature. Univariate and multiple independent-variable conditions and…

  4. Modeling group size and scalar stress by logistic regression from an archaeological perspective.

    Directory of Open Access Journals (Sweden)

    Gianmarco Alberti

    Full Text Available Johnson's scalar stress theory, describing the mechanics of (and the remedies to the increase in in-group conflictuality that parallels the increase in groups' size, provides scholars with a useful theoretical framework for the understanding of different aspects of the material culture of past communities (i.e., social organization, communal food consumption, ceramic style, architecture and settlement layout. Due to its relevance in archaeology and anthropology, the article aims at proposing a predictive model of critical level of scalar stress on the basis of community size. Drawing upon Johnson's theory and on Dunbar's findings on the cognitive constrains to human group size, a model is built by means of Logistic Regression on the basis of the data on colony fissioning among the Hutterites of North America. On the grounds of the theoretical framework sketched in the first part of the article, the absence or presence of colony fissioning is considered expression of not critical vs. critical level of scalar stress for the sake of the model building. The model, which is also tested against a sample of archaeological and ethnographic cases: a confirms the existence of a significant relationship between critical scalar stress and group size, setting the issue on firmer statistical grounds; b allows calculating the intercept and slope of the logistic regression model, which can be used in any time to estimate the probability that a community experienced a critical level of scalar stress; c allows locating a critical scalar stress threshold at community size 127 (95% CI: 122-132, while the maximum probability of critical scale stress is predicted at size 158 (95% CI: 147-170. The model ultimately provides grounds to assess, for the sake of any further archaeological/anthropological interpretation, the probability that a group reached a hot spot of size development critical for its internal cohesion.

  5. Bayesian Information Sharing Between Noise And Regression Models Improves Prediction of Weak Effects

    OpenAIRE

    Gillberg, Jussi; Marttinen, Pekka; Pirinen, Matti; Kangas, Antti J.; Soininen, Pasi; Järvelin, Marjo-Riitta; Ala-Korpela, Mika; Kaski, Samuel

    2013-01-01

    We consider the prediction of weak effects in a multiple-output regression setup, when covariates are expected to explain a small amount, less than $\\approx 1%$, of the variance of the target variables. To facilitate the prediction of the weak effects, we constrain our model structure by introducing a novel Bayesian approach of sharing information between the regression model and the noise model. Further reduction of the effective number of parameters is achieved by introducing an infinite sh...

  6. Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?

    Science.gov (United States)

    Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.

    2016-12-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.

  7. Genetic Parameters for Body condition score, Body weigth, Milk yield and Fertility estimated using random regression models

    NARCIS (Netherlands)

    Berry, D.P.; Buckley, F.; Dillon, P.; Evans, R.D.; Rath, M.; Veerkamp, R.F.

    2003-01-01

    Genetic (co)variances between body condition score (BCS), body weight (BW), milk yield, and fertility were estimated using a random regression animal model extended to multivariate analysis. The data analyzed included 81,313 BCS observations, 91,937 BW observations, and 100,458 milk test-day yields

  8. ANALYSIS OF THE FINANCIAL PERFORMANCES OF THE FIRM, BY USING THE MULTIPLE REGRESSION MODEL

    Directory of Open Access Journals (Sweden)

    Constantin Anghelache

    2011-11-01

    Full Text Available The information achieved through the use of simple linear regression are not always enough to characterize the evolution of an economic phenomenon and, furthermore, to identify its possible future evolution. To remedy these drawbacks, the special literature includes multiple regression models, in which the evolution of the dependant variable is defined depending on two or more factorial variables.

  9. Mechanisms of Developmental Regression in Autism and the Broader Phenotype: A Neural Network Modeling Approach

    Science.gov (United States)

    Thomas, Michael S. C.; Knowland, Victoria C. P.; Karmiloff-Smith, Annette

    2011-01-01

    Loss of previously established behaviors in early childhood constitutes a markedly atypical developmental trajectory. It is found almost uniquely in autism and its cause is currently unknown (Baird et al., 2008). We present an artificial neural network model of developmental regression, exploring the hypothesis that regression is caused by…

  10. Deriving Genomic Breeding Values for Residual Feed Intake from Covariance Functions of Random Regression Models

    DEFF Research Database (Denmark)

    Strathe, Anders B; Mark, Thomas; Nielsen, Bjarne

    Random regression models were used to estimate covariance functions between cumulated feed intake (CFI) and body weight (BW) in 8424 Danish Duroc pigs. Random regressions on second order Legendre polynomials of age were used to describe genetic and permanent environmental curves in BW and CFI. Ba...

  11. Estimating transmitted waves of floating breakwater using support vector regression model

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Hegde, A.V.; Kumar, V.; Patil, S.G.

    to diameter of pipes (S/D). The radial basis functions performed well than the polynomial function in the regressive support vector machine as the kernel function for the given set of data. The support vector regression model gives the correlation coefficients...

  12. On the effects of non-robustness in the spurious regression model ...

    African Journals Online (AJOL)

    ... exchange of Nigeria, United state of America and Great Britain. It was found that violation of these assumptions play an important role in determining if a spurious regression emanates from the statistically related model for reliable predictive purposes. Keywords: Spurious regression, non robustness and foreign exchange.

  13. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    Science.gov (United States)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam

    2015-10-01

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  14. Multinomial logistic regression modelling of obesity and overweight among primary school students in a rural area of Negeri Sembilan

    Energy Technology Data Exchange (ETDEWEB)

    Ghazali, Amirul Syafiq Mohd; Ali, Zalila; Noor, Norlida Mohd; Baharum, Adam [Pusat Pengajian Sains Matematik, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia amirul@unisel.edu.my, zalila@cs.usm.my, norlida@usm.my, adam@usm.my (Malaysia)

    2015-10-22

    Multinomial logistic regression is widely used to model the outcomes of a polytomous response variable, a categorical dependent variable with more than two categories. The model assumes that the conditional mean of the dependent categorical variables is the logistic function of an affine combination of predictor variables. Its procedure gives a number of logistic regression models that make specific comparisons of the response categories. When there are q categories of the response variable, the model consists of q-1 logit equations which are fitted simultaneously. The model is validated by variable selection procedures, tests of regression coefficients, a significant test of the overall model, goodness-of-fit measures, and validation of predicted probabilities using odds ratio. This study used the multinomial logistic regression model to investigate obesity and overweight among primary school students in a rural area on the basis of their demographic profiles, lifestyles and on the diet and food intake. The results indicated that obesity and overweight of students are related to gender, religion, sleep duration, time spent on electronic games, breakfast intake in a week, with whom meals are taken, protein intake, and also, the interaction between breakfast intake in a week with sleep duration, and the interaction between gender and protein intake.

  15. The Application of Classical and Neural Regression Models for the Valuation of Residential Real Estate

    Directory of Open Access Journals (Sweden)

    Mach Łukasz

    2017-06-01

    Full Text Available The research process aimed at building regression models, which helps to valuate residential real estate, is presented in the following article. Two widely used computational tools i.e. the classical multiple regression and regression models of artificial neural networks were used in order to build models. An attempt to define the utilitarian usefulness of the above-mentioned tools and comparative analysis of them is the aim of the conducted research. Data used for conducting analyses refers to the secondary transactional residential real estate market.

  16. Model-Based Testing

    NARCIS (Netherlands)

    Timmer, Mark; Brinksma, Hendrik; Stoelinga, Mariëlle Ida Antoinette; Broy, M.; Leuxner, C.; Hoare, C.A.R.

    This paper provides a comprehensive introduction to a framework for formal testing using labelled transition systems, based on an extension and reformulation of the ioco theory introduced by Tretmans. We introduce the underlying models needed to specify the requirements, and formalise the notion of

  17. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...... wave overtopping was studied as well....

  18. Microbiome Data Accurately Predicts the Postmortem Interval Using Random Forest Regression Models

    Directory of Open Access Journals (Sweden)

    Aeriel Belk

    2018-02-01

    Full Text Available Death investigations often include an effort to establish the postmortem interval (PMI in cases in which the time of death is uncertain. The postmortem interval can lead to the identification of the deceased and the validation of witness statements and suspect alibis. Recent research has demonstrated that microbes provide an accurate clock that starts at death and relies on ecological change in the microbial communities that normally inhabit a body and its surrounding environment. Here, we explore how to build the most robust Random Forest regression models for prediction of PMI by testing models built on different sample types (gravesoil, skin of the torso, skin of the head, gene markers (16S ribosomal RNA (rRNA, 18S rRNA, internal transcribed spacer regions (ITS, and taxonomic levels (sequence variants, species, genus, etc.. We also tested whether particular suites of indicator microbes were informative across different datasets. Generally, results indicate that the most accurate models for predicting PMI were built using gravesoil and skin data using the 16S rRNA genetic marker at the taxonomic level of phyla. Additionally, several phyla consistently contributed highly to model accuracy and may be candidate indicators of PMI.

  19. Model selection with multiple regression on distance matrices leads to incorrect inferences.

    Directory of Open Access Journals (Sweden)

    Ryan P Franckowiak

    Full Text Available In landscape genetics, model selection procedures based on Information Theoretic and Bayesian principles have been used with multiple regression on distance matrices (MRM to test the relationship between multiple vectors of pairwise genetic, geographic, and environmental distance. Using Monte Carlo simulations, we examined the ability of model selection criteria based on Akaike's information criterion (AIC, its small-sample correction (AICc, and the Bayesian information criterion (BIC to reliably rank candidate models when applied with MRM while varying the sample size. The results showed a serious problem: all three criteria exhibit a systematic bias toward selecting unnecessarily complex models containing spurious random variables and erroneously suggest a high level of support for the incorrectly ranked best model. These problems effectively increased with increasing sample size. The failure of AIC, AICc, and BIC was likely driven by the inflated sample size and different sum-of-squares partitioned by MRM, and the resulting effect on delta values. Based on these findings, we strongly discourage the continued application of AIC, AICc, and BIC for model selection with MRM.

  20. Poisson regression for modeling count and frequency outcomes in trauma research.

    Science.gov (United States)

    Gagnon, David R; Doron-LaMarca, Susan; Bell, Margret; O'Farrell, Timothy J; Taft, Casey T

    2008-10-01

    The authors describe how the Poisson regression method for analyzing count or frequency outcome variables can be applied in trauma studies. The outcome of interest in trauma research may represent a count of the number of incidents of behavior occurring in a given time interval, such as acts of physical aggression or substance abuse. Traditional linear regression approaches assume a normally distributed outcome variable with equal variances over the range of predictor variables, and may not be optimal for modeling count outcomes. An application of Poisson regression is presented using data from a study of intimate partner aggression among male patients in an alcohol treatment program and their female partners. Results of Poisson regression and linear regression models are compared.

  1. Zone-specific logistic regression models improve classification of prostate cancer on multi-parametric MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dikaios, Nikolaos; Halligan, Steve; Taylor, Stuart; Atkinson, David; Punwani, Shonit [University College London, Centre for Medical Imaging, London (United Kingdom); University College London Hospital, Departments of Radiology, London (United Kingdom); Alkalbani, Jokha; Sidhu, Harbir Singh [University College London, Centre for Medical Imaging, London (United Kingdom); Abd-Alazeez, Mohamed; Ahmed, Hashim U.; Emberton, Mark [University College London, Research Department of Urology, Division of Surgery and Interventional Science, London (United Kingdom); Kirkham, Alex [University College London Hospital, Departments of Radiology, London (United Kingdom); Freeman, Alex [University College London Hospital, Department of Histopathology, London (United Kingdom)

    2015-09-15

    To assess the interchangeability of zone-specific (peripheral-zone (PZ) and transition-zone (TZ)) multiparametric-MRI (mp-MRI) logistic-regression (LR) models for classification of prostate cancer. Two hundred and thirty-one patients (70 TZ training-cohort; 76 PZ training-cohort; 85 TZ temporal validation-cohort) underwent mp-MRI and transperineal-template-prostate-mapping biopsy. PZ and TZ uni/multi-variate mp-MRI LR-models for classification of significant cancer (any cancer-core-length (CCL) with Gleason > 3 + 3 or any grade with CCL ≥ 4 mm) were derived from the respective cohorts and validated within the same zone by leave-one-out analysis. Inter-zonal performance was tested by applying TZ models to the PZ training-cohort and vice-versa. Classification performance of TZ models for TZ cancer was further assessed in the TZ validation-cohort. ROC area-under-curve (ROC-AUC) analysis was used to compare models. The univariate parameters with the best classification performance were the normalised T2 signal (T2nSI) within the TZ (ROC-AUC = 0.77) and normalized early contrast-enhanced T1 signal (DCE-nSI) within the PZ (ROC-AUC = 0.79). Performance was not significantly improved by bi-variate/tri-variate modelling. PZ models that contained DCE-nSI performed poorly in classification of TZ cancer. The TZ model based solely on maximum-enhancement poorly classified PZ cancer. LR-models dependent on DCE-MRI parameters alone are not interchangeable between prostatic zones; however, models based exclusively on T2 and/or ADC are more robust for inter-zonal application. (orig.)

  2. Random regression analysis of test-day milk yields in the first and second lactations of Brazilian Gyr cows.

    Science.gov (United States)

    Gonzalez-Herrera, L G; El Faro, L; Bignardi, A B; Pereira, R J; Machado, C H C; Albuquerque, L G

    2015-12-09

    The objective of the present study was to estimate the genetic parameters for test-day milk yields (TDMY) in the first and second lactations using random regression models (RRM) in order to contribute to the application of these models in genetic evaluation of milk yield in Gyr cattle. A total of 53,328 TDMY records from 7118 lactations of 5853 Gyr cows were analyzed. The model included the direct additive, permanent environmental, and residual random effects. In addition, contemporary group and linear and quadratic effects of the age of cows at calving were included as fixed effects. A random regression model fitting fourth-order Legendre polynomials for additive genetic and permanent environmental effects, with five classes of residual variance, was applied. In the first lactation, the heritabilities increased from early lactation (0.26) until TDMY3 (0.38), followed by a decrease until the end of lactation. In the second lactation, the estimates increased from the first (0.29) to the fifth test day (0.36), with a slight decrease thereafter, and again increased on the last two test days (0.34 and 0.41). There were positive and high genetic correlations estimated between first-lactation TDMY and the remaining TDMY of the two lactations. The moderate heritability estimates, as well as the high genetic correlations between half the first-lactation TDMY and all TDMY of the two lactations, suggest that the selection based only on first lactation TDMY is the best selection strategy to increase milk production across first and second lactations of Gyr cows.

  3. Parameter-elevation Regressions on Independent Slopes Model Monthly Climate Data for the Continental United States.

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This dataset was created using the PRISM (Parameter-elevation Regressions on Independent Slopes Model) climate mapping system, developed by Dr. Christopher Daly,...

