WorldWideScience

Sample records for testing plug-in hybrid

  1. Electric and Plug-In Hybrid Electric Fleet Vehicle Testing | Transportation

    Science.gov (United States)

    Research | NREL Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations Electric and Plug-In Hybrid Electric Fleet Vehicle Evaluations How Electric and Plug-In Hybrid Electric Vehicles plugging the vehicle into an electric power source. PHEVs are powered by an internal combustion engine that

  2. Plug-In Hybrid Electric Vehicle Basics | NREL

    Science.gov (United States)

    Plug-In Hybrid Electric Vehicle Basics Plug-In Hybrid Electric Vehicle Basics Imagine being able to one that's in a standard hybrid electric vehicle. The larger battery pack allows plug-in hybrids to between fill-ups) that's very similar to the range of a conventional vehicle. A plug-in hybrid vehicle's

  3. Ford C-Max plug-in hybrid; Ford C-Max mit Plug-in-Hybridtechnik

    Energy Technology Data Exchange (ETDEWEB)

    Schamel, Andreas; D' Annunzio, Julie; Iorio, Rob [Ford Motor Company, Dearborn, MI (United States); Schmitz, Peter [Ford-Forschungszentrum Aachen GmbH, Aachen (Germany)

    2013-03-01

    Ford provides consumers a broad choice of electrified vehicles globally, including full hybrids, plug-in hybrids and all-electric vehicles. The all-new 2013 model year C-Max Energi Plug-in Hybrid utilises the third generation of Ford hybrid technology. This article discusses the hybrid powersplit architecture and components, as well as the charging capability and human-machine interfaces, used in the C-Max Energi Plug-In Hybrid. (orig.)

  4. Hybrid and plug-in hybrid electric vehicle performance testing by the US Department of Energy Advanced Vehicle Testing Activity

    Science.gov (United States)

    Karner, Donald; Francfort, James

    The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and vehicle development programs. The AVTA has tested full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting baseline performance, battery benchmark and fleet tests of hybrid electric vehicles (HEV) and plug-in hybrid electric vehicles (PHEV). Testing has included all HEVs produced by major automotive manufacturers and spans over 2.5 million test miles. Testing is currently incorporating PHEVs from four different vehicle converters. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory.

  5. Plug-in hybrid electric vehicle R&D plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  6. Manitoba plug-in hybrid electric vehicle (PHEV) demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Hoemsen, R. [Red River College, Winnipeg, MB (Canada); Parsons, R. [Government of Manitoba, Winnipeg, MB (Canada). Centre for Emerging Renewable Energy

    2010-07-01

    Manitoba has low electricity rates, the highest proportion of renewables, and a legislated commitment to reduce greenhouse gases. However, the province still relies heavily on oil as everyone else. The mix of energy opportunities in Manitoba were highlighted in this presentation, with particular reference to the commercialization of electric vehicles. Several photographs were presented of the Toyota plug-in hybrid vehicle and a plug-in hybrid electric demonstration vehicle. A demonstration project overview was offered that used technology from A123 Systems Inc. The conversion module and vehicle users were profiled. Topics that were presented related to the demonstration project included monitoring; gasoline fuel economy results; fuel economy variability; cold weather operation; cold weather issues; battery upgrade solutions; and highly qualified personnel. It was concluded that in terms of follow-up, there is a need to combine findings of current plug-in hybrid electric vehicle demonstration with those for the new Toyota production plug-in hybrid vehicles. Key next steps for the demonstration are to address cabin heating requirements; better characterizing winter performance; and implementation of IPLC units on all plug-in hybrid electric vehicles for electricity consumption. figs.

  7. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle

    Science.gov (United States)

    Conversions Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative

  8. Report on electric cars and plug-in hybrid cars; Redegoerelse - elbiler og plug-in hybridbiler

    Energy Technology Data Exchange (ETDEWEB)

    Elkjaer Toennesen, A.; Winther, K.; Noerregaard, K. (Teknologisk Institut, Taastrup (Denmark)); Larsen, Esben; Christensen, Linda; Kveiborg, O. (Danmarks Teknologiske Univ., Kgs. Lyngby (DTU) (Denmark))

    2010-04-15

    The Center for Green Transport at the Danish Transport Authority has prepared this statement in order to uncover driving technical aspects, user expectations and needs, and the environmental consequences of using electric and plug-in hybrid cars. An electric car is defined as a car driven by an electric motor that has a battery that can be charged with power from the grid. A plug-in hybrid car is defined as a car that combines gasoline or diesel engine with an electric motor with a battery which can be recharged with power from the grid. From an overall consideration related to the transport sector electric cars and plug-in hybrid cars have the major advantage that negative impacts on environment and climate from traffic can be reduced while the high mobility is maintained. Through an increased use of electric cars and plug-in hybrid cars, the many advantages attached to the car as an individual transportation form is maintained, while CO{sub 2} emissions etc. are reduced. Electric cars and plug-in hybrid cars is one of the technologies that are considered to have particularly great prospects in the medium term when it comes to promoting new technologies in transport. Another advantage of using electric vehicles is the power supply factor. An increased use of electricity in transport will reduce the need for and dependence on fossil fuels in the sector. Both electric cars and plug-in hybrid cars are expected to be used for storage of wind power, a possibility which is hardly available today. The plug-in hybrid car could meet some of the challenges facing the pure electric car, because it also can use conventional fuel. The report presents analyses based on three focus areas: a) Users' needs, expectations and economics in relation to vehicles; b) The technology - and hence the manufacturers' opportunities and challenges; c) Connection to the power grid. (ln)

  9. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  10. Implementation and evaluation of change-over speed in plug-in hybrid electric two wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Sadagopan, P.; Neelakrishnan, S.

    2016-01-01

    In Asia, two wheelers are popular mode of transportation to a large group of people because of their relative affordability and ability to maneuver in heavy city traffic. However, the rate of fuel consumption and emission contribution by them, especially in urban areas need more attention to improve sustainability of energy and air quality. Recently, plug-in hybrid technology has been emerged as one of the most promising alternatives in reducing petroleum consumption and emission. This paper presents the implementation of plug-in hybrid technology on a two wheeler by formulation of novel control strategy suitable for Indian city driving needs. Experimental investigations on hub motor and IC (internal combustion) engine has been carried out to fix the change-over speed in hybrid mode, followed by road test on prototype vehicle. The performance of prototype vehicle on IDC (Indian driving cycle) simulated road pattern and actual road driving, confirmed the change-over speed of vehicle in hybrid mode. The converted plug-in hybrid electric two wheeler also demonstrated the drive strategy adopted for higher energy efficiency up to 2.5 times. So, plug-in hybrid electric two wheelers show significant improvements in fuel economy by replacing petroleum fuel with electricity for portions of trip to achieve nations' energy security. - Highlights: • Implementation of plug-in hybrid concept for two wheelers suitable for city driving. • Investigation on hub motor, engine and prototype vehicle to fix change-over speed. • Plug-in hybrid electric two wheeler demonstrates 2.48 times higher fuel efficiency. • Significant improvements in fuel economy help to achieve nations' energy security.

  11. Plug-in hybrid electric vehicles in dynamical energy markets

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; Bosch, P.P.J. van den

    2008-01-01

    The plug-in hybrid electric vehicle allows vehicle propulsion from multiple internal power sources. Electric energy from the grid can be utilized by means of the plug-in connection. An on-line energy management (EM) strategy is proposed to minimize the costs for taking energy from each power source.

  12. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  13. Cloud computing-based energy optimization control framework for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Yang, Chao; Li, Liang; You, Sixiong; Yan, Bingjie; Du, Xian

    2017-01-01

    Considering the complicated characteristics of traffic flow in city bus route and the nonlinear vehicle dynamics, optimal energy management integrated with clustering and recognition of driving conditions in plug-in hybrid electric bus is still a challenging problem. Motivated by this issue, this paper presents an innovative energy optimization control framework based on the cloud computing for plug-in hybrid electric bus. This framework, which includes offline part and online part, can realize the driving conditions clustering in offline part, and the energy management in online part. In offline part, utilizing the operating data transferred from a bus to the remote monitoring center, K-means algorithm is adopted to cluster the driving conditions, and then Markov probability transfer matrixes are generated to predict the possible operating demand of the bus driver. Next in online part, the current driving condition is real-time identified by a well-trained support vector machine, and Markov chains-based driving behaviors are accordingly selected. With the stochastic inputs, stochastic receding horizon control method is adopted to obtain the optimized energy management of hybrid powertrain. Simulations and hardware-in-loop test are carried out with the real-world city bus route, and the results show that the presented strategy could greatly improve the vehicle fuel economy, and as the traffic flow data feedback increases, the fuel consumption of every plug-in hybrid electric bus running in a specific bus route tends to be a stable minimum. - Highlights: • Cloud computing-based energy optimization control framework is proposed. • Driving cycles are clustered into 6 types by K-means algorithm. • Support vector machine is employed to realize the online recognition of driving condition. • Stochastic receding horizon control-based energy management strategy is designed for plug-in hybrid electric bus. • The proposed framework is verified by simulation and hard-in

  14. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    International Nuclear Information System (INIS)

    Karabasoglu, Orkun; Michalek, Jeremy

    2013-01-01

    We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas emissions under various scenarios and simulated driving conditions. We find that driving conditions affect economic and environmental benefits of electrified vehicles substantially: Under the urban NYC driving cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20% relative to conventional vehicles (CVs). In contrast, under highway test conditions (HWFET) electrified vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple life cycle emissions and increase costs of conventional vehicles by 30%, while aggressive driving (US06) reduces the all-electric range of plug-in vehicles by up to 45% compared to milder test cycles (like HWFET). Vehicle window stickers, fuel economy standards, and life cycle studies using average lab-test vehicle efficiency estimates are therefore incomplete: (1) driver heterogeneity matters, and efforts to encourage adoption of hybrid and plug-in vehicles will have greater impact if targeted to urban drivers vs. highway drivers; and (2) electrified vehicles perform better on some drive cycles than others, so non-representative tests can bias consumer perception and regulation of alternative technologies. We discuss policy implications. - Highlights: • Electrified vehicle life cycle emissions and cost depend on driving conditions. • GHGs can triple in NYC conditions vs. highway (HWFET), cost +30%. • Under NYC conditions hybrid and plug-in vehicles cut GHGs up to 60%, cost 20%. • Under HWFET conditions they offer few GHG reductions at higher costs. • Federal tests for window labels and CAFE standards favor some technologies over others

  15. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Science.gov (United States)

    . Fueling and Driving Options Plug-in hybrid electric vehicle batteries can be charged by an outside sized hybrid electric vehicle. If the vehicle is driven a shorter distance than its all-electric range drives the wheels almost all of the time, but the vehicle can switch to work like a parallel hybrid at

  16. Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles

    Science.gov (United States)

    primary fuel or to improve the efficiency of conventional vehicle designs. Hybrid Electric Vehicles Icon cost and emissions with a conventional vehicle. Select Fuel/Technology Electric Hybrid Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Propane (LPG) Next Vehicle Cost

  17. Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [Electric Power Research Institute (EPRI), Palo Alto, CA (United States); Kosowski, Mark [Electric Power Research Institute (EPRI), Palo Alto, CA (United States)

    2015-10-01

    The Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program was sponsored by the United States Department of Energy (DOE) using American Recovery and Reinvestment Act of 2009 (ARRA) funding. The purpose of the program is to develop a path to migrate plug-in hybrid electric vehicle (PHEV) technology to medium-duty vehicles by demonstrating and evaluating vehicles in diverse applications. The program also provided three production-ready PHEV systems—Odyne Systems, Inc. (Odyne) Class 6 to 8 trucks, VIA Motors, Inc. (VIA) half-ton pickup trucks, and VIA three-quarter-ton vans. The vehicles were designed, developed, validated, produced, and deployed. Data were gathered and tests were run to understand the performance improvements, allow cost reductions, and provide future design changes. A smart charging system was developed and produced during the program. The partnerships for funding included the DOE; the California Energy Commission (CEC); the South Coast Air Quality Management District (SCAQMD); the Electric Power Research Institute (EPRI); Odyne; VIA; Southern California Edison; and utility and municipal industry participants. The reference project numbers are DOE FOA-28 award number EE0002549 and SCAQMD contract number 10659.

  18. The newly developed Toyota plug-in hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Takaoka, Toshifumi; Ichinose, Hiroki [Toyota Motor Corporation (Japan)

    2010-07-01

    Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to the automobile's concerns, like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which use clean electric energy, and HV, with it's high environmental potential and user- friendliness comparable to conventional vehicles, such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an affordable EV range without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV two years later. PHVs have the potential to become popular as a realistic solution towards sustainable mobility by renewable electricity usage in the future. (orig.)

  19. Particle swarm optimization of driving torque demand decision based on fuel economy for plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Shen, Peihong; Zhao, Zhiguo; Zhan, Xiaowen; Li, Jingwei

    2017-01-01

    In this paper, an energy management strategy based on logic threshold is proposed for a plug-in hybrid electric vehicle. The plug-in hybrid electric vehicle powertrain model is established using MATLAB/Simulink based on experimental tests of the power components, which is validated by the comparison with the verified simulation model which is built in the AVL Cruise. The influence of the driving torque demand decision on the fuel economy of plug-in hybrid electric vehicle is studied using a simulation. The optimization method for the driving torque demand decision, which refers to the relationship between the accelerator pedal opening and driving torque demand, from the perspective of fuel economy is formulated. The dynamically changing inertia weight particle swarm optimization is used to optimize the decision parameters. The simulation results show that the optimized driving torque demand decision can improve the PHEV fuel economy by 15.8% and 14.5% in the fuel economy test driving cycle of new European driving cycle and worldwide harmonized light vehicles test respectively, using the same rule-based energy management strategy. The proposed optimization method provides a theoretical guide for calibrating the parameters of driving torque demand decision to improve the fuel economy of the real plug-in hybrid electric vehicle. - Highlights: • The influence of the driving torque demand decision on the fuel economy is studied. • The optimization method for the driving torque demand decision is formulated. • An improved particle swarm optimization is utilized to optimize the parameters. • Fuel economy is improved by using the optimized driving torque demand decision.

  20. Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses

    International Nuclear Information System (INIS)

    Li, Liang; You, Sixiong; Yang, Chao; Yan, Bingjie; Song, Jian; Chen, Zheng

    2016-01-01

    Highlights: • The novel approximated global optimal energy management strategy has been proposed for hybrid powertrains. • Eight typical driving behaviors have been classified with K-means to deal with the multiplicative traffic conditions. • The stochastic driver models of different driving behaviors were established based on the Markov chains. • ECMS was used to modify the SMPC-based energy management strategy to improve its fuel economy. • The approximated global optimal energy management strategy for plug-in hybrid electric buses has been verified and analyzed. - Abstract: Driving cycles of a city bus is statistically characterized by some repetitive features, which makes the predictive energy management strategy very desirable to obtain approximate optimal fuel economy of a plug-in hybrid electric bus. But dealing with the complicated traffic conditions and finding an approximated global optimal strategy which is applicable to the plug-in hybrid electric bus still remains a challenging technique. To solve this problem, a novel driving-behavior-aware modified stochastic model predictive control method is proposed for the plug-in hybrid electric bus. Firstly, the K-means is employed to classify driving behaviors, and the driver models based on Markov chains is obtained under different kinds of driving behaviors. While the obtained driver behaviors are regarded as stochastic disturbance inputs, the local minimum fuel consumption might be obtained with a traditional stochastic model predictive control at each step, taking tracking the reference battery state of charge trajectory into consideration in the finite predictive horizons. However, this technique is still accompanied by some working points with reduced/worsened fuel economy. Thus, the stochastic model predictive control is modified with the equivalent consumption minimization strategy to eliminate these undesirable working points. The results in real-world city bus routines show that the

  1. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  2. Hybrid, plug-in hybrid, or electric—What do car buyers want?

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.

    2013-01-01

    We use a survey to compare consumers’ stated interest in conventional gasoline (CV), hybrid (HEV), plug-in hybrid (PHEV) and pure electric vehicles (EV) of varying designs and prices. Data are from 508 households representing new vehicle buyers in San Diego County, California in 2011. The mixed-mode survey collected information about access to residential recharge infrastructure, three days of driving patterns, and desired vehicle designs and motivations via design games. Across the higher and lower price scenarios, a majority of consumers designed and selected some form of PHEV for their next new vehicle, smaller numbers designed an HEV or a conventional vehicle, and only a few percent designed an EV. Of those who did not design an EV, the most frequent concerns with EVs were limited range, charger availability, and higher vehicle purchase prices. Positive interest in HEVs, PHEVs and EVs was associated with vehicle images of intelligence, responsibility, and support of the environment and nation (United States). The distribution of vehicle designs suggests that cheaper, smaller battery PHEVs may achieve more short-term market success than larger battery PHEVs or EV. New car buyers’ present interests align with less expensive first steps in a transition to electric-drive vehicles. - Highlights: • We assess consumer interest in various electric-drive vehicle designs. • Web-based design games completed by 508 households from San Diego, California. • Plug-in hybrids are most popular, followed by hybrids and conventional vehicles. • Only a few percent opted for a pure electric vehicle. • Electric-drive associated with intelligence, responsibility, and environment

  3. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Tribioli, L., E-mail: laura.tribioli@unicusano.it; Cozzolino, R. [Dept. of Industrial Engineering, University of Rome Niccolo’ Cusano (Italy); Barbieri, M. [Engineering Dept., University of Naples Parthenope, Centro Direzionale-Isola C4, 80143 Naples (Italy)

    2015-03-10

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared.

  4. Optimal control of a repowered vehicle: Plug-in fuel cell against plug-in hybrid electric powertrain

    International Nuclear Information System (INIS)

    Tribioli, L.; Cozzolino, R.; Barbieri, M.

    2015-01-01

    This paper describes two different powertrain configurations for the repowering of a conventional vehicle, equipped with an internal combustion engine (ICE). A model of a mid-sized ICE-vehicle is realized and then modified to model both a parallel plug-in hybrid electric powertrain and a proton electrolyte membrane (PEM) fuel cell (FC) hybrid powertrain. The vehicle behavior under the application of an optimal control algorithm for the energy management is analyzed for the different scenarios and results are compared

  5. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Christophersen, Jon P. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  6. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    Energy Technology Data Exchange (ETDEWEB)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  7. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Markel, T.; Brooker, A.; Gonder, J.; O' Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  8. Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler

    International Nuclear Information System (INIS)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Sri Raja Varman, K.; Arjunan, T.V.

    2011-01-01

    Recently plug-in hybrid electric vehicles (PHEVs) are emerging as one of the promising alternative to improve the sustainability of transportation energy and air quality especially in urban areas. The all-electric range in PHEV design plays a significant role in sizing of battery pack and cost. This paper presents the evaluation of battery energy and power requirements for a plug-in hybrid electric two-wheeler for different all-electric ranges. An analytical vehicle model and MATLAB simulation analysis has been discussed. The MATLAB simulation results estimate the impact of driving cycle and all-electric range on energy capacity, additional mass and initial cost of lead-acid, nickel-metal hydride and lithium-ion batteries. This paper also focuses on influence of cycle life on annual cost of battery pack and recommended suitable battery pack for implementing in plug-in hybrid electric two-wheelers. -- Research highlights: → Evaluates the battery energy and power requirements for a plug-in hybrid electric two-wheeler. → Simulation results reveal that the IDC demand more energy and cost of battery compared to ECE R40. → If cycle life is considered, the annual cost of Ni-MH battery pack is lower than lead-acid and Li-ion.

