Sample records for testing refinement simulation

  1. Computer simulation of refining process of a high consistency disc refiner based on CFD (United States)

    Wang, Ping; Yang, Jianwei; Wang, Jiahui


    In order to reduce refining energy consumption, the ANSYS CFX was used to simulate the refining process of a high consistency disc refiner. In the first it was assumed to be uniform Newton fluid of turbulent state in disc refiner with the k-ɛ flow model; then meshed grids and set the boundary conditions in 3-D model of the disc refiner; and then was simulated and analyzed; finally, the viscosity of the pulp were measured. The results show that the CFD method can be used to analyze the pressure and torque on the disc plate, so as to calculate the refining power, and streamlines and velocity vectors can also be observed. CFD simulation can optimize parameters of the bar and groove, which is of great significance to reduce the experimental cost and cycle.

  2. Using Adaptive Mesh Refinment to Simulate Storm Surge (United States)

    Mandli, K. T.; Dawson, C.


    Coastal hazards related to strong storms such as hurricanes and typhoons are one of the most frequently recurring and wide spread hazards to coastal communities. Storm surges are among the most devastating effects of these storms, and their prediction and mitigation through numerical simulations is of great interest to coastal communities that need to plan for the subsequent rise in sea level during these storms. Unfortunately these simulations require a large amount of resolution in regions of interest to capture relevant effects resulting in a computational cost that may be intractable. This problem is exacerbated in situations where a large number of similar runs is needed such as in design of infrastructure or forecasting with ensembles of probable storms. One solution to address the problem of computational cost is to employ adaptive mesh refinement (AMR) algorithms. AMR functions by decomposing the computational domain into regions which may vary in resolution as time proceeds. Decomposing the domain as the flow evolves makes this class of methods effective at ensuring that computational effort is spent only where it is needed. AMR also allows for placement of computational resolution independent of user interaction and expectation of the dynamics of the flow as well as particular regions of interest such as harbors. The simulation of many different applications have only been made possible by using AMR-type algorithms, which have allowed otherwise impractical simulations to be performed for much less computational expense. Our work involves studying how storm surge simulations can be improved with AMR algorithms. We have implemented relevant storm surge physics in the GeoClaw package and tested how Hurricane Ike's surge into Galveston Bay and up the Houston Ship Channel compares to available tide gauge data. We will also discuss issues dealing with refinement criteria, optimal resolution and refinement ratios, and inundation.

  3. The development, design, testing, refinement, simulation and application of an evaluation framework for communities of practice and social-professional networks

    Directory of Open Access Journals (Sweden)

    Ball Dianne


    Full Text Available Abstract Background Communities of practice and social-professional networks are generally considered to enhance workplace experience and enable organizational success. However, despite the remarkable growth in interest in the role of collaborating structures in a range of industries, there is a paucity of empirical research to support this view. Nor is there a convincing model for their systematic evaluation, despite the significant potential benefits in answering the core question: how well do groups of professionals work together and how could they be organised to work together more effectively? This research project will produce a rigorous evaluation methodology and deliver supporting tools for the benefit of researchers, policymakers, practitioners and consumers within the health system and other sectors. Given the prevalence and importance of communities of practice and social networks, and the extent of investments in them, this project represents a scientific innovation of national and international significance. Methods and design Working in four conceptual phases the project will employ a combination of qualitative and quantitative methods to develop, design, field-test, refine and finalise an evaluation framework. Once available the framework will be used to evaluate simulated, and then later existing, health care communities of practice and social-professional networks to assess their effectiveness in achieving desired outcomes. Peak stakeholder groups have agreed to involve a wide range of members and participant organisations, and will facilitate access to various policy, managerial and clinical networks. Discussion Given its scope and size, the project represents a valuable opportunity to achieve breakthroughs at two levels; firstly, by introducing novel and innovative aims and methods into the social research process and, secondly, through the resulting evaluation framework and tools. We anticipate valuable outcomes in the

  4. Simulating Nonequilibrium Radiation via Orthogonal Polynomial Refinement (United States)


    The complex nonequilibrium radiative simulation for high-speed flow is built on the interlocking phenomena between quantum physics , aerodynamics with...from quantum physics and transmit across the two different coordinates by a nearest neighbor search algorithm.

  5. Action Refinement in Testing with UIOCO

    NARCIS (Netherlands)

    van der Bijl, H.M.; Rensink, Arend; Tretmans, G.J.

    In model based testing test cases are derived from a specification of the implementation that we want to test. In general the specification is given on a more abstract level than the implementation. This may result in test cases that are not executable, because their actions are too abstract; the

  6. Atomic Action Refinement in Model Based Testing

    NARCIS (Netherlands)

    van der Bijl, H.M.; Rensink, Arend; Tretmans, G.J.


    In model based testing (MBT) test cases are derived from a specification of the system that we want to test. In general the specification is more abstract than the implementation. This may result in 1) test cases that are not executable, because their actions are too abstract (the implementation

  7. Improved grindability test: essential refinements to method

    Energy Technology Data Exchange (ETDEWEB)

    Dick Sanders [QCC Resources (Australia)


    Under Project C12063 a test was developed and demonstrated which overcame all of the deficiencies of the Standard Hardgrove Grindability Index (HGI) Test. It used a standard volume of a representative 'by zero' sample, and expressed the results of the standard grind in terms of the Sauter mean diameter, SMD (in {mu}m). The test was named the Improved Grindability Test (IGT). In Project C13065 a steady state IGT was developed. A modification to the method was needed to overcome the effect of prior breakage and this was the basis for this project. Six coals of widely varying type were sampled at exposed coal faces i.e. with no prior breakage history. These were dropped repeatedly, crushed to pass 50 mm, and divided into A and B streams. A was 'gently' crushed to pass 8 mm (jaw crusher), while B was 'vigorously' crushed to pass 8 mm. Each -8 mm sample was then crushed to pass 2 mm by passing about ten times through a plate mill with progressively closer settings. The results have shown that the effects of prior breakage history can be substantially minimised, although not completely eliminated (especially for the softest coals), by increasing the starting sample top size from 4.75 to 8 mm and crushing all of the sample each time, for a large number of passes, to the 2 mm top size for the IGT test. Testing outcomes, and the interpretation of results, have been significantly compromised by sample losses during preparation and testing. Precision at a given laboratory seems acceptable, although agreement between laboratories is disappointing. The Steady State version of the IGT shows great promise, with the mass% of -75 {mu}m produced by grinding, under 'steady state' conditions (5 minutes) being a useful indicator of a coal's grindability.

  8. Academic literacy tests: design, development, piloting and refinement

    African Journals Online (AJOL)

    The paper investigates how a blueprint for an academic literacy test may be conceptualised, how that could be operationalised, and demonstrates how pilot tests are analysed with a view to refining them. Finally, that leads to a consideration of how to arrive at a final draft test, and how valid and appropriate interpretations of ...

  9. Refinement of homology-based protein structures by molecular dynamics simulation techniques

    NARCIS (Netherlands)

    Fan, H; Mark, AE

    The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to

  10. Visualization of Octree Adaptive Mesh Refinement (AMR) in Astrophysical Simulations (United States)

    Labadens, M.; Chapon, D.; Pomaréde, D.; Teyssier, R.


    Computer simulations are important in current cosmological research. Those simulations run in parallel on thousands of processors, and produce huge amount of data. Adaptive mesh refinement is used to reduce the computing cost while keeping good numerical accuracy in regions of interest. RAMSES is a cosmological code developed by the Commissariat à l'énergie atomique et aux énergies alternatives (English: Atomic Energy and Alternative Energies Commission) which uses Octree adaptive mesh refinement. Compared to grid based AMR, the Octree AMR has the advantage to fit very precisely the adaptive resolution of the grid to the local problem complexity. However, this specific octree data type need some specific software to be visualized, as generic visualization tools works on Cartesian grid data type. This is why the PYMSES software has been also developed by our team. It relies on the python scripting language to ensure a modular and easy access to explore those specific data. In order to take advantage of the High Performance Computer which runs the RAMSES simulation, it also uses MPI and multiprocessing to run some parallel code. We would like to present with more details our PYMSES software with some performance benchmarks. PYMSES has currently two visualization techniques which work directly on the AMR. The first one is a splatting technique, and the second one is a custom ray tracing technique. Both have their own advantages and drawbacks. We have also compared two parallel programming techniques with the python multiprocessing library versus the use of MPI run. The load balancing strategy has to be smartly defined in order to achieve a good speed up in our computation. Results obtained with this software are illustrated in the context of a massive, 9000-processor parallel simulation of a Milky Way-like galaxy.

  11. Aeroacoustic Simulations of a Nose Landing Gear with FUN3D: A Grid Refinement Study (United States)

    Vatsa, Veer N.; Khorrami, Mehdi R.; Lockard, David P.


    A systematic grid refinement study is presented for numerical simulations of a partially-dressed, cavity-closed (PDCC) nose landing gear configuration that was tested in the University of Florida's open-jet acoustic facility known as the UFAFF. The unstructured-grid flow solver FUN3D is used to compute the unsteady flow field for this configuration. Mixed-element grids generated using the Pointwise (Registered Trademark) grid generation software are used for numerical simulations. Particular care is taken to ensure quality cells and proper resolution in critical areas of interest in an effort to minimize errors introduced by numerical artifacts. A set of grids was generated in this manner to create a family of uniformly refined grids. The finest grid was then modified to coarsen the wall-normal spacing to create a grid suitable for the wall-function implementation in FUN3D code. A hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence modeling approach is used for these simulations. Time-averaged and instantaneous solutions obtained on these grids are compared with the measured data. These CFD solutions are used as input to a FfowcsWilliams-Hawkings (FW-H) noise propagation code to compute the farfield noise levels. The agreement of the computed results with the experimental data improves as the grid is refined.

  12. GENASIS: General Astrophysical Simulation System. I. Refinable Mesh and Nonrelativistic Hydrodynamics (United States)

    Cardall, Christian Y.; Budiardja, Reuben D.; Endeve, Eirik; Mezzacappa, Anthony


    GenASiS (General Astrophysical Simulation System) is a new code being developed initially and primarily, though by no means exclusively, for the simulation of core-collapse supernovae on the world's leading capability supercomputers. This paper—the first in a series—demonstrates a centrally refined coordinate patch suitable for gravitational collapse and documents methods for compressible nonrelativistic hydrodynamics. We benchmark the hydrodynamics capabilities of GenASiS against many standard test problems; the results illustrate the basic competence of our implementation, demonstrate the strengths and limitations of the HLLC relative to the HLL Riemann solver in a number of interesting cases, and provide preliminary indications of the code's ability to scale and to function with cell-by-cell fixed-mesh refinement.

  13. The OURSE model: Simulating the World Refining Sector to 2030


    LANTZ Frédéric; SAINT-ANTONIN Valérie; Gruson, Jean-François; SUWALA Wojciech


    The development of a model of the World Refining for the POLES model aims to represent the oil product's supply at a world-wide level in a global energy model. The World oil refining industry faces to several challenges such as the increasing oil derivatives demand in the transport sector, the improvement of the specifications of these products, the crude oil availability and the limitation of carbon emissions. An aggregated refining model linked to the POLES energy model has been developed t...

  14. Simulating Sand Behavior through Terrain Subdivision and Particle Refinement (United States)

    Clothier, M.


    Advances in computer graphics, GPUs, and parallel processing hardware have provided researchers with new methods to visualize scientific data. In fact, these advances have spurred new research opportunities between computer graphics and other disciplines, such as Earth sciences. Through collaboration, Earth and planetary scientists have benefited by using these advances in hardware technology to process large amounts of data for visualization and analysis. At Oregon State University, we are collaborating with the Oregon Space Grant and IGERT Ecosystem Informatics programs to investigate techniques for simulating the behavior of sand. In addition, we have also been collaborating with the Jet Propulsion Laboratory's DARTS Lab to exchange ideas on our research. The DARTS Lab specializes in the simulation of planetary vehicles, such as the Mars rovers. One aspect of their work is testing these vehicles in a virtual "sand box" to test their performance in different environments. Our research builds upon this idea to create a sand simulation framework to allow for more complex and diverse environments. As a basis for our framework, we have focused on planetary environments, such as the harsh, sandy regions on Mars. To evaluate our framework, we have used simulated planetary vehicles, such as a rover, to gain insight into the performance and interaction between the surface sand and the vehicle. Unfortunately, simulating the vast number of individual sand particles and their interaction with each other has been a computationally complex problem in the past. However, through the use of high-performance computing, we have developed a technique to subdivide physically active terrain regions across a large landscape. To achieve this, we only subdivide terrain regions where sand particles are actively participating with another object or force, such as a rover wheel. This is similar to a Level of Detail (LOD) technique, except that the density of subdivisions are determined by

  15. Protein Structure Refinement via Molecular-Dynamics Simulations: What works and what does not? (United States)

    Feig, Michael; Mirjalili, Vahid


    Protein structure refinement during CASP11 by the Feig group is described. Molecular dynamics simulations were used in combination with an improved selection and averaging protocol. On average, modest refinement was achieved with some targets improved significantly. Analysis of the CASP submission from our group focused on refinement success vs. amount of sampling, refinement of different secondary structure elements and whether refinement varied as a function of which group provided initial models. The refinement of local stereochemical features was examined via the MolProbity score and an updated protocol was developed that can generate high-quality structures with very low MolProbity scores for most starting structures with modest computational effort. PMID:26234208

  16. Refinements to the Graves and Pitarka (2010) Broadband Ground-Motion Simulation Method

    Energy Technology Data Exchange (ETDEWEB)

    Graves, R.; Pitarka, A.


    This brief article describes refinements to the Graves and Pitarka (2010) broadband ground-motion simulation methodology (GP2010 hereafter) that have been implemented in version 14.3 of the Southern California Earthquake Center (SCEC) Broadband Platform (BBP).

  17. EMMA: an adaptive mesh refinement cosmological simulation code with radiative transfer (United States)

    Aubert, Dominique; Deparis, Nicolas; Ocvirk, Pierre


    EMMA is a cosmological simulation code aimed at investigating the reionization epoch. It handles simultaneously collisionless and gas dynamics, as well as radiative transfer physics using a moment-based description with the M1 approximation. Field quantities are stored and computed on an adaptive three-dimensional mesh and the spatial resolution can be dynamically modified based on physically motivated criteria. Physical processes can be coupled at all spatial and temporal scales. We also introduce a new and optional approximation to handle radiation: the light is transported at the resolution of the non-refined grid and only once the dynamics has been fully updated, whereas thermo-chemical processes are still tracked on the refined elements. Such an approximation reduces the overheads induced by the treatment of radiation physics. A suite of standard tests are presented and passed by EMMA, providing a validation for its future use in studies of the reionization epoch. The code is parallel and is able to use graphics processing units (GPUs) to accelerate hydrodynamics and radiative transfer calculations. Depending on the optimizations and the compilers used to generate the CPU reference, global GPU acceleration factors between ×3.9 and ×16.9 can be obtained. Vectorization and transfer operations currently prevent better GPU performance and we expect that future optimizations and hardware evolution will lead to greater accelerations.

  18. Simulation of thin-film deodorizers in palm oil refining

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Meirelles, Antonio J.A.; Gani, Rafiqul


    could be found in the open literature. This paper tries to fill this gap by presenting results from the study of the effect of processing variables, such as temperature, pressure and percentage of stripping steam, in the final quality of product (deacidified palm oil) in terms of final oil acidity......As the need for healthier fats and oils (natural vitamin and trans fat contents) and interest in biofuels are growing, many changes in the world's vegetable oil market are driving the oil industry to developing new technologies and recycling traditional ones. Computational simulation is widely used...... in the chemical and petrochemical industries as a tool for optimization and design of (new) processes, but that is not the case for the edible oil industry. Thin-film deodorizers are novel equipment developed for steam deacidification of vegetable oils, and no work on the simulation of this type of equipment...

  19. Refinement and testing of analysis nudging in MPAS-A ... (United States)

    The Model for Prediction Across Scales - Atmosphere (MPAS-A) is being adapted to serve as the meteorological driver for EPA’s “next-generation” air-quality model. To serve that purpose, it must be able to function in a diagnostic mode where past meteorological conditions are represented in greater detail and accuracy than can be provided by available observational data and meteorological reanalysis products. MPAS-A has been modified to allow four dimensional data assimilation (FDDA) by the nudging of temperature, humidity and wind toward target values predefined on the MPAS-A computational mesh. The technique of “analysis nudging” developed for the Penn State / NCAR Mesoscale Model – Version 4 (MM4), and later applied in the Weather Research and Forecasting model (WRF), is applied here in MPAS-A with adaptations for the unstructured Voronoi mesh used in MPAS-A. Test simulations for the periods of January and July 2013, with and without FDDA, are compared to target fields at various vertical levels and to surface-level meteorological observations. The results show the ability to follow target fields with high fidelity while still maintaining conservation of mass as in the original model. The results also show model errors relative to observations continue to be constrained throughout the simulations using FDDA and even show some error reduction during the first few days that could be attributable to the finer resolution of the 92-25 km computa

  20. Mesh refinement algorithms in an unstructured solver for multiphase flow simulation using discrete particles (United States)

    Li, Yuanhong; Kong, Song-Charng


    This study developed spray-adaptive mesh refinement algorithms with directional sensitivity in an unstructured solver to improve spray simulation for internal combustion engine application. Inadequate spatial resolution is often found to cause inaccuracies in spray simulation using the Lagrangian-Eulerian approach due to the over-estimated diffusion and inappropriate liquid-gas phase coupling. Dynamic mesh refinement algorithms adaptive to fuel sprays and vapor gradients were developed in order to increase the grid resolution in the spray region to improve simulation accuracy. The local refinement introduced the coarse-fine face interface that requires advanced numerical schemes for flux calculation and grid rezoning with moving boundaries. To resolve the issue in flux calculation, this work implemented the refinement/coarsening algorithms into a collocated solver to avoid tedious interpolations in solving the momentum equations. A pressure correction method was applied to address unphysical pressure oscillations due to the collocation of pressure and velocity. An edge-based algorithm was used to evaluate the edge-centered quantities in order to account for the contributions from all the cells around an edge at the coarse-fine interface. A quasi-second-order upwind scheme with strong monotonicity was also modified to accommodate the coarse-fine interface for convective fluxes. To resolve the issue related to grid rezoning, rezoning was applied to the initial baseline mesh only and the new locations of the refined grids were obtained by interpolating the updated baseline mesh. The time step constraints were also re-evaluated to account for the change resulting from mesh refinement. The present refinement algorithm was used in simulating fuel sprays in an engine combustion chamber. It was found that the present approach could produce the same level of results as those using the uniformly fine mesh with substantially reduced computer time. Results also showed that

  1. Reactor Simulator Testing (United States)

    Schoenfeld, Michael P.; Webster, Kenny L.; Pearson, Boise J.


    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator test loop (RxSim) was design & built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing was to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V since the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This paper summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the cold temperature indicating the design provided some heat regeneration. The annular linear induction pump (ALIP) tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  2. Turbulence modeling for locally-refined free-surface flow simulations in offshore applications

    NARCIS (Netherlands)

    Veldman, Arthur; Luppes, Roelf; van der Plas, Peter; van der Heiden, Hendrik; Helder, Joop; Bunnik, Tim

    To study extreme hydrodynamic wave impact in offshore and coastal engineering, the VOF-based CFD simulation tool ComFLOW is being developed. Recently, much attention has been paid to turbulence modeling and local grid refinement. In particular, a blend of a QR-model and a regularization model has

  3. Reactor Simulator Testing Overview (United States)

    Schoenfeld, Michael P.


    Test Objectives Summary: a) Verify operation of the core simulator, the instrumentation & control system, and the ground support gas and vacuum test equipment. b) Examine cooling & heat regeneration performance of the cold trap purification. c) Test the ALIP pump at voltages beyond 120V to see if the targeted mass flow rate of 1.75 kg/s can be obtained in the RxSim. Testing Highlights: a) Gas and vacuum ground support test equipment performed effectively for operations (NaK fill, loop pressurization, and NaK drain). b) Instrumentation & Control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings and ramped within prescribed constraints. It effectively interacted with reactor simulator control model and defaulted back to temperature control mode if the transient fluctuations didn't dampen. c) Cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained which was lower than the predicted 750 K but 156 K higher than the minimum temperature indicating the design provided some heat regeneration. d) ALIP produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.


    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)


    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  5. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico


    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  6. Usability Testing as a Method to Refine a Health Sciences Library Website. (United States)

    Denton, Andrea H; Moody, David A; Bennett, Jason C


    User testing, a method of assessing website usability, can be a cost-effective and easily administered process to collect information about a website's effectiveness. A user experience (UX) team at an academic health sciences library has employed user testing for over three years to help refine the library's home page. Test methodology used in-person testers using the "think aloud" method to complete tasks on the home page. Review of test results revealed problem areas of the design and redesign; further testing was effective in refining the page. User testing has proved to be a valuable method to engage users and provide feedback to continually improve the library's home page.

  7. Molecular Dynamics Simulations of CO2 Molecules in ZIF-11 Using Refined AMBER Force Field

    Directory of Open Access Journals (Sweden)

    W. Wongsinlatam


    Full Text Available Nonbonding parameters of AMBER force field have been refined based on ab initio binding energies of CO2–[C7H5N2]− complexes. The energy and geometry scaling factors are obtained to be 1.2 and 0.9 for ε and σ parameters, respectively. Molecular dynamics simulations of CO2 molecules in rigid framework ZIF-11, have then been performed using original AMBER parameters (SIM I and refined parameters (SIM II, respectively. The site-site radial distribution functions and the molecular distribution plots simulations indicate that all hydrogen atoms are favored binding site of CO2 molecules. One slight but notable difference is that CO2 molecules are mostly located around and closer to hydrogen atom of imidazolate ring in SIM II than those found in SIM I. The Zn-Zn and Zn-N RDFs in free flexible framework simulation (SIM III show validity of adapting AMBER bonding parameters. Due to the limitations of computing resources and times in this study, the results of flexible framework simulation using refined nonbonding AMBER parameters (SIM IV are not much different from those obtained in SIM II.

  8. Refining English Language Tests for University Admission: A Malaysian Example

    Directory of Open Access Journals (Sweden)

    Arshad Abd Samad


    Full Text Available English has now become the lingua franca of much of technological, business and academic endeavours. Consequently, learning the English language is now seen as vital, especially at the university level where proficiency in the language has become a selection criterion. At present, the Malaysian University English Test (MUET has been adopted by Malaysian public universities as an indicator of English language proficiency. A student’s overall result depends on all the four language components of the MUET and often determines the number and nature of the English language courses he or she has to attend at university. This study seeks to examine whether MUET is an accurate predictor of performance and success at university and how the MUET can be finetuned as an entry level English language test. It was carried out among 52 third year undergraduates of the Faculty of Educational Studies, Universiti Putra Malaysia, Serdang, Malaysia, admitted into the Teaching English as a Second Language (TESL programme. The findings of the study do not offer conclusive evidence about the validity of MUET as a predictor of academic success. However, six models of various combinations of scores on language components on the MUET scores are examined in terms of their effectiveness in increasing the accuracy in selecting students for the TESL programme. The correlations obtained using these models indicate that the combination of various components of the MUET can be used to more accurately predict student achievement at tertiary level than the cumulative MUET score itself. The results of these correlations and their implications in using language tests as admission requirements in general are also discussed

  9. Simulation of tsunamis generated by landslides using adaptive mesh refinement on GPU (United States)

    de la Asunción, M.; Castro, M. J.


    Adaptive mesh refinement (AMR) is a widely used technique to accelerate computationally intensive simulations, which consists of dynamically increasing the spatial resolution of the areas of interest of the domain as the simulation advances. During the last years there have appeared many publications that tackle the implementation of AMR-based applications in GPUs in order to take advantage of their massively parallel architecture. In this paper we present the first AMR-based application implemented on GPU for the simulation of tsunamis generated by landslides by using a two-layer shallow water system. We also propose a new strategy for the interpolation and projection of the values of the fine cells in the AMR algorithm based on the fluctuations of the state values instead of the usual approach of considering the current state values. Numerical experiments on artificial and realistic problems show the validity and efficiency of the solver.

  10. Improving MJO Prediction and Simulation Using AGCM Coupled Ocean Model with Refined Vertical Resolution (United States)

    Tu, Chia-Ying; Tseng, Wan-Ling; Kuo, Pei-Hsuan; Lan, Yung-Yao; Tsuang, Ben-Jei; Hsu, Huang-Hsiung


    Precipitation in Taiwan area is significantly influenced by MJO (Madden-Julian Oscillation) in the boreal winter. This study is therefore conducted by toggling the MJO prediction and simulation with a unique model structure. The one-dimensional TKE (Turbulence Kinetic Energy) type ocean model SIT (Snow, Ice, Thermocline) with refined vertical resolution near surface is able to resolve cool skin, as well as diurnal warm layer. SIT can simulate accurate SST and hence give precise air-sea interaction. By coupling SIT with ECHAM5 (MPI-Meteorology), CAM5 (NCAR) and HiRAM (GFDL), the MJO simulations in 20-yrs climate integrations conducted by three SIT-coupled AGCMs are significant improved comparing to those driven by prescribed SST. The horizontal resolutions in ECHAM5, CAM5 and HiRAM are 2-deg., 1-deg and 0.5-deg., respectively. This suggests that the improvement of MJO simulation by coupling SIT is AGCM-resolution independent. This study further utilizes HiRAM coupled SIT to evaluate its MJO forecast skill. HiRAM has been recognized as one of the best model for seasonal forecasts of hurricane/typhoon activity (Zhao et al., 2009; Chen & Lin, 2011; 2013), but was not as successful in MJO forecast. The preliminary result of the HiRAM-SIT experiment during DYNAMO period shows improved success in MJO forecast. These improvements of MJO prediction and simulation in both hindcast experiments and climate integrations are mainly from better-simulated SST diurnal cycle and diurnal amplitude, which is contributed by the refined vertical resolution near ocean surface in SIT. Keywords: MJO Predictability, DYNAMO

  11. Simulant Development for LAWPS Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schonewill, Philip P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burns, Carolyn A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This report describes simulant development work that was conducted to support the technology maturation of the LAWPS facility. Desired simulant physical properties (density, viscosity, solids concentration, solid particle size), sodium concentrations, and general anion identifications were provided by WRPS. The simulant recipes, particularly a “nominal” 5.6M Na simulant, are intended to be tested at several scales, ranging from bench-scale (500 mL) to full-scale. Each simulant formulation was selected to be chemically representative of the waste streams anticipated to be fed to the LAWPS system, and used the current version of the LAWPS waste specification as a formulation basis. After simulant development iterations, four simulants of varying sodium concentration (5.6M, 6.0M, 4.0M, and 8.0M) were prepared and characterized. The formulation basis, development testing, and final simulant recipes and characterization data for these four simulants are presented in this report.

  12. Tropical Cyclone Activity in Regional and Grid-Refined Global Simulations (United States)

    Hashimoto, A.


    Most electric power and transmission facilities in Japan operate for half a century or more, so it is important to ensure against general fatigue and damage from extreme weather and climate events. There is therefore a critical demand for useful assessments of the present weather and accurate predictions of future weather and climate. Tropical Cyclones (TCs) are among the most destructive weather phenomenon to the industry. This study compares simulated TC activity in regional climate simulations using the Weather Research and Forecasting (WRF) model and global climate simulations using the Model for Prediction Across Scales (MPAS) specifically to identify the benefits of global variable resolution simulation. Horizontal refinement to approximately 20km grid spacing over the Northwest Pacific is achieved through nesting for WRF and MPAS uses a variable resolution mesh. The ability of these two simulation approaches to capture TC activity is examined in single-year continuous simulations from May 2005 to April 2006. Compared to surface station and satellite derived rainfall datasets, tropical precipitation patterns are reproduced reasonably well by both models, but the annual precipitation totals are overestimated. Similarly, using an automated TC identification and tracking algorithm, results show that both models reproduce well TC genesis regions, tracks, wind-pressure relationships, and intensification rate, but TC frequencies are overestimated by both models. These results indicate that global variable resolution simulation is a suitable tool to study regional climate and TC activity. Future work will use MPAS to simulate longer periods of current and future climate to provide a unique view of the future change TC activity over Japan, tailored to the needs of the electric power industry.

  13. Testing MODFLOW-LGR for simulating flow around buried Quaternary valleys - synthetic test cases (United States)

    Vilhelmsen, T. N.; Christensen, S.


    In this study the Local Grid Refinement (LGR) method developed for MODFLOW-2005 (Mehl and Hill, 2005) is utilized to describe groundwater flow in areas containing buried Quaternary valley structures. The tests are conducted as comparative analysis between simulations run with a globally refined model, a locally refined model, and a globally coarse model, respectively. The models vary from simple one layer models to more complex ones with up to 25 model layers. The comparisons of accuracy are conducted within the locally refined area and focus on water budgets, simulated heads, and simulated particle traces. Simulations made with the globally refined model are used as reference (regarded as “true” values). As expected, for all test cases the application of local grid refinement resulted in more accurate results than when using the globally coarse model. A significant advantage of utilizing MODFLOW-LGR was that it allows increased numbers of model layers to better resolve complex geology within local areas. This resulted in more accurate simulations than when using either a globally coarse model grid or a locally refined model with lower geological resolution. Improved accuracy in the latter case could not be expected beforehand because difference in geological resolution between the coarse parent model and the refined child model contradicts the assumptions of the Darcy weighted interpolation used in MODFLOW-LGR. With respect to model runtimes, it was sometimes found that the runtime for the locally refined model is much longer than for the globally refined model. This was the case even when the closure criteria were relaxed compared to the globally refined model. These results are contradictory to those presented by Mehl and Hill (2005). Furthermore, in the complex cases it took some testing (model runs) to identify the closure criteria and the damping factor that secured convergence, accurate solutions, and reasonable runtimes. For our cases this is judged to

  14. Adaptive Mesh Refinement and High Order Geometrical Moment Method for the Simulation of Polydisperse Evaporating Sprays

    Directory of Open Access Journals (Sweden)

    Essadki Mohamed


    Full Text Available Predictive simulation of liquid fuel injection in automotive engines has become a major challenge for science and applications. The key issue in order to properly predict various combustion regimes and pollutant formation is to accurately describe the interaction between the carrier gaseous phase and the polydisperse evaporating spray produced through atomization. For this purpose, we rely on the EMSM (Eulerian Multi-Size Moment Eulerian polydisperse model. It is based on a high order moment method in size, with a maximization of entropy technique in order to provide a smooth reconstruction of the distribution, derived from a Williams-Boltzmann mesoscopic model under the monokinetic assumption [O. Emre (2014 PhD Thesis, École Centrale Paris; O. Emre, R.O. Fox, M. Massot, S. Chaisemartin, S. Jay, F. Laurent (2014 Flow, Turbulence and Combustion 93, 689-722; O. Emre, D. Kah, S. Jay, Q.-H. Tran, A. Velghe, S. de Chaisemartin, F. Laurent, M. Massot (2015 Atomization Sprays 25, 189-254; D. Kah, F. Laurent, M. Massot, S. Jay (2012 J. Comput. Phys. 231, 394-422; D. Kah, O. Emre, Q.-H. Tran, S. de Chaisemartin, S. Jay, F. Laurent, M. Massot (2015 Int. J. Multiphase Flows 71, 38-65; A. Vié, F. Laurent, M. Massot (2013 J. Comp. Phys. 237, 277-310]. The present contribution relies on a major extension of this model [M. Essadki, S. de Chaisemartin, F. Laurent, A. Larat, M. Massot (2016 Submitted to SIAM J. Appl. Math.], with the aim of building a unified approach and coupling with a separated phases model describing the dynamics and atomization of the interface near the injector. The novelty is to be found in terms of modeling, numerical schemes and implementation. A new high order moment approach is introduced using fractional moments in surface, which can be related to geometrical quantities of the gas-liquid interface. We also provide a novel algorithm for an accurate resolution of the evaporation. Adaptive mesh refinement properly scaling on massively

  15. Error Characteristics of Two Grid Refinement Approaches in Aquaplanet Simulations: MPAS-A and WRF

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson; Leung, Ruby; Rauscher, Sara A.; Ringler, Todd


    This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high resolution regional climate modeling. The global variable resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited area model, Weather Research and Forecasting (WRF) model, are compared in an idealized aqua-planet context. For MPAS-A, simulations have been performed with a quasi-uniform resolution global domain at coarse (1°) and high (0.25°) resolution, and a variable resolution domain with a high resolution region at 0.25° configured inside a coarse resolution global domain at 1° resolution. Similarly, WRF has been configured to run on a coarse (1°) and high (0.25°) tropical channel domain as well as a nested domain with a high resolution region at 0.25° nested two-way inside the coarse resolution (1°) tropical channel. The variable resolution or nested simulations are compared against the high resolution simulations. Both models respond to increased resolution with enhanced precipitation. Limited and significant reduction in the ratio of convective to non-convective precipitation. The limited area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker like circulations and standing Rossby wave signals. Within the high resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, 20 day Kelvin waves propagate through the high-resolution domains fairly unaffected by the change in resolution (and the presence of a boundary in WRF) but increased resolution strengthens eastward propagating inertio-gravity waves.

  16. Developmental Toxicology—New Directions Workshop: Refining Testing Strategies and Study Designs (United States)

    Brannen, Kimberly C.; Fenton, Suzanne E.; Hansen, Deborah K.; Harrouk, Wafa; Kim, James H.; Shuey, Dana


    In April 2009, the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute’s (HESI) Developmental and Reproductive Toxicology Technical Committee held a two-day workshop entitled “Developmental Toxicology—New Directions.” The third session of the workshop focused on ways to refine animal studies to improve relevance and predictivity for human risk. The session included five presentations on: (1) considerations for refining developmental toxicology testing and data interpretation; (2) comparative embryology and considerations in study design and interpretation; (3) pharmacokinetic considerations in study design; (4) utility of genetically modified models for understanding mode-of-action; and (5) special considerations in reproductive testing for biologics. The presentations were followed by discussion by the presenters and attendees. Much of the discussion focused on aspects of refining current animal testing strategies, including use of toxicokinetic data, dose selection, tiered/triggered testing strategies, species selection, and use of alternative animal models. Another major area of discussion was use of non-animal-based testing paradigms, including how to define a “signal” or adverse effect, translating in vitro exposures to whole animal and human exposures, validation strategies, the need to bridge the existing gap between classical toxicology testing and risk assessment, and development of new technologies. Although there was general agreement among participants that the current testing strategy is effective, there was also consensus that traditional methods are resource-intensive and improved effectiveness of developmental toxicity testing to assess risks to human health is possible. This article provides a summary of the session’s presentations and discussion and describes some key areas that warrant further consideration. PMID:22006510

  17. Analysis of adaptive mesh refinement for IMEX discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations (United States)

    Kopera, Michal A.; Giraldo, Francis X.


    The resolutions of interests in atmospheric simulations require prohibitively large computational resources. Adaptive mesh refinement (AMR) tries to mitigate this problem by putting high resolution in crucial areas of the domain. We investigate the performance of a tree-based AMR algorithm for the high order discontinuous Galerkin method on quadrilateral grids with non-conforming elements. We perform a detailed analysis of the cost of AMR by comparing this to uniform reference simulations of two standard atmospheric test cases: density current and rising thermal bubble. The analysis shows up to 15 times speed-up of the AMR simulations with the cost of mesh adaptation below 1% of the total runtime. We pay particular attention to the implicit-explicit (IMEX) time integration methods and show that the ARK2 method is more robust with respect to dynamically adapting meshes than BDF2. Preliminary analysis of preconditioning reveals that it can be an important factor in the AMR overhead. The compiler optimizations provide significant runtime reduction and positively affect the effectiveness of AMR allowing for speed-ups greater than it would follow from the simple performance model.

  18. Statistical refinements for data analysis of mollusc reproduction tests: an example with Lymnaea stagnalis

    DEFF Research Database (Denmark)

    Holbech, Henrik

    Since 2012, European experts work towards the development and validation of an OECD test guideline for mollusc reproductive toxicity with the freshwater gastropod Lymnaea stagnalis. A ring-test involving six laboratories allowed studying reproducibility of results, based on survival and reproduct......Since 2012, European experts work towards the development and validation of an OECD test guideline for mollusc reproductive toxicity with the freshwater gastropod Lymnaea stagnalis. A ring-test involving six laboratories allowed studying reproducibility of results, based on survival...... and reproduction data of snails monitored over 56 days exposure to cadmium. A classical statistical analysis of data was initially conducted by hypothesis tests and fit of parametric concentrationresponse models. However, as mortality occurred in exposed snails, these analyses require to be refined, particularly...... was twofold. First, we refined the statistical analyses of reproduction data accounting for mortality all along the test period. The variable “number of clutches/eggs produced per individual-day” was used for EC x modelling, as classically done in epidemiology in order to account for the time...

  19. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.


    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  20. Turbulence modeling, local grid refinement and absorbing boundary conditions for free-surface flow simulations in offshore applications.

    NARCIS (Netherlands)

    Veldman, Arthur; Luppes, Roelf; van der Heiden, Hendrik; van der Plas, Peter; Duz, Bulent; Huijsmans, Rene


    To study extreme hydrodynamic wave impact in offshore and coastal engineering, the VOF-based CFD simulation tool ComFLOW is being developed. Recently, much attention has been paid to turbulence modeling, local grid refinement, wave propagation and absorbing boundary conditions. The turbulence model

  1. Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.


    Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (τ) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

  2. Numerical relativity simulations of neutron star merger remnants using conservative mesh refinement

    CERN Document Server

    Dietrich, Tim; Ujevic, Maximiliano; Bruegmann, Bernd


    We study equal and unequal-mass neutron star mergers by means of new numerical relativity simulations in which the general relativistic hydrodynamics solver employs an algorithm that guarantees mass conservation across the refinement levels of the computational mesh. We consider eight binary configurations with total mass $M=2.7\\,M_\\odot$, mass-ratios $q=1$ and $q=1.16$, and four different equation of states (EOSs), and one configuration with a stiff EOS, $M=2.5M_\\odot$ and $q=1.5$. We focus on the post-merger dynamics and study the merger remnant, dynamical ejecta and the postmerger gravitational wave spectrum. Although most of the merger remnants form a hypermassive neutron star collapsing to a black hole+disk system on dynamical timescales, stiff EOSs can eventually produce a stable massive neutron star. Ejecta are mostly emitted around the orbital plane; favored by large mass ratios and softer EOS. The postmerger wave spectrum is mainly characterized by non-axisymmetric oscillations of the remnant. The st...

  3. Creation and Delphi-method refinement of pediatric disaster triage simulations. (United States)

    Cicero, Mark X; Brown, Linda; Overly, Frank; Yarzebski, Jorge; Meckler, Garth; Fuchs, Susan; Tomassoni, Anthony; Aghababian, Richard; Chung, Sarita; Garrett, Andrew; Fagbuyi, Daniel; Adelgais, Kathleen; Goldman, Ran; Parker, James; Auerbach, Marc; Riera, Antonio; Cone, David; Baum, Carl R


    instances of noncorrelation between evaluations and simulation. The modified Delphi process, used to derive novel PDT simulation and evaluation tools, yielded a high degree of consensus among the SMEs, and eliminated biases toward specific PDT strategies in the evaluations. The simulations and evaluation tools may now be tested for reliability and validity as part of a prehospital PDT curriculum.

  4. Structural Refinement from Restrained-Ensemble Simulations Based on EPR/DEER Data: Application to T4 Lysozyme (United States)

    Islam, Shahidul M.; Stein, Richard A.; Mchaourab, Hassane; Roux, Benoît


    DEER (Double Electron Electron Resonance) is a powerful pulsed ESR (electron spin resonance) technique allowing the determination of distance histograms between pairs of nitroxide spin-labels linked to a protein in a native-like solution environment. However, exploiting the huge amount of information provided by ESR/DEER histograms to refine structural models is extremely challenging. In this study, a restrained ensemble (RE) molecular dynamics (MD) simulation methodology is developed to address this issue. In RE simulation, the spin-spin distance distribution histograms calculated from a multiple-copy MD simulation are enforced, via a global ensemble-based energy restraint, to match those obtained from ESR/DEER experiments. The RE simulation is applied to 51 ESR/DEER distance histogram data from spin-labels inserted at 37 different positions in T4 lysozyme (T4L). The rotamer population distribution along the five dihedral angles connecting the nitroxide ring to the protein backbone is determined and shown to be consistent with available information from X-ray crystallography. For the purpose of structural refinement, the concept of a simplified nitroxide dummy spin-label is designed and parameterized on the basis of these all-atom RE simulations with explicit solvent. It is demonstrated that RE simulations with the dummy nitroxide spin-labels imposing the ESR/DEER experimental distance distribution data are able to systematically correct and refine a series of distorted T4L structures, while simple harmonic distance restraints are unsuccessful. This computationally efficient approach allows experimental restraints from DEER experiments to be incorporated into RE simulations for efficient structural refinement. PMID:23510103

  5. Reactor Simulator Integration and Testing (United States)

    Schoenfield, M. P.; Webster, K. L.; Pearson, J. B.


    As part of the Nuclear Systems Office Fission Surface Power Technology Demonstration Unit (TDU) project, a reactor simulator (RxSim) test loop was designed and built to perform integrated testing of the TDU components. In particular, the objectives of RxSim testing were to verify the operation of the core simulator, the instrumentation and control system, and the ground support gas and vacuum test equipment. In addition, it was decided to include a thermal test of a cold trap purification design and a pump performance test at pump voltages up to 150 V because the targeted mass flow rate of 1.75 kg/s was not obtained in the RxSim at the originally constrained voltage of 120 V. This Technical Memorandum summarizes RxSim testing. The gas and vacuum ground support test equipment performed effectively in NaK fill, loop pressurization, and NaK drain operations. The instrumentation and control system effectively controlled loop temperature and flow rates or pump voltage to targeted settings. The cold trap design was able to obtain the targeted cold temperature of 480 K. An outlet temperature of 636 K was obtained, which was lower than the predicted 750 K but 156 K higher than the cold temperature, indicating the design provided some heat regeneration. The annular linear induction pump tested was able to produce a maximum flow rate of 1.53 kg/s at 800 K when operated at 150 V and 53 Hz.

  6. A refined model of claudin-15 tight junction paracellular architecture by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Giulio Alberini

    Full Text Available Tight-junctions between epithelial cells of biological barriers are specialized molecular structures that regulate the flux of solutes across the barrier, parallel to cell walls. The tight-junction backbone is made of strands of transmembrane proteins from the claudin family, but the molecular mechanism of its function is still not completely understood. Recently, the crystal structure of a mammalian claudin-15 was reported, displaying for the first time the detailed features of transmembrane and extracellular domains. Successively, a structural model of claudin-15-based paracellular channels has been proposed, suggesting a putative assembly that illustrates how claudins associate in the same cell (via cis interactions and across adjacent cells (via trans interactions. Although very promising, the model offers only a static conformation, with residues missing in the most important extracellular regions and potential steric clashes. Here we present detailed atomic models of paracellular single and double pore architectures, obtained from the putative assembly and refined via structural modeling and all-atom molecular dynamics simulations in double membrane bilayer and water environment. Our results show an overall stable configuration of the complex with a fluctuating pore size. Extracellular residue loops in trans interaction are able to form stable contacts and regulate the size of the pore, which displays a stationary radius of 2.5-3.0 Å at the narrowest region. The side-by-side interactions of the cis configuration are preserved via stable hydrogen bonds, already predicted by cysteine crosslinking experiments. Overall, this work introduces an improved version of the claudin-15-based paracellular channel model that strengthens its validity and that can be used in further computational studies to understand the structural features of tight-junctions regulation.

  7. Field test of re-refined automotive engine oil in RCMP vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, J.


    A field test has been designed to isolate the performance characteristics of the virgin and re-refined base oils being studied. The conditions selected for the test are those normally experienced by Royal Canadian Mounted Police vehicles in similar service. All test and reference vehicles have been subjected to as equal treatment as possible, in both driving conditions and maintenance schedules. The primary conclusion that can be made with the data obtained to date is that there are statistically significant differences occurring in certain measured properties of used crankcase oil from the two test groups of vehicles. These differences are no doubt attributable, at least in part, to performance differences between the two finished oils, but other factors such as the observed differences in length of oil change interval and top-up requirements are also contributing to the responses being measured. Given the methods by which the test and reference oils were defined and chosen, it might be expected that differences in performance characteristics would be observed, and also that the reference oil might exhibit better performance characteristics than the test oil. However, the final magnitudes of any differences between the oils will not be known until the field test period is completed, and the real significance of these differences, in terms of their effect on the engines, cannot be determined until the engine examinations have been completed.

  8. Trial and error: evaluating and refining a community model of HIV testing in Australia. (United States)

    Ryan, Kathleen E; Pedrana, Alisa; Leitinger, David; Wilkinson, Anna L; Locke, Peter; Hellard, Margaret E; Stoové, Mark


    The 2012 regulatory approval of HIV rapid point of care (RPOC) tests in Australia and a national strategic focus on HIV testing provided a catalyst for implementation of non-clinical HIV testing service models. PRONTO! opened in 2013 as a two-year trial delivering peer-led community-based HIV RPOC tests targeting gay, bisexual and other men who have sex with men (GBM), with the aim of increasing HIV testing frequency. Initial data suggested this aim was not achieved and, as part of a broader service evaluation, we sought to explore client acceptability and barriers to testing at PRONTO! to refine the service model. We present descriptive and thematic analyses of data from two in-depth evaluation surveys and four focus groups with PRONTO! clients focused on service acceptability, client testing history, intentions to test and barriers to testing for HIV and other sexually transmitted infections (STIs). The three novel aspects of the PRONTO! model, testing environment, rapid-testing, peer-staff, were reported to be highly acceptable among survey and focus group participants. Focus group discussions revealed that the PRONTO! model reduced anxiety associated with HIV testing and created a comfortable environment conducive to discussing sexual risk and health. However, an absence of STI testing at PRONTO!, driven by restrictions on medical subsidies for STI testing and limited funds available at the service level created a barrier to HIV testing. An overwhelming majority of PRONTO! clients reported usually testing for STIs alongside HIV and most reported plans to seek STI testing after testing for HIV at PRONTO!. When deciding where, when and what to test for, clients reported balancing convenience and relative risk and consequences for each infection as guiding their decision-making. A community-based and peer-led HIV testing model reduced previously reported barriers to HIV testing, while introducing new barriers. The absence of STI testing at PRONTO! and the need to

  9. Stable grid refinement and singular source discretization for seismic wave simulations

    Energy Technology Data Exchange (ETDEWEB)

    Petersson, N A; Sjogreen, B


    An energy conserving discretization of the elastic wave equation in second order formulation is developed for a composite grid, consisting of a set of structured rectangular component grids with hanging nodes on the grid refinement interface. Previously developed summation-by-parts properties are generalized to devise a stable second order accurate coupling of the solution across mesh refinement interfaces. The discretization of singular source terms of point force and point moment tensor type are also studied. Based on enforcing discrete moment conditions that mimic properties of the Dirac distribution and its gradient, previous single grid formulas are generalized to work in the vicinity of grid refinement interfaces. These source discretization formulas are shown to give second order accuracy in the solution, with the error being essentially independent of the distance between the source and the grid refinement boundary. Several numerical examples are given to illustrate the properties of the proposed method.

  10. Adaptive Mesh Refinement Cosmological Simulations of Cosmic Rays in Galaxy Clusters (United States)

    Skillman, Samuel William


    Galaxy clusters are unique astrophysical laboratories that contain many thermal and non-thermal phenomena. In particular, they are hosts to cosmic shocks, which propagate through the intracluster medium as a by-product of structure formation. It is believed that at these shock fronts, magnetic field inhomogeneities in a compressing flow may lead to the acceleration of cosmic ray electrons and ions. These relativistic particles decay and radiate through a variety of mechanisms, and have observational signatures in radio, hard X-ray, and Gamma-ray wavelengths. We begin this dissertation by developing a method to find shocks in cosmological adaptive mesh refinement simulations of structure formation. After describing the evolution of shock properties through cosmic time, we make estimates for the amount of kinetic energy processed and the total number of cosmic ray protons that could be accelerated at these shocks. We then use this method of shock finding and a model for the acceleration of and radio synchrotron emission from cosmic ray electrons to estimate the radio emission properties in large scale structures. By examining the time-evolution of the radio emission with respect to the X-ray emission during a galaxy cluster merger, we find that the relative timing of the enhancements in each are important consequences of the shock dynamics. By calculating the radio emission expected from a given mass galaxy cluster, we make estimates for future large-area radio surveys. Next, we use a state-of-the-art magnetohydrodynamic simulation to follow the electron acceleration in a massive merging galaxy cluster. We use the magnetic field information to calculate not only the total radio emission, but also create radio polarization maps that are compared to recent observations. We find that we can naturally reproduce Mpc-scale radio emission that resemble many of the known double radio relic systems. Finally, motivated by our previous studies, we develop and introduce a

  11. Mesh refinement for particle-in-cell plasma simulations: Applications to and benefits for heavy ion fusion (United States)

    Vay, J.-L.; Colella, P.; McCorquodale, P.; van Straalen, B.; Friedman, A.; Grote, D. P.


    The numerical simulation of the driving beams in a heavy ion fusion power plant is a challenging task, and simulation of the power plant as a whole, or even of the driver, is not yet possible. Despite the rapid progress in computer power, past and anticipated, one must consider the use of the most advanced numerical techniques, if we are to reach our goal expeditiously. One of the difficulties of these simulations resides in the disparity of scales, in time and in space, which must be resolved. When these disparities are in distinctive zones of the simulation region, a method which has proven to be effective in other areas (e.g., fluid dynamics simulations) is the mesh refinement technique. We discuss the challenges posed by the implementation of this technique into plasma simulations (due to the presence of particles and electromagnetic waves). We present the prospects for and projected benefits of its application to heavy ion fusion, in particular to the simulation of the ion source and the final beam propagation in the chamber. A collaboration project is under way at Lawrence Berkeley National Laboratory between the Applied Numerical Algorithms Group (ANAG) and the Heavy Ion Fusion group to couple the adaptive mesh refinement library CHOMBO developed by the ANAG group to the particle-in-cell accelerator code WARP developed by the Heavy Ion Fusion Virtual National Laboratory. We describe our progress and present our initial findings.

  12. RETRACTED ARTICLE: Grain refinement of AA5754 aluminum alloy by ultrasonic cavitation: Experimental study and numerical simulation (United States)

    Haghayeghi, R.; Ezzatneshan, E.; Bahai, H.


    In this work, an experimental investigation was carried out on the grain refinement of molten AA5754 Aluminum alloy through ultrasonic treatment. The cavitation induced heterogeneous nucleation was suggested as the major mechanism for grain refinement in the AA5754 aluminum alloy. A numerical simulation was performed to predict the formation, growth and collapse of cavitation bubbles in the molten AA5754 Aluminum alloy. Moreover, the acoustic pressure distribution and the induced acoustic streaming by ultrasonic horn reactor were investigated. It is suggested that the streaming by ultrasonic could transport the small bubbles formed in the ultrasonic cavitation zone into the bulk of melt rapidly. These micro-bubbles are collapsed due to acoustic vibrations where the resulting micro-jets are strong enough to break the oxide layer and to wet the impurities. These exogenous particles, intermetallics and oxides could contribute to the formation of fine, uniform and equiaxed microstructure across the treated melt. The experimental results confirmed the simulation predictions.

  13. Simulation Facilities and Test Beds for Galileo (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian


    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  14. An adaptive mesh refinement-multiphase lattice Boltzmann flux solver for simulation of complex binary fluid flows (United States)

    Yuan, H. Z.; Wang, Y.; Shu, C.