  4. Estimation of Standard Error of Regression Effects in Latent Regression Models Using Binder's Linearization. Research Report. ETS RR-07-09

    Science.gov (United States)

    Li, Deping; Oranje, Andreas

    2007-01-01

    Two versions of a general method for approximating standard error of regression effect estimates within an IRT-based latent regression model are compared. The general method is based on Binder's (1983) approach, accounting for complex samples and finite populations by Taylor series linearization. In contrast, the current National Assessment of…

  5. Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs

    Directory of Open Access Journals (Sweden)

    Künzi Niklaus

    2002-01-01

    Full Text Available Abstract A random regression model for daily feed intake and a conventional multiple trait animal model for the four traits average daily gain on test (ADG, feed conversion ratio (FCR, carcass lean content and meat quality index were combined to analyse data from 1 449 castrated male Large White pigs performance tested in two French central testing stations in 1997. Group housed pigs fed ad libitum with electronic feed dispensers were tested from 35 to 100 kg live body weight. A quadratic polynomial in days on test was used as a regression function for weekly means of daily feed intake and to escribe its residual variance. The same fixed (batch and random (additive genetic, pen and individual permanent environmental effects were used for regression coefficients of feed intake and single measured traits. Variance components were estimated by means of a Bayesian analysis using Gibbs sampling. Four Gibbs chains were run for 550 000 rounds each, from which 50 000 rounds were discarded from the burn-in period. Estimates of posterior means of covariance matrices were calculated from the remaining two million samples. Low heritabilities of linear and quadratic regression coefficients and their unfavourable genetic correlations with other performance traits reveal that altering the shape of the feed intake curve by direct or indirect selection is difficult.

  6. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses

    Science.gov (United States)

    Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)—common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of “model-free bootstrap”, adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods. PMID:28738071

  7. The PIT-trap-A "model-free" bootstrap procedure for inference about regression models with discrete, multivariate responses.

    Science.gov (United States)

    Warton, David I; Thibaut, Loïc; Wang, Yi Alice

    2017-01-01

    Bootstrap methods are widely used in statistics, and bootstrapping of residuals can be especially useful in the regression context. However, difficulties are encountered extending residual resampling to regression settings where residuals are not identically distributed (thus not amenable to bootstrapping)-common examples including logistic or Poisson regression and generalizations to handle clustered or multivariate data, such as generalised estimating equations. We propose a bootstrap method based on probability integral transform (PIT-) residuals, which we call the PIT-trap, which assumes data come from some marginal distribution F of known parametric form. This method can be understood as a type of "model-free bootstrap", adapted to the problem of discrete and highly multivariate data. PIT-residuals have the key property that they are (asymptotically) pivotal. The PIT-trap thus inherits the key property, not afforded by any other residual resampling approach, that the marginal distribution of data can be preserved under PIT-trapping. This in turn enables the derivation of some standard bootstrap properties, including second-order correctness of pivotal PIT-trap test statistics. In multivariate data, bootstrapping rows of PIT-residuals affords the property that it preserves correlation in data without the need for it to be modelled, a key point of difference as compared to a parametric bootstrap. The proposed method is illustrated on an example involving multivariate abundance data in ecology, and demonstrated via simulation to have improved properties as compared to competing resampling methods.

  8. The log-Burr XII regression model for grouped survival data.

    Science.gov (United States)

    Hashimoto, Elizabeth M; Ortega, Edwin M M; Cordeiro, Gauss M; Barreto, Mauricio L

    2012-01-01

    The log-Burr XII regression model for grouped survival data is evaluated in the presence of many ties. The methodology for grouped survival data is based on life tables, where the times are grouped in k intervals, and we fit discrete lifetime regression models to the data. The model parameters are estimated by maximum likelihood and jackknife methods. To detect influential observations in the proposed model, diagnostic measures based on case deletion, so-called global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to these measures, the total local influence and influential estimates are also used. We conduct Monte Carlo simulation studies to assess the finite sample behavior of the maximum likelihood estimators of the proposed model for grouped survival. A real data set is analyzed using a regression model for grouped data.

  9. Comparison of artificial neural network and regression models in the prediction of urban stormwater quality.

    Science.gov (United States)

    May, D; Sivakumar, M

    2008-01-01

    Urban stormwater quality is influenced by many interrelated processes. However, the site-specific nature of these complex processes makes stormwater quality difficult to predict using physically based process models. This has resulted in the need for more empirical techniques. In this study, artificial neural networks (ANN) were used to model urban stormwater quality. A total of 5 different constituents were analyzed-chemical oxygen demand, lead, suspended solids, total Kjeldahl nitrogen, and total phosphorus. Input variables were selected using stepwise linear regression models, calibrated on logarithmically transformed data. Artificial neural networks models were then developed and compared with the regression models. The results from the analyses indicate that multiple linear regression models were more applicable for predicting urban stormwater quality than ANN models.

  10. Linear regression models and k-means clustering for statistical analysis of fNIRS data.

    Science.gov (United States)

    Bonomini, Viola; Zucchelli, Lucia; Re, Rebecca; Ieva, Francesca; Spinelli, Lorenzo; Contini, Davide; Paganoni, Anna; Torricelli, Alessandro

    2015-02-01

    We propose a new algorithm, based on a linear regression model, to statistically estimate the hemodynamic activations in fNIRS data sets. The main concern guiding the algorithm development was the minimization of assumptions and approximations made on the data set for the application of statistical tests. Further, we propose a K-means method to cluster fNIRS data (i.e. channels) as activated or not activated. The methods were validated both on simulated and in vivo fNIRS data. A time domain (TD) fNIRS technique was preferred because of its high performances in discriminating cortical activation and superficial physiological changes. However, the proposed method is also applicable to continuous wave or frequency domain fNIRS data sets.

  11. Machine Learning, Linear and Bayesian Models for Logistic Regression in Failure Detection Problems

    OpenAIRE

    Pavlyshenko, B.

    2016-01-01

    In this work, we study the use of logistic regression in manufacturing failures detection. As a data set for the analysis, we used the data from Kaggle competition Bosch Production Line Performance. We considered the use of machine learning, linear and Bayesian models. For machine learning approach, we analyzed XGBoost tree based classifier to obtain high scored classification. Using the generalized linear model for logistic regression makes it possible to analyze the influence of the factors...

  12. Use of Pollutant Load Regression Models with Various Sampling Frequencies for Annual Load Estimation

    OpenAIRE

    Youn Shik Park; Bernie A. Engel

    2014-01-01

    Water quality data are collected by various sampling frequencies, and the data may not be collected at a high frequency nor over the range of streamflow conditions. Therefore, regression models are used to estimate pollutant data for days on which water quality data were not measured. Pollutant load regression models were evaluated with six sampling frequencies for daily nitrogen, phosphorus, and sediment data. Annual pollutant load estimates exhibited various behaviors by sampling frequency...

  13. Analysis for Regression Model Behavior by Sampling Strategy for Annual Pollutant Load Estimation.

    Science.gov (United States)

    Park, Youn Shik; Engel, Bernie A

    2015-11-01

    Water quality data are typically collected less frequently than streamflow data due to the cost of collection and analysis, and therefore water quality data may need to be estimated for additional days. Regression models are applicable to interpolate water quality data associated with streamflow data and have come to be extensively used, requiring relatively small amounts of data. There is a need to evaluate how well the regression models represent pollutant loads from intermittent water quality data sets. Both the specific regression model and water quality data frequency are important factors in pollutant load estimation. In this study, nine regression models from the Load Estimator (LOADEST) and one regression model from the Web-based Load Interpolation Tool (LOADIN) were evaluated with subsampled water quality data sets from daily measured water quality data sets for N, P, and sediment. Each water quality parameter had different correlations with streamflow, and the subsampled water quality data sets had various proportions of storm samples. The behaviors of the regression models differed not only by water quality parameter but also by proportion of storm samples. The regression models from LOADEST provided accurate and precise annual sediment and P load estimates using the water quality data of 20 to 40% storm samples. LOADIN provided more accurate and precise annual N load estimates than LOADEST. In addition, the results indicate that avoidance of water quality data extrapolation and availability of water quality data from storm events were crucial in annual pollutant load estimation using pollutant regression models. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. A note on permutation tests of significance for multiple regression coefficients.

    Science.gov (United States)

    Long, Michael A; Berry, Kenneth J; Mielke, Paul W

    2007-04-01

    In the vast majority of psychological research utilizing multiple regression analysis, asymptotic probability values are reported. This paper demonstrates that asymptotic estimates of standard errors provided by multiple regression are not always accurate. A resampling permutation procedure is used to estimate the standard errors. In some cases the results differ substantially from the traditional least squares regression estimates.

  15. Using the Logistic Regression model in supporting decisions of establishing marketing strategies

    Directory of Open Access Journals (Sweden)

    Cristinel CONSTANTIN

    2015-12-01

    Full Text Available This paper is about an instrumental research regarding the using of Logistic Regression model for data analysis in marketing research. The decision makers inside different organisation need relevant information to support their decisions regarding the marketing strategies. The data provided by marketing research could be computed in various ways but the multivariate data analysis models can enhance the utility of the information. Among these models we can find the Logistic Regression model, which is used for dichotomous variables. Our research is based on explanation the utility of this model and interpretation of the resulted information in order to help practitioners and researchers to use it in their future investigations

  16. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures

    OpenAIRE

    Tosun, Erdi; Aydin, Kadir; Bilgili, Mehmet

    2016-01-01

    This study deals with usage of linear regression (LR) and artificial neural network (ANN) modeling to predict engine performance; torque and exhaust emissions; and carbon monoxide, oxides of nitrogen (CO, NOx) of a naturally aspirated diesel engine fueled with standard diesel, peanut biodiesel (PME) and biodiesel-alcohol (EME, MME, PME) mixtures. Experimental work was conducted to obtain data to train and test the models. Backpropagation algorithm was used as a learning algorithm of ANN in th...

  17. Exploring nonlinear relations: models of clinical decision making by regression with optimal scaling.

    Science.gov (United States)

    Hartmann, Armin; Van Der Kooij, Anita J; Zeeck, Almut

    2009-07-01

    In explorative regression studies, linear models are often applied without questioning the linearity of the relations between the predictor variables and the dependent variable, or linear relations are taken as an approximation. In this study, the method of regression with optimal scaling transformations is demonstrated. This method does not require predefined nonlinear functions and results in easy-to-interpret transformations that will show the form of the relations. The method is illustrated using data from a German multicenter project on the indication criteria for inpatient or day clinic psychotherapy treatment. The indication criteria to include in the regression model were selected with the Lasso, which is a tool for predictor selection that overcomes the disadvantages of stepwise regression methods. The resulting prediction model indicates that treatment status is (approximately) linearly related to some criteria and nonlinearly related to others.

  18. Computation of the Exact Information Matrix of Gaussian Dynamic Regression Time Series Models

    NARCIS (Netherlands)

    Klein, A.A.B.; Melard, G.; Zahaf, T.

    1998-01-01

    In this paper, the computation of the exact Fisher information matrix of a large class of Gaussian time series models is considered. This class, which is often called the single-input-single-output (SISO) model, includes dynamic regression with autocorrelated errors and the transfer function model,

  19. A non-parametric test for partial monotonicity in multiple regression

    NARCIS (Netherlands)

    van Beek, M.; Daniëls, H.A.M.

    Partial positive (negative) monotonicity in a dataset is the property that an increase in an independent variable, ceteris paribus, generates an increase (decrease) in the dependent variable. A test for partial monotonicity in datasets could (1) increase model performance if monotonicity may be

  20. Genetic evaluation of egg production curve in Thai native chickens by random regression and spline models.

    Science.gov (United States)

    Mookprom, S; Boonkum, W; Kunhareang, S; Siripanya, S; Duangjinda, M

    2017-02-01

    The objective of this research is to investigate appropriate random regression models with various covariance functions, for the genetic evaluation of test-day egg production. Data included 7,884 monthly egg production records from 657 Thai native chickens (Pradu Hang Dam) that were obtained during the first to sixth generation and were born during 2007 to 2014 at the Research and Development Network Center for Animal Breeding (Native Chickens), Khon Kaen University. Average annual and monthly egg productions were 117 ± 41 and 10.20 ± 6.40 eggs, respectively. Nine random regression models were analyzed using the Wilmink function (WM), Koops and Grossman function (KG), Legendre polynomials functions with second, third, and fourth orders (LG2, LG3, LG4), and spline functions with 4, 5, 6, and 8 knots (SP4, SP5, SP6, and SP8). All covariance functions were nested within the same additive genetic and permanent environmental random effects, and the variance components were estimated by Restricted Maximum Likelihood (REML). In model comparisons, mean square error (MSE) and the coefficient of detemination (R2) calculated the goodness of fit; and the correlation between observed and predicted values [Formula: see text] was used to calculate the cross-validated predictive abilities. We found that the covariance functions of SP5, SP6, and SP8 proved appropriate for the genetic evaluation of the egg production curves for Thai native chickens. The estimated heritability of monthly egg production ranged from 0.07 to 0.39, and the highest heritability was found during the first to third months of egg production. In conclusion, the spline functions within monthly egg production can be applied to breeding programs for the improvement of both egg number and persistence of egg production. © 2016 Poultry Science Association Inc.

  1. Structured Additive Regression Models: An R Interface to BayesX

    Directory of Open Access Journals (Sweden)

    Nikolaus Umlauf

    2015-02-01

    Full Text Available Structured additive regression (STAR models provide a flexible framework for model- ing possible nonlinear effects of covariates: They contain the well established frameworks of generalized linear models and generalized additive models as special cases but also allow a wider class of effects, e.g., for geographical or spatio-temporal data, allowing for specification of complex and realistic models. BayesX is standalone software package providing software for fitting general class of STAR models. Based on a comprehensive open-source regression toolbox written in C++, BayesX uses Bayesian inference for estimating STAR models based on Markov chain Monte Carlo simulation techniques, a mixed model representation of STAR models, or stepwise regression techniques combining penalized least squares estimation with model selection. BayesX not only covers models for responses from univariate exponential families, but also models from less-standard regression situations such as models for multi-categorical responses with either ordered or unordered categories, continuous time survival data, or continuous time multi-state models. This paper presents a new fully interactive R interface to BayesX: the R package R2BayesX. With the new package, STAR models can be conveniently specified using Rs formula language (with some extended terms, fitted using the BayesX binary, represented in R with objects of suitable classes, and finally printed/summarized/plotted. This makes BayesX much more accessible to users familiar with R and adds extensive graphics capabilities for visualizing fitted STAR models. Furthermore, R2BayesX complements the already impressive capabilities for semiparametric regression in R by a comprehensive toolbox comprising in particular more complex response types and alternative inferential procedures such as simulation-based Bayesian inference.