  9. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  10. Consistent electrification of the powertrain in Mercedes-Benz cars. From micro hybrid to plug-in; Konsequente Elektrifizierung des Antriebsstrangs bei Mercedes-Benz Cars. Vom Micro-Hybrid bis zum Plug-In

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.; Henning, G.; Lamm, A.; Bitsche, O.; Antony, P.; Nietfeld, F. [Daimler AG (Germany)

    2010-07-01

    Electrifying vehicle drives is a major part of Daimler's strategy to realize sustained mobility. Electrification encompasses a wide range of concepts and system designs - from the micro hybrid to the plug-in. Economically priced micro hybrids were initially available in the smart fortwo as well as A-Class and B-Class model series and will be successively offered for other model series. Mild and full hybrids, which feature additional functionality, have already been successfully launched or will be available in the near future. The effort to continually advance innovative drive technology culminates in the SClass Plug-In. The lithium-ion battery plays a key role with its high energy density and efficiency. These vehicles and the drive technology they incorporate make it possible to meet the most stringent emissions standards as well as achieve very low fuel economy and CO{sub 2} emissions. (orig.)

  11. Configuration Analysis of Plug-in Hybrid Systems using Global Optimization

    OpenAIRE

    Kim, Insup; Kim, Hyunsup

    2013-01-01

    The purpose of the study is to analyze the configurations of Plug-in Hybrid Electric Vehicles (PHEV) with respect to fuel economy. Existing studies mostly focus on hybrid systems or few PHEV systems by only considering power split ratio and component efficiency. This paper adds original contribution to these literatures. First of all, this study compares and analyzes “series + α” PHEV – Input split, Series-output split and Series-parallel, which is consisted of a single Planetary gear or spur...

  12. Test plan: Potash Core Test. WIPP experimental program borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.

    1979-09-01

    The Potash Core Test will utilize a WIPP emplaced plug to obtain samples of an in-situ cured plug of known mix constituents for bench scale testing. An earlier effort involved recovery at the salt horizon of Plug 217, a 17 year old plug in a potash exploration hole for bond testing, but the lack of particulars in the emplacement precluded significant determination of plug performance

  13. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    International Nuclear Information System (INIS)

    Morais, H.; Sousa, T.; Soares, J.; Faria, P.; Vale, Z.

    2015-01-01

    Highlights: • Definition fuel shifting demand response programs applied to the electric vehicles. • Integration of the proposed fuel shifting in energy resource management algorithm. • Analysis of fuel shifting contribution to support the consumption increasing. • Analysis of fuel shifting contribution to support the electric vehicles growing. • Sensitivity analysis considering different electric vehicles penetration levels. - Abstract: In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required

  14. Kansas Consortium Plug-in Hybrid Medium Duty

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative

  15. Test Confessions : A Study of Testing Practices for Plug-in Systems

    NARCIS (Netherlands)

    Greiler, M.; Van Deursen, A.; Storey, M.A.

    2011-01-01

    Testing plug-in-based systems is challenging due to complex interactions among many different plug-ins, and variations in version and configuration. The objective of this paper is to increase our understanding of what testers and developers think and do when it comes to testing plug-inbased systems.

  16. Distributed energy resources management using plug-in hybrid electric vehicles as a fuel-shifting demand response resource

    DEFF Research Database (Denmark)

    Morais, Hugo; Sousa, Tiago; Soares, J.

    2015-01-01

    In the smart grids context, distributed energy resources management plays an important role in the power systems' operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important...... to develop adequate methodologies to schedule the electric vehicles' charge and discharge processes, avoiding network congestions and providing ancillary services.This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed......, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting...

  17. Model-based design approaches for plug-in hybrid vehicle design

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis

    2007-07-01

    A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.

  18. In-use measurement of activity, energy use, and emissions of a plug-in hybrid electric vehicle.

    Science.gov (United States)

    Graver, Brandon M; Frey, H Christopher; Choi, Hyung-Wook

    2011-10-15

    Plug-in hybrid electric vehicles (PHEVs) could reduce transportation air emissions and energy use. However, a method is needed for estimating on-road emissions of PHEVs. To develop a framework for quantifying microscale energy use and emissions (EU&E), measurements were conducted on a Toyota Prius retrofitted with a plug-in battery system on eight routes. Measurements were made using the following: (1) a data logger for the hybrid control system; (2) a portable emissions measurement system; and (3) a global positioning system with barometric altimeter. Trends in EU&E are estimated based on vehicle specific power. Energy economy is quantified based on gasoline consumed by the engine and grid energy consumed by the plug-in battery. Emissions from electricity consumption are estimated based on the power generation mix. Fuel use is approximately 30% lower during plug-in battery use. Grid emissions were higher for CO₂, NO(x), SO₂, and PM compared to tailpipe emissions but lower for CO and hydrocarbons. EU&E depends on engine and plug-in battery operation. The use of two energy sources must be addressed in characterizing fuel economy; overall energy economy is 11% lower if including grid energy use than accounting only for fuel consumption.

  19. Field-test programs of borehole plugs in southeastern New Mexico

    International Nuclear Information System (INIS)

    Christensen, C.L.; Peterson, E.W.

    1981-01-01

    This paper gives a general overview of the repository-sealing field test effort being conducted by Sandia National Laboratories in support of the Waste Isolation Pilot Plant in southeast New Mexico. Summary descriptions of supporting activities, such as performance assessment and plugging materials development, are included to create the connection between modeling and laboratory activities as they relate to field results. Results of tests on a portion of a 17-year-old plug (Plug 217) recovered from a mine horizon and the Bell Canyon Test, in which a cement plug was emplaced to isolate a naturally pressurized aquifer, are given. Conclusions from these field plugging tests are included

  20. Integration of plug-in hybrid cars in the promotion of intelligent distribution networks; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen (Vorstudie) - Schlussbericht / 2 2008

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2008-08-15

    This final report for the Swiss Federal Office of Energy (SFOE) reviews work done as part of a preliminary study concerning the use of plug-in hybrid cars as part of a system for the regulation of energy in electricity supply grids. The 'Vehicle to Grid' concept is discussed. This involves hybrid vehicles with higher accumulator capacities, reversible charger units as well as appropriate connector technologies and communication systems. This 'smart grid' concept is looked at and the players involved are introduced. The advantages and disadvantages of such a system are discussed.

  1. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  2. Consumer adoption and grid impact models for plug-in hybrid electric vehicles in Wisconsin.

    Science.gov (United States)

    2010-05-01

    This proposed study focuses on assessing the demand for plug-in hybrid electric vehicles (PHEV) in Wisconsin and its economic : impacts on the States energy market and the electric grid. PHEVs are expected to provide a range of about 40 miles per ...

  3. Households' Stories of Their Encounters with a Plug-In Hybrid Electric Vehicle

    Science.gov (United States)

    Caperello, Nicolette D.; Kurani, Kenneth S.

    2012-01-01

    One way to progress toward greenhouse gas reductions is for people to drive plug-in hybrid electric vehicles (PHEVs). Households in this study participated in a 4- to 6-week PHEV driving trial. A narrative of each household's encounter with the PHEV was constructed by the researchers from multiple in-home interviews, questionnaires completed by…

  4. Cost Effectiveness Analysis of Quasi-In-Motion Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses from Fleet Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan; Gonder, Jeff; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud; Markel, Tony

    2016-05-16

    This study evaluated the costs and benefits associated with the use of stationary-wireless-power-transfer-enabled plug-in hybrid electric buses and determined the cost effectiveness relative to conventional buses and hybrid electric buses. A factorial design was performed over a number of different battery sizes, charging power levels, and f bus stop charging stations. The net present costs were calculated for each vehicle design and provided the basis for design evaluation. In all cases, given the assumed economic conditions, the conventional bus achieved the lowest net present cost while the optimal plug-in hybrid electric bus scenario beat out the hybrid electric comparison scenario. The parameter sensitivity was also investigated under favorable and unfavorable market penetration assumptions.

  5. Managing operations of plug-in hybrid electric vehicle (PHEV) exchange stations for use with a smart grid

    International Nuclear Information System (INIS)

    Nurre, Sarah G.; Bent, Russell; Pan, Feng; Sharkey, Thomas C.

    2014-01-01

    We consider a deterministic integer programming model for determining the optimal operations of multiple plug-in hybrid electric vehicle (PHEV) battery exchange stations over time. The operations include the number of batteries to charge, discharge, and exchange at each point in time over a set time horizon. We allow discharging of batteries back to the power grid, through vehicle-to-grid technology. We incorporate the exchange station's dependence on the power network, transportation network, and other exchange stations. The charging and discharging at these exchange stations lead to a greater amount of variability which creates a less predictable and flat power generation curve. We introduce and test three policies to smooth the power generation curve by balancing its load. Further, tests are conducted evaluating these policies while factoring wind energy into the power generation curve. These computational tests use realistic data and analysis of the results suggest general operating procedures for exchange stations and evaluate the effectiveness of these power flattening policies. - Highlights: • Model the operations of plug-in hybrid electric vehicle battery exchange stations. • Determine the optimal and general charging, discharging, and exchange operations. • Conclude that forced customer service levels are unnecessary with proper pricing. • Examine policies to reduce variability in power generation from PHEVs and wind. • Observe that strict constraints on exchange stations best reduce variability

  6. Comparison performance of split plug-in hybrid electric vehicle and hybrid electric vehicle using ADVISOR

    Directory of Open Access Journals (Sweden)

    Mohd Rashid Muhammad Ikram

    2017-01-01

    Full Text Available Electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This paper discusses the comparison between Split Plug-in Hybrid Electric Vehicle(SPHEV and Hybrid Electric Vehicle(HEV. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed.

  7. Integration of plug-in hybrid cars for the encouragement of intelligent power distribution structures; Integration von Plug-in-Hybrid Cars zur Foerderung intelligenter Verteilnetzstrukturen. Vorstudie

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.; Rigassi, R.

    2007-11-15

    This preliminary study for the Swiss Federal Office of Energy (SFOE) takes a look at how plug-in hybrid cars could be used to support the electricity supply in Switzerland. This study explains to what extent hybrid cars would be in a position to provide the services needed to regulate the Swiss electricity mains. Core elements of the concept known as 'Vehicle to Grid' (V2G) are presented. The requirements placed on the cars' equipment, including reversible battery chargers and communication equipment, are reviewed. Mains regulation systems are discussed, as are battery storage and the potential advantages offered by such a system. Challenges and hindrances to implementation are examined and initial feasibility studies are analysed. Questions still to be addressed are noted. A comprehensive appendix rounds off the report.

  8. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    OpenAIRE

    Yang Yang; Chao Wang; Quanrang Zhang; Xiaolong He

    2017-01-01

    Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-dow...

  9. Component sizing optimization of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

  10. Charging up for the future of plug-in hybrids and range extenders. An exploration of options for increased battery utilisation; Opladen voor de toekomst van plug-in hybrides en range extenders. Een verkenning naar mogelijkheden voor vergroten van het elektrische gebruik

    Energy Technology Data Exchange (ETDEWEB)

    Van Essen, H.; Schroten, A.; Aarnink, S.

    2013-05-15

    If the full potential of plug-in hybrids and electric cars with a range extender is to be usefully exploited, it is important that these vehicles be used in battery mode as much as possible. This means that users' charging and driving behaviour needs to be positively influenced. This can be achieved through suitably designed financial incentives on the part of employers and government, further expansion of battery-charging infrastructure, and transferring knowledge on driving style. Improved driving and charging behaviour will lead to lower effective fuel consumption, reduced CO2 emissions and improved air quality. These are some of the results of this study in which it is examined how the performance of plug-in hybrids and cars with a range extender can be improved. It is the first study to look into the factors governing practical usage of such vehicles and the options available to the various parties to improve that usage. To this end a literature study was carried out and interviews were held with employers, leasing companies, trade associations, government agencies and other parties [Dutch] Om het potentieel van plug-in hybrides en elektrische auto's met een range extender te benutten is het van belang dat deze auto's zoveel mogelijk elektrisch worden gereden. Hiervoor is het nodig om het oplaad- en rijgedrag van de gebruikers positief te beïnvloeden. Dit kan door het geven van slimme financiële prikkels door werkgevers en overheid, het verder uitbreiden van de laadinfrastructuur en kennisoverdracht over rijgedrag. Een verbeterd rij- en laadgedrag zorgt voor een lager brandstofpraktijkverbruik, minder CO2-uitstoot en een betere luchtkwaliteit. Dit staat onder meer in de studie 'Opladen voor de toekomst van plug-in hybrides en range extenders' van CE Delft, waarin op verzoek van de Nederlandse importeurs van Toyota en Opel is onderzocht hoe het elektrisch gebruik kan worden verbeterd. Hierin is voor het eerst gekeken naar de factoren

  11. Plug testing and removal tool

    International Nuclear Information System (INIS)

    Baric, T.J.; Kauric, C.E.; Garcia, C.N.

    1987-01-01

    This patent describes an apparatus for testing and removing a plug from an aperture in the cylindrical core barrel wall of a nuclear reactor. The plug has an enlarged head disposed along the wall in a narrow annular access space between the wall and a surrounding cylindrical thermal neutron shield. The apparatus comprises: fixed jaw means; movable jaw means pivotally connected to the fixed jaw means for movement with respect thereto between an open position accommodating reception of the plug head between the fixed and movable jaw means and a closed position for securely gripping the plug head between the fixed and movable jaw means; drive means carried by the fixed jaw means and coupled to the movable jaw means for effecting movement thereof between the open and closed positions thereof; and tensioning means carried by the jaw means for engagement with the core barrel when the jaw means are disposed in gripping engagement with the plug head for exerting on the jaw means and the gripped plug a predetermined force in a direction radially outwardly of the wall. The jaw means and the drive means and the tensioning means all have dimensions radially of the wall substantially less than the radial thickness of the access space to permit insertion into, movement within and removal from the access space

  12. Journey predictive energy management strategy for a plug-in hybrid electric vehicle

    OpenAIRE

    Dharmaraj Ram Manohar, Ravi Shankar

    2013-01-01

    The adoption of Plug-in Hybrid Electric Vehicles (PHEVs) is widely seen as an interim solution for the decarbonisation of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, d...

  13. Installation of the backfill and plug test

    International Nuclear Information System (INIS)

    Gunnarsson, D.; Borgesson, L.; Hokmark, H.; Hohannesson, L.E.; Sanden, T.

    2003-01-01

    The Backfill and Plug Test is a full scale test of backfill material, backfilling technique and a tunnel plug. The main objectives of the Backfill and Plug Test are: - to develop and test different materials and compaction techniques for backfilling of tunnels excavated by blasting; - to test the function of the backfill and its interaction with the surrounding rock in a tunnel excavated by blasting; - to develop technique for building tunnel plugs and to test the function. The installation was made in the Swedish underground laboratory, Aspo HRL, during 1999. The inner part of the tunnel is not used for the test but was filled with drainage material. The test volume, which is about 28 m long, can be divided into the following three parts: - the inner part filled with backfill containing 30% bentonite; - the outer part filled with backfill without bentonite and bentonite blocks and pellets at the roof; - the plug. Permeable layers divide the test volume into 11 test sections. The permeable layers are used for increasing the water saturation rate in the backfill and for applying hydraulic gradients between the layers for studying the flow of water in the backfill and in the near field rock. The permeable layers were installed every 2.2 m and each layer is divided into three units in order to separately measure the flow close to the roof, in the central areas of the tunnel and close to the floor. The outer part ends with a wall of prefabricated concrete beams that were used for temporary support of the backfill during the casting of the plug. The upper volume close to the plug is filled with bentonite pellets and blocks consisting of 20% bentonite and 80% sand. The backfill is instrumented with 34 pore water pressure cells, 21 total pressure cells, 57 sensors for monitoring the water saturation and 13 gauges for measuring the local hydraulic conductivity. The water pressures in the permeable mats are measured in all sections. Four pressure cylinders, 2 in the roof

  14. 'Plug-in hybrids and smart grids'

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Robert Horbaty from the ENCO Energy Consulting AG takes a look at how the amount of renewable energy in the electricity mains and the efficiency of mobility can be increased and pollution reduced at the same time. The integration of energy supply and electrically-powered mobility to help reduce the effects of intermittent power production from renewable sources of energy is discussed. The 'smart' technologies needed for integration and management are looked at. Examples of pilot projects are quoted and the effects of the liberalisation of the electricity markets are discussed. The advantages offered by plug-in hybrid vehicles are noted and load-shifting possibilities are discussed. Trends towards mains regulation using bi-directional charging facilities are noted.

  15. Component sizing optimization of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaolan; Cao, Binggang; Li, Xueyan; Xu, Jun; Ren, Xiaolong [School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-03-15

    Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance. (author)

  16. Plug-in hybrid electric vehicles in smart grid

    Science.gov (United States)

    Yao, Yin

    In this thesis, in order to investigate the impact of charging load from plug-in hybrid electric vehicles (PHEVs), a stochastic model is developed in Matlab. In this model, two main types of PHEVs are defined: public transportation vehicles and private vehicles. Different charging time schedule, charging speed and battery capacity are considered for each type of vehicles. The simulation results reveal that there will be two load peaks (at noon and in evening) when the penetration level of PHEVs increases continuously to 30% in 2030. Therefore, optimization tool is utilized to shift load peaks. This optimization process is based on real time pricing and wind power output data. With the help of smart grid, power allocated to each vehicle could be controlled. As a result, this optimization could fulfill the goal of shifting load peaks to valley areas where real time price is low or wind output is high.

  17. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  18. PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, M.R.; Markel, T.

    2008-01-01

    The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

  19. Knowledge basis concerning the market for electric vehicles and plug-in hybrids (KAMEL); Kunskapsunderlag angaaende marknaden foer elfordon och laddhybrider (KAMEL)

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    The Swedish Energy Agency is proposing a four-year demonstration and development program to support the market introduction of electric vehicles and plug-in hybrids (electric vehicle applications). This in light of the uncertainties in the market introduction of vehicles, cost of key components such as batteries, the possibility of industrial development in Sweden and the uncertainty of how to complement to existing charging infrastructure in an socioeconomic way. In addition to this, the more general aid to electric cars and plug-in hybrids is to be reviewed. Today, electric vehicles, hybrids, ethanol vehicles, bio-gas vehicles and fuel-efficient vehicles, are supported by the green car definition and the environmental classification system. Furthermore, ethanol vehicles and biogas vehicles have support through tax reduction for biofuels. Overall, community support for electric vehicles and plug-in hybrids is lower than for the introduction of ethanol vehicles and biogas vehicles which do not reflect the environmental benefits they have. The review of the general subsidies for electric vehicles and the support through a demonstration program represent a concerted strategy to overcome the initially very high additional cost of these vehicles

  20. Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications; Cooperative Research and Development Final Report, CRADA Number CRD-13-523

    Energy Technology Data Exchange (ETDEWEB)

    Lundstrom, Blake R. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-07-05

    The Commonwealth Scientific and Industrial Research Organisation (CSIRO) is Australia's national science agency. CSIRO received funding from the Australian Solar Institute (ASI) for the United States-Australia Solar Energy Collaboration (USASEC) project 1-USO032 Plug and Play Solar Power: Simplifying the Integration of Solar Energy in Hybrid Applications (Broader Project). The Australian Solar Institute (ASI) operated from August 2009 to December 2012 before being merged into the Australian Renewable Energy Agency (ARENA). The Broader Project sought to simplify the integration, accelerate the deployment, and lower the cost of solar energy in hybrid distributed generation applications by creating plug and play solar technology. CSIRO worked with the National Renewable Energy Laboratory (NREL) as set out in a Joint Work Statement to review communications protocols relevant to plug-and-play technology and perform prototype testing in its Energy System Integration Facility (ESIF). For the avoidance of doubt, this CRADA did not cover the whole of the Broader Project and only related to the work described in the Joint Work Statement, which was carried out by NREL.