    This paper presents an adaptive mesh refinement-multiphase lattice Boltzmann flux solver (AMR-MLBFS) for effective simulation of complex binary fluid flows at large density ratios. In this method, an AMR algorithm is proposed by introducing a simple indicator on the root block for grid refinement and two possible statuses for each block. Unlike available block-structured AMR methods, which refine their mesh by spawning or removing four child blocks simultaneously, the present method is able to refine its mesh locally by spawning or removing one to four child blocks independently when the refinement indicator is triggered. As a result, the AMR mesh used in this work can be more focused on the flow region near the phase interface and its size is further reduced. In each block of mesh, the recently proposed MLBFS is applied for the solution of the flow field and the level-set method is used for capturing the fluid interface. As compared with existing AMR-lattice Boltzmann models, the present method avoids both spatial and temporal interpolations of density distribution functions so that converged solutions on different AMR meshes and uniform grids can be obtained. The proposed method has been successfully validated by simulating a static bubble immersed in another fluid, a falling droplet, instabilities of two-layered fluids, a bubble rising in a box, and a droplet splashing on a thin film with large density ratios and high Reynolds numbers. Good agreement with the theoretical solution, the uniform-grid result, and/or the published data has been achieved. Numerical results also show its effectiveness in saving computational time and virtual memory as compared with computations on uniform meshes.

  15. Test Generator for MATLAB Simulations (United States)

    Henry, Joel


    MATLAB Automated Test Tool, version 3.0 (MATT 3.0) is a software package that provides automated tools that reduce the time needed for extensive testing of simulation models that have been constructed in the MATLAB programming language by use of the Simulink and Real-Time Workshop programs. MATT 3.0 runs on top of the MATLAB engine application-program interface to communicate with the Simulink engine. MATT 3.0 automatically generates source code from the models, generates custom input data for testing both the models and the source code, and generates graphs and other presentations that facilitate comparison of the outputs of the models and the source code for the same input data. Context-sensitive and fully searchable help is provided in HyperText Markup Language (HTML) format.

  16. Comparing Refinements for Failure and Bisimulation Semantics

    NARCIS (Netherlands)

    Eshuis, H.; Fokkinga, M.M.


    Refinement in bisimulation semantics is defined differently from refinement in failure semantics: in bisimulation semantics refinement is based on simulations between labelled transition systems, whereas in failure semantics refinement is based on inclusions between failure systems. There exist

  17. Comparing Refinements for Failure and Bisimulation Semantics

    NARCIS (Netherlands)

    Eshuis, H.; Fokkinga, M.M.

    Refinement in bisimulation semantics is defined differently from refinement in failure semantics: in bisimulation semantics refinement is based on simulations between labelled transition systems, whereas in failure semantics refinement is based on inclusions between decorated traces systems. There

  18. Structural Refinement of Proteins by Restrained Molecular Dynamics Simulations with Non-interacting Molecular Fragments. (United States)

    Shen, Rong; Han, Wei; Fiorin, Giacomo; Islam, Shahidul M; Schulten, Klaus; Roux, Benoît


    The knowledge of multiple conformational states is a prerequisite to understand the function of membrane transport proteins. Unfortunately, the determination of detailed atomic structures for all these functionally important conformational states with conventional high-resolution approaches is often difficult and unsuccessful. In some cases, biophysical and biochemical approaches can provide important complementary structural information that can be exploited with the help of advanced computational methods to derive structural models of specific conformational states. In particular, functional and spectroscopic measurements in combination with site-directed mutations constitute one important source of information to obtain these mixed-resolution structural models. A very common problem with this strategy, however, is the difficulty to simultaneously integrate all the information from multiple independent experiments involving different mutations or chemical labels to derive a unique structural model consistent with the data. To resolve this issue, a novel restrained molecular dynamics structural refinement method is developed to simultaneously incorporate multiple experimentally determined constraints (e.g., engineered metal bridges or spin-labels), each treated as an individual molecular fragment with all atomic details. The internal structure of each of the molecular fragments is treated realistically, while there is no interaction between different molecular fragments to avoid unphysical steric clashes. The information from all the molecular fragments is exploited simultaneously to constrain the backbone to refine a three-dimensional model of the conformational state of the protein. The method is illustrated by refining the structure of the voltage-sensing domain (VSD) of the Kv1.2 potassium channel in the resting state and by exploring the distance histograms between spin-labels attached to T4 lysozyme. The resulting VSD structures are in good agreement with

  19. Navier-Stokes Simulation of UH-60A Rotor/Wake Interaction Using Adaptive Mesh Refinement (United States)

    Chaderjian, Neal M.


    High-resolution simulations of rotor/vortex-wake interaction for a UH60-A rotor under BVI and dynamic stallconditions were carried out with the OVERFLOW Navier-Stokes code.a. The normal force and pitching moment variation with azimuth angle were in good overall agreementwith flight-test data, similar to other CFD results reported in the literature.b. The wake-grid resolution did not have a significant effect on the rotor-blade airloads. This surprisingresult indicates that a wake grid spacing of (Delta)S=10% ctip is sufficient for engineering airloads predictionfor hover and forward flight. This assumes high-resolution body grids, high-order spatial accuracy, anda hybrid RANS/DDES turbulence model.c. Three-dimensional dynamic stall was found to occur due the presence of blade-tip vortices passing overa rotor blade on the retreating side. This changed the local airfoil angle of attack, causing stall, unlikethe 2D perspective of pure pitch oscillation of the local airfoil section.

  20. Temperature structure of the intracluster medium from smoothed-particle hydrodynamics and adaptive-mesh refinement simulations

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Elena [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Lau, Erwin T.; Nagai, Daisuke; Avestruz, Camille [Department of Physics, Yale University, New Haven, CT 06520 (United States); Borgani, Stefano [Dipartimento di Fisica dell' Università di Trieste, Sezione di Astronomia, via Tiepolo 11, I-34131 Trieste (Italy); Dolag, Klaus [University Observatory Munich, Scheiner-Str. 1, D-81679 Munich (Germany); Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia [INAF, Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131, Trieste (Italy); Mazzotta, Pasquale [Dipartimento di Fisica, Università di Roma Tor Vergata, via della Ricerca Scientifica, I-00133, Roma (Italy); Nelson, Kaylea, E-mail: [Department of Astronomy, Yale University, New Haven, CT 06520 (United States)


    Analyses of cosmological hydrodynamic simulations of galaxy clusters suggest that X-ray masses can be underestimated by 10%-30%. The largest bias originates from both violation of hydrostatic equilibrium (HE) and an additional temperature bias caused by inhomogeneities in the X-ray-emitting intracluster medium (ICM). To elucidate this large dispersion among theoretical predictions, we evaluate the degree of temperature structures in cluster sets simulated either with smoothed-particle hydrodynamics (SPH) or adaptive-mesh refinement (AMR) codes. We find that the SPH simulations produce larger temperature variations connected to the persistence of both substructures and their stripped cold gas. This difference is more evident in nonradiative simulations, whereas it is reduced in the presence of radiative cooling. We also find that the temperature variation in radiative cluster simulations is generally in agreement with that observed in the central regions of clusters. Around R {sub 500} the temperature inhomogeneities of the SPH simulations can generate twice the typical HE mass bias of the AMR sample. We emphasize that a detailed understanding of the physical processes responsible for the complex thermal structure in ICM requires improved resolution and high-sensitivity observations in order to extend the analysis to higher temperature systems and larger cluster-centric radii.

  1. Molecular dynamics simulation of impact test

    Energy Technology Data Exchange (ETDEWEB)

    Akahoshi, Y. [Kyushu Inst. of Tech., Kitakyushu, Fukuoka (Japan); Schmauder, S.; Ludwig, M. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt


    This paper describes an impact test by molecular dynamics (MD) simulation to evaluate embrittlement of bcc Fe at different temperatures. A new impact test model is developed for MD simulation. The typical fracture behaviors show transition from brittle to ductile fracture, and a history of the impact loads also demonstrates its transition. We conclude that the impact test by MD could be feasible. (orig.)

  2. Refinement of a viral transmission risk model for blood donations in seroconversion window phase screened by nucleic acid testing in different pool sizes and repeat test algorithms. (United States)

    Weusten, Jos; Vermeulen, Marion; van Drimmelen, Harry; Lelie, Nico


    In minipool nucleic acid test (MP-NAT) screening protocols, the donations implicated in reactive test pools are released for transfusion when they are nonreactive in a repeat test on the individual samples, but in individual-donation (ID)-NAT screening algorithms the release of nonrepeatable reactive (NRR) donations is under discussion. A previously developed window phase (WP) transmission risk model for NAT-screened blood transfusions has been refined to take the effect of repeat tests of initially reactive (IR) MP- or ID-NAT results into account. The model has then been applied to simulate the effect of different screening algorithms with ULTRIO and the new-generation ULTRIO Plus assay (Novartis Diagnostics) on transmission risk for hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV). We calculated WP risk-day equivalents for MP16-, MP8-, and ID-NAT with and without duplicate retesting of IR results of 3.1, 2.7, 1.5, and 1.3 days for HCV; 6.3, 5.5, 3.3, and 2.9 days for HIV; and 24.4, 22.2, 15.6, and 14.1 days for HBV, respectively. These latter infectious HBV WPs reduced to 20.4, 18.2, 11.6, and 10.3 days, respectively, with the more sensitive ULTRIO Plus assay. ULTRIO Plus ID-NAT screening reduces the virus transmission risk in the WP by 54% to 58% compared to ULTRIO MP16-NAT, while the incremental risk caused by releasing donations with duplicate ID-NAT NRR results is 5% to 6%. To achieve maximum safety and specificity a similar repeat test algorithm can be applied to ID-NAT as used for serologic assays. © 2010 American Association of Blood Banks.

  3. Simulation of plasma based semiconductor processing using block structured locally refined grids

    Energy Technology Data Exchange (ETDEWEB)

    Wake, D.D.


    We have described a new numerical method for plasma simulation. Calculations have been presented which show that the method is accurate and suggest the regimes in which the method provides savings in CPU time and memory requirements. A steady state simulation of a four centimeter domain was modeled with sheath scale (150 microns) resolution using only 40 grid points. Simulations of semiconductor processing equipment have been performed which imply the usefulness of the method for engineering applications. It is the author`s opinion that these accomplishments represent a significant contribution to plasma simulation and the efficient numerical solution of certain systems of non-linear partial differential equations. More work needs to be done, however, for the algorithm to be of practical use in an engineering environment. Despite our success at avoiding the dielectric relaxation timestep restrictions the algorithm is still conditionally stable and requires timesteps which are relatively small. This represents a prohibitive runtime for steady state solutions on high resolution grids. Current research suggests that these limitations may be overcome and the use of much larger timesteps will be possible.

  4. Discrete energy conservation in numerical flow simulations with local grid refinement

    NARCIS (Netherlands)

    Kort, Alderik Jan Albertus


    The behaviour of fluids is studied through the Navier-Stokes equations. Computer models are used to solve these equations in practical situations. However, for many practically interesting applications, computer simulations still take too much time to be useful. To increase the feasibility of

  5. Simulation of Test Case B

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter V.

    This report shows the results of the simulations given in research item 1.19 (isothermal forced convection) within the work of International Energy Agency (lEA), Annex 20 subtask 1. The title of this work is "Air Flow within Buildings" and the working title for subtask 1 is "Room Air...

  6. Simulations of recoiling black holes: adaptive mesh refinement and radiative transfer (United States)

    Meliani, Zakaria; Mizuno, Yosuke; Olivares, Hector; Porth, Oliver; Rezzolla, Luciano; Younsi, Ziri


    Context. In many astrophysical phenomena, and especially in those that involve the high-energy regimes that always accompany the astronomical phenomenology of black holes and neutron stars, physical conditions that are achieved are extreme in terms of speeds, temperatures, and gravitational fields. In such relativistic regimes, numerical calculations are the only tool to accurately model the dynamics of the flows and the transport of radiation in the accreting matter. Aims: We here continue our effort of modelling the behaviour of matter when it orbits or is accreted onto a generic black hole by developing a new numerical code that employs advanced techniques geared towards solving the equations of general-relativistic hydrodynamics. Methods: More specifically, the new code employs a number of high-resolution shock-capturing Riemann solvers and reconstruction algorithms, exploiting the enhanced accuracy and the reduced computational cost of adaptive mesh-refinement (AMR) techniques. In addition, the code makes use of sophisticated ray-tracing libraries that, coupled with general-relativistic radiation-transfer calculations, allow us to accurately compute the electromagnetic emissions from such accretion flows. Results: We validate the new code by presenting an extensive series of stationary accretion flows either in spherical or axial symmetry that are performed either in two or three spatial dimensions. In addition, we consider the highly nonlinear scenario of a recoiling black hole produced in the merger of a supermassive black-hole binary interacting with the surrounding circumbinary disc. In this way, we can present for the first time ray-traced images of the shocked fluid and the light curve resulting from consistent general-relativistic radiation-transport calculations from this process. Conclusions: The work presented here lays the ground for the development of a generic computational infrastructure employing AMR techniques to accurately and self

  7. A highly efficient sharp-interface immersed boundary method with adaptive mesh refinement for bio-inspired flow simulations (United States)

    Deng, Xiaolong; Dong, Haibo


    Developing a high-fidelity, high-efficiency numerical method for bio-inspired flow problems with flow-structure interaction is important for understanding related physics and developing many bio-inspired technologies. To simulate a fast-swimming big fish with multiple finlets or fish schooling, we need fine grids and/or a big computational domain, which are big challenges for 3-D simulations. In current work, based on the 3-D finite-difference sharp-interface immersed boundary method for incompressible flows (Mittal et al., JCP 2008), we developed an octree-like Adaptive Mesh Refinement (AMR) technique to enhance the computational ability and increase the computational efficiency. The AMR is coupled with a multigrid acceleration technique and a MPI +OpenMP hybrid parallelization. In this work, different AMR layers are treated separately and the synchronization is performed in the buffer regions and iterations are performed for the convergence of solution. Each big region is calculated by a MPI process which then uses multiple OpenMP threads for further acceleration, so that the communication cost is reduced. With these acceleration techniques, various canonical and bio-inspired flow problems with complex boundaries can be simulated accurately and efficiently. This work is supported by the MURI Grant Number N00014-14-1-0533 and NSF Grant CBET-1605434.

  8. Urban Air pollution Evaluation by Computer Simulation: A case study of petroleum refining company Nigeria

    Directory of Open Access Journals (Sweden)



    Full Text Available Industrialization is highly desirable for the sustenance of a nation’s economy and the enhancement of the citizenry’s well being. However the negative impact precipitated by introduction of its unwanted by – products into ecological system may be catastrophic if allowed to build up and uncontrolled. Urban Air pollution due to activities of process industries is one of the main problems faced by the industrial area of the world. Experimental analysis was carried out on gas flare to determine the extent of air pollution by the petroleum refinery industry on the concentrations of NO, CO, SO2 and total hydrocarbon. Attempt at the modeling pollutant concentration from the flare point using visual basic is hereby presented. The model equation was used to simulate the concentration of pollutants at distance of 20, 40, 60, and 80, 100, to 1000 away from the flare point. The result of the simulation of model developed from the modified principle of gaseous dispersion by Gaussian showed a good agreement with the experimental results with average correction coefficient of 0.99. Results obtained reveled that the concentration of pollutants are unacceptable compare to the Federal Environmental protection Agency set limit. The dispersion pattern of pollutants showed that the extent of spreading is dependent on nearness to the source of flare, wind speed, temperature etc.

  9. Computational Modeling of Simulation Tests. (United States)


    cavity was simulated with a nonrigid, partially reflecting heavy gas (the rigid wall of 905.0021 was replaced with additional cells of ideal gas which...the shock tunnel at the 4.14-Mpa range found in calculation 906.1081. The driver consisted of 25 cells of burned ammonium nitrate and fuel oil ( ANFO AX = 250 mm Reflected Wave Geometry--Calculation 906.1091 65 m Driver Region Reaction Region Boundary Burned Rigid ANFO Real Air Reflecting k 90.6

  10. A dynamic mesh refinement technique for Lattice Boltzmann simulations on octree-like grids

    KAUST Repository

    Neumann, Philipp


    In this contribution, we present our new adaptive Lattice Boltzmann implementation within the Peano framework, with special focus on nanoscale particle transport problems. With the continuum hypothesis not holding anymore on these small scales, new physical effects - such as Brownian fluctuations - need to be incorporated. We explain the overall layout of the application, including memory layout and access, and shortly review the adaptive algorithm. The scheme is validated by different benchmark computations in two and three dimensions. An extension to dynamically changing grids and a spatially adaptive approach to fluctuating hydrodynamics, allowing for the thermalisation of the fluid in particular regions of interest, is proposed. Both dynamic adaptivity and adaptive fluctuating hydrodynamics are validated separately in simulations of particle transport problems. The application of this scheme to an oscillating particle in a nanopore illustrates the importance of Brownian fluctuations in such setups. © 2012 Springer-Verlag.

  11. Simulation-based Testing of Control Software

    Energy Technology Data Exchange (ETDEWEB)

    Ozmen, Ozgur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nutaro, James J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanyal, Jibonananda [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olama, Mohammed M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    It is impossible to adequately test complex software by examining its operation in a physical prototype of the system monitored. Adequate test coverage can require millions of test cases, and the cost of equipment prototypes combined with the real-time constraints of testing with them makes it infeasible to sample more than a small number of these tests. Model based testing seeks to avoid this problem by allowing for large numbers of relatively inexpensive virtual prototypes that operate in simulation time at a speed limited only by the available computing resources. In this report, we describe how a computer system emulator can be used as part of a model based testing environment; specifically, we show that a complete software stack including operating system and application software - can be deployed within a simulated environment, and that these simulations can proceed as fast as possible. To illustrate this approach to model based testing, we describe how it is being used to test several building control systems that act to coordinate air conditioning loads for the purpose of reducing peak demand. These tests involve the use of ADEVS (A Discrete Event System Simulator) and QEMU (Quick Emulator) to host the operational software within the simulation, and a building model developed with the MODELICA programming language using Buildings Library and packaged as an FMU (Functional Mock-up Unit) that serves as the virtual test environment.

  12. Parallel adaptive mesh refinement method based on WENO finite difference scheme for the simulation of multi-dimensional detonation (United States)

    Wang, Cheng; Dong, XinZhuang; Shu, Chi-Wang


    For numerical simulation of detonation, computational cost using uniform meshes is large due to the vast separation in both time and space scales. Adaptive mesh refinement (AMR) is advantageous for problems with vastly different scales. This paper aims to propose an AMR method with high order accuracy for numerical investigation of multi-dimensional detonation. A well-designed AMR method based on finite difference weighted essentially non-oscillatory (WENO) scheme, named as AMR&WENO is proposed. A new cell-based data structure is used to organize the adaptive meshes. The new data structure makes it possible for cells to communicate with each other quickly and easily. In order to develop an AMR method with high order accuracy, high order prolongations in both space and time are utilized in the data prolongation procedure. Based on the message passing interface (MPI) platform, we have developed a workload balancing parallel AMR&WENO code using the Hilbert space-filling curve algorithm. Our numerical experiments with detonation simulations indicate that the AMR&WENO is accurate and has a high resolution. Moreover, we evaluate and compare the performance of the uniform mesh WENO scheme and the parallel AMR&WENO method. The comparison results provide us further insight into the high performance of the parallel AMR&WENO method.

  13. Simulation of multicomponent losses in electron beam melting and refining at varying scan frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Powell, A.; Szekely, J. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Van Den Avyle, J.; Damkroger, B. [Sandia National Labs., Albuquerque, NM (United States)


    A two-stage model is presented to describe alloy element evaporation rates from molten metal due to transient local heating by an electron beam. The first stage is a simulation of transient phenomena near the melt surface due to periodic heating by a scanning beam, the output of which is the relationship between operating parameters, surface temperature, and evaporation rate. At high scan rates, this can be done using a simple one-dimensional heat transfer model of the surface layer; at lower scan rates, a more complex three-dimensional model with fluid flow and periodic boundary conditions is necessary. The second stage couples this evaporation-surface temperature relationship with a larger steady state heat transfer and fluid flow model of an entire melting hearth or mold, in order to calculate local and total evaporation rates. Predictions are compared with experimental results from Sandia`s 310-kW electron beam melting furnace, in which evaporation rates and vapor compositions were studied in pure titanium and Ti-6%Al-4%V alloy. Evaporation rates were estimated from rate of condensation on a substrate held over the hearth, and were characterized as a function of beam power (150 and 225 kW), scan frequency (30, 115 and 450 Hz) and background pressure (10{sup {minus}3}, 10{sup {minus}4} and 10{sup {minus}5} torr).

  14. Lunar Polar Environmental Testing: Regolith Simulant Conditioning (United States)

    Kleinhenz, Julie Elise


    As ISRU system development approaches flight fidelity, there is a need to test hardware in relevant environments. Extensive laboratory and field testing have involved relevant soil (lunar regolith simulants), but the current design iterations necessitate relevant pressure and temperature conditions. Including significant quantities of lunar regolith simulant in a thermal vacuum chamber poses unique challenges. These include facility operational challenges (dust tolerant hardware) and difficulty maintaining a pre-prepared soil state during pump down (consolidation state, moisture retention).For ISRU purposes, the regolith at the lunar poles will be of most interest due to the elevated water content. To test at polar conditions, the regolith simulant must be doped with water to an appropriate percentage and then chilled to cryogenic temperatures while exposed to vacuum conditions. A 1m tall, 28cm diameter bin of simulant was developed for testing these simulant preparation and drilling operations. The bin itself was wrapped with liquid nitrogen cooling loops (100K) so that the simulant bed reached an average temperature of 140K at vacuum. Post-test sampling was used to determine desiccation of the bed due to vacuum exposure. Depth dependent moisture data is presented from frozen and thawed soil samples.Following simulant only evacuation tests, drill hardware was incorporated into the vacuum chamber to test auguring techniques in the frozen soil at thermal vacuum conditions. The focus of this testing was to produce cuttings piles for a newly developed spectrometer to evaluate. This instrument, which is part of the RESOLVE program science hardware, detects water signatures from surface regolith. The drill performance, behavior of simulant during drilling, and characteristics of the cuttings piles will be offered.

  15. Refinements to the Mixed-Mode Bending Test for Delamination Toughness (United States)

    Reeder, James R.


    The mixed-mode bending (MMB) test for delamination toughness was first introduced in 1988. This simple test is a combination of the standard Mode I (opening) test and a Mode II (sliding) test. This MMB test has become widely used in the United States and around the world for mixed-mode toughness measurements. Because of the widespread use of this test method, it is being considered for standardization by ASTM Committee D30. This paper discusses several improvements to the original test method. The improvements to the MMB test procedure include an improved method for calculating toughness from the measured test quantities, a more accurate way of setting the mixed-mode ratio to be tested, and the inclusion of a new alignment criterion for improved consistency in measured values.

  16. Using sport psychology in simulator testing

    Energy Technology Data Exchange (ETDEWEB)

    Primeau, T. [Bruce Power, Toronto, Ontario (Canada); Chandler, K. [Sport and Exercise Psychology Consulting, Windsor, Ontario (Canada)


    The paper will cover the methods of simulator testing at Bruce Power and the recent trial of using a sport psychology consultant to help candidates deal with the mental, physiological and emotional responses to simulator examinations. Previous research has shown that mental skills training can enhance the performance of both cognitive and physical skills. As such, it was hypothesized that a structured mental skills program would assist candidates in achieving optimal performance during simulator testing. The paper will be written as a descriptive piece. The paper will offer insight into the benefits of using mental skills training in preparation for simulator testing and the drawbacks as experienced by the Authorized Nuclear Operator (ANO). (author)

  17. Adaptive mesh refinement simulations of a galaxy cluster merger - I. Resolving and modelling the turbulent flow in the cluster outskirts (United States)

    Iapichino, L.; Federrath, C.; Klessen, R. S.


    The outskirts of galaxy clusters are characterized by the interplay of gas accretion and dynamical evolution involving turbulence, shocks, magnetic fields and diffuse radio emission. The density and velocity structure of the gas in the outskirts provide an effective pressure support and affect all processes listed above. Therefore, it is important to resolve and properly model the turbulent flow in these mildly overdense and relatively large cluster regions; this is a challenging task for hydrodynamical codes. In this work, grid-based simulations of a galaxy cluster are presented. The simulations are performed using adaptive mesh refinement (AMR) based on the regional variability of vorticity, and they include a subgrid scale (SGS) model for unresolved turbulence. The implemented AMR strategy is more effective in resolving the turbulent flow in the cluster outskirts than any previously used criterion based on overdensity. We study a cluster undergoing a major merger, which drives turbulence in the medium. The merger dominates the cluster energy budget out to a few virial radii from the centre. In these regions, the shocked intra-cluster medium is resolved and the SGS turbulence is modelled, and compared with diagnostics on larger length-scale. The volume-filling factor of the flow with a large vorticity is about 60 per cent at low redshift in the cluster outskirts, and thus smaller than in the cluster core. In the framework of modelling radio relics, this point suggests that upstream flow inhomogeneities might affect preexisting cosmic-ray population and magnetic fields, and the resulting radio emission.

  18. The conditioned place preference test for assessing welfare consequences and potential refinements in a mouse bladder cancer model.

    Directory of Open Access Journals (Sweden)

    John V Roughan

    Full Text Available Most pre-clinical analgesic efficacy assays still involve nociceptive testing in rodents. This is despite concerns as to the relevance of these tests for evaluating the pain-preventative properties of drugs. More appropriate methods would target pain rather than nociception, but these are currently not available, so it remains unknown whether animal pain equates to the negatively affective and subjective/emotional state it causes in humans. Mouse cancer models are common despite the likelihood of substantial pain. We used Conditioned Place Preference (CPP testing, assessments of thermal hyperalgesia and behaviour to determine the likelihood that MBT-2 bladder cancer impacts negatively on mouse welfare, such as by causing pain. There was no CPP to saline, but morphine preference in tumour bearing mice exceeded that seen in tumour-free controls. This occurred up to 10 days before the study end-point alongside reduced body weight, development of hyperalgesia and behaviour changes. These effects indicated mice experienced a negative welfare state caused by malaise (if not pain before euthanasia. Due to the complexity of the assessments needed to demonstrate this, it is unlikely that this approach could be used for routine welfare assessment on a study-by-study basis. However, our results show mice in sufficiently similar studies are likely to benefit from more intensive severity assessment and re-evaluation of end-points with a view to implementing appropriate refinements. In this particular case, a refinement would have been to have euthanased mice at least 7 days earlier or possibly by provision of end-stage pain relief. CPP testing was found to be a helpful method to investigate the responses of mice to analgesics, possibly on a subjective level. These findings and those of other recent studies show it could be a valuable method of screening candidate analgesics for efficacy against cancer pain and possibly other pain or disease models.

  19. Mine safety sensors: Test results in a simulated test stope

    CSIR Research Space (South Africa)

    Dickens, J


    Full Text Available in a simulated test stope John Dickens and Ruth Teleka CSIR Centre for Mining Innovation Johannesburg, South Africa Email: Abstract—The South African mining industry is plagued by accidents, the most common of which are rock falls..., the locking mechanism and the wooden hanging-wall supports. The final structure included a simulated stope face in addition to the parts shown in the concept. The simulated stope face can be seen on the right of the stope in Fig. 2. 2 37 5 6 4 1 Fig. 1. A...

  20. Tacit knowledge: A refinement and empirical test of the Academic Tacit Knowledge Scale. (United States)

    Insch, Gary S; McIntyre, Nancy; Dawley, David


    Researchers have linked tacit knowledge to improved organizational performance, but research on how to measure tacit knowledge is scarce. In the present study, the authors proposed and empirically tested a model of tacit knowledge and an accompanying measurement scale of academic tacit knowledge. They present 6 hypotheses that support the proposed tacit knowledge model regarding the role of cognitive (self-motivation, self-organization); technical (individual task, institutional task); and social (task-related, general) skills. The authors tested these hypotheses with 542 responses to the Academic Tacit Knowledge Scale, which included the respondents' grade point average-the performance variable. All 6 hypotheses were supported.

  1. Daylight simulators and colour vision tests. (United States)

    Dain, S J


    Our previous studies have shown that the influence of the illuminating source used for colour vision examination on the intended function of the test is very test dependent, some being relatively unaffected by source characteristics while others can be significantly affected. The effects can even differ between the plates of one pseudo-isochromatic plate test set. In addition, in previous studies we have considered a large range of sources on one test at a time. For this study the emphasis is on four fluorescent tube sources, all of which meet the requirements of the CIE method for assessing the quality of daylight simulators. The colour vision tests include sorting tests (the D-15 tests [Standard, Lanthony Desat and Adams Desat]), the Lanthony New Colour Test and the FM100 Hue Test, pseudo-isochromatic plate tests (Ishihara, Standard Pseudo-isochromatic Plates Volume 1, Hahn New Colour Test and Lanthony Tritan Album) and a matching test (TCU Test). Two examples are quoted here. The tests were assessed on the basis of alignment of the colours of the tests to protanopic and deuteranopic confusion axes and, where appropriate, to the tritanopic confusion axis. The data and analysis indicate that the four fluorescent tubes are essentially equivalent.

  2. Innovative approaches to reduce animal testing : replace whenever possible, reduce through refinement and mechanistic understanding

    NARCIS (Netherlands)

    Ravenzwaay, van B.


    'Many of the in vitro toxicological studies have not been sufficiently validated to determine their applicability domain, even less have gained regulatory acceptance. Major advantage of in vitro testing today is the early identification of significant hazards in compound development and reduced and

  3. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm


    using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...

  4. Visual comparison testing of automotive paint simulation (United States)

    Meyer, Gary; Fan, Hua-Tzu; Seubert, Christopher; Evey, Curtis; Meseth, Jan; Schnackenberg, Ryan


    An experiment was performed to determine whether typical industrial automotive color paint comparisons made using real physical samples could also be carried out using a digital simulation displayed on a calibrated color television monitor. A special light booth, designed to facilitate evaluation of the car paint color with reflectance angle, was employed in both the real and virtual color comparisons. Paint samples were measured using a multi-angle spectrophotometer and were simulated using a commercially available software package. Subjects performed the test quicker using the computer graphic simulation, and results indicate that there is only a small difference between the decisions made using the light booth and the computer monitor. This outcome demonstrates the potential of employing simulations to replace some of the time consuming work with real physical samples that still characterizes material appearance work in industry.

  5. Interlaminar fracture toughness of composites. II - Refinement of the edge delamination test and application to thermoplastics (United States)

    Johnston, N. J.; Obrien, T. K.; Morris, D. H.; Simonds, R. A.


    The mixed mode interlaminar fracture toughness, G(c), is obtained for the two thermoplastic matrices UDEL P1700 polysulfone and ULTEM polyetherimide by means of edge delamination tensile (EDT) tests on unnotched, eleven-ply graphite fiber reinforced composite specimens. A novel method is used to obtain the stiffness parameter employed in the closed form equation for the calculation of G(c), decreasing the number of stiffness measurements required and simplifying the calculations. The G(Ic) values from double cantilever beam (DCB) measurements on composites of the two thermoplastics were similar to each other, but slightly higher than the G(c) data obtained by EDT. Interfacial resin/fiber failures predominated in both the EDT and DCB tests.

  6. The Sweet Drive Test: Refining phenotypic characterization of anhedonic behavior in rodents

    Directory of Open Access Journals (Sweden)

    António eMateus-Pinheiro


    Full Text Available Measuring anhedonic behavior in rodents is a challenging task as current methods display only moderate sensitivity to detect anhedonic phenotype and, consequently, results from different labs are frequently incongruent. Herein we present a newly-developed test, the Sweet Drive Test (SDT, which integrates food preference measurement in a non-aversive environment, with ultrasonic vocalizations (USVs recording. Animals were placed in a soundproofed black arena, under red light illumination, and allowed to choose between regular and sweet food pellets. During the test trials, 50 KHz ultrasonic vocalizations, previously described to be associated with positive experiences, were recorded. In a first experimental approach, we demonstrate the ability of SDT to accurately characterize anhedonic behavior in animals chronically exposed to stress. In a subsequent set of experiments, we show that this paradigm has high sensitivity to detect mood-improving effects of antidepressants. The combined analysis of both food preference and the number of 50 KHz vocalizations in the SDT provides also a valuable tool to discriminate animals that responded to treatment from non-responder animals.

  7. Retained Gas Sampler Calibration and Simulant Tests

    Energy Technology Data Exchange (ETDEWEB)



    This test plan provides a method for calibration of the retained gas sampler (RGS) for ammonia gas analysis. Simulant solutions of ammonium hydroxide at known concentrations will be diluted with isotopically labeled 0.04 M ammonium hydroxide solution. Sea sand solids will also be mixed with ammonium hydroxide solution and diluent to determine the accuracy of the system for ammonia gas analysis.

  8. Sanitary Landfill Simulation - Test Parameters and a Simulator Conceptual Design (United States)


    ACSM -1~ for Nils ........... By L:R-yo/VAILaiL;1I CODES Library card Civil Engineering Laboratory SANITARY LANDFILL SIMULATION - TEST PARAMETERS AND...these landfills comply only marginally with Navy mandatory guidelines [2]. In a FY-74 report on this project [3], CEL presented the results of a...landfills are presently designed for burying solid waste in compliance with Environmental Protection Agency (EPA) operational guidelines . These

  9. Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance (United States)

    Ricci, Stefano; Peeters, Bart; Fetter, Rebecca; Boland, Doug; Debille, Jan


    In the field of vibration testing, the interaction between the structure being tested and the instrumentation hardware used to perform the test is a critical issue. This is particularly true when testing massive structures (e.g. satellites), because due to physical design and manufacturing limits, the dynamics of the testing facility often couples with the test specimen one in the frequency range of interest. A further issue in this field is the standard use of a closed loop real-time vibration control scheme, which could potentially shift poles and change damping of the aforementioned coupled system. Virtual shaker testing is a novel approach to deal with these issues. It means performing a simulation which closely represents the real vibration test on the specific facility by taking into account all parameters which might impact the dynamic behavior of the specimen. In this paper, such a virtual shaker testing approach is developed. It consists of the following components: (1) Either a physical-based or an equation-based coupled electro-mechanical lumped parameter shaker model is created. The model parameters are obtained from manufacturer's specifications or by carrying out some dedicated experiments; (2) Existing real-time vibration control algorithm are ported to the virtual simulation environment; and (3) A structural model of the test object is created and after defining proper interface conditions structural modes are computed by means of the well-established Craig-Bampton CMS technique. At this stage, a virtual shaker test has been run, by coupling the three described models (shaker, control loop, structure) in a co-simulation routine. Numerical results have eventually been correlated with experimental ones in order to assess the robustness of the proposed methodology.

  10. Testing refined shell-model interactions in the sd shell: Coulomb excitation of Na26

    CERN Document Server

    Siebeck, B; Blazhev, A; Reiter, P; Altenkirch, R; Bauer, C; Butler, P A; De Witte, H; Elseviers, J; Gaffney, L P; Hess, H; Huyse, M; Kröll, T; Lutter, R; Pakarinen, J; Pietralla, N; Radeck, F; Scheck, M; Schneiders, D; Sotty, C; Van Duppen, P; Vermeulen, M; Voulot, D; Warr, N; Wenander, F


    Background: Shell-model calculations crucially depend on the residual interaction used to approximate the nucleon-nucleon interaction. Recent improvements to the empirical universal sd interaction (USD) describing nuclei within the sd shell yielded two new interactions—USDA and USDB—causing changes in the theoretical description of these nuclei. Purpose: Transition matrix elements between excited states provide an excellent probe to examine the underlying shell structure. These observables provide a stringent test for the newly derived interactions. The nucleus Na26 with 7 valence neutrons and 3 valence protons outside the doubly-magic 16O core is used as a test case. Method: A radioactive beam experiment with Na26 (T1/2=1,07s) was performed at the REX-ISOLDE facility (CERN) using Coulomb excitation at safe energies below the Coulomb barrier. Scattered particles were detected with an annular Si detector in coincidence with γ rays observed by the segmented MINIBALL array. Coulomb excitation cross sections...

  11. Protein NMR structures refined without NOE data. (United States)

    Ryu, Hyojung; Kim, Tae-Rae; Ahn, SeonJoo; Ji, Sunyoung; Lee, Jinhyuk


    The refinement of low-quality structures is an important challenge in protein structure prediction. Many studies have been conducted on protein structure refinement; the refinement of structures derived from NMR spectroscopy has been especially intensively studied. In this study, we generated flat-bottom distance potential instead of NOE data because NOE data have ambiguity and uncertainty. The potential was derived from distance information from given structures and prevented structural dislocation during the refinement process. A simulated annealing protocol was used to minimize the potential energy of the structure. The protocol was tested on 134 NMR structures in the Protein Data Bank (PDB) that also have X-ray structures. Among them, 50 structures were used as a training set to find the optimal "width" parameter in the flat-bottom distance potential functions. In the validation set (the other 84 structures), most of the 12 quality assessment scores of the refined structures were significantly improved (total score increased from 1.215 to 2.044). Moreover, the secondary structure similarity of the refined structure was improved over that of the original structure. Finally, we demonstrate that the combination of two energy potentials, statistical torsion angle potential (STAP) and the flat-bottom distance potential, can drive the refinement of NMR structures.

  12. Testing and Refining Measures of Secondhand Smoke Exposure Among Smokers and Nonsmokers. (United States)

    Chapman Haynes, Melissa; St Claire, Ann W; Boyle, Raymond G; Betzner, Anne


    Over the past few decades, tobacco control efforts have made great strides in making smoke-free air the norm; 30 states in the United States have implemented 100% smoke-free laws. Despite this progress, the evolution of the measurement of secondhand smoke (SHS) exposure has lagged. Cognitive testing was used to explore the functioning and limitations of current SHS surveillance items; many items are frequently used for statewide or national surveillance. A total of 20 nonsmokers and 17 smokers participated in a cognitive interview. Overreporting of SHS was evidenced in our analysis as thirdhand smoke exposure was being included in the assessment of SHS exposure, likely due to the successful implementation of indoor smoking bans. Also asking about locations of SHS exposure outside of work, home, or a personal vehicle is important because these alternative locations were sometimes the only incidence of SHS exposure. Survey questions about SHS should: (1) reduce the ambiguity in words and phrases of items; (2) measure location of exposure; (3) measure duration of exposure; and (4) consider alternative strategies for asking smokers questions about SHS. Assessing location and duration of exposure can inform decision-makers about future SHS programming and policy work. Commonly accepted survey measures of SHS exposure need to be reevaluated to assure that the intended interpretation of them is still accurate given significant policy and social norm change. This paper assesses current SHS surveillance items and provides recommendations for revisions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail:

  13. Geotechnical Tests on Asteroid Simulant Orgueil (United States)

    Garcia, Alexander D'marco


    In the last 100 years, the global population has more than quadrupled to over seven billion people. At the same time, the demand for food and standard of living has been increasing which has amplified the global water use by nearly eight times from approximately 500 to 4000 cu km per yr from 1900 to 2010. With the increasing concern to sustain the growing population on Earth it is necessary to seek other approaches to ensure that our planet will have resources for generations to come. In recent years, the advancement of space travel and technology has allowed the idea of mining asteroids with resources closer to becoming a reality. During the duration of the internship at NASA Kennedy Space Center, several geotechnical tests were conducted on BP-1 lunar simulant and asteroid simulant Orgueil. The tests that were conducted on BP-1 was to practice utilizing the equipment that will be used on the asteroid simulant and the data from those tests will be omitted from report. Understanding the soil mechanics of asteroid simulant Orgueil will help provide basis for future technological advances and prepare scientists for the conditions they may encounter when mining asteroids becomes reality in the distant future. Distinct tests were conducted to determine grain size distribution, unconsolidated density, and maximum density. Once the basic properties are known, the asteroid simulant will be altered to different levels of compaction using a vibrator table to see how compaction affects the density. After different intervals of vibration compaction, a miniature vane shear test will be conducted. Laboratory vane shear testing is a reliable tool to investigate strength anisotropy in the vertical and horizontal directions of a very soft to stiff saturated fine-grained clayey soil. This test will provide us with a rapid determination of the shear strength on the undisturbed compacted regolith. The results of these tests will shed light on how much torque is necessary to drill

  14. Refinement, reduction, and replacement of animal use for regulatory testing: future improvements and implementation within the regulatory framework. (United States)

    Richmond, Jon


    Many are critical of how regulatory testing practices have evolved and become established--critical both of the scientific rational and the animal welfare costs. The test of whether we are more enlightened than our predecessors will be whether, armed with more powerful scientific insights and a better understanding of animal welfare, we can ensure that the best animal welfare and the best science drive and shape future developments in regulatory testing. Conducting the most humane animal-based regulatory testing requires establishing and maintaining a constructive dialogue between stakeholders and acknowledging the common ground that unites. Inclusive processes with stakeholders prepared to offer public, rational justifications for their policies and processes are essential if best practice is to be identified and implemented. There is general agreement that the best animal welfare results in the best science; that regulatory requirements based on an understanding of mechanisms and early relevant biomarkers result in elegant and valid science. Thus, "alternative" methods enabling replacement, reduction, or refinement (the 3Rs) are in reality often more scientifically "advanced" and scientifically valid methods. These principles provided the incentive and framework for recent initiatives in the United Kingdom to enhance the quality of the data prepared for regulatory submission while better protecting the welfare of the animals used. Some remaining 3R opportunities are explored in this paper, and some of the commonly encountered myths about regulatory testing and perceived barriers to change are challenged. Current "threats" may indeed offer opportunities for ensuring that sound science and the best animal welfare underpin developments in regulatory testing.

  15. Mimicking the action of folding chaperones in molecular dynamics simulations : Application to the refinement of homology-based protein structures

    NARCIS (Netherlands)

    Fan, H.; Mark, A.E.

    A novel method for the refinement of misfolded protein structures is proposed in which the properties of the solvent environment are oscillated in order to mimic some aspects of the role of molecular chaperones play in protein folding in vivo. Specifically, the hydrophobicity of the solvent is

  16. Large-scale numerical simulations of star formation put to the test

    DEFF Research Database (Denmark)

    Frimann, Søren; Jørgensen, Jes Kristian; Haugbølle, Troels


    (SEDs), calculated from large-scalenumerical simulations, to observational studies, thereby aiding in boththe interpretation of the observations and in testing the fidelity ofthe simulations. Methods: The adaptive mesh refinement code,RAMSES, is used to simulate the evolution of a 5 pc × 5 pc ×5 pc....... The flux emission from the simulated disks is found tobe, on average, a factor ~6 too low relative to real observations; anissue that can be traced back to numerical effects on the smallestscales in the simulation. The simulated distribution of protostellarluminosities spans more than three order...... of magnitudes, similar to theobserved distribution. Cores and protostars are found to be closelyassociated with one another, with the distance distribution between thembeing in excellent agreement with observations. Conclusions: Theanalysis and statistical comparison of synthetic observations to realones...

  17. A dynamic structural model of expanded RNA CAG repeats: A refined X-ray structure and computational investigations using molecular dynamics and umbrella sampling simulations (United States)

    Yildirim, Ilyas; Park, Hajeung; Disney, Matthew D.; Schatz, George C.


    One class of functionally important RNA is repeating transcripts that cause disease through various mechanisms. For example, expanded r(CAG) repeats can cause Huntington’s and other disease through translation of toxic proteins. Herein, crystal structure of r[5ʹUUGGGC(CAG)3GUCC]2, a model of CAG expanded transcripts, refined to 1.65 Å resolution is disclosed that show both anti-anti and syn-anti orientations for 1×1 nucleotide AA internal loops. Molecular dynamics (MD) simulations using Amber force field in explicit solvent were run for over 500 ns on model systems r(5ʹGCGCAGCGC)2 (MS1) and r(5ʹCCGCAGCGG)2 (MS2). In these MD simulations, both anti-anti and syn-anti AA base pairs appear to be stable. While anti-anti AA base pairs were dynamic and sampled multiple anti-anti conformations, no syn-anti↔anti-anti transformations were observed. Umbrella sampling simulations were run on MS2, and a 2D free energy surface was created to extract transformation pathways. In addition, over 800 ns explicit solvent MD simulation was run on r[5ʹGGGC(CAG)3GUCC]2, which closely represents the refined crystal structure. One of the terminal AA base pairs (syn-anti conformation), transformed to anti-anti conformation. The pathway followed in this transformation was the one predicted by umbrella sampling simulations. Further analysis showed a binding pocket near AA base pairs in syn-anti conformations. Computational results combined with the refined crystal structure show that global minimum conformation of 1×1 nucleotide AA internal loops in r(CAG) repeats is anti-anti but can adopt syn-anti depending on the environment. These results are important to understand RNA dynamic-function relationships and develop small molecules that target RNA dynamic ensembles. PMID:23441937

  18. Structural refinement of the hERG1 pore and voltage-sensing domains with ROSETTA-membrane and molecular dynamics simulations. (United States)

    Subbotina, Julia; Yarov-Yarovoy, Vladimir; Lees-Miller, James; Durdagi, Serdar; Guo, Jiqing; Duff, Henry J; Noskov, Sergei Yu


    The hERG1 gene (Kv11.1) encodes a voltage-gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template-driven de-novo design with ROSETTA-membrane modeling using side-chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2-Kv2.1 chimera channels, the missing parts are modeled de-novo. The impact of several alignments on the structure of the S4 helix in the voltage-sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage-sensor domain; and the topology of the extracellular S5-pore linker compared with that established by toxin foot-printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. © 2010 Wiley-Liss, Inc.

  19. Application of the Local Grid Refinement package to an inset model simulating the interactions of lakes, wells, and shallow groundwater, northwestern Waukesha County, Wisconsin (United States)

    Feinstein, D.T.; Dunning, C.P.; Juckem, P.F.; Hunt, R.J.


    Groundwater use from shallow, high-capacity wells is expected to increase across southeastern Wisconsin in the next decade (2010-2020), owing to residential and business growth and the need for shallow water to be blended with deeper water of lesser quality, containing, for example, excessive levels of radium. However, this increased pumping has the potential to affect surface-water features. A previously developed regional groundwater-flow model for southeastern Wisconsin was used as the starting point for a new model to characterize the hydrology of part of northwestern Waukesha County, with a particular focus on the relation between the shallow aquifer and several area lakes. An inset MODFLOW model was embedded in an updated version of the original regional model. Modifications made within the inset model domain include finer grid resolution; representation of Beaver, Pine, and North Lakes by use of the LAK3 package in MODFLOW; and representation of selected stream reaches with the SFR package. Additionally, the inset model is actively linked to the regional model by use of the recently released Local Grid Refinement package for MODFLOW-2005, which allows changes at the regional scale to propagate to the local scale and vice versa. The calibrated inset model was used to simulate the hydrologic system in the Chenequa area under various weather and pumping conditions. The simulated model results for base conditions show that groundwater is the largest inflow component for Beaver Lake (equal to 59 percent of total inflow). For Pine and North Lakes, it is still an important component (equal, respectively, to 16 and 5 percent of total inflow), but for both lakes it is less than the contribution from precipitation and surface water. Severe drought conditions (simulated in a rough way by reducing both precipitation and recharge rates for 5 years to two-thirds of base values) cause correspondingly severe reductions in lake stage and flows. The addition of a test well

  20. Numerical simulations of capillary barrier field tests

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)


    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  1. Action Refinement

    NARCIS (Netherlands)

    Gorrieri, R.; Rensink, Arend; Bergstra, J.A.; Ponse, A.; Smolka, S.A.


    In this chapter, we give a comprehensive overview of the research results in the field of action refinement during the past 12 years. The different approaches that have been followed are outlined in detail and contrasted to each other in a uniform framework. We use two running examples to discuss

  2. Final Report for Collaborative Project: Sensitivity of Atmospheric Parametric Formulations to Regional Mesh Refinement in Global Climate Simulations Using CESM-HOMME

    Energy Technology Data Exchange (ETDEWEB)

    Neale, Richard B. [University Corporation For Atmospheric Research, Boulder, CO (United States)


    In this project we analyze climate simulations using the Community Earth System Model (CESM) in order to determine the modeled response and sensitivity to horizontal resolution. Simple aqua-planet configurations were used to provide a clean comparison of the response to resolution in CESM. This enables us to easily examine all aspects of the model sensitivity to resolution including mean quantities, variability and physical parameterization tendencies: the chief reflection of resolution sensitivity. An extension to the global resolution sensitivity study is the examination of regional grid refinement where resolution changes are prescribed in a single global simulation. We examine the relevance of the global resolution sensitivity results as applied to these regional refinement simulations. In particular we examine how variations in the grid resolution, centered on different parts of the globe, lead to differences in the parameterized response and the potential to generate residual circulations as a result. Given the potential to generate this resolution sensitivity we examine simple modifications to the parameterized physics that are able to moderate any residual circulations. Finally, we transfer the framework to the standard AMIP configuration to examine the resolution sensitivity in the presence of compounding effects such as land-sea distributions, orography and seasonal variation.


    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.


    Three simulated waste solutions representing wastes from tanks SY-102 (high nitrate, modified to exceed guidance limits), AN-107, and AY-102 were supplied by PNNL. Out of the three solutions tested, both optical and electrochemical results show that carbon steel samples corroded much faster in SY-102 (high nitrate) than in the other two solutions with lower ratios of nitrate to nitrite. The effect of the surface preparation was not as strong as the effect of solution chemistry. In areas with pristine mill-scale surface, no corrosion occurred even in the SY-102 (high nitrate) solution, however, corrosion occurred in the areas where the mill-scale was damaged or flaked off due to machining. Localized corrosion in the form of pitting in the vapor space of tank walls is an ongoing challenge to overcome in maintaining the structural integrity of the liquid waste tanks at the Savannah River and Hanford Sites. It has been shown that the liquid waste condensate chemistry influences the amount of corrosion that occurs along the walls of the storage tanks. To minimize pitting corrosion, an effort is underway to gain an understanding of the pitting response in various simulated waste solutions. Electrochemical testing has been used as an accelerated tool in the investigation of pitting corrosion. While significant effort has been undertaken to evaluate the pitting susceptibility of carbon steel in various simulated waste solutions, additional effort is needed to evaluate the effect of liquid waste supernates from six Hanford Site tanks (AY-101, AY-102, AN-102, AN-107, SY-102 (high Cl{sup -}), and SY-102 (high nitrate)) on carbon steel. Solutions were formulated at PNNL to replicate tank conditions, and in the case of SY-102, exceed Cl{sup -} and NO{sub 3}{sup -} conditions, respectively, to provide a contrast between in and out of specification limits. The majority of previous testing has been performed on pristine polished samples. To evaluate the actual tank carbon steel

  4. Motor operated valves problems tests and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pinier, D.; Haas, J.L.


    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  5. Physical Simulation: Testing the PHYSICALITY of Phenomena (United States)

    Srivastava, Jagdish


    Theories of Quantum Mechanics in which `consciousness' plays a role have been around for decades. For example, Wheeler maintains that no phenomenon is a real phenomenon unless it has been observed. Also, the von Neumann chain, where the wave function is said to collapse when the chain reaches the mind of a conscious observer, is well known. The author's theory of Quantum Reality (denoted by TK) goes a bit further, saying that at the fundamental levels, all phenomena are logical-mathematical objects only, and the experience of their `physicality' is due to the consciousness of the observer. This paper addresses the question, as to how TK (and, the other related theories) could be tested. A procedure for this, termed `Physical Simulation' is proposed. The idea is to create logical-mathematical objects through a computer. Various aspects of this methodology are discussed.