  2. The Norwegian Healthier Goats program--modeling lactation curves using a multilevel cubic spline regression model.

    Science.gov (United States)

    Nagel-Alne, G E; Krontveit, R; Bohlin, J; Valle, P S; Skjerve, E; Sølverød, L S

    2014-07-01

    In 2001, the Norwegian Goat Health Service initiated the Healthier Goats program (HG), with the aim of eradicating caprine arthritis encephalitis, caseous lymphadenitis, and Johne's disease (caprine paratuberculosis) in Norwegian goat herds. The aim of the present study was to explore how control and eradication of the above-mentioned diseases by enrolling in HG affected milk yield by comparison with herds not enrolled in HG. Lactation curves were modeled using a multilevel cubic spline regression model where farm, goat, and lactation were included as random effect parameters. The data material contained 135,446 registrations of daily milk yield from 28,829 lactations in 43 herds. The multilevel cubic spline regression model was applied to 4 categories of data: enrolled early, control early, enrolled late, and control late. For enrolled herds, the early and late notations refer to the situation before and after enrolling in HG; for nonenrolled herds (controls), they refer to development over time, independent of HG. Total milk yield increased in the enrolled herds after eradication: the total milk yields in the fourth lactation were 634.2 and 873.3 kg in enrolled early and enrolled late herds, respectively, and 613.2 and 701.4 kg in the control early and control late herds, respectively. Day of peak yield differed between enrolled and control herds. The day of peak yield came on d 6 of lactation for the control early category for parities 2, 3, and 4, indicating an inability of the goats to further increase their milk yield from the initial level. For enrolled herds, on the other hand, peak yield came between d 49 and 56, indicating a gradual increase in milk yield after kidding. Our results indicate that enrollment in the HG disease eradication program improved the milk yield of dairy goats considerably, and that the multilevel cubic spline regression was a suitable model for exploring effects of disease control and eradication on milk yield. Copyright © 2014

  3. The Relationship between Economic Growth and Money Laundering – a Linear Regression Model

    Directory of Open Access Journals (Sweden)

    Daniel Rece

    2009-09-01

    Full Text Available This study provides an overview of the relationship between economic growth and money laundering modeled by a least squares function. The report analyzes statistically data collected from USA, Russia, Romania and other eleven European countries, rendering a linear regression model. The study illustrates that 23.7% of the total variance in the regressand (level of money laundering is “explained” by the linear regression model. In our opinion, this model will provide critical auxiliary judgment and decision support for anti-money laundering service systems.

  4. Genetic evaluation for persistency of lactation in Holstein cows using a random regression model

    Directory of Open Access Journals (Sweden)

    Jaime Araujo Cobuci

    2007-03-01

    Full Text Available A model for analyzing test day records including both fixed and random coefficients was applied to the genetic evaluation of first lactation data for Holstein cows. Data comprising 87045 test-day milk yield records from calving between 1997 and 2001 from Holstein herds in 10 regions of the Brazilian state of Minas Gerais. Six persistency of lactation measures were evaluated using breeding values obtained by random regression analyses. The Wilmink function was used to model the additive genetic and permanent environmental effects. Residual variance was constant throughout lactation. Ranking for animals did not change among criteria for persistency measurements, but ranking changes were observed when the estimated breeding value (EBV for persistency of lactation was contrasted with those estimated for 305-day milk yield (305MY. The rank correlation estimates for persistency of lactation and 305MY were practically the same for sire and cows, and ranged from -0.45 to 0.69. The EBVs for milk yield during lactation for sires producing daughters with superior 305MY indicate genetic differences between sires regarding their ability to transmit desirable persistency of lactation traits. This suggests that selection for total lactation milk yield does not identify sires or cows that are genetically superior in regard to persistency of lactation. Genetic evaluation for persistency of lactation is important for improving the efficiency of the milk production capacity of Holstein cows.

  5. Generic global regression models for growth prediction of Salmonella in ground pork and pork cuts

    DEFF Research Database (Denmark)

    Buschhardt, Tasja; Hansen, Tina Beck; Bahl, Martin Iain

    2017-01-01

    Introduction and Objectives Models for the prediction of bacterial growth in fresh pork are primarily developed using two-step regression (i.e. primary models followed by secondary models). These models are also generally based on experiments in liquids or ground meat and neglect surface growth. ....... The model should be a useful tool to control growth of Salmonella in meat and set critical limits for temperature during production and storage of fresh pork....

  6. Applying models for ordinal logistic regression to the analysis of household electricity consumption classes in Rio de Janeiro, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Mauricio [Programa de Planejamento Energetico (PPE/COPPE) Universidade Federal do Rio de Janeiro (Brazil); Salazar, Esther [Department of Statistical Methods of the Universidade Federal do Rio de Janeiro (Brazil)

    2008-07-15

    This study applies the proportional odds and partial proportional odds models for ordinal logistic regression to analyze household electricity consumption classes. Micro-data from households situated in the state of Rio de Janeiro during 2004 was used to measure the performance of the models in correctly classifying household electricity consumption classes via sociodemographic, electricity usage and dwelling characteristics. The strategy of using binary logistic regressions to test the main hypothesis of the proportional odds model, suggested by Bender and Grouven, was successful in identifying which of the independent variables could be estimated via the proportional odds assumption. Results indicate that the partial proportional odds models is slightly superior to the more restrictive approach. The study includes probabilistic examples to describe how changes in the independent variables affect the probability of a household belonging to specific classes of electricity consumption. Projections using the final model indicated that the approach may be useful for estimating aggregate household electricity consumption. (author)

  7. Modeling Governance KB with CATPCA to Overcome Multicollinearity in the Logistic Regression

    Science.gov (United States)

    Khikmah, L.; Wijayanto, H.; Syafitri, U. D.

    2017-04-01

    The problem often encounters in logistic regression modeling are multicollinearity problems. Data that have multicollinearity between explanatory variables with the result in the estimation of parameters to be bias. Besides, the multicollinearity will result in error in the classification. In general, to overcome multicollinearity in regression used stepwise regression. They are also another method to overcome multicollinearity which involves all variable for prediction. That is Principal Component Analysis (PCA). However, classical PCA in only for numeric data. Its data are categorical, one method to solve the problems is Categorical Principal Component Analysis (CATPCA). Data were used in this research were a part of data Demographic and Population Survey Indonesia (IDHS) 2012. This research focuses on the characteristic of women of using the contraceptive methods. Classification results evaluated using Area Under Curve (AUC) values. The higher the AUC value, the better. Based on AUC values, the classification of the contraceptive method using stepwise method (58.66%) is better than the logistic regression model (57.39%) and CATPCA (57.39%). Evaluation of the results of logistic regression using sensitivity, shows the opposite where CATPCA method (99.79%) is better than logistic regression method (92.43%) and stepwise (92.05%). Therefore in this study focuses on major class classification (using a contraceptive method), then the selected model is CATPCA because it can raise the level of the major class model accuracy.

  8. Evaluation of Regression Models of Balance Calibration Data Using an Empirical Criterion

    Science.gov (United States)

    Ulbrich, Norbert; Volden, Thomas R.

    2012-01-01

    An empirical criterion for assessing the significance of individual terms of regression models of wind tunnel strain gage balance outputs is evaluated. The criterion is based on the percent contribution of a regression model term. It considers a term to be significant if its percent contribution exceeds the empirical threshold of 0.05%. The criterion has the advantage that it can easily be computed using the regression coefficients of the gage outputs and the load capacities of the balance. First, a definition of the empirical criterion is provided. Then, it is compared with an alternate statistical criterion that is widely used in regression analysis. Finally, calibration data sets from a variety of balances are used to illustrate the connection between the empirical and the statistical criterion. A review of these results indicated that the empirical criterion seems to be suitable for a crude assessment of the significance of a regression model term as the boundary between a significant and an insignificant term cannot be defined very well. Therefore, regression model term reduction should only be performed by using the more universally applicable statistical criterion.

  9. Modeling of Soil Aggregate Stability using Support Vector Machines and Multiple Linear Regression

    Directory of Open Access Journals (Sweden)

    Ali Asghar Besalatpour

    2016-02-01

    by 20-m digital elevation model (DEM. The data set was divided into two subsets of training and testing. The training subset was randomly chosen from 70% of the total set of the data and the remaining samples (30% of the data were used as the testing set. The correlation coefficient (r, mean square error (MSE, and error percentage (ERROR% between the measured and the predicted GMD values were used to evaluate the performance of the models. Results and Discussion: The description statistics showed that there was little variability in the sample distributions of the variables used in this study to develop the GMD prediction models, indicating that their values were all normally distributed. The constructed SVM model had better performance in predicting GMD compared to the traditional multiple linear regression model. The obtained MSE and r values for the developed SVM model for soil aggregate stability prediction were 0.005 and 0.86, respectively. The obtained ERROR% value for soil aggregate stability prediction using the SVM model was 10.7% while it was 15.7% for the regression model. The scatter plot figures also showed that the SVM model was more accurate in GMD estimation than the MLR model, since the predicted GMD values were closer in agreement with the measured values for most of the samples. The worse performance of the MLR model might be due to the larger amount of data that is required for developing a sustainable regression model compared to intelligent systems. Furthermore, only the linear effects of the predictors on the dependent variable can be extracted by linear models while in many cases the effects may not be linear in nature. Meanwhile, the SVM model is suitable for modelling nonlinear relationships and its major advantage is that the method can be developed without knowing the exact form of the analytical function on which the model should be built. All these indicate that the SVM approach would be a better choice for predicting soil aggregate

  10. Using the Coefficient of Determination "R"[superscript 2] to Test the Significance of Multiple Linear Regression

    Science.gov (United States)

    Quinino, Roberto C.; Reis, Edna A.; Bessegato, Lupercio F.

    2013-01-01

    This article proposes the use of the coefficient of determination as a statistic for hypothesis testing in multiple linear regression based on distributions acquired by beta sampling. (Contains 3 figures.)

  11. Partial F-tests with multiply imputed data in the linear regression framework via coefficient of determination.

    Science.gov (United States)

    Chaurasia, Ashok; Harel, Ofer

    2015-02-10

    Tests for regression coefficients such as global, local, and partial F-tests are common in applied research. In the framework of multiple imputation, there are several papers addressing tests for regression coefficients. However, for simultaneous hypothesis testing, the existing methods are computationally intensive because they involve calculation with vectors and (inversion of) matrices. In this paper, we propose a simple method based on the scalar entity, coefficient of determination, to perform (global, local, and partial) F-tests with multiply imputed data. The proposed method is evaluated using simulated data and applied to suicide prevention data. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Regression analysis understanding and building business and economic models using Excel

    CERN Document Server

    Wilson, J Holton

    2012-01-01

    The technique of regression analysis is used so often in business and economics today that an understanding of its use is necessary for almost everyone engaged in the field. This book will teach you the essential elements of building and understanding regression models in a business/economic context in an intuitive manner. The authors take a non-theoretical treatment that is accessible even if you have a limited statistical background. It is specifically designed to teach the correct use of regression, while advising you of its limitations and teaching about common pitfalls. This book describe

  13. Modelling and analysis of turbulent datasets using Auto Regressive Moving Average processes

    Energy Technology Data Exchange (ETDEWEB)

    Faranda, Davide, E-mail: davide.faranda@cea.fr; Dubrulle, Bérengère; Daviaud, François [Laboratoire SPHYNX, Service de Physique de l' Etat Condensé, DSM, CEA Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette (France); Pons, Flavio Maria Emanuele [Dipartimento di Scienze Statistiche, Universitá di Bologna, Via delle Belle Arti 41, 40126 Bologna (Italy); Saint-Michel, Brice [Institut de Recherche sur les Phénomènes Hors Equilibre, Technopole de Chateau Gombert, 49 rue Frédéric Joliot Curie, B.P. 146, 13 384 Marseille (France); Herbert, Éric [Université Paris Diderot - LIED - UMR 8236, Laboratoire Interdisciplinaire des Énergies de Demain, Paris (France); Cortet, Pierre-Philippe [Laboratoire FAST, CNRS, Université Paris-Sud (France)

    2014-10-15

    We introduce a novel way to extract information from turbulent datasets by applying an Auto Regressive Moving Average (ARMA) statistical analysis. Such analysis goes well beyond the analysis of the mean flow and of the fluctuations and links the behavior of the recorded time series to a discrete version of a stochastic differential equation which is able to describe the correlation structure in the dataset. We introduce a new index Υ that measures the difference between the resulting analysis and the Obukhov model of turbulence, the simplest stochastic model reproducing both Richardson law and the Kolmogorov spectrum. We test the method on datasets measured in a von Kármán swirling flow experiment. We found that the ARMA analysis is well correlated with spatial structures of the flow, and can discriminate between two different flows with comparable mean velocities, obtained by changing the forcing. Moreover, we show that the Υ is highest in regions where shear layer vortices are present, thereby establishing a link between deviations from the Kolmogorov model and coherent structures. These deviations are consistent with the ones observed by computing the Hurst exponents for the same time series. We show that some salient features of the analysis are preserved when considering global instead of local observables. Finally, we analyze flow configurations with multistability features where the ARMA technique is efficient in discriminating different stability branches of the system.

  14. Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle

    Directory of Open Access Journals (Sweden)

    Ali William Canaza-Cayo

    2015-10-01

    Full Text Available A total of 32,817 test-day milk yield (TDMY records of the first lactation of 4,056 Girolando cows daughters of 276 sires, collected from 118 herds between 2000 and 2011 were utilized to estimate the genetic parameters for TDMY via random regression models (RRM using Legendre’s polynomial functions whose orders varied from 3 to 5. In addition, nine measures of persistency in milk yield (PSi and the genetic trend of 305-day milk yield (305MY were evaluated. The fit quality criteria used indicated RRM employing the Legendre’s polynomial of orders 3 and 5 for fitting the genetic additive and permanent environment effects, respectively, as the best model. The heritability and genetic correlation for TDMY throughout the lactation, obtained with the best model, varied from 0.18 to 0.23 and from −0.03 to 1.00, respectively. The heritability and genetic correlation for persistency and 305MY varied from 0.10 to 0.33 and from −0.98 to 1.00, respectively. The use of PS7 would be the most suitable option for the evaluation of Girolando cattle. The estimated breeding values for 305MY of sires and cows showed significant and positive genetic trends. Thus, the use of selection indices would be indicated in the genetic evaluation of Girolando cattle for both traits.

  15. Assessment of regional metal levels in ambient air by statistical regression models.

    Science.gov (United States)

    Arruti, A; Fernández-Olmo, I; Irabien, A

    2011-07-01

    The assessment of the particulate matter (PM) levels and its constituents presented in the atmosphere is an important requirement of the air quality management and air pollution abatement. The heavy metal levels in PM10 are commonly evaluated by experimental measurements; nevertheless, the EC Directives also allow the Regional Governments to estimate the regulated metal levels (Pb in Directive 2008/50/EC and As, Ni and Cd in Directive 2004/107/EC) by objective estimation and modelling techniques. These techniques are proper alternatives to the experimental determination because the required analysis and/or the number of required sampling sites are reduced. The present work aims to estimate the annual levels of regulated heavy metals by means of multivariate linear regression (MLR) and principal component regression (PCR) at four sites in the Cantabria region (Northern Spain). Since the objective estimation techniques may only be applied when the regulated metal concentrations are below to the lower assessment threshold, a previous evaluation of the determined annual levels of heavy metals is conducted to test the fulfilment of the EC Directives requirements. At the four studied sites, the results show that the objective estimations are allowed alternatives to the experimental determination. The annual average metal concentrations are well estimated by the MLR technique in all the studied sites; furthermore, the EC quality requirements for the objective estimations are fulfilled by the developed statistical MLR models. Hence these estimations may be used by Regional Governments as a proper alternative to the experimental measurements for the regulated metal levels assessment.

  16. A selection of proper regression models from their existing set: qualitative, quantitative, graphical and logical criteria

    Directory of Open Access Journals (Sweden)

    Benková Marta

    1999-09-01

    Full Text Available The contribution presents an approach to the solution of the problem of processing experimental data of various origin using methods of regression and correlation analysis for two- and threedimensional relations between variables. It concentrates on calculation procedures, based on the lastsquare method and other possibilities of obtaining continual information about the quality of processed data as well as of resultant regression models

  17. Assessment of neural network, frequency ratio and regression models for landslide susceptibility analysis

    Science.gov (United States)

    Pradhan, B.; Buchroithner, M. F.; Mansor, S.