  1. Resource Efficiency Assessment—Comparing a Plug-In Hybrid with a Conventional Combustion Engine

    Directory of Open Access Journals (Sweden)

    Martin Henßler

    2016-01-01

    Full Text Available The strong economic growth in recent years has led to an intensive use of natural resources, which causes environmental stress as well as restrictions on the availability of resources. Therefore, a more efficient use of resources is necessary as an important contribution to sustainable development. The ESSENZ method presented in this article comprehensively assesses a product’s resource efficiency by going beyond existing approaches and considering the pollution of the environment as well as the physical and socio-economic availability of resources. This paper contains a short description of the ESSENZ methodology as well as a case study of the Mercedes-Benz C-Class (W 205—comparing the conventional C 250 (petrol engine with the C 350 e Plug-In Hybrid (electric motor and petrol engine. By applying the ESSENZ method it can be shown that the use of more and different materials for the Plug-In-Hybrid influences the dimensions physical and socio-economic availability significantly. However, for environmental impacts, especially climate change and summer smog, clear advantages of the C 350 e occur due to lower demand of fossil energy carriers. As shown within the case study, the when applying the ESSENZ method a comprehensive evaluation of the used materials and fossil energy carriers can be achieved.

  2. Environmental Benefits of Using Wind Generation to Power Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Mahdi Hajian

    2011-08-01

    Full Text Available As alternatives to conventional vehicles, Plug-in Hybrid Electric Vehicles (PHEVs running off electricity stored in batteries could decrease oil consumption and reduce carbon emissions. By using electricity derived from clean energy sources, even greater environmental benefits are obtainable. This study examines the potential benefits arising from the widespread adoption of PHEVs in light of Alberta’s growing interest in wind power. It also investigates PHEVs’ capacity to mitigate natural fluctuations in wind power generation.

  3. Electricity-price arbitrage with plug-in hybrid electric vehicle: Gain or loss?

    International Nuclear Information System (INIS)

    Shang, Duo; Sun, Guodong

    2016-01-01

    Customers, utilities, and society can gain many benefits from distributed energy resources (DERs), including plug-in hybrid electric vehicles (PHEVs). Using battery on PHEV to arbitrage electricity price is one of the potential benefits to PHEV owners. There is, however, disagreement on the magnitude of such profit. This study uses a stochastic optimization model to estimate the potential profit from electricity price arbitrage of two types of PHEVs (PHEV-10, and PHEV-40) under three scenarios with variant electricity tariff and PHEV owners over a five-year period. The simulation results indicate that under current market structure, even with significant improvement in battery technologies (e.g., higher efficiency, lower cost), the PHEV owners can't achieve a positive arbitrage profit. This finding implies that expected arbitrage profit solely is not a viable option to engage PHEVs larger adoption. Subsidy and combining PHEV arbitraging with alternative PHEV services are required. - Highlights: •A stochastic optimization model is proposed to assess the arbitrage value of plug-in hybrid electric vehicle (PHEV). •Under current market condition, PHEV owners lose money from conducting PHEV arbitrage if counting battery degradation cost. •PHEV owner loses more money at real time pricing (RTP) than at time of use (TOU) scheme. •Battery improvement will reduce but can't even the arbitrage loss. •Expected arbitrage profit is not a viable option to engage PHEVs in dispatching and in providing ancillary services.

  4. Effect of plug-in hybrid electric vehicle adoption on gas tax revenue, local pollution, and greenhouse gas emissions.

    Science.gov (United States)

    2015-12-01

    Plug-in hybrid electric vehicles (PHEV) are likely to increase in popularity in the near future. However, the : environmental benefits of PHEVs involve tradeoffs between the benefits of reduced tailpipe emissions : against the drawbacks of increased ...

  5. Multi-objective component sizing of a power-split plug-in hybrid electric vehicle powertrain using Pareto-based natural optimization machines

    Science.gov (United States)

    Mozaffari, Ahmad; Vajedi, Mahyar; Chehresaz, Maryyeh; Azad, Nasser L.

    2016-03-01

    The urgent need to meet increasingly tight environmental regulations and new fuel economy requirements has motivated system science researchers and automotive engineers to take advantage of emerging computational techniques to further advance hybrid electric vehicle and plug-in hybrid electric vehicle (PHEV) designs. In particular, research has focused on vehicle powertrain system design optimization, to reduce the fuel consumption and total energy cost while improving the vehicle's driving performance. In this work, two different natural optimization machines, namely the synchronous self-learning Pareto strategy and the elitism non-dominated sorting genetic algorithm, are implemented for component sizing of a specific power-split PHEV platform with a Toyota plug-in Prius as the baseline vehicle. To do this, a high-fidelity model of the Toyota plug-in Prius is employed for the numerical experiments using the Autonomie simulation software. Based on the simulation results, it is demonstrated that Pareto-based algorithms can successfully optimize the design parameters of the vehicle powertrain.

  6. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Rames, Clement [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-15

    This report addresses the fundamental question of how much plug-in electric vehicle (PEV) charging infrastructure—also known as electric vehicle supply equipment (EVSE)—is needed in the United States to support both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs).

  7. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    Energy Technology Data Exchange (ETDEWEB)

    Bazzi, Abdullah [Chrysler Group LLC, Auburn Hills, MI (United States); Barnhart, Steven [Chrysler Group LLC, Auburn Hills, MI (United States)

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  8. Energy conversion phenomena in plug-in hybrid-electric vehicles

    International Nuclear Information System (INIS)

    Katrasnik, Tomaz

    2011-01-01

    Research highlights: → Energy conversion phenomena of PHEVs for different drive cycles and depletion rates of energy sources. → Detailed physically based framework for analyzing energy conversion phenomena in PHEVs. → Interaction of energy flows and energy losses with energy consumption of the PHEV. → Identification and explanation of mechanisms leading to optimal tank-to-wheel efficiency. → Analysis of well-to-wheel efficiencies for different realistic well-to-tank scenarios. -- Abstract: Energy flows and energy conversion efficiencies of commercial plug-in hybrid-electric vehicles (PHEV) are analyzed for parallel and series PHEV topologies. The analysis is performed by a combined analytical and simulation approach. Combined approach enables evaluation of energy losses on different energy paths and provides their impact on the energy consumption of the PHEV. Thereby the paper reveals energy conversion phenomena of different PHEV topologies operating according to charge depleting and charge sustaining modes as well as according to different test cycles. It is shown in the paper that amount of the energy depleted from both on-board energy sources is significantly influenced by the efficiencies of energy conversion chains from on-board energy sources to the wheels. It is also shown that energy used to power the PHEV according to particular test cycles varies based on its operating mode, which influences energy flows on different energy paths within the PHEVs and consequently overall energy consumed by the PHEV. The paper additionally discusses well-to-wheel efficiencies considering different realistic well-to-tank scenarios. It is shown that well-to-tank efficiency of electric energy generation significantly influences optimal operating mode of the PHEV if consumption of primary energy sources is considered.

  9. Methodology for Mechanical Property Testing on Fuel Cladding Using an Expanded Plug Wedge Test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2013-08-01

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at ORNL and is described fully in US Patent Application 20060070455, Expanded plug method for developing circumferential mechanical properties of tubular materials. This method is designed for testing fuel rod cladding ductility in a hot cell utilizing an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of specimen strain. It was also found that cladding strength could be determined from the test results. The basic approach of this test method is to apply an axial compressive load to a cylindrical plug of polyurethane (or other materials) fitted inside a short ring of the test material to achieve radial expansion of the specimen. The diameter increase of the specimen is used to calculate the circumferential strain accrued during the test. The other two basic measurements are total applied load and amount of plug compression (extension). A simple procedure is used to convert the load circumferential strain data from the ring tests into material pseudo-stress-strain curves. However, several deficiencies exist in this expanded-plug loading ring test, which will impact accuracy of test results and introduce potential shear failure of the specimen due to inherited large axial compressive stress from the expansion plug test. First of all, the highly non-uniform stress and strain distribution resulted in the gage section of the clad. To ensure reliable testing and test repeatability, the potential for highly non-uniform stress distribution or displacement/strain deformation has to be eliminated at the gage section of the specimen. Second, significant

  10. Plug-In Hybrid Urban Delivery Truck Technology Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Miyasato, Matt [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Impllitti, Joseph [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States); Pascal, Amar [South Coast Air Quality Management District Building Corporation, Diamond Bar, CA (United States)

    2015-07-31

    The I-710 and CA-60 highways are key transportation corridors in the Southern California region that are heavily used on a daily basis by heavy duty drayage trucks that transport the cargo from the ports to the inland transportation terminals. These terminals, which include store/warehouses, inland-railways, are anywhere from 5 to 50 miles in distance from the ports. The concentrated operation of these drayage vehicles in these corridors has had and will continue to have a significant impact on the air quality in this region whereby significantly impacting the quality of life in the communities surrounding these corridors. To reduce these negative impacts it is critical that zero and near-zero emission technologies be developed and deployed in the region. A potential local market size of up to 46,000 trucks exists in the South Coast Air Basin, based on near- dock drayage trucks and trucks operating on the I-710 freeway. The South Coast Air Quality Management District (SCAQMD), California Air Resources Board (CARB) and Southern California Association of Governments (SCAG) — the agencies responsible for preparing the State Implementation Plan required under the federal Clean Air Act — have stated that to attain federal air quality standards the region will need to transition to broad use of zero and near zero emission energy sources in cars, trucks and other equipment (Southern California Association of Governments et al, 2011). SCAQMD partnered with Volvo Trucks to develop, build and demonstrate a prototype Class 8 heavy-duty plug-in hybrid drayage truck with significantly reduced emissions and fuel use. Volvo’s approach leveraged the group’s global knowledge and experience in designing and deploying electromobility products. The proprietary hybrid driveline selected for this proof of concept was integrated with multiple enhancements to the complete vehicle in order to maximize the emission and energy impact of electrification. A detailed review of all

  11. Targeting plug-in hybrid electric vehicle policies to increase social benefits

    International Nuclear Information System (INIS)

    Skerlos, Steven J.; Winebrake, James J.

    2010-01-01

    In 2009 the U.S. federal government enacted tax credits aimed at encouraging consumers to purchase plug-in hybrid electric vehicles (PHEVs). These tax credits are available to all consumers equally and therefore do not account for the variability in social benefits associated with PHEV operation in different parts of the country. The tax credits also do not consider variability in consumer income. This paper discusses why the PHEV subsidy policy would have higher social benefits at equal or less cost if the tax credits were offered at different levels depending on consumer income and the location of purchase. Quantification of these higher social benefits and related policy proposals are left for future work.

  12. Self-learning control system for plug-in hybrid vehicles

    Science.gov (United States)

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  13. Effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid; Auswirkungen der Markteinfuehrung von Elektrofahrzeugen und Plug-In-Hybrids auf die Energietraeger und das Elektrizitaetsnetz. Bericht

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Huber, S. [Enco AG, Liestal (Switzerland); Strub, P. [Pierre Strub - nachhaltig wirkt, Basel (Switzerland)

    2010-12-15

    This comprehensive final report for the Swiss federal Office of Energy (SFOE) discusses the effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid. According to the authors, the introduction of electric drives in the automobile sector will cause no important additional consumption of electricity by 2035 for an expected percentage of around 25% of all vehicles being wholly or partly electrically powered; fossil fuel consumption can, however, be reduced by almost a quarter. The energy storage function of the batteries in electric vehicles can additionally be used to help integrate the high proportion of stochastically generated wind and solar power in the power grid. Energy and CO{sub 2} balances for electric vehicles and plug-in hybrids are discussed, as is the use of vehicle batteries as part of a 'vehicle-to-grid' system that can help regulate the electricity mains. The potential for using vehicles for the supply of regulating energy is looked at. Charge optimisation and mains feed-in are discussed. The ecological effects of this regulating function are examined in the European context. Relationships to other energy scenarios are presented and discussed. Finally, conclusions are drawn and recommendations are made. Questions still to be examined are listed.

  14. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power

    International Nuclear Information System (INIS)

    Wang Jianhui; Liu Cong; Ton, Dan; Zhou Yan; Kim, Jinho; Vyas, Anantray

    2011-01-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced. - Research highlights: → A unit commitment model is used to simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). → Different PHEV charging scenarios are simulated on the Illinois power system → Load shifting and shaving enabled by DR programs are also modeled. → The simulation results show that the operating cost can be reduced with DR and optimal PHEV charging.

  15. Impact of electric range and fossil fuel price level on the economics of plug-in hybrid vehicles and greenhouse gas abatement costs

    International Nuclear Information System (INIS)

    Özdemir, Enver Doruk; Hartmann, Niklas

    2012-01-01

    In this paper, the energy consumption shares of plug-in hybrid vehicles (PHEVs) for electricity from the grid and conventional fuel depending on electric driving range are estimated. The resulting mobility costs and greenhouse gas (GHG) abatement costs per vehicle kilometer for the year 2030 are calculated and optimal electric driving range (which indicates the size of the battery) is found for different oil price levels with the help of a MATLAB based model for a typical compact passenger car (e.g. VW Golf). The results show that the optimum electric driving range for minimum mobility costs of a PHEV is between 12 and 32 km. Furthermore, optimum GHG abatement costs are achieved with an electric driving range between 16 and 23 km. These results are considerable lower than most market ready PHEVs (electric driving range of 50 to 100 km), which shows that the automobile industry should concentrate on shorter electric driving range for PHEVs in the near future to offer cost optimum mobility and low GHG abatement costs. However, the oil price level and the consumer driving habits impact heavily on the cost performance as well as the optimum electric driving range of plug-in hybrid vehicles. - Highlights: ► We analyze the energy consumption (and share of grid electricity) of plug-in hybrid vehicles. ► We analyzed the mobility costs and GHG abatement costs depending on electric driving range. ► Mobility costs of plug-in hybrid vehicles can be lower than those of conventional diesel vehicles in 2030. ► The optimum mobility costs are achieved with the electric driving range between 12 and 32 km. ► The optimum GHG abatement costs are achieved with the electric driving range between 16 and 23 km.

  16. Glow plug ignitor tests in H2 mixtures

    International Nuclear Information System (INIS)

    Liparulo, N.J.; Olhoeft, J.E.; Paddleford, D.F.

    1981-01-01

    The AEP, TVA and DUKE Electric Power companies, in cooperation with Westinghouse Electric Corporation have defined a testing program to determine the effectiveness of a glow plug hydrogen ignition system. The ignitor's capability was demonstrated for both static and dynamic conditions. Tests were performed with both spray addition and fan induced turbulence. It ignited hydrogen for all tests performed. The results of tests did not differ significantly from similar tests data previously reported. This report presents a discussion of the test results

  17. Technology Roadmaps - Electric and plug-in hybrid electric vehicles (EV/PHEV)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-06-15

    The mass deployment of electric and plug-in hybrid electric vehicles (EVs and PHEVs) that rely on low greenhouse gas (GHG) emission electricity generation has great potential to significantly reduce the consumption of petroleum and other high CO2-emitting transportation fuels. The vision of the Electric and Plug-in Hybrid (EV/PHEV) Vehicles Roadmap is to achieve by 2050 the widespread adoption and use of EVs and PHEVs, which together represent more than 50% of annual LDV (light duty vehicle) sales worldwide. In addition to establishing a vision, this roadmap sets strategic goals to achieve it, and identifies the steps that need to be taken to accomplish these goals. This roadmap also outlines the roles and collaboration opportunities for different stakeholders and shows how government policy can support the overall achievement of the vision. The strategic goals for attaining the widespread adoption and use of EVs and PHEVs worldwide by 2050 cover the development of the EV/PHEV market worldwide through 2030 and involve targets that align with global targets to stabilise GHG concentrations. These technology-specific goals include the following: Set targets for electric-drive vehicle sales; Develop coordinated strategies to support the market introduction of electric-drive vehicles; Improve industry understanding of consumer needs and behaviours; Develop performance metrics for characterising vehicles; Foster energy storage RD and D initiatives to reduce costs and address resource-related issues; and, Develop and implement recharging infrastructure. The roadmap outlines additional recommendations that must be considered in order to successfully meet the technology milestones and strategic goals. These recommendations include the following: Use a comprehensive mix of policies that provide a clear framework and balance stakeholder interests; Engage in international collaboration efforts; and, Address policy and industry needs at a national level. The IEA will work in an

  18. On the performance of accelerated particle swarm optimization for charging plug-in hybrid electric vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2016-03-01

    Full Text Available Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO technique was applied and compared with standard particle swarm optimization (PSO considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

  19. Energy Management and Control of Plug-In Hybrid Electric Vehicle Charging Stations in a Grid-Connected Hybrid Power System

    Directory of Open Access Journals (Sweden)

    Sidra Mumtaz

    2017-11-01

    Full Text Available The charging infrastructure plays a key role in the healthy and rapid development of the electric vehicle industry. This paper presents an energy management and control system of an electric vehicle charging station. The charging station (CS is integrated to a grid-connected hybrid power system having a wind turbine maximum power point tracking (MPPT controlled subsystem, photovoltaic (PV MPPT controlled subsystem and a controlled solid oxide fuel cell with electrolyzer subsystem which are characterized as renewable energy sources. In this article, an energy management system is designed for charging and discharging of five different plug-in hybrid electric vehicles (PHEVs simultaneously to fulfil the grid-to-vehicle (G2V, vehicle-to-grid (V2G, grid-to-battery storage system (G2BSS, battery storage system-to-grid (BSS2G, battery storage system-to-vehicle (BSS2V, vehicle-to-battery storage system (V2BSS and vehicle-to-vehicle (V2V charging and discharging requirements of the charging station. A simulation test-bed in Matlab/Simulink is developed to evaluate and control adaptively the AC-DC-AC converter of non-renewable energy source, DC-DC converters of the storage system, DC-AC grid side inverter and the converters of the CS using adaptive proportional-integral-derivate (AdapPID control paradigm. The effectiveness of the AdapPID control strategy is validated through simulation results by comparing with conventional PID control scheme.