  6. A cellular automaton - finite volume method for the simulation of dendritic and eutectic growth in binary alloys using an adaptive mesh refinement (United States)

    Dobravec, Tadej; Mavrič, Boštjan; Šarler, Božidar


    A two-dimensional model to simulate the dendritic and eutectic growth in binary alloys is developed. A cellular automaton method is adopted to track the movement of the solid-liquid interface. The diffusion equation is solved in the solid and liquid phases by using an explicit finite volume method. The computational domain is divided into square cells that can be hierarchically refined or coarsened using an adaptive mesh based on the quadtree algorithm. Such a mesh refines the regions of the domain near the solid-liquid interface, where the highest concentration gradients are observed. In the regions where the lowest concentration gradients are observed the cells are coarsened. The originality of the work is in the novel, adaptive approach to the efficient and accurate solution of the posed multiscale problem. The model is verified and assessed by comparison with the analytical results of the Lipton-Glicksman-Kurz model for the steady growth of a dendrite tip and the Jackson-Hunt model for regular eutectic growth. Several examples of typical microstructures are simulated and the features of the method as well as further developments are discussed.

  7. Fourier Collocation Approach With Mesh Refinement Method for Simulating Transit-Time Ultrasonic Flowmeters Under Multiphase Flow Conditions. (United States)

    Simurda, Matej; Duggen, Lars; Basse, Nils T; Lassen, Benny


    A numerical model for transit-time ultrasonic flowmeters operating under multiphase flow conditions previously presented by us is extended by mesh refinement and grid point redistribution. The method solves modified first-order stress-velocity equations of elastodynamics with additional terms to account for the effect of the background flow. Spatial derivatives are calculated by a Fourier collocation scheme allowing the use of the fast Fourier transform, while the time integration is realized by the explicit third-order Runge-Kutta finite-difference scheme. The method is compared against analytical solutions and experimental measurements to verify the benefit of using mapped grids. Additionally, a study of clamp-on and in-line ultrasonic flowmeters operating under multiphase flow conditions is carried out.

  8. The simulated clinical environment as a platform for refining critical thinking in nursing students: a pilot program. (United States)

    Wane, Daryle; Lotz, Karen


    This research explores the use of clinical simulations as a platform for stimulating critical thinking in nursing students. This study takes place in an associate degree nursing program with a clinical group of nursing students. Utilizing a faculty partnership approach, information was presented to the clinical group. Students were divided into small groups to create simulation scenarios. Students were able to appreciate complexity of care and research differential diagnoses as they applied to care and management of changes in client condition scenarios. Use of a small-group teaching method to develop, implement, and critique clinical simulation scenarios facilitated critical thinking and clinical judgment of nursing students.

  9. RailSiTe® (Rail Simulation and Testing

    Directory of Open Access Journals (Sweden)

    Martin Johne


    Full Text Available RailSiTe® (Rail Simulation and Testing is DLR’s rail simulation and testing laboratory (see Figure 1. It is the implementation of a fully modular concept for the simulation of on-board and trackside control and safety technology. The RailSiTe® laboratory additionally comprises the RailSET (Railway Simulation Environment for Train Drivers and Operators human-factors laboratory, a realistic environment containing a realistic train mockup including 3D simulation.

  10. Alternative methods and strategies to reduce, refine, and replace animal use for veterinary vaccine post-licensing safety testing: state of the science and future directions




    NICEATM and ICCVAM convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing methods and to identify opportunities to advance new and improved methods that can further reduce, refine, and replace animal use. Six topics were addressed in detail by speakers and workshop participants and are reported in a series of six reports. This workshop report, the last in the series, addresses methods and strategies for veterinary vacci...

  11. An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems

    Directory of Open Access Journals (Sweden)

    Dębski Roman


    Full Text Available A new dynamic programming based parallel algorithm adapted to on-board heterogeneous computers for simulation based trajectory optimization is studied in the context of “high-performance sailing”. The algorithm uses a new discrete space of continuously differentiable functions called the multi-splines as its search space representation. A basic version of the algorithm is presented in detail (pseudo-code, time and space complexity, search space auto-adaptation properties. Possible extensions of the basic algorithm are also described. The presented experimental results show that contemporary heterogeneous on-board computers can be effectively used for solving simulation based trajectory optimization problems. These computers can be considered micro high performance computing (HPC platforms-they offer high performance while remaining energy and cost efficient. The simulation based approach can potentially give highly accurate results since the mathematical model that the simulator is built upon may be as complex as required. The approach described is applicable to many trajectory optimization problems due to its black-box represented performance measure and use of OpenCL.

  12. Refinements of water parameters for molecular dynamics: Simulations of adsorption at the clay mineral/aqueous solution interface

    DEFF Research Database (Denmark)

    Schäfer, L.; Yu, C.; Teppen, B.J.


    atomic charges were determined for several oligomers of water and for the water dimer at different intermolecular separations. Charge variations of up to ~0.1 electron charge unit on oxygen are found and, together with changes in van der Waals constants, their significance for dynamics simulations...

  13. The Transmission Disequilibrium/Heterogeneity Test with Parental-Genotype Reconstruction for Refined Genetic Mapping of Complex Diseases

    Directory of Open Access Journals (Sweden)

    Jing Han


    Full Text Available In linkage analysis for mapping genetic diseases, the transmission/disequilibrium test (TDT uses the linkage disequilibrium (LD between some marker and trait loci for precise genetic mapping while avoiding confounding due to population stratification. The sib-TDT (S-TDT and combined-TDT (C-TDT proposed by Spielman and Ewens can combine data from families with and without parental marker genotypes (PMGs. For some families with missing PMG, the reconstruction-combined TDT (RC-TDT proposed by Knapp may be used to reconstruct missing parental genotypes from the genotypes of their offspring to increase power and to correct for potential bias. In this paper, we propose a further extension of the RC-TDT, called the reconstruction-combined transmission disequilibrium/heterogeneity (RC-TDH test, to take into account the identical-by-descent (IBD sharing information in addition to the LD information. It can effectively utilize families with missing or incomplete parental genetic marker information. An application of this proposed method to Genetic Analysis Workshop 14 (GAW14 data sets and extensive simulation studies suggest that this approach may further increase statistical power which is particularly valuable when LD is unknown and/or when some or all PMGs are not available.

  14. Development of virtual reality simulator for spent fuel test facility

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Byung Ha; Kang, Hyun Kuk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    This paper describes the development of spent fuel management research and test facility simulator including hot cell configuration, engineering simulation of spent fuel management process and others. 4 figs.


    Federal Laboratory Consortium — The MIST chamber uses methyl salicylate (oil of wintergreen) vapor as a simulant for HD agent to conduct system level evaluations of chemical protective ensembles....

  16. Simulation and Verificaiton of Flow in Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica


    Simulations and experimental results of L-box and slump flow test of a self-compacting mortar and a self-compacting concrete are compared. The simulations are based on a single fluid approach and assume an ideal Bingham behavior. It is possible to simulate the experimental results of both tests...... for a given set of rheological parameters. However, it is important to include boundary conditions related to the lifting procedure in the two tests....

  17. Guidance simulation and test support for differential GPS flight experiment (United States)

    Geier, G. J.; Loomis, P. V. W.; Cabak, A.


    Three separate tasks which supported the test preparation, test operations, and post test analysis of the NASA Ames flight test evaluation of the differential Global Positioning System (GPS) are presented. Task 1 consisted of a navigation filter design, coding, and testing to optimally make use of GPS in a differential mode. The filter can be configured to accept inputs from external censors such as an accelerometer and a barometric or radar altimeter. The filter runs in real time onboard a NASA helicopter. It processes raw pseudo and delta range measurements from a single channel sequential GPS receiver. The Kalman filter software interfaces are described in detail, followed by a description of the filter algorithm, including the basic propagation and measurement update equations. The performance during flight tests is reviewed and discussed. Task 2 describes a refinement performed on the lateral and vertical steering algorithms developed on a previous contract. The refinements include modification of the internal logic to allow more diverse inflight initialization procedures, further data smoothing and compensation for system induced time delays. Task 3 describes the TAU Corp participation in the analysis of the real time Kalman navigation filter. The performance was compared to that of the Z-set filter in flight and to the laser tracker position data during post test analysis. This analysis allowed a more optimum selection of the parameters of the filter.

  18. Transportable enhanced simulation technologies for pre-implementation limited operations testing: neonatal intensive care unit. (United States)

    Bender, Jesse; Shields, Robin; Kennally, Karen


    Transition of a Neonatal Intensive Care Unit (NICU) to a new physical plant incurs many challenges. These are amplified when the culture of care is changing from traditional cohort-based care to the single-family room model. Altered healthcare delivery systems can be tested in situ with TESTPILOT: Transportable Enhanced Simulation Technologies for Pre-Implementation Limited Operations Testing. The aims of the study included promoting translation of existing processes and identifying staff orientation material. We hypothesized that (1) numerous process gaps would be discovered and resolved, and (2) participants would feel better prepared. A functional neonatal intensive care unit was modeled before its opening. Scenarios were developed, volunteers recruited, and rooms supplied with equipment. Participants performed usual duties in two 30-minute in situ simulations followed by facilitated debriefings. As latent safety hazards were identified, they were corrected and retested in subsequent simulations. Staff was surveyed for perceived preparedness. Ninety-six multidisciplinary participants identified 164 latent safety hazards in verbal and written communication, facilities, supplies, staffing, and training, 93% of which were resolved at transition. Staff preparedness varied but showed improving communication, workflow patterns, and awareness of equipment and supply locations. The majority stated that this simulation experience changed their practice. Simulation is very effective for identifying process gaps before major institutional change. TESTPILOT generated iterative workflow enhancements and staff orientation toward improving patient care at transition and beyond. The extensive coordination required to implement such large-scale simulations is well worth the benefit for systems refinement and patient safety.

  19. Application of high-temperature simulated distillation to the residuum oil supercritical extraction process in petroleum refining (United States)

    Raia; Villalanti; Subramanian; Williams


    The gas chromatographic method of high-temperature simulated distillation (HTSD) is described, and the results are presented for the application of HTSD to the characterization of petroleum refinery feed and products from solvent deasphalting operations. Results are presented for refinery residual feed, deasphalted oil, and asphaltene fractions from the residual oil supercritical extraction process. Asphaltene removal from petroleum residuum using solvent deasphalting results in the improved quality and high recovery of deasphalted oil product for use as lube oil, fluid catalytic cracking, or hydrocracker feedstocks. The HTSD procedure presented here proves valuable for characterizing the fractions from the deasphalting process to obtain the percentage yield with boiling point data over the range from approximately 36 degrees C (97 degrees F) to 733 degrees C (1352 degrees F), which covers the boiling range of n-paraffins of carbon number C5 to C108.

  20. Coalbed gas content simulation test and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. [New Star Petroleum Company, Zhengzhou (China). North China Petroleum Bureau


    With a high-pressure canister and accurate thermoregulation system of IS-100 isotherm instrument and an electronic flow meter, a coalbed gas content simulation method is established. A control program is combined with it to control data acquisition. The method simulates the whole process of gas content measurement from coring to the completion of desorption. It enables the understanding of gas desorption regularities, and for obtaining the volume of gas loss at any one time. The study would be useful for comparing the various approaches of calculating gas loss volume. 3 refs., 5 figs.

  1. Element test experiments and simulations: From dry towards cohesive powders

    NARCIS (Netherlands)

    Imole, Olukayode Isaiah; Kumar, Nishant; Luding, Stefan; Onate, E; Owen, D.R.J


    Findings from experiments and particle simulations for dry and cohesive granular materials are presented with the goal to reach quantitative agreement between simulations and experiments. Results for the compressibility, tested with the FT4 Powder Rheometer are presented. The first simulation

  2. Refined Hopf Link Revisited

    CERN Document Server

    Iqbal, Amer


    We establish a relation between the refined Hopf link invariant and the S-matrix of the refined Chern-Simons theory. We show that the refined open string partition function corresponding to the Hopf link, calculated using the refined topological vertex, when expressed in the basis of Macdonald polynomials gives the S-matrix of the refined Chern-Simons theory.

  3. Test and evaluation of the generalized gate logic system simulator (United States)

    Miner, Paul S.


    The results of the initial testing of the Generalized Gate Level Logic Simulator (GGLOSS) are discussed. The simulator is a special purpose fault simulator designed to assist in the analysis of the effects of random hardware failures on fault tolerant digital computer systems. The testing of the simulator covers two main areas. First, the simulation results are compared with data obtained by monitoring the behavior of hardware. The circuit used for these comparisons is an incomplete microprocessor design based upon the MIL-STD-1750A Instruction Set Architecture. In the second area of testing, current simulation results are compared with experimental data obtained using precursors of the current tool. In each case, a portion of the earlier experiment is confirmed. The new results are then viewed from a different perspective in order to evaluate the usefulness of this simulation strategy.

  4. Automatic Test Suite for Physics Simulation System


    Mannerfelt, Anders-Petter; Schrab, Alexander


    Testing software is an important but time consuming task. Meqon AB as well as their product has grown in complexity and the need for a good testing system is greater than ever. This paper gives an overview of software testing and the needs for testing at Meqon as well as an introduction to the system we have designed and implemented for Meqon. The system which has requirements like ease of use and flexibility must still be powerful enough to be useful in the testing process. We discuss how th...

  5. Genetic algorithms coupled with quantum mechanics for refinement of force fields for RNA simulation: a case study of glycosidic torsions in the canonical ribonucleosides. (United States)

    Kato, Rodrigo B; Silva, Frederico T; Pappa, Gisele L; Belchior, Jadson C


    We report the use of genetic algorithms (GA) as a method to refine force field parameters in order to determine RNA energy. Quantum-mechanical (QM) calculations are carried out for the isolated canonical ribonucleosides (adenosine, guanosine, cytidine and uridine) that are taken as reference data. In this particular study, the dihedral and electrostatic energies are reparametrized in order to test the proposed approach, i.e., GA coupled with QM calculations. Overall, RMSE comparison with recent published results for ribonucleosides energies shows an improvement, on average, of 50%. Finally, the new reparametrized potential energy function is used to determine the spatial structure of RNA (PDB code ) that was not taken into account in the parametrization process. This structure was improved about 82% comparable with previously published results.

  6. Using Modeling and Simulation to Complement Testing for Increased Understanding of Weapon Subassembly Response.

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Michael K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davidson, Megan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    As part of Sandia’s nuclear deterrence mission, the B61-12 Life Extension Program (LEP) aims to modernize the aging weapon system. Modernization requires requalification and Sandia is using high performance computing to perform advanced computational simulations to better understand, evaluate, and verify weapon system performance in conjunction with limited physical testing. The Nose Bomb Subassembly (NBSA) of the B61-12 is responsible for producing a fuzing signal upon ground impact. The fuzing signal is dependent upon electromechanical impact sensors producing valid electrical fuzing signals at impact. Computer generated models were used to assess the timing between the impact sensor’s response to the deceleration of impact and damage to major components and system subassemblies. The modeling and simulation team worked alongside the physical test team to design a large-scale reverse ballistic test to not only assess system performance, but to also validate their computational models. The reverse ballistic test conducted at Sandia’s sled test facility sent a rocket sled with a representative target into a stationary B61-12 (NBSA) to characterize the nose crush and functional response of NBSA components. Data obtained from data recorders and high-speed photometrics were integrated with previously generated computer models in order to refine and validate the model’s ability to reliably simulate real-world effects. Large-scale tests are impractical to conduct for every single impact scenario. By creating reliable computer models, we can perform simulations that identify trends and produce estimates of outcomes over the entire range of required impact conditions. Sandia’s HPCs enable geometric resolution that was unachievable before, allowing for more fidelity and detail, and creating simulations that can provide insight to support evaluation of requirements and performance margins. As computing resources continue to improve, researchers at Sandia are hoping

  7. CMI and the simulated test stope

    CSIR Research Space (South Africa)

    Teleka, R


    Full Text Available Areas National Laser Centre Satellite Applications Centre Meraka Institute Nanotechnology Intelligent Autonomous Systems Synthetic Biology Fire forensics Food and beverage Environmental impact assessment Environmental, water and organic... Engineering forensics Rope testing Mechanical testing Fires and explosion testing Notational analysis Slide 3 © CSIR 2013 The Centre for Mining Innovation (CMI) CMI Mission We support government to support the South African mining industry Slide...

  8. Finite element simulation of asphalt fatigue testing

    DEFF Research Database (Denmark)

    Ullidtz, Per; Kieler, Thomas Lau; Kargo, Anders


    The traditional interpretation of fatigue tests on asphalt mixes has been in terms of a logarithmic linear relationship between the constant stress or strain amplitude and the number of load repetitions to cause failure, often defined as a decrease in modulus to half the initial value. To accomod...... tests are that the extrapolation from laboratory tests to insitu conditions is facilitated and that the gradual deterioration of the asphalt may be predicted, which is useful for pavement management purposes....

  9. Unit Under Test Simulator Feasibility Study. (United States)


    Source 0 Nonlinear Elements Nonlinear Voltage-Controlled Current Source Diode Bipolar Junction Transistor ( BJT ) Junction Field-Effect Transistor (JFET...circuit element component levels, such as resistor, capacitor, and transistor . As such, it can provide very accurate simulation with regard to signal...Insulated- Gate Field-Effect Transistor (MOSFET) Each model in turn contains many parameters which are used to reflect the individual device

  10. Data refinement for true concurrency

    Directory of Open Access Journals (Sweden)

    Brijesh Dongol


    Full Text Available The majority of modern systems exhibit sophisticated concurrent behaviour, where several system components modify and observe the system state with fine-grained atomicity. Many systems (e.g., multi-core processors, real-time controllers also exhibit truly concurrent behaviour, where multiple events can occur simultaneously. This paper presents data refinement defined in terms of an interval-based framework, which includes high-level operators that capture non-deterministic expression evaluation. By modifying the type of an interval, our theory may be specialised to cover data refinement of both discrete and continuous systems. We present an interval-based encoding of forward simulation, then prove that our forward simulation rule is sound with respect to our data refinement definition. A number of rules for decomposing forward simulation proofs over both sequential and parallel composition are developed.

  11. Extraction-Separation Performance and Dynamic Modeling of Orion Test Vehicles with Adams Simulation: 3rd Edition (United States)

    Varela, Jose G.; Reddy, Satish; Moeller, Enrique; Anderson, Keith


    NASA's Orion Capsule Parachute Assembly System (CPAS) Project is now in the qualification phase of testing, and the Adams simulation has continued to evolve to model the complex dynamics experienced during the test article extraction and separation phases of flight. The ability to initiate tests near the upper altitude limit of the Orion parachute deployment envelope requires extractions from the aircraft at 35,000 ft-MSL. Engineering development phase testing of the Parachute Test Vehicle (PTV) carried by the Carriage Platform Separation System (CPSS) at altitude resulted in test support equipment hardware failures due to increased energy caused by higher true airspeeds. As a result, hardware modifications became a necessity requiring ground static testing of the textile components to be conducted and a new ground dynamic test of the extraction system to be devised. Force-displacement curves from static tests were incorporated into the Adams simulations, allowing prediction of loads, velocities and margins encountered during both flight and ground dynamic tests. The Adams simulation was then further refined by fine tuning the damping terms to match the peak loads recorded in the ground dynamic tests. The failure observed in flight testing was successfully replicated in ground testing and true safety margins of the textile components were revealed. A multi-loop energy modulator was then incorporated into the system level Adams simulation model and the effect on improving test margins be properly evaluated leading to high confidence ground verification testing of the final design solution.

  12. Reanimation of the RICH Test Beam Simulation in GEANT4

    CERN Document Server

    Arzymatov, Kenenbek


    This test was originally developed by Sajan Easo (LHCb) ten years ago mostly for the purpose of testing the behavior of photomultipliers, but it wasn’t used in regression testing in Gauss/Geant4 famework. The goal of project is to revive simulation of cherenkov radiaton test by completing.

  13. Test Simulations with the NACA 0012 Airfoil


    Ala-Juusela, Juhaveikko


    MEMO No CFD/THERMO-44-2003 Date: 17th December 2003 Abstract: Air-flow around the NACA 0012 airfoil was simulated with the FINFLO flow solver version 7.2 of Finflo Ltd. and the 2D solver FINF2D of Laboratory of Aerodynamics, HUT. The flow conditions are Ma = 0.3, α = 10°. Main result: Pressure and friction coefficients are in a good agreement between the two solvers, whereas the drag and lift coefficients have some differencies.

  14. Which significance test performs the best in climate simulations? (United States)

    Decremer, D.; Chung, C. E.; Ekman, A. M.


    Externally-forced climate change simulated by general circulation models (GCMs) needs to be compared with model noise (model internal variability) in order to assess the robustness of climate change signals. Significance tests are performed to establish the robustness of the signal. Student's t-test has been the most popular significance testing technique, despite more sophisticated techniques developed over the years. These sophisticated techniques were designed to address unrealistic assumptions in Student's t-test, such as assuming no temporal correlation in the time series. Some of these advanced techniques were tested before, but only on artificial data generated by time series models that cannot fully capture all the features of GCM output. We evaluate five different significance testing techniques (including Student's t-test) on 10 to 100 continuous-year simulations, and validate the performance using much longer (375 to 1000 years) model simulations. We find that Student's t-test is at least as good as the 4 advanced techniques in estimating model noise for GCM simulations of up to 60 years. Furthermore, in establishing the robustness of signals against noise, Student's t-test is at least as good as the other 4 techniques for the simulations of at least up to 100 years. 10~100 year simulation covers the range of typical model integrations, and over this range we suggest that Student's t-test suffice.

  15. Computer simulation tests of optimized neutron powder diffractometer configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cussen, L.D., E-mail: [Cussen Consulting, 23 Burgundy Drive, Doncaster 3108 (Australia); Lieutenant, K., E-mail: [Helmholtz Zentrum Berlin, Hahn-Meitner Platz 1, 14109 Berlin (Germany)


    Recent work has developed a new mathematical approach to optimally choose beam elements for constant wavelength neutron powder diffractometers. This article compares Monte Carlo computer simulations of existing instruments with simulations of instruments using configurations chosen using the new approach. The simulations show that large performance improvements over current best practice are possible. The tests here are limited to instruments optimized for samples with a cubic structure which differs from the optimization for triclinic structure samples. A novel primary spectrometer design is discussed and simulation tests show that it performs as expected and allows a single instrument to operate flexibly over a wide range of measurement resolution.

  16. 7th Conference Simulation and Testing for Vehicle Technology

    CERN Document Server

    Riese, Jens; Rüden, Klaus


    The book includes contributions on the latest model-based methods for the development of personal and commercial vehicle control devices. The main topics treated are: application of simulation and model design to development of driver assistance systems; physical and database model design for engines, motors, powertrain, undercarriage and the whole vehicle; new simulation tools, methods and optimization processes; applications of simulation in function and software development; function and software testing using HiL, MiL and SiL simulation; application of simulation and optimization in application of control devices; automation approaches at all stages of the development process.

  17. Simulating New Drop Test Vehicles and Test Techniques for the Orion CEV Parachute Assembly System (United States)

    Morris, Aaron L.; Fraire, Usbaldo, Jr.; Bledsoe, Kristin J.; Ray, Eric; Moore, Jim W.; Olson, Leah M.


    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is engaged in a multi-year design and test campaign to qualify a parachute recovery system for human use on the Orion Spacecraft. Test and simulation techniques have evolved concurrently to keep up with the demands of a challenging and complex system. The primary simulations used for preflight predictions and post-test data reconstructions are Decelerator System Simulation (DSS), Decelerator System Simulation Application (DSSA), and Drop Test Vehicle Simulation (DTV-SIM). The goal of this paper is to provide a roadmap to future programs on the test technique challenges and obstacles involved in executing a large-scale, multi-year parachute test program. A focus on flight simulation modeling and correlation to test techniques executed to obtain parachute performance parameters are presented.

  18. Simulation of a Model Tank Gunnery Test (United States)


    the first and second rounds. Time data might also be measured from the sound track of gun camera tapes. This soundtrack can be used to record...j. RELIABILITY AND VALIDITY IN CRITERION-REFERENCED TESTING Traditional methods of assessing reliability and validity have a long history and much

  19. CIST....CORRTEX interferometer simulation test

    Energy Technology Data Exchange (ETDEWEB)

    Heinle, R.A.


    Testing was performed in order to validate and cross calibrate an RF interferometer and the crush threshold of cable. Nitromethane was exploded (inside of PVC pipe). The explosion was used to crush the interferometer sensor cables which had been placed inside and outside the pipe. Results are described.

  20. Neutral Buoyancy Simulator Test - Scientific Airlock (United States)


    Once the United States' space program had progressed from Earth's orbit into outerspace, the prospect of building and maintaining a permanent presence in space was realized. To accomplish this feat, NASA launched a temporary workstation, Skylab, to discover the effects of low gravity and weightlessness on the human body, and also to develop tools and equipment that would be needed in the future to build and maintain a more permanent space station. The structures, techniques, and work schedules had to be carefully designed to fit this unique construction site. The components had to be lightweight for transport into orbit, yet durable. The station also had to be made with removable parts for easy servicing and repairs by astronauts. All of the tools necessary for service and repairs had to be designed for easy manipulation by a suited astronaut. Construction methods had to be efficient due to the limited time the astronauts could remain outside their controlled environment. In lieu of all the specific needs for this project, an environment on Earth had to be developed that could simulate a low gravity atmosphere. A Neutral Buoyancy Simulator (NBS) was constructed by NASA Marshall Space Flight Center (MSFC) in 1968. Since then, NASA scientists have used this facility to understand how humans work best in low gravity and also provide information about the different kinds of structures that can be built. With the help of the NBS, building a space station became more of a reality. Pictured is Astronaut Paul Weitz training on a mock-up of Spacelab's airlock-hatch cover. Training was also done on the use of foot restraints which had recently been developed to help astronauts maintain their positions during space walks rather than having their feet float out from underneath them while they tried to perform maintenance and repair operations. Every aspect of every space mission was researched and demonstrated in the NBS. Using the airlock hatch cover and foot restraints were

  1. Simulation and Test of a Fuel Cell Hybrid Golf Cart

    Directory of Open Access Journals (Sweden)

    Jingming Liang


    Full Text Available This paper establishes the simulation model of fuel cell hybrid golf cart (FCHGC, which applies the non-GUI mode of the Advanced Vehicle Simulator (ADVISOR and the genetic algorithm (GA to optimize it. Simulation of the objective function is composed of fuel consumption and vehicle dynamic performance; the variables are the fuel cell stack power sizes and the battery numbers. By means of simulation, the optimal parameters of vehicle power unit, fuel cell stack, and battery pack are worked out. On this basis, GUI mode of ADVISOR is used to select the rated power of vehicle motor. In line with simulation parameters, an electrical golf cart is refitted by adding a 2 kW hydrogen air proton exchange membrane fuel cell (PEMFC stack system and test the FCHGC. The result shows that the simulation data is effective but it needs improving compared with that of the real cart test.

  2. Validation and Refinement of Prediction Models to Estimate Exercise Capacity in Cancer Survivors Using the Steep Ramp Test

    NARCIS (Netherlands)

    Stuiver, Martijn M.; Kampshoff, Caroline S.; Persoon, Saskia; Groen, Wim; van Mechelen, Willem; Chinapaw, Mai J. M.; Brug, Johannes; Nollet, Frans; Kersten, Marie-José; Schep, Goof; Buffart, Laurien M.


    Objective: To further test the validity and clinical usefulness of the steep ramp test (SRT) in estimating exercise tolerance in cancer survivors by external validation and extension of previously published prediction models for peak oxygen consumption (Vo2(peak)) and peak power output (W-peak).&

  3. Validation and refinement of prediction models to estimate exercise capacity in cancer survivors using the steep ramp test

    NARCIS (Netherlands)

    Stuiver, M.M.; Kampshoff, C.S.; Persoon, S.; Groen, W.; van Mechelen, W.; Chinapaw, M.J.M.; Brug, J.; Nollet, F.; Kersten, M.-J.; Schep, G.; Buffart, L.M.


    Objective To further test the validity and clinical usefulness of the steep ramp test (SRT) in estimating exercise tolerance in cancer survivors by external validation and extension of previously published prediction models for peak oxygen consumption (Vo2peak) and peak power output (Wpeak). Design

  4. Simulated time for host-based testing with TTCN-3

    NARCIS (Netherlands)

    Blom, Stefan; Deiß, Thomas; Ioustinova, Natalia; Kontio, Ari; van de Pol, Jan Cornelis; Rennoch, Axel; Sidorova, Natalia


    Prior to testing embedded software in a target environment, it is usually tested in a host environment used for developing the software. When a system is tested in a host environment, its real-time behaviour is affected by the use of simulators, emulation and monitoring. In this paper, the authors

  5. Preparation of Simulated Waste Solutions for Solvent Extraction Testing

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, R.A.


    Personnel will need to routinely prepare 0.5 to 10 L batches of salt solutions simulating Savannah River Site (SRS) soluble waste for solvent extraction testing. This report describes the compositions and preparation methods.

  6. Simulation tests of galaxy cluster constraints on chameleon gravity (United States)

    Wilcox, Harry; Nichol, Robert C.; Zhao, Gong-Bo; Bacon, David; Koyama, Kazuya; Romer, A. Kathy


    We use two new hydrodynamical simulations of Λ cold dark matter (ΛCDM) and f(R) gravity to test the methodology used by Wilcox et al. (W15) in constraining the effects of a fifth force on the profiles of clusters of galaxies. We construct realistic simulated stacked weak lensing and X-ray surface brightness cluster profiles from these cosmological simulations, and then use these data projected along various lines of sight to test the spherical symmetry of our stacking procedure. We also test the applicability of the NFW profile to model weak lensing profiles of clusters in f(R) gravity. Finally, we test the validity of the analytical model developed in W15 against the simulated profiles. Overall, we find our methodology is robust and broadly agrees with these simulated data. We also apply our full Markov Chain Monte Carlo analysis from W15 to our simulated X-ray and lensing profiles, providing consistent constraints on the modified gravity parameters as obtained from the real cluster data, e.g. for our ΛCDM simulation we obtain |fR0| < 8.3 × 10-5 (95 per cent CL), which is in good agreement with the W15 measurement of |fR0| < 6 × 10-5. Overall, these tests confirm the power of our methodology which can now be applied to larger cluster samples available with the next generation surveys.

  7. Standard Specification for Solar Simulation for Terrestrial Photovoltaic Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This specification provides means for classifying solar simulators intended for indoor testing of photovoltaic devices (solar cells or modules), according to their spectral match to a reference spectral irradiance, non-uniformity of spatial irradiance, and temporal instability of irradiance. 1.2 Testing of photovoltaic devices may require the use of solar simulators. Test Methods that require specific classification of simulators as defined in this specification include Test Methods E948, E1036, and E1362. 1.3 This standard is applicable to both pulsed and steady state simulators and includes recommended test requirements used for classifying such simulators. 1.4 A solar simulator usually consists of three major components: (1) light source(s) and associated power supply; (2) any optics and filters required to modify the output beam to meet the classification requirements in Section 4; and (3) the necessary controls to operate the simulator, adjust irradiance, etc. 1.5 A light source that does not mee...

  8. Standard Test Method for Testing Nonmetallic Seal Materials by Immersion in a Simulated Geothermal Test Fluid

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 This test method covers a procedure for a laboratory test for performing an initial evaluation (screening) of nonmetallic seal materials by immersion in a simulated geothermal test fluid. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6 and 11.7.

  9. Sunscreen standards tested with differently filtered solar simulators. (United States)

    Sayre, R M; Stanfield, J; Bush, A J; Lott, D L


    The COLIPA standard for solar simulators permits a range of spectral filtration. Published studies comparing the SPFs of sunscreen formulas show that a range of SPFs is generally expected between laboratories. Specifically, three studies determining the SPFs of sunscreen standards have been performed in a series of laboratories and differences exceeding 50% have been reported. No studies to date have specifically examined potential differences in performance of Standard Sunscreen Test Formulas with varying solar simulator spectra within the permitted range of optical filtration. In a paired clinical trial, two SPF standard sunscreen formulas were tested using two solar simulators that complied with the COLIPA standard for solar simulators but were filtered differently. One solar simulator was filtered as supplied by the manufacturer and delivered a high percentage of UVB; the other solar simulator was modified by removing the visible absorbing filter to deliver energy more closely resembling sunlight in the UVA-1 part of the spectrum, with a lower percentage of UVB. The result was that the SPF of each standard sunscreen was almost 50% greater with the unmodified solar simulator than with the modified solar simulator. In vitro evaluation of the sunscreen standards predicted similar differences due to the spectral differences of the solar simulators, which appears to rule out reciprocity failure. However, reciprocity failure of the control MEDs was observed. The total intensity of the modified lamp was approximately 3 times that of the unmodified lamp.

  10. Testing power system controllers by real-time simulation

    DEFF Research Database (Denmark)

    Venne, Philippe; Guillaud, Xavier; Sirois, Frédéric


    In this paper, we present a number of state-of-the art methods for testing power system controllers based on the use of a real-time power system simulator. After introducing Hypersim, we list and discuss the different means of connection between the controller under tests and the power system...

  11. Development of computer simulation models for pedestrian subsystem impact tests

    NARCIS (Netherlands)

    Kant, R.; Konosu, A.; Ishikawa, H.


    The European Enhanced Vehicle-safety Committee (EEVC/WG10 and WG17) proposed three component subsystem tests for cars to assess pedestrian protection. The objective of this study is to develop computer simulation models of the EEVC pedestrian subsystem tests. These models are available to develop a

  12. Modified Evacuated-Tube Collector Tested in Solar Simulator (United States)


    According to report, particular commercial evacuated-tube solar collector performs slightly more efficiently with larger manifold. Tests were performed with Marshall Space Flight Center solar simulator. Report describes test conditions and procedures, provides analysis of results, and presents tables and graphs of data, both measured and calculated.

  13. An old test for new neurons: refining the Morris water maze to study the functional relevance of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Alexander eGarthe


    Full Text Available The Morris water maze represents the de-facto standard for testing hippocampal function in laboratory rodents. In the field of adult hippocampal neurogenesis, however, using this paradigm to assess the functional relevance of the new neurons yielded surprisingly inconsistent results. While some authors found aspects of water maze performance to be linked to adult neurogenesis, others obtained different results or could not demonstrate any effect of manipulating adult neurogenesis.In this review we discuss evidence that the large diversity of protocols and setups used is an important aspect in interpreting the differences in the results that have been obtained. Even simple parameters such as pool size, number and configuration of visual landmarks, or number of trials can become highly relevant for getting the new neurons involved at all. Sets of parameters are often chosen with implicit or explicit concepts in mind and these might lead to different views on the function of adult-generated neurons.We propose that the classical parameters usually used to measure spatial learning performance in the water maze might not be particularly well suited to sensitively and specifically detect the supposedly highly specific functional changes elicited by the experimental modulation of adult hippocampal neurogenesis. As adult neurogenesis is supposed to affect specific aspects of information processing only in the hippocampus, any claim for a functional relevance of the new neurons has to be based on hippocampus-specific parameters. We also placed a special emphasis on the fact that the DG facilitates the differentiation between contexts as opposed to just differentiating places.In conclusion, while the Morris water maze has proven to be one of the most effective testing paradigms to assess hippocampus-dependent spatial learning, new and more specific questions ask for new parameters. Therefore, the full potential of the water maze task remains to be tapped.

  14. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This report describes the results from long-term laboratory leach tests performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams. Specific objectives of the Cast Stone long-term leach tests described in this report focused on four activities: 1. Extending the leaching times for selected ongoing EPA-1315 tests on monoliths made with LAW simulants beyond the conventional 63-day time period up to 609 days reported herein (with some tests continuing that will be documented later) in an effort to evaluate long-term leaching properties of Cast Stone to support future performance assessment activities. 2. Starting new EPA-1315 leach tests on archived Cast Stone monoliths made with four LAW simulants using two leachants (deionized water [DIW] and simulated Hanford Integrated Disposal Facility (IDF) Site vadose zone pore water [VZP]). 3. Evaluating the impacts of varying the iodide loading (starting iodide concentrations) in one LAW simulant (7.8 M Na Hanford Tank Waste Operations Simulator (HTWOS) Average) by manufacturing new Cast Stone monoliths and repeating the EPA-1315 leach tests using DIW and the VZP leachants. 4. Evaluating the impacts of using a non-pertechnetate form of Tc that is present in some Hanford tanks. In this activity one LAW simulant (7.8 M Na HTWOS Average) was spiked with a Tc(I)-tricarbonyl gluconate species and then solidified into Cast Stone monoliths. Cured monoliths were leached using the EPA-1315 leach protocol with DIW and VZP. The leach results for the Tc-Gluconate Cast Stone monoliths were compared to Cast Stone monoliths pertechnetate.

  15. Simulated hail impact testing of photovoltaic solar panels (United States)

    Moore, D.; Wilson, A.; Ross, R.


    Techniques used to simulate and study the effect of hail on photovoltaic solar panels are described. Simulated hail stones (frozen ice spheres projected at terminal velocity) or steel balls were applied by air guns, gravity drop, or static loading. Tests with simulated hail and steel balls yielded different results. The impact strength of 10 commercially available flat-plate photovoltaic modules was tested. It was found that none of the six panel designs incorporating clear potting silicone material as the outermost layer remained undamaged by 1-in. simulated hailstones, while a photovoltaic module equipped with a 0.188-in.-thick acrylic cover sheet would be able to withstand the impact of a 2-in.-diameter hailstone.

  16. Ames T-3 fire test facility - Aircraft crash fire simulation (United States)

    Fish, R. H.


    There is a need to characterize the thermal response of materials exposed to aircraft fuel fires. Large scale open fire tests are costly and pollute the local environment. This paper describes the construction and operation of a subscale fire test that simulates the heat flux levels and thermochemistry of typical open pool fires. It has been termed the Ames T-3 Test and has been used extensively by NASA since 1969 to observe the behavior of materials exposed to JP-4 fuel fires.

  17. Simulation and interpretation of inter-well tracer tests


    Dugstad Øyvind; Viig Sissel; Sagen Jan; Huseby Olaf


    In inter-well tracer tests (IWTT), chemical compounds or radioactive isotopes are used to label injection water and gas to establish well connections and fluid patterns in petroleum reservoirs. Tracer simulation is an invaluable tool to ease the interpretation of IWTT results and is also required for assisted history matching application of tracer data. In this paper we present a new simulation technique to analyse and interpret tracer results. Laboratory results are used to establish and tes...

  18. On the refinement calculus

    CERN Document Server

    Vickers, Trevor


    On the Refinement Calculus gives one view of the development of the refinement calculus and its attempt to bring together - among other things - Z specifications and Dijkstra's programming language. It is an excellent source of reference material for all those seeking the background and mathematical underpinnings of the refinement calculus.

  19. Magnetic Testing, and Modeling, Simulation and Analysis for Space Applications (United States)

    Boghosian, Mary; Narvaez, Pablo; Herman, Ray


    The Aerospace Corporation (Aerospace) and Lockheed Martin Space Systems (LMSS) participated with Jet Propulsion Laboratory (JPL) in the implementation of a magnetic cleanliness program of the NASA/JPL JUNO mission. The magnetic cleanliness program was applied from early flight system development up through system level environmental testing. The JUNO magnetic cleanliness program required setting-up a specialized magnetic test facility at Lockheed Martin Space Systems for testing the flight system and a testing program with facility for testing system parts and subsystems at JPL. The magnetic modeling, simulation and analysis capability was set up and performed by Aerospace to provide qualitative and quantitative magnetic assessments of the magnetic parts, components, and subsystems prior to or in lieu of magnetic tests. Because of the sensitive nature of the fields and particles scientific measurements being conducted by the JUNO space mission to Jupiter, the imposition of stringent magnetic control specifications required a magnetic control program to ensure that the spacecraft's science magnetometers and plasma wave search coil were not magnetically contaminated by flight system magnetic interferences. With Aerospace's magnetic modeling, simulation and analysis and JPL's system modeling and testing approach, and LMSS's test support, the project achieved a cost effective approach to achieving a magnetically clean spacecraft. This paper presents lessons learned from the JUNO magnetic testing approach and Aerospace's modeling, simulation and analysis activities used to solve problems such as remnant magnetization, performance of hard and soft magnetic materials within the targeted space system in applied external magnetic fields.

  20. Virtual simulation of maneuvering captive tests for a surface vessel

    Directory of Open Access Journals (Sweden)

    Ahmad Hajivand


    Full Text Available Hydrodynamic derivatives or coefficients are required to predict the maneuvering characteristics of a marine vehicle. These derivatives are obtained numerically for a DTMB 5512 model ship by virtual simulating of captive model tests in a CFD environment. The computed coefficients are applied to predict the turning circle and zigzag maneuvers of the model ship. The comparison of the simulated results with the available experimental data shows a very good agreement among them. The simulations show that the CFD is precise and affordable tool at the preliminary design stage to obtain maneuverability performance of a marine vehicles.

  1. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.


    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.


    Directory of Open Access Journals (Sweden)

    Andrea Formato


    Full Text Available In this work a numerical simulation of agricultural soil shear stress tests was performed through soil shear strength data detected by a soil shearometer. We used a soil shearometer available on the market to measure soil shear stress and constructed special equipment that enabled automated detection of soil shear stress. It was connected to an acquisition data system that displayed and recorded soil shear stress during the full field tests. A soil shearometer unit was used to the in situ measurements of soil shear stress in full field conditions for different types of soils located on the right side of the Sele river, at a distance of about 1 km from each other, along the perpendicular to the Sele river in the direction of the sea. Full field tests using the shearometer unit were performed alongside considered soil characteristic parameter data collection. These parameter values derived from hydrostatic compression and triaxial tests performed on considered soil samples and repeated 4 times and we noticed that the difference between the maximum and minimum values detected for every set of performed tests never exceeded 4%. Full field shear tests were simulated by the Abaqus program code considering three different material models of soils normally used in the literature, the Mohr-Coulomb, Drucker-Prager and Cam-Clay models. We then compared all data outcomes obtained by numerical simulations with those from the experimental tests. We also discussed any further simulation data results obtained with different material models and selected the best material model for each considered soil to be used in tyre/soil contact simulation or in soil compaction studies.

  3. Field Tests and Simulation of Lion-Head River Bridge

    Directory of Open Access Journals (Sweden)

    Yao-Min Fang


    Full Text Available Lion-Head River Bridge is a twin bridge in parallel position. The east-bounded was designed and constructed as a traditional prestress concrete box girder bridge with pot bearings; and the west-bounded was installed with seismic isolation devices of lead rubber bearings. The behavior of the isolated bridge is compared with that of the traditional bridge through several field tests including the ambient vibration test, the force vibration test induced by shakers, the free vibration test induced by a push and fast release system, and the truck test. The bridges suffered from various extents of damage due to the Chi-Chi and the Chi-I earthquakes of great strength during the construction and had been retrofitted. The damage was reflected by the change of the bridges' natural frequencies obtained from the ambient vibration tests. The models of the two bridges are simulated by the finite element method based on the original design drawings. Soil-structure interaction was also scrutinized in this study. The simulation was then modified based on the results from the field tests. Dynamic parameters of bridges are identified and compared with those from theoretical simulation. The efficiency is also verified to be better for an isolated bridge.

  4. Simulation of Acoustics for Ares I Scale Model Acoustic Tests (United States)

    Putnam, Gabriel; Strutzenberg, Louise L.


    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.

  5. Permeation Testing of Materials With Chemical Agents or Simulants (Swatch Testing) (United States)


    water), decontaminants, firefighting foam, insect repellant [N,N- diethyl-meta-toluamide (DEET)], body fluids (simulated sweat, urine, blood, and feces...Control. (1) All data will be handled using chain of custody (CoC) procedures. (2) All test, analytical, and environmental QC data will be audited to... Insect repellant [DEET (N,N-diethyl-meta-toluamide)]. 3. FORMULATIONS FOR SIMULATED FLUIDS. 3.1. Simulated Sea Water. The following formulation for

  6. A simulation facility for testing Space Station assembly procedures (United States)

    Hajare, Ankur R.; Wick, Daniel T.; Shehad, Nagy M.


    NASA plans to construct the Space Station Freedom (SSF) in one of the most hazardous environments known to mankind - space. It is of the utmost importance that the procedures to assemble and operate the SSF in orbit are both safe and effective. This paper describes a facility designed to test the integration of the telerobotic systems and to test assembly procedures using a real-world robotic arm grappling space hardware in a simulated microgravity environment.

  7. Extended Leach Testing of Simulated LAW Cast Stone Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Serne, R. Jeffrey [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lanigan, David C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Benjamin D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, H. B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    This revision to the original report adds two longer term leach sets of data to the report and provides more discussion and graphics on how to interpret the results from long-term laboratory leach tests. The leach tests were performed at Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions (WRPS) to evaluate the release of key constituents from monoliths of Cast Stone prepared with four simulated low-activity waste (LAW) liquid waste streams.

  8. Psychometric Testing of a Simulation Rubric for Measuring Interprofessional Communication. (United States)

    Reising, Deanna L; Carr, Douglas E; Tieman, Sarah; Feather, Rebecca; Ozdogan, Zulfukar


    The aim of this study was to establish psychometric testing of the Indiana University Simulation Integration Rubric (IUSIR), a tool for measuring interprofessional communication in simulations. Educators engage in a wide variety of activities to promote interprofessional education, with many of these activities involving simulation. As interprofessional education evolves, tools are needed to measure the effectiveness of interventions. A sample of 229 pre-licensure bachelor of science in nursing students and 66 pre-licensure first- and second-year medical students was evaluated using the IUSIR. Cronbach's alpha, inter-item and inter-total correlations, and interrater agreement were used to evaluate reliability of the tool. An ANOVA to test for difference between the two levels of students was used to establish validity. Reliability and validity were supported for all individual items for nursing and medical students, and for all team items The IUSIR is a reliable and valid measure for interprofessional communication.

  9. International Energy Agency building energy simulation test (BESTEST) and diagnostic method

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Neymark, J.


    This is a report on the Building Energy Simulation Test (BESTEST) project conducted by the Model Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 12 Subtask B, and the Energy Conservation in Buildings and Community Systems (BCS) Programme, Annex 21 Subtask C. Recognizing that the needs for model evaluation were similar in both IEA programmes, the combined Experts Group was approved by the Executive Committees in 1990. This is the first joint group organized by the respective IEA Executive Committees, and it has resulted in significant cost savings for all participating countries. The objective of this subtask has been to develop practical implementation procedures and data for an overall IEA validation methodology which has been under development by NREL since 1981, with refinements contributed by the United Kingdom. The methodology consists of a combination of empirical validation, analytical verification, and comparative analysis techniques. This report documents a comparative testing and diagnostic procedure for thermal models related to the architectural fabric of the building. Other projects (reported elsewhere) conducted by this group include work on empirical validation, analytical verification, and comparative test cases for commercial buildings. In the BESTEST project, a method was developed for systematically testing whole-building energy simulation programs and diagnosing the sources of predictive disagreement. Field trials of the method were conducted with a number of {open_quotes}reference{close_quotes} programs selected by the participants to represent the best state-of-the-art detailed simulation capability available in the United States and Europe. These included BLAST, DOE2, ESP, SERIRES, S3PAS, TASE, and TRNSYS.

  10. Simulation and video software development for soil consolidation testing

    NARCIS (Netherlands)

    Karim, Usama F.A.


    The development techniques and file structures of CTM, a novel multi-media (computer simulation and video) package on consolidation and laboratory consolidation testing, are presented in this paper. A courseware tool called Authorware proved to be versatile for building the package and the paper

  11. Testing Dependent Correlations with Nonoverlapping Variables: A Monte Carlo Simulation (United States)

    Silver, N. Clayton; Hittner, James B.; May, Kim


    The authors conducted a Monte Carlo simulation of 4 test statistics or comparing dependent correlations with no variables in common. Empirical Type 1 error rates and power estimates were determined for K. Pearson and L. N. G. Filon's (1898) z, O. J. Dunn and V. A. Clark's (1969) z, J. H. Steiger's (1980) original modification of Dunn and Clark's…

  12. Test requirements for the integral effect test to simulate Korean PWR plants

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chul Hwa; Park, C. K.; Lee, S. J.; Kwon, T. S.; Yun, B. J.; Chung, M. K


    In this report, the test requirements are described for the design of the integral effect test facility to simulate Korean PWR plants. Since the integral effect test facility should be designed so as to simulate various thermal hydraulic phenomena, as closely as possible, to be occurred in real plants during operation or anticipated transients, the design and operational characteristics of the reference plants (Korean Standard Nuclear Plant and Korean Next Generation Reactor)were analyzed in order to draw major components, systems, and functions to be satisfied or simulated in the test facility. The test matrix is set up by considering major safety concerns of interest and the test objectives to confirm and enhance the safety of the plants. And the analysis and prioritization of the test matrix leads to the general design requirements of the test facility. Based on the general design requirements, the design criteria is set up for the basic and detailed design of the test facility. And finally it is drawn the design requirements specific to the fluid system and measurement system of the test facility. The test requirements in this report will be used as a guideline to the scaling analysis and basic design of the test facility. The test matrix specified in this report can be modified in the stage of main testing by considering the needs of experiments and circumstances at that time.

  13. Parallel Adaptive Mesh Refinement

    Energy Technology Data Exchange (ETDEWEB)

    Diachin, L; Hornung, R; Plassmann, P; WIssink, A


    As large-scale, parallel computers have become more widely available and numerical models and algorithms have advanced, the range of physical phenomena that can be simulated has expanded dramatically. Many important science and engineering problems exhibit solutions with localized behavior where highly-detailed salient features or large gradients appear in certain regions which are separated by much larger regions where the solution is smooth. Examples include chemically-reacting flows with radiative heat transfer, high Reynolds number flows interacting with solid objects, and combustion problems where the flame front is essentially a two-dimensional sheet occupying a small part of a three-dimensional domain. Modeling such problems numerically requires approximating the governing partial differential equations on a discrete domain, or grid. Grid spacing is an important factor in determining the accuracy and cost of a computation. A fine grid may be needed to resolve key local features while a much coarser grid may suffice elsewhere. Employing a fine grid everywhere may be inefficient at best and, at worst, may make an adequately resolved simulation impractical. Moreover, the location and resolution of fine grid required for an accurate solution is a dynamic property of a problem's transient features and may not be known a priori. Adaptive mesh refinement (AMR) is a technique that can be used with both structured and unstructured meshes to adjust local grid spacing dynamically to capture solution features with an appropriate degree of resolution. Thus, computational resources can be focused where and when they are needed most to efficiently achieve an accurate solution without incurring the cost of a globally-fine grid. Figure 1.1 shows two example computations using AMR; on the left is a structured mesh calculation of a impulsively-sheared contact surface and on the right is the fuselage and volume discretization of an RAH-66 Comanche helicopter [35]. Note the

  14. Refinement and Preliminary Testing of an Imagery-Based Program to Improve Coping and Performance and Prevent Trauma among Urban Police Officers. (United States)

    Arble, Eamonn; Lumley, Mark A; Pole, Nnamdi; Blessman, James; Arnetz, Bengt B


    Police officers are regularly exposed to traumatic critical incidents. The substantial mental, behavioral, and social costs of police trauma indicate a substantial need for prevention. We have refined and enhanced a previously tested Swedish program to the harsh conditions of U.S. inner cities. The program was designed to strengthen resilience during stressful encounters and teach methods of coping after exposure, thereby preventing the emergence of maladaptive symptoms and behaviors with adverse effects on professionalism. In an uncontrolled demonstration project, junior officers were trained by senior officers to engage in imaginal rehearsal of specific dangerous situations while incorporating optimal police tactics and healthy emotional reactions. A class of 32 officers in the police academy engaged in the program, and they and the trainers reported high satisfaction with it. After their first year of field work, 22 officers were reassessed. Compared to pre-training, these officers showed significant increases in the use of positive reframing and humor and significant reductions in anxiety and alcohol use over the year. Trauma symptoms did not increase. These results offer preliminary evidence for the feasibility and effectiveness of this trauma prevention program for new police officers.