    2009-04-01

    This paper presents the assessment results of spatially based probabilistic three models using Geoinformation Techniques (GIT) for landslide susceptibility analysis at Penang Island in Malaysia. Landslide locations within the study areas were identified by interpreting aerial photographs, satellite images and supported with field surveys. Maps of the topography, soil type, lineaments and land cover were constructed from the spatial data sets. There are nine landslide related factors were extracted from the spatial database and the neural network, frequency ratio and logistic regression coefficients of each factor was computed. Landslide susceptibility maps were drawn for study area using neural network, frequency ratios and logistic regression models. For verification, the results of the analyses were compared with actual landslide locations in study area. The verification results show that frequency ratio model provides higher prediction accuracy than the ANN and regression models.

  18. truncSP: An R Package for Estimation of Semi-Parametric Truncated Linear Regression Models

    Directory of Open Access Journals (Sweden)

    Maria Karlsson

    2014-05-01

    Full Text Available Problems with truncated data occur in many areas, complicating estimation and inference. Regarding linear regression models, the ordinary least squares estimator is inconsistent and biased for these types of data and is therefore unsuitable for use. Alternative estimators, designed for the estimation of truncated regression models, have been developed. This paper presents the R package truncSP. The package contains functions for the estimation of semi-parametric truncated linear regression models using three different estimators: the symmetrically trimmed least squares, quadratic mode, and left truncated estimators, all of which have been shown to have good asymptotic and ?nite sample properties. The package also provides functions for the analysis of the estimated models. Data from the environmental sciences are used to illustrate the functions in the package.

  19. Logistic regression modeling to assess groundwater vulnerability to contamination in Hawaii, USA.

    Science.gov (United States)

    Mair, Alan; El-Kadi, Aly I

    2013-10-01

    Capture zone analysis combined with a subjective susceptibility index is currently used in Hawaii to assess vulnerability to contamination of drinking water sources derived from groundwater. In this study, we developed an alternative objective approach that combines well capture zones with multiple-variable logistic regression (LR) modeling and applied it to the highly-utilized Pearl Harbor and Honolulu aquifers on the island of Oahu, Hawaii. Input for the LR models utilized explanatory variables based on hydrogeology, land use, and well geometry/location. A suite of 11 target contaminants detected in the region, including elevated nitrate (>1 mg/L), four chlorinated solvents, four agricultural fumigants, and two pesticides, was used to develop the models. We then tested the ability of the new approach to accurately separate groups of wells with low and high vulnerability, and the suitability of nitrate as an indicator of other types of contamination. Our results produced contaminant-specific LR models that accurately identified groups of wells with the lowest/highest reported detections and the lowest/highest nitrate concentrations. Current and former agricultural land uses were identified as significant explanatory variables for eight of the 11 target contaminants, while elevated nitrate was a significant variable for five contaminants. The utility of the combined approach is contingent on the availability of hydrologic and chemical monitoring data for calibrating groundwater and LR models. Application of the approach using a reference site with sufficient data could help identify key variables in areas with similar hydrogeology and land use but limited data. In addition, elevated nitrate may also be a suitable indicator of groundwater contamination in areas with limited data. The objective LR modeling approach developed in this study is flexible enough to address a wide range of contaminants and represents a suitable addition to the current subjective approach

  20. Development of LACIE CCEA-1 weather/wheat yield models. [regression analysis

    Science.gov (United States)

    Strommen, N. D.; Sakamoto, C. M.; Leduc, S. K.; Umberger, D. E. (Principal Investigator)

    1979-01-01

    The advantages and disadvantages of the casual (phenological, dynamic, physiological), statistical regression, and analog approaches to modeling for grain yield are examined. Given LACIE's primary goal of estimating wheat production for the large areas of eight major wheat-growing regions, the statistical regression approach of correlating historical yield and climate data offered the Center for Climatic and Environmental Assessment the greatest potential return within the constraints of time and data sources. The basic equation for the first generation wheat-yield model is given. Topics discussed include truncation, trend variable, selection of weather variables, episodic events, strata selection, operational data flow, weighting, and model results.

  1. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...... conditions of the process. Hundreds of optimised cases with varied design parameters are used as observations in four multiple regression analyses. We analyse the model assumptions, prediction abilities and extrapolations, and compare the results with recent studies in the literature. The models...

  2. Use of Pollutant Load Regression Models with Various Sampling Frequencies for Annual Load Estimation

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2014-06-01

    Full Text Available Water quality data are collected by various sampling frequencies, and the data may not be collected at a high frequency nor over the range of streamflow conditions. Therefore, regression models are used to estimate pollutant data for days on which water quality data were not measured. Pollutant load regression models were evaluated with six sampling frequencies for daily nitrogen, phosphorus, and sediment data. Annual pollutant load estimates exhibited various behaviors by sampling frequency and also by the regression model used. Several distinct sampling frequency features were observed in the study. The first was that more frequent sampling did not necessarily lead to more accurate and precise annual pollutant load estimates. The second was that use of water quality data collected from storm events improved both accuracy and precision in annual pollutant load estimates for all water quality parameters. The third was that the pollutant regression model automatically selected by LOADEST did not necessarily lead to more accurate and precise annual pollutant load estimates. The fourth was that pollutant regression models displayed different behaviors for different water quality parameters in annual pollutant load estimation.

  3. Improved model of the retardance in citric acid coated ferrofluids using stepwise regression

    Science.gov (United States)

    Lin, J. F.; Qiu, X. R.

    2017-06-01

    Citric acid (CA) coated Fe3O4 ferrofluids (FFs) have been conducted for biomedical application. The magneto-optical retardance of CA coated FFs was measured by a Stokes polarimeter. Optimization and multiple regression of retardance in FFs were executed by Taguchi method and Microsoft Excel previously, and the F value of regression model was large enough. However, the model executed by Excel was not systematic. Instead we adopted the stepwise regression to model the retardance of CA coated FFs. From the results of stepwise regression by MATLAB, the developed model had highly predictable ability owing to F of 2.55897e+7 and correlation coefficient of one. The average absolute error of predicted retardances to measured retardances was just 0.0044%. Using the genetic algorithm (GA) in MATLAB, the optimized parametric combination was determined as [4.709 0.12 39.998 70.006] corresponding to the pH of suspension, molar ratio of CA to Fe3O4, CA volume, and coating temperature. The maximum retardance was found as 31.712°, close to that obtained by evolutionary solver in Excel and a relative error of -0.013%. Above all, the stepwise regression method was successfully used to model the retardance of CA coated FFs, and the maximum global retardance was determined by the use of GA.

  4. Regression to Causality

    DEFF Research Database (Denmark)

    Bordacconi, Mats Joe; Larsen, Martin Vinæs

    2014-01-01

    Humans are fundamentally primed for making causal attributions based on correlations. This implies that researchers must be careful to present their results in a manner that inhibits unwarranted causal attribution. In this paper, we present the results of an experiment that suggests regression...... models – one of the primary vehicles for analyzing statistical results in political science – encourage causal interpretation. Specifically, we demonstrate that presenting observational results in a regression model, rather than as a simple comparison of means, makes causal interpretation of the results...... of equivalent results presented as either regression models or as a test of two sample means. Our experiment shows that the subjects who were presented with results as estimates from a regression model were more inclined to interpret these results causally. Our experiment implies that scholars using regression...

  5. Random regression models in the evaluation of the growth curve of Simbrasil beef cattle

    NARCIS (Netherlands)

    Mota, M.; Marques, F.A.; Lopes, P.S.; Hidalgo, A.M.

    2013-01-01

    Random regression models were used to estimate the types and orders of random effects of (co)variance functions in the description of the growth trajectory of the Simbrasil cattle breed. Records for 7049 animals totaling 18,677 individual weighings were submitted to 15 models from the third to the

  6. Logistic regression models of factors influencing the location of bioenergy and biofuels plants

    Science.gov (United States)

    T.M. Young; R.L. Zaretzki; J.H. Perdue; F.M. Guess; X. Liu

    2011-01-01

    Logistic regression models were developed to identify significant factors that influence the location of existing wood-using bioenergy/biofuels plants and traditional wood-using facilities. Logistic models provided quantitative insight for variables influencing the location of woody biomass-using facilities. Availability of "thinnings to a basal area of 31.7m2/ha...

  7. The use of logistic regression in modelling the distributions of bird ...

    African Journals Online (AJOL)

    The method of logistic regression was used to model the observed geographical distribution patterns of bird species in Swaziland in relation to a set of environmental variables. Reporting rates derived from bird atlas data are used as an index of population densities. This is justified in part by the success of the modelling ...

  8. Regression models for interval censored survival data: Application to HIV infection in Danish homosexual men

    DEFF Research Database (Denmark)

    Carstensen, Bendix

    1996-01-01

    This paper shows how to fit excess and relative risk regression models to interval censored survival data, and how to implement the models in standard statistical software. The methods developed are used for the analysis of HIV infection rates in a cohort of Danish homosexual men....

  9. A national fine spatial scale land-use regression model for ozone

    NARCIS (Netherlands)

    Kerckhoffs, Jules|info:eu-repo/dai/nl/411260502; Wang, Meng|info:eu-repo/dai/nl/345480279; Meliefste, Kees; Malmqvist, Ebba; Fischer, Paul; Janssen, Nicole A H; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Hoek, Gerard|info:eu-repo/dai/nl/069553475

    Uncertainty about health effects of long-term ozone exposure remains. Land use regression (LUR) models have been used successfully for modeling fine scale spatial variation of primary pollutants but very limited for ozone. Our objective was to assess the feasibility of developing a national LUR

  10. Assessing the development of shorebird eggs using the flotation method: species - specific and generalized regression models

    NARCIS (Netherlands)

    Liebezeit, J.R.; Smith, P.A.; Lanctot, R.B.; Schekkerman, H.; Tulp, I.Y.M.; Kendall, S.J.; Tracy, D.M.; Rodrigues, R.J.; Meltofte, H.; Robinson, J.A.; Gratto-Trevor, C.; Mccaffery, B.J.; Morse, J.; Zack, S.W.

    2007-01-01

    We modeled the relationship between egg flotation and age of a developing embryo for 24 species of shorebirds. For 21 species, we used regression analyses to estimate hatching date by modeling egg angle and float height, measured as continuous variables, against embryo age. For eggs early in

  11. On pseudo-values for regression analysis in competing risks models

    DEFF Research Database (Denmark)

    Graw, F; Gerds, Thomas Alexander; Schumacher, M

    2009-01-01

    For regression on state and transition probabilities in multi-state models Andersen et al. (Biometrika 90:15-27, 2003) propose a technique based on jackknife pseudo-values. In this article we analyze the pseudo-values suggested for competing risks models and prove some conjectures regarding...

  12. Sample Size Determination for Regression Models Using Monte Carlo Methods in R

    Science.gov (United States)

    Beaujean, A. Alexander

    2014-01-01

    A common question asked by researchers using regression models is, What sample size is needed for my study? While there are formulae to estimate sample sizes, their assumptions are often not met in the collected data. A more realistic approach to sample size determination requires more information such as the model of interest, strength of the…

  13. Robust and Efficient Adaptive Estimation of Binary-Choice Regression Models

    NARCIS (Netherlands)

    Cizek, P.

    2007-01-01

    The binary-choice regression models such as probit and logit are used to describe the effect of explanatory variables on a binary response vari- able. Typically estimated by the maximum likelihood method, estimates are very sensitive to deviations from a model, such as heteroscedastic- ity and data

  14. Fitting multistate transition models with autoregressive logistic regression : Supervised exercise in intermittent claudication

    NARCIS (Netherlands)

    de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M

    1998-01-01

    The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a

  15. Sensitivity analysis and optimization of system dynamics models : Regression analysis and statistical design of experiments

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    1995-01-01

    This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for

  16. Deep ensemble learning of sparse regression models for brain disease diagnosis.

    Science.gov (United States)

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2017-04-01

    Recent studies on brain imaging analysis witnessed the core roles of machine learning techniques in computer-assisted intervention for brain disease diagnosis. Of various machine-learning techniques, sparse regression models have proved their effectiveness in handling high-dimensional data but with a small number of training samples, especially in medical problems. In the meantime, deep learning methods have been making great successes by outperforming the state-of-the-art performances in various applications. In this paper, we propose a novel framework that combines the two conceptually different methods of sparse regression and deep learning for Alzheimer's disease/mild cognitive impairment diagnosis and prognosis. Specifically, we first train multiple sparse regression models, each of which is trained with different values of a regularization control parameter. Thus, our multiple sparse regression models potentially select different feature subsets from the original feature set; thereby they have different powers to predict the response values, i.e., clinical label and clinical scores in our work. By regarding the response values from our sparse regression models as target-level representations, we then build a deep convolutional neural network for clinical decision making, which thus we call 'Deep Ensemble Sparse Regression Network.' To our best knowledge, this is the first work that combines sparse regression models with deep neural network. In our experiments with the ADNI cohort, we validated the effectiveness of the proposed method by achieving the highest diagnostic accuracies in three classification tasks. We also rigorously analyzed our results and compared with the previous studies on the ADNI cohort in the literature. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling

    Directory of Open Access Journals (Sweden)

    Van der Borght Koen

    2013-01-01

    Full Text Available Abstract Background Integrase inhibitors (INI form a new drug class in the treatment of HIV-1 patients. We developed a linear regression modeling approach to make a quantitative raltegravir (RAL resistance phenotype prediction, as Fold Change in IC50 against a wild type virus, from mutations in the integrase genotype. Methods We developed a clonal genotype-phenotype database with 991 clones from 153 clinical isolates of INI naïve and RAL treated patients, and 28 site-directed mutants. We did the development of the RAL linear regression model in two stages, employing a genetic algorithm (GA to select integrase mutations by consensus. First, we ran multiple GAs to generate first order linear regression models (GA models that were stochastically optimized to reach a goal R2 accuracy, and consisted of a fixed-length subset of integrase mutations to estimate INI resistance. Secondly, we derived a consensus linear regression model in a forward stepwise regression procedure, considering integrase mutations or mutation pairs by descending prevalence in the GA models. Results The most frequently occurring mutations in the GA models were 92Q, 97A, 143R and 155H (all 100%, 143G (90%, 148H/R (89%, 148K (88%, 151I (81%, 121Y (75%, 143C (72%, and 74M (69%. The RAL second order model contained 30 single mutations and five mutation pairs (p 2 performance of this model on the clonal training data was 0.97, and 0.78 on an unseen population genotype-phenotype dataset of 171 clinical isolates from RAL treated and INI naïve patients. Conclusions We describe a systematic approach to derive a model for predicting INI resistance from a limited amount of clonal samples. Our RAL second order model is made available as an Additional file for calculating a resistance phenotype as the sum of integrase mutations and mutation pairs.