  20. Improving the Performance Attributes of Plug-in Hybrid Electric Vehicles in Hot Climates through Key-Off Battery Cooling

    Directory of Open Access Journals (Sweden)

    Sina Shojaei

    2017-12-01

    Full Text Available Ambient conditions can have a significant impact on the average and maximum temperature of the battery of electric and plug-in hybrid electric vehicles. Given the sensitivity of the ageing mechanisms of typical battery cells to temperature, a significant variability in battery lifetime has been reported with geographical location. In addition, high battery temperature and the associated cooling requirements can cause poor passenger thermal comfort, while extreme battery temperatures can negatively impact the power output of the battery, limiting the available electric traction torque. Avoiding such issues requires enabling battery cooling even when the vehicle is parked and not plugged in (key-off, but the associated extra energy requirements make applying key-off cooling a non-trivial decision. In this paper, a representative plug-in parallel hybrid electric vehicle model is used to simulate a typical 24-h duty cycle to quantify the impact of hot ambient conditions on three performance attributes of the vehicle: the battery lifetime, passenger thermal comfort and fuel economy. Key-off cooling is defined as an optimal control problem in view of the duty cycle of the vehicle. The problem is then solved using the dynamic programming method. Controlling key-off cooling through this method leads to significant improvements in the battery lifetime, while benefiting the fuel economy and thermal comfort attributes. To further improve the battery lifetime, partial charging of the battery is considered. An algorithm is developed that determines the optimum combination of key-off cooling and the level of battery charge. Simulation results confirm the benefits of the proposed method.

  1. Plug-in hybrid electric vehicles: Economic efficiency and market chances of different business models; Plug-in Hybridfahrzeuge: Wirtschaftlichkeit und Marktchancen verschiedener Geschaeftsmodelle

    Energy Technology Data Exchange (ETDEWEB)

    Hackbarth, Andre; Schuermann, Gregor [RWTH Aachen (Germany). Lehrstuhl fuer Wirtschaftswissenschaften insb. Energieoekonomik,; RWTH Aachen (DE). E.ON Energy Research Center, Institut fuer Future Energy Consumer Needs and Behavior (FCN); Madlener, Reinhard [Technische Hochschule Aachen (DE). Lehrstuhl fuer Verbrennungskraftmaschinen (VKA)

    2009-07-15

    The German traffic sector is strongly dependent on fossil fuels. Electric vehicles could reduce this dependence and also help to keep CO2 emissions low. Plug-in hybrid electric vehicles (PHEV) are a technology option that may facilitate the transition to electromobility. The authors investigate the economic efficiencies and amortisation periods of PHEV on the basis of two different business models, i.e. passenger cars (compact and medium-sized) and light vans. It is shown that under the assumed boundary conditions PHEV are not economically efficient at present. The influence of various parameters on economic efficiency and amortisation period is investigated by means of a sensitivity analysis. (orig.)

  2. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  3. GHG emissions from sugar cane ethanol, plug-in hybrids, heavy duty gasoline vehicles and hybrids, and materials review

    International Nuclear Information System (INIS)

    2006-01-01

    This report provided updates of new work and new pathways added to the GHGenius model. The model was developed to analyze lifecycle emissions of contaminants associated with the production and use of alternative and traditional fuels, and is continually updated with new information on existing processes and new innovations. The report described the addition of a new table that showed fossil energy consumption per km driven. New information on energy requirements to remove sulphur from gasoline and diesel fuel in Canada were provided. The report also outlined a new pathway for plug-in hybrid battery-powered electric and gasoline vehicles. Vehicle weight was included as part of the user inputs for modelling gasoline powered heavy duty vehicles and gasoline hybrid heavy duty vehicles. Information on the production processes of ethanol from sugar cane were also added to the model. Amounts of energy consumed during the manufacture of materials for vehicles were also incorporated into the model. 34 refs., 39 tabs., 6 figs

  4. Influence of plug-in hybrid electric vehicles on smart grids; Management der Trendwatching Group. Einfluss von Plug-In Hybrid Vehicles auf intelligente Verteilnetze (Smart Grids) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Horbaty, R. [ENCO Energie Consulting AG, Bubendorf (Switzerland); Strub, P. [Pierre Strub, Basel (Switzerland)

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of plug-in hybrid vehicles on intelligent electricity distribution grids. The work of a trend-watching group which examined the regulatory services at the interface between such 'smart' grids and electrically powered vehicles is reported on. The trend-watching group includes research institutes, energy suppliers, NGOs, the automobile industry and technology companies. Vehicle-to-grid concepts and innovative developments in the Swiss market are commented on and the group's own activities (research, business models, technological development and politics) are discussed. The group will accompany relevant research programs and the implementation of measures as well as accompanying feasibility evaluations concerning current market developments. The Swiss federal strategy is to be discussed and international co-operation (with the IEA) is to be further strengthened.

  5. Plug-in Hybrid Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  6. Burst Test Qualification Analysis of DWPF Canister-Plug Weld

    International Nuclear Information System (INIS)

    Gupta, N.K.; Gong, Chung.

    1995-02-01

    The DWPF canister closure system uses resistance welding for sealing the canister nozzle and plug to ensure leak tightness. The welding group at SRTC is using the burst test to qualify this seal weld in lieu of the shear test in ASME B ampersand PV Code, Section IX, paragraph QW-196. The burst test is considered simpler and more appropriate than the shear test for this application. Although the geometry, loading and boundary conditions are quite different in the two tests, structural analyses show similarity in the failure mode of the shear test in paragraph QW-196 and the burst test on the DWPF canister nozzle Non-linear structural analyses are performed using finite element techniques to study the failure mode of the two tests. Actual test geometry and realistic stress strain data for the 304L stainless steel and the weld material are used in the analyses. The finite element models are loaded until failure strains are reached. The failure modes in both tests are shear at the failure points. Based on these observations, it is concluded that the use of a burst test in lieu of the shear test for qualifying the canister-plug weld is acceptable. The burst test analysis for the canister-plug also yields the burst pressures which compare favorably with the actual pressure found during burst tests. Thus, the analysis also provides an estimate of the safety margins in the design of these vessels

  7. Hybrid optimal online-overnight charging coordination of plug-in electric vehicles in smart grid

    Science.gov (United States)

    Masoum, Mohammad A. S.; Nabavi, Seyed M. H.

    2016-10-01

    Optimal coordinated charging of plugged-in electric vehicles (PEVs) in smart grid (SG) can be beneficial for both consumers and utilities. This paper proposes a hybrid optimal online followed by overnight charging coordination of high and low priority PEVs using discrete particle swarm optimization (DPSO) that considers the benefits of both consumers and electric utilities. Objective functions are online minimization of total cost (associated with grid losses and energy generation) and overnight valley filling through minimization of the total load levels. The constraints include substation transformer loading, node voltage regulations and the requested final battery state of charge levels (SOCreq). The main challenge is optimal selection of the overnight starting time (toptimal-overnight,start) to guarantee charging of all vehicle batteries to the SOCreq levels before the requested plug-out times (treq) which is done by simultaneously solving the online and overnight objective functions. The online-overnight PEV coordination approach is implemented on a 449-node SG; results are compared for uncoordinated and coordinated battery charging as well as a modified strategy using cost minimizations for both online and overnight coordination. The impact of toptimal-overnight,start on performance of the proposed PEV coordination is investigated.

  8. Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs

    Science.gov (United States)

    Peterson, Scott B.

    Plug-in hybrid electric vehicles (PHEVs) may become a substantial part of the transportation fleet in a decade or two. This dissertation investigates battery degradation, and how introducing PHEVs may influence the electricity grid, emissions, and petroleum use in the US. It examines the effects of combined driving and vehicle-to-grid (V2G) usage on lifetime performance of commercial Li-ion cells. The testing shows promising capacity fade performance: more than 95% of the original cell capacity remains after thousands of driving days. Statistical analyses indicate that rapid vehicle motive cycling degraded the cells more than slower, V2G galvanostatic cycling. These data are used to examine the potential economic implications of using vehicle batteries to store grid electricity generated at off-peak hours for off-vehicle use during peak hours. The maximum annual profit with perfect market information and no battery degradation cost ranged from ˜US140 to 250 in the three cities. If measured battery degradation is applied the maximum annual profit decreases to ˜10-120. The dissertation predicts the increase in electricity load and emissions due to vehicle battery charging in PJM and NYISO with the current generators, with a 50/tonne CO2 price, and with existing coal generators retrofitted with 80% CO2 capture. It also models emissions using natural gas or wind+gas. We examined PHEV fleet percentages between 0.4 and 50%. Compared to 2020 CAFE standards, net CO2 emissions in New York are reduced by switching from gasoline to electricity; coal-heavy PJM shows smaller benefits unless coal units are fitted with CCS or replaced with lower CO2 generation. NOX is reduced in both RTOs, but there is upward pressure on SO2 emissions or allowance prices under a cap. Finally the dissertation compares increasing the all-electric range (AER) of PHEVs to installing charging infrastructure. Fuel use was modeled with National Household Travel Survey and Greenhouse Gasses, Regulated

  9. Automated WWER steam generator eddy current testing and plugging control system

    International Nuclear Information System (INIS)

    Gorecan, I.; Gortan, K.; Grzalja, I.

    2004-01-01

    The structural architecture of the system contains three main components which are described as follows: Manipulator Guidance System; Eddy Current Testing System; Plugging System. The manipulator system has the task to position the end-effectors to the desired tube position. When the final position is reached, the Eddy Current testing system performs data acquisition. In case defects are found, the plugging system performs tube plug installment. Each system is composed of 3 layers. The first layer is the hardware layer consisting of motors driving the effectors along with sensors needed to obtain the positioning data, pusher motors used to push the test probes into tubes of the WWER steam generator, and plugging hardware tool. The second layer is the control box performing basic monitoring and control routines as an interconnection between first and third layer. The highest layer is the control software, running on the PC, which is used as a human-machine-interface.(author)

  10. Computational analysis on plug-in hybrid electric motorcycle chassis

    Science.gov (United States)

    Teoh, S. J.; Bakar, R. A.; Gan, L. M.

    2013-12-01

    Plug-in hybrid electric motorcycle (PHEM) is an alternative to promote sustainability lower emissions. However, the PHEM overall system packaging is constrained by limited space in a motorcycle chassis. In this paper, a chassis applying the concept of a Chopper is analysed to apply in PHEM. The chassis 3dimensional (3D) modelling is built with CAD software. The PHEM power-train components and drive-train mechanisms are intergraded into the 3D modelling to ensure the chassis provides sufficient space. Besides that, a human dummy model is built into the 3D modelling to ensure the rider?s ergonomics and comfort. The chassis 3D model then undergoes stress-strain simulation. The simulation predicts the stress distribution, displacement and factor of safety (FOS). The data are used to identify the critical point, thus suggesting the chassis design is applicable or need to redesign/ modify to meet the require strength. Critical points mean highest stress which might cause the chassis to fail. This point occurs at the joints at triple tree and bracket rear absorber for a motorcycle chassis. As a conclusion, computational analysis predicts the stress distribution and guideline to develop a safe prototype chassis.

  11. Developing traction control strategy for a plug-in hybrid electric vehicle using innovative optimization based approaches

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Gu, J.; Dong, Z. [Victoria Univ., BC (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This paper described a traction control system designed for hybrid vehicles with multiple power plants and drive axles. Model-based design tools were used to develop the traction control system and plug-in hybrid vehicle models. Optimization studies were conducted in a finite number of operating states in order to maximize the electrical and mechanical energy conversion efficiency of an extended range electric vehicle. Four global optimization algorithms were then evaluated in relation to their CPU times. The studied algorithms included a genetic algorithm (GA), a particle swarm optimization (PSO) algorithm, a hybrid adaptive metamodel optimization (HAM) and space elimination and unimodal region reduction (SEUMRE) algorithm. A comparative evaluation of the algorithms demonstrated that the PSO algorithm obtained optimal results, while the HAM algorithm used significantly less computational time. Results of the optimization studies were then implemented in a controller model. Results of the study showed that the energy efficiency of the vehicle improved using the developed controller model. 4 refs., 2 tabs., 8 figs.

  12. Torque Coordination Control during Braking Mode Switch for a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2017-10-01

    Full Text Available Hybrid vehicles usually have several braking systems, and braking mode switches are significant events during braking. It is difficult to coordinate torque fluctuations caused by mode switches because the dynamic characteristics of braking systems are different. In this study, a new type of plug-in hybrid vehicle is taken as the research object, and braking mode switches are divided into two types. The control strategy of type one is achieved by controlling the change rates of clutch hold-down and motor braking forces. The control strategy of type two is achieved by simultaneously changing the target braking torque during different mode switch stages and controlling the motor to participate in active coordination control. Finally, the torque coordination control strategy is modeled in MATLAB/Simulink, and the results show that the proposed control strategy has a good effect in reducing the braking torque fluctuation and vehicle shocks during braking mode switches.

  13. Dueco Plug-In Hybrid Engines

    Energy Technology Data Exchange (ETDEWEB)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  14. A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    DEFF Research Database (Denmark)

    Kong, Fanrong; Jiang, Jianhui; Ding, Zhigang

    2017-01-01

    To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs) have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost...

  15. Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California

    Directory of Open Access Journals (Sweden)

    Daniel Kammen

    2011-03-01

    Full Text Available We report on the real-world use over the course of one year of a nickel-metal-hydride plug-in hybrid—the Toyota Plug-In HV—by a set of 12 northern California households able to charge at home and work. From vehicle use data, energy and greenhouse-emissions implications are also explored. A total of 1557 trips—most using under 0.5 gallons of gasoline—ranged up to 2.4 hours and 133 miles and averaged 14 minutes and 7 miles. 399 charging events averaged 2.6 hours. The maximum lasted 4.6 hours. Most recharges added less than 1.4 kWh, with a mean charge of 0.92 kWh. The average power drawn was under one-half kilowatt. The greenhouse gas emissions from driving and charging were estimated to be 2.6 metric tons, about half of the emissions expected from a 22.4-mpg vehicle (the MY2009 fleet-wide real-world average. The findings contribute to better understanding of how plug-in hybrids might be used, their potential impact, and how potential benefits and requirements vary for different plug-in-vehicle designs. For example, based on daily driving distances, 20 miles of charge-depleting range would have been fully utilized on 81% of days driven, whereas 40 miles would not have been fully utilized on over half of travel days.

  16. Toyota Prius Hybrid Plug-in Conversation and Battery Monitoring system

    Science.gov (United States)

    Unnikannan, Krishnanunni; McIntyre, Michael; Harper, Doug; Kessinger, Robert; Young, Megan; Lantham, Joseph

    2012-03-01

    The objective of the project was to analyze the performance of a Toyota Hybrid. We started off with a stock Toyota Prius and taking data by driving it in city and on the highway in a mixed pre-determined route. The batteries can be charged using standard 120V AC outlets. First phase of the project was to increase the performance of the car by installing 20 Lead (Pb) batteries in a plug-in kit. To improve the performance of the kit, a centralized battery monitoring system was installed. The battery monitoring system has two components, a custom data modules and a National Instruments CompactRIO. Each Pb battery has its own data module and all the data module are connected to the CompactRIO. The CompactRIO records differential voltage, current and temperature from all the 20 batteries. The LabVIEW software is dynamic and can be reconfigured to any number of batteries and real time data from the batteries can be monitored on a LabVIEW enabled machine.

  17. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    Energy Technology Data Exchange (ETDEWEB)

    D' Annunzio, Julie [Ford Motor Company, Dearborn, MI (United States); Slezak, Lee [U.S. DOE Office of Energy Efficiency & Renewable Energy, Washington, DC (United States); Conley, John Jason [National Energy Technology Lab. (NETL), Albany, OR (United States)

    2014-03-26

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  18. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    Science.gov (United States)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  19. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy.

    Science.gov (United States)

    Samaras, Constantine; Meisterling, Kyle

    2008-05-01

    Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a role in reducing greenhouse gas (GHG) emissions from the transport sector. However, meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. We assess life cycle GHG emissions from PHEVs and find that they reduce GHG emissions by 32% compared to conventional vehicles, but have small reductions compared to traditional hybrids. Batteries are an important component of PHEVs, and GHGs associated with lithium-ion battery materials and production account for 2-5% of life cycle emissions from PHEVs. We consider cellulosic ethanol use and various carbon intensities of electricity. The reduced liquid fuel requirements of PHEVs could leverage limited cellulosic ethanol resources. Electricity generation infrastructure is long-lived, and technology decisions within the next decade about electricity supplies in the power sector will affectthe potential for large GHG emissions reductions with PHEVs for several decades.

  20. The Design and Manufacturing Report of Plug Type Non-Instrumented Rig for Irradiation Test in HANARO OR Hole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Ho; Bang, Je Geon; Lim, Ik Sung; Kim, Sun Ki; Yang, Yong Sik; Song, Kun Woo

    2008-09-15

    This project is developed the plug type non-instrumented irradiation test rig of the advanced nuclear fuel in HANARO for pursuit advanced performance in High Performance Fuel Technology Development as a part Nuclear Mid and Long-term R and D Program. This irradiation rig was confirmed the integrity and HANARO core compatibility by the optimum design and the thermal hydraulic out-pile test in FIVPET. The characteristic of plug type non-instrument rig is to possible irradiation test of variable in-pile condition and reduced the wastes for reusable as function. This plug type non-instrumented rig was satisfied the quality assurance requirements and written out the end of manufacturing report. This plug type non-instrumented rig is adopt to the irradiation test for nuclear fuel irradiation test in HANARO OR hole.

  1. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    OpenAIRE

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-01-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem i...

  2. Evaluating the Degradation Mechanism and State of Health of LiFePO4 Lithium-Ion Batteries in Real-World Plug-in Hybrid Electric Vehicles Application for Different Ageing Paths

    Directory of Open Access Journals (Sweden)

    Chi Zhang

    2017-01-01

    Full Text Available Accurate determination of the performance and precise prediction of the state of health (SOH of lithium-ion batteries are necessary to ensure reliability and efficiency in real-world application. However, most SOH offline studies were based on dynamic stress tests, which only reflect the universal rule of degradation, but are not necessarily applicable for real-world applications. This paper presents an experimental evaluation of two different operations of real-world plug-in hybrid electric vehicles with LiFePO4 batteries as energy-storage systems. First, the LiFePO4 batteries were subjected to a set of comparative experimental tests that consider the effects of charge depleting (CD and charge sustaining (CS operations. Then, different voltage analysis along with the close-to-equilibrium open circle voltage was utilized to evaluate the performance of the batteries in life cycles. Finally, a qualitative relationship between the external factors (the percentage of time of CD/CS operations during the entire driving range and the degradation mechanism was built with the help of the proposed methods. Results indicated that the external factors affect the degree of the batteries degradation, but not up to the point when the capacity fading stage occurs. This relationship contributes to the foundation for plug-in hybrid electric vehicles’ (PHEVs’ energy management strategy or battery management system control strategy.

  3. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    OpenAIRE

    Recker, W. W.; Kang, J. E.

    2010-01-01

    With the success of Hybrid Electric Vehicles (HEVs) in the automobile market, Plug-In Hybrid Electric Vehicles (PHEVs) are emerging as the next evolution of this attractive alternative. PHEV market penetration is expected to lead to lower gasoline consumption and less emission. The main objective of this research is to assess PHEVs’ energy profile impacts based on simulation of vehicles used in activity and travel patterns drawn from the 2000-2001 California Statewide Household Travel Survey....