  15. Test and validation for robot arm control dynamics simulation (United States)

    Yae, K. Harold; Kim, Sung-Soo; Haug, Edward J.; Seering, Warren; Sundaram, Kamala; Thompson, Bruce; Turner, James; Chun, Hon; Frisch, Harold P.; Schnurr, Richard


    The Flight Telerobotic Servicer (FTS) program will require an ability to develop, in a cost effective manner, many simulation models for design, analysis, performance evaluation, and crew training. Computational speed and the degree of modeling fidelity associated with each simulation must be commensurate with problem objectives. To demonstrate evolving state-of-the-art general purpose multibody modeling capabilities, to validate these by laboratory testing, and to expose their modeling shortcomings, two focus problems at the opposite ends of the simulation spectrum are defined: (1) Coarse Acquisition Control Dynamics. Create a real time man-in-the-control-loop simulator. Provide animated graphical display of robot arm dynamics and tactile feedback sufficient for cueing the operator. Interface simulator software with human operated tactile feedback controller; i.e., the Kraft mini-master. (2) Fine, Precision Mode Control Dynamics. Create a high speed, high fidelity simulation model for the design, analysis, and performance evaluation of autonomous 7 degree-of-freedom (DOF) trajectory control algorithms. This model must contain detail dynamic models for all significant dynamics elements within the robot arm, such as joint drive mechanisms.

  16. Testability, Test Automation and Test Driven Development for the Trick Simulation Toolkit (United States)

    Penn, John


    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes the approach, and the significant benefits seen, such as fast, thorough and clear test feedback every time code is checked into the code repository. It also describes an approach that encourages development of code that is testable and adaptable.

  17. Continuous Strip Reduction Test Simulating Tribological Conditions in Ironing

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Nielsen, Chris Valentin; Christiansen, Peter


    Laboratory testing of tribo-systems for sheet metal forming applications must ensure similar conditions with the tribo-parameters that are commonly utilized in real production in order to generate data that is meaningful for industry. The main parameters to consider are the tool and workpiece...... both the forward stroke and the backward retraction of the punch. The new SRT tool design is implemented in a new Universal Sheet Tribo-Tester (UST), which can run multiple tests continuously from a coil. The test is capable of simulating various process parameters such as reduction, drawing speed...

  18. RSRM top hat cover simulator lightning test, volume 1 (United States)


    The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.

  19. Enhanced Verification Test Suite for Physics Simulation Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, J R; Brock, J S; Brandon, S T; Cotrell, D L; Johnson, B; Knupp, P; Rider, W; Trucano, T; Weirs, V G


    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest. This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of

  20. Finite element simulation and testing of ISW CFRP anchorage

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Goltermann, Per; Hertz, Kristian Dahl


    is modelled in the 3D finite Element program ABAQUS, just as digital image correlation (DIC) testing was performed to verify the finite element simulation. Also a new optimized design was produced to ensure that the finite element simulation and anchorage behaviour correlated well. It is seen......Several Carbon Fibre Reinforced Polymers (CFRP) systems have been used successfully for strengthening of structures during the last decades. However, the fracture often occurs in the concrete adherent or in the adhesive interface when used for steel strengthening. As a consequence the CFRP...

  1. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline model for the high aluminum Hanford Glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States)


    In this report, SRNL provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated HLW glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  2. Chemical composition analysis and product consistency tests supporting refinement of the Nepheline Model for the high aluminum Hanford glass composition region

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    In this report, Savannah River National Laboratory provides chemical analyses and Product Consistency Test (PCT) results for a series of simulated high level waste (HLW) glasses fabricated by Pacific Northwest National Laboratory (PNNL) as part of an ongoing nepheline crystallization study. The results of these analyses will be used to improve the ability to predict crystallization of nepheline as a function of composition and heat treatment for glasses formulated at high alumina concentrations.

  3. Soft Soil Impact Testing and Simulation of Aerospace Structures (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Kellas, Sotiris


    In June 2007, a 38-ft/s vertical drop test of a 5-ft-diameter, 5-ft-long composite fuselage section that was retrofitted with a novel composite honeycomb Deployable Energy Absorber (DEA) was conducted onto unpacked sand. This test was one of a series of tests to evaluate the multi-terrain capabilities of the DEA and to generate test data for model validation. During the test, the DEA crushed approximately 6-in. and left craters in the sand of depths ranging from 7.5- to 9-in. A finite element model of the fuselage section with DEA was developed for execution in LS-DYNA, a commercial nonlinear explicit transient dynamic code. Pre-test predictions were generated in which the sand was represented initially as a crushable foam material MAT_CRUSHABLE_FOAM (Mat 63). Following the drop test, a series of hemispherical penetrometer tests were conducted to assist in soil characterization. The penetrometer weighed 20-lb and was instrumented with a tri-axial accelerometer. Drop tests were performed at 16-ft/s and crater depths were measured. The penetrometer drop tests were simulated as a means for developing a more representative soil model based on a soil and foam material definition MAT_SOIL_AND FOAM (Mat 5) in LS-DYNA. The model of the fuselage with DEA was reexecuted using the updated soil model and test-analysis correlations are presented.

  4. Benchmark test of accelerated multi-slice simulation by GPGPU. (United States)

    Hosokawa, Fumio; Shinkawa, Takao; Arai, Yoshihiro; Sannomiya, Takumi


    A fast multi-slice image simulation by parallelized computation using a graphics processing unit (GPU) has been developed. The image simulation contains multiple sets of computing steps, such as Fourier transform and pixel-to-pixel operation. The efficiency of GPU varies depending on the type of calculation. In the effective case of utilizing GPU, the calculation speed is conducted hundreds of times faster than a central processing unit (CPU). The benchmark test of parallelized multi-slice was performed, and the results of contents, such as TEM imaging, STEM imaging and CBD calculation are reported. Some features of the simulation software are also introduced. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Filter Media Tests Under Simulated Martian Atmospheric Conditions (United States)

    Agui, Juan H.


    Human exploration of Mars will require the optimal utilization of planetary resources. One of its abundant resources is the Martian atmosphere that can be harvested through filtration and chemical processes that purify and separate it into its gaseous and elemental constituents. Effective filtration needs to be part of the suite of resource utilization technologies. A unique testing platform is being used which provides the relevant operational and instrumental capabilities to test articles under the proper simulated Martian conditions. A series of tests were conducted to assess the performance of filter media. Light sheet imaging of the particle flow provided a means of detecting and quantifying particle concentrations to determine capturing efficiencies. The media's efficiency was also evaluated by gravimetric means through a by-layer filter media configuration. These tests will help to establish techniques and methods for measuring capturing efficiency and arrestance of conventional fibrous filter media. This paper will describe initial test results on different filter media.

  6. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption (United States)

    Padilla, Sebastian A.; Bower, Chad E.; Iacomini, Christie S.; Paul, Heather L.


    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA Subassembly (MTSAS) was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort was testing in a simulated lunar environment. This environment was simulated in Paragon's EHF vacuum chamber. The objective of the testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. Lunar environment testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 Nomenclature loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This exceeded any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  7. A driving simulation task: correlations with Multiple Sleep Latency Test. (United States)

    Pizza, Fabio; Contardi, Sara; Mostacci, Barbara; Mondini, Susanna; Cirignotta, Fabio


    Sleepiness and driving is a dangerous combination that causes thousands of crashes each year resulting in injury and death. In the last few years, driving simulators have been used to study the performance decrements associated with drowsiness. We correlated performances of a driving simulation task in healthy volunteers in different alertness conditions with objective (MSLT: Multiple Sleep Latency Test) and subjective (SSS: Stanford Sleepiness Scale; VAS: Visual Analogue Scale) sleepiness measurements. The subjects were tested on two days, after a normal night of sleep and after a night of complete sleep deprivation. The study consists of four sessions of MSLT, each one followed by subjective measurements of sleepiness and by a 30 min driving simulation task with a monotonous driving scenario. The parameters that correlate most highly with MSLT are the standard deviation of lane position, the mean RT, crash frequency and exceeding the speed limit frequency. The monotonous driving simulation we adopted showed strong correlations with MSLT and subjective sleepiness scales in healthy subjects and is suitable to evaluate excessive daytime sleepiness in patients.

  8. Distributed Sensor Network Software Development Testing through Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Sean M. [Univ. of New Mexico, Albuquerque, NM (United States)


    The distributed sensor network (DSN) presents a novel and highly complex computing platform with dif culties and opportunities that are just beginning to be explored. The potential of sensor networks extends from monitoring for threat reduction, to conducting instant and remote inventories, to ecological surveys. Developing and testing for robust and scalable applications is currently practiced almost exclusively in hardware. The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for DSNs independent of hardware constraints. The exibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The user speci es the topology, the environment, the application, and any number of arbitrary failures; DSS provides the virtual environmental embedding.

  9. Reduction Method for Real-Time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian; Poulsen, Peter Noe


    to reformulate kinematic nonlinear equations of motion into a sum of constant matrices each multiplied by a reduced coordinate decreasing the assembling time. Furthermore the method allows for cutting off some of the higher frequency content not representing real physics decreasing the stability requirement......Real-time hybrid testing combines testing of physical components with numerical simulations. The concept of the method requires that the numerical simulations should be executed in real time. However, for large numerical models including nonlinear behavior a combination of computationally costly...... of choosing a sufficient basis a composite beam and a cantilever beam including kinematic nonlinearities and exposed to harmonic loadings are analyzed. To reduce locking modes with higher order terms are included. From the analysis it is concluded that the method exhibits encouraging potential with respect...

  10. Program refinement in UNITY

    NARCIS (Netherlands)

    Vos, T.E.J.; Swierstra, S.D.


    Program refinement has received a lot of attention in the context of stepwise development of correct programs, since the introduction of transformational programming techniques by [Wir71, Hoa72, Ger75, BD77] in the seventies. This report presents a new framework of program refinement, that is

  11. Membrane characteristics for biological blast overpressure testing using blast simulators. (United States)

    Alphonse, Vanessa D; Siva Sai Sujith Sajja, Venkata; Kemper, Andrew R; Rizel, Dave V; Duma, Stefan M; VandeVord, Pamela J


    Blast simulators often use passive-rupture membranes to generate shock waves similar to free-field blasts. The purpose of this study was to compare rupture patterns and pressure traces of three distinct membrane materials for biological and biomechanical blast studies. An Advanced Blast Simulator (ABS) located at the Center for Injury Biomechanics at Virginia Tech was used to test membrane characteristics. Acetate, Mylar, and aluminum sheets with different thicknesses were used to obtain pressures between 70–210 kPa. Static pressure was measured inside the tube at the test section using piezoelectric pressure sensors. Peak overpressure, positive duration, and positive impulse were calculated for each test. Rupture patterns and characteristic pressure traces were unique to each membrane type and thickness. Shock wave speed ranged between 1.2-1.8 Mach for static overpressures of 70–210 kPa. Acetate membranes fragmented sending pieces down the tube, but produced ideal (Friedlander) pressure traces. Mylar membranes bulged without fragmenting, but produced less-than-ideal pressure traces. Aluminum membranes did not fragment and produced ideal pressure traces. However, the cost of manufacturing and characterizing aluminum membranes should be considered during membrane selection. This study illustrates the advantages and disadvantages of using Mylar, acetate, and aluminum for passive rupture membranes for blast simulators.

  12. FEM simulation of static loading test of the Omega beam (United States)

    Bílý, Petr; Kohoutková, Alena; Jedlinský, Petr


    The paper deals with a FEM simulation of static loading test of the Omega beam. Omega beam is a precast prestressed high-performance concrete element with the shape of Greek letter omega. Omega beam was designed as a self-supporting permanent formwork member for construction of girder bridges. FEM program ATENA Science was exploited for simulation of load-bearing test of the beam. The numerical model was calibrated using the data from both static loading test and tests of material properties. Comparison of load-displacement diagrams obtained from the experiment and the model was conducted. Development of cracks and crack patterns were compared. Very good agreement of experimental data and the FEM model was reached. The calibrated model can be used for design of optimized Omega beams in the future without the need of expensive loading tests. The calibrated material model can be also exploited in other types of FEM analyses of bridges constructed with the use of Omega beams, such as limit state analysis, optimization of shear connectors, prediction of long-term deflections or prediction of crack development.

  13. Obtaining reliable Likelihood Ratio tests from simulated likelihood functions

    DEFF Research Database (Denmark)

    Andersen, Laura Mørch

    It is standard practice by researchers and the default option in many statistical programs to base test statistics for mixed models on simulations using asymmetric draws (e.g. Halton draws). This paper shows that when the estimated likelihood functions depend on standard deviations of mixed...... parameters this practice is very likely to cause misleading test results for the number of draws usually used today. The paper shows that increasing the number of draws is a very inefficient solution strategy requiring very large numbers of draws to ensure against misleading test statistics. The paper shows...... that using one dimensionally antithetic draws does not solve the problem but that the problem can be solved completely by using fully antithetic draws. The paper also shows that even when fully antithetic draws are used, models testing away mixing dimensions must replicate the relevant dimensions...

  14. Obtaining reliable likelihood ratio tests from simulated likelihood functions

    DEFF Research Database (Denmark)

    Andersen, Laura Mørch


    programs - to base test statistics for mixed models on simulations using asymmetric draws (e.g. Halton draws). Problem 1: Inconsistent LR tests due to asymmetric draws: This paper shows that when the estimated likelihood functions depend on standard deviations of mixed parameters this practice is very......Mixed models: Models allowing for continuous heterogeneity by assuming that value of one or more parameters follow a specified distribution have become increasingly popular. This is known as ‘mixing’ parameters, and it is standard practice by researchers - and the default option in many statistical...... likely to cause misleading test results for the number of draws usually used today. The paper illustrates that increasing the number of draws is a very inefficient solution strategy requiring very large numbers of draws to ensure against misleading test statistics. The main conclusion of this paper...

  15. Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1 (United States)

    Rathna Kumar, S.


    In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.

  16. Propellant Densification for Launch Vehicles: Simulation and Testing 1999 (United States)

    Knowles, Timothy E.; Tomisk, Thomas M.; Greene, William D.


    One of the many key technologies required to make single-stage to orbit an actuality, the technology of sub-cooling cryogenic propellants below their normal saturation temperatures and thereby making them more dense, is unquestionably on its way towards full and practical realization. The technology of Propellant Densification has been the subject of an extensive research and development program overseen by Lockheed Martin Michoud Space Systems and NASA Glenn Research Center over the past several years. This paper presents a status report of this research and development. Specifically examined within this paper is the status of the current and continuing efforts on the mathematical simulation of the in-tank propellant densification process currently baselined for the Lockheed Martin VentureStar Reusable Launch Vehicle (RLV). Keys to this modeling effort are an understanding and quantification of the effects of thermal stratification and the ability to capture the complex and unique multiple section tank geometries being proposed for future launch vehicles. A simulation that properly captures these phenomena has been developed by Lockheed Martin. Also discussed is the significant test program that has been undertaken in coordination with NASA Glenn Research Center. In this testing, the liquid hydrogen recirculation and densification process was simulated and the thermal stratification of the densified propellant was recorded throughout the tank. This testing marks the first time that such a process has been carried out within a multiple-lobe, flight-similar tank. The results from this testing have gone a long way towards grounding the mathematical models and towards demonstrating the readiness of the technology for near-term use. A further and even more ambitious test program examining the production and utilization of densified propellants is being planned for late-autumn 1999. An overview of these plans is presented.

  17. Steel Fibers Reinforced Concrete Pipes - Experimental Tests and Numerical Simulation (United States)

    Doru, Zdrenghea


    The paper presents in the first part a state of the art review of reinforced concrete pipes used in micro tunnelling realised through pipes jacking method and design methods for steel fibres reinforced concrete. In part two experimental tests are presented on inner pipes with diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with metal fibres (35 kg / m3). In part two experimental tests are presented on pipes with inner diameters of 1410mm and 2200mm, and specimens (100x100x500mm) of reinforced concrete with steel fibres (35 kg / m3). The results obtained are analysed and are calculated residual flexural tensile strengths which characterise the post-cracking behaviour of steel fibres reinforced concrete. In the third part are presented numerical simulations of the tests of pipes and specimens. The model adopted for the pipes test was a three-dimensional model and loads considered were those obtained in experimental tests at reaching breaking forces. Tensile stresses determined were compared with mean flexural tensile strength. To validate tensile parameters of steel fibres reinforced concrete, experimental tests of the specimens were modelled with MIDAS program to reproduce the flexural breaking behaviour. To simulate post - cracking behaviour was used the method σ — ε based on the relationship stress - strain, according to RILEM TC 162-TDF. For the specimens tested were plotted F — δ diagrams, which have been superimposed for comparison with the similar diagrams of experimental tests. The comparison of experimental results with those obtained from numerical simulation leads to the following conclusions: - the maximum forces obtained by numerical calculation have higher values than the experimental values for the same tensile stresses; - forces corresponding of residual strengths have very similar values between the experimental and numerical calculations; - generally the numerical model estimates a breaking force greater

  18. Transient productivity index for numerical well test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, G.; Ding, D.Y.; Ene, A. [Institut Francais du Petrole, Pau (France)] [and others


    The most difficult aspect of numerical simulation of well tests is the treatment of the Bottom Hole Flowing (BHF) Pressure. In full field simulations, this pressure is derived from the Well-block Pressure (WBP) using a numerical productivity index which accounts for the grid size and permeability, and for the well completion. This productivity index is calculated assuming a pseudo-steady state flow regime in the vicinity of the well and is therefore constant during the well production period. Such a pseudo-steady state assumption is no longer valid for the early time of a well test simulation as long as the pressure perturbation has not reached several grid-blocks around the well. This paper offers two different solutions to this problem: (1) The first one is based on the derivation of a Numerical Transient Productivity Index (NTPI) to be applied to Cartesian grids; (2) The second one is based on the use of a Corrected Transmissibility and Accumulation Term (CTAT) in the flow equation. The representation of the pressure behavior given by both solutions is far more accurate than the conventional one as shown by several validation examples which are presented in the following pages.

  19. Obtaining reliable likelihood ratio tests from simulated likelihood functions.

    Directory of Open Access Journals (Sweden)

    Laura Mørch Andersen

    Full Text Available MIXED MODELS: Models allowing for continuous heterogeneity by assuming that value of one or more parameters follow a specified distribution have become increasingly popular. This is known as 'mixing' parameters, and it is standard practice by researchers--and the default option in many statistical programs--to base test statistics for mixed models on simulations using asymmetric draws (e.g. Halton draws. PROBLEM 1: INCONSISTENT LR TESTS DUE TO ASYMMETRIC DRAWS: This paper shows that when the estimated likelihood functions depend on standard deviations of mixed parameters this practice is very likely to cause misleading test results for the number of draws usually used today. The paper illustrates that increasing the number of draws is a very inefficient solution strategy requiring very large numbers of draws to ensure against misleading test statistics. The main conclusion of this paper is that the problem can be solved completely by using fully antithetic draws, and that using one dimensionally antithetic draws is not enough to solve the problem. PROBLEM 2: MAINTAINING THE CORRECT DIMENSIONS WHEN REDUCING THE MIXING DISTRIBUTION: A second point of the paper is that even when fully antithetic draws are used, models reducing the dimension of the mixing distribution must replicate the relevant dimensions of the quasi-random draws in the simulation of the restricted likelihood. Again this is not standard in research or statistical programs. The paper therefore recommends using fully antithetic draws replicating the relevant dimensions of the quasi-random draws in the simulation of the restricted likelihood and that this should become the default option in statistical programs. JEL classification: C15; C25.

  20. Data Analysis and Simulation for the RICH Upgrade Test Beam

    CERN Document Server

    Lalanne, Louis-Alexandre


    The LHCb experiment is one of the four particles physics experiments collecting data at the Large Hadron Collider. One of its key detector components is the Ring-Imaging Cherenkov (RICH) system. This provides charged particle identification over a wide momentum range, from 2–100 GeV/c. In order to increase the readout frequency from 1MHz to 40MHz RICH detectors will be upgrade in 2020. Prototypes are designed and tested by the RICH upgrade group of CERN. A full GEANT4 simulation have been programmed to reproduce the experimental test beam set-up and to produce MonteCarlo data. Those data have been compared to data from the test beam in order to study and compared the photon yield and the Cherenkov angle resolution of the most recent version of RICH.

  1. Comparison of road load simulator test results with track tests on electric vehicle propulsion system (United States)

    Dustin, M. O.


    A special-purpose dynamometer, the road load simulator (RLS), is being used at NASA's Lewis Research Center to test and evaluate electric vehicle propulsion systems developed under DOE's Electric and Hybrid Vehicle Program. To improve correlation between system tests on the RLS and track tests, similar tests were conducted on the same propulsion system on the RLS and on a test track. These tests are compared in this report. Battery current to maintain a constant vehicle speed with a fixed throttle was used for the comparison. Scatter in the data was greater in the track test results. This is attributable to variations in tire rolling resistance and wind effects in the track data. It also appeared that the RLS road load, determined by coastdown tests on the track, was lower than that of the vehicle on the track. These differences may be due to differences in tire temperature.

  2. Rain Simulation for the Test of Automotive Surround Sensors (United States)

    Hasirlioglu, Sinan; Riener, Andreas; Doric, Igor


    The WHO Global Health Observatory data indicates that over 1.25 million people die in traffic accidents annually. To save lives, car manufacturers spend lot of efforts on the development of novel safety systems aiming to avoid or mitigate accidents and provide maximum protection for vehicle occupants as well as vulnerable road users. All the safety features mainly rely on data from surround sensors such as radar, lidar and camera and intelligent vehicles today use these environmental data for instant decision making and vehicle control. As already small errors in sensor data measurements could lead to catastrophes like major injuries or road traffic fatalities, it is of utmost importance to ensure high reliability and accuracy of sensors and safety systems. This work focuses on the influence of environmental factors such as rain conditions, as it is known that rain drops scatter the electromagnetic waves. The result is incorrect measurements with a direct negative impact on environment detection. To identify potential problems of sensors under varying environmental conditions, systems are today tested in real-world settings with two main problems: First, tests are time-consuming and second, environmental conditions are not reproducible. Our approach to test the influence of weather on automotive sensors is to use an indoor rain simulator. Our artificial rain maker, installed at CARISSMA (Center of Automotive Research on Integrated Safety Systems and Measurement Area), is parametrized with rain characteristics measured in the field using a standard disdrometer. System behavior on artificial rain is compared and validated with natural rainfall. With this simulator it is finally possible to test environmental influence at various levels and under reproducible conditions. This saves lot of efforts required for the test process itself and furthermore has a positive impact on the reliability of sensor systems due to the fact that test driven development is enabled.

  3. Testing predictors of eruptivity using parametric flux emergence simulations

    Directory of Open Access Journals (Sweden)

    Guennou Chloé


    Full Text Available Solar flares and coronal mass ejections (CMEs are among the most energetic events in the solar system, impacting the near-Earth environment. Flare productivity is empirically known to be correlated with the size and complexity of active regions. Several indicators, based on magnetic field data from active regions, have been tested for flare forecasting in recent years. None of these indicators, or combinations thereof, have yet demonstrated an unambiguous eruption or flare criterion. Furthermore, numerical simulations have been only barely used to test the predictability of these parameters. In this context, we used the 3D parametric magnetohydrodynamic (MHD numerical simulations of the self-consistent formation of the flux emergence of a twisted flux tube, inducing the formation of stable and unstable magnetic flux ropes of Leake et al. (2013, 2014. We use these numerical simulations to investigate the eruptive signatures observable in various magnetic scalar parameters and provide highlights on data analysis processing. Time series of 2D photospheric-like magnetograms are used from parametric simulations of stable and unstable flux emergence, to compute a list of about 100 different indicators. This list includes parameters previously used for operational forecasting, physical parameters used for the first time, as well as new quantities specifically developed for this purpose. Our results indicate that only parameters measuring the total non-potentiality of active regions associated with magnetic inversion line properties, such as the Falconer parameters Lss, WLss, Lsg, and WLsg, as well as the new current integral WLsc and length Lsc parameters, present a significant ability to distinguish the eruptive cases of the model from the non-eruptive cases, possibly indicating that they are promising flare and eruption predictors. A preliminary study about the effect of noise on the detection of the eruptive signatures is also proposed.

  4. Secondary Waste Simulant Development for Cast Stone Formulation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Westsik, Joseph H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rinehart, Donald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Swanberg, David J. [Washington River Protection Solutions, Richland, WA (United States); Mahoney, J. [Washington River Protection Solutions, Richland, WA (United States)


    Washington River Protection Solutions, LLC (WRPS) funded Pacific Northwest National Laboratory (PNNL) to conduct a waste form testing program to implement aspects of the Secondary Liquid Waste Treatment Cast Stone Technology Development Plan (Ashley 2012) and the Hanford Site Secondary Waste Roadmap (PNNL 2009) related to the development and qualification of Cast Stone as a potential waste form for the solidification of aqueous wastes from the Hanford Site after the aqueous wastes are treated at the Effluent Treatment Facility (ETF). The current baseline is that the resultant Cast Stone (or grout) solid waste forms would be disposed at the Integrated Disposal Facility (IDF). Data and results of this testing program will be used in the upcoming performance assessment of the IDF and in the design and operation of a solidification treatment unit planned to be added to the ETF. The purpose of the work described in this report is to 1) develop simulants for the waste streams that are currently being fed and future WTP secondary waste streams also to be fed into the ETF and 2) prepare simulants to use for preparation of grout or Cast Stone solid waste forms for testing.

  5. Two-Speed Gearbox Dynamic Simulation Predictions and Test Validation (United States)

    Lewicki, David G.; DeSmidt, Hans; Smith, Edward C.; Bauman, Steven W.


    Dynamic simulations and experimental validation tests were performed on a two-stage, two-speed gearbox as part of the drive system research activities of the NASA Fundamental Aeronautics Subsonics Rotary Wing Project. The gearbox was driven by two electromagnetic motors and had two electromagnetic, multi-disk clutches to control output speed. A dynamic model of the system was created which included a direct current electric motor with proportional-integral-derivative (PID) speed control, a two-speed gearbox with dual electromagnetically actuated clutches, and an eddy current dynamometer. A six degree-of-freedom model of the gearbox accounted for the system torsional dynamics and included gear, clutch, shaft, and load inertias as well as shaft flexibilities and a dry clutch stick-slip friction model. Experimental validation tests were performed on the gearbox in the NASA Glenn gear noise test facility. Gearbox output speed and torque as well as drive motor speed and current were compared to those from the analytical predictions. The experiments correlate very well with the predictions, thus validating the dynamic simulation methodologies.

  6. Electrolytic refining of gold


    Wohlwill, Emil


    At the request of the editor of ELECTROCHEMICAL INDUSTRY, I herewith give some notes on the electrolytic method of gold refining, to supplement the article of Dr. Tuttle (Vol. I, page 157, January, 1903).

  7. Refining population health comparisons

    DEFF Research Database (Denmark)

    Hussain, M. Azhar; Jørgensen, Mette Møller; Østerdal, Lars Peter Raahave


    How to determine if a population group has better overall (multidimensional) health status than another is a central question in the health and social sciences. We apply a multidimensional first order dominance concept that does not rely on assumptions about the relative importance of each...... dimension. In particular, we show how one can explore the “depth” of dominance relations by gradually refining the health dimensions to see which dominance relations persist. We analyze a Danish health survey with many health indicators. These are initially collapsed into a single composite health dimension...... and then refined to four, seven, and ten health dimensions, each representing an (increasingly refined) area of health. Overall we find that younger age groups dominate older age groups in up to four dimensions, but no dominance relations are present with a more refined view of health. Comparing education groups...

  8. Big Data Refinement

    Directory of Open Access Journals (Sweden)

    Eerke A. Boiten


    Full Text Available "Big data" has become a major area of research and associated funding, as well as a focus of utopian thinking. In the still growing research community, one of the favourite optimistic analogies for data processing is that of the oil refinery, extracting the essence out of the raw data. Pessimists look for their imagery to the other end of the petrol cycle, and talk about the "data exhausts" of our society. Obviously, the refinement community knows how to do "refining". This paper explores the extent to which notions of refinement and data in the formal methods community relate to the core concepts in "big data". In particular, can the data refinement paradigm can be used to explain aspects of big data processing?

  9. Proving Refinement Using Transduction

    DEFF Research Database (Denmark)

    Jonsson, Bengt; Pnueli, Amir; Rump, Camilla Østerberg


    We present a verification method, in which refinement between two systems is proven by constructing a transducer that inputs a computation of a concrete system and outputs a matching computation of the abstract system.......We present a verification method, in which refinement between two systems is proven by constructing a transducer that inputs a computation of a concrete system and outputs a matching computation of the abstract system....

  10. Extraction and Separation Modeling of Orion Test Vehicles with ADAMS Simulation (United States)

    Fraire, Usbaldo, Jr.; Anderson, Keith; Cuthbert, Peter A.


    The Capsule Parachute Assembly System (CPAS) project has increased efforts to demonstrate the performance of fully integrated parachute systems at both higher dynamic pressures and in the presence of wake fields using a Parachute Compartment Drop Test Vehicle (PCDTV) and a Parachute Test Vehicle (PTV), respectively. Modeling the extraction and separation events has proven challenging and an understanding of the physics is required to reduce the risk of separation malfunctions. The need for extraction and separation modeling is critical to a successful CPAS test campaign. Current PTV-alone simulations, such as Decelerator System Simulation (DSS), require accurate initial conditions (ICs) drawn from a separation model. Automatic Dynamic Analysis of Mechanical Systems (ADAMS), a Commercial off the Shelf (COTS) tool, was employed to provide insight into the multi-body six degree of freedom (DOF) interaction between parachute test hardware and external and internal forces. Components of the model include a composite extraction parachute, primary vehicle (PTV or PCDTV), platform cradle, a release mechanism, aircraft ramp, and a programmer parachute with attach points. Independent aerodynamic forces were applied to the mated test vehicle/platform cradle and the separated test vehicle and platform cradle. The aero coefficients were determined from real time lookup tables which were functions of both angle of attack ( ) and sideslip ( ). The atmospheric properties were also determined from a real time lookup table characteristic of the Yuma Proving Grounds (YPG) atmosphere relative to the planned test month. Representative geometries were constructed in ADAMS with measured mass properties generated for each independent vehicle. Derived smart separation parameters were included in ADAMS as sensors with defined pitch and pitch rate criteria used to refine inputs to analogous avionics systems for optimal separation conditions. Key design variables were dispersed in a Monte

  11. Design of a Realistic Test Simulator For a Built-In Self Test Environment

    Directory of Open Access Journals (Sweden)

    A. Ahmad


    Full Text Available This paper presents a realistic test approach suitable to Design For Testability (DFT and Built- In Self Test (BIST environments. The approach is culminated in the form of a test simulator which is capable of providing a required goal of test for the System Under Test (SUT. The simulator uses the approach of fault diagnostics with fault grading procedure to provide the tests. The tool is developed on a common PC platform and hence no special software is required. Thereby, it is a low cost tool and hence economical. The tool is very much suitable for determining realistic test sequences for a targeted goal of testing for any SUT. The developed tool incorporates a flexible Graphical User Interface (GUI procedure and can be operated without any special programming skill. The tool is debugged and tested with the results of many bench mark circuits. Further, this developed tool can be utilized for educational purposes for many courses such as fault-tolerant computing, fault diagnosis, digital electronics, and safe - reliable - testable digital logic designs.

  12. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests (United States)

    Stewart, Gordon; Muskulus, Michael


    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  13. Vacuum melting and mechanical testing of simulated lunar glasses (United States)

    Carsley, J. E.; Blacic, J. D.; Pletka, B. J.


    Lunar silicate glasses may possess superior mechanical properties compared to terrestrial glasses because the anhydrous lunar environment should prevent hydrolytic weakening of the strong Si-O bonds. This hypothesis was tested by melting, solidifying, and determining the fracture toughness of simulated mare and highlands composition glasses in a high vacuum chamber. The fracture toughness, K(IC), of the resulting glasses was obtained via microindentation techniques. K(IC) increased as the testing environment was changed from air to a vacuum of 10 exp -7 torr. However, this increase in toughness may not result solely from a reduction in the hydrolytic weakening effect; the vacuum-melting process produced both the formation of spinel crystallites on the surfaces of the glass samples and significant changes in the compositions which may have contributed to the improved K(IC).

  14. Design, Fabrication, and Testing of a Hopper Spacecraft Simulator (United States)

    Mucasey, Evan Phillip Krell

    A robust test bed is needed to facilitate future development of guidance, navigation, and control software for future vehicles capable of vertical takeoff and landings. Specifically, this work aims to develop both a hardware and software simulator that can be used for future flight software development for extra-planetary vehicles. To achieve the program requirements of a high thrust to weight ratio with large payload capability, the vehicle is designed to have a novel combination of electric motors and a micro jet engine is used to act as the propulsion elements. The spacecraft simulator underwent several iterations of hardware development using different materials and fabrication methods. The final design used a combination of carbon fiber and fiberglass that was cured under vacuum to serve as the frame of the vehicle which provided a strong, lightweight platform for all flight components and future payloads. The vehicle also uses an open source software development platform, Arduino, to serve as the initial flight computer and has onboard accelerometers, gyroscopes, and magnetometers to sense the vehicles attitude. To prevent instability due to noise, a polynomial kalman filter was designed and this fed the sensed angles and rates into a robust attitude controller which autonomously control the vehicle' s yaw, pitch, and roll angles. In addition to the hardware development of the vehicle itself, both a software simulation and a real time data acquisition interface was written in MATLAB/SIMULINK so that real flight data could be taken and then correlated to the simulation to prove the accuracy of the analytical model. In result, the full scale vehicle was designed and own outside of the lab environment and data showed that the software model accurately predicted the flight dynamics of the vehicle.

  15. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing the internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that represents the

  16. TREAT (Transient Reactor Test Facility) reactor control rod scram system simulations and testing

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, C.W.; Stevens, W.W.


    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs.

  17. Refinement, testing, and application of an Integrated Data Assimilation/Sounding System (IDASS) for the DOE/ARM Experimental Program. Final report for period September 20, 1990 - May 8, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, David B.


    This report describes work done by NCAR under the ''Refinement, Testing, and Application of an Integrated Data Assimilation/Sounding System (IDASS) for the DOE/ARM Experimental Program''. It includes a discussion of the goals, findings and a list of 27 journal articles, 92 non-refereed papers and 30 other presentations not associated with a formal publication.

  18. Orion Pad Abort 1 Flight Test: Simulation Predictions Versus Flight Data (United States)

    Stillwater, Ryan Allanque; Merritt, Deborah S.


    The presentation covers the pre-flight simulation predictions of the Orion Pad Abort 1. The pre-flight simulation predictions are compared to the Orion Pad Abort 1 flight test data. Finally the flight test data is compared to the updated simulation predictions, which show a ove rall improvement in the accuracy of the simulation predictions.

  19. RIA simulation tests using driver tube for ATF cladding

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brown, N. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, R. R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linton, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, K. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    Pellet-cladding mechanical interaction (PCMI) is a potential failure mechanism for accident-tolerant fuel (ATF) cladding candidates during a reactivity-initiated accident (RIA). This report summarizes Fiscal Year (FY) 2017 research activities that were undertaken to evaluate the PCMI-like hoop-strain-driven mechanical response of ATF cladding candidates. To achieve various RIA-like conditions, a modified-burst test (MBT) device was developed to produce different mechanical pulses. The calibration of the MBT instrument was accomplished by performing mechanical tests on unirradiated Generation-I iron-chromium-aluminum (FeCrAl) alloy samples. Shakedown tests were also conducted in both FY 2016 and FY 2017 using unirradiated hydrided ZIRLO™ tube samples. This milestone report focuses on testing of ATF materials, but the benchmark tests with hydrided ZIRLO™ tube samples are documented in a recent journal article.a For the calibration and benchmark tests, the hoop strain was monitored using strain gauges attached to the sample surface in the hoop direction. A novel digital image correlation (DIC) system composed of a single high-speed camera and an array of six mirrors was developed for the MBT instrument to better resolve the failure behavior of samples and to provide useful data for validation of high-fidelity modeling and simulation tools. The DIC system enable a 360° view of a sample’s outer surface. This feature was added to the instrument to determine the precise failure location on a sample’s surface for strain predictions. The DIC system was tested on several silicon carbide fiber/silicon carbide matrix (SiC/SiC) composite tube samples at various pressurization rates of the driver tube (which correspond to the strain rates for the samples). The hoop strains for various loading conditions were determined for the SiC/SiC composite tube samples. Future work is planned to enhance understanding of the failure behavior of the ATF cladding candidates of age

  20. A Parallel Ocean Model With Adaptive Mesh Refinement Capability For Global Ocean Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Herrnstein, Aaron R. [Univ. of California, Davis, CA (United States)


    An ocean model with adaptive mesh refinement (AMR) capability is presented for simulating ocean circulation on decade time scales. The model closely resembles the LLNL ocean general circulation model with some components incorporated from other well known ocean models when appropriate. Spatial components are discretized using finite differences on a staggered grid where tracer and pressure variables are defined at cell centers and velocities at cell vertices (B-grid). Horizontal motion is modeled explicitly with leapfrog and Euler forward-backward time integration, and vertical motion is modeled semi-implicitly. New AMR strategies are presented for horizontal refinement on a B-grid, leapfrog time integration, and time integration of coupled systems with unequal time steps. These AMR capabilities are added to the LLNL software package SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and validated with standard benchmark tests. The ocean model is built on top of the amended SAMRAI library. The resulting model has the capability to dynamically increase resolution in localized areas of the domain. Limited basin tests are conducted using various refinement criteria and produce convergence trends in the model solution as refinement is increased. Carbon sequestration simulations are performed on decade time scales in domains the size of the North Atlantic and the global ocean. A suggestion is given for refinement criteria in such simulations. AMR predicts maximum pH changes and increases in CO2 concentration near the injection sites that are virtually unattainable with a uniform high resolution due to extremely long run times. Fine scale details near the injection sites are achieved by AMR with shorter run times than the finest uniform resolution tested despite the need for enhanced parallel performance. The North Atlantic simulations show a reduction in passive tracer errors when AMR is applied instead of a uniform coarse resolution. No

  1. RSRM top hat cover simulator lightning test, volume 2. Appendix A: Resistance measurements. Appendix B: Lightning test data plots (United States)


    Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.

  2. The advanced computational testing and simulation toolkit (ACTS)

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, L.A.; Marques, O.


    During the past decades there has been a continuous growth in the number of physical and societal problems that have been successfully studied and solved by means of computational modeling and simulation. Distinctively, a number of these are important scientific problems ranging in scale from the atomic to the cosmic. For example, ionization is a phenomenon as ubiquitous in modern society as the glow of fluorescent lights and the etching on silicon computer chips; but it was not until 1999 that researchers finally achieved a complete numerical solution to the simplest example of ionization, the collision of a hydrogen atom with an electron. On the opposite scale, cosmologists have long wondered whether the expansion of the Universe, which began with the Big Bang, would ever reverse itself, ending the Universe in a Big Crunch. In 2000, analysis of new measurements of the cosmic microwave background radiation showed that the geometry of the Universe is flat, and thus the Universe will continue expanding forever. Both of these discoveries depended on high performance computer simulations that utilized computational tools included in the Advanced Computational Testing and Simulation (ACTS) Toolkit. The ACTS Toolkit is an umbrella project that brought together a number of general purpose computational tool development projects funded and supported by the U.S. Department of Energy (DOE). These tools, which have been developed independently, mainly at DOE laboratories, make it easier for scientific code developers to write high performance applications for parallel computers. They tackle a number of computational issues that are common to a large number of scientific applications, mainly implementation of numerical algorithms, and support for code development, execution and optimization. The ACTS Toolkit Project enables the use of these tools by a much wider community of computational scientists, and promotes code portability, reusability, reduction of duplicate efforts

  3. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Constancio, Silva


    In 2004, refining margins showed a clear improvement that persisted throughout the first three quarters of 2005. This enabled oil companies to post significantly higher earnings for their refining activity in 2004 compared to 2003, with the results of the first half of 2005 confirming this trend. As for petrochemicals, despite a steady rise in the naphtha price, higher cash margins enabled a turnaround in 2004 as well as a clear improvement in oil company financial performance that should continue in 2005, judging by the net income figures reported for the first half-year. Despite this favorable business environment, capital expenditure in refining and petrochemicals remained at a low level, especially investment in new capacity, but a number of projects are being planned for the next five years. (author)

  4. Pilot scale refinning of crude soybean oil | Mensah | Journal of ...

    African Journals Online (AJOL)

    A laboratory process for refining soybean has been scaled up to a 145 tonne per annum pilot plant to refine crude soybean oil. To define a basis of commercial operation of the plant, the process parameters obtained during the pilot plant testing were compared with the laboratory process parameters. The yield of refined oil ...

  5. Prototyping artificial jaws for the robotic dental testing simulator. (United States)

    Alemzadeh, K; Raabe, D


    This paper presents a robot periphery prototyped for the six-degrees-of-freedom robotic dental testing simulator, simulating the wear of materials on dental components, such as individual teeth, crowns, bridges, or a full set of teeth. The robot periphery consists of the artificial jaws and compliance module. The jaws have been reverse engineered and represent a human-like mandible and maxilla with artificial teeth. Each clinically fabricated tooth consists of a crown and glass ceramic roots which are connected using resin cement. Normal clinical occlusion of the artificial jaws assembly was emulated by a dental articulator based on 'Andrew's six keys to occlusion'. The radii of the von Spee curve, the Monson curve, and the Wilson curve were also measured as important jaw characteristic indicators to aid normal occlusion. A compliance module had to be built between the lower jaw and the robot platform to sustain the fluctuating forces that occur during normal chewing in the occlusal contact areas, where these high bite forces are major causes of dental component failure. A strain gauge force transducer has been integrated into the machined lower jaw, underneath the second molars, to measure axial biting forces applied to the posterior teeth. The experiments conducted have shown that the sensor is able to sense small changes in the compression force satisfactorily, when applied perpendicular to the occlusal surfaces of the teeth.

  6. Short-duration Electron Precipitation Studied by Test Particle Simulation

    Directory of Open Access Journals (Sweden)

    Jaejin Lee


    Full Text Available Energy spectra of electron microbursts from 170 keV to 340 keV have been measured by the solid-state detectors aboard the low-altitude (680 km polar-orbiting Korean STSAT-1 (Science and Technology SATellite. These measurements have revealed two important characteristics unique to the microbursts: (1 They are produced by a fast-loss cone-filling process in which the interaction time for pitch-angle scattering is less than 50 ms and (2 The e-folding energy of the perpendicular component is larger than that of the parallel component, and the loss cone is not completely filled by electrons. To understand how wave-particle interactions could generate microbursts, we performed a test particle simulation and investigated how the waves scattered electron pitch angles within the timescale required for microburst precipitation. The application of rising-frequency whistler-mode waves to electrons of different energies moving in a dipole magnetic field showed that chorus magnetic wave fields, rather than electric fields, were the main cause of microburst events, which implied that microbursts could be produced by a quasi-adiabatic process. In addition, the simulation results showed that high-energy electrons could resonate with chorus waves at high magnetic latitudes where the loss cone was larger, which might explain the decreased e-folding energy of precipitated microbursts compared to that of trapped electrons.

  7. Autonomous Cryogenics Loading Operations Simulation Software: Knowledgebase Autonomous Test Engineer (United States)

    Wehner, Walter S., Jr.


    Working on the ACLO (Autonomous Cryogenics Loading Operations) project I have had the opportunity to add functionality to the physics simulation software known as KATE (Knowledgebase Autonomous Test Engineer), create a new application allowing WYSIWYG (what-you-see-is-what-you-get) creation of KATE schematic files and begin a preliminary design and implementation of a new subsystem that will provide vision services on the IHM (Integrated Health Management) bus. The functionality I added to KATE over the past few months includes a dynamic visual representation of the fluid height in a pipe based on number of gallons of fluid in the pipe and implementing the IHM bus connection within KATE. I also fixed a broken feature in the system called the Browser Display, implemented many bug fixes and made changes to the GUI (Graphical User Interface).

  8. Using OpenRefine

    CERN Document Server

    Verborgh, Ruben


    The book is styled on a Cookbook, containing recipes - combined with free datasets - which will turn readers into proficient OpenRefine users in the fastest possible way.This book is targeted at anyone who works on or handles a large amount of data. No prior knowledge of OpenRefine is required, as we start from the very beginning and gradually reveal more advanced features. You don't even need your own dataset, as we provide example data to try out the book's recipes.

  9. Computational model for simulation small testing launcher, technical solution

    Energy Technology Data Exchange (ETDEWEB)

    Chelaru, Teodor-Viorel, E-mail: [University POLITEHNICA of Bucharest - Research Center for Aeronautics and Space, Str. Ghe Polizu, nr. 1, Bucharest, Sector 1 (Romania); Cristian, Barbu, E-mail: [Military Technical Academy, Romania, B-dul. George Coşbuc, nr. 81-83, Bucharest, Sector 5 (Romania); Chelaru, Adrian, E-mail: [INCAS -National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, 061126, Bucharest, Sector 6 (Romania)


    The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project 'Suborbital Launcher for Testing' (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital

  10. A benchmark concept for simulation in radiographic testing (United States)

    Ewert, U.; Deresch, A.; Bellon, C.; Jaenisch, G.-R.


    The new standard ISO 17636-2:2013 "NDT of welds: Radiographic testing - Part 2: X- and gamma ray techniques with digital detectors" describes a complex procedure for film replacement by phosphor imaging plates and digital detector arrays. RT modeling software should consider these detector types, X-ray film, and the standard requirements for image quality. Practitioners expect the same visibility of image quality indicators (IQI) in the simulated radiographs as in the experimental exposures. The proposed benchmark test is based on the comparison of experimental radiographs taken at BAM with modeled ones of participants. The experimental setup and the determination of the equivalent penetrameter sensitivity (EPS) as described in the procedure of ASTM E 746 are used for quantitative evaluation of the achievable contrast sensitivity for step hole IQIs as considered in Annex B of ISO 17636-2. System classification data for Computed Radiography (CR) and film systems will be provided by BAM according to ISO 11699-1 for selected film systems and according to ASTM E 2446 for selected CR systems. The classification of films and digital detectors is based on the measurement of the dose response function, the basic spatial resolution (SRb) of the image, and the measured image noise, which depends on the detector efficiency, the quantum statistics, and the detector fixed pattern noise.

  11. A benchmark concept for simulation in radiographic testing

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, U.; Deresch, A.; Bellon, C.; Jaenisch, G.-R. [Federal Institute for Materials Research and Testing Unter den Eichen 87, 12205 Berlin (Germany)


    The new standard ISO 17636–2:2013 “NDT of welds: Radiographic testing - Part 2: X- and gamma ray techniques with digital detectors” describes a complex procedure for film replacement by phosphor imaging plates and digital detector arrays. RT modeling software should consider these detector types, X-ray film, and the standard requirements for image quality. Practitioners expect the same visibility of image quality indicators (IQI) in the simulated radiographs as in the experimental exposures. The proposed benchmark test is based on the comparison of experimental radiographs taken at BAM with modeled ones of participants. The experimental setup and the determination of the equivalent penetrameter sensitivity (EPS) as described in the procedure of ASTM E 746 are used for quantitative evaluation of the achievable contrast sensitivity for step hole IQIs as considered in Annex B of ISO 17636–2. System classification data for Computed Radiography (CR) and film systems will be provided by BAM according to ISO 11699–1 for selected film systems and according to ASTM E 2446 for selected CR systems. The classification of films and digital detectors is based on the measurement of the dose response function, the basic spatial resolution (SR{sub b}) of the image, and the measured image noise, which depends on the detector efficiency, the quantum statistics, and the detector fixed pattern noise.

  12. Manufactured Home Testing in Simulated and Naturally Occurring High Winds

    Energy Technology Data Exchange (ETDEWEB)

    W. D. Richins; T. K. Larson


    A typical double-wide manufactured home was tested in simulated and naturally occurring high winds to understand structural behavior and improve performance during severe windstorms. Seven (7) lateral load tests were conducted on a double-wide manufactured home at a remote field test site in Wyoming. An extensive instrumentation package monitored the overall behavior of the home and collected data vital to validating computational software for the manufactured housing industry. The tests were designed to approach the design load of the home without causing structural damage, thus allowing the behavior of the home to be accessed when the home was later exposed to high winds (to 80-mph). The data generally show near-linear initial system response with significant non-linear behavior as the applied loads increase. Load transfer across the marriage line is primarily compression. Racking, while present, is very small. Interface slip and shear displacement along the marriage line are nearly insignificant. Horizontal global displacements reached 0.6 inch. These tests were designed primarily to collect data necessary to calibrate a desktop analysis and design software tool, MHTool, under development at the Idaho National Laboratory specifically for manufactured housing. Currently available analysis tools are, for the most part, based on methods developed for “stick built” structures and are inappropriate for manufactured homes. The special materials utilized in manufactured homes, such as rigid adhesives used in the connection of the sheathing materials to the studs, significantly alter the behavior of manufactured homes under lateral loads. Previous full scale tests of laterally loaded manufactured homes confirm the contention that conventional analysis methods are not applicable. System behavior dominates the structural action of manufactured homes and its prediction requires a three dimensional analysis of the complete unit, including tiedowns. This project was

  13. A Parametric Testing Environment for Finding the Operational Envelopes of Simulated Guidance Algorithms (United States)

    Barrett, Anthony


    The Problem: As NASA missions become ever more complex and subsystems become ever more complicated, testing for correctness becomes progressively more difficult. Exhaustive testing is usually impractical, so how does one select a smaller set of test cases that is effective at finding/analyzing bugs? Solution:(1) Let an analyst pose test-space coverage requirements and then refine these requirements to focus on regions of interest in response to visualized test results. (2) Instead of validating correctness around set points (with Monte Carlo analysis) find and characterize the margins of the performance envelop where the system starts to fail.

  14. Application of gas chromatography in refining industry-Part II: the simulation distillation. Aplicacion de la cromatografia gaseosa en la industria del refino: parte II. La destilacion simulada

    Energy Technology Data Exchange (ETDEWEB)

    Juan Garcia, D. de; Huertas Torres, C.M.; Juan Aguera, J. de; Martinez Pedreo, N. (Departamento de Ingenieria Quimica, Universidad de Murcia, EUPC, Cartagena, Murcia (Spain))


    We compare the results obtained by standard ASTM D-1160 and the simulated distillation by chromatography, according to standard ASTM D-2887. In this comparison will get a correlating way for the obtained results, in order to be replaced the standard ASTM D-1160 by the ASTM D-2887, easier in its realization. We analyze graphic and statically ours correlations, finding that it's possible to replace the obtained results in the use of standard ASTM D-1160 by the obtained of the standard ASTM D-2887, after correcting in the proper way. (Author) 5 refs.

  15. Refinement of protein structures into low-resolution density maps using rosetta. (United States)

    DiMaio, Frank; Tyka, Michael D; Baker, Matthew L; Chiu, Wah; Baker, David


    We describe a method based on Rosetta structure refinement for generating high-resolution, all-atom protein models from electron cryomicroscopy density maps. A local measure of the fit of a model to the density is used to directly guide structure refinement and to identify regions incompatible with the density that are then targeted for extensive rebuilding. Over a range of test cases using both simulated and experimentally generated data, the method consistently increases the accuracy of starting models generated either by comparative modeling or by hand-tracing the density. The method can achieve near-atomic resolution starting from density maps at 4-6 A resolution.