  18. Longitudinal beta regression models for analyzing health-related quality of life scores over time

    Directory of Open Access Journals (Sweden)

    Hunger Matthias

    2012-09-01

    Full Text Available Abstract Background Health-related quality of life (HRQL has become an increasingly important outcome parameter in clinical trials and epidemiological research. HRQL scores are typically bounded at both ends of the scale and often highly skewed. Several regression techniques have been proposed to model such data in cross-sectional studies, however, methods applicable in longitudinal research are less well researched. This study examined the use of beta regression models for analyzing longitudinal HRQL data using two empirical examples with distributional features typically encountered in practice. Methods We used SF-6D utility data from a German older age cohort study and stroke-specific HRQL data from a randomized controlled trial. We described the conceptual differences between mixed and marginal beta regression models and compared both models to the commonly used linear mixed model in terms of overall fit and predictive accuracy. Results At any measurement time, the beta distribution fitted the SF-6D utility data and stroke-specific HRQL data better than the normal distribution. The mixed beta model showed better likelihood-based fit statistics than the linear mixed model and respected the boundedness of the outcome variable. However, it tended to underestimate the true mean at the upper part of the distribution. Adjusted group means from marginal beta model and linear mixed model were nearly identical but differences could be observed with respect to standard errors. Conclusions Understanding the conceptual differences between mixed and marginal beta regression models is important for their proper use in the analysis of longitudinal HRQL data. Beta regression fits the typical distribution of HRQL data better than linear mixed models, however, if focus is on estimating group mean scores rather than making individual predictions, the two methods might not differ substantially.

  19. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    Science.gov (United States)

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P valueregression P value). The statistical power of CAT test decreased, while the result of linear regression analysis remained the same when population size was reduced by 100 times and AMI incidence rate remained unchanged. The two statistical methods have their advantages and disadvantages. It is necessary to choose statistical method according the fitting degree of data, or comprehensively analyze the results of two methods.

  20. Genetic parameters for milk production by using random regression models with different alternatives of fixed regression modeling Parâmetros genéticos para produção de leite usando modelos de regressão aleatória com diferentes alternativas de modelagem da regressão fixa

    Directory of Open Access Journals (Sweden)

    Jaime Araújo Cobuci

    2011-03-01

    Full Text Available Records of test-day milk yields of the first three lactations of 25,500 Holstein cows were used to estimate genetic parameters for milk yield by using two alternatives of definition of fixed regression of the random regression models (RRM. Legendre polynomials of fourth and fifth orders were used to model regression of fixed curve (defined based on averages of the populations or multiple sub-populations formed by grouping animals which calved at the same age and in the same season of the year or random lactation curves (additive genetic and permanent enviroment. Akaike information criterion (AIC and Bayesian information criterion (BIC indicated that the models which used multiple regression of fixed lactation curves of lactation multiple regression model with fixed lactation curves had the best fit for the first lactation test-day milk yields and the models which used a single regression of fixed curve had the best fit for the second and third lactations. Heritability for milk yield during lactation estimates did not vary among models but ranged from 0.22 to 0.34, from 0.11 to 0.21, and from 0.10 to 0.20, respectively, in the first three lactations. Similarly to heridability estimates of genetic correlations did not vary among models. The use of single or multiple fixed regressions for fixed lactation curves by RRM does not influence the estimates of genetic parameters for test-day milk yield across lactations.Os registros de produção de leite no dia do controle das três primeiras lactações de 25,5 mil vacas da raça Holandesa foram utilizados para estimar parâmetros genéticos para produção de leite usando duas alternativas de definição da regressão fixa dos modelos de regressão aleatória (MRA. Os polinômios de Legendre de ordens 4 e 5 foram usados para modelar as regressões das curvas fixas (definidas com base nas médias das produções de leite no dia do controle da população ou de múltiplas sub-populações formadas pelo

  1. Tobit regression for modeling mean survival time using data subject to multiple sources of censoring.

    Science.gov (United States)

    Gong, Qi; Schaubel, Douglas E

    2018-01-22

    Mean survival time is often of inherent interest in medical and epidemiologic studies. In the presence of censoring and when covariate effects are of interest, Cox regression is the strong default, but mostly due to convenience and familiarity. When survival times are uncensored, covariate effects can be estimated as differences in mean survival through linear regression. Tobit regression can validly be performed through maximum likelihood when the censoring times are fixed (ie, known for each subject, even in cases where the outcome is observed). However, Tobit regression is generally inapplicable when the response is subject to random right censoring. We propose Tobit regression methods based on weighted maximum likelihood which are applicable to survival times subject to both fixed and random censoring times. Under the proposed approach, known right censoring is handled naturally through the Tobit model, with inverse probability of censoring weighting used to overcome random censoring. Essentially, the re-weighting data are intended to represent those that would have been observed in the absence of random censoring. We develop methods for estimating the Tobit regression parameter, then the population mean survival time. A closed form large-sample variance estimator is proposed for the regression parameter estimator, with a semiparametric bootstrap standard error estimator derived for the population mean. The proposed methods are easily implementable using standard software. Finite-sample properties are assessed through simulation. The methods are applied to a large cohort of patients wait-listed for kidney transplantation. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Spatial regression test for ensuring temperature data quality in southern Spain

    Science.gov (United States)

    Estévez, J.; Gavilán, P.; García-Marín, A. P.

    2018-01-01

    Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.

  3. Evaluation of accuracy of linear regression models in predicting urban stormwater discharge characteristics.

    Science.gov (United States)

    Madarang, Krish J; Kang, Joo-Hyon

    2014-06-01

    Stormwater runoff has been identified as a source of pollution for the environment, especially for receiving waters. In order to quantify and manage the impacts of stormwater runoff on the environment, predictive models and mathematical models have been developed. Predictive tools such as regression models have been widely used to predict stormwater discharge characteristics. Storm event characteristics, such as antecedent dry days (ADD), have been related to response variables, such as pollutant loads and concentrations. However it has been a controversial issue among many studies to consider ADD as an important variable in predicting stormwater discharge characteristics. In this study, we examined the accuracy of general linear regression models in predicting discharge characteristics of roadway runoff. A total of 17 storm events were monitored in two highway segments, located in Gwangju, Korea. Data from the monitoring were used to calibrate United States Environmental Protection Agency's Storm Water Management Model (SWMM). The calibrated SWMM was simulated for 55 storm events, and the results of total suspended solid (TSS) discharge loads and event mean concentrations (EMC) were extracted. From these data, linear regression models were developed. R(2) and p-values of the regression of ADD for both TSS loads and EMCs were investigated. Results showed that pollutant loads were better predicted than pollutant EMC in the multiple regression models. Regression may not provide the true effect of site-specific characteristics, due to uncertainty in the data. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  4. Predicting recovery of cognitive function soon after stroke: differential modeling of logarithmic and linear regression.

    Science.gov (United States)

    Suzuki, Makoto; Sugimura, Yuko; Yamada, Sumio; Omori, Yoshitsugu; Miyamoto, Masaaki; Yamamoto, Jun-ichi

    2013-01-01

    Cognitive disorders in the acute stage of stroke are common and are important independent predictors of adverse outcome in the long term. Despite the impact of cognitive disorders on both patients and their families, it is still difficult to predict the extent or duration of cognitive impairments. The objective of the present study was, therefore, to provide data on predicting the recovery of cognitive function soon after stroke by differential modeling with logarithmic and linear regression. This study included two rounds of data collection comprising 57 stroke patients enrolled in the first round for the purpose of identifying the time course of cognitive recovery in the early-phase group data, and 43 stroke patients in the second round for the purpose of ensuring that the correlation of the early-phase group data applied to the prediction of each individual's degree of cognitive recovery. In the first round, Mini-Mental State Examination (MMSE) scores were assessed 3 times during hospitalization, and the scores were regressed on the logarithm and linear of time. In the second round, calculations of MMSE scores were made for the first two scoring times after admission to tailor the structures of logarithmic and linear regression formulae to fit an individual's degree of functional recovery. The time course of early-phase recovery for cognitive functions resembled both logarithmic and linear functions. However, MMSE scores sampled at two baseline points based on logarithmic regression modeling could estimate prediction of cognitive recovery more accurately than could linear regression modeling (logarithmic modeling, R(2) = 0.676, Plinear regression modeling, R(2) = 0.598, P<0.0001). Logarithmic modeling based on MMSE scores could accurately predict the recovery of cognitive function soon after the occurrence of stroke. This logarithmic modeling with mathematical procedures is simple enough to be adopted in daily clinical practice.

  5. Bivariate least squares linear regression: Towards a unified analytic formalism. I. Functional models

    Science.gov (United States)

    Caimmi, R.

    2011-08-01

    Concerning bivariate least squares linear regression, the classical approach pursued for functional models in earlier attempts ( York, 1966, 1969) is reviewed using a new formalism in terms of deviation (matrix) traces which, for unweighted data, reduce to usual quantities leaving aside an unessential (but dimensional) multiplicative factor. Within the framework of classical error models, the dependent variable relates to the independent variable according to the usual additive model. The classes of linear models considered are regression lines in the general case of correlated errors in X and in Y for weighted data, and in the opposite limiting situations of (i) uncorrelated errors in X and in Y, and (ii) completely correlated errors in X and in Y. The special case of (C) generalized orthogonal regression is considered in detail together with well known subcases, namely: (Y) errors in X negligible (ideally null) with respect to errors in Y; (X) errors in Y negligible (ideally null) with respect to errors in X; (O) genuine orthogonal regression; (R) reduced major-axis regression. In the limit of unweighted data, the results determined for functional models are compared with their counterparts related to extreme structural models i.e. the instrumental scatter is negligible (ideally null) with respect to the intrinsic scatter ( Isobe et al., 1990; Feigelson and Babu, 1992). While regression line slope and intercept estimators for functional and structural models necessarily coincide, the contrary holds for related variance estimators even if the residuals obey a Gaussian distribution, with the exception of Y models. An example of astronomical application is considered, concerning the [O/H]-[Fe/H] empirical relations deduced from five samples related to different stars and/or different methods of oxygen abundance determination. For selected samples and assigned methods, different regression models yield consistent results within the errors (∓ σ) for both

  6. A review of land-use regression models to assess spatial variation of outdoor air pollution

    Science.gov (United States)

    Hoek, Gerard; Beelen, Rob; de Hoogh, Kees; Vienneau, Danielle; Gulliver, John; Fischer, Paul; Briggs, David

    Studies on the health effects of long-term average exposure to outdoor air pollution have played an important role in recent health impact assessments. Exposure assessment for epidemiological studies of long-term exposure to ambient air pollution remains a difficult challenge because of substantial small-scale spatial variation. Current approaches for assessing intra-urban air pollution contrasts include the use of exposure indicator variables, interpolation methods, dispersion models and land-use regression (LUR) models. LUR models have been increasingly used in the past few years. This paper provides a critical review of the different components of LUR models. We identified 25 land-use regression studies. Land-use regression combines monitoring of air pollution at typically 20-100 locations, spread over the study area, and development of stochastic models using predictor variables usually obtained through geographic information systems (GIS). Monitoring is usually temporally limited: one to four surveys of typically one or two weeks duration. Significant predictor variables include various traffic representations, population density, land use, physical geography (e.g. altitude) and climate. Land-use regression methods have generally been applied successfully to model annual mean concentrations of NO 2, NO x, PM 2.5, the soot content of PM 2.5 and VOCs in different settings, including European and North-American cities. The performance of the method in urban areas is typically better or equivalent to geo-statistical methods, such as kriging, and dispersion models. Further developments of the land-use regression method include more focus on developing models that can be transferred to other areas, inclusion of additional predictor variables such as wind direction or emission data and further exploration of focalsum methods. Models that include a spatial and a temporal component are of interest for (e.g. birth cohort) studies that need exposure variables on a finer

  7. Construction of risk prediction model of type 2 diabetes mellitus based on logistic regression

    Directory of Open Access Journals (Sweden)

    Li Jian

    2017-01-01

    Full Text Available Objective: to construct multi factor prediction model for the individual risk of T2DM, and to explore new ideas for early warning, prevention and personalized health services for T2DM. Methods: using logistic regression techniques to screen the risk factors for T2DM and construct the risk prediction model of T2DM. Results: Male’s risk prediction model logistic regression equation: logit(P=BMI × 0.735+ vegetables × (−0.671 + age × 0.838+ diastolic pressure × 0.296+ physical activity× (−2.287 + sleep ×(−0.009 +smoking ×0.214; Female’s risk prediction model logistic regression equation: logit(P=BMI ×1.979+ vegetables× (−0.292 + age × 1.355+ diastolic pressure× 0.522+ physical activity × (−2.287 + sleep × (−0.010.The area under the ROC curve of male was 0.83, the sensitivity was 0.72, the specificity was 0.86, the area under the ROC curve of female was 0.84, the sensitivity was 0.75, the specificity was 0.90. Conclusion: This study model data is from a compared study of nested case, the risk prediction model has been established by using the more mature logistic regression techniques, and the model is higher predictive sensitivity, specificity and stability.

  8. Attribute selection impact on linear and nonlinear regression models for crop yield prediction.

    Science.gov (United States)

    Gonzalez-Sanchez, Alberto; Frausto-Solis, Juan; Ojeda-Bustamante, Waldo

    2014-01-01

    Efficient cropping requires yield estimation for each involved crop, where data-driven models are commonly applied. In recent years, some data-driven modeling technique comparisons have been made, looking for the best model to yield prediction. However, attributes are usually selected based on expertise assessment or in dimensionality reduction algorithms. A fairer comparison should include the best subset of features for each regression technique; an evaluation including several crops is preferred. This paper evaluates the most common data-driven modeling techniques applied to yield prediction, using a complete method to define the best attribute subset for each model. Multiple linear regression, stepwise linear regression, M5' regression trees, and artificial neural networks (ANN) were ranked. The models were built using real data of eight crops sowed in an irrigation module of Mexico. To validate the models, three accuracy metrics were used: the root relative square error (RRSE), relative mean absolute error (RMAE), and correlation factor (R). The results show that ANNs are more consistent in the best attribute subset composition between the learning and the training stages, obtaining the lowest average RRSE (86.04%), lowest average RMAE (8.75%), and the highest average correlation factor (0.63).

  9. Attribute Selection Impact on Linear and Nonlinear Regression Models for Crop Yield Prediction

    Science.gov (United States)

    Gonzalez-Sanchez, Alberto; Frausto-Solis, Juan; Ojeda-Bustamante, Waldo

    2014-01-01

    Efficient cropping requires yield estimation for each involved crop, where data-driven models are commonly applied. In recent years, some data-driven modeling technique comparisons have been made, looking for the best model to yield prediction. However, attributes are usually selected based on expertise assessment or in dimensionality reduction algorithms. A fairer comparison should include the best subset of features for each regression technique; an evaluation including several crops is preferred. This paper evaluates the most common data-driven modeling techniques applied to yield prediction, using a complete method to define the best attribute subset for each model. Multiple linear regression, stepwise linear regression, M5′ regression trees, and artificial neural networks (ANN) were ranked. The models were built using real data of eight crops sowed in an irrigation module of Mexico. To validate the models, three accuracy metrics were used: the root relative square error (RRSE), relative mean absolute error (RMAE), and correlation factor (R). The results show that ANNs are more consistent in the best attribute subset composition between the learning and the training stages, obtaining the lowest average RRSE (86.04%), lowest average RMAE (8.75%), and the highest average correlation factor (0.63). PMID:24977201

  10. Modeling and adapting production environmental stress testing

    OpenAIRE

    Wilson, Simon

    2009-01-01

    PUBLISHED This study describes the production sampling environmental stress test (PSEST) process and the offline analysis conducted. Some of the key characteristics and parameters of the test are outlined. The analytical process is based on two types of regression model, each of which links a dependent variable (the log of time to failure in each dwell, or the log of the number failed in each dwell) to independent variables such as temperature and age. These two types of regres...