  4. Global Optimal Energy Management Strategy Research for a Plug-In Series-Parallel Hybrid Electric Bus by Using Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2013-01-01

    Full Text Available Energy management strategy influences the power performance and fuel economy of plug-in hybrid electric vehicles greatly. To explore the fuel-saving potential of a plug-in hybrid electric bus (PHEB, this paper searched the global optimal energy management strategy using dynamic programming (DP algorithm. Firstly, the simplified backward model of the PHEB was built which is necessary for DP algorithm. Then the torque and speed of engine and the torque of motor were selected as the control variables, and the battery state of charge (SOC was selected as the state variables. The DP solution procedure was listed, and the way was presented to find all possible control variables at every state of each stage in detail. Finally, the appropriate SOC increment is determined after quantizing the state variables, and then the optimal control of long driving distance of a specific driving cycle is replaced with the optimal control of one driving cycle, which reduces the computational time significantly and keeps the precision at the same time. The simulation results show that the fuel economy of the PEHB with the optimal energy management strategy is improved by 53.7% compared with that of the conventional bus, which can be a benchmark for the assessment of other control strategies.

  5. Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption

    International Nuclear Information System (INIS)

    Peterson, Scott B.; Michalek, Jeremy J.

    2013-01-01

    Federal electric vehicle (EV) policies in the United States currently include vehicle purchase subsidies linked to EV battery capacity and subsidies for installing charging stations. We assess the cost-effectiveness of increased battery capacity vs. nondomestic charging infrastructure installation for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks, and SUVs in the US. We find across a wide range of scenarios that the least-cost solution is for more drivers to switch to low-capacity plug-in hybrid electric vehicles (short electric range with gasoline backup for long trips) or gasoline-powered hybrid electric vehicles. If more gasoline savings are needed per vehicle, nondomestic charging infrastructure installation is substantially more expensive than increased battery capacity per gallon saved, and both approaches have higher costs than US oil premium estimates. Cost effectiveness of all subsidies are lower under a binding fuel economy standard. Comparison of results to the structure of current federal subsidies shows that policy is not aligned with fuel savings potential, and we discuss issues and alternatives. - Highlights: ► We compare cost of PHEV batteries vs. charging infrastructure per gallon of gasoline saved. ► The lowest cost solution is to switch more drivers to low-capacity PHEVs and HEVs. ► If more gasoline savings is needed, batteries offer a better value than chargers. ► Extra batteries and chargers are both more costly per gal than oil premium estimates. ► Current subsidies are misaligned with fuel savings. We discuss alternatives.

  6. Simulating the potential effects of plug-in hybrid electric vehicles on the energy budget and tax revenues for Onondaga County, New York

    Science.gov (United States)

    Balogh, Stephen B.

    My objectives were to predict the energetic effects of a large increase in plug-in hybrid electric vehicles (PHEV) and their implications on fuel tax collections in Onondaga County. I examined two alternative taxation policies. To do so, I built a model of county energy consumption based on prorated state-level energy consumption data and census data. I used two scenarios to estimate energy consumption trends over the next 30 years and the effects of PHEV on energy use and fuel tax revenues. I found that PHEV can reduce county gasoline consumption, but they would curtail fuel tax revenues and increase residential electricity demand. A one-cent per VMT tax on PHEV users provides insufficient revenue to replace reduced fuel tax collection. A sales tax on electricity consumption generates sufficient replacement revenue at low PHEV market shares. However, at higher shares, the tax on electricity use would exceed the current county tax rate. Keywords: electricity, energy, gasoline, New York State, Onondaga County, plug-in hybrid electric vehicles, transportation model, tax policy

  7. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    Science.gov (United States)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable overall, and while the effect is stronger in some localities, the difference between the three scenarios is small. This is quite significant and suggests that localization of the NOx emissions to point sources has a more pronounced effect than the absolute reductions achieved. Furthermore it demonstrates that localization of NOx emissions to electricity generating units by using PHEVs in vehicle traffic has beneficial effects for air quality not only by minimizing direct human exposure to motor vehicle emissions, but also due to reduced exposure to secondary pollutants (i.e. ozone). In an electric power grid with a smaller share of fossil fired generating units, the beneficial

  8. Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids

    International Nuclear Information System (INIS)

    Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.

    2008-01-01

    Using the 'total energy cycle' methodology, we compare U.S. near term (to ∼2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO x ), fine particulate (PM2.5) and sulfur oxides (SO x ) values are presented. We also isolate the PHEV emissions contribution from varying k

  9. Development of the Multiple Use Plug Hybrid for Nanosats (MUPHyN) miniature thruster

    Science.gov (United States)

    Eilers, Shannon

    The Multiple Use Plug Hybrid for Nanosats (MUPHyN) prototype thruster incorporates solutions to several major challenges that have traditionally limited the deployment of chemical propulsion systems on small spacecraft. The MUPHyN thruster offers several features that are uniquely suited for small satellite applications. These features include 1) a non-explosive ignition system, 2) non-mechanical thrust vectoring using secondary fluid injection on an aerospike nozzle cooled with the oxidizer flow, 3) a non-toxic, chemically-stable combination of liquid and inert solid propellants, 4) a compact form factor enabled by the direct digital manufacture of the inert solid fuel grain. Hybrid rocket motors provide significant safety and reliability advantages over both solid composite and liquid propulsion systems; however, hybrid motors have found only limited use on operational vehicles due to 1) difficulty in modeling the fuel flow rate 2) poor volumetric efficiency and/or form factor 3) significantly lower fuel flow rates than solid rocket motors 4) difficulty in obtaining high combustion efficiencies. The features of the MUPHyN thruster are designed to offset and/or overcome these shortcomings. The MUPHyN motor design represents a convergence of technologies, including hybrid rocket regression rate modeling, aerospike secondary injection thrust vectoring, multiphase injector modeling, non-pyrotechnic ignition, and nitrous oxide regenerative cooling that address the traditional challenges that limit the use of hybrid rocket motors and aerospike nozzles. This synthesis of technologies is unique to the MUPHyN thruster design and no comparable work has been published in the open literature.

  10. Fuel consumption of business passenger cars and plug-in vehicles; Praktijkverbruik van zakelijke personenauto's en plug-in voertuigen

    Energy Technology Data Exchange (ETDEWEB)

    Ligterink, N.E.; Smokers, R.T.M.

    2013-05-15

    TNO investigates the use and fuel consumption of private cars since 2008. In this report the results for 2012 are presented. In part 1 the most recent results of statistical analyses of fuel card data, which are used by business-type drivers of passenger cars, are presented. The second part contains the results of an analysis of available fuel consumption data of so-called plug-in hybrid electric vehicles and range-extender electric vehicles that have entered the market in 2012 [Dutch] TNO doet al sinds 2008 onderzoek naar het praktijkverbruik van personenauto's. In dit rapport worden de resultaten over 2012 weergegeven. Het eerste deel presenteert de meest recente resultaten van statistische analyses van tankpasdata van door zakelijke rijders gebruikte personenvoertuigen. Het tweede deel bevat de resultaten van een analyse van beschikbare verbruiksgegevens van zogenoemde 'plug-in hybrides' en 'range-extender' elektrische voertuigen die in 2012 op de markt zijn gekomen.

  11. Trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus

    International Nuclear Information System (INIS)

    Du, Yongchang; Zhao, Yue; Wang, Qinpu; Zhang, Yuanbo; Xia, Huaicheng

    2016-01-01

    A trip-oriented stochastic optimal energy management strategy for plug-in hybrid electric bus is presented in this paper, which includes the offline stochastic dynamic programming part and the online implementation part performed by equivalent consumption minimization strategy. In the offline part, historical driving cycles of the fixed route are divided into segments according to the position of bus stops, and then a segment-based stochastic driving condition model based on Markov chain is built. With the segment-based stochastic model obtained, the control set for real-time implemented equivalent consumption minimization strategy can be achieved by solving the offline stochastic dynamic programming problem. Results of stochastic dynamic programming are converted into a 3-dimensional lookup table of parameters for online implemented equivalent consumption minimization strategy. The proposed strategy is verified by both simulation and hardware-in-loop test of real-world driving cycle on an urban bus route. Simulation results show that the proposed method outperforms both the well-tuned equivalent consumption minimization strategy and the rule-based strategy in terms of fuel economy, and even proved to be close to the optimal result obtained by dynamic programming. Furthermore, the practical application potential of the proposed control method was proved by hardware-in-loop test. - Highlights: • A stochastic problem was formed based on a stochastic segment-based driving condition model. • Offline stochastic dynamic programming was employed to solve the stochastic problem. • The instant power split decision was made by the online equivalent consumption minimization strategy. • Good performance in fuel economy of the proposed method was verified by simulation results. • Practical application potential of the proposed method was verified by the hardware-in-loop test results.

  12. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; Anttonen, G.J.; O'Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials

  13. Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick

    2015-01-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO 2 emissions of these PHEV are 42 gCO 2 /km and the annual CO 2 savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  14. On integration of plug-in hybrid electric vehicles into existing power system structures

    International Nuclear Information System (INIS)

    Galus, Matthias D.; Zima, Marek; Andersson, Goeran

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) represent one option for the electrification of private mobility. In order to efficiently integrate PHEVs into power systems, existing organizational structures need to be considered. Based on procedures of power systems planning and operation, actors are identified whose operational activities will be affected by PHEV integration. Potential changes and challenges in the actors' long- and short term planning activities are discussed. Further, a PHEV operation state description is developed which defines vehicle operation states from the power system point of view integrating uncontrolled, controlled recharging and vehicle to grid (V2G) utilization in one single framework. Future PHEV managing entities, such as aggregators, can use this framework for planning and operation activities including load management and V2G. This operational state description could provide a solution for future short term planning challenges of PHEVs and an aegis for various routes of current research, which to date have been weakly linked to each other.

  15. Preliminary geochemical and physical testing of materials for plugging of man-made accesses to a repository in basalt

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.L.; Anttonen, G.J.; O' Rourke, J.E.; Allirot, D.

    1980-04-01

    The available data on environmental conditions (both natural and man-made) at the Hanford Site are sufficient for preconceptual plug system design. Results of the geochemical testing program indicate that preferred candidate plug materials are chemically nonreactive during laboratory tests that simulated some of the expected environmental conditions. Agitated, crushed-basalt samples and mixtures containing basalt were found to be self-cementing under the hydrothermal conditions. Materials considered most suitable for consideration in future test programs and preconceptual plug design are mixtures of natural materials (basalt, clay, glaciofluvial sand, gravel, and zeolite) and processed natural materials (portland cement Type V and grouts plus additives).

  16. New Integrated Multilevel Converter for Switched Reluctance Motor Drives in Plug-in Hybrid Electric Vehicles with Flexible Energy Conversion

    DEFF Research Database (Denmark)

    Gan, Chun; Wu, Jianhua; Hu, Yihua

    2017-01-01

    This paper presents an integrated multilevel converter of switched reluctance motors (SRMs) fed by a modular front-end circuit for plug-in hybrid electric vehicle (PHEV) applications. Several operating modes can be achieved by changing the on-off states of the switches in the front-end circuit......, the battery can be charged by the external AC source or generator when the vehicle is in standstill condition. The SRM-based PHEV can operate at different speeds by coordinating power flow from the generator and battery. Simulation in MATLAB/Simulink and experiments on a three-phase 12/8 SRM confirm...

  17. Recent developments in plugging of steam generator tubes

    International Nuclear Information System (INIS)

    Buhay, S.; Abucay, R.C.

    1995-01-01

    Mechanical Plugging capability has been developed for Bruce Nuclear Generating Station (BNGS) steam generator (SG) tubes and Darlington Nuclear Generating Station (DNGS) SG tubes and tubesheet holes. The plug concept was a modified ABB/Combustion Engineering Inconel 690 plug with a nickel band, rolled into the tube or tubesheet hole from the primary side of the tubesheet. The qualification program included analytical justification of the plug body and experimental testing to verify the leak tightness of the rolled joint under conditions which meet or exceed all service or design requirements. Tools and procedures were developed and tested for manual and remote/robotic installation and removal of the mechanical plugs. Additionally, tools and procedures were developed to plug tubes/tubesheet holes at DNGS in the event the steam generator is recalled to service to act as a heat sink. A crew of Ontario Hydro personnel were trained and qualified for the installation of mechanical plugs for permanent and recall applications. During the DNGS Unit 4 spring 1995 outage, 6 tubes were plugged and the 'Recall Plugging Capability' was deployed and ready for use during a primary side SG tube removal. The mechanical plugs were installed manually with a typical 3 minute/plug in-bowl duration time with an average radiation dose of 12.5 mrem per plug. This compares favourably with manual plug welding during the same outage in the same SG bowl at approximately 15-30 minutes/plug in-bowl duration with an average radiation dose of 117 mrem/plug. (author)

  18. Evaluation of energy consumption, emissions and cost of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Silva, Carla; Ross, Marc; Farias, Tiago

    2009-01-01

    Plug-in hybrid vehicles (PHEVs) are gaining attention over the world due to their ability to reduce gasoline/diesel consumption by using electricity from the grid. Despite the efforts of Society of Automotive Engineers Recommended Practice SAE J1711, it has not yet been established a worldwide methodology for calculation of fuel consumption and emission factors when regarding emission standards, with distinct driving cycles. This paper intends to contribute to the creation of this broader methodology, based on SAE J1711, aiming a fair comparison among vehicle technologies, and giving insight on electric grid impact and on CO 2 life-cycle emissions. The methodology was applied to two simulated PHEVs exploring two different powertrain configurations: series and parallel; different driving cycles: CAFE, FTP75, NEDC and JC08; different driving distances (specially analyzing the average commuting daily distance of 20 km) and different user behaviours regarding battery recharging. CO 2 emissions were calculated for fuel consumption, electricity generation and cradle-to-grave. Electric grid power demand was estimated. Maintenance, manufacturer and use costs were discussed.

  19. A Control Strategy for Mode Transition with Gear Shifting in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Kyuhyun Sim

    2017-07-01

    Full Text Available The mode transition from electric propulsion mode to hybrid propulsion mode is important with regard to the power management strategy of plug-in hybrid electric vehicles (PHEVs. This is because mode transitions can occur frequently depending on the power management strategies and driving cycles, and because inadequate mode transitions worsen the fuel efficiency and drivability. A pre-transmission parallel PHEV uses a clutch between the internal combustion engine (ICE and the electric motor (EM to connect or disconnect the power source of the ICE for a mode transition. The mode transition requires additional energy consumption for clutch speed synchronization, and is accompanied by a drivetrain shock due to clutch engagement. This paper proposes a control strategy for the mode transition with gear-shifting to resolve the problems of energy consumption and drivetrain shock. Through the development of a PHEV performance simulator, we analyze the mode transition characteristics and propose a control strategy considering the vehicle acceleration and gear state. The control strategy reduces the duration required for the mode transition by moving the start time of the mode transition. This helps to improve energy efficiency while maintaining adequate drivability.

  20. Plug-in hybrid electric vehicles-A low-carbon solution for Ireland?

    International Nuclear Information System (INIS)

    Smith, William J.

    2010-01-01

    Between 1990 and 2006, the primary energy requirement of the Irish transport sector increased by 166%. Associated greenhouse gas (GHG) emissions have followed a corresponding trajectory, and are responsible-at least in part-for Ireland's probable failure to meet its Kyoto targets. As in most countries, Ireland's transport sector is almost totally reliant on oil-a commodity for which Ireland is totally dependent on imports-and therefore vulnerable to supply and price shocks. Conversely, the efficiency and carbon intensity of the Irish electricity supply system have both improved dramatically over the same period, with significant further improvements projected over the coming decade. This paper analyses the prospects for leveraging these changes by increasing the electrification of the Irish transport sector. Specifically, the potential benefits of plug-in hybrid-electric vehicles (PHEV) are assessed, in terms of reducing primary energy requirement (PER) and CO 2 emissions. It is shown that, on a per-km basis, PHEV offer the potential for reductions of 50% or more in passenger car PER and CO 2 intensity. However, the time required to turn over the existing fleet means that a decade or more will be required to significantly impact PER and emissions of the PC fleet.

  1. Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model

    International Nuclear Information System (INIS)

    Axsen, Jonn; Kurani, Kenneth S.; McCarthy, Ryan; Yang, Christopher

    2011-01-01

    This paper explores how Plug-in Hybrid Vehicles (PHEVs) may reduce source-to-wheel Greenhouse Gas (GHG) emissions from passenger vehicles. The two primary advances are the incorporation of (1) explicit measures of consumer interest in and potential use of different types of PHEVs and (2) a model of the California electricity grid capable of differentiating hourly and seasonal GHG emissions by generation source. We construct PHEV emissions scenarios to address inherent relationships between vehicle design, driving and recharging behaviors, seasonal and time-of-day variation in GHG-intensity of electricity, and total GHG emissions. A sample of 877 California new vehicle buyers provide data on driving, time of day recharge access, and PHEV design interests. The elicited data differ substantially from the assumptions used in previous analyses. We construct electricity demand profiles scaled to one million PHEVs and input them into an hourly California electricity supply model to simulate GHG emissions. Compared to conventional vehicles, consumer-designed PHEVs cut marginal (incremental) GHG emissions by more than one-third in current California energy scenarios and by one-quarter in future energy scenarios-reductions similar to those simulated for all-electric PHEV designs. Across the emissions scenarios, long-term GHG reductions depends on reducing the carbon intensity of the grid. - Research highlights: → We estimate California Plug-in Hybrid Vehicle (PHEV) GHGs using consumer data and an electricity supply model. → Consumer-designed (mostly 'blended') PHEVs can reduce GHG emissions compared to conventional vehicles. → These PHEVs can also reduce GHG emissions relative to 'all-electric' PHEV designs. → 'All-electric' designs may further reduce GHG emissions as electricity carbon intensity falls. → Ranking of GHG savings from off-peak versus daytime charging scenarios depends on electricity carbon intensity.

  2. Effects of plug-in hybrid electric vehicles on ozone concentrations in Colorado.

    Science.gov (United States)

    Brinkman, Gregory L; Denholm, Paul; Hannigan, Michael P; Milford, Jana B

    2010-08-15

    This study explores how ozone concentrations in the Denver, CO area might have been different if plug-in hybrid electric vehicles (PHEVs) had replaced light duty gasoline vehicles in summer 2006. A unit commitment and dispatch model was used to estimate the charging patterns of PHEVs and dispatch power plants to meet electricity demand. Emission changes were estimated based on gasoline displacement and the emission characteristics of the power plants providing additional electricity. The Comprehensive Air Quality Model with extensions (CAMx) was used to simulate the effects of these emissions changes on ozone concentrations. Natural gas units provided most of the electricity used for charging PHEVs in the scenarios considered. With 100% PHEV penetration, nitrogen oxide (NO(x)) emissions were reduced by 27 tons per day (tpd) from a fleet of 1.7 million vehicles and were increased by 3 tpd from power plants; VOC emissions were reduced by 57 tpd. These emission changes reduced modeled peak 8-h average ozone concentrations by approximately 2-3 ppb on most days. Ozone concentration increases were modeled for small areas near central Denver. Future research is needed to forecast when significant PHEV penetration may occur and to anticipate characteristics of the corresponding power plant and vehicle fleets.

  3. Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.