  16. Architectural Refinement in HETS


    Codescu, Mihai


    The main objective of this work is to bring a number of improvements to the Heterogeneous Tool Set HETS, both from a theoretical and an implementation point of view. In the first part of the thesis we present a number of recent extensions of the tool, among which declarative specifications of logics, generalized theoroidal comorphisms, heterogeneous colimits and integration of the logic of the term rewriting system Maude. In the second part we concentrate on the CASL architectural refinement ...

  17. Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.


    This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

  18. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations. (United States)


    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any simulation...

  19. Genomic multiple sequence alignments: refinement using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Lefkowitz Elliot J


    Full Text Available Abstract Background Genomic sequence data cannot be fully appreciated in isolation. Comparative genomics – the practice of comparing genomic sequences from different species – plays an increasingly important role in understanding the genotypic differences between species that result in phenotypic differences as well as in revealing patterns of evolutionary relationships. One of the major challenges in comparative genomics is producing a high-quality alignment between two or more related genomic sequences. In recent years, a number of tools have been developed for aligning large genomic sequences. Most utilize heuristic strategies to identify a series of strong sequence similarities, which are then used as anchors to align the regions between the anchor points. The resulting alignment is globally correct, but in many cases is suboptimal locally. We describe a new program, GenAlignRefine, which improves the overall quality of global multiple alignments by using a genetic algorithm to improve local regions of alignment. Regions of low quality are identified, realigned using the program T-Coffee, and then refined using a genetic algorithm. Because a better COFFEE (Consistency based Objective Function For alignmEnt Evaluation score generally reflects greater alignment quality, the algorithm searches for an alignment that yields a better COFFEE score. To improve the intrinsic slowness of the genetic algorithm, GenAlignRefine was implemented as a parallel, cluster-based program. Results We tested the GenAlignRefine algorithm by running it on a Linux cluster to refine sequences from a simulation, as well as refine a multiple alignment of 15 Orthopoxvirus genomic sequences approximately 260,000 nucleotides in length that initially had been aligned by Multi-LAGAN. It took approximately 150 minutes for a 40-processor Linux cluster to optimize some 200 fuzzy (poorly aligned regions of the orthopoxvirus alignment. Overall sequence identity increased only

  20. A generic testing framework for agent-based simulation models


    Gürcan, Önder; Dikenelli, Oguz; Bernon, Carole


    Agent-based modelling and simulation (ABMS) had an increasing attention during the last decade. However, the weak validation and verification of agent-based simulation models makes ABMS hard to trust. There is no comprehensive tool set for verification and validation of agent-based simulation models, which demonstrates that inaccuracies exist and/or reveals the existing errors in the model. Moreover, on the practical side, many ABMS frameworks are in use. In this sense, we designed and develo...

  1. The performance of tests on endogeneity of subsets of explanatory variables scanned by simulation

    NARCIS (Netherlands)

    Kiviet, J.F.; Pleus, M.


    Tests for classification as endogenous or predetermined of arbitrary subsets of regressors are formulated as significance tests in auxiliary IV regressions and their relationships with various more classic test procedures are examined. Simulation experiments are designed by solving the data

  2. Correlation of Simulation Examination to Written Test Scores for Advanced Cardiac Life Support Testing: Prospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Suzanne L. Strom


    Full Text Available Introduction: Traditional Advanced Cardiac Life Support (ACLS courses are evaluated using written multiple-choice tests. High-fidelity simulation is a widely used adjunct to didactic content, and has been used in many specialties as a training resource as well as an evaluative tool. There are no data to our knowledge that compare simulation examination scores with written test scores for ACLS courses. Objective: To compare and correlate a novel high-fidelity simulation-based evaluation with traditional written testing for senior medical students in an ACLS course. Methods: We performed a prospective cohort study to determine the correlation between simulationbased evaluation and traditional written testing in a medical school simulation center. Students were tested on a standard acute coronary syndrome/ventricular fibrillation cardiac arrest scenario. Our primary outcome measure was correlation of exam results for 19 volunteer fourth-year medical students after a 32-hour ACLS-based Resuscitation Boot Camp course. Our secondary outcome was comparison of simulation-based vs. written outcome scores. Results: The composite average score on the written evaluation was substantially higher (93.6% than the simulation performance score (81.3%, absolute difference 12.3%, 95% CI [10.6-14.0%], p<0.00005. We found a statistically significant moderate correlation between simulation scenario test performance and traditional written testing (Pearson r=0.48, p=0.04, validating the new evaluation method. Conclusion: Simulation-based ACLS evaluation methods correlate with traditional written testing and demonstrate resuscitation knowledge and skills. Simulation may be a more discriminating and challenging testing method, as students scored higher on written evaluation methods compared to simulation.

  3. Line Interference Effects Using a Refined Robert-Bonamy Formalism: the Test Case of the Isotropic Raman Spectra of Autoperturbed N2 (United States)

    Boulet, Christian; Ma, Qiancheng; Thibault, Franck


    A symmetrized version of the recently developed refined Robert-Bonamy formalism [Q. Ma, C. Boulet, and R. H. Tipping, J. Chem. Phys. 139, 034305 (2013)] is proposed. This model takes into account line coupling effects and hence allows the calculation of the off-diagonal elements of the relaxation matrix, without neglecting the rotational structure of the perturbing molecule. The formalism is applied to the isotropic Raman spectra of autoperturbed N2 for which a benchmark quantum relaxation matrix has recently been proposed. The consequences of the classical path approximation are carefully analyzed. Methods correcting for effects of inelasticity are considered. While in the right direction, these corrections appear to be too crude to provide off diagonal elements which would yield, via the sum rule, diagonal elements in good agreement with the quantum results. In order to overcome this difficulty, a re-normalization procedure is applied, which ensures that the off-diagonal elements do lead to the exact quantum diagonal elements. The agreement between the (re-normalized) semi-classical and quantum relaxation matrices is excellent, at least for the Raman spectra of N2, opening the way to the analysis of more complex molecular systems.

  4. Numerical simulation supports formation testing planning; Simulacao numerica auxilia planejamento de teste de formacao

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Rogerio Marques; Fonseca, Carlos Eduardo da [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)


    A well test is an operation that allows the engineer assessing reservoir performance and fluids properties by measuring flow rates and pressures under a range of flowing conditions. In most well tests, a limited amount of fluid is allowed to flow from the formation being tested. The formation is isolated behind cemented casing and perforated at the formation depth or, in open hole, the formation is straddled by a pair of packers that isolate the formation. During the flow period, the pressure at the formation is monitored over time. Then, the formation is closed (or shut in) and the pressure monitored at the formation while the fluid within the formation equilibrates. The analysis of these pressure changes can provide information on the size and shape of the formation as well as its ability to produce fluids. . The flow of fluid through the column test causes your heating and hence its elongation. Several factors affect the rate of exchange of heat as well and the characteristics of the fluid, the flow of time and the flow and the existence of deep water. The prediction of temperature over well, in its various components, and the effect caused in the column test is not a trivial task. Some authors, for example, describe a method of calculating the behaviour of columns of production, making it simpler variation of constant temperature throughout the entire column, a fact that this does not occur in practice. The work aims at presenting the advantages of using the numerical simulation in determining the efforts and corresponding movements of the column of test of formation. (author)

  5. Hirshfeld atom refinement. (United States)

    Capelli, Silvia C; Bürgi, Hans-Beat; Dittrich, Birger; Grabowsky, Simon; Jayatilaka, Dylan


    Hirshfeld atom refinement (HAR) is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly-l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree-Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs) are freely refined without constraints or restraints - even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's), all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules), the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å(2) as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements - an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.

  6. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Benazzi, E.; Alario, F


    In 2003, refining margins showed a clear improvement that continued throughout the first three quarters of 2004. Oil companies posted significantly higher earnings in 2003 compared to 2002, with the results of first quarter 2004 confirming this trend. Due to higher feedstock prices, the implementation of new capacity and more intense competition, the petrochemicals industry was not able to boost margins in 2003. In such difficult business conditions, aggravated by soaring crude prices, the petrochemicals industry is not likely to see any improvement in profitability before the second half of 2004. (author)

  7. Refining and petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Benazzi, E


    Down sharply in 2002, refining margins showed a clear improvement in the first half-year of 2003. As a result, the earnings reported by oil companies for financial year 2002 were significantly lower than in 2001, but the prospects are brighter for 2003. In the petrochemicals sector, slow demand and higher feedstock prices eroded margins in 2002, especially in Europe and the United States. The financial results for the first part of 2003 seem to indicate that sector profitability will not improve before 2004. (author)

  8. Parallel Block Structured Adaptive Mesh Refinement on Graphics Processing Units

    Energy Technology Data Exchange (ETDEWEB)

    Beckingsale, D. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Gaudin, W. P. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Hornung, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gunney, B. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Gamblin, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Herdman, J. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom); Jarvis, S. A. [Atomic Weapons Establishment (AWE), Aldermaston (United Kingdom)


    Block-structured adaptive mesh refinement is a technique that can be used when solving partial differential equations to reduce the number of zones necessary to achieve the required accuracy in areas of interest. These areas (shock fronts, material interfaces, etc.) are recursively covered with finer mesh patches that are grouped into a hierarchy of refinement levels. Despite the potential for large savings in computational requirements and memory usage without a corresponding reduction in accuracy, AMR adds overhead in managing the mesh hierarchy, adding complex communication and data movement requirements to a simulation. In this paper, we describe the design and implementation of a native GPU-based AMR library, including: the classes used to manage data on a mesh patch, the routines used for transferring data between GPUs on different nodes, and the data-parallel operators developed to coarsen and refine mesh data. We validate the performance and accuracy of our implementation using three test problems and two architectures: an eight-node cluster, and over four thousand nodes of Oak Ridge National Laboratory’s Titan supercomputer. Our GPU-based AMR hydrodynamics code performs up to 4.87× faster than the CPU-based implementation, and has been scaled to over four thousand GPUs using a combination of MPI and CUDA.

  9. Design, Construct and Test the Hi-Therm Simulator

    National Research Council Canada - National Science Library

    Zavitsanos, Peter


    Under the previous SBIR programs, GSI investigated the application of highly exothermic intermetallic reactions with the most energetic of these reactions constituting the basis for the Hi-Therm Simulator...

  10. PEP Run Report for Simulant Shakedown/Functional Testing

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Geeting, John GH; Bredt, Ofelia P.; Burns, Carolyn A.; Golovich, Elizabeth C.; Guzman-Leong, Consuelo E.; Kurath, Dean E.; Sevigny, Gary J.


    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Waste Treatment Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, "Undemonstrated Leaching Processes." The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing. Two operating scenarios are currently being evaluated for the ultrafiltration process (UFP) and leaching operations. The first scenario has caustic leaching performed in the UFP-2 ultrafiltration feed vessels (i.e., vessel UFP-VSL-T02A in the PEP; and vessels UFP-VSL-00002A and B in the WTP PTF). The second scenario has caustic leaching conducted in the UFP-1 ultrafiltration feed preparation vessels (i.e., vessels UFP-VSL-T01A and B in the PEP; vessels UFP-VSL-00001A and B in the WTP PTF). In both scenarios, 19-M sodium hydroxide solution (NaOH, caustic) is added to the waste slurry in the vessels to leach solid aluminum compounds (e.g., gibbsite, boehmite). Caustic addition is followed by a heating step that uses direct injection of steam to accelerate the leach process. Following the caustic leach, the vessel contents are cooled using vessel cooling jackets and/or external heat exchangers. The main difference between the two scenarios is that for leaching in UFP-1, the 19-M NaOH is added to un-concentrated waste slurry (3-8 wt% solids), while for leaching in UFP-2, the slurry is concentrated to nominally 20 wt% solids using cross-flow ultrafiltration

  11. Petroleum refining method

    Energy Technology Data Exchange (ETDEWEB)

    Bembel' , V.M.; Plyusnin, A.N.; Safonov, G.A.


    Current methods (Sp) for refining petroleum products (NP) and for removing nitrogen, tar, and polycyclic ArU's by means of complex chelation formed with chloride metal in the presence of organic solvents, are examined. These methods are designed to simplify such processes while at the same time preventing the formation of harmful impurities by employing chloride metals from the groups: Co, Cu, Cr, Ni, and Mn. These chloride metals act in the role of an organic solvent when using alkaline carbonate, dimethylsulphide, dimethylformamide, or fural but do not mix with oil. Currently employed methods are carried out as follows. A chelation solution is prepared in a compatible solvent with a chelation content of 0.01-0.2 gram-molecules per liter. Following this, the solution is mixed with NP at a volume of 0.5 parts extractant to 5 parts NP during a period of 5-25 minutes. Depending on the vicosity of the NP, mixing is done at a temperature of 20-80 degrees. Following the mixing and separation with either a settling or centrifuging phase, the light fraction (clear NP) is routed for catalytic refinement while the extract is mixed with water (at a temperature of 10 - 90 degrees) until it is completely dissolved and following which the nitrogen, pitch, and polyacrylide materials in the NP float to the surface.

  12. Macromolecular crystallographic estructure refinement

    Directory of Open Access Journals (Sweden)

    Afonine, Pavel V.


    Full Text Available Model refinement is a key step in crystallographic structure determination that ensures final atomic structure of macromolecule represents measured diffraction data as good as possible. Several decades have been put into developing methods and computational tools to streamline this step. In this manuscript we provide a brief overview of major milestones of crystallographic computing and methods development pertinent to structure refinement.El refinamiento es un paso clave en el proceso de determinación de una estructura cristalográfica al garantizar que la estructura atómica de la macromolécula final represente de la mejor manera posible los datos de difracción. Han hecho falta varias décadas para poder desarrollar nuevos métodos y herramientas computacionales dirigidas a dinamizar esta etapa. En este artículo ofrecemos un breve resumen de los principales hitos en la computación cristalográfica y de los nuevos métodos relevantes para el refinamiento de estructuras.

  13. Systematic review of validity testing in colonoscopy simulation. (United States)

    Ansell, James; Mason, John; Warren, Neil; Donnelly, Peter; Hawkes, Neil; Dolwani, Sunil; Torkington, Jared


    Simulation is a useful adjunct to skills-based training. It potentially avoids risk to patients during training and development of basic interventional techniques. This may be of particular relevance in colonoscopy where the learning curve can be long. Several endoscopic devices exist that simulate colonoscopy for training purposes. This study was designed to review the evidence for the validity of these simulators. MEDLINE (1947 to present), PubMed, Embase classic + Embase, the metaRegister of Controlled Trials, and the Education Resources Information Center (ERIC) were searched for studies validating colonoscopy simulators. For each study, we recorded the type of simulator used, the tasks assessed, the endpoints reported, and the type of validity measured. Common endpoints between studies were compared, and the evidence was graded. Thirteen studies met the inclusion criteria. Construct validity was reported in five (41.7 %) studies for the Accutouch HT Immersion (cases 1, 3, and 4), four studies (33.3 %) for the GI mentor II (Simbionix) (Modules 1.1, 1.3, 1.7, 2.1, and 5), two studies (16.7 %) for the Olympus Endo Ts-1 2nd Generation, and one study for the Endo X bovine model. Face validity was reported for the Accutouch HT Immersion, the Olympus 2nd Generation, and the KAIST-Ewha. Content validity was reported for the all simulators, excluding the KAIST-Ewha. The only report of criterion validity was for the Endo X bovine model. Evidence exists to support the face, content, and construct validity of several virtual reality colonoscopy simulators for specific diagnostic and therapeutic modules with selected endpoints. One study demonstrates content, construct, and criterion validity for an ex vivo animal platform. Further work is needed to demonstrate the criterion validity of all devices.

  14. Consumer liking of refined and whole wheat breads. (United States)

    Bakke, A; Vickers, Z


    Preference for refined bread is often cited as a reason for the relatively low consumption of whole wheat bread; only a few studies, however, have examined consumer preferences between refined and whole wheat breads, and the results of these studies are inconclusive. Our objective was to determine if refined wheat bread is preferred to whole wheat bread. We hypothesized that people would prefer refined wheat bread. We conducted a taste test with 89 people. They rated their liking of 9 different breads chosen to represent several comparisons between equivalent refined and whole wheat breads. The participants also rated the intensity of 6-n-propylthiouracil (PROP) and completed a questionnaire about their bread preferences and purchasing habits. We classified the participants by their bread preference and their PROP taster status, and then examined the liking patterns of these subgroups. People preferred refined bread to whole wheat bread when both were made using equivalent ingredients and procedures. They liked the commercial samples of refined and whole wheat breads equally well. When people were classified by their bread preference, those who preferred refined bread liked the refined bread better in all comparisons. PROP nontasters liked all refined and whole wheat breads equally. Sensory preferences are a barrier to whole wheat bread consumption, but ingredient or processing modifications can improve liking of whole wheat bread to the level of refined bread.

  15. Reduction Methods for Real-time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian


    and complexity of kinematic nonlinear numerical substructures are presented, with special emphasis on the use of basis reduction methods. Three elements that can help to improve the accuracy are presented and illustrated. In kinematic nonlinear systems, various deformation modes are coupled through a nonlinear......Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...

  16. Determining pitch-angle diffusion coefficients from test particle simulations

    CERN Document Server

    Ivascenko, A; Spanier, F; Vainio, R


    Transport and acceleration of charged particles in turbulent media is a topic of great interest in space physics and interstellar astrophysics. These processes are dominated by the scattering of particles off magnetic irregularities. The scattering process itself is usually described by small-angle scattering with the pitch-angle coefficient $D_{\\mu\\mu}$ playing a major role. Since the diffusion coefficient $D_{\\mu\\mu}$ can be determined analytically only for the approximation of quasi-linear theory, the determination of this coefficient from numerical simulations has, therefore, become more important. So far these simulations yield particle tracks for small-scale scattering, which can then be interpreted using the running diffusion coefficients. This method has a limited range of validity. This paper presents two new methods that allow for the calculation of the pitch-angle diffusion coefficient from numerical simulations. These methods no longer analyse particle trajectories, but the change of particle dist...

  17. Simulation Models in Testing Reliability of Transport Process

    Directory of Open Access Journals (Sweden)

    Jacyna Marianna


    Full Text Available The paper touches the problem of applying simulation models to assess the reliability of services in transport networks. Investigation of the transport processes in terms of their reliability is a complex decision-making task. The paper describes a method for assessing the reliability of transport process on the base of the criterion of minimizing the normalized lost time of vehicles. The time is wasted in a result of conflict situations occurring in the transport network during the transport process. The study includes stochastic distributions of system input. It enables studying the quality parameters of the transport network equipment, including service providers working under different workload and all kinds of disturbances. The method uses simulation models. Simulation studies were performed with Java Modelling Tools.

  18. Hirshfeld atom refinement

    Directory of Open Access Journals (Sweden)

    Silvia C. Capelli


    Full Text Available Hirshfeld atom refinement (HAR is a method which determines structural parameters from single-crystal X-ray diffraction data by using an aspherical atom partitioning of tailor-made ab initio quantum mechanical molecular electron densities without any further approximation. Here the original HAR method is extended by implementing an iterative procedure of successive cycles of electron density calculations, Hirshfeld atom scattering factor calculations and structural least-squares refinements, repeated until convergence. The importance of this iterative procedure is illustrated via the example of crystalline ammonia. The new HAR method is then applied to X-ray diffraction data of the dipeptide Gly–l-Ala measured at 12, 50, 100, 150, 220 and 295 K, using Hartree–Fock and BLYP density functional theory electron densities and three different basis sets. All positions and anisotropic displacement parameters (ADPs are freely refined without constraints or restraints – even those for hydrogen atoms. The results are systematically compared with those from neutron diffraction experiments at the temperatures 12, 50, 150 and 295 K. Although non-hydrogen-atom ADPs differ by up to three combined standard uncertainties (csu's, all other structural parameters agree within less than 2 csu's. Using our best calculations (BLYP/cc-pVTZ, recommended for organic molecules, the accuracy of determining bond lengths involving hydrogen atoms from HAR is better than 0.009 Å for temperatures of 150 K or below; for hydrogen-atom ADPs it is better than 0.006 Å2 as judged from the mean absolute X-ray minus neutron differences. These results are among the best ever obtained. Remarkably, the precision of determining bond lengths and ADPs for the hydrogen atoms from the HAR procedure is comparable with that from the neutron measurements – an outcome which is obtained with a routinely achievable resolution of the X-ray data of 0.65 Å.


    Directory of Open Access Journals (Sweden)

    Anatolii H. Protasov


    Full Text Available This paper is devoted to the computer simulation method of thermal nondestructive testing procedure. FEMLAB is interactive software package and used for simulation. It allows forming a model of physical objects with given parameters and properties. A proposed method helps students to understand better the processes happen in solid under the action of temperature.

  20. Simulation technologies in networking and communications selecting the best tool for the test

    CERN Document Server

    Pathan, Al-Sakib Khan; Khan, Shafiullah


    Simulation is a widely used mechanism for validating the theoretical models of networking and communication systems. Although the claims made based on simulations are considered to be reliable, how reliable they really are is best determined with real-world implementation trials.Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test addresses the spectrum of issues regarding the different mechanisms related to simulation technologies in networking and communications fields. Focusing on the practice of simulation testing instead of the theory, it presents

  1. Simulation of Simple Test Case 2D1

    DEFF Research Database (Denmark)

    Skovgaard, M.; Nielsen, Peter Vilhelm

    The turbulent flow pattern is calculated with a low Re number version of the k-∈ model in a room with two-dimensional isothermal flow. The results are compared both to LDA measurements obtained in a scale model and to other data obtained by numerical simulation. The overall performance is good an...

  2. An abdominal wall simulator for testing suprapubic urinary catheters. (United States)

    Coveney, V A; Gröver, D


    Urinary catheters (drainage tubes) are in widespread use. The most common type of long-term catheter is the Foley, which is made from natural or synthetic rubber. Foley catheters are passed into the bladder via the urethra or the suprapubic puncture channel (through the abdominal wall). A simulator for the abdominal wall has been developed to simulate aspects of the interaction between it and a suprapubic catheter. The simulator is based on a slab of ultrasoft elastomer with tensionable reinforcing polyamide filaments. The behaviour of the simulator has been compared with data published. A soft membrane (contact pressure) transducer (SMT) was used and novel instrumented 'tongs' for lateral indentation of the puncture track giving indentation stiffness. Slab materials were used with shear moduli of 0.1 and 0.021 MPa. Two filament-tensioning methods were used: by clamping to a winding mechanism and by weights. The combination of the softer slab material and tensioning by weights gave good conformity to physiological data; other combinations did not.

  3. Numerical Simulation of Gleeble Torsion Testing of HSLA-65 Steel (United States)


    3800 Torsion machine on AISI 304L and HSLA-65 steels to simulate the friction stir welding of these materials. A photograph of the experimental setup...strain rate levels = 420 flow stress values provided in the dataset for DEFORM 3D. Because of lack of data as well as some inconsistencies between

  4. NASCAP simulation of laboratory charging tests using multiple electron guns (United States)

    Mandell, M. J.; Katz, I.; Parks, D. E.


    NASCAP calculations have been performed simulating exposure of a spacecraft-like model to multiple electron guns. The results agree well with experiment. It is found that magnetic field effects are fairly small, but substantial differential charging can result from electron gun placement. Conditions for surface flashover are readily achieved.

  5. Thailand: refining cultural values. (United States)

    Ratanakul, P


    In the second of a set of three articles concerned with "bioethics on the Pacific Rim," Ratanakul, director of a research center for Southeast Asian cultures in Thailand, provides an overview of bioethical issues in his country. He focuses on four issues: health care allocation, AIDS, determination of death, and euthanasia. The introduction of Western medicine into Thailand has brought with it a multitude of ethical problems created in part by tension between Western and Buddhist values. For this reason, Ratanakul concludes that "bioethical enquiry in Thailand must not only examine ethical dilemmas that arise in the actual practice of medicine and research in the life sciences, but must also deal with the refinement and clarification of applicable Thai cultural and moral values."

  6. Refining Radchem Detectors: Iridium (United States)

    Arnold, C. W.; Bredeweg, T. A.; Vieira, D. J.; Bond, E. M.; Jandel, M.; Rusev, G.; Moody, W. A.; Ullmann, J. L.; Couture, A. J.; Mosby, S.; O'Donnell, J. M.; Haight, R. C.


    Accurate determination of neutron fluence is an important diagnostic of nuclear device performance, whether the device is a commercial reactor, a critical assembly or an explosive device. One important method for neutron fluence determination, generally referred to as dosimetry, is based on exploiting various threshold reactions of elements such as iridium. It is possible to infer details about the integrated neutron energy spectrum to which the dosimetry sample or ``radiochemical detector'' was exposed by measuring specific activation products post-irradiation. The ability of radchem detectors like iridium to give accurate neutron fluence measurements is limited by the precision of the cross-sections in the production/destruction network (189Ir-193Ir). The Detector for Advanced Neutron Capture Experiments (DANCE) located at LANSCE is ideal for refining neutron capture cross sections of iridium isotopes. Recent results from a measurement of neutron capture on 193-Ir are promising. Plans to measure other iridium isotopes are underway.

  7. Determination of friction in sheet metal forming by means of simulative tribo-tests

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels


    , not appropriate when introducing new tribo-systems (lubricant, workpiece material, tool material or tool coating). In order to determine friction under the very varied conditions in sheet stamping simulative testing may be applied, e.g., Plane-Strip-Testing (PST), Draw-Bead-Testing (DBT) and Bending...... of friction, whereas detailed numerical simulation of the test can give useful friction values as demonstrated in comparative analysis of an industrial, multistage deep drawing....

  8. Construction and testing of the simulation polygon for the protection of critical information resources


    Корнієнко, Б. Я.; Галата, Л.П.


    In this article, the process of constructing an imitation polygon as a method for studying the behavior of the system of protection of critical information resources is considered. The graphical network simulator application is used to construct the simulation polygon. The functionality of the GNS3 package is explored. The main properties of the simulation ground of protection of critical information resources are considered. The testing of a built-up simulation ground for protecting critical...

  9. Cahora Bassa GMPC testing using a real-time digital simulator

    Energy Technology Data Exchange (ETDEWEB)

    Claus, M.; Neufeldt, T.; Retzmann, D.; Troger, D. [Siemens AG Unternehmensbereich KWU, Erlangen (Germany); Coetzee, M.; Venter, F. [ESKOM, (South Africa); Forsyth, P.; Maguire, T. [RTDS Technologies, Inc., Winnipeg, MB (Canada)


    Use of the RTDS simulator for the testing of the Grid Master Power Controller (GMPC), implemented in a commercial project for the Cahora Bassa HVDC (high voltage direct current) upgrade in Mozambique was described. A six rack RTDS has been used for the original control equipment testing. The verification of the simulator setup was done by comparing the transient recordings with NETOMAC, EMTDC and PSS/E computer simulations and with former HVDC site recordings. The GMPC performance was verified by different types of AC and DC faults. GMPC stability improvements were confirmed by the advanced real-time simulator tests. 4 refs., 7 figs.

  10. Towards automated crystallographic structure refinement with phenix.refine. (United States)

    Afonine, Pavel V; Grosse-Kunstleve, Ralf W; Echols, Nathaniel; Headd, Jeffrey J; Moriarty, Nigel W; Mustyakimov, Marat; Terwilliger, Thomas C; Urzhumtsev, Alexandre; Zwart, Peter H; Adams, Paul D


    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods.

  11. Development of Software and Strategies for Battery Management System Testing on HIL Simulator

    DEFF Research Database (Denmark)

    Fleischer, Christian; Sauer, Dirk Uwe; Barreras, Jorge Varela


    . This is particularly the case of tests at early stages in the development process or during fault simulation. However, the use of a HIL battery simulator requires the development of software (SW) and strategies for testing. While the possibilities are immense, it should be noted that the greater the level...

  12. Iron Cross Reaction Control Flight Simulator - test in hangar (United States)


    In the mid-1950s -- after the X-1 had exceeded the speed of sound, the D-558-II had doubled that speed, and the X-2 had flown to a speed of Mach 3.2 (3.2 times the speed of sound) -- the problem of maintaining control of a vehicle at the low dynamic pressures found at high altitudes became real. As the development of larger rocket engines than those used in the X-1, X-2, and D-558-II became a virtual certainty, travel to near-orbital and orbital velocities lay on the horizon. It became natural to investigate alternative means to control an aircraft for low dynamic pressures where aerodynamic controls would be inadequate (even absent for orbital flight outside the atmosphere). Consequently, the High-Speed Flight Station (HSFS--predecessor of the NASA Dryden Flight Research Center) began pioneering work on simulating and then flying with reaction controls in the last years of the National Advisory Committee for Aeronautics (NACA) and the first years of its successor, the National Aeronautics and Space Administration (NASA). The HSFS began a two-phase study. One phase involved a fixed-base effort with an analog computer to solve the equations of motion needed for simulation; the other used a mechanical simulator in which the 'pilot' actually experienced the motions produced by the reaction-control jets. The 'pilot' operated the simulator through a single control stick that -- unusually for the time -- controlled three axes with one device. The stick controlled pitch by fore and aft movements, roll by lateral movements, and yaw through thumb movements. The simulator, shown in the video clip, was known as the 'Iron Cross.' It simulated the X-1B, which was equipped with reaction controls. Although the X-1B flew three missions with reaction controls, it developed fatigue cracks in a propellant tank and had to be retired from flight status. Subsequently, an F-104 equipped with reaction controls flew at relatively low dynamic pressures. Between the simulation studies with

  13. Contextual Distance Refining for Image Retrieval

    KAUST Repository

    Islam, Almasri


    Recently, a number of methods have been proposed to improve image retrieval accuracy by capturing context information. These methods try to compensate for the fact that a visually less similar image might be more relevant because it depicts the same object. We propose a new quick method for refining any pairwise distance metric, it works by iteratively discovering the object in the image from the most similar images, and then refine the distance metric accordingly. Test show that our technique improves over the state of art in terms of accuracy over the MPEG7 dataset.

  14. Enhanced verification test suite for physics simulation codes

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James R.; Brock, Jerry S.; Brandon, Scott T.; Cotrell, David L.; Johnson, Bryan; Knupp, Patrick; Rider, William J.; Trucano, Timothy G.; Weirs, V. Gregory


    This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations.

  15. Aspiration tests in aqueous foam using a breathing simulator

    Energy Technology Data Exchange (ETDEWEB)

    Archuleta, M.M.


    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  16. A Coupling Vibration Test Bench and the Simulation Research of a Maglev Vehicle

    Directory of Open Access Journals (Sweden)

    Weihua Ma


    Full Text Available To study the characteristics of the coupling vibration between a maglev vehicle and its track beam system and to improve the performance of the levitation system, a new type of vibration test bench was developed. Take a single maglev frame as the study object; simulation of the coupling vibration of the maglev vehicle, levitation system, and track beam were achieved. In addition, all types of real track irregularity excitations can be simulated using hydraulic actuators of the test bench. To expand the research scope, a simulation model was developed that can conduct the simulation research synergistically with the test bench. Based on a dynamics model of the test bench, the dynamics simulation method determined the influence on the levitation control performance of three factors: the track beam support stiffness, the track beam mass, and the track irregularity. The vibration resonance phenomenon of the vehicle/track system was reproduced by the dynamics simulation, and a portion of the simulation results were validated by the test results. By combining the test bench and the dynamics model, experiments can be guided by the simulation results, and the experimental results can validate the dynamics simulation results.

  17. Model refinement for offshore platforms: Experimental study (United States)

    Zhang, Min; Chen, Zongli; Wu, Yanjian


    Offshore jacket platforms are widely used in offshore oil and gas exploitation. Finite element models of such structures need to have many degrees of freedom (DOFs) to represent the geometrical detail of complex structures, thereby leading to incompatibility in the number of DOFs of experimental models. To bring them both to the same order while ensuring that the essential eigen- properties of the refined model match those of experimental models, an extended model refinement procedure is presented in this paper. Vibration testing of an offshore jacket platform model is performed to validate the applicability of the proposed approach. A full-order finite element model of the platform is established and then tuned to meet the measured modal properties identified from the acceleration signals. Both model reduction and modal expansion methods are investigated, as well as various scenarios of sensor arrangements. Upon completion of the refinement, the updated jacket platform model matches the natural frequencies of the measured model well.

  18. Comparative Performance of Four Single Extreme Outlier Discordancy Tests from Monte Carlo Simulations

    Directory of Open Access Journals (Sweden)

    Surendra P. Verma


    Full Text Available Using highly precise and accurate Monte Carlo simulations of 20,000,000 replications and 102 independent simulation experiments with extremely low simulation errors and total uncertainties, we evaluated the performance of four single outlier discordancy tests (Grubbs test N2, Dixon test N8, skewness test N14, and kurtosis test N15 for normal samples of sizes 5 to 20. Statistical contaminations of a single observation resulting from parameters called δ from ±0.1 up to ±20 for modeling the slippage of central tendency or ε from ±1.1 up to ±200 for slippage of dispersion, as well as no contamination (δ=0 and ε=±1, were simulated. Because of the use of precise and accurate random and normally distributed simulated data, very large replications, and a large number of independent experiments, this paper presents a novel approach for precise and accurate estimations of power functions of four popular discordancy tests and, therefore, should not be considered as a simple simulation exercise unrelated to probability and statistics. From both criteria of the Power of Test proposed by Hayes and Kinsella and the Test Performance Criterion of Barnett and Lewis, Dixon test N8 performs less well than the other three tests. The overall performance of these four tests could be summarized as N2≅N15>N14>N8.

  19. Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica


    . For simulation according to a continuum mechanical approach, the rheological properties are required. However, in connection with onsite jobs, it is only possible to characterise the flow properties or workability according to simple empirical test methods, and among the most popular is the slump flow test....... This paper presents a numerical axi-symmetric approach for simulation of the slump flow test. Simulations are compared to experimental test results on the rheological properties and slump flow. Former rheological investigations on SCC indicate a non-Newtonian behaviour according to the Bingham model....

  20. Continuous Strip Reduction Test Simulating Tribological Conditions in Ironing

    DEFF Research Database (Denmark)

    Üstünyagiz, Esmeray; Nielsen, Chris Valentin; Christiansen, Peter


    materials, surface roughnesses, normal pressure, sliding length, sliding speed, interface temperature and lubrication. This paper proposes a new Strip Reduction Test (SRT) for industrial ironing processes that is capable of replicating the highly severe tribological conditions that are experienced during...

  1. Refining associations between TAS2R38 diplotypes and the 6-n-propylthiouracil (PROP taste test: findings from the Avon Longitudinal Study of Parents and Children

    Directory of Open Access Journals (Sweden)

    Bartoshuk Linda M


    Full Text Available Abstract Background Previous investigations have highlighted the importance of genetic variation in the determination of bitter tasting ability, however have left unaddressed questions as to within group variation in tasting ability or the possibility of genetic prescription of intermediate tasting ability. Our aim was to examine the relationships between bitter tasting ability and variation at the TAS2R38 locus and to assess the role of psychosocial factors in explaining residual, within group, variation in tasting ability. Results In a large sample of children from the Avon Longitudinal Study of Parents and Children, we confirmed an association between bitter compound tasting ability and TAS2R38 variation and found evidence of a genetic association with intermediate tasting ability. Antisocial behaviour, social class and depression showed no consistent relationship with the distribution of taste test scores. Conclusion Factors which could influence a child's chosen taste score, extra to taste receptor variation, appeared not to show relationships with test score. Observed spread in the distribution of the taste test scores within hypothesised taster groups, is likely to be, or at least in part, due to physiological differentiation regulated by other genetic contributors. Results confirm relationships between genetic variation and bitter compound tasting ability in a large sample, and suggest that TAS2R38 variation may also be associated with intermediate tasting ability.

  2. Refinement of Cadastral Maps

    Directory of Open Access Journals (Sweden)

    Alena Berková


    Full Text Available The amended cadastral ordinance takes effect from 1.7. 2009. Until this date the only cadastral maps for which two listsof coordinates for detailed survey points were filed were digitalized cadastral maps in stable cadastre coordinate systems. The entry intoforce of the amended ordinance has introduced the obligation to file these lists in all forms of cadastral maps. We have one file withcoordinates of image and a second one with coordinates of position. The accuracy of the detailed survey points is defined by a qualitycode. The quality code is indicated in only one of the lists: either that of the image coordinates or that of the positional coordinates.The type of quality code depends on the willingness of property owners to sign a substantiating declaration of consent regardingthe demarcation of a boundary line or the refinement of a boundary line. An integral part of the substantiating declaration is a surveysketch. The paper deals with survey sketch variants with regard to the amended ordinance.

  3. The Relationship between Tests of Neurocognition and Performance on a Laparoscopic Simulator

    Directory of Open Access Journals (Sweden)

    Oumar Kuzbari


    Full Text Available Objective. To estimate if there is a relationship between the results of tests of neurocognition and performance on a laparoscopic surgery simulator. Methods and Materials. Twenty participants with no prior laparoscopic experience had baseline cognitive tests administered (Trail Making Test, Part A and B (TMT-A and TMT-B, Grooved Peg Board Test, Symbol Digit Modalities Test, Symbol Digit Recall Test, and Stroop Interference Test, completed a demographic questionnaire, and then performed laparoscopy using a simulator. We correlated the results of cognitive tests with laparoscopic surgical performance. Results. One cognitive test sensitive to frontal lobe function, TMT-A, significantly correlated with laparoscopic surgical performance on the simulator (correlation coefficient of 0.534 with P<.05. However, the correlation between performance and other cognitive tests (TMT-B, Grooved Peg Board Test, Symbol Digit Modalities Test, Symbol Digit Recall Test, and Stroop Interference Test was not statistically significant. Conclusion. Laparoscopic performance may be related to measures of frontal lobe function. Neurocognitive tests may predict motor skills abilities and performance on laparoscopic simulator.

  4. An Advanced HIL Simulation Battery Model for Battery Management System Testing

    DEFF Research Database (Denmark)

    Barreras, Jorge Varela; Fleischer, Christian; Christensen, Andreas Elkjær


    Developers and manufacturers of battery management systems (BMSs) require extensive testing of controller Hardware (HW) and Software (SW), such as analog front-end and performance of generated control code. In comparison with the tests conducted on real batteries, tests conducted on a state......-of-the-art hardware-in-the-loop (HIL) simulator can be more cost and time effective, easier to reproduce, and safer beyond the normal range of operation, especially at early stages in the development process or during fault insertion. In this paper, an HIL simulation battery model is developed for purposes of BMS...... testing on a commercial HIL simulator. A multicell electrothermal Li-ion battery (LIB) model is integrated in a system-level simulation. Then, the LIB system model is converted to C code and run in real time with the HIL simulator. Finally, in order to demonstrate the capabilities of the setup...

  5. Validation of Mobility Simulations via Measurement Drive Tests in an Operational Network

    DEFF Research Database (Denmark)

    Gimenez, Lucas Chavarria; Barbera, Simone; Polignano, Michele


    Simulations play a key role in validating new concepts in cellular networks, since most of the features proposed and introduced into the standards are typically first studied by means of simulations. In order to increase the trustworthiness of the simulation results, proper models and settings must...... to reality. The presented study is based on drive tests measurements and explicit simulations of an operator network in the city of Aalborg (Denmark) – modelling a real 3D environment and using a commonly accepted dynamic system level simulation methodology. In short, the presented results show...

  6. Real Time Photovoltaic Array Simulator for Testing Grid-Connected PV Inverters

    DEFF Research Database (Denmark)

    Sera, Dezso; Valentini, Massimo; Raducu, Alin


    In this paper a real time flexible PV array simulator is presented. It is a system that can simulate different PV panel arrays in specific environmental conditions. To evaluate performance of the Maximum Power Point Tracking (MPPT) of grid-connected Photovoltaic (PV) inverters only measurements...... undertaken with an appropriate PV array simulator provide accurate and reproducible results. Thus the PV array simulator has been developed and implemented. MPPT efficiency tests on a commercial grid-connected PV inverter have been performed to validate the PV array simulator....

  7. Recent progress and future directions for reduction, refinement, and replacement of animal use in veterinary vaccine potency and safety testing: a report from the 2010 NICEATM-ICCVAM International Vaccine Workshop. (United States)

    Stokes, W S; Kulpa-Eddy, J; Brown, K; Srinivas, G; McFarland, R


    Veterinary vaccines contribute to improved animal and human health and welfare by preventing infectious diseases. However, testing necessary to ensure vaccine effectiveness and safety can involve large numbers of animals and significant pain and distress. NICEATM and ICCVAM recently convened an international workshop to review the state of the science of human and veterinary vaccine potency and safety testing, and to identify priority activities to advance new and improved methods that can further reduce, refine and replace animal use. Rabies, Clostridium sp., and Leptospira sp. vaccines were identified as the highest priorities, while tests requiring live viruses and bacteria hazardous to laboratory workers, livestock, pets, and wildlife were also considered high priorities. Priority research, development and validation activities to address critical knowledge and data gaps were identified, including opportunities to apply new science and technology. Enhanced international harmonization and cooperation and closer collaborations between human and veterinary researchers were recommended to expedite progress. Implementation of the workshop recommendations is expected to advance new methods for vaccine testing that will benefit animal welfare and ensure continued and improved protection of human and animal health.

  8. Aseptic simulation test for cytotoxic drug production in isolators. (United States)

    Savry, Amandine; Correard, Florian; Bennis, Youssef; Roubaud, Sophie; Gauthier-Villano, Laurence; Pisano, Pascale; Pourroy, Bertrand


    The results of a media-fill test (MFT) study to validate processes for cytotoxic drug preparation inside and outside aseptic compounding isolators are presented. Using an MFT protocol adapted to institution-specific production conditions, the pharmacy team at a hospital in France performed a series of tests to verify the efficacy of decontamination and sterile compounding procedures, as required by French compendial standards, while assessing the performance of its team of 12 isolator operators; all operators were tested on three occasions, producing 10 MFT samples per test for a total of 30 samples per operator. The team also tested alternative compounding systems (i.e., two closed-system transfer devices and a classic spike system) for use during power outages or other emergencies precluding drug preparation within isolators. MFTs were performed using a standard tryptone soy broth-based test kit under worst-case conditions. The hospital's facilities for cytotoxic drug preparation were found to be in conformance with applicable sterility standards. Bacterial growth was not detected in any of the MFT samples produced by isolator operators during the study (total n = 360). In one instance, an MFT sample prepared using a closed-system transfer device was found to be contaminated due to improper cleaning of the medication vial, highlighting the importance of strict adherence to proper decontamination procedures. A hospital's practices for preparation of sterile products according to applicable good manufacturing guidelines, as well as emergency procedures for cytotoxic drug preparation outside isolators, were validated by the results of an MFT study.

  9. Testing advanced driver assistance systems with the interactive driving simulator; Erprobung von Fahrerassistenzsystemen mit dem Interactive Driving Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Friedrichs, A.; Grosse-Kappenberg, S.; Happe, J. [Zentrum fuer Lern- und Wissensmanagement und Lehrstuhl Informatik im Maschinenbau ZLW/IMA der RWTH Aachen (Germany)


    The Centre for Learning and Knowledge Management and Department of Computer Science in Engineering of the Technical University Aachen has developed a truck driving simulator which combines a driving simulation as well as traffic flow calculations to the interactive Driving Simulator (InDriveS). In real-time the effects of the driver's behaviour on the surrounding traffic are considered and vice versa. The integrative part of InDriveS is a software-in-the-loop and hardware-in-the-loop development environment. By means of this tool, all phases of development (Analysis, Design, Modelling, Simulation, Implementation as well as Testing and Evaluation) of new vehicle technologies, e.g. Information and Assistance Systems, can be realised in consideration of the road traffic and the driver's behaviour. (orig.)

  10. Advanced relay testing and signal processing software for two-terminal digital simulator

    Energy Technology Data Exchange (ETDEWEB)

    Kezunovic, M.; Chen, Q. [Texas A and M Univ., College Station, TX (United States). Dept. of Electrical Engineering


    Current utility practice for relay testing is to use portable test-sets capable of generating steady-state test waveforms. Recent studies, however, have indicated that steady-state tests are not sufficient if the full behavior of a relay is to be evaluated. Digital simulator concept is one of the most desirable solutions to this problem. It includes hardware and software that allow both phasor and transient testing of protective relays. This paper describes relay testing and signal processing software for a newly developed two-terminal digital simulator. The simulator development was initiated in late 1989 and has resulted in several modeling and simulation studies, as well as simulator hardware and software designs. The software discussed in this paper was installed for beta-site testing at the department of Energy--Western Area Power Administration (WAPA) in the Summer of 1995. It has also been extensively evaluated at Texas A and M University, with the close cooperation of Houston Light and Power Company (HL and P). This software is capable of performing data conversion, signal processing, signal analysis, relay testing, and test result analysis using various transient data formats such as COMTRADE (IEEE COMmon format for TRAnsient Data Exchange), electromagnetic transient program (EMTP), and digital fault recorder (DFR). In this paper, the digital simulator hardware configuration is presented first. The software requirement and software configuration are discussed then. Next, the new software developments are described. Examples of the software applications are also outlined.

  11. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  12. Simulation and Automation of the EEBI Test at ALS

    CERN Document Server

    Nishimura, Hiroshi


    The Errant Electron Beam Interlock (EEBI) is a system that protects the vacuum chamber of the Advanced Light Source (ALS) from synchrotron light damage should the orbit, through a superconducting bend magnet (superbend), become distorted. The EEBI system monitors the vertical beam position on two BPMs, one upstream and the other downstream, of the superbend and dumps the stored beam if the orbit exceeds preset limits in either offset or angle. Discussed are the modeling studies carried out to determine how to create a large vertical bump, both for performing the test and implementing the automated test software.

  13. On Modal Refinement and Consistency

    DEFF Research Database (Denmark)

    Nyman, Ulrik; Larsen, Kim Guldstrand; Wasowski, Andrzej


    Almost 20 years after the original conception, we revisit several fundamental question about modal transition systems. First, we demonstrate the incompleteness of the standard modal refinement using a counterexample due to Hüttel. Deciding any refinement, complete with respect to the standard...

  14. Modeling, Simulation, and Testing of Surf Kites for Power Generation

    NARCIS (Netherlands)

    Williams, P.; Lansdorp, B.; Ruiterkamp, R.; Ockels, W.J.


    Non-powered flight vehicles such as kites can provide a means of transmitting wind energy from higher altitudes to the ground via tethers. At Delft University of Technology, construction and testing of such a high altitude wind machine is ongoing. The concept is called the Laddermill. It generates

  15. Crystal structure refinement with SHELXL

    Energy Technology Data Exchange (ETDEWEB)

    Sheldrick, George M., E-mail: [Department of Structural Chemistry, Georg-August Universität Göttingen, Tammannstraße 4, Göttingen 37077 (Germany)


    New features added to the refinement program SHELXL since 2008 are described and explained. The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

  16. Preparation of a Frozen Regolith Simulant Bed for ISRU Component Testing in a Vacuum Chamber (United States)

    Klenhenz, Julie; Linne, Diane


    In-Situ Resource Utilization (ISRU) systems and components have undergone extensive laboratory and field tests to expose hardware to relevant soil environments. The next step is to combine these soil environments with relevant pressure and temperature conditions. Previous testing has demonstrated how to incorporate large bins of unconsolidated lunar regolith into sufficiently sized vacuum chambers. In order to create appropriate depth dependent soil characteristics that are needed to test drilling operations for the lunar surface, the regolith simulant bed must by properly compacted and frozen. While small cryogenic simulant beds have been created for laboratory tests, this scale effort will allow testing of a full 1m drill which has been developed for a potential lunar prospector mission. Compacted bulk densities were measured at various moisture contents for GRC-3 and Chenobi regolith simulants. Vibrational compaction methods were compared with the previously used hammer compaction, or "Proctor", method. All testing was done per ASTM standard methods. A full 6.13 m3 simulant bed with 6 percent moisture by weight was prepared, compacted in layers, and frozen in a commercial freezer. Temperature and desiccation data was collected to determine logistics for preparation and transport of the simulant bed for thermal vacuum testing. Once in the vacuum facility, the simulant bed will be cryogenically frozen with liquid nitrogen. These cryogenic vacuum tests are underway, but results will not be included in this manuscript.

  17. Solar panel acceptance testing using a pulsed solar simulator (United States)

    Hershey, T. L.


    Utilizing specific parameters as area of an individual cell, number in series and parallel, and established coefficient of current and voltage temperature dependence, a solar array irradiated with one solar constant at AMO and at ambient temperature can be characterized by a current-voltage curve for different intensities, temperatures, and even different configurations. Calibration techniques include: uniformity in area, depth and time, absolute and transfer irradiance standards, dynamic and functional check out procedures. Typical data are given for individual cell (2x2 cm) to complete flat solar array (5x5 feet) with 2660 cells and on cylindrical test items with up to 10,000 cells. The time and energy saving of such testing techniques are emphasized.

  18. The Importance of Human Motion for Simulation Testing of GNSS


    Voutsis, K.; Groves, P. D.; Holbrow, M.; Ford, C.


    Human motion is generally considered benign to the performance of global navigation satellite system (GNSS) and other positioning sensors. This study proves that this is not the case, even for typical human behaviour involving GNSS user equipment, e.g. in smartphones. Using recorded human motion, it is shown that phase-lock loops (PLLs) in GNSS receivers are sensitive to jerk dynamics induced by user motion, resulting in carrier cycle slips. To test the effects of human dynamics on GNSS carri...

  19. Numerical Simulation of Groundwater Withdrawal at the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Rosemary [Nevada Site Office, Las Vegas, NV (United States).; Giroux, Brian [Nevada Site Office, Las Vegas, NV (United States).; Pohll, Greg [Nevada Site Office, Las Vegas, NV (United States).; Hershey, Ronald [Nevada Site Office, Las Vegas, NV (United States).; Russell, Charles [Nevada Site Office, Las Vegas, NV (United States).; Howcroft, William [Nevada Site Office, Las Vegas, NV (United States).


    Alternative uses of the Nevada Test Site (NTS) may require large amounts of water to construct and/or operate. The only abundant source of water at the NTS is groundwater. This report describes preliminary modeling to quantify the amount of groundwater available for development from three hydrographic areas at the NTS. Modeling was conducted with a three-dimensional transient numerical groundwater flow model.

  20. Fragment Capture Simulation for MANPADS Test Arena Optimization (United States)


    the border between make-screens. In Cartesian coordinates, the two walls need to be processed differently on either side of the corner. Finally... borders . The second mode is well-suited for postmortem evaluation of physical test data. Inputs =⇒ Outputs - Weapon characteristics - Fragment impacts...quality scores are desirable. Therefore, Configurations C, D, and E form a pareto -optimal boundary for this data; Configurations A and B are clearly

  1. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance (United States)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.


    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  2. Solar panel thermal cycling testing by solar simulation and infrared radiation methods (United States)

    Nuss, H. E.


    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  3. Evaluation of electronic jamming effect based on seeker captive flight test and missile flight simulation (United States)

    Gao, Wei; Tie, Weitao


    In order to test and evaluate the jamming effect of electronic warfare weapons on missiles, a method based on seeker captive flight jamming test and missile flight simulation test is put forward, in which real data for the jamming effect of the electronic warfare weapon on seekers is obtained by seeker captive flight jamming test, and immitted into a missile digital simulation system to perform large numbers of missile flight simulation tests under jamming, then one could evaluate the jamming effect of the electronic warfare weapon on missiles according to the simulation test results. The method is demonstrated and validated by test and evaluation of the jamming effect of a smokescreen jamming device on TV guidance missiles. The results show that, the method proposed here not only overcomes the shortcomings of both pure digital simulation test and field test, but also combines their advantages, thus could be taken as an easy, economical and reliable method for testing and evaluating electronic jamming effect on missiles.