  11. Regression-based approach for testing the association between multi-region haplotype configuration and complex trait

    Directory of Open Access Journals (Sweden)

    Zhao Hongbo

    2009-09-01

    Full Text Available Abstract Background It is quite common that the genetic architecture of complex traits involves many genes and their interactions. Therefore, dealing with multiple unlinked genomic regions simultaneously is desirable. Results In this paper we develop a regression-based approach to assess the interactions of haplotypes that belong to different unlinked regions, and we use score statistics to test the null hypothesis of non-genetic association. Additionally, multiple marker combinations at each unlinked region are considered. The multiple tests are settled via the minP approach. The P value of the "best" multi-region multi-marker configuration is corrected via Monte-Carlo simulations. Through simulation studies, we assess the performance of the proposed approach and demonstrate its validity and power in testing for haplotype interaction association. Conclusion Our simulations showed that, for binary trait without covariates, our proposed methods prove to be equal and even more powerful than htr and hapcc which are part of the FAMHAP program. Additionally, our model can be applied to a wider variety of traits and allow adjustment for other covariates. To test the validity, our methods are applied to analyze the association between four unlinked candidate genes and pig meat quality.

  12. Development of multiple linear regression models for predicting the stormwater quality of urban sub-watersheds.

    Science.gov (United States)

    Arora, Amarpreet S; Reddy, Akepati S

    2014-01-01

    Stormwater management at urban sub-watershed level has been envisioned to include stormwater collection, treatment, and disposal of treated stormwater through groundwater recharging. Sizing, operation and control of the stormwater management systems require information on the quantities and characteristics of the stormwater generated. Stormwater characteristics depend upon dry spell between two successive rainfall events, intensity of rainfall and watershed characteristics. However, sampling and analysis of stormwater, spanning only few rainfall events, provides insufficient information on the characteristics. An attempt has been made in the present study to assess the stormwater characteristics through regression modeling. Stormwater of five sub-watersheds of Patiala city were sampled and analyzed. The results obtained were related with the antecedent dry periods and with the intensity of the rainfall event through regression modeling. Obtained regression models were used to assess the stormwater quality for various antecedent dry periods and rainfall event intensities.

  13. LINEAR REGRESSION MODEL ESTİMATİON FOR RIGHT CENSORED DATA

    Directory of Open Access Journals (Sweden)

    Ersin Yılmaz

    2016-05-01

    Full Text Available In this study, firstly we will define a right censored data. If we say shortly right-censored data is censoring values that above the exact line. This may be related with scaling device. And then  we will use response variable acquainted from right-censored explanatory variables. Then the linear regression model will be estimated. For censored data’s existence, Kaplan-Meier weights will be used for  the estimation of the model. With the weights regression model  will be consistent and unbiased with that.   And also there is a method for the censored data that is a semi parametric regression and this method also give  useful results  for censored data too. This study also might be useful for the health studies because of the censored data used in medical issues generally.

  14. Experimental evaluation of regression model-based walking speed estimation using lower body-mounted IMU.

    Science.gov (United States)

    Zihajehzadeh, Shaghayegh; Park, Edward J

    2016-08-01

    This study provides a concurrent comparison of regression model-based walking speed estimation accuracy using lower body mounted inertial sensors. The comparison is based on different sets of variables, features, mounting locations and regression methods. An experimental evaluation was performed on 15 healthy subjects during free walking trials. Our results show better accuracy of Gaussian process regression compared to least square regression using Lasso. Among the variables, external acceleration tends to provide improved accuracy. By using both time-domain and frequency-domain features, waist and ankle-mounted sensors result in similar accuracies: 4.5% for the waist and 4.9% for the ankle. When using only frequency-domain features, estimation accuracy based on a waist-mounted sensor suffers more compared to the one from ankle.

  15. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model.

    Science.gov (United States)

    Zhao, Rui; Catalano, Paul; DeGruttola, Victor G; Michor, Franziska

    2017-01-01

    The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many methods have been proposed to investigate longitudinal trends to better characterize patients and to understand disease progression. However, most approaches assume a homogeneous patient population and a uniform response trajectory over time and across patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which takes into account both population heterogeneity and nonlinear relationships between biomarkers and time. Simulation results show that our method was able to classify subjects according to their patterns of treatment response with greater than 80% accuracy in the three scenarios tested. We then applied our model to a large randomized controlled phase III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear, even among patients assigned to the same treatment cohort. In addition, between cohorts, there are distinct differences in terms of the regression parameters and the distributions among categories in the mixture. Those results imply that longitudinal data from clinical trials may harbor unobserved subgroups and nonlinear relationships; accounting for both may be important for analyzing longitudinal data.

  16. Regressive approach for predicting bearing capacity of bored piles from cone penetration test data

    Directory of Open Access Journals (Sweden)

    Iyad S. Alkroosh

    2015-10-01

    Full Text Available In this study, the least square support vector machine (LSSVM algorithm was applied to predicting the bearing capacity of bored piles embedded in sand and mixed soils. Pile geometry and cone penetration test (CPT results were used as input variables for prediction of pile bearing capacity. The data used were collected from the existing literature and consisted of 50 case records. The application of LSSVM was carried out by dividing the data into three sets: a training set for learning the problem and obtaining a relationship between input variables and pile bearing capacity, and testing and validation sets for evaluation of the predictive and generalization ability of the obtained relationship. The predictions of pile bearing capacity by LSSVM were evaluated by comparing with experimental data and with those by traditional CPT-based methods and the gene expression programming (GEP model. It was found that the LSSVM performs well with coefficient of determination, mean, and standard deviation equivalent to 0.99, 1.03, and 0.08, respectively, for the testing set, and 1, 1.04, and 0.11, respectively, for the validation set. The low values of the calculated mean squared error and mean absolute error indicated that the LSSVM was accurate in predicting the pile bearing capacity. The results of comparison also showed that the proposed algorithm predicted the pile bearing capacity more accurately than the traditional methods including the GEP model.

  17. Overall Preference of Running Shoes Can Be Predicted by Suitable Perception Factors Using a Multiple Regression Model.

    Science.gov (United States)

    Tay, Cheryl Sihui; Sterzing, Thorsten; Lim, Chen Yen; Ding, Rui; Kong, Pui Wah

    2017-05-01

    This study examined (a) the strength of four individual footwear perception factors to influence the overall preference of running shoes and (b) whether these perception factors satisfied the nonmulticollinear assumption in a regression model. Running footwear must fulfill multiple functional criteria to satisfy its potential users. Footwear perception factors, such as fit and cushioning, are commonly used to guide shoe design and development, but it is unclear whether running-footwear users are able to differentiate one factor from another. One hundred casual runners assessed four running shoes on a 15-cm visual analogue scale for four footwear perception factors (fit, cushioning, arch support, and stability) as well as for overall preference during a treadmill running protocol. Diagnostic tests showed an absence of multicollinearity between factors, where values for tolerance ranged from .36 to .72, corresponding to variance inflation factors of 2.8 to 1.4. The multiple regression model of these four footwear perception variables accounted for 77.7% to 81.6% of variance in overall preference, with each factor explaining a unique part of the total variance. Casual runners were able to rate each footwear perception factor separately, thus assigning each factor a true potential to improve overall preference for the users. The results also support the use of a multiple regression model of footwear perception factors to predict overall running shoe preference. Regression modeling is a useful tool for running-shoe manufacturers to more precisely evaluate how individual factors contribute to the subjective assessment of running footwear.

  18. Using exploratory regression to identify optimal driving factors for cellular automaton modeling of land use change.

    Science.gov (United States)

    Feng, Yongjiu; Tong, Xiaohua

    2017-09-22

    Defining transition rules is an important issue in cellular automaton (CA)-based land use modeling because these models incorporate highly correlated driving factors. Multicollinearity among correlated driving factors may produce negative effects that must be eliminated from the modeling. Using exploratory regression under pre-defined criteria, we identified all possible combinations of factors from the candidate factors affecting land use change. Three combinations that incorporate five driving factors meeting pre-defined criteria were assessed. With the selected combinations of factors, three logistic regression-based CA models were built to simulate dynamic land use change in Shanghai, China, from 2000 to 2015. For comparative purposes, a CA model with all candidate factors was also applied to simulate the land use change. Simulations using three CA models with multicollinearity eliminated performed better (with accuracy improvements about 3.6%) than the model incorporating all candidate factors. Our results showed that not all candidate factors are necessary for accurate CA modeling and the simulations were not sensitive to changes in statistically non-significant driving factors. We conclude that exploratory regression is an effective method to search for the optimal combinations of driving factors, leading to better land use change models that are devoid of multicollinearity. We suggest identification of dominant factors and elimination of multicollinearity before building land change models, making it possible to simulate more realistic outcomes.

  19. Accounting for spatial effects in land use regression for urban air pollution modeling.

    Science.gov (United States)

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Calibration drift in regression and machine learning models for acute kidney injury.

    Science.gov (United States)

    Davis, Sharon E; Lasko, Thomas A; Chen, Guanhua; Siew, Edward D; Matheny, Michael E

    2017-11-01

    Predictive analytics create opportunities to incorporate personalized risk estimates into clinical decision support. Models must be well calibrated to support decision-making, yet calibration deteriorates over time. This study explored the influence of modeling methods on performance drift and connected observed drift with data shifts in the patient population. Using 2003 admissions to Department of Veterans Affairs hospitals nationwide, we developed 7 parallel models for hospital-acquired acute kidney injury using common regression and machine learning methods, validating each over 9 subsequent years. Discrimination was maintained for all models. Calibration declined as all models increasingly overpredicted risk. However, the random forest and neural network models maintained calibration across ranges of probability, capturing more admissions than did the regression models. The magnitude of overprediction increased over time for the regression models while remaining stable and small for the machine learning models. Changes in the rate of acute kidney injury were strongly linked to increasing overprediction, while changes in predictor-outcome associations corresponded with diverging patterns of calibration drift across methods. Efficient and effective updating protocols will be essential for maintaining accuracy of, user confidence in, and safety of personalized risk predictions to support decision-making. Model updating protocols should be tailored to account for variations in calibration drift across methods and respond to periods of rapid performance drift rather than be limited to regularly scheduled annual or biannual intervals.

  1. Methods and applications of linear models regression and the analysis of variance

    CERN Document Server

    Hocking, Ronald R

    2013-01-01

    Praise for the Second Edition"An essential desktop reference book . . . it should definitely be on your bookshelf." -Technometrics A thoroughly updated book, Methods and Applications of Linear Models: Regression and the Analysis of Variance, Third Edition features innovative approaches to understanding and working with models and theory of linear regression. The Third Edition provides readers with the necessary theoretical concepts, which are presented using intuitive ideas rather than complicated proofs, to describe the inference that is appropriate for the methods being discussed. The book

  2. Regression Basics

    CERN Document Server

    Kahane, Leo H

    2007-01-01

    Using a friendly, nontechnical approach, the Second Edition of Regression Basics introduces readers to the fundamentals of regression. Accessible to anyone with an introductory statistics background, this book builds from a simple two-variable model to a model of greater complexity. Author Leo H. Kahane weaves four engaging examples throughout the text to illustrate not only the techniques of regression but also how this empirical tool can be applied in creative ways to consider a broad array of topics. New to the Second Edition Offers greater coverage of simple panel-data estimation:

  3. Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle.

    Science.gov (United States)

    Meltzer, Eric B; Barry, William T; D'Amico, Thomas A; Davis, Robert D; Lin, Shu S; Onaitis, Mark W; Morrison, Lake D; Sporn, Thomas A; Steele, Mark P; Noble, Paul W

    2011-10-05

    The accurate diagnosis of idiopathic pulmonary fibrosis (IPF) is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR) modelling to gene expression profiles of whole lung tissue. Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF) undergoing surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed cluster analyses to explore differences in our dataset. No significant difference was found between samples obtained from different lobes of the same patient. A significant difference was found between samples obtained at biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared to controls); the second signature was developed from the subset of IPF samples obtained at biopsy; the third signature was developed from IPF explants. To assess the validity of each signature, we used an independent cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal) in samples from the validation cohort. We compared the models' predictions to the true phenotype of each validation sample, and then calculated sensitivity, specificity and accuracy. Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small differences in test sensitivity, specificity and overall accuracy. This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to develop predictive models for cancer. This also represents the first report of an independently validated IPF gene expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from non-neoplastic lung tissue. In the future, BPR might be used to develop definitive diagnostic gene

  4. Milk yield persistency in Brazilian Gyr cattle based on a random regression model.

    Science.gov (United States)

    Pereira, R J; Verneque, R S; Lopes, P S; Santana, M L; Lagrotta, M R; Torres, R A; Vercesi Filho, A E; Machado, M A

    2012-06-15

    With the objective of evaluating measures of milk yield persistency, 27,000 test-day milk yield records from 3362 first lactations of Brazilian Gyr cows that calved between 1990 and 2007 were analyzed with a random regression model. Random, additive genetic and permanent environmental effects were modeled using Legendre polynomials of order 4 and 5, respectively. Residual variance was modeled using five classes. The average lactation curve was modeled using a fourth-order Legendre polynomial. Heritability estimates for measures of persistency ranged from 0.10 to 0.25. Genetic correlations between measures of persistency and 305-day milk yield (Y305) ranged from -0.52 to 0.03. At high selection intensities for persistency measures and Y305, few animals were selected in common. As the selection intensity for the two traits decreased, a higher percentage of animals were selected in common. The average predicted breeding values for Y305 according to year of birth of the cows had a substantial annual genetic gain. In contrast, no improvement in the average persistency breeding value was observed. We conclude that selection for total milk yield during lactation does not identify bulls or cows that are genetically superior in terms of milk yield persistency. A measure of persistency represented by the sum of deviations of estimated breeding value for days 31 to 280 in relation to estimated breeding value for day 30 should be preferred in genetic evaluations of this trait in the Gyr breed, since this measure showed a medium heritability and a genetic correlation with 305-day milk yield close to zero. In addition, this measure is more adequate at the time of peak lactation, which occurs between days 25 and 30 after calving in this breed.