    Science.gov (United States)

    Raykin, Leon; MacLean, Heather L; Roorda, Matthew J

    2012-06-05

    This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.

  4. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  5. The effectiveness of plug-in hybrid electric vehicles and renewable power in support of holistic environmental goals: Part 2 - Design and operation implications for load-balancing resources on the electric grid

    Science.gov (United States)

    Tarroja, Brian; Eichman, Joshua D.; Zhang, Li; Brown, Tim M.; Samuelsen, Scott

    2015-03-01

    A study has been performed that analyzes the effectiveness of utilizing plug-in vehicles to meet holistic environmental goals across the combined electricity and transportation sectors. In this study, plug-in hybrid electric vehicle (PHEV) penetration levels are varied from 0 to 60% and base renewable penetration levels are varied from 10 to 63%. The first part focused on the effect of installing plug-in hybrid electric vehicles on the environmental performance of the combined electricity and transportation sectors. The second part addresses impacts on the design and operation of load-balancing resources on the electric grid associated with fleet capacity factor, peaking and load-following generator capacity, efficiency, ramp rates, start-up events and the levelized cost of electricity. PHEVs using smart charging are found to counteract many of the disruptive impacts of intermittent renewable power on balancing generators for a wide range of renewable penetration levels, only becoming limited at high renewable penetration levels due to lack of flexibility and finite load size. This study highlights synergy between sustainability measures in the electric and transportation sectors and the importance of communicative dispatch of these vehicles.

  6. Integration of plug-in hybrid electric vehicles (PHEV) with grid connected residential photovoltaic energy systems

    Science.gov (United States)

    Nagarajan, Adarsh; Shireen, Wajiha

    2013-06-01

    This paper proposes an approach for integrating Plug-In Hybrid Electric Vehicles (PHEV) to an existing residential photovoltaic system, to control and optimize the power consumption of residential load. Control involves determining the source from which residential load will be catered, where as optimization of power flow reduces the stress on the grid. The system built to achieve the goal is a combination of the existing residential photovoltaic system, PHEV, Power Conditioning Unit (PCU), and a controller. The PCU involves two DC-DC Boost Converters and an inverter. This paper emphasizes on developing the controller logic and its implementation in order to accommodate the flexibility and benefits of the proposed integrated system. The proposed controller logic has been simulated using MATLAB SIMULINK and further implemented using Digital Signal Processor (DSP) microcontroller, TMS320F28035, from Texas Instruments

  7. Plug-in Hybrid and Battery-Electric Vehicles: State of the research and development and comparative analysis of energy and cost efficiency

    OpenAIRE

    Francoise Nemry; Guillaume Leduc; Almudena Muñoz

    2009-01-01

    This technical note is a first contribution from IPTS to a JRC more integrated assessment of future penetration pathways of new vehicles technologies in the EU27 market and of their impacts on energy security, GHG emissions and on the economy. The present report focuses on battery electric vehicles (BEVs) and plug-in hybrid electric vehicles (PHEVs). It provides a general overview of the current state of the research and development about the concerned technologies and builds some first estim...

  8. Battery durability and longevity based power management for plug-in hybrid electric vehicle with hybrid energy storage system

    International Nuclear Information System (INIS)

    Zhang, Shuo; Xiong, Rui; Cao, Jiayi

    2016-01-01

    Highlights: • A novel procedure for developing an optimal power management strategy was proposed. • Efficiency and durability were considered to improve the practical performance. • Three control rules were abstracted from the optimization results with DP algorithm. • The proposed control strategy was verified under different SoC and SoH conditions. • The proposed strategy could further improve the energy efficiency obviously. - Abstract: Efficiency and durability are becoming two key issues for the energy storage system in electric vehicles together with their associated power management strategies. In this paper, we present a procedure for the design of a near-optimal power management strategy for the hybrid battery and ultracapacitor energy storage system (HESS) in a plug-in hybrid electric vehicle. The design procedure starts by defining a cost function to minimize the electricity consumption of the HESS and to optimize the operating behavior of the battery. To determine the optimal control actions and power distribution between two power sources, a dynamic programming (DP)-based novel analysis method is proposed, and the optimization framework is presented accordingly. Through analysis of the DP control actions under different battery state-of-health (SoH) conditions, near-optimal rules are extracted. A rule based power management is proposed based on the abstracted rules and simulation results indicate that the new control strategy can improve system efficiency under different SoH and different SoC conditions. Ultimately, the performance of proposed strategy is further verified under different types of driving cycles including the MANHATTAN cycle, 1015 6PRIUS cycle and UDDSHDV cycle.

  9. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  10. Nuclear fuel rod end plug weld inspection

    International Nuclear Information System (INIS)

    Parker, M. A.; Patrick, S. S.; Rice, G. F.

    1985-01-01

    Apparatus and method for testing TIG (tungsten inert gas) welds of end plugs on a sealed nuclear reactor fuel rod. An X-ray fluorescent spectrograph testing unit detects tungsten inclusion weld defects in the top end plug's seal weld. Separate ultrasonic weld inspection system testing units test the top end plug's seal and girth welds and test the bottom end plug's girth weld for penetration, porosity and wall thinning defects. The nuclear fuel rod is automatically moved into and out from each testing unit and is automatically transported between the testing units by rod handling devices. A controller supervises the operation of the testing units and the rod handling devices

  11. Bond strength of cementitious borehole plugs in welded tuff

    International Nuclear Information System (INIS)

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young's modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs

  12. Removable pipeline plug

    International Nuclear Information System (INIS)

    Vassalotti, M.; Anastasi, F.

    1984-01-01

    A removable plugging device for a pipeline, and particularly for pressure testing a steam pipeline in a boiling water reactor, wherein an inflatable annular sealing member seals off the pipeline and characterized by radially movable shoes for holding the plug in place, each shoe being pivotally mounted for self-adjusting engagement with even an out-of-round pipeline interior

  13. A Pontryagin Minimum Principle-Based Adaptive Equivalent Consumption Minimum Strategy for a Plug-in Hybrid Electric Bus on a Fixed Route

    Directory of Open Access Journals (Sweden)

    Shaobo Xie

    2017-09-01

    Full Text Available When developing a real-time energy management strategy for a plug-in hybrid electric vehicle, it is still a challenge for the Equivalent Consumption Minimum Strategy to achieve near-optimal energy consumption, because the optimal equivalence factor is not readily available without the trip information. With the help of realistic speeding profiles sampled from a plug-in hybrid electric bus running on a fixed commuting line, this paper proposes a convenient and effective approach of determining the equivalence factor for an adaptive Equivalent Consumption Minimum Strategy. Firstly, with the adaptive law based on the feedback of battery SOC, the equivalence factor is described as a combination of the major component and tuning component. In particular, the major part defined as a constant is applied to the inherent consistency of regular speeding profiles, while the second part including a proportional and integral term can slightly tune the equivalence factor to satisfy the disparity of daily running cycles. Moreover, Pontryagin’s Minimum Principle is employed and solved by using the shooting method to capture the co-state dynamics, in which the Secant method is introduced to adjust the initial co-state value. And then the initial co-state value in last shooting is taken as the optimal stable constant of equivalence factor. Finally, altogether ten successive driving profiles are selected with different initial SOC levels to evaluate the proposed method, and the results demonstrate the excellent fuel economy compared with the dynamic programming and PMP method.

  14. Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system

    International Nuclear Information System (INIS)

    Sioshansi, Ramteen; Fagiani, Riccardo; Marano, Vincenzo

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology that can reduce vehicles' fuel consumption, decreasing transportation-related emissions and dependence on imported oil. The net emission and cost impacts of PHEV use are intimately connected with the electricity generator mix used for PHEV charging, which will in turn depend on when during the day PHEVs are recharged. This paper analyzes the effects of a PHEV fleet in the state of Ohio. The analysis considers two different charging scenarios-a controlled and an uncontrolled scenario-which offer the grid operator different levels of control over the timing of PHEV charging. The analysis shows that PHEV use could result in major reductions in gasoline consumption of close to 70% per vehicle compared to a conventional vehicle (CV) under both charging scenarios. Moreover, despite the high penetrations of coal in the Ohio power system, net CO 2 emissions from a PHEV could be up to 24% lower than that of a CV in the uncontrolled case, however, CO 2 and NO x emissions would increase in both scenarios.

  15. The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook

    International Nuclear Information System (INIS)

    Green, Robert C. II.; Wang, Lingfeng; Alam, Mansoor

    2011-01-01

    Plug-in hybrid electric vehicles (PHEVs) are the next big thing in the electric transportation market. While much work has been done to detail what economic costs and benefits PHEVs will have on consumers and producers alike, it seems that it is also important to understand what impact PHEVs will have on distribution networks nationwide. This paper finds that the impact of PHEVs on the distribution network can be determined using the following aspects of PHEVs: driving patterns, charging characteristics, charge timing, and vehicle penetration. The impacts that these aspects of PHEVs will have on distribution networks have been measured and calculated by multiple authors in different locations using many different tools that range from analytical techniques to simulations and beyond. While much work has already been completed in this area, there is still much to do. Areas left for improvement and future work will include adding more stochasticity into models as well as computing and analyzing reliability indices with respect to distribution networks. (author)

  16. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services.

    Science.gov (United States)

    Sioshansi, Ramteen; Denholm, Paul

    2009-02-15

    Plug-in hybrid electric vehicles (PHEVs) have been promoted as a potential technology to reduce emissions of greenhouse gases and other pollutants by using electricity instead of petroleum, and byimproving electric system efficiency by providing vehicle-to-grid (V2G) services. We use an electric power system model to explicitly evaluate the change in generator dispatches resulting from PHEV deployment in the Texas grid, and apply fixed and non-parametric estimates of generator emissions rates, to estimate the resulting changes in generation emissions. We find that by using the flexibility of when vehicles may be charged, generator efficiency can be increased substantially. By changing generator dispatch, a PHEVfleet of up to 15% of light-duty vehicles can actually decrease net generator NOx emissions during the ozone season, despite the additional charging load. By adding V2G services, such as spinning reserves and energy storage, CO2, SO2, and NOx emissions can be reduced even further.

  17. Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system

    International Nuclear Information System (INIS)

    Goeransson, Lisa; Karlsson, Sten; Johnsson, Filip

    2010-01-01

    This study investigates consequences of integrating plug-in hybrid electric vehicles (PHEVs) in a wind-thermal power system supplied by one quarter of wind power and three quarters of thermal generation. Four different PHEV integration strategies, with different impacts on the total electric load profile, have been investigated. The study shows that PHEVs can reduce the CO 2 -emissions from the power system if actively integrated, whereas a passive approach to PHEV integration (i.e. letting people charge the car at will) is likely to result in an increase in emissions compared to a power system without PHEV load. The reduction in emissions under active PHEV integration strategies is due to a reduction in emissions related to thermal plant start-ups and part load operation. Emissions of the power sector are reduced with up to 4.7% compared to a system without PHEVs, according to the simulations. Allocating this emission reduction to the PHEV electricity consumption only, and assuming that the vehicles in electric mode is about 3 times as energy efficient as standard gasoline operation, total emissions from PHEVs would be less than half the emissions of a standard car, when running in electric mode.

  18. Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil

    International Nuclear Information System (INIS)

    Soares MC Borba, Bruno; Szklo, Alexandre; Schaeffer, Roberto

    2012-01-01

    Several studies have proposed different tools for analyzing the integration of variable renewable energy into power grids. This study applies an optimization tool to model the expansion of the electric power system in northeastern Brazil, enabling the most efficient dispatch of the variable output of the wind farms that will be built in the region over the next 20 years. The expected combined expansion of wind generation with conventional inflexible generation facilities, such as nuclear plants and run-of-the-river hydropower plants, poses risks of future mismatch between supply and demand in northeastern Brazil. Therefore, this article evaluates the possibility of using a fleet of plug-in hybrid electric vehicles (PHEVs) to regularize possible energy imbalances. Findings indicate that a dedicated fleet of 500 thousand PHEVs in 2015, and a further 1.5 million in 2030, could be recharged overnight to take advantage of the surplus power generated by wind farms. To avoid the initial costs of smart grids, this article suggests, as a first step, the use of a governmental PHEV fleet that allows fleet managers to control battery charging times. Finally, the study demonstrates the advantages of optimizing simultaneously the power and transport sectors to test the strategy suggested here. -- Highlights: ► We evaluated the use of plug-in hybrid electric vehicles (PHEV) to regularize possible energy imbalances in northeastern Brazil. ► This imbalance might result from the large-scale wind power penetration along with conventional inflexible power plants in the region. ► We adapted the MESSAGE optimization tool to the base conditions of the Brazilian power system. ► 500 thousand PHEVs in 2015 and 1.5 million in 2030 could be recharged taking advantage of wind energy surplus.

  19. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Moura, Scott J.; Fathy, Hosam K.; Stein, Jeffrey L.; Callaway, Duncan S.

    2010-01-01

    Recent results in plug-in hybrid electric vehicle (PHEV) power management research suggest that battery energy capacity requirements may be reduced through proper power management algorithm design. Specifically, algorithms which blend fuel and electricity during the charge depletion phase using smaller batteries may perform equally to algorithms that apply electric-only operation during charge depletion using larger batteries. The implication of this result is that ''blended'' power management algorithms may reduce battery energy capacity requirements, thereby lowering the acquisition costs of PHEVs. This article seeks to quantify the tradeoffs between power management algorithm design and battery energy capacity, in a systematic and rigorous manner. Namely, we (1) construct dynamic PHEV models with scalable battery energy capacities, (2) optimize power management using stochastic control theory, and (3) develop simulation methods to statistically quantify the performance tradeoffs. The degree to which blending enables smaller battery energy capacities is evaluated as a function of both daily driving distance and energy (fuel and electricity) pricing. (author)

  20. Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2013-01-01

    Highlights: ► It is analyzed the series and parallel Hybrid Power Source (HPS) topology for plug-in Fuel Cell Vehicle (PFCV). ► An energy efficiency analysis of the Multiport Power Converter (MPC) of both HPSs is performed. ► The MPC energy efficiency features were shown by analytical computing in all PFCV regimes. -- Abstract: In this paper it is presented a mathematical analysis of the energy efficiency for the Multiport Power Converter (MPC) used in series and parallel Hybrid Power Source (HPS) architectures type on the plug-in Fuel Cell Vehicles (PFCVs). The aim of the analysis is to provide general conclusions for a wide range of PFCV operating regimes that are chosen for efficient use of the MPC architecture on each particular drive cycle. In relation with FC system of PFCV, the Energy Storage System (ESS) can operate in following regimes: (1) Charge-Sustaining (CS), (2) Charge-Depleting (CD), and (3) Charge-Increasing (CI). Considering the imposed window for the ESS State-Of-Charge (SOC), the MPC can be connected to renewable plug-in Charging Stations (PCSs) to exchange power with Electric Power (EP) system, when it is necessary for both. The Energy Management Unit (EMU) that communicates with the EP system will establish the moments to match the PFCV power demand with supply availability of the EP grid, stabilizing it. The MPC energy efficiency of the PFCVs is studied when the ESS is charged (discharged) from (to) the home/PCS/EP system. The comparative results were shown for both PFCV architectures through the analytical calculation performed and the appropriate Matlab/Simulink® simulations presented.

  1. Calibration methodology for energy management system of a plug-in hybrid electric vehicle

    International Nuclear Information System (INIS)

    Duan, Benming; Wang, Qingnian; Zeng, Xiaohua; Gong, Yinsheng; Song, Dafeng; Wang, Junnian

    2017-01-01

    Highlights: • Calibration theory of EMS is proposed. • A comprehensive evaluating indicator is constructed by radar chart method. • Optimal Latin hypercube design algorithm is introduced to obtain training data. • An approximation model is established by using a RBF neural network. • Offline calibration methodology improves the actual calibration efficiency. - Abstract: This paper presents a new analytical calibration method for energy management strategy designed for a plug-in hybrid electric vehicle. This method improves the actual calibration efficiency to reach a compromise among the conflicting calibration requirements (e.g. emissions and economy). A comprehensive evaluating indicator covering emissions and economic performance is constructed by using a radar chart method. A radial basis functions (RBFs) neural network model is proposed to establish a precise model among control parameters and the comprehensive evaluation indicator. The optimal Latin hypercube design is introduced to obtain the experimental data to train the RBFs neural network model. And multi-island genetic algorithm is used to solve the optimization model. Finally, an offline calibration example is conducted. Results validate the effectiveness of the proposed calibration approach in improving vehicle performance and calibration efficiency.

  2. The Development of Expansion Plug Wedge Test for Clad Tubing Structure Mechanical Property Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [ORNL; Jiang, Hao [ORNL

    2016-01-12

    To determine the tensile properties of irradiated fuel cladding in a hot cell, a simple test was developed at the Oak Ridge National Laboratory (ORNL) and is described fully in US Patent Application 20060070455, “Expanded plug method for developing circumferential mechanical properties of tubular materials.” This method is designed for testing fuel rod cladding ductility in a hot cell using an expandable plug to stretch a small ring of irradiated cladding material. The specimen strain is determined using the measured diametrical expansion of the ring. This method removes many complexities associated with specimen preparation and testing. The advantages are the simplicity of measuring the test component assembly in the hot cell and the direct measurement of the specimen’s strain. It was also found that cladding strength could be determined from the test results.

  3. Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States

    International Nuclear Information System (INIS)

    Onat, Nuri Cihat; Kucukvar, Murat; Tatari, Omer

    2015-01-01

    Highlights: • Driving patterns and electricity generation mix influence vehicle preferences. • EVs are found to be least carbon-intensive vehicle option in 24 states. • HEVs are found to be the most energy-efficient option in 45 states. • EVs across the board are unfavorable in the marginal electricity mix scenario. • Use of renewable energy to power EVs/PHEVs is crucial. - Abstract: Electric vehicles (EVs), plug-in hybrid electric vehicles (PHEVs), and hybrid electric vehicles (HEVs) are often considered as better options in terms of greenhouse gas emissions and energy consumption compared to internal combustion vehicles. However, making any decision among these vehicle options is not a straightforward process due to temporal and spatial variations, such as the sources of the electricity used and regional driving patterns. In this study, we compared these vehicle options across 50 states, taking into account state-specific average and marginal electricity generation mixes, regional driving patterns, and vehicle and battery manufacturing impacts. Furthermore, a policy scenario proposing the widespread use of solar energy to charge EVs and PHEVs is evaluated. Based on the average electricity generation mix scenario, EVs are found to be least carbon-intensive vehicle option in 24 states, while HEVs are found to be the most energy-efficient option in 45 states. In the marginal electricity mix scenario, widespread adoption of EVs is found to be an unwise strategy given the existing and near-future marginal electricity generation mix. On the other hand, EVs can be superior to other alternatives in terms of energy-consumption, if the required energy to generate 1 kW h of electricity is below 1.25 kW h

  4. Plug-in hybrid electric vehicle LiFePO4 battery life implications of thermal management, driving conditions, and regional climate

    Science.gov (United States)

    Yuksel, Tugce; Litster, Shawn; Viswanathan, Venkatasubramanian; Michalek, Jeremy J.