  4. Simulated Tip Rub Testing of Low-Density Metal Foam (United States)

    Bowman, Cheryl L.; Jones, Michael G.


    Preliminary acoustic studies have indicated that low-density, open-cell, metal foams may be suitable acoustic liner material for noise suppression in high by-pass engines. Metal foam response under simulated tip rub conditions was studied to assess whether its durability would be sufficient for the foam to serve both as a rub strip above the rotor as well as an acoustic treatment. Samples represented four metal alloys, nominal cell dimensions ranging from 60 to 120 cells per inch (cpi), and relative densities ranging from 3.4 to 10 percent. The resulting rubbed surfaces were relatively smooth and the open cell structure of the foam was not adversely affected. Sample relative density appeared to have significant influence on the forces induced by the rub event. Acoustic responses of various surface preparations were measured using a normal incidence tube. The results of this study indicate that the foam s open-cell structure was retained after rubbing and that the acoustic absorption spectra variation was minimal.

  5. Simulation and mockup tests for developing TRR-II CNS (United States)

    Lee, C. H.; Kawai, T.; Chan, Y. K.; Hong, W. T.; Lee, D. J.; Guung, T. C.; Lan, K. C.


    The Taiwan Research Reactor improvement and the utilization promotion project (TRR-II) with Cold Neutron Source (CNS) was carried out at Institute of Nuclear Energy Research. The CNS with a two-phase thermosiphon loop consists of an annular cylindrical moderator cell, a single moderator transfer tube, and a condenser. The self-regulating characteristics of a two-phase thermosiphon loop are investigated against variations of heat load. The experiments on the thermal-hydraulic characteristics have been performed using a full-scale mockup loop and a Freon-11 was used as a working fluid. Two cases were evaluated by the simulation and experiments. One case is an ORPHEE-type moderator cell in which an inner shell is open at the bottom, the other case is one with an inner cavity with no hole at the bottom but a vapor inlet opening at the uppermost part of the cavity. The flooding limitations, liquid level and void fraction in the moderator cell as a function of the initial Freon-11 inventory and the heat load are also reported.

  6. Multivariate refined composite multiscale entropy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Humeau-Heurtier, Anne, E-mail:


    Multiscale entropy (MSE) has become a prevailing method to quantify signals complexity. MSE relies on sample entropy. However, MSE may yield imprecise complexity estimation at large scales, because sample entropy does not give precise estimation of entropy when short signals are processed. A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. Nevertheless, RCMSE is for univariate signals only. The simultaneous analysis of multi-channel (multivariate) data often over-performs studies based on univariate signals. We therefore introduce an extension of RCMSE to multivariate data. Applications of multivariate RCMSE to simulated processes reveal its better performances over the standard multivariate MSE. - Highlights: • Multiscale entropy quantifies data complexity but may be inaccurate at large scale. • A refined composite multiscale entropy (RCMSE) has therefore recently been proposed. • Nevertheless, RCMSE is adapted to univariate time series only. • We herein introduce an extension of RCMSE to multivariate data. • It shows better performances than the standard multivariate multiscale entropy.

  7. Heavy vehicle simulator testing on pre-cast concrete panels

    CSIR Research Space (South Africa)

    Du Plessis, L


    Full Text Available pavement slabs and perform in the same way. Dowel slots cast on the bottom of the slabs provide two benefits. First, they keep dowel grout on the bottom, protecting it from de-icing chemicals and degradation from freeze/ thaw activity. Secondly... an indication of their size, the brass sensor caps are 75mm in diameter). Drill cores obtained from various locations in both test sections indicated very good performance of the dowel grout. There was no sign of looseness of the dowel, which means...

  8. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C


    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  9. Simulations of joule effect heating in a bulge test (United States)

    Demazel, Nathan; Laurent, Hervé; Carin, Muriel; Coër, Jérémy; Le Masson, Philippe; Favero, Jérôme; Canivenc, Romain; Graveleau, Stéphane


    This work focuses on the integration of an electrical conduction heating of circular blank in a bulge test device. This device will be used to characterize the thermomechanical behaviour of Usibor®1500 under biaxial deformation at very high temperature (to 930°C). First a thermoelectric model using COMSOL Multiphysics® was developed to study the heating of a rectangular blank. This model is validated by comparing the calculated temperatures with thermocouples measurements. Secondly electrical field optimization is approached to obtain a fast and uniform heating of a circular blank.

  10. 40 CFR 86.163-00 - Spot check correlation procedures for vehicles tested using a simulation of the environmental... (United States)


    ... fuel consumption of the simulation test must be at least 95% of the fuel consumption of the... fuel consumption of the simulation test must be at least 95% of the fuel consumption of the... the environmental chamber test. (B) The fuel consumption of the simulation test must be at least 95...

  11. Performance on a work-simulating firefighter test versus approved laboratory tests for firefighters and applicants. (United States)

    von Heimburg, Erna; Medbø, Jon Ingulf; Sandsund, Mariann; Reinertsen, Randi Eidsmo


    Firefighters must meet minimum physical demands. The Norwegian Labour Inspection Authority (NLIA) has approved a standardised treadmill walking test and 3 simple strength tests for smoke divers. The results of the Trondheim test were compared with those of the NLIA tests taking into account possible effects of age, experience level and gender. Four groups of participants took part in the tests: 19 young experienced firefighters, 24 senior male firefighters and inexperienced applicants, 12 male and 8 female. Oxygen uptake (VO2) at exhaustion rose linearly by the duration of the treadmill test. Time spent on the Trondheim test was closely related to performance time and peak VO2 on the treadmill test. Senior experienced firefighters did not perform better than equally fit young applicants. However, female applicants performed poorer on the Trondheim test than on the treadmill test. Performance on the Trondheim test was not closely related to muscle strength beyond a minimum. CONCLUSION. Firefighters completing the Trondheim test in under 19 min fit the requirements of the NLIA treadmill test. The Trondheim test can be used as an alternative to the NLIA tests for testing aerobic fitness but not for muscular strength. Women's result of the Trondheim test were poorer than the results of the NLIA treadmill test, probably because of their lower body mass.

  12. Simulation: The Effects of Simulation on High Stakes Testing in Undergradute Nursing Education (United States)

    Walters, Linda


    Many nursing programs use standardized testing packages in order to evaluate students' content mastery as well as predict probability of passing the National Council Licensure for Registered Nurses (NCLEX-RN). Instead of a diagnosis for weak content areas, programs implement testing policies in the belief that such policies ensure student success…

  13. Motion simulation of transport aircraft in extended envelopes : Test pilot assessment

    NARCIS (Netherlands)

    Nooij, S.A.E.; Wentink, M.; Smaili, H.; Zaichik, L.; Groen, E.L.


    The European research project SUPRA (“Simulation of Upset Recovery in Aviation”) produced an extended aerodynamic model for simulation of a generic transport aircraft, capturing the key aircraft behavior beyond aerodynamic stall. As described in the current paper, a group of 11 test pilots with

  14. Assessment of simulation predictions of hydrocarbon pool fire tests.

    Energy Technology Data Exchange (ETDEWEB)

    Luketa-Hanlin, Anay Josephine


    An uncertainty quantification (UQ) analysis is performed on the fuel regression rate model within SIERRA/Fuego by comparing to a series of hydrocarbon tests performed in the Thermal Test Complex. The fuels used for comparison for the fuel regression rate model include methanol, ethanol, JP8, and heptane. The recently implemented flamelet combustion model is also assessed with a limited comparison to data involving measurements of temperature and relative mole fractions within a 2-m diameter methanol pool fire. The comparison of the current fuel regression rate model to data without UQ indicates that the model over predicts the fuel regression rate by 65% for methanol, 63% for ethanol, 95% for JP8, and 15% for heptane. If a UQ analysis is performed incorporating a range of values for transmittance, reflectance, and heat flux at the surface the current model predicts fuel regression rates within 50% of measured values. An alternative model which uses specific heats at inlet and boiling temperatures respectively and does not approximate the sensible heat is also compared to data. The alternative model with UQ significantly improves the comparison to within 25% for all fuels except heptane. Even though the proposed alternative model provides better agreement to data, particularly for JP8 and ethanol (within 15%), there are still outstanding issues regarding significant uncertainties which include heat flux gauge measurement and placement, boiling at the fuel surface, large scale convective motion within the liquid, and semi-transparent behavior.

  15. Chemical Agent Monitor (CAM) follow-on operational test and evaluation simulant test strategy. Final report, May 1988-April 1989

    Energy Technology Data Exchange (ETDEWEB)

    Seitzinger, A.T.; Grasso, P.S.; Guelta, M.A.


    This report was intended to provide technical guidance to the U.S. Army Armor and Engineering (A E) Board in the area of simulant use for the Chemical Agent Monitor (CAM) Follow-on Operational Test and Evaluation (FOT E). The Operational Science Branch (Op Sci Br) was requested to support the A E Board in their effort to design an FOT E for the CAM using methyl salicylate (MS) as the H mode (mustard agent) simulant. Personnel from Op Sci Br were asked to design contamination technology and monitoring methods to test the machine/man interface and use doctrine, and analyze how well data is collected and evaluated.

  16. GAMER: GPU-accelerated Adaptive MEsh Refinement code (United States)

    Schive, Hsi-Yu; Tsai, Yu-Chih; Chiueh, Tzihong


    GAMER (GPU-accelerated Adaptive MEsh Refinement) serves as a general-purpose adaptive mesh refinement + GPU framework and solves hydrodynamics with self-gravity. The code supports adaptive mesh refinement (AMR), hydrodynamics with self-gravity, and a variety of GPU-accelerated hydrodynamic and Poisson solvers. It also supports hybrid OpenMP/MPI/GPU parallelization, concurrent CPU/GPU execution for performance optimization, and Hilbert space-filling curve for load balance. Although the code is designed for simulating galaxy formation, it can be easily modified to solve a variety of applications with different governing equations. All optimization strategies implemented in the code can be inherited straightforwardly.

  17. Simulation of dynamic traffic loading based on accelerated pavement testing (APT)

    CSIR Research Space (South Africa)

    Steyn, WJvdM


    Full Text Available The objective of this paper is to introduce the latest Heavy Vehicle Simulator (HVS) technology as part of the South African Accelerated Pavement Testing (APT) efforts, its capabilities and expected impact on road pavement analysis....

  18. Safety of railroad passenger vehicle dynamics : OMNISIM simulation and test correlations for passenger rail cars (United States)


    The purpose of the work is to validate the safety assessment methodology previously developed for passenger rail vehicle dynamics, which requires the application of simulation tools as well as testing of vehicles under different track scenarios. This...

  19. Implantable cardiac pacemaker electromagnetic compatibility testing in a novel security system simulator. (United States)

    Kainz, Wolfgang; Casamento, Jon P; Ruggera, Paul S; Chan, Dulciana D; Witters, Donald M


    This paper describes a novel simulator to perform electromagnetic compatibility (EMC) tests for active implantable medical devices (AIMDs) with electromagnetic fields emitted by security systems. The security system simulator was developed in response to over 100 incident reports over 17 years related to the interference of AIMD's with security systems and the lack of a standardized test method. The simulator was evaluated regarding field homogeneity, signal distortion, and maximum magnetic field strength levels. Small three-axis probes and a three-axis scanning system were designed to determine the spatial and temporal characteristics of the fields emitted by 12 different types of walk through metal detectors (WTMDs). Tests were performed on four implanted pacemakers with a saline phantom and correlated to a newly developed test method performed "in air" (without the phantom). Comparison of the simulator thresholds with tests performed in real WTMDs showed that the simulator is able to mimic the pacemaker interference. The interference thresholds found in the simulator indicate that pulsed magnetic fields are more likely to cause interference in pacemakers than sinusoidal fields. The security system simulator will help biomedical engineers, manufacturers of medical devices, and manufacturers of security systems to identify incompatible combinations of WTMDs and AIMDs early in the development stage.

  20. Automatic grid refinement criterion for lattice Boltzmann method


    Lagrava, Daniel; Malaspinas, Orestis; Latt, Jonas; Chopard, Bastien


    In all kinds of engineering problems, and in particular in methods for computational fluid dynamics based on regular grids, local grid refinement is of crucial importance. To save on computational expense, many applications require to resolve a wide range of scales present in a numerical simulation by locally adding more mesh points. In general, the need for a higher (or a lower) resolution is not known a priori, and it is therefore difficult to locate areas for which local grid refinement is...

  1. Development of Applicable Test Scenario by the Grid Simulator of a Functional Test Bench

    DEFF Research Database (Denmark)

    Farajzadehbibalan, Saber


    In this thesis, a data-driven testing procedure for wind turbine generators is developed. The procedure generates a data set for a hardware-in-the-loop testing setup at a test facility. The goal is to shorten validation process, prevent damage from highly dangerous grid tests, and conduct differe...

  2. Conditioning geostatistical simulations of a bedrock fluvial aquifer using single well pumping tests (United States)

    Niazi, A.; Bentley, L. R.; Hayashi, M.


    Geostatistical simulation is a powerful tool to explore the uncertainty associated with heterogeneity in groundwater and reservoir studies. Nonetheless, conditioning simulations merely with lithological information does not utilize all of the available information and so some workers additionally condition simulations with flow data. In this study, we introduce an approach to condition geostatistical simulations of the Paskapoo Formation, which is a paleo-fluvial system consisting of sandstone channels embedded in mudstone. The conditioning data consist of two-hour single well pumping tests extracted from the public water well database in Alberta, Canada. In this approach, lithologic models of an entire watershed are simulated and conditioned with hard lithological data using transition probability geostatistics (TPROGS). Then, a segment of the simulation around a pumping well was used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone were then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method (PPM) and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each pumping well that has pumping test data. The method constrains the lithological simulations and provides estimates of hydraulic conductivity and specific storage that are consistent with the pumping test data. Eventually, the simulations will be combined in watershed scale groundwater models.

  3. Arcing test on an aged grouted solar cell coupon with a realistic flashover simulator


    Siguier, J.M.; Inguimbert, V.; Murat, Gaétan; Payan, D.; Balcon, N.


    International audience; We have performed arcing tests on an aged grouted solar cell coupon provided by KIT (JAPAN) under NEDO grant. Aging is simulated by electrons, protons and UV irradiations combined with thermal cycling, corresponding to 10 years in geostationary orbit (GEO). Arcing tests are performed with a European standard setup implemented with two different flashover simulators. Instead of using a large capacitance corresponding to the missing solar panel surface, we have implement...

  4. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection (United States)

    Packard, Edward


    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated

  5. A hardware-in-the-loop simulation platform for prototyping and testing of wind generator controllers

    Energy Technology Data Exchange (ETDEWEB)

    Paquin, J.N.; Dufour, C.; Belanger, J. [OPAL-RT Technologies Inc., Montreal, PQ (Canada)


    Engineers from different specialized fields need to be involved in meeting the growing demand for integrated renewable energy sources into existing power grids. The integration of distributed generation (DG) sources significantly changes the characteristics of an entire network and requires analysis of power quality, transient response to fault occurrences, protection coordination studies and controller interaction studies. Power electronic converters are a considerable challenge. Accurately simulating fast switching devices requires the use of very small time steps to solve the system's equations. Off-line simulation is often used in the field. However, it is time consuming if no precision compromise has been made on models. In addition, off-line simulation tools do not offer the wide range of possibilities available with state-of-the-art distributed real-time simulators that combine the efforts of control engineers and specialists from wind turbine manufacturers, who need to test their controllers using hardware-in-the-loop (HIL), together with those of network planning engineers from public utilities, who will conduct interconnection, interaction and protection studies. This paper focused on the prototyping and testing of DG controllers using hardware-in-the-loop simulation. The model was described and consisted of a 10-turbine wind farm connected to a single feeder, simulated using an eMEGAsim real-time simulator equipped with 8-processor cores. One of the wind turbines was controlled using an externally emulated controller. It was modeled and simulated using a dual-processor core real-time simulator, which interacted with the plant model via analog and fast digital inputs and outputs. The effectiveness of the technology was demonstrated by comparing fully numerical simulation results with an HIL-connected DFIG controller simulation. The sampling effect of the digital simulator was correctly compensated for. The simulator could be driven directly by real

  6. Hardware in the loop simulation test platform of fuel cell backup system

    Directory of Open Access Journals (Sweden)

    Ma Tiancai


    Full Text Available Based on an analysis of voltage mechanistic model, a real-time simulation model of the proton exchange membrane (PEM fuel cell backup system is developed, and verified by the measurable experiment data. The method of online parameters identification for the model is also improved. Based on the software LabVIEW/VeriStand real-time environment and the PXI Express hardware system, the PEM fuel cell system controller hardware in the loop (HIL simulation plat-form is established. Controller simulation test results showed the accuracy of HIL simulation platform.

  7. The effects of pen partitions and thermal pig simulators on airflow in a livestock test room

    DEFF Research Database (Denmark)

    Bjerg, B.; Svidt, Kjeld; Zhang, G.


    partitions which divided the room into four equal-sized pens. The guiding plates beneath the ceiling were efficient in creating two-dimensional how in the occupied zone, but they increased the differences between measured and simulated air velocity close to the ceiling and close to the floor. Both...... measurements and CFD simulations showed that the introduction of pen partitions and thermal pig simulators reduced the air velocities in the occupied zone of the test room. Detailed geometric modelling of the animals might often be unnecessary for simulation of airflow in livestock rooms. This will especially...

  8. Numerical Simulations of the Kolsky Compression Bar Test

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The Kolsky compression bar, or split Hopkinson pressure bar (SHPB), is an ex- perimental apparatus used to obtain the stress-strain response of material specimens at strain rates in the order of 10 2 to 10 4 1/s. Its operation and associated data re- duction are based on principles of one-dimensional wave propagation in rods. Second order effects such as indentation of the bars by the specimen and wave dispersion in the bars, however, can significantly affect aspects of the measured material response. Finite element models of the experimental apparatus were used here to demonstrate these two effects. A procedure proposed by Safa and Gary (2010) to account for bar indentation was also evaluated and shown to improve the estimation of the strain in the bars significantly. The use of pulse shapers was also shown to alleviate the effects of wave dispersion. Combining the two can lead to more reliable results in Kolsky compression bar testing.

  9. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development (United States)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.


    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  10. Modeling and simulation for microelectronic packaging assembly manufacturing, reliability and testing

    CERN Document Server

    Liu, Sheng


    Although there is increasing need for modeling and simulation in the IC package design phase, most assembly processes and various reliability tests are still based on the time consuming ""test and try out"" method to obtain the best solution. Modeling and simulation can easily ensure virtual Design of Experiments (DoE) to achieve the optimal solution. This has greatly reduced the cost and production time, especially for new product development. Using modeling and simulation will become increasingly necessary for future advances in 3D package development.  In this book, Liu and Liu allow people

  11. Numerical Ductile Tearing Simulation of Circumferential Cracked Pipe Tests under Dynamic Loading Conditions

    Directory of Open Access Journals (Sweden)

    Hyun-Suk Nam


    Full Text Available This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  12. Numerical ductile tearing simulation of circumferential cracked pipe tests under dynamic loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun Suk; Kim, Ji Soo; Ryu, Ho Wan; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Kim, Jin Weon [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)


    This paper presents a numerical method to simulate ductile tearing in cracked components under high strain rates using finite element damage analysis. The strain rate dependence on tensile properties and multiaxial fracture strain is characterized by the model developed by Johnson and Cook. The damage model is then defined based on the ductility exhaustion concept using the strain rate dependent multiaxial fracture strain concept. The proposed model is applied to simulate previously published three cracked pipe bending test results under two different test speed conditions. Simulated results show overall good agreement with experimental results.

  13. Simulation-supported POD for ultrasonic testing. Recommendations from the PICASSO project

    Energy Technology Data Exchange (ETDEWEB)

    Baron, Hans-Uwe; Henkel, Benjamin [MTU Aero Engines AG, Muenchen (Germany); Bellon, Carsten; Deresch, Andreas [BAM Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)


    The objective of the European project PICASSO (Improved reliability inspection of aeronautic structures by simulation-supported POD) was to build a new and original concept of simulation-supported Probability of Detection (POD) curves based on Non Destructive Testing simulations. This new methodology is based on the replacement of some of the experimental data with simulation results to obtain accurate and reliable POD curves with significantly less personnel and material costs. The present paper presents the main results of the PICASSO project for ultrasonic testing and addresses the most crucial aspects of the new approach, e.g. the definition of the noise level, the validation of the modeling tools, the combination of experimental and numerical data, and the specification of the uncertainty parameters and their statistical distribution. From the results recommendations for the practical use of simulation-supported POD curves are given.

  14. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    Energy Technology Data Exchange (ETDEWEB)

    Tuncay, K.; Romer, S.; Ortoleva, P. [Indiana Univ., Bloomington, IN (United States); Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States)


    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  15. Cognitive test performance following exposure to noise in an open-office simulation study

    DEFF Research Database (Denmark)

    Lund, Søren Peter; Kristiansen, Jesper; Persson, Roger

    participated completed two counter balanced experimental sessions, one with exposure to simulation of office noise (Leq=55 dB(A)) and one without noise (Leq=50 dB(A)). To simulate a workday, each session lasted about 7 hours, where the participants engaged in different computerised work tasks. Before and after......Objective: Noise in open-plan offices may increase mental fatigue of the employees at the end of the day. Measurements: 225 employees completed a screening questionnaire. Of these, 50 persons (33 females) who normally worked in open-plan offices agreed to participate in the experiment. All who...... each simulated workday, the participants performed different tests, including Choice Reaction Time (CRT) test, Sustained Attention to Response Task (SART) test, and a Two-Back Task (TBT) test. Results: Working in noise did not affect the number of correct trials in the cognitive test after work. Yet...

  16. Simulation and Design of High-Speed Hydraulic Velocity Generator in Shock Test Machine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyeong; Shul, Chang Won; Kim, Yoon Jae; Yang, Myung Seog [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Gyu Sub [RMS Technology Corp., Seoul (Korea, Republic of)


    Mechanical and electrical devices in various forms are used in many different fields. These can be exposed to external environmental factors such as shock. Therefore, a shock test machine is commonly used to test these devices and evaluate their shock resistance. In this test, the break-down or permanent deformation and malfunction of inner parts due to a high stress or acceleration can be evaluated. As part of a shock test machine, a velocity generator is needed to create shocks between objects. In this study, a hydraulic velocity generator was conceptually designed and an AMESim model was developed to simulate the velocity under different conditions. Simulation results using this model were compared with the test results from a reduced-size velocity generator, and we designed a velocity generator that fits the target payload and velocity using the simulation results.

  17. Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.


    The test suite represents a set of cases applying the new Building Energy Simulation Test for Existing Homes (BESTEST-EX) Methodology developed by NREL. (Judkoff et al. 2010a). The NREL team developed the test cases in consultation with the home retrofit industry (BESTEST-EX Working Group 2009), and adjusted the test specifications in accordance with information supplied by a participant with access to large utility bill datasets (Blasnik 2009).

  18. Proficiency test for gamma spectroscopic analysis with a simulated fission product reference spectrum. (United States)

    Karhu, P; De Geer, L-E; McWilliams, E; Plenteda, R; Werzi, R


    Within the proficiency test programme for the radionuclide laboratories supporting the verification of the Comprehensive Nuclear-Test-Ban Treaty, a simulated gamma spectrum with the characteristics of an atmospheric nuclear test was used as reference material. The spectrum was produced by the MCNP-based Virtual Gamma Spectroscopy Laboratory (VGSL), using analysis results of a historical measurement of nuclear weapons debris as input. The method was found suitable for a proficiency test assessing laboratories' gamma spectroscopic analysis.

  19. Conditioning geostatistical simulations of a heterogeneous paleo-fluvial bedrock aquifer using lithologs and pumping tests (United States)

    Niazi, A.; Bentley, L. R.; Hayashi, M.


    Geostatistical simulations are used to construct heterogeneous aquifer models. Optimally, such simulations should be conditioned with both lithologic and hydraulic data. We introduce an approach to condition lithologic geostatistical simulations of a paleo-fluvial bedrock aquifer consisting of relatively high permeable sandstone channels embedded in relatively low permeable mudstone using hydraulic data. The hydraulic data consist of two-hour single well pumping tests extracted from the public water well database for a 250-km2 watershed in Alberta, Canada. First, lithologic models of the entire watershed are simulated and conditioned with hard lithological data using transition probability - Markov chain geostatistics (TPROGS). Then, a segment of the simulation around a pumping well is used to populate a flow model (FEFLOW) with either sand or mudstone. The values of the hydraulic conductivity and specific storage of sand and mudstone are then adjusted to minimize the difference between simulated and actual pumping test data using the parameter estimation program PEST. If the simulated pumping test data do not adequately match the measured data, the lithologic model is updated by locally deforming the lithology distribution using the probability perturbation method and the model parameters are again updated with PEST. This procedure is repeated until the simulated and measured data agree within a pre-determined tolerance. The procedure is repeated for each well that has pumping test data. The method creates a local groundwater model that honors both the lithologic model and pumping test data and provides estimates of hydraulic conductivity and specific storage. Eventually, the simulations will be integrated into a watershed-scale groundwater model.

  20. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.


    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  1. Fat Tail Model for Simulating Test Systems in Multiperiod Unit Commitment

    Directory of Open Access Journals (Sweden)

    J. A. Marmolejo


    Full Text Available This paper describes the use of Chambers-Mallows-Stuck method for simulating stable random variables in the generation of test systems for economic analysis in power systems. A study that focused on generating test electrical systems through fat tail model for unit commitment problem in electrical power systems is presented. Usually, the instances of test systems in Unit Commitment are generated using normal distribution, but in this work, simulations data are based on a new method. For simulating, we used three original systems to obtain the demand behavior and thermal production costs. The estimation of stable parameters for the simulation of stable random variables was based on three generally accepted methods: (a regression, (b quantiles, and (c maximum likelihood, choosing one that has the best fit of the tails of the distribution. Numerical results illustrate the applicability of the proposed method by solving several unit commitment problems.



  3. Co-Simulation of Building Energy and Control Systems with the Building Controls Virtual Test Bed

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael


    This article describes the implementation of the Building Controls Virtual Test Bed (BCVTB). The BCVTB is a software environment that allows connecting different simulation programs to exchange data during the time integration, and that allows conducting hardware in the loop simulation. The software architecture is a modular design based on Ptolemy II, a software environment for design and analysis of heterogeneous systems. Ptolemy II provides a graphical model building environment, synchronizes the exchanged data and visualizes the system evolution during run-time. The BCVTB provides additions to Ptolemy II that allow the run-time coupling of different simulation programs for data exchange, including EnergyPlus, MATLAB, Simulink and the Modelica modelling and simulation environment Dymola. The additions also allow executing system commands, such as a script that executes a Radiance simulation. In this article, the software architecture is presented and the mathematical model used to implement the co-simulation is discussed. The simulation program interface that the BCVTB provides is explained. The article concludes by presenting applications in which different state of the art simulation programs are linked for run-time data exchange. This link allows the use of the simulation program that is best suited for the particular problem to model building heat transfer, HVAC system dynamics and control algorithms, and to compute a solution to the coupled problem using co-simulation.

  4. Deposition Velocities of Non-Newtonian Slurries in Pipelines: Complex Simulant Testing

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Bonebrake, Michael L.; Casella, Andrew M.; Johnson, Michael D.; Toth, James J.; Adkins, Harold E.; Chun, Jaehun; Denslow, Kayte M.; Luna, Maria; Tingey, Joel M.


    One of the concerns expressed by the External Flowsheet Review Team (EFRT) is about the potential for pipe plugging at the Waste Treatment and Immobilization Plant (WTP). Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, deposition-velocity tests were performed on several physical simulants to determine whether the design approach is conservative. Deposition velocity is defined as the velocity below which particles begin to deposit to form a moving bed of particles on the bottom of a straight horizontal pipe during slurry-transport operations. The deposition velocity depends on the system geometry and the physical properties of the particles and fluid. An experimental program was implemented to test the stability-map concepts presented in WTP-RPT-175 Rev. 01. Two types of simulant were tested. The first type of simulant was similar to the glass-bead simulants discussed in WTP-RPT-175 Rev. 0 ; it consists of glass beads with a nominal particle size of 150 µm in a kaolin/water slurry. The initial simulant was prepared at a target yield stress of approximately 30 Pa. The yield stress was then reduced, stepwise, via dilution or rheological modifiers, ultimately to a level of <1 Pa. At each yield-stress step, deposition-velocity testing was performed. Testing over this range of yield-stress bounds the expected rheological operating window of the WTP and allows the results to be compared to stability-map predictions for this system. The second simulant was a precipitated hydroxide that simulates HLW pretreated sludge from Hanford waste tank AZ-101. Testing was performed in a manner similar to that for the first simulant over a wide range of yield stresses; however, an additional test of net-positive suction-head required (NPSHR

  5. Refined mapping of loss of heterozygosity in Chinese sporadic ...

    African Journals Online (AJOL)



    . Genemapper3.2 software was used for LOH (Loss of. Heterozygosity) scanning and analysis. Comparison between LOH frequency and clinicopathological factors was performed by Fisher's exact test. 26 refined regions were ...

  6. Redução, refinamento e substituição do uso de animais em estudos toxicológicos: uma abordagem atual Reduction, refinement and replacement of animal use in toxicity testing: an overview

    Directory of Open Access Journals (Sweden)

    Karen Cristine Ceroni Cazarin


    Full Text Available A avaliação da toxicidade de uma substância é realizada com o objetivo de predizer os efeitos nocivos que a mesma poderá desencadear quando da exposição humana pelas diversas vias. Para cumprir este propósito, o modelo animal é o mais utilizado nos estudos toxicológicos e requerido nos processos investigativos. Entretanto, a utilização de animais na pesquisa tem sido razão de diversas discussões em função do grande número necessário e do sofrimento causado, principalmente em relação aos estudos de toxicidade aguda. Existe uma tendência mundial para reavaliar a utilização de animais nos experimentos, concretizada a partir de um programa denominado de 3Rs (Reduction, Refinement, Replacement, que objetiva além de diminuir o número de animais, minimizar a dor e o desconforto e buscar alternativas para a substituição dos testes in vivo. Diversas metodologias alternativas já foram implantadas, sendo este um processo complexo que abrange desde o seu desenvolvimento até sua aceitação regulatória e adoção por diversas organizações. Sendo assim, o presente trabalho apresenta abordagem atualizada do Programa 3Rs, com ênfase na sua evolução histórica e nos processos de implantação e validação de métodos alternativos, principalmente aplicados no contexto da avaliação da toxicidade, enfatizando sua importância e utilidade frente à tendência global de harmonização.Toxicity assessment is the process of predicting the adverse effects that may be caused to an organism by exposuring it to a given chemical and, for regulation purposes, the most used model in toxicity testing is the animal. However, in today's society the use of animals has become a subject of much public health due to the large number of animals used as well as the pain and distress caused, mainly related to acute toxicity testing. The concept of the "Three Rs" - reduction, refinement, and replacement of animal use - emerged as a mean of removing

  7. Driving simulator test results Deliverable no D6.3. Final draft

    NARCIS (Netherlands)

    Weiland, J.; Mattes, S.; Kuhn, F.; Gelau, Ch.; Schindhelm, R.; Hoedemaeker, D.D.M.


    Deliverable 6.3 reports the procedure and results from a driving simulator study. This study was carried out to test the efficiency of the principles of the in-vehicle information manager, which was developed within the Comunicar project. Thirty-six subjects were tested in a fixed-base driving

  8. Introduction. [physiological effects in long term manned space flight simulation tests (United States)

    Johnston, R. S.


    The objective of the Skylab medical experiment altitude test was to provide a nearly full scale simulation of a 56-day Skylab mission for studying physiological changes produced in man by the long term exposure to space conditions. Evaluated in the altitude chamber tests were human cardiovascular/hemodynamic responses, musculoskeletal/metabolic effects, endocrine/electrode factors, and neurophysiological indices.


    NARCIS (Netherlands)



    The Simulated Social Interaction Test (SSIT) was translated and adjusted for use on a population of Dutch males and females. Seventy-four social phobic patients were assessed with the SSIT, a conversation test, and an interview with an independent observer. Results show that the SSIT is a relatively

  10. Simulation of the Test Method "L-Box" for Self-Compacting Concrete

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm; Szabo, Peter; Geiker, Mette Rica


    Both filling and passing ability are important properties to be considered for self-compacting concrete. This paper presents simulations of the L-box test and corresponding experiments. The assumption of a continuum mechanical approach, where the fluid rheology is described by the Bingham model......, is tested....

  11. Testing the Intervention Effect in Single-Case Experiments: A Monte Carlo Simulation Study (United States)

    Heyvaert, Mieke; Moeyaert, Mariola; Verkempynck, Paul; Van den Noortgate, Wim; Vervloet, Marlies; Ugille, Maaike; Onghena, Patrick


    This article reports on a Monte Carlo simulation study, evaluating two approaches for testing the intervention effect in replicated randomized AB designs: two-level hierarchical linear modeling (HLM) and using the additive method to combine randomization test "p" values (RTcombiP). Four factors were manipulated: mean intervention effect,…

  12. ENLUB - 12 Months Technical Report WP3: Development of simulative tests

    DEFF Research Database (Denmark)

    Zhang, Wenqi

    A draw bead test has been developed at the Department of Manufacturing Engineering, The Technical University of Denmark. The purpose of the test equipment is to simulate an actual situation in industry where draw beads are applied to constrain movement of sheet material particular in stretch...... forming operation of non-cylindrical parts....

  13. Simulative Testing of Friction and Lubrication in Cold Forging of Steel and Aluminum

    DEFF Research Database (Denmark)

    Ceron, Ermanno; Bay, Niels; Aida, Tetsuo


    A new, simulative test of friction and lubrication in cold forging is developed by the authors. The test is based on a backward can extrusion process in which the workpiece rotates relatively to the conical punch. An analytical model is presented determining the friction stress from the measured ...

  14. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft (United States)

    Jackson, Karen E.; Fasanella, Edwin L.


    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  15. Characterization of a Power Electronic Grid Simulator for Wind Turbine Generator Compliance Testing

    DEFF Research Database (Denmark)

    Glasdam, Jakob Bærholm; Gevorgian, V.; Wallen, R.


    This paper presents the commissioning results and testing capabilities of a multi-megawatt power electronic grid simulator situated in National Renewable Energy Laboratory’s (NREL’s) new testing facility. The commissioning is done using a commercial type 4 multi-megawatt sized wind turbine...... generator (WTG) installed in NREL’s new 5 MW dynamometer and a kilowatt sized type 1 WTG connected to the existing 2.5 MW dynamometer at NREL. The paper demonstrates the outstanding testing capability of the grid simulator and its application in the grid code compliance evaluation of WTGs including balanced...

  16. Adoption of Test Driven Development and Continuous Integration for the Development of the Trick Simulation Toolkit (United States)

    Penn, John M.


    This paper describes the adoption of a Test Driven Development approach and a Continuous Integration System in the development of the Trick Simulation Toolkit, a generic simulation development environment for creating high fidelity training and engineering simulations at the NASA/Johnson Space Center and many other NASA facilities. It describes what was learned and the significant benefits seen, such as fast, thorough, and clear test feedback every time code is checked-in to the code repository. It also describes a system that encourages development of code that is much more flexible, maintainable, and reliable. The Trick Simulation Toolkit development environment provides a common architecture for user-defined simulations. Trick builds executable simulations using user-supplied simulation-definition files (S_define) and user supplied "model code". For each Trick-based simulation, Trick automatically provides job scheduling, checkpoint / restore, data-recording, interactive variable manipulation (variable server), and an input-processor. Also included are tools for plotting recorded data and various other supporting tools and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX. Prior to adopting this new development approach, Trick testing consisted primarily of running a few large simulations, with the hope that their complexity and scale would exercise most of Trick's code and expose any recently introduced bugs. Unsurprising, this approach yielded inconsistent results. It was obvious that a more systematic, thorough approach was required. After seeing examples of some Java-based projects that used the JUnit test framework, similar test frameworks for C and C++ were sought. Several were found, all clearly inspired by JUnit. Googletest, a freely available Open source testing framework, was selected as the most appropriate and capable. The new approach was implemented while rewriting the Trick memory management component, to eliminate a

  17. Crash Simulation of a Boeing 737 Fuselage Section Vertical Drop Test (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Yvonne T.; Frings, Gary; Vu, Tong


    A 30-ft/s vertical drop test of a fuselage section of a Boeing 737 aircraft was conducted in October of 1999 at the FAA Technical Center in Atlantic City, NJ. This test was performed to evaluate the structural integrity of a conformable auxiliary fuel tank mounted beneath the floor and to determine its effect on the impact response of the airframe structure and the occupants. The test data were used to compare with a finite element simulation of the fuselage structure and to gain a better understanding of the impact physics through analytical/experimental correlation. To perform this simulation, a full-scale 3-dimensional finite element model of the fuselage section was developed using the explicit, nonlinear transient-dynamic finite element code, MSC.Dytran. The emphasis of the simulation was to predict the structural deformation and floor-level acceleration responses obtained from the drop test of the B737 fuselage section with the auxiliary fuel tank.

  18. A Study of Mars Dust Environment Simulation at NASA Johnson Space Center Energy Systems Test Area Resource Conversion Test Facility (United States)

    Chen, Yuan-Liang Albert


    The dust environment on Mars is planned to be simulated in a 20 foot thermal-vacuum chamber at the Johnson Space Center, Energy Systems Test Area Resource Conversion Test Facility in Houston, Texas. This vacuum chamber will be used to perform tests and study the interactions between the dust in Martian air and ISPP hardware. This project is to research, theorize, quantify, and document the Mars dust/wind environment needed for the 20 foot simulation chamber. This simulation work is to support the safety, endurance, and cost reduction of the hardware for the future missions. The Martian dust environment conditions is discussed. Two issues of Martian dust, (1) Dust Contamination related hazards, and (2) Dust Charging caused electrical hazards, are of our interest. The different methods of dust particles measurement are given. The design trade off and feasibility were studied. A glass bell jar system is used to evaluate various concepts for the Mars dust/wind environment simulation. It was observed that the external dust source injection is the best method to introduce the dust into the simulation system. The dust concentration of 30 Mg/M3 should be employed for preparing for the worst possible Martian atmosphere condition in the future. Two approaches thermal-panel shroud for the hardware conditioning are discussed. It is suggested the wind tunnel approach be used to study the dust charging characteristics then to be apply to the close-system cyclone approach. For the operation cost reduction purpose, a dehumidified ambient air could be used to replace the expensive CO2 mixture for some tests.

  19. Development of laboratory test methods to replace the simulated high-temperature grout fluidity test. (United States)


    This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...

  20. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development (United States)

    Putnam, G. C.


    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  1. SITA version 0. A simulation and code testing assistant for TOUGH2 and MARNIE

    Energy Technology Data Exchange (ETDEWEB)

    Seher, Holger; Navarro, Martin


    High quality standards have to be met by those numerical codes that are applied in long-term safety assessments for deep geological repositories for radioactive waste. The software environment SITA (''a simulation and code testing assistant for TOUGH2 and MARNIE'') has been developed by GRS in order to perform automated regression testing for the flow and transport simulators TOUGH2 and MARNIE. GRS uses the codes TOUGH2 and MARNIE in order to assess the performance of deep geological repositories for radioactive waste. With SITA, simulation results of TOUGH2 and MARNIE can be compared to analytical solutions and simulations results of other code versions. SITA uses data interfaces to operate with codes whose input and output depends on the code version. The present report is part of a wider GRS programme to assure and improve the quality of TOUGH2 and MARNIE. It addresses users as well as administrators of SITA.

  2. A cluster refinement algorithm for motif discovery. (United States)

    Li, Gang; Chan, Tak-Ming; Leung, Kwong-Sak; Lee, Kin-Hong


    Finding Transcription Factor Binding Sites, i.e., motif discovery, is crucial for understanding the gene regulatory relationship. Motifs are weakly conserved and motif discovery is an NP-hard problem. We propose a new approach called Cluster Refinement Algorithm for Motif Discovery (CRMD). CRMD employs a flexible statistical motif model allowing a variable number of motifs and motif instances. CRMD first uses a novel entropy-based clustering to find complete and good starting candidate motifs from the DNA sequences. CRMD then employs an effective greedy refinement to search for optimal motifs from the candidate motifs. The refinement is fast, and it changes the number of motif instances based on the adaptive thresholds. The performance of CRMD is further enhanced if the problem has one occurrence of motif instance per sequence. Using an appropriate similarity test of motifs, CRMD is also able to find multiple motifs. CRMD has been tested extensively on synthetic and real data sets. The experimental results verify that CRMD usually outperforms four other state-of-the-art algorithms in terms of the qualities of the solutions with competitive computing time. It finds a good balance between finding true motif instances and screening false motif instances, and is robust on problems of various levels of difficulty.

  3. Zone refining of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Michael S. [Univ. of Idaho, Moscow, ID (United States)


    The zone refining process was applied to Pu metal containing known amounts of impurities. Rod specimens of plutonium metal were melted into and contained in tantalum boats, each of which was passed horizontally through a three-turn, high-frequency coil in such a manner as to cause a narrow molten zone to pass through the Pu metal rod 10 times. The impurity elements Co, Cr, Fe, Ni, Np, U were found to move in the same direction as the molten zone as predicted by binary phase diagrams. The elements Al, Am, and Ga moved in the opposite direction of the molten zone as predicted by binary phase diagrams. As the impurity alloy was zone refined, {delta}-phase plutonium metal crystals were produced. The first few zone refining passes were more effective than each later pass because an oxide layer formed on the rod surface. There was no clear evidence of better impurity movement at the slower zone refining speed. Also, constant or variable coil power appeared to have no effect on impurity movement during a single run (10 passes). This experiment was the first step to developing a zone refining process for plutonium metal.

  4. Cyber-Physical Energy Systems Modeling, Test Specification, and Co-Simulation Based Testing

    DEFF Research Database (Denmark)

    van der Meer, A. A.; Palensky, P.; Heussen, Kai


    The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is require....... The presented method addresses most modeling and specification challenges in cyber-physical energy systems and is extensible for future additions such as uncertainty quantification.......The gradual deployment of intelligent and coordinated devices in the electrical power system needs careful investigation of the interactions between the various domains involved. Especially due to the coupling between ICT and power systems a holistic approach for testing and validating is required....... Taking existing (quasi-) standardised smart grid system and test specification methods as a starting point, we are developing a holistic testing and validation approach that allows a very flexible way of assessing the system level aspects by various types of experiments (including virtual, real...

  5. Distributed successive refinement of multiview images using broadcast advantage. (United States)

    Chen, Zichong; Barrenetxea, Guillermo; Vetterli, Martin


    In environmental monitoring applications, having multiple cameras focus on common scenery increases robustness of the system. To save energy based on user demand, successive refinement image coding is important, as it allows us to progressively request better image quality. By exploiting the broadcast nature and correlation between multiview images, we investigate a two-camera setup and propose a novel two-encoder successive refinement scheme which imitates a ping-pong game. For the bivariate Gaussian case, we prove that this scheme is successively refinable on the theoretical rate-distortion limit of distributed coding (Wagner surface) under arbitrary settings. For stereo-view images, we develop a practical successive refinement coding algorithm using the same idea. The simulation results show that this scheme operates close to the distributed coding bound.

  6. Simulations and cold-test results of a prototype plane wave transformer linac structure

    Directory of Open Access Journals (Sweden)

    Arvind Kumar


    Full Text Available We have built a 4-cell prototype plane wave transformer (PWT linac structure. We discuss here details of the design and fabrication of the PWT linac structure. We present results from superfish and gdfidl simulations as well as cold tests, which are in good agreement with each other. We also present detailed tolerance maps for the PWT structure. We discuss beam dynamics simulation studies performed using parmela.



    Kuklane, Kalev


    This study investigated if clothing material with reflective properties has an effect on heat gain in pilot, specifically, under solar radiation. Two materials, conventional pilot suit material (Old) and material coated with coldblack® (New, Schoeller Technologies AG, Switzerland) were tested over variety of underwear layers and in a box simulating cockpit. A hot plate was used to measure textile combinations’ insulation. Under the solar radiation simulation with a Thorn lamp (841 W/m2) a wat...

  8. Simulant Agent Resistance Test Manikin (SMARTMAN) Testing of Protective Mask Systems (United States)


    miniature , automatic, continuous air-monitoring system, OI Analytical, division of OI Corporation, College Station, Texas); Miniature Infrared...testing be- gins. All hazardous waste generated by the execution of the test plan will be disposed of IAW federal, state, and local rules Adverse environmental conditioning may include exposure to combi- nations of any or all of the following: ozone , temperature shock, high

  9. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron


    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  10. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests

    Energy Technology Data Exchange (ETDEWEB)

    Izzuddin, Nur; Sunarsih,; Priyanto, Agoes [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)


    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel’s speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel’s speed to obtain better characteristics and hence optimize the fuel saving rate.

  11. Mathematical model of marine diesel engine simulator for a new methodology of self propulsion tests (United States)

    Izzuddin, Nur; Sunarsih, Priyanto, Agoes


    As a vessel operates in the open seas, a marine diesel engine simulator whose engine rotation is controlled to transmit through propeller shaft is a new methodology for the self propulsion tests to track the fuel saving in a real time. Considering the circumstance, this paper presents the real time of marine diesel engine simulator system to track the real performance of a ship through a computer-simulated model. A mathematical model of marine diesel engine and the propeller are used in the simulation to estimate fuel rate, engine rotating speed, thrust and torque of the propeller thus achieve the target vessel's speed. The input and output are a real time control system of fuel saving rate and propeller rotating speed representing the marine diesel engine characteristics. The self-propulsion tests in calm waters were conducted using a vessel model to validate the marine diesel engine simulator. The simulator then was used to evaluate the fuel saving by employing a new mathematical model of turbochargers for the marine diesel engine simulator. The control system developed will be beneficial for users as to analyze different condition of vessel's speed to obtain better characteristics and hence optimize the fuel saving rate.

  12. Mesh refinement study and experimental validation for stretch bending of sheet metals (United States)

    Raupach, M.; Kreissl, S.; Vuaille, L.; Möller, T.; Friebe, H.; Volk, W.


    For sheet metal parts with small radii and large bending angles, the sheet metal forming simulation reaches their application limits. Alternatives are complex shell formulations and volume elements. For volume elements, the necessary number of elements over the thickness is important. Valid values are not available depending on discrete radii. Therefore in this work, a convergence study is performed using the example of an angular stretch bend test with a radius to thickness ratio of 1. For various states of mesh refinement, simulations are performed, various results are presented, analysed and discussed with regard to convergence behaviour to the necessary number of elements in thickness direction. Recommendations for suitable validation variables are derived. Based on the refinement study, a simulation model for an experimental validation is developed. The experiments are carried out in a sheet metal forming machine. Experimental angular stretch bend test with a punch radius of 1 mm are performed until failure and the strain distribution on the top side of the sheet is measured. Finally, simulation and experiments are compared based on the surface strain.

  13. Simulation Test System of Non-Contact D-dot Voltage Transformer (United States)

    Yang, Jie; Wang, Jingang; Luo, Ruixi; Gao, Can; Songnong, Li; Kongjun, Zhou


    The development trend of future voltage transformer in smart grid is non-contact measurement, miniaturization and intellectualization. This paper proposes one simulation test system of non-contact D-dot transformer for voltage measurement. This simulation test system consists of D-dot transformer, signal processing circuit and ground PC port. D-dot transformer realizes the indirect voltage measurement by measuring the change rate of electric displacement vector, a non-contact means (He et al. 2004, Principles and experiments of voltage transformer based on self-integrating D-dot probe. Proc CSEE 2014;15:2445-51). Specific to the characteristics of D-dot transformer signals, signal processing circuits with strong resistance to interference and distortion-free amplified sensor output signal are designed. WIFI wireless network is used to transmit the voltage detection to LabVIEW-based ground collection port and LabVIEW technology is adopted for signal reception, data processing and analysis and other functions. Finally, a test platform is established to simulate the performance of the whole test system of single-phase voltage transformer. Test results indicate that this voltage transformer has sound real-time performance, high accuracy and fast response speed and the simulation test system is stable and reliable and can be a new prototype of voltage transformers.

  14. A simulator for oscillometric blood-pressure signals to test automated noninvasive sphygmomanometers (United States)

    Riedel, W.; Mieke, S.; Seemann, R.; Ittermann, B.


    A device was developed allowing to generate simulated human blood pressure signals for the purpose of testing the performance of automated noninvasive sphygmomanometers. The apparatus reproducibly generates blood-pressure oscillations synthesized from prerecorded measurements on human subjects. These real-life data allow for a much better evaluation of the accuracy of blood-pressure measurements than the existing simulators using artificial and thus less realistic waveforms. To assess the performance of a given sphygmomanometer under both stable and varying conditions, generated signals can be repeated in their original shape or distorted by well-defined artifacts. In comparison to clinical tests, the procedural influences on the performance testing of sphygmomanometers are largely reduced when the simulator is used.

  15. Properties important to mixing and simulant recommendations for WTP full-scale vessel testing

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Full Scale Vessel Testing (FSVT) is being planned by Bechtel National, Inc., to demonstrate the ability of the standard high solids vessel design (SHSVD) to meet mixing requirements over the range of fluid properties planned for processing in the Pretreatment Facility (PTF) of the Hanford Waste Treatment and Immobilization Plant (WTP). Testing will use simulated waste rather than actual Hanford waste. Therefore, the use of suitable simulants is critical to achieving the goals of the test program. WTP personnel requested the Savannah River National Laboratory (SRNL) to assist with development of simulants for use in FSVT. Among the tasks assigned to SRNL was to develop a list of waste properties that are important to pulse-jet mixer (PJM) performance in WTP vessels with elevated concentrations of solids.

  16. Bauxite Mining and Alumina Refining (United States)

    Frisch, Neale; Olney, David


    Objective: To describe bauxite mining and alumina refining processes and to outline the relevant physical, chemical, biological, ergonomic, and psychosocial health risks. Methods: Review article. Results: The most important risks relate to noise, ergonomics, trauma, and caustic soda splashes of the skin/eyes. Other risks of note relate to fatigue, heat, and solar ultraviolet and for some operations tropical diseases, venomous/dangerous animals, and remote locations. Exposures to bauxite dust, alumina dust, and caustic mist in contemporary best-practice bauxite mining and alumina refining operations have not been demonstrated to be associated with clinically significant decrements in lung function. Exposures to bauxite dust and alumina dust at such operations are also not associated with the incidence of cancer. Conclusions: A range of occupational health risks in bauxite mining and alumina refining require the maintenance of effective control measures. PMID:24806720

  17. Detecting faked psychopathology: a comparison of two tests to detect malingered psychopathology using a simulation design. (United States)

    Sullivan, Karen; King, Joanne


    Malingered psychopathology has the potential to be a costly social problem and there is a need for studies that compare the malingering detection capabilities of tests of psychopathology. This study investigated the capacity of two measures to detect simulated psychopathology. Forty-one first-year psychology students were randomly allocated to experimental groups that included malingering and control conditions. Analogue malingerers were given a financial incentive to simulate believable psychological impairment. Controls received standardised test instructions and the prize incentive, contingent on good effort. In a between-group simulation design, group differences on the Personality Assessment Inventory (PAI) and the revised Symptom Checklist-90 (SCL-90-R) were assessed. Group comparisons revealed elevation of the majority of clinical index scores among malingerers and a consistent pattern of results across tests. Analysis of the test operating characteristics of the malingering indices for these measures revealed superior detection of simulated malingering using the PAI, particularly Rogers' Discriminant Function, although classification accuracy of all malingering indexes was improved when adjusted cut-offs were used. Overall, results from this study demonstrate the vulnerability of the PAI and (SCL-90-R) to simulated psychopathology, but also the capacity of these measures to detect such performance when specific indexes are used. Crown Copyright 2008. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Turbine Powered Simulator Calibration and Testing for Hybrid Wing Body Powered Airframe Integration (United States)

    Shea, Patrick R.; Flamm, Jeffrey D.; Long, Kurtis R.; James, Kevin D.; Tompkins, Daniel M.; Beyar, Michael D.