  5. Bayesian probit regression model for the diagnosis of pulmonary fibrosis: proof-of-principle

    Directory of Open Access Journals (Sweden)

    Morrison Lake D

    2011-10-01

    Full Text Available Abstract Background The accurate diagnosis of idiopathic pulmonary fibrosis (IPF is a major clinical challenge. We developed a model to diagnose IPF by applying Bayesian probit regression (BPR modelling to gene expression profiles of whole lung tissue. Methods Whole lung tissue was obtained from patients with idiopathic pulmonary fibrosis (IPF undergoing surgical lung biopsy or lung transplantation. Controls were obtained from normal organ donors. We performed cluster analyses to explore differences in our dataset. No significant difference was found between samples obtained from different lobes of the same patient. A significant difference was found between samples obtained at biopsy versus explant. Following preliminary analysis of the complete dataset, we selected three subsets for the development of diagnostic gene signatures: the first signature was developed from all IPF samples (as compared to controls; the second signature was developed from the subset of IPF samples obtained at biopsy; the third signature was developed from IPF explants. To assess the validity of each signature, we used an independent cohort of IPF and normal samples. Each signature was used to predict phenotype (IPF versus normal in samples from the validation cohort. We compared the models' predictions to the true phenotype of each validation sample, and then calculated sensitivity, specificity and accuracy. Results Surprisingly, we found that all three signatures were reasonably valid predictors of diagnosis, with small differences in test sensitivity, specificity and overall accuracy. Conclusions This study represents the first use of BPR on whole lung tissue; previously, BPR was primarily used to develop predictive models for cancer. This also represents the first report of an independently validated IPF gene expression signature. In summary, BPR is a promising tool for the development of gene expression signatures from non-neoplastic lung tissue. In the future

  6. The Checkpoint Kinase 1 Inhibitor Prexasertib Induces Regression of Preclinical Models of Human Neuroblastoma.

    Science.gov (United States)

    Lowery, Caitlin D; VanWye, Alle B; Dowless, Michele; Blosser, Wayne; Falcon, Beverly L; Stewart, Julie; Stephens, Jennifer; Beckmann, Richard P; Bence Lin, Aimee; Stancato, Louis F

    2017-08-01

    Purpose: Checkpoint kinase 1 (CHK1) is a key regulator of the DNA damage response and a mediator of replication stress through modulation of replication fork licensing and activation of S and G2-M cell-cycle checkpoints. We evaluated prexasertib (LY2606368), a small-molecule CHK1 inhibitor currently in clinical testing, in multiple preclinical models of pediatric cancer. Following an initial assessment of prexasertib activity, this study focused on the preclinical models of neuroblastoma.Experimental Design: We evaluated the antiproliferative activity of prexasertib in a panel of cancer cell lines; neuroblastoma cell lines were among the most sensitive. Subsequent Western blot and immunofluorescence analyses measured DNA damage and DNA repair protein activation. Prexasertib was investigated in several cell line-derived xenograft mouse models of neuroblastoma.Results: Within 24 hours, single-agent prexasertib promoted γH2AX-positive double-strand DNA breaks and phosphorylation of DNA damage sensors ATM and DNA-PKcs, leading to neuroblastoma cell death. Knockdown of CHK1 and/or CHK2 by siRNA verified that the double-strand DNA breaks and cell death elicited by prexasertib were due to specific CHK1 inhibition. Neuroblastoma xenografts rapidly regressed following prexasertib administration, independent of starting tumor volume. Decreased Ki67 and increased immunostaining of endothelial and pericyte markers were observed in xenografts after only 6 days of exposure to prexasertib, potentially indicating a swift reduction in tumor volume and/or a direct effect on tumor vasculature.Conclusions: Overall, these data demonstrate that prexasertib is a specific inhibitor of CHK1 in neuroblastoma and leads to DNA damage and cell death in preclinical models of this devastating pediatric malignancy. Clin Cancer Res; 23(15); 4354-63. ©2017 AACR. ©2017 American Association for Cancer Research.

  7. Accounting for Zero Inflation of Mussel Parasite Counts Using Discrete Regression Models

    Directory of Open Access Journals (Sweden)

    Emel Çankaya

    2017-06-01

    Full Text Available In many ecological applications, the absences of species are inevitable due to either detection faults in samples or uninhabitable conditions for their existence, resulting in high number of zero counts or abundance. Usual practice for modelling such data is regression modelling of log(abundance+1 and it is well know that resulting model is inadequate for prediction purposes. New discrete models accounting for zero abundances, namely zero-inflated regression (ZIP and ZINB, Hurdle-Poisson (HP and Hurdle-Negative Binomial (HNB amongst others are widely preferred to the classical regression models. Due to the fact that mussels are one of the economically most important aquatic products of Turkey, the purpose of this study is therefore to examine the performances of these four models in determination of the significant biotic and abiotic factors on the occurrences of Nematopsis legeri parasite harming the existence of Mediterranean mussels (Mytilus galloprovincialis L.. The data collected from the three coastal regions of Sinop city in Turkey showed more than 50% of parasite counts on the average are zero-valued and model comparisons were based on information criterion. The results showed that the probability of the occurrence of this parasite is here best formulated by ZINB or HNB models and influential factors of models were found to be correspondent with ecological differences of the regions.

  8. Comparison of linear regression and artificial neural network model of a diesel engine fueled with biodiesel-alcohol mixtures

    Directory of Open Access Journals (Sweden)

    Erdi Tosun

    2016-12-01

    Full Text Available This study deals with usage of linear regression (LR and artificial neural network (ANN modeling to predict engine performance; torque and exhaust emissions; and carbon monoxide, oxides of nitrogen (CO, NOx of a naturally aspirated diesel engine fueled with standard diesel, peanut biodiesel (PME and biodiesel-alcohol (EME, MME, PME mixtures. Experimental work was conducted to obtain data to train and test the models. Backpropagation algorithm was used as a learning algorithm of ANN in the multilayered feedforward networks. Engine speed (rpm and fuel properties, cetane number (CN, lower heating value (LHV and density (ρ were used as input parameters in order to predict performance and emission parameters. It was shown that while linear regression modeling approach was deficient to predict desired parameters, more accurate results were obtained with the usage of ANN.

  9. Improving regression-model-based streamwater constituent load estimates derived from serially correlated data

    Science.gov (United States)

    Aulenbach, Brent T.

    2013-01-01

    A regression-model based approach is a commonly used, efficient method for estimating streamwater constituent load when there is a relationship between streamwater constituent concentration and continuous variables such as streamwater discharge, season and time. A subsetting experiment using a 30-year dataset of daily suspended sediment observations from the Mississippi River at Thebes, Illinois, was performed to determine optimal sampling frequency, model calibration period length, and regression model methodology, as well as to determine the effect of serial correlation of model residuals on load estimate precision. Two regression-based methods were used to estimate streamwater loads, the Adjusted Maximum Likelihood Estimator (AMLE), and the composite method, a hybrid load estimation approach. While both methods accurately and precisely estimated loads at the model’s calibration period time scale, precisions were progressively worse at shorter reporting periods, from annually to monthly. Serial correlation in model residuals resulted in observed AMLE precision to be significantly worse than the model calculated standard errors of prediction. The composite method effectively improved upon AMLE loads for shorter reporting periods, but required a sampling interval of at least 15-days or shorter, when the serial correlations in the observed load residuals were greater than 0.15. AMLE precision was better at shorter sampling intervals and when using the shortest model calibration periods, such that the regression models better fit the temporal changes in the concentration–discharge relationship. The models with the largest errors typically had poor high flow sampling coverage resulting in unrepresentative models. Increasing sampling frequency and/or targeted high flow sampling are more efficient approaches to ensure sufficient sampling and to avoid poorly performing models, than increasing calibration period length.

  10. Analysis of the influence of quantile regression model on mainland tourists' service satisfaction performance.

    Science.gov (United States)

    Wang, Wen-Cheng; Cho, Wen-Chien; Chen, Yin-Jen

    2014-01-01

    It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  11. Replica analysis of overfitting in regression models for time-to-event data

    Science.gov (United States)

    Coolen, A. C. C.; Barrett, J. E.; Paga, P.; Perez-Vicente, C. J.

    2017-09-01

    Overfitting, which happens when the number of parameters in a model is too large compared to the number of data points available for determining these parameters, is a serious and growing problem in survival analysis. While modern medicine presents us with data of unprecedented dimensionality, these data cannot yet be used effectively for clinical outcome prediction. Standard error measures in maximum likelihood regression, such as p-values and z-scores, are blind to overfitting, and even for Cox’s proportional hazards model (the main tool of medical statisticians), one finds in literature only rules of thumb on the number of samples required to avoid overfitting. In this paper we present a mathematical theory of overfitting in regression models for time-to-event data, which aims to increase our quantitative understanding of the problem and provide practical tools with which to correct regression outcomes for the impact of overfitting. It is based on the replica method, a statistical mechanical technique for the analysis of heterogeneous many-variable systems that has been used successfully for several decades in physics, biology, and computer science, but not yet in medical statistics. We develop the theory initially for arbitrary regression models for time-to-event data, and verify its predictions in detail for the popular Cox model.

  12. Parametric and Nonparametric Empirical Regression Models: Case Study of Copper Bromide Laser Generation

    Directory of Open Access Journals (Sweden)

    S. G. Gocheva-Ilieva

    2010-01-01

    Full Text Available In order to model the output laser power of a copper bromide laser with wavelengths of 510.6 and 578.2 nm we have applied two regression techniques—multiple linear regression and multivariate adaptive regression splines. The models have been constructed on the basis of PCA factors for historical data. The influence of first- and second-order interactions between predictors has been taken into account. The models are easily interpreted and have good prediction power, which is established from the results of their validation. The comparison of the derived models shows that these based on multivariate adaptive regression splines have an advantage over the others. The obtained results allow for the clarification of relationships between laser generation and the observed laser input variables, for better determining their influence on laser generation, in order to improve the experimental setup and laser production technology. They can be useful for evaluation of known experiments as well as for prediction of future experiments. The developed modeling methodology is also applicable for a wide range of similar laser devices—metal vapor lasers and gas lasers.

  13. Analysis of the Influence of Quantile Regression Model on Mainland Tourists’ Service Satisfaction Performance

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wang

    2014-01-01

    Full Text Available It is estimated that mainland Chinese tourists travelling to Taiwan can bring annual revenues of 400 billion NTD to the Taiwan economy. Thus, how the Taiwanese Government formulates relevant measures to satisfy both sides is the focus of most concern. Taiwan must improve the facilities and service quality of its tourism industry so as to attract more mainland tourists. This paper conducted a questionnaire survey of mainland tourists and used grey relational analysis in grey mathematics to analyze the satisfaction performance of all satisfaction question items. The first eight satisfaction items were used as independent variables, and the overall satisfaction performance was used as a dependent variable for quantile regression model analysis to discuss the relationship between the dependent variable under different quantiles and independent variables. Finally, this study further discussed the predictive accuracy of the least mean regression model and each quantile regression model, as a reference for research personnel. The analysis results showed that other variables could also affect the overall satisfaction performance of mainland tourists, in addition to occupation and age. The overall predictive accuracy of quantile regression model Q0.25 was higher than that of the other three models.

  14. Antibiotic Resistances in Livestock: A Comparative Approach to Identify an Appropriate Regression Model for Count Data

    Directory of Open Access Journals (Sweden)

    Anke Hüls

    2017-05-01

    Full Text Available Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene measures and methods for resistance prevention and control, epidemiological studies on a population level are needed to detect factors associated with antimicrobial resistance in livestock holdings. In general, regression models are used to describe these relationships between environmental factors and resistance outcome. Besides the study design, the correlation structures of the different outcomes of antibiotic resistance and structural zero measurements on the resistance outcome as well as on the exposure side are challenges for the epidemiological model building process. The use of appropriate regression models that acknowledge these complexities is essential to assure valid epidemiological interpretations. The aims of this paper are (i to explain the model building process comparing several competing models for count data (negative binomial model, quasi-Poisson model, zero-inflated model, and hurdle model and (ii to compare these models using data from a cross-sectional study on antibiotic resistance in animal husbandry. These goals are essential to evaluate which model is most suitable to identify potential prevention measures. The dataset used as an example in our analyses was generated initially to study the prevalence and associated factors for the appearance of cefotaxime-resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome was the count of samples with resistant bacteria. There was almost no overdispersion and only moderate evidence of excess zeros in the data. Our analyses show that it is essential to evaluate regression models in studies analyzing the relationship between environmental factors and antibiotic resistances in livestock. After model comparison based on evaluation of model predictions, Akaike information criterion, and Pearson residuals, here the hurdle model was judged to be the most appropriate

  15. INVESTIGATION OF E-MAIL TRAFFIC BY USING ZERO-INFLATED REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    Yılmaz KAYA

    2012-06-01

    Full Text Available Based on count data obtained with a value of zero may be greater than anticipated. These types of data sets should be used to analyze by regression methods taking into account zero values. Zero- Inflated Poisson (ZIP, Zero-Inflated negative binomial (ZINB, Poisson Hurdle (PH, negative binomial Hurdle (NBH are more common approaches in modeling more zero value possessing dependent variables than expected. In the present study, the e-mail traffic of Yüzüncü Yıl University in 2009 spring semester was investigated. ZIP and ZINB, PH and NBH regression methods were applied on the data set because more zeros counting (78.9% were found in data set than expected. ZINB and NBH regression considered zero dispersion and overdispersion were found to be more accurate results due to overdispersion and zero dispersion in sending e-mail. ZINB is determined to be best model accordingto Vuong statistics and information criteria.

  16. Age estimation based on pelvic ossification using regression models from conventional radiography.

    Science.gov (United States)

    Zhang, Kui; Dong, Xiao-Ai; Fan, Fei; Deng, Zhen-Hua

    2016-07-01

    To establish regression models for age estimation from the combination of the ossification of iliac crest and ischial tuberosity. One thousand three hundred and seventy-nine conventional pelvic radiographs at the West China Hospital of Sichuan University between January 2010 and June 2012 were evaluated retrospectively. The receiver operating characteristic analysis was performed to measure the value of estimation of 18 years of age with the classification scheme for the iliac crest and ischial tuberosity. Regression analysis was performed, and formulas for calculating approximate chronological age according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity were developed. The areas under the receiver operating characteristic (ROC) curves were above 0.9 (p ossification and the ischial tuberosity may be used for age estimation. And the present established cubic regression model according to the combination developmental status of the ossification for the iliac crest and ischial tuberosity can be used for age estimation.

  17. Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors

    Directory of Open Access Journals (Sweden)

    Xibin Zhang

    2016-04-01

    Full Text Available This paper develops a sampling algorithm for bandwidth estimation in a nonparametric regression model with continuous and discrete regressors under an unknown error density. The error density is approximated by the kernel density estimator of the unobserved errors, while the regression function is estimated using the Nadaraya-Watson estimator admitting continuous and discrete regressors. We derive an approximate likelihood and posterior for bandwidth parameters, followed by a sampling algorithm. Simulation results show that the proposed approach typically leads to better accuracy of the resulting estimates than cross-validation, particularly for smaller sample sizes. This bandwidth estimation approach is applied to nonparametric regression model of the Australian All Ordinaries returns and the kernel density estimation of gross domestic product (GDP growth rates among the organisation for economic co-operation and development (OECD and non-OECD countries.

  18. Mixed-Effects Logistic Regression Models for Indirectly Observed Discrete Outcome Variables.

    Science.gov (United States)

    Vermunt, Jeroen K

    2005-01-01

    A well-established approach to modeling clustered data introduces random effects in the model of interest. Mixed-effects logistic regression models can be used to predict discrete outcome variables when observations are correlated. An extension of the mixed-effects logistic regression model is presented in which the dependent variable is a latent class variable. This method makes it possible to deal simultaneously with the problems of correlated observations and measurement error in the dependent variable. As is shown, maximum likelihood estimation is feasible by means of an EM algorithm with an E step that makes use of the special structure of the likelihood function. The new model is illustrated with an example from organizational psychology.