    2017-01-01

    Battery degradation strongly depends on temperature, and many plug-in electric vehicle applications employ thermal management strategies to extend battery life. The effectiveness of thermal management depends on the design of the thermal management system as well as the battery chemistry, cell and pack design, vehicle system characteristics, and operating conditions. We model a plug-in hybrid electric vehicle with an air-cooled battery pack composed of cylindrical LiFePO4/graphite cells and simulate the effect of thermal management, driving conditions, regional climate, and vehicle system design on battery life. We estimate that in the absence of thermal management, aggressive driving can cut battery life by two thirds; a blended gas/electric-operation control strategy can quadruple battery life relative to an all-electric control strategy; larger battery packs can extend life by an order of magnitude relative to small packs used for all-electric operation; and batteries last 73-94% longer in mild-weather San Francisco than in hot Phoenix. Air cooling can increase battery life by a factor of 1.5-6, depending on regional climate and driving patterns. End of life criteria has a substantial effect on battery life estimates.

  5. Online Energy Management of Plug-In Hybrid Electric Vehicles for Prolongation of All-Electric Range Based on Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Zeyu Chen

    2015-01-01

    Full Text Available The employed energy management strategy plays an important role in energy saving performance and exhausted emission reduction of plug-in hybrid electric vehicles (HEVs. An application of dynamic programming for optimization of power allocation is implemented in this paper with certain driving cycle and a limited driving range. Considering the DP algorithm can barely be used in real-time control because of its huge computational task and the dependence on a priori driving cycle, several online useful control rules are established based on the offline optimization results of DP. With the above efforts, an online energy management strategy is proposed finally. The presented energy management strategy concerns the prolongation of all-electric driving range as well as the energy saving performance. A simulation study is deployed to evaluate the control performance of the proposed energy management approach. All-electric range of the plug-in HEV can be prolonged by up to 2.86% for a certain driving condition. The energy saving performance is relative to the driving distance. The presented energy management strategy brings a little higher energy cost when driving distance is short, but for a long driving distance, it can reduce the energy consumption by up to 5.77% compared to the traditional CD-CS strategy.

  6. A fast alternative to core plug tests for optimising injection water salinity for EOR

    DEFF Research Database (Denmark)

    Hassenkam, Tue; Andersson, Martin Peter; Hilner, Emelie Kristin Margareta

    2014-01-01

    of the clays which would lead to permanent reservoir damage but evidence of effectiveness at moderate salinity would offer the opportunity to dispose of produced water. The goal is to define boundary conditions so injection water salinity is high enough to prevent reservoir damage and low enough to induce...... the low salinity effect while keeping costs and operational requirements at a minimum. Traditional core plug testing for optimising conditions has some limitations. Each test requires a fresh sample, core testing requires sophisticated and expensive equipment, and reliable core test data requires several...... experiments can be done relatively quickly on very little material, it gives the possibility of testing salinity response on samples from throughout a reservoir and for gathering statistics. Our approach provides a range of data that can be used to screen core plug testing conditions and to provide extra data...

  7. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Lemoine, D M; Kammen, D M; Farrell, A E

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream

  8. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles

    Science.gov (United States)

    Lemoine, D. M.; Kammen, D. M.; Farrell, A. E.

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) can use both grid-supplied electricity and liquid fuels. We show that under recent conditions, millions of PHEVs could have charged economically in California during both peak and off-peak hours even with modest gasoline prices and real-time electricity pricing. Special electricity rate tariffs already in place for electric vehicles could successfully render on-peak charging uneconomical and off-peak charging very attractive. However, unless battery prices fall by at least a factor of two, or gasoline prices double, the present value of fuel savings is smaller than the marginal vehicle costs, likely slowing PHEV market penetration in California. We also find that assumptions about how PHEVs are charged strongly influence the number of PHEVs that can be charged before the electric power system must be expanded. If most PHEVs are charged after the workday, and thus after the time of peak electricity demand, our forecasts suggest that several million PHEVs could be deployed in California without requiring new generation capacity, and we also find that the state's PHEV fleet is unlikely to reach into the millions within the current electricity sector planning cycle. To ensure desirable outcomes, appropriate technologies and incentives for PHEV charging will be needed if PHEV adoption becomes mainstream.

  9. Plug-in hybrid electric vehicles as regulating power providers. Case studies of Sweden and Germany

    International Nuclear Information System (INIS)

    Andersson, S.-L.; Goeransson, L.; Karlsson, S.; Johnsson, F.; Elofsson, A.K.; Galus, M.D.; Andersson, G.

    2010-01-01

    This study investigates plug-in hybrid electric vehicles (PHEVs) as providers of regulating power in the form of primary, secondary and tertiary frequency control. Previous studies have shown that PHEVs could generate substantial profits while providing ancillary services. This study investigates under what conditions PHEVs can generate revenues using actual market data, i.e. prices and activations of regulating power, from Sweden and Germany from four months in 2008. PHEV market participation is modelled for individual vehicles in a fleet subject to a simulated movement pattern. Costs for infrastructure and vehicle-to-grid equipment are not included in the analysis. The simulation results indicate that maximum average profits generated on the German markets are in the range 30-80 EUR per vehicle and month whereas the Swedish regulating power markets give no profit. In addition, an analysis is performed to identify strengths, weaknesses, opportunities, and threats (SWOT) of PHEVs as regulating power providers. Based on the simulation results and the SWOT analysis, characteristics for an ideal regulating power market for PHEVs are presented. (author)

  10. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  11. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  12. Hybrid treatment of dysphagia lusoria: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug

    Directory of Open Access Journals (Sweden)

    Ernesto Cobos-González

    Full Text Available Compression of the esophagus by a retroesophageal aberrant right subclavian artery (ARSA is a rare cause of dysphagia. We present the case of a 47-year-old female with symptoms of progressive dysphagia diagnosed with dysphagia lusoria using barium swallow and contrast computed tomography and successfully treated with a hybrid procedure: right carotid to subclavian bypass and endovascular insertion of an Amplatzer II Vascular Plug through the right superficial femoral artery. We consider this approach safer, less invasive and more complete to avoid recurrent dysphagia.

  13. Plug-in hybrid electric vehicle impact study for the Progress Energy Carolinas Territory : condensed grid impact report for PHEV 2007 conference

    International Nuclear Information System (INIS)

    Waters, M.; Outlaw, T.; Boone, K.

    2007-01-01

    This presentation described a program designed to investigate the market viability of plug-in hybrid electric vehicles (PHEVs) and examine the impact of PHEVs on electricity generation systems. Three potential charging scenarios were examined: (1) uncontrolled; (2) delayed after 22:00, and (3) optimized off-peak. The study demonstrated that PHEVs have the capacity to provide greater value to users than conventional or standard hybrid vehicles, even when their higher initial cost is considered. Fuel savings were estimated at $600 more than savings estimated for standard hybrid vehicles. Developed market models were used to demonstrate that PHEVs will probably achieve sales market shares of 26 per cent by the year 2030. An estimated 670 GWh of electricity will be needed to charge the expected fleet. Results for the uncontrolled scenario showed additional peak demands. Delayed and off-peak scenarios were capable of massive penetrations of PHEVs without increases in transmission and distribution. Incremental emission rates for sulfur dioxide (SO 2 ) and nitrogen oxide (NO x ) decreased in off-peak scenarios. The study showed that all PHEV charging scenarios increased SO 2 emissions when compared to standard hybrids. NO x emissions were equal or slightly higher. It was concluded that PHEVs can also serve as a key component to alternative fuel strategies and provide significant reductions in oil imports. 30 refs., 2 tabs., 21 figs

  14. Development of an End-plug Welding Technology for an Instrumented Fuel Irradiation Test

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yong; Shin, Yoon Taek; Choo, Kee Nam

    2010-01-01

    The irradiation test of end-plug specimens was planned for the evaluation of nuclear fuels performance. To establish the fabrication process, and for satisfying the requirements of the irradiation test, an orbital-GTA weld machine for the specimens of the dual rods was developed, and the preliminary welding experiments for optimizing the process conditions of the specimens of the dual rods were performed. Dual rods with a 9.5mm diameter and a 0.6mm wall thickness of the cladding tubes and end-plugs have been used and the optimum conditions of the pin-hole welding have also been selected. This paper describes the experimental results of the GTA welds of the specimens of the dual rods and the metallography examinations of the GTA welded specimens for various welding conditions for the instrumented fuel irradiation test. These investigations satisfied the requirements of the instrumented irradiation test and the GTA welds for the specimens of the dual rods at the HANARO research reactor

  15. Development of sealing plug for sweep gas line

    International Nuclear Information System (INIS)

    Kikuchi, Taiji; Yamada, Hirokazu; Saitoh, Takashi; Nakamichi, Masaru; Tsuchiya, Kunihiko; Kawamura, Hiroshi

    2004-03-01

    On the irradiation capsule for neutron irradiation test of the tritium breeder, the sealing plug is necessary to prevent a leak of tritium gas when the tritium breeder is picked up from the irradiation capsule after irradiation test. However, the general valve and plug cannot apply to sealing of the sweep gas line because of the following factors, the neutron irradiation effect, limited space in the irradiation capsule, high sealing efficiency, simple method and operation for control. Therefore, the sealing plug for sweep gas line has to be developed. This paper reports the development of the sealing plug for sweep gas line and the operating procedure of the sealing plug in the irradiation capsule. (author)

  16. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Eric W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Seshadri [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-15

    This document describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  17. National Plug-In Electric Vehicle Infrastructure Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rames, Clement L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Srinivasa Raghavan, Sesha [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Melaina, Marc W [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wood, Eric W [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-02-07

    This presentation describes a study conducted by the National Renewable Energy Laboratory quantifying the charging station infrastructure required to serve the growing U.S. fleet of plug-in electric vehicles (PEVs). PEV sales, which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs), have surged recently. Most PEV charging occurs at home, but widespread PEV adoption will require the development of a national network of non-residential charging stations. Installation of these stations strategically would maximize the economic viability of early stations while enabling efficient network growth as the PEV market matures. This document describes what effective co-evolution of the PEV fleet and charging infrastructure might look like under a range of scenarios. To develop the roadmap, NREL analyzed PEV charging requirements along interstate corridors and within urban and rural communities. The results suggest that a few hundred corridor fast-charging stations could enable long-distance BEV travel between U.S. cities. Compared to interstate corridors, urban and rural communities are expected to have significantly larger charging infrastructure requirements. About 8,000 fast-charging stations would be required to provide a minimum level of coverage nationwide. In an expanding PEV market, the total number of non-residential charging outlets or 'plugs' required to meet demand ranges from around 100,000 to more than 1.2 million. Understanding what drives this large range in capacity requirements is critical. For example, whether consumers prefer long-range or short-range PEVs has a larger effect on plug requirements than does the total number of PEVs on the road. The relative success of PHEVs versus BEVs also has a major impact, as does the number of PHEVs that charge away from home. This study shows how important it is to understand consumer preferences and driving behaviors when planning charging networks.

  18. CRBRP design and test results for fuel handling systems, plugs, and seals

    International Nuclear Information System (INIS)

    Berg, G.E.

    1977-01-01

    The fuel handling system and reactor rotating plugs for the Clinch River Breeder Reactor Plant (CRBRP) are based primarily on existing technology and, in many respects, follow the concept developed for the Fast Flux Test Facility (FFTF). The equipment and the development programs initiated to verify its performance are described. Test results obtained from the development program, and the extent to which these results verified original design selections, or suggested potential improvements, are discussed

  19. Shielding plug device

    International Nuclear Information System (INIS)

    Orii, Shoichi; Hasegawa, Satoshi; Makishima, Kenji.

    1976-01-01

    Object: To reduce the size of and extend the life of a revolving bearing and facilitate the laying of driving cables and duct lines, this being accomplished by providing plug raising means of a fast breeder on a stationary plug mounting base so as to prevent the shearing force of sodium from acting upon the revolving bearing. Structure: The shield plug means comprises a stationary plug secured to the open end of the reactor container, a rotary plug rotatable with respect to the stationary plug, an annular base formed on top of the stationary plug so as to cover the rotary plug, a bearing secured to the rotary plug edge lower face and upper and lower locking plates. At the time of the rotation of the rotary plug, the upper locking plate is withdrawn, the stationary plug is raised to release the seal structure, and the lower locking plate is inserted between the bearing and stationary plug. In this way, smooth rotation of the rotary plug can be obtained. (Horiuchi, T.)

  20. Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Aiswariya Sekar

    2015-11-01

    Full Text Available This paper presents a new soft switching boost converter with a passive snubber cell without additional active switches for battery charging systems. The proposed snubber finds its application in the front-end ac-dc converter of Plug-in Hybrid Electric Vehicle (PHEV battery chargers. The proposed auxiliary snubber circuit consists of an inductor, two capacitors and two diodes. The new converter has the advantages of continuous input current, low switching stresses, high voltage gain without extreme duty cycle, minimized charger size and charging time and fewer amounts of cost and electricity drawn from the utility at higher switching frequencies. The switch is made to turn ON by Zero Current Switching (ZCS and turn OFF by Zero Voltage Switching (ZVS. The detailed steady state analysis of the novel ac-dc Zero Current- Zero Voltage Switching (ZC-ZVS boost Power Factor Correction (PFC converter is presented with its operating principle. The experimental prototype of 20 kHz, 100 W converter verifies the theoretical analysis. The power factor of the prototype circuit reaches near unity with an efficiency of 97%, at nominal output power for a ±10% variation in the input voltage and ±20% variation in the snubber component values.

  1. Swarm Intelligence-Based Smart Energy Allocation Strategy for Charging Stations of Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Imran Rahman

    2015-01-01

    Full Text Available Recent researches towards the use of green technologies to reduce pollution and higher penetration of renewable energy sources in the transportation sector have been gaining popularity. In this wake, extensive participation of plug-in hybrid electric vehicles (PHEVs requires adequate charging allocation strategy using a combination of smart grid systems and smart charging infrastructures. Daytime charging stations will be needed for daily usage of PHEVs due to the limited all-electric range. Intelligent energy management is an important issue which has already drawn much attention of researchers. Most of these works require formulation of mathematical models with extensive use of computational intelligence-based optimization techniques to solve many technical problems. In this paper, gravitational search algorithm (GSA has been applied and compared with another member of swarm family, particle swarm optimization (PSO, considering constraints such as energy price, remaining battery capacity, and remaining charging time. Simulation results obtained for maximizing the highly nonlinear objective function evaluate the performance of both techniques in terms of best fitness.

  2. Design approaches for access plugs in a basalt repository

    International Nuclear Information System (INIS)

    O'Rourke, J.; Allirot, D.; O'Connor, K.

    1982-01-01

    This paper describes research, laboratory testing, and analytical approaches taken toward the development of designs for sealing boreholes, shafts, and tunnels penetrating from ground surface to a deep, mined nuclear waste repository in basalt. A material selection process leading to identification of preferred sealing materials is discussed, and the laboratory testing program to define the geochemical and geotechnical performance of these materials is described. Analysis of the environmental conditions in the Columbia Plateau basalt flows leads to identification of tentative design criteria for plug systems. These design criteria include performance of the plug as a hydraulic barrier and as a radionuclide barrier. An important problem for effective performance of a plug system as a hydraulic barrier is shown to be a potentially disturbed zone surrounding the excavation in the stressed and jointed host rock. An idealized one-dimensional numerical model is described for analyzing the performance of the plug as a barrier to radionuclide transport. The preliminary analyses led to the conclusion that the composition and dimensions of practical candidate plugs can satisfy both hydraulic and radionuclide barrier criteria. Examples of candidate designs are shown for boreholes, shafts, and tunnels. 9 references, 6 figures, 6 tables

  3. Proceedings of the PHEV09 conference : plug-in hybrid and electric vehicles

    International Nuclear Information System (INIS)

    2009-01-01

    The commercialization of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) will require careful consideration of the electric grid's generation and distribution capacities as well as new developments in electric drives and other PHEV and EV technologies. A greater understanding of the policy initiatives needed to develop and promote the use of PHEVs and EVs is also needed in Canada. With 344 delegates, this conference provided a forum for the discussion of issues related to the current PHEV and EV market in Canada. The first day of the conference focused on emerging battery technologies, while the second and third days discussed PHEV and EV technologies, markets, policies and regulations. Presentations at the conference were divided into 18 sessions: (1) performance of batteries in extreme conditions; (2) grid integration; (3) customer perspectives; (4) public and private support programs for the Canadian EV industry; (5) grid-vehicle interface; (6) standards, regulations and safety issues now and in the foreseeable future; (7) an overview of key initiatives in Canada; (8) applications in defence and space; (9) international perspectives on market issues and supportive policies; (10) power management; (11) applications in northern and remote communities; (12) emerging business models to accelerate electric drive; (13) power management; (14) renewable and zero GHG energy opportunities; (15) human resources implications; (16) OEM perspectives; (17) OEM perspectives part 2; and (18) a closing plenary session. The conference featured 64 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs.

  4. A study on stress corrosion cracking of explosive plugged part

    International Nuclear Information System (INIS)

    Kaga, Seiichi; Fujii, Katsuhiro; Yamamoto, Yoshiaki; Sakuma, Koosuke; Hibi, Seiji; Morimoto, Hiroyoshi.

    1986-01-01

    Studies on the stress corrosion cracking of explosive plugged part are conducted. SUS 304 stainless steel is used as testing material. The distribution of residual stress in plug and tube plate after plugging is obtained. The effect of residual stress on the stress corrosion cracking is studied. Residual stress in tube plate near the plug is compressive and stress corrosion cracking dose not occur in the tube plate there, and it occurs on the inner surface of plug because of residual tensile stress in axial direction of the plug. Stress corrosion test in MgCl 2 solution under constant load is conducted. The susceptibility to stress corrosion cracking of the explosive bonded boundary is lower than that of base metal because of greater resistance to plastic deformation. Stress corrosion test in high temperature and high pressure pure water is also conducted by means of static type of autoclave but stress corrosion cracking does not occur under the testing condition used. (author)

  5. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  6. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  7. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  8. Experimental and numerical modeling of sulfur plugging in carbonate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Kassem, J.H. [Chemical and Petroleum Engineering Department, UAE University, PO Box 17555, Al-Ain (United Arab Emirates)

    2000-05-01

    Sour gas, mainly in the form of hydrogen sulfide, is produced in large amounts from many oil and gas reservoirs in the United Arab Emirates. In addition to creating problems in production lines, the precipitation of elemental sulfur in vicinity of the wellbore is often reported to cause wellbore damage. While there have been several studies performed on the role of solid deposition in gas reservoirs, the role of sulfur deposition in oil reservoirs has not been investigated. This paper presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. Two separate sets of experiments, one for a gas phase system and another for a crude oil system, were conducted to investigate the deposition of elemental sulfur in (linear) carbonate cores. The gas flow tests were conducted with elemental sulfur being carried with nitrogen through limestone cores. Changes in gas flow rate were monitored while the injection pressure was held constant. A series of experiments generated valuable data for plugging with elemental sulfur. X-ray diffraction tests provided evidence of sulfur deposition along the cores. The oil flow tests were carried out to observe sulfur precipitation and plugging in a carbonate core. The crude oil was de-asphalted before conducting these tests in order to isolate the effect of asphaltene plugging. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in a phenomenological model that was incorporated in the wellbore numerical model. The data for the numerical model were obtained from both test tube and oil flow experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results)

  9. Data analysis of the ZEUS forward plug calorimeter beam test at CERN

    CERN Document Server

    Kasemann, M; Boettcher, S; Bohnet, I; Fernandez, J P; Goebel, F; Gottlicher, P; Gabareen, A; Garcia, G; Gendner, N; Graciani, R; Hauser, M; Horstmann, D; Inuzuka, M; Khein, L A; Lohr, B; Lewis, R; Lim, H; Lindemann, L; Markun, P; Martinez, M; Neumann, T; Park, I H; del Peso, J; Raach, H; Savin, A; Son, D; Tokushuku, K; Wolfle, S; Whitmore, J; Wick, K; Wolf, G; Yamashita, T; Yamazaki, Y

    2000-01-01

    Before installation in ZEUS the Forward Plug Colorimeter FPC was tested and calibrated using the X test b eam facility of the SPS accelerator at CERN This note summarizes setup and conditions of the test b eam measurements The energy calibration of the FPC using GeV electron and pion b eams as well as GeV muon data is describ ed in some detail The detector p erformance with pion and electron b eams is studied and the results of two monitoring systems using a Co source and an LED system are presented

  10. Waste isolation pilot plant (WIPP) borehole plugging program description

    International Nuclear Information System (INIS)

    Christensen, C.L.; Hunter, T.O.