    Propulsion airframe integration testing on a 5.75% scale hybrid wing body model us- ing turbine powered simulators was completed at the National Full-Scale Aerodynamics Complex 40- by 80-foot test section. Four rear control surface con gurations including a no control surface de ection con guration were tested with the turbine powered simulator units to investigate how the jet exhaust in uenced the control surface performance as re- lated to the resultant forces and moments on the model. Compared to ow-through nacelle testing on the same hybrid wing body model, the control surface e ectiveness was found to increase with the turbine powered simulator units operating. This was true for pitching moment, lift, and drag although pitching moment was the parameter of greatest interest for this project. With the turbine powered simulator units operating, the model pitching moment was seen to increase when compared to the ow-through nacelle con guration indicating that the center elevon and vertical tail control authority increased with the jet exhaust from the turbine powered simulator units.

  19. Testing Basic Competency in Knee Arthroscopy Using a Virtual Reality Simulator

    DEFF Research Database (Denmark)

    Jacobsen, Mads Emil; Andersen, Morten Jon; Hansen, Claus Ol


    BACKGROUND: Diagnostic knee arthroscopy is a common procedure that orthopaedic residents are expected to learn early in their training. Arthroscopy requires a different skill set from traditional open surgery, and many orthopaedic residents feel less prepared for arthroscopic procedures. Virtual...... reality simulation training and testing provide an opportunity to ensure basic competency before proceeding to supervised procedures in patients. METHODS: Twenty-six physicians (thirteen novices and thirteen experienced arthroscopic surgeons) were voluntarily recruited to perform a test consisting of five...... was set at a total z-score of 15.5 points, resulting in two of the novices passing the test and a single experienced surgeon failing the test. CONCLUSIONS: By combining four procedures on a virtual reality arthroscopy simulator, it was possible to create a valid, reliable, and feasible test of basic...

  20. Effect of bundle size on cladding deformation in LOCA simulation tests. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.; Crowley, J.L.; Longest, A.W.


    Two LOCA simulation tests were conducted to investigate the effects of temperature uniformity and radial restraint boundary conditions on Zircaloy cladding deformation. In one of the tests (B-5), boundary conditions typical of a large array were imposed on an inner 4 x 4 square array by two concentric rings of interacting guard fuel pin simulators. In the other test (B-3), the boundary conditions were imposed on a 4 x 4 square array by a non-interacting heated shroud. Test parameters conducive to large deformation were selected in order to favor rod-to-rod interactions. The tests showed that rod-to-rod interactions play an important role in the deformation process.

  1. Testing MODFLOW-LGR for simulating flow around Buried Quaternary valleys - synthetic test cases

    DEFF Research Database (Denmark)

    Vilhelmsen, Troels Norvin; Christensen, Steen

    In Denmark the water supply is entirely based on ground water. In some parts of the country these resources are found in buried quaternary tunnel valleys. Intensive mapping has shown that the valleys typically have a complex internal hydrogeology with multiple cut and ­fill structures. The admini......In Denmark the water supply is entirely based on ground water. In some parts of the country these resources are found in buried quaternary tunnel valleys. Intensive mapping has shown that the valleys typically have a complex internal hydrogeology with multiple cut and ­fill structures....... The administration of groundwater resources has been based on simulations using regional scale groundwater models. However, regional scale models have difficulties with accurately resolving the complex geology of the buried valleys, which bears the risk of poor model predictions of local scale effects of groundwater...

  2. Finite Element Simulation of Three Full-Scale Crash Tests for Cessna 172 Aircraft (United States)

    Mason, Brian H.; Warren, Jerry E., Jr.


    The NASA Emergency Locator Transmitter Survivability and Reliability (ELT-SAR) project was initiated in 2013 to assess the crash performance standards for the next generation of emergency locator transmitter (ELT) systems. Three Cessna 172 aircraft were acquired to perform crash testing at NASA Langley Research Center's Landing and Impact Research Facility. Full-scale crash tests were conducted in the summer of 2015 and each test article was subjected to severe, but survivable, impact conditions including a flare-to-stall during emergency landing, and two controlled-flight-into-terrain scenarios. Full-scale finite element analyses were performed using a commercial explicit solver, ABAQUS. The first test simulated impacting a concrete surface represented analytically by a rigid plane. Tests 2 and 3 simulated impacting a dirt surface represented analytically by an Eulerian grid of brick elements using a Mohr-Coulomb material model. The objective of this paper is to summarize the test and analysis results for the three full-scale crash tests. Simulation models of the airframe which correlate well with the tests are needed for future studies of alternate ELT mounting configurations.

  3. Development and application of a parallel finite volume method for flow simulation on unstructured grids with local refinement; Entwicklung und Anwendung eines parallelen Finite-Volumen-Verfahrens zur Stroemungssimulation auf unstrukturierten Gittern mit lokaler Verfeinerung

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, V.


    A finite vomume method for calculation of steady and unsteady flow on unstructured grids is parallelized by local spatial and time decomposition. In the first case, a parallel variant of the conjugated gradient method with multiple local preconditioning is formulated and analyzed. The method is tested for simple applications (e.g. flow around a cylinder). The second part of the publication describes a direct numerical simulation of turbulent flow around a sphere at a Reynolds number of 5000 (based on flow velocity and sphere diameter). Current and Reynolds-averaged flow fields are discussed. Particular emphasis is placed on coordinate-independent representation of the anisotropy ratios of the Reynolds tensor and dissipation tensor. (orig.) [Deutsch] Ein Finite-Volumen-Verfahren fuer die Berechnung stationaerer und instationaerer Stroemungen auf unstrukturierten Netzen wird durch Gebietszerlegung im Raum und Zeit parallelisiert. Fuer die raeumliche Zerlegung wird eine parallele Variante der konjugierten Gradienten Methode mit mehrfacher, lokaler Vorkonditionierung formuliert und analysiert. Anhand einfacher Anwendungsbeispiele (Zylinderumstroemung, deckelgetriebene Nischenstroemung) wird das entwickelte Gesamtverfahren getestet und seine Effizienz bestimmt. Der zweite Teil der Arbeit beschreibt eine direkte numerische Simulation der turbulenten Kugelumstroemung bei einer Reynolds-Zahl von 5 000 (basierend auf Anstroemgeschwindigkeit und Kugeldurchmesser). In der Ergebnisauswertung werden augenblickliche und Reynolds-gemittelte Stroemungsfelder diskutiert und besonderer Wert auf eine koordinatenunabhaengige Darstellung der Anisotropieverhaeltnisse des Reynolds-Tensors und des Dissipationstensors gelegt. (orig.)

  4. Visualization of Scalar Adaptive Mesh Refinement Data

    Energy Technology Data Exchange (ETDEWEB)

    VACET; Weber, Gunther; Weber, Gunther H.; Beckner, Vince E.; Childs, Hank; Ligocki, Terry J.; Miller, Mark C.; Van Straalen, Brian; Bethel, E. Wes


    Adaptive Mesh Refinement (AMR) is a highly effective computation method for simulations that span a large range of spatiotemporal scales, such as astrophysical simulations, which must accommodate ranges from interstellar to sub-planetary. Most mainstream visualization tools still lack support for AMR grids as a first class data type and AMR code teams use custom built applications for AMR visualization. The Department of Energy's (DOE's) Science Discovery through Advanced Computing (SciDAC) Visualization and Analytics Center for Enabling Technologies (VACET) is currently working on extending VisIt, which is an open source visualization tool that accommodates AMR as a first-class data type. These efforts will bridge the gap between general-purpose visualization applications and highly specialized AMR visual analysis applications. Here, we give an overview of the state of the art in AMR scalar data visualization research.

  5. Test Results from a Simulated High Voltage Lunar Power Transmission Line (United States)

    Birchenough, Arthur; Hervol, David


    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, OH was modified to simulate high voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high frequency AC power to a lunar facility located at a distance.

  6. Test Results From a Simulated High-Voltage Lunar Power Transmission Line (United States)

    Birchenough, Arthur; Hervol, David


    The Alternator Test Unit (ATU) in the Lunar Power System Facility (LPSF) located at the NASA Glenn Research Center (GRC) in Cleveland, Ohio was modified to simulate high-voltage transmission capability. The testbed simulated a 1 km transmission cable length from the ATU to the LPSF using resistors and inductors installed between the distribution transformers. Power factor correction circuitry was used to compensate for the reactance of the distribution system to improve the overall power factor. This test demonstrated that a permanent magnet alternator can successfully provide high-frequency ac power to a lunar facility located at a distance.

  7. Virtual reality myringotomy simulation with real-time deformation: development and validity testing. (United States)

    Ho, Andrew K; Alsaffar, Hussain; Doyle, Philip C; Ladak, Hanif M; Agrawal, Sumit K


    Surgical simulation is becoming an increasingly common training tool in residency programs. The first objective was to implement real-time soft-tissue deformation and cutting into a virtual reality myringotomy simulator. The second objective was to test the various implemented incision algorithms to determine which most accurately represents the tympanic membrane during myringotomy. Descriptive and face-validity testing. A deformable tympanic membrane was developed, and three soft-tissue cutting algorithms were successfully implemented into the virtual reality myringotomy simulator. The algorithms included element removal, direction prediction, and Delaunay cutting. The simulator was stable and capable of running in real time on inexpensive hardware. A face-validity study was then carried out using a validated questionnaire given to eight otolaryngologists and four senior otolaryngology residents. Each participant was given an adaptation period on the simulator, was blinded to the algorithm being used, and was presented the three algorithms in a randomized order. A virtual reality myringotomy simulator with real-time soft-tissue deformation and cutting was successfully developed. The simulator was stable, ran in real time on inexpensive hardware, and incorporated haptic feedback and stereoscopic vision. The Delaunay cutting algorithm was found to be the most realistic algorithm representing the incision during myringotomy (P first virtual reality myringotomy simulator is being developed and now integrates a real-time deformable tympanic membrane that appears to have face validity. Further development and validation studies are necessary before the simulator can be studied with respect to training efficacy and clinical impact. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Multipacting simulation and test results of BNL 704 MHz SRF gun

    Energy Technology Data Exchange (ETDEWEB)

    Xu W.; Belomestnykh, S.; Ben-Zvi, I.; Cullen, C. et al


    The BNL 704MHz SRF gun has a grooved choke joint to support the photo-cathode. Due to the distortion of grooves at the choke joint during the BCP for the choke joint, several multipacting barriers showed up when it was tested with Nb cathode stalk at JLab. We built a setup to use the spare large grain SRF cavity to test and condition the multipacting at BNL with various power sources up to 50kW. The test is carried out in three stages: testing the cavity performance without cathode, testing the cavity with the Nb cathode stalk that was used at Jlab, and testing the cavity with a copper cathode stalk that is based on the design for the SRF gun. This paper summarizes the results of multipacting simulation, and presents the large grain cavity test setup and the test results.

  9. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Oostrom, Martinus [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  10. Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.


    A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.

  11. Simulation of diesel engine emissions on the example of Fiat Panda in the NEDC test (United States)

    Botwinska, Katarzyna; Mruk, Remigiusz; Słoma, Jacek; Tucki, Karol; Zaleski, Mateusz


    Road transport may be deemed a strategic branch of modern economy. Unfortunately, a rapid increase in the number of on-road motor vehicles entails some negative consequences as well, for instance, excessive concentration of exhausts produced by engines which results in deterioration of air quality. EURO emission standards which define acceptable limits for exhaust emissions of power units is an example of an activity performed in attempt to improve air quality. The EURO standard defines permissible amount of exhausts produced by a vehicle. Presently new units are examined through NEDC test. For the purpose of this thesis, a virtual test stand in a form of a computer simulation of a chassis dynamometer was used to simulate emission of a diesel engine (compression-ignition engine) in the NEDC test. Actual parameters of the 1.3 MultiJet engine of the Fiat Panda passenger car of 2014 were applied in the model. The simulation was carried out in the Matlab Simulink environment. The simulation model of the Fiat Panda passenger car enables the designation of the emission waveform for all test stages which corresponds to the values received during an approval test in real-life conditions.

  12. Simulation of diesel engine emissions on the example of Fiat Panda in the NEDC test

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna


    Full Text Available Road transport may be deemed a strategic branch of modern economy. Unfortunately, a rapid increase in the number of on-road motor vehicles entails some negative consequences as well, for instance, excessive concentration of exhausts produced by engines which results in deterioration of air quality. EURO emission standards which define acceptable limits for exhaust emissions of power units is an example of an activity performed in attempt to improve air quality. The EURO standard defines permissible amount of exhausts produced by a vehicle. Presently new units are examined through NEDC test. For the purpose of this thesis, a virtual test stand in a form of a computer simulation of a chassis dynamometer was used to simulate emission of a diesel engine (compression-ignition engine in the NEDC test. Actual parameters of the 1.3 MultiJet engine of the Fiat Panda passenger car of 2014 were applied in the model. The simulation was carried out in the Matlab Simulink environment. The simulation model of the Fiat Panda passenger car enables the designation of the emission waveform for all test stages which corresponds to the values received during an approval test in real-life conditions.

  13. Taurus II Stage Test Simulations: Using Large-Scale CFD Simulations to Provide Critical Insight into Plume Induced Environments During Design (United States)

    Struzenberg, L. L.; West, J. S.


    This paper describes the use of targeted Loci/CHEM CFD simulations to evaluate the effects of a dual-engine first-stage hot-fire test on an evolving integrated launch pad/test article design. This effort was undertaken as a part of the NESC Independent Assessment of the Taurus II Stage Test Series. The underlying conceptual model included development of a series of computational models and simulations to analyze the plume induced environments on the pad, facility structures and test article. A pathfinder simulation was first developed, capable of providing quick-turn around evaluation of plume impingement pressures on the flame deflector. Results from this simulation were available in time to provide data for an ongoing structural assessment of the deflector. The resulting recommendation was available in a timely manner and was incorporated into construction schedule for the new launch stand under construction at Wallops Flight Facility. A series of Reynolds-Averaged Navier-Stokes (RANS) quasi-steady simulations representative of various key elements of the test profile was performed to identify potential concerns with the test configuration and test profile. As required, unsteady Hybrid-RANS/LES simulations were performed, to provide additional insight into critical aspects of the test sequence. Modifications to the test-specific hardware and facility structures thermal protection as well as modifications to the planned hot-fire test profile were implemented based on these simulation results.

  14. Standard Practice for Solar Simulation for Thermal Balance Testing of Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia


    1.1 Purpose: 1.1.1 The primary purpose of this practice is to provide guidance for making adequate thermal balance tests of spacecraft and components where solar simulation has been determined to be the applicable method. Careful adherence to this practice should ensure the adequate simulation of the radiation environment of space for thermal tests of space vehicles. 1.1.2 A corollary purpose is to provide the proper test environment for systems-integration tests of space vehicles. An accurate space-simulation test for thermal balance generally will provide a good environment for operating all electrical and mechanical systems in their various mission modes to determine interferences within the complete system. Although adherence to this practice will provide the correct thermal environment for this type of test, there is no discussion of the extensive electronic equipment and procedures required to support systems-integration testing. 1.2 Nonapplicability—This practice does not apply to or provide inco...

  15. Reactions of epoxide monomers in food simulants used to test plastics for migration. (United States)

    Philo, M R; Damant, A P; Castle, L


    The reactions of four epoxides used as monomers for food contact plastics were studied in the food simulants distilled water, 15% aqueous ethanol, 3% aqueous acetic acid and olive oil. Loss of the parent substance and formation of products was monitored to establish the transformation products to be expected in each simulant following migration testing of plastics. Each epoxide was stable in olive oil but suffered extensive loss in the three aqueous simulants. Reaction half-lives were from < 1 to 10 h in aqueous acetic acid, 25-63 h in distilled water, and 33-87 h in aqueous ethanol simulant. Hydrolysis to the diol was the main reaction pathway. Epoxide ring opening in aqueous ethanol simulant gave the diol and also the diol monoethyl ether. It is concluded that, for aqueous simulants and by implication for most foods, testing plastics against specific migration limits for epoxides is not likely to give reliable results due to their reactivity. The present EC mode of control for these reactive monomers, via compositional limits in food contact plastics, is more practical since the hydrolysis products are less toxic than the parent epoxide.

  16. Conformal refinement of unstructured quadrilateral meshes

    Energy Technology Data Exchange (ETDEWEB)

    Garmella, Rao [Los Alamos National Laboratory


    We present a multilevel adaptive refinement technique for unstructured quadrilateral meshes in which the mesh is kept conformal at all times. This means that the refined mesh, like the original, is formed of only quadrilateral elements that intersect strictly along edges or at vertices, i.e., vertices of one quadrilateral element do not lie in an edge of another quadrilateral. Elements are refined using templates based on 1:3 refinement of edges. We demonstrate that by careful design of the refinement and coarsening strategy, we can maintain high quality elements in the refined mesh. We demonstrate the method on a number of examples with dynamically changing refinement regions.

  17. Refining Nodes and Edges of State Machines

    DEFF Research Database (Denmark)

    Hallerstede, Stefan; Snook, Colin


    State machines are hierarchical automata that are widely used to structure complex behavioural specifications. We develop two notions of refinement of state machines, node refinement and edge refinement. We compare the two notions by means of examples and argue that, by adopting simple convention...... refinement theory and UML-B state machine refinement influences the style of node refinement. Hence we propose a method with direct proof of state machine refinement avoiding the detour via Event-B that is needed by UML-B....

  18. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests (United States)

    Goekcen, Tahir; Skokova, Kristina A.


    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  19. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests (United States)

    Gokcen, Tahir; Skokova, Kristina A.


    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  20. Simulation of Induction Traction Drive with Supercapacitor Energy Storage System Test Bench

    Directory of Open Access Journals (Sweden)

    Stana Girts


    Full Text Available The paper describes the application of supercapacitor energy storage system for induction traction drive test bench that replaces a real electric public transport for performing testing and researches. The suitability and usage of such bench for research purposes is explained and the importance of the development of software mathematical model for performing simulations to be done before physical implementation measures is reasoned. The working principle of the bench and applied components are described. A virtual model of the bench was built and simulations were performed using Matlab/Simulink software. The basic topology of the virtual bench model is described as well. The calculations of this work show the scaling of supercapacitor energy storage system by setting different limits of working voltage range in order to adjust them to test bench parameters, whereas the modelling compares two simulation cases – the application of less supercapacitors and the application of more supercapacitors with the same common rated voltage. The autonomous mode simulations were also performed. Simulation results are analyzed and recommendations for the application of the supercapacitor energy storage system, with respect to initial supercapacitor circuit voltage, are given.

  1. Simulation supported POD for RT test case-concept and modeling (United States)

    Gollwitzer, C.; Bellon, C.; Deresch, A.; Ewert, U.; Jaenisch, G.-R.; Zscherpel, U.; Mistral, Q.


    Within the framework of the European project PICASSO, the radiographic simulator aRTist (analytical Radiographic Testing inspection simulation tool) developed by BAM has been extended for reliability assessment of film and digital radiography. NDT of safety relevant components of aerospace industry requires the proof of probability of detection (POD) of the inspection. Modeling tools can reduce the expense of such extended, time consuming NDT trials, if the result of simulation fits to the experiment. Our analytic simulation tool consists of three modules for the description of the radiation source, the interaction of radiation with test pieces and flaws, and the detection process with special focus on film and digital industrial radiography. It features high processing speed with near-interactive frame rates and a high level of realism. A concept has been developed as well as a software extension for reliability investigations, completed by a user interface for planning automatic simulations with varying parameters and defects. Furthermore, an automatic image analysis procedure is included to evaluate the defect visibility. The radiographic modeling from 3D CAD of aero engine components and quality test samples are compared as a precondition for real trials. This enables the evaluation and optimization of film replacement for application of modern digital equipment for economical NDT and defined POD.

  2. Numerical simulation of failure behavior of granular debris flows based on flume model tests. (United States)

    Zhou, Jian; Li, Ye-xun; Jia, Min-cai; Li, Cui-na


    In this study, the failure behaviors of debris flows were studied by flume model tests with artificial rainfall and numerical simulations (PFC(3D)). Model tests revealed that grain sizes distribution had profound effects on failure mode, and the failure in slope of medium sand started with cracks at crest and took the form of retrogressive toe sliding failure. With the increase of fine particles in soil, the failure mode of the slopes changed to fluidized flow. The discrete element method PFC(3D) can overcome the hypothesis of the traditional continuous medium mechanic and consider the simple characteristics of particle. Thus, a numerical simulations model considering liquid-solid coupled method has been developed to simulate the debris flow. Comparing the experimental results, the numerical simulation result indicated that the failure mode of the failure of medium sand slope was retrogressive toe sliding, and the failure of fine sand slope was fluidized sliding. The simulation result is consistent with the model test and theoretical analysis, and grain sizes distribution caused different failure behavior of granular debris flows. This research should be a guide to explore the theory of debris flow and to improve the prevention and reduction of debris flow.

  3. Testing FlexRay ECUs with a hardware-in-the-loop simulator; Test von FlexRay-Steuergeraeten am Hardware-in-the-Loop Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Stroop, J.; Koehl, S. [dSPACE GmbH, Paderborn (Germany); Peller, M.; Riedesser, P. [BMW AG, Muenchen (Germany)


    To master the data communication of complex and safety relevant systems within future vehicles, the BMW Group prepares the application of FlexRay. The accompanying development process plays an important role for the quality, stability and reliability of those systems. Hardware-in-the-loop simulation and test stands are indispensable constituents and they are an integral part of the validation process. The following contribution describes the technology that is used within the BMW Group in more detail, especially in terms of communication networks with FlexRay. (orig.)

  4. Refining analgesia strategies using lasers. (United States)

    Hampshire, Victoria


    Sound programs for the humane care and use of animals within research facilities incorporate experimental refinements such as multimodal approaches for pain management. These approaches can include non-traditional strategies along with more established ones. The use of lasers for pain relief is growing in popularity among companion animal veterinary practitioners and technologists. Therefore, its application in the research sector warrants closer consideration.

  5. Characterization of Vacuum Facility Background Gas Through Simulation and Considerations for Electric Propulsion Ground Testing (United States)

    Yim, John T.; Burt, Jonathan M.


    The background gas in a vacuum facility for electric propulsion ground testing is examined in detail through a series of cold flow simulations using a direct simulation Monte Carlo (DSMC) code. The focus here is on the background gas itself, its structure and characteristics, rather than assessing its interaction and impact on thruster operation. The background gas, which is often incorrectly characterized as uniform, is found to have a notable velocity within a test facility. The gas velocity has an impact on the proper measurement of pressure and the calculation of ingestion flux to a thruster. There are also considerations for best practices for tests that involve the introduction of supplemental gas flows to artificially increase the background pressure. All of these effects need to be accounted for to properly characterize the operation of electric propulsion thrusters across different ground test vacuum facilities.

  6. TileCal Beam Test Simulation Application in the FADS/Goofy Framework (GEANT4)

    CERN Document Server

    Solodkov, A A


    A new application for the Tile Calorimeter (TileCal) beam test simulation has been developed in GEANT4 within the FADS/Goofy framework. The geometry and readout systems for all the different TileCal modules have been implemented in a quite detailed way. This application allows to simulate all the TileCal beam test setup configurations existing so far. Details of the development as well as instructions to install and run the program are presented. The first tests have been performed for a beam test setup consisting of five prototype modules using negative pions with different energies and results of comparison to the experimental data from TileCal TDR are presented as well.

  7. Simulation Research on Adaptive Control of a Six-degree-of-freedom Material-testing Machine

    Directory of Open Access Journals (Sweden)

    Dan Wang


    Full Text Available This paper presents an adaptive controller equipped with a stiffness estimation method for a novel material-testing machine, in order to alleviate the performance depression caused by the stiffness variance of the tested specimen. The dynamic model of the proposed machine is built using the Kane method, and kinematic model is established with a closed-form solution. The stiffness estimation method is developed based on the recursive least-squares method and the proposed stiffness equivalent matrix. Control performances of the adaptive controller are simulated in detail. The simulation results illustrate that the proposed controller can greatly improve the control performance of the target material-testing machine by online stiffness estimation and adaptive parameter tuning, especially in low-cycle fatigue (LCF and high-cycle fatigue (HCF tests.

  8. Reverse mechanical after effect during hydrogenation of zone refined iron

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, L.V.; Skryabina, N.E.; Kurmaeva, L.D.; Smirnov, L.V. (Permskij Gosudarstvennyj Univ. (USSR); AN SSSR, Sverdlovsk. Inst. Fiziki Metallov)


    The relationship between the process of hydrogenation and the reverse mechanical after effect (RMA) microplastic deformation in the zone refined iron has been studied. Metallographic investigations and mechanical testing of the samples hydrogenated under torsional strain have been performed. It is shown that in the zone refined iron the formation of voids responsible for irreversible hydrogen embrittlement does not occur, but the hydrogen-initiated RMA strain is conserved, i. e. the RMA effects are independent of the presence of discontinuities.

  9. Simulations

    CERN Document Server

    Ngada, Narcisse


    The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.

  10. Evaluation of Emergency-Locator-Transmitter performance in real and simulated crash tests (United States)

    Carden, H. D.


    Emergency locator transmitter (ELT) activation problems were investigated by testing a sampling of ELT units in actual crashes and in a special test apparatus which simulated longitudinal crash pulses with superimposed local structural resonances. The probable causes of excessive false alarms and nonactivation of ELT's during crash situations were determined. Solutions to operational and technical problems were also examined as well as the sensitivity of ELT impact switches to orientation and to local structural vibrations.

  11. Electric vehicles in urban areas: test cases using a scenario simulator


    Soares, João; Lobo, Cristina; Morais, H.; Vale, Zita


    Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urba...

  12. Multiscale stochastic simulations for tensile testing of nanotube-based macroscopic cables. (United States)

    Pugno, Nicola M; Bosia, Federico; Carpinteri, Alberto


    Thousands of multiscale stochastic simulations are carried out in order to perform the first in-silico tensile tests of carbon nanotube (CNT)-based macroscopic cables with varying length. The longest treated cable is the space-elevator megacable but more realistic shorter cables are also considered in this bottom-up investigation. Different sizes, shapes, and concentrations of defects are simulated, resulting in cable macrostrengths not larger than approximately 10 GPa, which is much smaller than the theoretical nanotube strength (approximately 100 GPa). No best-fit parameters are present in the multiscale simulations: the input at level 1 is directly estimated from nanotensile tests of CNTs, whereas its output is considered as the input for the level 2, and so on up to level 5, corresponding to the megacable. Thus, five hierarchical levels are used to span lengths from that of a single nanotube (approximately 100 nm) to that of the space-elevator megacable (approximately 100 Mm).

  13. Test for Fauske and Associates to perform tube propagation experiments with simulated Hanford tank wastes

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, C.D.


    This test plan, prepared at Pacific Northwest National Laboratory for Westinghouse Hanford Company, provides guidance for performing tube propagation experiments on simulated Hanford tank wastes and on actual tank waste samples. Simulant compositions are defined and an experimental logic tree is provided for Fauske and Associates (FAI) to perform the experiments. From this guidance, methods and equipment for small-scale tube propagation experiments to be performed at the Hanford Site on actual tank samples will be developed. Propagation behavior of wastes will directly support the safety analysis (SARR) for the organic tanks. Tube propagation may be the definitive tool for determining the relative reactivity of the wastes contained in the Hanford tanks. FAI have performed tube propagation studies previously on simple two- and three-component surrogate mixtures. The simulant defined in this test plan more closely represents actual tank composition. Data will be used to support preparation of criteria for determining the relative safety of the organic bearing wastes.

  14. Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code

    Directory of Open Access Journals (Sweden)

    Sang-Yun Lee


    Full Text Available We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.

  15. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Anderson L.; Gee, Glendon W.


    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  16. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests. (United States)


    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... throwover control wheel in place of fixed, dual controls of the elevator and ailerons when— (1) The...

  17. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis (United States)

    Terri B. Teaschner; Timothy E. Fulbright


    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  18. Results of Small-scale Solid Rocket Combustion Simulator testing at Marshall Space Flight Center (United States)

    Goldberg, Benjamin E.; Cook, Jerry


    The Small-scale Solid Rocket Combustion Simulator (SSRCS) program was established at the Marshall Space Flight Center (MSFC), and used a government/industry team consisting of Hercules Aerospace Corporation, Aerotherm Corporation, United Technology Chemical Systems Division, Thiokol Corporation and MSFC personnel to study the feasibility of simulating the combustion species, temperatures and flow fields of a conventional solid rocket motor (SRM) with a versatile simulator system. The SSRCS design is based on hybrid rocket motor principles. The simulator uses a solid fuel and a gaseous oxidizer. Verification of the feasibility of a SSRCS system as a test bed was completed using flow field and system analyses, as well as empirical test data. A total of 27 hot firings of a subscale SSRCS motor were conducted at MSFC. Testing of the Small-scale SSRCS program was completed in October 1992. This paper, a compilation of reports from the above team members and additional analysis of the instrumentation results, will discuss the final results of the analyses and test programs.

  19. Mechanistic-empirical subgrade design model based on heavy vehicle simulator test results

    CSIR Research Space (South Africa)

    Theyse, HL


    Full Text Available -empirical design models. This paper presents a study on subgrade permanent deformation based on the data generated from a series of Heavy Vehicle Simulator (HVS) tests done at the Richmond Field Station in California. The total subgrade deflection was found to be a...

  20. Simulating the Effects of Common and Specific Abilities on Test Performance: An Evaluation of Factor Analysis (United States)

    McFarland, Dennis J.


    Purpose: Factor analysis is a useful technique to aid in organizing multivariate data characterizing speech, language, and auditory abilities. However, knowledge of the limitations of factor analysis is essential for proper interpretation of results. The present study used simulated test scores to illustrate some characteristics of factor…

  1. Comparative Analysis and Pedestrian Simulation Evaluation on Emergency Evacuation Test Methods for Urban Rail Transit Stations

    Directory of Open Access Journals (Sweden)

    Zijia Wang


    Full Text Available The emergency evacuation test method of rail transit station not only affects the operation safety of the station, but it also has significant influence on the scale and cost of the station. A reasonable test method should guarantee both the safety of evacuation and that the investment is neither excessive nor too conservative. The paper compares and analyzes the differences of the existing emergency evacuation test methods of rail stations in China and other regions on the evacuation load, evacuation time calculation and the capacity of egress components, etc. Based on the field survey analysis, the desired velocity distribution of pedestrians in various station facilities and the capacity of egress components have been obtained, and then the parameters of pedestrian simulation tool were calibrated. By selecting a station for the case study, an evacuation simulation model has been established, where five evacuation scenarios have been set according to different specifications and the simulation results have been carefully analyzed. Through analyzing the simulation results, some modification proposals of the current emergency evacuation test method in the design manual have been considered, including taking into account the section passenger volume, walking time on escalators and stairs of the platform, and the condition in which the escalator most critical to evacuation should be considered as out of service.

  2. A simulation test of the impact on soil moisture by agricultural ...

    African Journals Online (AJOL)

    To study the impact by agricultural machinery on changes in soil moisture, we used a simulated test method employing round iron plate based on the ground pressure ratio between the front and rear wheels of wheeled tractors and crawler tractors. We conducted soil compactions with five pressure loads (35, 98, 118, 196 ...

  3. RETRACTED ARTICLE: Comparison on grain refinement efficiency of peritectic and eutectic alloying elements on pure aluminium (United States)

    Haghayeghi, R.; Kapranos, P.


    The work investigated the grain refining efficiency of peritectic forming solutes as well as eutectic solutes on pure Al. Significant grain refinement for peritectic and small refinement for the eutectic elements were achieved and the mechanisms of refinement were studied. In order to investigate the grain structure and solidification phenomena for each set of alloys, a TP-1 test, as well as thermal analysis, was performed and back scattered images were used to analyze the phases that may contribute to the grain refinement. It appears that the significant grain refinement of peritectic elements is due to the formation of in-situ properitectic particles and their appropriate constitutional undercooling. The results suggest that the availability of potent nuclei and exogenous particles play major roles in the grain refinement efficiency. However, in the case of eutectic elements only segregation power contributes to refinement whilst the availability of potent nuclei is of paramount importance.

  4. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects (United States)

    Strutzenberg, Louise L.; Putman, Gabriel C.


    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  5. Vadose zone transport field study: Detailed test plan for simulated leak tests

    Energy Technology Data Exchange (ETDEWEB)

    AL Ward; GW Gee


    Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  6. Testing of Large-Scale ICV Glasses with Hanford LAW Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Hrma, Pavel R.; Kim, Dong-Sang; Vienna, John D.; Matyas, Josef; Smith, Donald E.; Schweiger, Michael J.; Yeager, John D.


    Preliminary glass compositions for immobilizing Hanford low-activity waste (LAW) by the in-container vitrification (ICV) process were initially fabricated at crucible- and engineering-scale, including simulants and actual (radioactive) LAW. Glasses were characterized for vapor hydration test (VHT) and product consistency test (PCT) responses and crystallinity (both quenched and slow-cooled samples). Selected glasses were tested for toxicity characteristic leach procedure (TCLP) responses, viscosity, and electrical conductivity. This testing showed that glasses with LAW loading of 20 mass% can be made readily and meet all product constraints by a far margin. Glasses with over 22 mass% Na2O can be made to meet all other product quality and process constraints. Large-scale testing was performed at the AMEC, Geomelt Division facility in Richland. Three tests were conducted using simulated LAW with increasing loadings of 12, 17, and 20 mass% Na2O. Glass samples were taken from the test products in a manner to represent the full expected range of product performance. These samples were characterized for composition, density, crystalline and non-crystalline phase assemblage, and durability using the VHT, PCT, and TCLP tests. The results, presented in this report, show that the AMEC ICV product with meets all waste form requirements with a large margin. These results provide strong evidence that the Hanford LAW can be successfully vitrified by the ICV technology and can meet all the constraints related to product quality. The economic feasibility of the ICV technology can be further enhanced by subsequent optimization.

  7. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation (United States)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John


    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  8. Advanced productivity forecast using petrophysical wireline data calibrated with MDT tests and numerical reservoir simulation

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Carlos de [PETROBRAS, Rio de Janeiro, RJ (Brazil); Canas, Jesus A.; Low, Steven; Barreto, Wesley [Schlumberger, Houston, TX (United States)


    This paper describes an integrated and rigorous approach for viscous and middle oil reservoir productivity evaluation using petrophysical models calibrated with permeability derived from mini tests (Dual Packer) and Vertical Interference Tests (VIT) from open hole wire line testers (MDT SLB TM). It describes the process from Dual Packer Test and VIT pre-job design, evaluation via analytical and inverse simulation modeling, calibration and up scaling of petrophysical data into a numerical model, history matching of Dual Packer Tests and VIT with numerical simulation modeling. Finally, after developing a dynamic calibrated model, we perform productivity forecasts of different well configurations (vertical, horizontal and multilateral wells) for several deep offshore oil reservoirs in order to support well testing activities and future development strategies. The objective was to characterize formation static and dynamic properties early in the field development process to optimize well testing design, extended well test (EWT) and support the development strategies in deep offshore viscous oil reservoirs. This type of oil has limitations to flow naturally to surface and special lifting equipment is required for smooth optimum well testing/production. The integrated analysis gave a good overall picture of the formation, including permeability anisotropy and fluid dynamics. Subsequent analysis of different well configurations and lifting schemes allows maximizing formation productivity. The simulation and calibration results are compared to measured well test data. Results from this work shows that if the various petrophysical and fluid properties sources are integrated properly an accurate well productivity model can be achieved. If done early in the field development program, this time/knowledge gain could reduce the risk and maximize the development profitability of new blocks (value of the information). (author)

  9. First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains: Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgian, V.; Link, H.; McDade, M.; Mander, A.; Fox, J. C.; Rigas, N.


    This report summarizes the proceedings of the First International Workshop on Grid Simulator Testing of Wind Turbine Drivetrains, held from June 13 to 14, 2013, at the National Renewable Energy Laboratory's National Wind Technology Center, located south of Boulder, Colorado. The workshop was sponsored by the U.S. Department of Energy and cohosted by the National Renewable Energy Laboratory and Clemson University under ongoing collaboration via a cooperative research and development agreement. The purpose of the workshop was to provide a forum to discuss the research, testing needs, and state-of-the-art apparatuses involved in grid compliance testing of utility-scale wind turbine generators. This includes both dynamometer testing of wind turbine drivetrains ('ground testing') and field testing grid-connected wind turbines. Four sessions followed by discussions in which all attendees of the workshop were encouraged to participate comprised the workshop.

  10. Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing

    Directory of Open Access Journals (Sweden)

    Jae Phil Park


    Full Text Available The typical experimental procedure for testing stress corrosion cracking initiation involves an interval-censored reliability test. Based on these test results, the parameters of a Weibull distribution, which is a widely accepted crack initiation model, can be estimated using maximum likelihood estimation or median rank regression. However, it is difficult to determine the appropriate number of test specimens and censoring intervals required to obtain sufficiently accurate Weibull estimators. In this study, we compare maximum likelihood estimation and median rank regression using a Monte Carlo simulation to examine the effects of the total number of specimens, test duration, censoring interval, and shape parameters of the true Weibull distribution on the estimator uncertainty. Finally, we provide the quantitative uncertainties of both Weibull estimators, compare them with the true Weibull parameters, and suggest proper experimental conditions for developing a probabilistic crack initiation model through crack initiation tests.

  11. Uncertainty Evaluation of Weibull Estimators through Monte Carlo Simulation: Applications for Crack Initiation Testing. (United States)

    Park, Jae Phil; Bahn, Chi Bum


    The typical experimental procedure for testing stress corrosion cracking initiation involves an interval-censored reliability test. Based on these test results, the parameters of a Weibull distribution, which is a widely accepted crack initiation model, can be estimated using maximum likelihood estimation or median rank regression. However, it is difficult to determine the appropriate number of test specimens and censoring intervals required to obtain sufficiently accurate Weibull estimators. In this study, we compare maximum likelihood estimation and median rank regression using a Monte Carlo simulation to examine the effects of the total number of specimens, test duration, censoring interval, and shape parameters of the true Weibull distribution on the estimator uncertainty. Finally, we provide the quantitative uncertainties of both Weibull estimators, compare them with the true Weibull parameters, and suggest proper experimental conditions for developing a probabilistic crack initiation model through crack initiation tests.

  12. Cryo-Tracker® Mass Gauging System Testing in a Launch Vehicle Simulation (United States)

    Schieb, Daniel J.; Haberbusch, Mark S.; Yeckley, Alexander J.


    Sierra Lobo successfully tested its patented Cryo-Tracker® probe and mass gauging system in an Expendable Launch Vehicle (ELV) liquid oxygen tank simulation for NASA's Launch Service Providers Directorate. The effort involved collaboration between Sierra Lobo, NASA Kennedy Space Center (KSC), and Lockheed Martin personnel. Testing simulated filling and expulsion operations of Lockheed Martin's Atlas V liquid oxygen (LOX) tank and characterized the 10.06 m (33-ft) Cryo-Tracker's performance. Sierra Lobo designed a 9.14 m (30-ft) tall liquid nitrogen test tank to simulate the Atlas V LOX tank flow conditions and validate Cryo-Tracker® data via other sensors and visualization. This test package was fabricated at Sierra Lobo's Cryogenics Testbed at NASA KSC. All test objectives were met or exceeded. Key accomplishments include: fabrication of the longest Cryo-Tracker® probe to date; installation technique proven with only two attachment points at top and bottom of tank; probe survived a harsh environment with no loss of signal or structural integrity; probe successfully measured liquid levels and temperatures under all conditions and successfully demonstrated its feasibility as an engine cut-off signal.

  13. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation (United States)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.


    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  14. Simulant Development for Hanford Double-Shell Tank Mixing and Waste Feed Delivery Testing

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, Phillip A.; Tran, Diana N.; Buchmiller, William C.


    The U.S. Department of Energy Office of River Projection manages the River Protection Project, which has the mission to retrieve and treat the Hanford tank waste for disposal and close the tank farms (Certa et al. 2011). Washington River Protection Solutions, LLC (WRPS) is responsible for a primary objective of this mission which is to retrieve and transfer tank waste to the Hanford Waste Treatment and Immobilization Plant (WTP). A mixing and sampling program with four separate demonstrations is currently being conducted to support this objective and also to support activities in a plan for addressing safety concerns identified by the Defense Nuclear Facilities Safety Board related to the ability of the WTP to mix, sample, and transfer fast settling particles. Previous studies have documented the objectives, criteria, and selection of non-radioactive simulants for these four demonstrations. The identified simulants include Newtonian suspending liquids with densities and viscosities that span the range expected in waste feed tanks. The identified simulants also include non-Newtonian slurries with Bingham yield stress values that span a range that is expected to bound the Bingham yield stress in the feed delivery tanks. The previous studies identified candidate materials for the Newtonian and non-Newtonian suspending fluids, but did not provide specific recipes for obtaining the target properties and information was not available to evaluate the compatibility of the fluids and particles or the potential for salt precipitation at lower temperatures. The purpose of this study is to prepare small batches of simulants in advance of the demonstrations to determine specific simulant recipes, to evaluate the compatibility of the liquids and particles, and to determine if the simulants are stable for the potential range of test temperatures. The objective of the testing, which is focused primarily on the Newtonian and non-Newtonian fluids, is to determine the composition of

  15. Simulating the Impact Response of Three Full-Scale Crash Tests of Cessna 172 Aircraft (United States)

    Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.; Annett, Martin S.; Stimson, Chad M.


    During the summer of 2015, a series of three full-scale crash tests were performed at the Landing and Impact Research Facility located at NASA Langley Research Center of Cessna 172 aircraft. The first test (Test 1) represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test (Test 2) represented a controlled-flight- into-terrain (CFIT) with a nose down pitch attitude of the aircraft, which impacted onto soft soil. The third test (Test 3) also represented a CFIT with a nose up pitch attitude of the aircraft, which resulted in a tail strike condition. Test 3 was also conducted onto soft soil. These crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters and to generate impact test data for model calibration. Finite element models were generated and impact analyses were conducted to simulate the three impact conditions using the commercial nonlinear, transient dynamic finite element code, LS-DYNA®. The objective of this paper is to summarize test-analysis results for the three full-scale crash tests.

  16. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine (United States)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong


    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  17. Testing Monte Carlo Simulations for Neutron Scattering in MoNA (United States)

    Hamann, A.; Garrett, S.; Seagren, T.; Taylor, N. E.; Rogers, W. F.; MoNA Collaboration


    Monte Carlo simulations provide an important tool for nuclear physics research, both in preparing for experiments, and in interpreting experimental data. The Modular Neutron Array (MoNA) and the Large area multi-Institutional Scintillator Array (LISA) are used in conjunction with the Sweeper Magnet and charged particle detector chamber at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University to study the properties of exotic, neutron-rich nuclei. We use simulations to model our BC408 scintillator detectors and extract physics results from experimental data. We have developed specific simulations in preparation for an experiment we will conduct at the Los Alamos Neutron Science Center (LANSCE), where we will direct a well-defined neutron beam onto a cluster of 16 MoNA detector bars and observe the scattering patterns of single neutrons. Simulations enable us to study the predicted light output generated by individual neutron scattering channels from Carbon and Hydrogen. The data we will generate in the LANSCE experiment will provide a large experimental database with which to test the reliability of our simulations. This is important since our understanding of nuclei far from stability is becoming increasingly reliant on simulations. this work supported by NSF Grants PHY-1101745 and PHY-1506402.

  18. Beam dynamics simulations and measurements at the Project X Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Gianfelice-Wendt, E.; Scarpine, V.E.; Webber, R.C.; /Fermilab


    Project X, under study at Fermilab, is a multitask high-power superconducting RF proton beam facility, aiming to provide high intensity protons for rare processes experiments and nuclear physics at low energy, and simultaneously for the production of neutrinos, as well as muon beams in the long term. A beam test facility - former known as High Intensity Neutrino Source (HINS) - is under commissioning for testing critical components of the project, e.g. dynamics and diagnostics at low beam energies, broadband beam chopping, RF power generation and distribution. In this paper we describe the layout of the test facility and present beam dynamics simulations and measurements.

  19. Drop test and crash simulation of a civil airplane fuselage section

    Directory of Open Access Journals (Sweden)

    Liu Xiaochuan


    Full Text Available Crashworthiness of a civil airplane fuselage section was studied in this paper. Firstly, the failure criterion of a rivet was studied by test, showing that the ultimate tension and shear failure loads were obviously affected by the loading speed. The relations between the loading speed and the average ultimate shear, tension loads were expressed by two logarithmic functions. Then, a vertical drop test of a civil airplane fuselage section was conducted with an actual impact velocity of 6.85 m/s, meanwhile the deformation of cabin frame and the accelerations at typical locations were measured. The finite element model of a main fuselage structure was developed and validated by modal test, and the error between the calculated frequencies and the test ones of the first four modes were less than 5%. Numerical simulation of the drop test was performed by using the LS-DYNA code and the simulation results show a good agreement with that of drop test. Deforming mode of the analysis was the same as the drop test; the maximum average rigid acceleration in test was 8.81g while the calculated one was 9.17g, with an error of 4.1%; average maximum test deformation at four points on the front cabin floor was 420 mm, while the calculated one was 406 mm, with an error of 3.2%; the peak value of the calculated acceleration at a typical location was 14.72g, which is lower than the test result by 5.46%; the calculated rebound velocity result was greater than the test result 17.8% and energy absorption duration was longer than the test result by 5.73%.

  20. The development and psychometric testing of the Satisfaction with Simulation Experience Scale. (United States)

    Levett-Jones, Tracy; McCoy, Michelle; Lapkin, Samuel; Noble, Danielle; Hoffman, Kerry; Dempsey, Jennifer; Arthur, Carol; Roche, Jan


    This paper reports the development and psychometric testing of the Satisfaction with Simulation Experience Scale, an instrument designed to measure and compare differences in satisfaction levels between nursing students exposed to medium and high fidelity human patient simulation manikins. Student satisfaction is important to engaged and meaningful learning and it facilitates active and purposeful participation in simulation experiences. There are suggestions that student satisfaction may have some correlation with performance. Few studies have explored in a rigorous way the impact of manikin fidelity on nursing students' satisfaction with simulation experiences. The items for the Satisfaction with Simulation Experience Scale were identified following a critical review of the literature. Content validly was established by use of an expert panel. During 2009 and 2010 the instrument was tested with second year (n=268) and third year nursing students (n=76) from one Australian university. Exploratory factor analysis with varimax rotation was used to determine construct validity and Cronbach's coefficient alpha determined the scale's internal consistency reliability. Differences in satisfaction levels between groups were analysed using an independent t test. Responses to an open ended question were categorised using thematic content analysis. The scale demonstrated satisfactory internal consistency (alpha 0.77). Exploratory factor analysis yielded a three-component structure termed Debriefing and Reflection, Clinical Reasoning, and Clinical Learning; each subscale demonstrated high internal consistency: 0.94; 0.86; 0.85 respectively. Mean satisfaction scores were high for each group. However, statistically significant differences were not apparent between second or third year students exposed to medium and high fidelity manikins. Content analysis identified 13 main categories including supplementing versus replacing clinical placements and the need for increased

  1. Reaction time in the agility test under simulated competitive and noncompetitive conditions. (United States)

    Zemková, Erika; Vilman, Tomáš; Kováčiková, Zuzana; Hamar, Dušan


    The study evaluates a reaction time in the Agility Test under simulated competitive and noncompetitive conditions. A group of 16 fit men performed, in random order, 2 versions of the Agility Test: non-competitive Agility Single and Agility Dual in form of simulated competition. In both cases, subjects had to touch, as fast as possible, with either the left or the right foot 1 of 4 mats located in 4 corners outside of an 80 cm square. Mats had to be touched in accordance with the location of the stimulus in one of the corners of the screen. The test consisted of 20 visual stimuli with random generation of their location on the screen and time generation from 500 to 2,500 milliseconds. The result was total reaction time (RT) for all 20 reactions measured by a PC-based system FiTRO Agility Check. Results showed significantly (p Agility Dual than in the Agility Single Test (690.6 ± 83.8 milliseconds and 805.8 ± 101.1 milliseconds, respectively). Further comparisons of RT under noncompetitive and simulated competitive conditions for the best 8 subjects proceeded in the second match showed a decrease from 781.3 ± 111.2 milliseconds to 693.6 ± 97.8 milliseconds in the first match and to 637.0 ± 53.0 milliseconds in the second match. It may be concluded that RT is better when the Agility Test is performed in simulated competitive than noncompetitive conditions. The Agility Test in form of competition may be used for children and young athletes to enhance their attention level and motivation.

  2. Failure Simulation Testing of the Z-1 Spacesuit Titanium Bearing Assemblies (United States)

    de Baca, Richard C.; Juarez, Alfredo; Peralta, Stephen; Tylka, Jonathan; Rhodes, Richard


    The Z-2 is a candidate for NASA's next generation spacesuit, designed for a range of possible missions with enhanced mobility for spacewalks both on planetary surfaces and in microgravity. Increased mobility was accomplished through innovations in shoulder and hip joints, using a number of new bearings to allow spacesuit wearers to dip, walk, and bend with ease; all important tasks for a planetary explorer collecting samples or traveling over rough terrain. The Advanced Spacesuit Development Team of NASA Johnson Space Center requested that the NASA White Sands Test Facility (WSTF) perform a series failure simulation tests on three titanium bearing assemblies, an elemental part of the joint construction used in new spacesuit designs. This testing simulated two undetected failures within the bearings and as a result the objective of this test program was to evaluate whether a failed or failing bearing could result in ignition of the titanium race material due to friction. The first failure was an inner seal leak sufficient to pressurize the race with +99 percent oxygen. The second failure was an improperly installed or mismatched ball port that created a protrusion in the ball bearing race, partially obstructing the nominal rolling path of each ball bearing. When the spacesuit bearings are assembled, bearing balls are loaded into the assembly via a ball port. The ball port is specific and unique to each bearing assembly (matched pair). The simulated mismatched ball port is a significant source of friction, which would be caused by an assembly error. To evaluate this risk, the bearings were cycled in a simulated worst-case scenario environment, with operational loads, and potential flaw conditions. During test the amount of actuation torque required and heat generated through continuous operation were measured and the bearings were observed for sparks or burning events. This paper provides detailed descriptions of the test hardware, methodology, and results.

  3. Field Test and Simulation of a 400 kV Cross-Bonded Cable System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella; Gustavsen, Bjørn; Bak, Claus Leth


    This paper discusses cable modeling for long high voltage AC underground cables. In investigating the possibility of using long cables instead of overhead lines, the simulation results must be trustworthy. Therefore, model validation is of great importance. This paper gives a benchmark case...... for measurements on a 400 kV cable system with cross bonded sheaths. The paper describes in detail the modeling procedure for the cable system and compares simulation results with the transient field test results. It is shown that although the main characteristics of the waveforms are well reproduced...