  19. Probabilistic clustering and shape modelling of white matter fibre bundles using regression mixtures.

    Science.gov (United States)

    Ratnarajah, Nagulan; Simmons, Andy; Hojjatoleslami, Ali

    2011-01-01

    We present a novel approach for probabilistic clustering of white matter fibre pathways using curve-based regression mixture modelling techniques in 3D curve space. The clustering algorithm is based on a principled method for probabilistic modelling of a set of fibre trajectories as individual sequences of points generated from a finite mixture model consisting of multivariate polynomial regression model components. Unsupervised learning is carried out using maximum likelihood principles. Specifically, conditional mixture is used together with an EM algorithm to estimate cluster membership. The result of clustering is a probabilistic assignment of fibre trajectories to each cluster and an estimate of cluster parameters. A statistical shape model is calculated for each clustered fibre bundle using fitted parameters of the probabilistic clustering. We illustrate the potential of our clustering approach on synthetic and real data.

  20. Profile-driven regression for modeling and runtime optimization of mobile networks

    DEFF Research Database (Denmark)

    McClary, Dan; Syrotiuk, Violet; Kulahci, Murat

    2010-01-01

    Computer networks often display nonlinear behavior when examined over a wide range of operating conditions. There are few strategies available for modeling such behavior and optimizing such systems as they run. Profile-driven regression is developed and applied to modeling and runtime optimization...... of throughput in a mobile ad hoc network, a self-organizing collection of mobile wireless nodes without any fixed infrastructure. The intermediate models generated in profile-driven regression are used to fit an overall model of throughput, and are also used to optimize controllable factors at runtime. Unlike...... others, the throughput model accounts for node speed. The resulting optimization is very effective; locally optimizing the network factors at runtime results in throughput as much as six times higher than that achieved with the factors at their default levels....

  1. A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments.

    Science.gov (United States)

    Briggs, D J; de Hoogh, C; Gulliver, J; Wills, J; Elliott, P; Kingham, S; Smallbone, K

    2000-05-15

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model--developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project--uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide

  2. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Science.gov (United States)

    Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee

    2016-02-01

    The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  3. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Directory of Open Access Journals (Sweden)

    Saro Lee

    2016-02-01

    Full Text Available The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS. These factors were analysed using artificial neural network (ANN and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50% and a test set (50%. A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10% was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%. Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330, and ‘aspect’ yielded the lowest value (1.000. This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  4. Multilevel Regression Modeling of Nonlinear Processes: Derivation and Applications to Climatic Variability.

    Science.gov (United States)

    Kravtsov, S.; Kondrashov, D.; Ghil, M.

    2005-11-01

    Predictive models are constructed to best describe an observed field’s statistics within a given class of nonlinear dynamics driven by a spatially coherent noise that is white in time. For linear dynamics, such inverse stochastic models are obtained by multiple linear regression (MLR). Nonlinear dynamics, when more appropriate, is accommodated by applying multiple polynomial regression (MPR) instead; the resulting model uses polynomial predictors, but the dependence on the regression parameters is linear in both MPR and MLR.The basic concepts are illustrated using the Lorenz convection model, the classical double-well problem, and a three-well problem in two space dimensions. Given a data sample that is long enough, MPR successfully reconstructs the model coefficients in the former two cases, while the resulting inverse model captures the three-regime structure of the system’s probability density function (PDF) in the latter case.A novel multilevel generalization of the classic regression procedure is introduced next. In this generalization, the residual stochastic forcing at a given level is subsequently modeled as a function of variables at this level and all the preceding ones. The number of levels is determined so that the lag-0 covariance of the residual forcing converges to a constant matrix, while its lag-1 covariance vanishes.This method has been applied to the output of a three-layer, quasigeostrophic model and to the analysis of Northern Hemisphere wintertime geopotential height anomalies. In both cases, the inverse model simulations reproduce well the multiregime structure of the PDF constructed in the subspace spanned by the dataset’s leading empirical orthogonal functions, as well as the detailed spectrum of the dataset’s temporal evolution. These encouraging results are interpreted in terms of the modeled low-frequency flow’s feedback on the statistics of the subgrid-scale processes.

  5. Coupled variable selection for regression modeling of complex treatment patterns in a clinical cancer registry.

    Science.gov (United States)

    Schmidtmann, I; Elsäßer, A; Weinmann, A; Binder, H

    2014-12-30

    For determining a manageable set of covariates potentially influential with respect to a time-to-event endpoint, Cox proportional hazards models can be combined with variable selection techniques, such as stepwise forward selection or backward elimination based on p-values, or regularized regression techniques such as component-wise boosting. Cox regression models have also been adapted for dealing with more complex event patterns, for example, for competing risks settings with separate, cause-specific hazard models for each event type, or for determining the prognostic effect pattern of a variable over different landmark times, with one conditional survival model for each landmark. Motivated by a clinical cancer registry application, where complex event patterns have to be dealt with and variable selection is needed at the same time, we propose a general approach for linking variable selection between several Cox models. Specifically, we combine score statistics for each covariate across models by Fisher's method as a basis for variable selection. This principle is implemented for a stepwise forward selection approach as well as for a regularized regression technique. In an application to data from hepatocellular carcinoma patients, the coupled stepwise approach is seen to facilitate joint interpretation of the different cause-specific Cox models. In conditional survival models at landmark times, which address updates of prediction as time progresses and both treatment and other potential explanatory variables may change, the coupled regularized regression approach identifies potentially important, stably selected covariates together with their effect time pattern, despite having only a small number of events. These results highlight the promise of the proposed approach for coupling variable selection between Cox models, which is particularly relevant for modeling for clinical cancer registries with their complex event patterns. Copyright © 2014 John Wiley & Sons

  6. Predicting 30-day Hospital Readmission with Publicly Available Administrative Database. A Conditional Logistic Regression Modeling Approach.

    Science.gov (United States)

    Zhu, K; Lou, Z; Zhou, J; Ballester, N; Kong, N; Parikh, P

    2015-01-01

    This article is part of the Focus Theme of Methods of Information in Medicine on "Big Data and Analytics in Healthcare". Hospital readmissions raise healthcare costs and cause significant distress to providers and patients. It is, therefore, of great interest to healthcare organizations to predict what patients are at risk to be readmitted to their hospitals. However, current logistic regression based risk prediction models have limited prediction power when applied to hospital administrative data. Meanwhile, although decision trees and random forests have been applied, they tend to be too complex to understand among the hospital practitioners. Explore the use of conditional logistic regression to increase the prediction accuracy. We analyzed an HCUP statewide inpatient discharge record dataset, which includes patient demographics, clinical and care utilization data from California. We extracted records of heart failure Medicare beneficiaries who had inpatient experience during an 11-month period. We corrected the data imbalance issue with under-sampling. In our study, we first applied standard logistic regression and decision tree to obtain influential variables and derive practically meaning decision rules. We then stratified the original data set accordingly and applied logistic regression on each data stratum. We further explored the effect of interacting variables in the logistic regression modeling. We conducted cross validation to assess the overall prediction performance of conditional logistic regression (CLR) and compared it with standard classification models. The developed CLR models outperformed several standard classification models (e.g., straightforward logistic regression, stepwise logistic regression, random forest, support vector machine). For example, the best CLR model improved the classification accuracy by nearly 20% over the straightforward logistic regression model. Furthermore, the developed CLR models tend to achieve better sensitivity of

  7. Publically accessible decision support system of the spatially referenced regressions on watershed attributes (SPARROW) model and model enhancements in South Carolina

    Science.gov (United States)

    Celeste Journey; Anne B. Hoos; David E. Ladd; John W. brakebill; Richard A. Smith

    2016-01-01

    The U.S. Geological Survey (USGS) National Water Quality Assessment program has developed a web-based decision support system (DSS) to provide free public access to the steady-stateSPAtially Referenced Regressions On Watershed attributes (SPARROW) model simulation results on nutrient conditions in streams and rivers and to offer scenario testing capabilities for...

  8. Identifying Autocorrelation Generated by Various Error Processes in Interrupted Time-Series Regression Designs: A Comparison of AR1 and Portmanteau Tests

    Science.gov (United States)

    Huitema, Bradley E.; McKean, Joseph W.

    2007-01-01

    Regression models used in the analysis of interrupted time-series designs assume statistically independent errors. Four methods of evaluating this assumption are the Durbin-Watson (D-W), Huitema-McKean (H-M), Box-Pierce (B-P), and Ljung-Box (L-B) tests. These tests were compared with respect to Type I error and power under a wide variety of error…

  9. Evaluating Non-Linear Regression Models in Analysis of Persian Walnut Fruit Growth

    Directory of Open Access Journals (Sweden)

    I. Karamatlou

    2016-02-01

    Full Text Available Introduction: Persian walnut (Juglans regia L. is a large, wind-pollinated, monoecious, dichogamous, long lived, perennial tree cultivated for its high quality wood and nuts throughout the temperate regions of the world. Growth model methodology has been widely used in the modeling of plant growth. Mathematical models are important tools to study the plant growth and agricultural systems. These models can be applied for decision-making anddesigning management procedures in horticulture. Through growth analysis, planning for planting systems, fertilization, pruning operations, harvest time as well as obtaining economical yield can be more accessible.Non-linear models are more difficult to specify and estimate than linear models. This research was aimed to studynon-linear regression models based on data obtained from fruit weight, length and width. Selecting the best models which explain that fruit inherent growth pattern of Persian walnut was a further goal of this study. Materials and Methods: The experimental material comprising 14 Persian walnut genotypes propagated by seed collected from a walnut orchard in Golestan province, Minoudasht region, Iran, at latitude 37◦04’N; longitude 55◦32’E; altitude 1060 m, in a silt loam soil type. These genotypes were selected as a representative sampling of the many walnut genotypes available throughout the Northeastern Iran. The age range of walnut trees was 30 to 50 years. The annual mean temperature at the location is16.3◦C, with annual mean rainfall of 690 mm.The data used here is the average of walnut fresh fruit and measured withgram/millimeter/day in2011.According to the data distribution pattern, several equations have been proposed to describesigmoidal growth patterns. Here, we used double-sigmoid and logistic–monomolecular models to evaluate fruit growth based on fruit weight and4different regression models in cluding Richards, Gompertz, Logistic and Exponential growth for evaluation

  10. A random regression model in analysis of litter size in pigs | Lukovi& ...

    African Journals Online (AJOL)

    Dispersion parameters for number of piglets born alive (NBA) were estimated using a random regression model (RRM). Two data sets of litter records from the Nemščak farm in Slovenia were used for analyses. The first dataset (DS1) included records from the first to the sixth parity. The second dataset (DS2) was extended ...

  11. White Noise Assumptions Revisited : Regression Models and Statistical Designs for Simulation Practice

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2006-01-01

    Classic linear regression models and their concomitant statistical designs assume a univariate response and white noise.By definition, white noise is normally, independently, and identically distributed with zero mean.This survey tries to answer the following questions: (i) How realistic are these

  12. Validation of prediction models based on lasso regression with multiply imputed data

    NARCIS (Netherlands)

    Musoro, Jammbe Z.; Zwinderman, Aeilko H.; Puhan, Milo A.; ter Riet, Gerben; Geskus, Ronald B.

    2014-01-01

    In prognostic studies, the lasso technique is attractive since it improves the quality of predictions by shrinking regression coefficients, compared to predictions based on a model fitted via unpenalized maximum likelihood. Since some coefficients are set to zero, parsimony is achieved as well. It

  13. Regression model for the study of sole and cumulative effect of ...

    African Journals Online (AJOL)

    The effect of variability in temperature, solar radiation and photothermal quotient were studied under varying planting windows in three wheat genotypes to cope environmental vulnerability. Regression models are regarded as valuable tools for the evaluation of temperature, solar radiation and photothermal quotient effects ...

  14. Climate Impacts on Chinese Corn Yields: A Fractional Polynomial Regression Model

    NARCIS (Netherlands)

    Kooten, van G.C.; Sun, Baojing

    2012-01-01

    In this study, we examine the effect of climate on corn yields in northern China using data from ten districts in Inner Mongolia and two in Shaanxi province. A regression model with a flexible functional form is specified, with explanatory variables that include seasonal growing degree days,

  15. Using ROC curves to compare neural networks and logistic regression for modeling individual noncatastrophic tree mortality

    Science.gov (United States)

    Susan L. King

    2003-01-01

    The performance of two classifiers, logistic regression and neural networks, are compared for modeling noncatastrophic individual tree mortality for 21 species of trees in West Virginia. The output of the classifier is usually a continuous number between 0 and 1. A threshold is selected between 0 and 1 and all of the trees below the threshold are classified as...

  16. Spatial Variation and Land Use Regression Modeling of the Oxidative Potential of Fine Particles

    NARCIS (Netherlands)

    Yang, Aileen; Wang, Meng; Eeftens, Marloes; Beelen, Rob; Dons, Evi; Leseman, Daan L; Brunekreef, Bert; Cassee, Flemming R; Janssen, Nicole A; Hoek, Gerard

    2015-01-01

    BACKGROUND: Oxidative potential (OP) has been suggested to be a more health relevant metric than particulate matter (PM) mass. Land use regression (LUR) models can estimate long-term exposure to air pollution in epidemiological studies, but few have been developed for OP. OBJECTIVES: We aimed to

  17. [Prediction model of health workforce and beds in county hospitals of Hunan by multiple linear regression].

    Science.gov (United States)

    Ling, Ru; Liu, Jiawang

    2011-12-01

    To construct prediction model for health workforce and hospital beds in county hospitals of Hunan by multiple linear regression. We surveyed 16 counties in Hunan with stratified random sampling according to uniform questionnaires,and multiple linear regression analysis with 20 quotas selected by literature view was done. Independent variables in the multiple linear regression model on medical personnels in county hospitals included the counties' urban residents' income, crude death rate, medical beds, business occupancy, professional equipment value, the number of devices valued above 10 000 yuan, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, and utilization rate of hospital beds. Independent variables in the multiple linear regression model on county hospital beds included the the population of aged 65 and above in the counties, disposable income of urban residents, medical personnel of medical institutions in county area, business occupancy, the total value of professional equipment, fixed assets, long-term debt, medical income, medical expenses, outpatient and emergency visits, hospital visits, actual available bed days, utilization rate of hospital beds, and length of hospitalization. The prediction model shows good explanatory and fitting, and may be used for short- and mid-term forecasting.

  18. Not Quite Normal: Consequences of Violating the Assumption of Normality in Regression Mixture Models

    Science.gov (United States)

    Van Horn, M. Lee; Smith, Jessalyn; Fagan, Abigail A.; Jaki, Thomas; Feaster, Daniel J.; Masyn, Katherine; Hawkins, J. David; Howe, George

    2012-01-01

    Regression mixture models, which have only recently begun to be used in applied research, are a new approach for finding differential effects. This approach comes at the cost of the assumption that error terms are normally distributed within classes. This study uses Monte Carlo simulations to explore the effects of relatively minor violations of…

  19. A hierarchically adaptable spatial regression model to link aggregated health data and environmental data

    NARCIS (Netherlands)

    Truong Ngoc Phuong, Phuong; Stein, A.

    2017-01-01

    Health data and environmental data are commonly collected at different levels of aggregation. A persistent challenge of using a spatial regression model to link these data is that their associations can vary as a function of aggregation. This results into ecological fallacy if association at one

  20. Semi-parametric estimation of random effects in a logistic regression model using conditional inference

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2016-01-01

    This paper describes a new approach to the estimation in a logistic regression model with two crossed random effects where special interest is in estimating the variance of one of the effects while not making distributional assumptions about the other effect. A composite likelihood is studied...