  4. Hydrodynamics in full general relativity with conservative adaptive mesh refinement (United States)

    East, William E.; Pretorius, Frans; Stephens, Branson C.


    There is great interest in numerical relativity simulations involving matter due to the likelihood that binary compact objects involving neutron stars will be detected by gravitational wave observatories in the coming years, as well as to the possibility that binary compact object mergers could explain short-duration gamma-ray bursts. We present a code designed for simulations of hydrodynamics coupled to the Einstein field equations targeted toward such applications. This code has recently been used to study eccentric mergers of black hole-neutron star binaries. We evolve the fluid conservatively using high-resolution shock-capturing methods, while the field equations are solved in the generalized-harmonic formulation with finite differences. In order to resolve the various scales that may arise, we use adaptive mesh refinement (AMR) with grid hierarchies based on truncation error estimates. A noteworthy feature of this code is the implementation of the flux correction algorithm of Berger and Colella to ensure that the conservative nature of fluid advection is respected across AMR boundaries. We present various tests to compare the performance of different limiters and flux calculation methods, as well as to demonstrate the utility of AMR flux corrections.

  5. Central Line Proficiency Test Outcomes after Simulation Training versus Traditional Training to Competence. (United States)

    Alsaad, Ali A; Bhide, Vandana Y; Moss, Jimmy L; Silvers, Scott M; Johnson, Margaret M; Maniaci, Michael J


    Studies have shown the importance of simulation-based training on the outcomes of central venous catheter (CVC) insertion by trainees. To compare the performance of internal medicine trainees who underwent standardized simulation training of CVC insertion with that of internal medicine trainees who had traditional CVC training and were already deemed competent to perform the procedure during a proficiency evaluation using a training mannequin. Trainees who perform CVC insertion were enrolled in the institutional Central Line Workshop, which includes both an online and an experiential simulation component. The training is followed by a certification station proficiency assessment. Residents and fellows previously certified competent to perform CVC placement without supervision completed the online module, but they could opt out of the experiential component and proceed directly to the evaluation. Forty-eight trainees participated in the study. Twenty-one (44%), 15 (31%), 6 (13%), 1 (2%), 2 (4%), and 3 (6%) were in postgraduate year 1 (PGY1), PGY2, PGY3, PGY4, PGY5, and PGY6, respectively. Twenty-nine completed the hands-on instruction, 28 (97%) of whom successfully passed the simulation-based assessment on their first attempt. Nineteen trainees previously credentialed to perform CVC placement without supervision opted out of the simulation-based experiential training. Of these, five (26%) failed in their first attempt (P = 0.02 vs. trainees who completed the simulation training). Standardized simulation-based training can improve CVC insertion proficiency, even among trainees with previous experience sufficient to have been deemed competent in the procedure. Improved performance at simulation-based testing may translate to improved outcomes of CVC placement by trainees.

  6. Water Impact Test and Simulation of a Composite Energy Absorbing Fuselage Section (United States)

    Fasanella, Edwin L.; Jackson, Karen E.; Sparks, Chad; Sareen, Ashish


    In March 2002, a 25-ft/s vertical drop test of a composite fuselage section was conducted onto water. The purpose of the test was to obtain experimental data characterizing the structural response of the fuselage section during water impact for comparison with two previous drop tests that were performed onto a rigid surface and soft soil. For the drop test, the fuselage section was configured with ten 100-lb. lead masses, five per side, that were attached to seat rails mounted to the floor. The fuselage section was raised to a height of 10-ft. and dropped vertically into a 15-ft. diameter pool filled to a depth of 3.5-ft. with water. Approximately 70 channels of data were collected during the drop test at a 10-kHz sampling rate. The test data were used to validate crash simulations of the water impact that were developed using the nonlinear, explicit transient dynamic codes, MSC.Dytran and LS-DYNA. The fuselage structure was modeled using shell and solid elements with a Lagrangian mesh, and the water was modeled with both Eulerian and Lagrangian techniques. The fluid-structure interactions were executed using the fast general coupling in MSC.Dytran and the Arbitrary Lagrange-Euler (ALE) coupling in LS-DYNA. Additionally, the smooth particle hydrodynamics (SPH) meshless Lagrangian technique was used in LS-DYNA to represent the fluid. The simulation results were correlated with the test data to validate the modeling approach. Additional simulation studies were performed to determine how changes in mesh density, mesh uniformity, fluid viscosity, and failure strain influence the test-analysis correlation.


    Directory of Open Access Journals (Sweden)

    Laura Rodrigues Alves Soares


    Full Text Available In mineral processing projects, it is crucial ensure the equipment efficiency, highly influenced by the intrinsic variability of ore characteristics. To characterize the ore, laboratory and pilot tests are conducted. Pilot tests are generally expensive, so they are performed only for a few samples. Laboratory tests are cheaper, and, therefore, can be carried out using more samples for better representation of the ore reserve diversity. However, the repeatability of results in industrial scale is not defined. In an effort to verify the accordance between these tests and the industrial practices, the results of a plant operation were compared to the results of a dynamic simulation, calibrated with data from laboratory tests, for the period of one year. Initially, the plant ROM (run of mine was tracked. Then, sample mixtures that represented its characteristics, such as content and size distribution, were obtained. The plant has screening, magnetic separation, desliming, and flotation operations and laboratory tests are available for the last three mentioned processes. Thus, the process was simulated, using the real plant downtime, and a control strategy similar to that practiced in the plant, so that it was possible to determine a theoretical output that would be obtained if laboratory testing accurately represented the operation. It was observed that there was acceptable conformity in the flotation and desliming process and little conformity in magnetic separation.

  8. Mars Pathfinder Spacecraft, Lander, and Rover Testing in Simulated Deep Space and Mars Surface Environments (United States)

    Johnson, Kenneth R.


    The Mars Pathfinder (MPF) Spacecraft was built and tested at the Jet Propulsion Laboratory during 1995/96. MPF is scheduled to launch in December 1996 and to land on Mars on July 4, 1997. The testing program for MPF required subjecting the mission hardware to both deep space and Mars surface conditions. A series of tests were devised and conducted from 1/95 to 7/96 to study the thermal response of the MPF spacecraft to the environmental conditions in which it will be exposed during the cruise phase (on the way to Mars) and the lander phase (landed on Mars) of the mission. Also, several tests were conducted to study the thermal characteristics of the Mars rover, Sojourner, under Mars surface environmental conditions. For these tests, several special test fixtures and methods were devised to simulate the required environmental conditions. Creating simulated Mars surface conditions was a challenging undertaking since Mars' surface is subjected to diurnal cycling between -20 C and -85 C, with windspeeds to 20 m/sec, occurring in an 8 torr CO2 atmosphere. This paper describes the MPF test program which was conducted at JPL to verify the MPF thermal design.

  9. Fission gas induced deformation model for FRAP-T6 and NSRR irradiated fuel test simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Hosoyamada, Ryuji; Mori, Yukihide


    Pulse irradiation tests of irradiated fuels under simulated reactivity initiated accidents (RIAs) have been carried out at the Nuclear Safety Research Reactor (NSRR). Larger cladding diameter increase was observed in the irradiated fuel tests than in the previous fresh fuel tests. A fission gas induced cladding deformation model was developed and installed in a fuel behavior analysis code, FRAP-T6. The irradiated fuel tests were analyzed with the model in combination with modified material properties and fuel cracking models. In Test JM-4, where the cladding temperature rose to higher temperatures and grain boundary separation by the pulse irradiation was significant, the fission gas model described the cladding deformation reasonably well. The fuel had relatively flat radial power distribution and the grain boundary gas from the whole radius was calculated to contribute to the deformation. On the other hand, the power density in the irradiated LWR fuel rods in the pulse irradiation tests was remarkably higher at the fuel periphery than the center. A fuel thermal expansion model, GAPCON, which took account of the effect of fuel cracking by the temperature profile, was found to reproduce well the LWR fuel behavior with the fission gas deformation model. This report present details of the models and their NSRR test simulations. (author)

  10. Simulation of IST Turbomachinery Power-Neutral Tests with the ANL Plant Dynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The validation of the Plant Dynamics Code (PDC) developed at Argonne National Laboratory (ANL) for the steady-state and transient analysis of supercritical carbon dioxide (sCO2) systems has been continued with new test data from the Naval Nuclear Laboratory (operated by Bechtel Marine Propulsion Corporation) Integrated System Test (IST). Although data from three runs were provided to ANL, only two of the data sets were analyzed and described in this report. The common feature of these tests is the power-neutral operation of the turbine-compressor shaft, where no external power through the alternator was provided during the tests. Instead, the shaft speed was allowed to change dictated by the power balance between the turbine, the compressor, and the power losses in the shaft. The new test data turned out to be important for code validation for several reasons. First, the power-neutral operation of the shaft allows validation of the shaft dynamics equations in asynchronous mode, when the shaft is disconnected from the grid. Second, the shaft speed control with the compressor recirculation (CR) valve not only allows for testing the code control logic itself, but it also serves as a good test for validation of both the compressor surge control and the turbine bypass control actions, since the effect of the CR action on the loop conditions is similar for both of these controls. Third, the varying compressor-inlet temperature change test allows validation of the transient response of the precooler, a shell-and-tube heat exchanger. The first transient simulation of the compressor-inlet temperature variation Test 64661 showed a much slower calculated response of the precooler in the calculations than the test data. Further investigation revealed an error in calculating the heat exchanger tube mass for the PDC dynamic equations that resulted in a slower change in the tube wall temperature than measured. The transient calculations for both tests were done in two steps. The


    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, E.


    Electrochemical coupon testing were performed on 6 Hanford tank solution simulants and corresponding condensate simulants to evaluate the susceptibility of vapor space and liquid/air interface corrosion. Additionally, partial-immersion coupon testing were performed on the 6 tank solution simulants to compliment the accelerated electrochemical testing. Overall, the testing suggests that the SY-102 high nitrate solution is the most aggressive of the six solution simulants evaluated. Alternatively, the most passive solution, based on both electrochemical testing and coupon testing, was AY-102 solution. The presence of ammonium nitrate in the simulants at the lowest concentration tested (0.001 M) had no significant effect. At higher concentrations (0.5 M), ammonium nitrate appears to deter localized corrosion, suggesting a beneficial effect of the presence of the ammonium ion. The results of this research suggest that there is a threshold concentration of ammonium ions leading to inhibition of corrosion, thereby suggesting the need for further experimentation to identify the threshold.

  12. BioRefine Yearbook 2011

    Energy Technology Data Exchange (ETDEWEB)

    Maekinen, T.; Kauppi, M. (eds.) (VTT Technical Research Centre of Finland, Espoo (Finland)); Alakangas, E. (ed.) (VTT Technical Research Centre of Finland, Jyvaeskylae (Finland))


    The BioRefine - new biomass products programme is approaching its final active year 2012. The programme contains several significant industrial research and development projects that aim to demonstrate large scale biorefineries. At the same time, a number of projects are led by SMEs focusing on smaller localised solutions. The programme is co-operating closely with Forestcluster Ltd, one of the Strategic Centres for Science, Technology and Innovation in Finland, which is owned by major forest-related companies and institutes. Forestcluster has launched a second phase of its Future Biorefinery (FuBio) programme, which aims to create a new world-leading-competence platform in the field of biorefinery and to develop new value chains in which wood is refined into materials and chemicals. Together the two programmes are a central part of the Finnish biorefining entity. One of the main goals of the BioRefine programme has been to bring together multidisciplinary research and development competences and different business areas for creating sustainable and commercially viable biorefinery concepts. With the increasing pressure on low-carbon processes and on the efficient and sustainable use of raw materials, the need for a multidisciplinary approach has become evident. Bioeconomy aims to bring these different competence and business areas into close co-operation for creating new solutions based on non-fossil raw materials. In the future, the holistic and multidisciplinary approach to utilising biomass resources efficiently and in an environmentally and economically sustainable way will be increasingly emphasized

  13. Evaluation of spacer grid spring characteristics by means of physical tests and numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schettino, Carlos Frederico Mattos, E-mail: [Industrias Nucleares do Brasil (INB), Resende, RJ (Brazil)


    Among all fuel assemblies' components, the spacer grids play an important structural role during the energy generation process, mainly due for its primary functional requirement, that is, to provide fuel rod support. The present work aims to evaluate the spring characteristics of a specific spacer grid design used in a PWR fuel assembly type 16 x 16. These spring characteristics comprises the load versus deflection capability and its spring rate, which are very important, and also mandatory, to be correctly established in order to preclude spacer grid spring and fuel rod cladding fretting during operation, as well as prevent an excessive fuel rod buckling. This study includes physical tests and numerical simulation. The tests were performed on an adapted load cell mechanical device, using as a specimen a single strap of the spacer grid. Three numerical models were prepared using the Finite Element Method, with the support of the commercial code ANSYS. One model was built to validate the simulation according to the performed physical test, the others were built inserting a gradient of temperature (Beginning Of Life hot condition) and to evaluate the spacer grid spring characteristics in End Of Life condition. The obtained results from physical test and numerical model have shown a good agreement between them, therefore validating the simulation. The obtained results from numerical models make available information regarding the spacer grid design purpose, such as the behavior of the fuel rod cladding support during operation. Therewith, these evaluations could be useful to improve the spacer grid design. (author)

  14. The Research on Web-Based Testing Environment Using Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Lu


    Full Text Available The computerized evaluation is now one of the most important methods to diagnose learning; with the application of artificial intelligence techniques in the field of evaluation, the computerized adaptive testing gradually becomes one of the most important evaluation methods. In this test, the computer dynamic updates the learner's ability level and selects tailored items from the item pool. In order to meet the needs of the test it requires that the system has a relatively high efficiency of the implementation. To solve this problem, we proposed a novel method of web-based testing environment based on simulated annealing algorithm. In the development of the system, through a series of experiments, we compared the simulated annealing method and other methods of the efficiency and efficacy. The experimental results show that this method ensures choosing nearly optimal items from the item bank for learners, meeting a variety of assessment needs, being reliable, and having valid judgment in the ability of learners. In addition, using simulated annealing algorithm to solve the computing complexity of the system greatly improves the efficiency of select items from system and near-optimal solutions.

  15. Effect of carbohydrate or sodium bicarbonate ingestion on performance during a validated basketball simulation test. (United States)

    Afman, Gregg; Garside, Richard M; Dinan, Neal; Gant, Nicholas; Betts, James A; Williams, Clyde


    Current recommendations for nutritional interventions in basketball are largely extrapolated from laboratory-based studies that are not sport-specific. We therefore adapted and validated a basketball simulation test relative to competitive basketball games using well-trained basketball players (n = 10), then employed this test to evaluate the effects of two common preexercise nutritional interventions on basketball-specific physical and skilled performance. Specifically, in a randomized and counterbalanced order, participants ingested solutions providing either 75 g carbohydrate (sucrose) 45 min before exercise (Study A; n = 10) or 2 × 0.2 g · kg(-1) sodium bicarbonate (NaHCO3) 90 and 20 min before exercise (Study B; n = 7), each relative to appropriate placebos (H2O and 2 × 0.14 g · kg(-1) NaCl, respectively). Heart rate, sweat rate, pedometer count, and perceived exertion did not systematically differ between the 60-min basketball simulation test and competitive basketball, with a strong positive correlation in heart rate response (r = .9, p basketball simulation test provides a valid reflection of physiological demands in competitive basketball and is sufficiently sensitive to detect meaningful changes in physical and skilled performance. While there are benefits of preexercise carbohydrate or sodium bicarbonate ingestion, these should be balanced against potential negative side effects.

  16. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.


    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  17. Study of the Pierre Auger Observatory ground detectors: tests, simulation and calibration; Etude des detecteurs de surface de l'observatoire Pierre Auger: tests, simulation et etalonnage

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A


    The Pierre Auger Observatory is intended to the ultra high energy cosmic rays study. This study is realized through the particles showers coming from the interaction between the cosmic rays and the atmosphere. The ground detection of these showers requires a comprehensive understanding of the detectors. Several test tanks have been elaborated for this purpose, especially the Orsay one. The first chapter is dedicated to the presentation of the cosmic rays and of the Pierre Auger Observatory. The second one describes the detectors used for the Observatory surface array. The Orsay test tank is then presented and detailed. We study the results we have got with the Orsay test tank in the fourth chapter and compare these results with those of the Observatory detectors in the fifth chapter. The sixth chapter is dedicated to the validation of the results set through the simulation (GEANT4 software). Finally, the first detected particles showers are presented in the seventh chapter. The data acquisition has begun this year. The construction will be finished by end of 2005. From this moment, The Pierre Auger Observatory will allow us to contribute to solving the cosmic rays puzzle. (author)

  18. Clogging evaluation of open graded friction course pavements tested under rainfall and heavy vehicle simulators. (United States)

    Coleri, Erdem; Kayhanian, Masoud; Harvey, John T; Yang, Kai; Boone, John M


    In this study a new procedure is developed to obtain core samples from field sections to assess clogging mechanisms of open graded friction course (OGFC) pavements using X-ray computed tomography (CT) imaging. The approach compared X-ray computed tomography (CT) images taken before and after: (1) rainfall simulations without trafficking to investigate particle-related clogging and (2) full-scale accelerated pavement rutting tests (APT) to investigate deformation related clogging of OGFC layers. Rainfall simulations were performed with runoff water of known total suspended solids (TSS) and particle size distributions (PSDs). Full-scale accelerated rutting tests were performed under controlled temperature and loads. Both investigations were performed for three different OGFC pavements with different layer thicknesses and mix types. The clogging of rutting test sections were also evaluated by comparing the surface permeability measurements performed before and after APT testing. The results of X-ray CT image processing revealed a significant reduction in air-void content of core samples after APT rutting tests. The highest air-void reduction was concentrated at the bottom of the OGFC layers. Permeability measurements also showed a 40%-90% reduction in permeability after APT trafficking. X-ray CT image processing of core samples tested under simulated rainfall showed that air void content reduction is concentrated in the lower part (2-6 mm from the bottom) of the OGFC layers as a result of particle accumulation. Small changes in air void contents were observed in the upper part of the OGFC layers (10-15 mm) while these reductions in air void contents were not significant to cause surface overflow and hence it is expected that the tested OGFC pavements will have sufficient permeability to infiltrate water during most average storm events. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cone penetration and bevameter geotechnical tests in lunar regolith simulants: discrete element method analysis and experimentation (United States)

    Kulchitsky, A. V.; Johnson, J.; Duvoy, P.; Wilkinson, A.; Creager, C. M.


    For in situ resource utilization on the Moon, asteroids, Mars, or other space body it is necessary to be able to simulate the interaction of mobile platforms and excavation machines with the regolith for engineering design, planning, and operations. For accurate simulations, tools designed to measure regolith properties will need to be deployed and interpreted. Two such tools are the penetrometer, used to measure a soil strength index as a function of depth, and the bevameter, used to characterize regolith surface properties of strength, friction and sinkage. The penetrometer interrogates regolith properties from the surface to a depth limited only by the capabilities of the instrument to penetrate the regolith while a bevameter interrogates only the upper few centimeters needed to describe a mobility platform's traction and sinkage. Interpretation of penetrometer and bevameter data can be difficult, especially on low gravity objects. We use the discrete element method (DEM) model to simulate the large regolith deformations and failures associated with the tests to determine regolith properties. The DEM simulates granular material behavior using large aggregates of distinct particles. Realistic physics of particle-particle interaction introduces many granular specific phenomena such as interlocking and force chain formation that cannot be represented using continuum methods. In this work, experiments using a cone penetrometer test (CPT) and bevameter on lunar simulants JSC-1A and GRC-1 were performed at NASA Glenn Research Center. These tests were used to validate the physics in the COUPi DEM model. COUPi is a general physical DEM code being developed to model machine/regolith interactions as part of a NASA Lunar Science Institute sponsored project on excavation and mobility modeling. The experimental results were used in this work to build an accurate model to simulate the lunar regolith. The CPT consists of driving an instrumented cone with opening angle of 60

  20. Development and Demonstration of Ultrafiltration Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Billing, Justin M.; Peterson, Reid A.; Rinehart, Donald E.; Smith, Harry D.


    According to Bechtel National, Inc. (BNI) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes for the waste treatment plant (WTP). These simulants will then be used to demonstrate the leaching process and to help refine processing conditions which may impact safety basis considerations (Smith 2006). This report documents the results of the filtration simulant development.

  1. Development and Characterization of Boehmite Component Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Renee L.; Peterson, Reid A.; Smith, Harry D.; Rinehart, Donald E.; Aker, Pamela M.; Buck, Edgar C.


    According to Bechtel National Inc.’s (BNI’s) Test Specification 24590-PTF-TSP-RT-06-006, Rev 0, “Simulant Development to Support the Development and Demonstration of Leaching and Ultrafiltration Pretreatment Processes,” simulants for boehmite, gibbsite, and filtration are to be developed that can be used in subsequent bench and integrated testing of the leaching/filtration processes. These simulants will then be used to demonstrate the leaching process and to help refine processing conditions that may impact safety basis considerations (Smith 2006). This report documents the results of the boehmite simulant development.

  2. An End-To-End Test of A Simulated Nuclear Electric Propulsion System (United States)

    VanDyke, Melissa; Hrbud, Ivana; Goddfellow, Keith; Rodgers, Stephen L. (Technical Monitor)


    The Safe Affordable Fission Engine (SAFE) test series addresses Phase I Space Fission Systems issues in it particular non-nuclear testing and system integration issues leading to the testing and non-nuclear demonstration of a 400-kW fully integrated flight unit. The first part of the SAFE 30 test series demonstrated operation of the simulated nuclear core and heat pipe system. Experimental data acquired in a number of different test scenarios will validate existing computational models, demonstrated system flexibility (fast start-ups, multiple start-ups/shut downs), simulate predictable failure modes and operating environments. The objective of the second part is to demonstrate an integrated propulsion system consisting of a core, conversion system and a thruster where the system converts thermal heat into jet power. This end-to-end system demonstration sets a precedent for ground testing of nuclear electric propulsion systems. The paper describes the SAFE 30 end-to-end system demonstration and its subsystems.

  3. Simulated Lunar Testing of Metabolic Heat Regenerated Temperature Swing Adsorption Technology (United States)

    Padilla, Sebastian A.; Bower, Chad; Iacomini, Christie S.; Paul, H.


    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal and carbon dioxide (CO2) control for a Portable Life Support System (PLSS), as well as water recycling. An Engineering Development Unit (EDU) of the MTSA subassembly was designed and assembled for optimized Martian operations, but also meets system requirements for lunar operations. For lunar operations the MTSA sorption cycle is driven via a vacuum swing between suit ventilation loop pressure and lunar vacuum. The focus of this effort is operations and testing in a simulated lunar environment. This environment was simulated in Paragon s EHF vacuum chamber. The objective of this testing was to evaluate the full cycle performance of the MTSA Subassembly EDU, and to assess CO2 loading and pressure drop of the wash coated aluminum reticulated foam sorbent bed. The lunar testing proved out the feasibility of pure vacuum swing operation, making MTSA a technology that can be tested and used on the Moon prior to going to Mars. Testing demonstrated better than expected CO2 loading on the sorbent and nearly replicates the equilibrium data from the sorbent manufacturer. This had not been achieved in any of the previous sorbent loading tests performed by Paragon. Subsequently, the increased performance of the sorbent bed design indicates future designs will require less mass and volume than the current EDU rendering MTSA as very competitive for Martian PLSS applications.

  4. Simulation on following Performance of High-Speed Railway In Situ Testing System

    Directory of Open Access Journals (Sweden)

    Fei-Long Zheng


    Full Text Available Subgrade bears both the weight of superstructures and the impacts of running trains. Its stability affects the line smoothness directly, but in situ testing method on it is inadequate. This paper presents a railway roadbed in situ testing device, the key component of which is an excitation hydraulic servo cylinder that can output the static pressure and dynamic pressure simultaneously to simulate the force of the trains to the subgrade. The principle of the excitation system is briefly introduced, and the transfer function of the closed-loop force control system is derived and simulated; that, it shows without control algorithm, the dynamic response is very low and the following performance is quite poor. So, the improvedadaptive model following control (AMFC algorithm based on direct state method is adopted. Then, control block diagram is built and simulated with the input of different waveforms and frequencies. The simulation results show that the system has been greatly improved; the output waveform can follow the input signal much better except for a little distortion when the signal varies severely. And the following performance becomes even better as the load stiffness increases.

  5. Analysis of formation pressure test results in the Mount Elbert methane hydrate reservoir through numerical simulation (United States)

    Kurihara, M.; Sato, A.; Funatsu, K.; Ouchi, H.; Masuda, Y.; Narita, H.; Collett, T.S.


    Targeting the methane hydrate (MH) bearing units C and D at the Mount Elbert prospect on the Alaska North Slope, four MDT (Modular Dynamic Formation Tester) tests were conducted in February 2007. The C2 MDT test was selected for history matching simulation in the MH Simulator Code Comparison Study. Through history matching simulation, the physical and chemical properties of the unit C were adjusted, which suggested the most likely reservoir properties of this unit. Based on these properties thus tuned, the numerical models replicating "Mount Elbert C2 zone like reservoir" "PBU L-Pad like reservoir" and "PBU L-Pad down dip like reservoir" were constructed. The long term production performances of wells in these reservoirs were then forecasted assuming the MH dissociation and production by the methods of depressurization, combination of depressurization and wellbore heating, and hot water huff and puff. The predicted cumulative gas production ranges from 2.16??106m3/well to 8.22??108m3/well depending mainly on the initial temperature of the reservoir and on the production method.This paper describes the details of modeling and history matching simulation. This paper also presents the results of the examinations on the effects of reservoir properties on MH dissociation and production performances under the application of the depressurization and thermal methods. ?? 2010 Elsevier Ltd.

  6. Nuclear Counter Effect and Pion-Electron misidentification Simulations and 1998 test beam results

    CERN Document Server

    Dittmar, Michael


    The electron/charged pion discrimination within the ECAL is investigated using GEANT simulations and the 1998 test beam results. The Nuclear Counter Effect within the Avalanche Photo-Diodes enhances the probability of an electron misidentification. The test beam data show a Nuclear Counter Effect with a mean value of about 450 MeV for a Minimum Ionizing Particle crossing the APD, instead of the expected 200-250 MeV for a readout with a single APD. This value can be explained with the inefficient connection between crystals and APD`s in the PROTO 97 set-up. The pion beam data show a long tail in the E/p-ratio, which can be reproduced by GEANT simulations with Nuclear Counter Effect. GEANT simulations are then used for a study of the pion-electron confusion with the expected Nuclear Counter Effect and the foreseen set-up with two APD`s per crystal. These simulations show that the tail in the pion-energy deposition is still present. As a result one expects that about 0.1 % of the pions with 10 GeV < E &am...

  7. Simulated Service and Stress Corrosion Cracking Testing for Friction Stir Welded Spun Form Domes (United States)

    Stewart, Thomas J.; Torres, Pablo D.; Caratus, Andrei A.; Curreri, Peter A.


    Damage tolerance testing development was required to help qualify a new spin forming dome fabrication process for the Ares 1 program at Marshall Space Flight Center (MSFC). One challenge of the testing was due to the compound curvature of the dome. The testing was developed on a sub-scale dome with a diameter of approximately 40 inches. The simulated service testing performed was based on the EQTP1102 Rev L 2195 Aluminum Lot Acceptance Simulated Service Test and Analysis Procedure generated by Lockheed Martin for the Space Shuttle External Fuel Tank. This testing is performed on a specimen with an induced flaw of elliptical shape generated by Electrical Discharge Machining (EDM) and subsequent fatigue cycling for crack propagation to a predetermined length and depth. The specimen is then loaded in tension at a constant rate of displacement at room temperature until fracture occurs while recording load and strain. An identical specimen with a similar flaw is then proof tested at room temperature to imminent failure based on the critical offset strain achieved by the previous fracture test. If the specimen survives the proof, it is then subjected to cryogenic cycling with loads that are a percentage of the proof load performed at room temperature. If all cryogenic cycles are successful, the specimen is loaded in tension to failure at the end of the test. This standard was generated for flat plate, so a method of translating this to a specimen of compound curvature was required. This was accomplished by fabricating a fixture that maintained the curvature of the specimen rigidly with the exception of approximately one-half inch in the center of the specimen containing the induced flaw. This in conjunction with placing the center of the specimen in the center of the load train allowed for successful testing with a minimal amount of bending introduced into the system. Stress corrosion cracking (SCC) tests were performed using the typical double beam assembly and with 4

  8. Examining publication bias—a simulation-based evaluation of statistical tests on publication bias (United States)


    Background Publication bias is a form of scientific misconduct. It threatens the validity of research results and the credibility of science. Although several tests on publication bias exist, no in-depth evaluations are available that examine which test performs best for different research settings. Methods Four tests on publication bias, Egger’s test (FAT), p-uniform, the test of excess significance (TES), as well as the caliper test, were evaluated in a Monte Carlo simulation. Two different types of publication bias and its degree (0%, 50%, 100%) were simulated. The type of publication bias was defined either as file-drawer, meaning the repeated analysis of new datasets, or p-hacking, meaning the inclusion of covariates in order to obtain a significant result. In addition, the underlying effect (β = 0, 0.5, 1, 1.5), effect heterogeneity, the number of observations in the simulated primary studies (N = 100, 500), and the number of observations for the publication bias tests (K = 100, 1,000) were varied. Results All tests evaluated were able to identify publication bias both in the file-drawer and p-hacking condition. The false positive rates were, with the exception of the 15%- and 20%-caliper test, unbiased. The FAT had the largest statistical power in the file-drawer conditions, whereas under p-hacking the TES was, except under effect heterogeneity, slightly better. The CTs were, however, inferior to the other tests under effect homogeneity and had a decent statistical power only in conditions with 1,000 primary studies. Discussion The FAT is recommended as a test for publication bias in standard meta-analyses with no or only small effect heterogeneity. If two-sided publication bias is suspected as well as under p-hacking the TES is the first alternative to the FAT. The 5%-caliper test is recommended under conditions of effect heterogeneity and a large number of primary studies, which may be found if publication bias is examined in a discipline

  9. Examining publication bias—a simulation-based evaluation of statistical tests on publication bias

    Directory of Open Access Journals (Sweden)

    Andreas Schneck


    Full Text Available Background Publication bias is a form of scientific misconduct. It threatens the validity of research results and the credibility of science. Although several tests on publication bias exist, no in-depth evaluations are available that examine which test performs best for different research settings. Methods Four tests on publication bias, Egger’s test (FAT, p-uniform, the test of excess significance (TES, as well as the caliper test, were evaluated in a Monte Carlo simulation. Two different types of publication bias and its degree (0%, 50%, 100% were simulated. The type of publication bias was defined either as file-drawer, meaning the repeated analysis of new datasets, or p-hacking, meaning the inclusion of covariates in order to obtain a significant result. In addition, the underlying effect (β = 0, 0.5, 1, 1.5, effect heterogeneity, the number of observations in the simulated primary studies (N = 100, 500, and the number of observations for the publication bias tests (K = 100, 1,000 were varied. Results All tests evaluated were able to identify publication bias both in the file-drawer and p-hacking condition. The false positive rates were, with the exception of the 15%- and 20%-caliper test, unbiased. The FAT had the largest statistical power in the file-drawer conditions, whereas under p-hacking the TES was, except under effect heterogeneity, slightly better. The CTs were, however, inferior to the other tests under effect homogeneity and had a decent statistical power only in conditions with 1,000 primary studies. Discussion The FAT is recommended as a test for publication bias in standard meta-analyses with no or only small effect heterogeneity. If two-sided publication bias is suspected as well as under p-hacking the TES is the first alternative to the FAT. The 5%-caliper test is recommended under conditions of effect heterogeneity and a large number of primary studies, which may be found if publication bias is examined in a

  10. Field scale test of multi-dimensional flow and morphodynamic simulations used for restoration design analysis (United States)

    McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan


    Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.

  11. Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code (United States)

    Assari, Amin; Mohammadi, Zargham


    Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.

  12. Recycle Waste Collection Tank (RWCT) simulant testing in the PVTD feed preparation system

    Energy Technology Data Exchange (ETDEWEB)

    Abrigo, G.P.; Daume, J.T.; Halstead, S.D.; Myers, R.L.; Beckette, M.R.; Freeman, C.J.; Hatchell, B.K.


    (This is part of the radwaste vitrification program at Hanford.) RWCT was to routinely receive final canister decontamination sand blast frit and rinse water, Decontamination Waste Treatment Tank bottoms, and melter off-gas Submerged Bed Scrubber filter cake. In order to address the design needs of the RWCT system to meet performance levels, the PNL Vitrification Technology (PVTD) program used the Feed Preparation Test System (FPTS) to evaluate its equipment and performance for a simulant of RWCT slurry. (FPTS is an adaptation of the Defense Waste Processing Facility feed preparation system and represents the initially proposed Hanford Waste Vitrification Plant feed preparation system designed by Fluor-Daniel, Inc.) The following were determined: mixing performance, pump priming, pump performance, simulant flow characterization, evaporator and condenser performance, and ammonia dispersion. The RWCT test had two runs, one with and one without tank baffles.

  13. Advanced thermal energy management: A thermal test bed and heat pipe simulation (United States)

    Barile, Ronald G.


    Work initiated on a common-module thermal test simulation was continued, and a second project on heat pipe simulation was begun. The test bed, constructed from surplus Skylab equipment, was modeled and solved for various thermal load and flow conditions. Low thermal load caused the radiator fluid, Coolanol 25, to thicken due to its temperature avoided by using a regenerator-heat-exchanger. Other possible solutions modeled include a radiator heater and shunting heat from the central thermal bus to the radiator. Also, module air temperature can become excessive with high avionics load. A second preoject concerning advanced heat pipe concepts was initiated. A program was written which calculates fluid physical properties, liquid and vapor pressure in the evaporator and condenser, fluid flow rates, and thermal flux. The program is directed to evaluating newer heat pipe wicks and geometries, especially water in an artery surrounded by six vapor channels. Effects of temperature, groove and slot dimensions, and wick properties are reported.

  14. Simulation tests of the optimization method of Hopfield and Tank using neural networks (United States)

    Paielli, Russell A.


    The method proposed by Hopfield and Tank for using the Hopfield neural network with continuous valued neurons to solve the traveling salesman problem is tested by simulation. Several researchers have apparently been unable to successfully repeat the numerical simulation documented by Hopfield and Tank. However, as suggested to the author by Adams, it appears that the reason for those difficulties is that a key parameter value is reported erroneously (by four orders of magnitude) in the original paper. When a reasonable value is used for that parameter, the network performs generally as claimed. Additionally, a new method of using feedback to control the input bias currents to the amplifiers is proposed and successfully tested. This eliminates the need to set the input currents by trial and error.

  15. Numerical simulations of the ISO 13785-2 façade fire tests

    Directory of Open Access Journals (Sweden)

    Hostikka Simo


    Full Text Available In this work we created a numerical model of the ISO 13785-2 test setup for testing the fire behaviour of building façade systems, and used the model to simulate the thermal environment on the façade. The model, created using Fire Dynamics Simulator –software, was first validated using the experimental data by Yoshioka et al.(2012. Next, the sensitivity of the façade heat fluxes on the geometrical and model parameters was studied, revealing for instance that the size of the combustion chamber window will influence the thermal exposure high above the window. Finally, the model was used to estimate the thickness of non-combustible insulation layer that is needed to protect combustible materials from melting or decomposition.

  16. Functional Assessment of Battery Management System Tested on Hardware-in-the-Loop Simulator

    DEFF Research Database (Denmark)

    Kalogiannis, Theodoros; Stroe, Daniel-Ioan; Swierczynski, Maciej Jozef


    A Hardware-in-the-Loop (HIL) simulator renders possible to conduct on-line tests on Battery Management Systems (BMSs) with an emulated battery pack instead of a real one. In this case, the BMS can be repeatedly evaluated under the exact same experimental scenarios, with safety and accuracy......, or under a flexible and beyond the normal operation area range, with less cost and time efforts. For this purpose, a multi-cell Li-ion battery pack consisting of 32 cells in series has been implemented and validated based on experimental results, converted into C code and emulated through the HIL simulator....... The BMS under test is interacting in real-time with the emulated battery pack and several of its functions such as current, voltage and State of Charge (SOC) estimation are evaluated. Also, passive balancing experiments are conducted during charging in order to assess different balancing settings...

  17. Design, Construction, Test, Operation and Simulation of a Four Channel Cosmic Ray Detector (United States)

    Martínez, A.; Félix, J.


    Cosmic ray detectors are constructed to fit many purposes, different materials and geometries. To test materials and to measure the flux of cosmic rays, we planned, designed, constructed, tested and operated a 4 channel cosmic ray detector based on 2.54 cm X 10.32 cm X 20.64 cm Aluminum block and two 0.6 cm X 10.32 cm X 20.64 cm plastic scintillators completely covered with 0.2 cm thick Aluminum foil. The signal, produced by the passage of cosmic rays, was read out using a Hamamatsu photomultiplier in both the Aluminum block and plastic scintillator. The performance of this detector was simulated using GEANT 4. The efficiency of the cosmic ray detector was measured to give 85% approximately. Details of construction, operation, simulation, and preliminary results are presented.

  18. Aerodynamic testing model guided missiles with jets simulations in the T-35 wind tunnel

    Directory of Open Access Journals (Sweden)

    Ocokoljić Goran J.


    Full Text Available Testing of the Anti-Tank Missile with jets simulations in the T-35 wind tunnel is part of the development program of short range anti-tank system. The main task of this experiment was to provide an experimental data base for estimation of real jets influence. Analysis was presented for Mach number 0.2, model configurations with and without jets, and three jet tabs positions: tabs out of the jets, upper or lower tabs in the jets. Missile model designed that instead of the products of combustion through nozzles allow high pressure air corresponding mass flow. In additional to the wind tunnel test results the paper, also presents the results of CFD simulations. The results are presented by normal force and pitching moment coefficients.

  19. Parametric and nonparametric two-sample tests for feature screening in class comparison: a simulation study

    Directory of Open Access Journals (Sweden)

    Elena Landoni


    Full Text Available Background. The identification of a location-, scale- and shape-sensitive test to detect differentially expressed features between two comparison groups represents a key point in high dimensional studies. The most commonly used tests refer to differences in location, but general distributional discrepancies might be important to reveal differential biological processes.                                                         Methods. A simulation study was conducted to compare the performance of a set of two-sample tests, i.e. Student's t, Welch's t, Wilcoxon-Mann-Whitney, Podgor-Gastwirth PG2, Cucconi, Kolmogorov-Smirnov (KS, Cramer-von Mises (CvM, Anderson-Darling (AD and Zhang tests (ZK, ZC and ZA which were investigated under different distributional patterns. We applied the same tests to a real data example.                   Results. AD, CvM, ZA and ZC tests proved to be the most sensitive tests in mixture distribution patterns, while still maintaining a high power in normal distribution patterns. At best, the AD test showed a loss in power of ~ 2% in the comparison of two normal distributions, but a gain of ~ 32% with mixture distributions respect to the parametric tests. Accordingly, the AD test detected the greatest number of differentially expressed features in the real data application.   Conclusion. The tests for the general two-sample problem introduce a more general concept of 'differential expression', thus overcoming the limitations of the other tests restricted to specific moments of the feature distributions. In particular, the AD test should be considered as a powerful alternative to the parametric tests for feature screening in order to keep as many discriminative features as possible for the class prediction analysis.

  20. An Analysis of Air Force Avionic Test Station Utilization Using Q-Gert Modeling and Simulation. (United States)


    repair times drawn from a Lognormal distribution [15]. As each LPU completes the service activity, the test station resource is freed and made available...71 make the availability of a spare LPU necessary before the failed LRU may be processed for repair. Pegular node-72 is neces- sary since in Q-GERT, a...of LRUs will begin and will continue until all queues are empty and the last LPU is repaired. At such time the simulation will stop since no

  1. FY2014 Vehicle and Systems Simulation and Testing Annual Progress Report

    Energy Technology Data Exchange (ETDEWEB)



    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to advancing light-, medium-, and heavy-duty vehicle systems to help maximize the number of electric miles driven and increase the energy efficiency of transportation vehicles.

  2. Numerical simulations of tests masonry walls from ceramic block using a detailed finite element model

    Directory of Open Access Journals (Sweden)

    V. Salajka


    Full Text Available This article deals with an analysis of the behaviour of brick ceramic walls. The behaviour of the walls was analysed experimentally in order to obtain their bearing capacity under static loading and their seismic resistance. Simultaneously, numerical simulations of the experiments were carried out in order to obtain additional information on the behaviour of masonry walls made of ceramic blocks. The results of the geometrically and materially nonlinear computations were compared to the results of the performed tests.

  3. Anxiolytic-like effect of oxytocin in the simulated public speaking test. (United States)

    de Oliveira, Danielle C G; Zuardi, Antonio W; Graeff, Frederico G; Queiroz, Regina H C; Crippa, José A S


    Oxytocin (OT) is known to be involved in anxiety, as well as cardiovascular and hormonal regulation. The objective of this study was to assess the acute effect of intranasally administered OT on subjective states, as well as cardiovascular and endocrine parameters, in healthy volunteers (n = 14) performing a simulated public speaking test. OT or placebo was administered intranasally 50 min before the test. Assessments were made across time during the experimental session: (1) baseline (-30 min); (2) pre-test (-15 min); (3) anticipation of the speech (50 min); (4) during the speech (1:03 h), post-test time 1 (1:26 h), and post-test time 2 (1:46 h). Subjective states were evaluated by self-assessment scales. Cortisol serum and plasma adrenocorticotropic hormone (ACTH) were measured. Additionally, heart rate, blood pressure, skin conductance, and the number of spontaneous fluctuations in skin conductance were measured. Compared with placebo, OT reduced the Visual Analogue Mood Scale (VAMS) anxiety index during the pre-test phase only, while increasing sedation at the pre-test, anticipation, and speech phases. OT also lowered the skin conductance level at the pre-test, anticipation, speech, and post-test 2 phases. Other parameters evaluated were not significantly affected by OT. The present results show that OT reduces anticipatory anxiety, but does not affect public speaking fear, suggesting that this hormone has anxiolytic properties.

  4. Crash Testing and Simulation of a Cessna 172 Aircraft: Pitch Down Impact Onto Soft Soil (United States)

    Fasanella, Edwin L.; Jackson, Karen E.


    During the summer of 2015, NASA Langley Research Center conducted three full-scale crash tests of Cessna 172 (C-172) aircraft at the NASA Langley Landing and Impact Research (LandIR) Facility. The first test represented a flare-to-stall emergency or hard landing onto a rigid surface. The second test, which is the focus of this paper, represented a controlled-flight-into-terrain (CFIT) with a nose-down pitch attitude of the aircraft, which impacted onto soft soil. The third test, also conducted onto soil, represented a CFIT with a nose-up pitch attitude of the aircraft, which resulted in a tail strike condition. These three crash tests were performed for the purpose of evaluating the performance of Emergency Locator Transmitters (ELTs) and to generate impact test data for model validation. LS-DYNA finite element models were generated to simulate the three test conditions. This paper describes the model development and presents test-analysis comparisons of acceleration and velocity time-histories, as well as a comparison of the time sequence of events for Test 2 onto soft soil.

  5. RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Qun; /KIPAC, Menlo Park; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study


    The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.

  6. CFD Simulations of the Supersonic Inflatable Aerodynamic Decelerator (SIAD) Ballistic Range Tests (United States)

    Brock, Joseph; Stern, Eric; Wilder, Michael


    A series of ballistic range tests were performed on a scaled model of the Supersonic Flight Demonstration Test (SFDT) intended to test the Supersonic Inflatable Aerodynamic Decelerator (SIAD) geometry. The purpose of these experiments were to provide aerodynamic coefficients of the vehicle to aid in mission and vehicle design. The experimental data spans the moderate Mach number range, $3.8-2.0$, with a total angle of attack ($alpha_T$) range, $10o-20o$. These conditions are intended to span the Mach-$alpha$ space for the majority of the SFDT experiment. In an effort to validate the predictive capabilities of Computational Fluid Dynamics (CFD) for free-flight aerodynamic behavior, numerical simulations of the ballistic range experiment are performed using the unstructured finite volume Navier-Stokes solver, US3D. Comparisons to raw vehicle attitude, and post-processed aerodynamic coefficients are made between simulated results and experimental data. The resulting comparisons for both raw model attitude and derived aerodynamic coefficients show good agreement with experimental results. Additionally, near body pressure field values for each trajectory simulated are investigated. Extracted surface and wake pressure data gives further insights into dynamic flow coupling leading to a potential mechanism for dynamic instability.

  7. Crash Simulation of a Vertical Drop Test of a Commuter-Class Aircraft (United States)

    Jackson, Karen E.; Fasanella, Edwin L.


    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-ft/s (9.14-m/s) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kg) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial code for performing explicit transient dynamic simulations. Predictions of structural deformation and selected time-history responses were generated. The simulation was successfully validated through extensive test-analysis correlation.

  8. Numerical simulations of LNG vapor dispersion in Brayton Fire Training Field tests with ANSYS CFX. (United States)

    Qi, Ruifeng; Ng, Dedy; Cormier, Benjamin R; Mannan, M Sam


    Federal safety regulations require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. One tool that is being developed in industry for exclusion zone determination and LNG vapor dispersion modeling is computational fluid dynamics (CFD). This paper uses the ANSYS CFX CFD code to model LNG vapor dispersion in the atmosphere. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the atmospheric conditions, LNG evaporation rate and pool area, turbulence in the source term, ground surface temperature and roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate uncertainties in the simulation results arising from the mesh size and source term turbulence intensity. In addition, a set of medium-scale LNG spill tests were performed at the Brayton Fire Training Field to collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX was able to describe the dense gas behavior of LNG vapor cloud, and its prediction results of downwind gas concentrations close to ground level were in approximate agreement with the test data. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Active tower damping and pitch balancing - design, simulation and field test (United States)

    Duckwitz, Daniel; Shan, Martin


    The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.

  10. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others


    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  11. Design of full scale wave simulator for testing Power Take Off systems for wave energy converters

    DEFF Research Database (Denmark)

    Pedersen, H. C.; Hansen, R. H.; Hansen, Anders Hedegaard


    For wave energy to become a major future contributor of renewable energy it is a requirement that the efficiency and reliability of the Power Take-Off (PTO) systems is significantly improved. However, the cost of installing and testing PTO-systems at sea is very high. The focus of the current paper...... is therefore on the design and commissioning of a full scale wave simulator for testing PTO-systems for point absorbers. The challenge is to be able to design a system, which mimics the behavior of a wave when interacting with a given PTO-system – especially when considering discrete type PTO...

  12. Combining Cavity for RF Power Sources Higher Power Testing and Further Simulation

    CERN Document Server

    Wooldridge, Emma; Rogers, James H P


    A combining cavity for RF power sources has been investigated previously reported in EPAC'04 using computer simulations in CSTs' Microwave Studio© and by building a low power model out of aluminium. The model has now been tested at higher power in a number different configurations and compared with earlier results. This paper discusses the results of the higher power test and options for a combiner that can be used at the high power required for particle accelerators. It discusses further design and future modelling.

  13. Corrosion tests of 316L and Hastelloy C-22 in simulated tank waste solutions

    Energy Technology Data Exchange (ETDEWEB)

    MJ Danielson; SG Pitman


    Both the 316L stainless steel and Hastelloy{reg_sign} C-22 gave satisfactory corrosion performance in the simulated test environments. They were subjected to 100 day weight loss corrosion tests and electrochemical potentiodynamic evaluation. This activity supports confirmation of the design basis for the materials of construction of process vessels and equipment used to handle the feed to the LAW-melter evaporator. BNFL process and mechanical engineering will use the information derived from this task to select material of construction for process vessels and equipment.

  14. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.


    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system.

  15. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.


    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  16. Ultrasonic sensor to characterize wood pulp during refining. (United States)

    Greenwood, M S; Panetta, P D; Bond, L J; McCaw, M W


    A novel sensor concept has been developed for measuring the degree of refining, the water retention value (WRV), and the weight percentage of wood pulp during the refining process. The measurement time is less than 5 min and the sensor can operate in a slip-stream of the process line or as an at-line instrument. The degree of refining and the WRV are determined from settling measurements. The settling of a pulp suspension (with a weight percentage less than 0.5 wt%) is observed, after the mixer, which keeps the pulp uniformly distributed, is turned off. The attenuation of ultrasound as a function of time is recorded and these data show a peak at a time designated as the "peak time." The peak time T increases with the degree of refining, as demonstrated by measuring pulp samples with known degrees of refining. The WRV can be determined using the relative peak time, defined as the ratio T(2)/T(1), where T(1) is an initial peak time and T(2) is the value after additional refining. This method offers an alternative WRV test for the industry to the current time-consuming method.

  17. Neutron Powder Diffraction and Constrained Refinement

    DEFF Research Database (Denmark)

    Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.


    The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement...

  18. The Refined Function-Behaviour-Structure Framework

    NARCIS (Netherlands)

    Diertens, B.


    We refine the function-behaviour-structure framework for design introduced by John Gero in order to deal with complexity. We do this by connecting the frameworks for the desing of two models, one the refinement of the other. The result is a refined framework for the design of an object on two levels

  19. Simulation of triaxial CD test from 'Koševo layers' applying Soft Soil model in software program PLAXIS

    Directory of Open Access Journals (Sweden)

    Mataradžija Milada A.


    Full Text Available For the purposes of defining the parameters of the model behavior 'Koševo layers' geomechanical laboratory tests were performed such as classification test and deformability test in oedometar test and shear strength test in consolidated undrained conditions (CU test and in consolidated drained conditions (CD test. Simulation of triaxial test in software package Plaxis was performed with several models. Model simulations with application of different models of soil behavior is trying to find out which model best supports the model behavior of the tested soil material. The paper presents the results of simulation of triaxial CD test with Soft Soil model in software package Plaxis, based on finite element method and a comparison with laboratory results.

  20. Liquid-Air Interface Corrosion Testing Simulating The Environment Of Hanford Double Shell Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murphy, T. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hicks, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)


    Coupon tests on A537 carbon steel materials were conducted to evaluate the Liquid-Air Interface (LAI) corrosion susceptibility in a series of solutions designed to simulate conditions in the radioactive waste tanks located at the Hanford Nuclear Facility. The new stress corrosion cracking requirements and the impact of ammonia on LAI corrosion were the primary focus. The minimum R value (i.e., molar ratio of nitrite to nitrate) of 0.15 specified by the new stress corrosion cracking requirements was found to be insufficient to prevent pitting corrosion at the LAI. The pH of the test solutions was 10, which was actually less than the required pH 11 defined by the new requirements. These tests examined the effect of the variation of the pH due to hydroxide depletion at the liquid air interface. The pits from the current testing ranged from 0.001 to 0.008 inch in solutions with nitrate concentrations of 0.4 M and 2.0 M. The pitting and general attack that occurred progressed over the four-months. No significant pitting was observed, however, for a solution with a nitrate concentration of 4.5 M. The pitting depths observed in these partial immersion tests in unevaporated condensates ranged from 0.001 to 0.005 inch after 4 months. The deeper pits were in simulants with low R values. Simulants with R values of approximately 0.6 to 0.8 appeared to significantly reduce the degree of attack. Although, the ammonia did not completely eliminate attack at the LAI, the amount of corrosion in an extremely corrosive solution was significantly reduced. Only light general attack (< 1 mil) occurred on the coupon in the vicinity of the LAI. The concentration of ammonia (i.e., 50 ppm or 500 ppm) did not have a strong effect.