    1979-08-01

    The tests and experiments described attempt to provide a mix of borehole (with limited access) and in-mine (with relatively unlimited access) environments in which assessment of the various issues involved can be undertaken. The Bell Canyon Test provides the opportunity to instrument and analyze a plug in a high pressure region. The Shallow Hole Test permits application of best techniques for plugging and then access to both the top and bottom of the plug for further analysis. The Diagnostic Test Hole permits recovery of bench scale size samples for analysis and establishes an in-borehole laboratory in which to conduct testing and analysis in all strata from the surface into the salt horizon. The additional in mine experiments provide the opportunity to investigate in more detail specific effects on plugs in the salt region and allows evaluation of instrumentation systems

  11. Preparation and Characterization of Chemical Plugs Based on Selected Hanford Waste Simulants

    International Nuclear Information System (INIS)

    Mattigod, Shas V.; Wellman, Dawn M.; Parker, Kent E.; Cordova, Elsa A.; Gunderson, Katie M.; Baum, Steven R.; Crum, Jarrod V.; Poloski, Adam P.

    2008-01-01

    This report presents the results of preparation and characterization of chemical plugs based on selected Hanford Site waste simulants. Included are the results of chemical plug bench testing conducted in support of the M1/M6 Flow Loop Chemical Plugging/Unplugging Test (TP-RPP-WTP-495 Rev A). These results support the proposed plug simulants for the chemical plugging/ unplugging tests. Based on the available simulant data, a set of simulants was identified that would likely result in chemical plugs. The three types of chemical plugs that were generated and tested in this task consisted of: 1. Aluminum hydroxide (NAH), 2. Sodium aluminosilicate (NAS), and 3. Sodium aluminum phosphate (NAP). While both solvents, namely 2 molar (2 M) nitric acid (HNO3) and 2 M sodium hydroxide (NaOH) at 60 C, used in these tests were effective in dissolving the chemical plugs, the 2 M nitric acid was significantly more effective in dissolving the NAH and NAS plugs. The caustic was only slightly more effecting at dissolving the NAP plug. In the bench-scale dissolution tests, hot (60 C) 2 M nitric acid was the most effective solvent in that it completely dissolved both NAH and NAS chemical plugs much faster (1.5 - 2 x) than 2 M sodium hydroxide. So unless there are operational benefits for the use of caustic verses nitric acid, 2 M nitric acid heated to 60 C should be the solvent of choice for dissolving these chemical plugs. Flow-loop testing was planned to identify a combination of parameters such as pressure, flush solution, composition, and temperature that would effectively dissolve and flush each type of chemical plug from preformed chemical plugs in 3-inch-diameter and 4-feet-long pipe sections. However, based on a review of the results of the bench-top tests and technical discussions, the Waste Treatment Plant (WTP) Research and Technology (R and T), Engineering and Mechanical Systems (EMS), and Operations concluded that flow-loop testing of the chemically plugged pipe sections

  12. A Mixed Logical Dynamical-Model Predictive Control (MLD-MPC Energy Management Control Strategy for Plug-in Hybrid Electric Vehicles (PHEVs

    Directory of Open Access Journals (Sweden)

    Jing Lian

    2017-01-01

    Full Text Available Plug-in hybrid electric vehicles (PHEVs can be considered as a hybrid system (HS which includes the continuous state variable, discrete event, and operation constraint. Thus, a model predictive control (MPC strategy for PHEVs based on the mixed logical dynamical (MLD model and short-term vehicle speed prediction is proposed in this paper. Firstly, the mathematical model of the controlled PHEV is set-up to evaluate the energy consumption using the linearized models of core power components. Then, based on the recognition of driving intention and the past vehicle speed data, a nonlinear auto-regressive (NAR neural network structure is designed to predict the vehicle speed for known driving profiles of city buses and the predicted vehicle speed is used to calculate the total required torque. Next, a MLD model is established with appropriate constraints for six possible driving modes. By solving the objective function with the Mixed Integer Linear Programming (MILP algorithm, the optimal motor torque and the corresponding driving mode sequence within the speed prediction horizon can be obtained. Finally, the proposed energy control strategy shows substantial improvement in fuel economy in the simulation results.

  13. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  14. PLUGGING AND UNPLUGGING OF WASTE TRANSFER PIPELINES

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1999-01-01

    This project, which began in FY97, involves both the flow loop research on plugging and unplugging of waste transfer pipelines, and the large-scale industrial equipment test of plugging locating and unplugging technologies. In FY98, the related work was performed under the project name ''Mixing, Settling, and Pipe Unplugging of Waste Transfer Lines.'' The mixing, settling, and pipeline plugging and unplugging are critical to the design and maintenance of a waste transfer pipeline system, especially for the High-Level Waste (HLW) pipeline transfer. The major objective of this work is to recreate pipeline plugging conditions for equipment testing of plug locating and removal and to provide systematic operating data for modification of equipment design and enhancement of performance of waste transfer lines used at DOE sites. As the waste tank clean-out and decommissioning program becomes active at the DOE sites, there is an increasing potential that the waste slurry transfer lines will become plugged and unable to transport waste slurry from one tank to another or from the mixing tank to processing facilities. Transfer systems may potentially become plugged if the solids concentration of the material being transferred increases beyond the capability of the prime mover or if upstream mixing is inadequately performed. Plugging can occur due to the solids' settling in either the mixing tank, the pumping system, or the transfer lines. In order to enhance and optimize the slurry's removal and transfer, refined and reliable data on the mixing, sampling, and pipe unplugging systems must be obtained based on both laboratory-scale and simulated in-situ operating conditions

  15. Optimal integration of a hybrid solar-battery power source into smart home nanogrid with plug-in electric vehicle

    Science.gov (United States)

    Wu, Xiaohua; Hu, Xiaosong; Teng, Yanqiong; Qian, Shide; Cheng, Rui

    2017-09-01

    Hybrid solar-battery power source is essential in the nexus of plug-in electric vehicle (PEV), renewables, and smart building. This paper devises an optimization framework for efficient energy management and components sizing of a single smart home with home battery, PEV, and potovoltatic (PV) arrays. We seek to maximize the home economy, while satisfying home power demand and PEV driving. Based on the structure and system models of the smart home nanogrid, a convex programming (CP) problem is formulated to rapidly and efficiently optimize both the control decision and parameters of the home battery energy storage system (BESS). Considering different time horizons of optimization, home BESS prices, types and control modes of PEVs, the parameters of home BESS and electric cost are systematically investigated. Based on the developed CP control law in home to vehicle (H2V) mode and vehicle to home (V2H) mode, the home with BESS does not buy electric energy from the grid during the electric price's peak periods.

  16. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    Science.gov (United States)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  17. Tube plug

    International Nuclear Information System (INIS)

    Zafred, P. R.

    1985-01-01

    The tube plug comprises a one piece mechanical plug having one open end and one closed end which is capable of being inserted in a heat exchange tube and internally expanded into contact with the inside surface of the heat exchange tube for preventing flow of a coolant through the heat exchange tube. The tube plug also comprises a groove extending around the outside circumference thereof which has an elastomeric material disposed in the groove for enhancing the seal between the tube plug and the tube

  18. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NARCIS (Netherlands)

    van Vliet, O.P.R.|info:eu-repo/dai/nl/288519361; Kruithof, T.; Turkenburg, W.C.|info:eu-repo/dai/nl/073416355; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2010-01-01

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be

  19. Effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid - Additional information; Auswirkungen der Markteinfuehrung von Elektrofahrzeugen und Plug-In-Hybrids auf die Energietraeger und das Elektrizitaetsnetz. Ergaenzende Informationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Rigassi, R.; Huber, S. [Enco AG, Liestal (Switzerland); Strub, P. [Pierre Strub - nachhaltig wirkt, Basel (Switzerland)

    2010-12-15

    This comprehensive annex to a final report for the Swiss federal Office of Energy (SFOE) discusses the effects of the introduction of electric vehicles and plug-in hybrids on sources of energy and the electricity grid. Energy and CO{sub 2} balances are discussed as is the use of vehicle batteries as part of a 'vehicle-to-grid' system that can help regulate the electricity mains. Charge optimisation and mains fed-in are discussed. The control and cost/remuneration of the power involved are looked at. The modelling involved for calculating the power quantities involved is examined. Data on related vehicle technologies and their usage is presented and discussed. The Swiss power grid, production and the mix of electricity produced are looked at and the needs for regulating energy are discussed. Factors taken into account for the comparison of carbon dioxide emissions are looked at. Further additional information is presented and discussed. Relationships to other energy scenarios are presented and discussed. Finally, conclusions are drawn and recommendations are made. Questions still to be examined are listed.

  20. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    Science.gov (United States)

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  1. Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study

    International Nuclear Information System (INIS)

    Marshall, Brandon M.; Kelly, Jarod C.; Lee, Tae-Kyung; Keoleian, Gregory A.; Filipi, Zoran

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) use grid electricity as well as on-board gasoline for motive force. These multiple energy sources make prediction of PHEV energy consumption challenging and also complicate evaluation of their environmental impacts. This paper introduces a novel PHEV energy consumption modeling approach and compares it to a second approach from the literature, each using actual trip patterns from the 2009 National Household Travel Survey (NHTS). The first approach applies distance-dependent fuel efficiency and on-road electricity consumption rates based on naturalistic or real world, driving information to determine gasoline and electricity consumption. The second uses consumption rates derived in accordance with government certification testing. Both approaches are applied in the context of a location-specific case study that focuses on the state of Michigan. The two PHEV models show agreement in electricity demand due to vehicle charging, gasoline consumption, and life cycle environmental impacts for this case study. The naturalistic drive cycle approach is explored as a means of extending location-specific driving data to supplement existing PHEV impact assessments methods. - Highlights: • Travel patterns from survey data are combined with naturalistic drive cycles. • More realistic PHEV energy modeling using these synthesized real-world drive cycles. • Methodology is demonstrated for PHEVs in Michigan but applicable for other regions. • Energy and emissions findings have major implications for PHEV standards and policy

  2. Downhole television (DHTV) applications in borehole plugging

    International Nuclear Information System (INIS)

    Christensen, C.L.; Statler, R.D.; Peterson, E.W.

    1980-05-01

    The Borehole Plugging (BHP) Program is a part of the Sandia experimental program to support the Waste Isolation Pilot Plant (WIPP). The Sandia BHP program is an Office of Nuclear Waste Isolation (ONWI)-funded program designed to provide inputs to the generic plugging program while simultaneously acquiring WIPP-specific data. For this reason a close liaison is maintained between the Sandia WIPP project and the ONWI generic program. Useful technology developed within the Sandia BHP to support WIPP is made available and considered for further development and application to the generic Borehole Plugging and Repository Sealing Program at ONWI. The purpose of this report is to illustrate the usefulness of downhole television (DHTV) observations of a borehole to plan plugging operations. An indication of the wellbore conditions observed is provided. The equipment and setup procedure used in the evaluation of AEC-7 for the Bell Canyon test series are illustrated. A sequence of pictures at various depths as the DHTV rig is lowered through the wellbore is presented. Sample photographs taken with both dry and underwater lamps for illumination are included. The caliper logs for the same depth are included for comparison. General comments are provided on the illustrations

  3. Biannular Airbreathing Nozzle Rig (BANR) facility checkout and plug nozzle performance test data

    Science.gov (United States)

    Cummings, Chase B.

    2010-09-01

    The motivation for development of a supersonic business jet (SSBJ) platform lies in its ability to create a paradigm shift in the speed and reach of commercial, private, and government travel. A full understanding of the performance capabilities of exhaust nozzle configurations intended for use in potential SSBJ propulsion systems is critical to the design of an aircraft of this type. Purdue University's newly operational Biannular Airbreathing Nozzle Rig (BANR) is a highly capable facility devoted to the testing of subscale nozzles of this type. The high accuracy, six-axis force measurement system and complementary mass flowrate measurement capabilities of the BANR facility make it rather ideally suited for exhaust nozzle performance appraisal. Detailed accounts pertaining to methods utilized in the proper checkout of these diagnostic capabilities are contained herein. Efforts to quantify uncertainties associated with critical BANR test measurements are recounted, as well. Results of a second hot-fire test campaign of a subscale Gulfstream Aerospace Corporation (GAC) axisymmetric, shrouded plug nozzle are presented. Determined test article performance parameters (nozzle thrust efficiencies and discharge coefficients) are compared to those of a previous test campaign and numerical simulations of the experimental set-up. Recently acquired data is compared to published findings pertaining to plug nozzle experiments of similar scale and operating range. Suggestions relating to the future advancement and improvement of the BANR facility are provided. Lessons learned with regards to test operations and calibration procedures are divulged in an attempt to aid future facility users, as well.

  4. Grooved tube plug rolls in

    International Nuclear Information System (INIS)

    Krausser, P.

    1991-01-01

    The removable plugs used to date by the Power Generation Group (KWU) of Siemens to seal defective steam generator tubes have a good track record. Their sealing principle is based on the elastic tensioning of three seal disks against the inside wall of the tube. Now a further removable plug is available -a roll-in plug with a metal-coated surface. It is particularly suitable for use in the roller-expanded zone of the tubes at the tube sheet. The plugs can be used in both Siemens-KWU steam generators and in steam generators manufactured in compliance with the guidelines of the ASME Code. (author)

  5. Dialysis grafts arterial plug: Retrieval using the tulip sheath device in vitro

    International Nuclear Information System (INIS)

    Sharafuddin, Melhem J.; Titus, Jack L.; Gu Xiaoping; Hunter, David W.; Amplatz, Kurt

    1997-01-01

    The 'arterial plug' is a resistant thrombus that frequently persists at the arterial anastomosis of clotted hemodialysis grafts following thrombolytic therapy. We studied the physical and morphological characteristics of the plug and determined the feasibility of transcatheter removal in vitro using the tulip compression thrombectomy system. Sixteen thrombus plugs were recovered during surgical thrombectomy of clotted human dialysis grafts. The physical and gross physical characteristics of all plugs were analyzed. Eight specimens were evaluated microscopically. Transcatheter compression thrombectomy of eight plugs was attempted in vitro. Each plug was embedded in a polyvinyl tube filled with newly clotted blood and connected to a flow circuit. First, balloon-assisted aspiration thrombectomy (BAT) of soft thrombus was performed, while sparing the distal-most segment containing the plug. The tulip sheath was then introduced facing the 'arterial end' of the tube. The thrombus segment containing the plug was pulled back into the tulip mesh using either a 3 Fr Fogarty balloon catheter or a self-expanding rake. The tulip was closed to compress and remove the trapped plug. Near-complete thrombectomy of soft clot was achieved in all tested tubes. Compression and retrieval of the entire arterial plug was successful in all except one, where only partial compression of the plug occurred, presumably due to fibrotic changes. No fragmentation or embolization occurred in the remaining procedures. Spongy consistency was noted in 94% of the specimens. Microscopic evaluation showed organized layered thrombus with compaction in five plugs. Transcatheter removal of a thrombus plug is feasible in vitro using the tulip compression-thrombectomy system

  6. Development and Testing of a Two-Stage Hybrid Launcher.

    Science.gov (United States)

    1979-10-31

    more unitorm properties thorough the tuicK section by quencning in a salt batn, thereby minimizing the cooling gradient but pruuucing a bainitic steel ...to to 1990 psig with H2 , then 6 capture (embed) steel diaphragm fragments S-1, 11/28/77 Diaphragm To devise a method to seal drivers without * Built...driver along with nyloi S-2, and (plug) using steel diaphragms, which add significant release system, and plug cato S-3 11/29/77 tests amounts of

  7. Borehole plugging experiment in OL-KR24 at Olkiluoto, Finland

    International Nuclear Information System (INIS)

    Rautio, T.

    2006-04-01

    Sealing of investigation boreholes has been studied by Svensk Koernbroenslehantering AB (SKB) and Posiva Oy (Posiva) as a part of final disposal research. The proposed principle is that investigation boreholes drilled at a site must not act as a continuous flow path for groundwater but be sealed to become as tight as the surrounding rock. As a part of the investigations SKB and Posiva started the third phase of the joint project 'Cleaning and sealing of investigation boreholes' in 2005. One of the sub-projects was the plugging experiment in borehole OL-KR24 at Olkiluoto. The aim of the experiment was to test all main procedures of borehole sealing concept in practise in a deep borehole. Borehole KR24 was drilled to the depth of 551.11 metres in 2003 and it was located inside the shaft profile in Onkalo. From the surface to the depth of about 120 m the borehole diameter is 98 mm. The rest of the borehole is 75.7 mm in diameter. The borehole is vertical and the inclination is quite accurately 90 degrees. The plugging experiment in borehole OL-KR24 consisted of four main activities: (1) cleaning of the borehole, (2) characterization of the borehole (3) selective stabilisation of the borehole, and (4) emplacement of plugs. The comprehensive cleaning of the borehole was to be done in the first stage to provide the basis for other activities. The aim of characterization was to study the borehole in order to determine the sections for selective stabilisation and the locations for plugs. The characterization phase consisted of caliper measurements, dummy probing and optical borehole imaging (OBI). The aim of selective stabilisation was to show that selected borehole sections can be stabilised using new techniques and methods. One borehole section was reamed from Ω 76 mm to Ω 98 mm. The reamed borehole section should have been filled with sufficient amount of cement-based material to achieve a stable 'concrete tube' after redrilling, but due to encountered problems and

  8. Eddy current inspection of steam generator tubing plugs

    International Nuclear Information System (INIS)

    Cullen, W.K.

    1990-01-01

    In response to the issues raised regarding the integrity of nuclear steam generator tubing plugs manufactured from certain heats of Inconel 600, Westinghouse engineers have developed, qualified and implemented an eddy current inspection system for the in-place assessment of these plugs. The heart of the system is a robotic and effector which delivers an eddy current sensor through the reduced diameter of the plug expander and actuates the coil to physical contact with the expanded inside bore of the plug. Once deployed, the eddy current sensor is rotated along a helical path to produce a detailed scan of the plug surface above the final position of the expander. This testing produces an isometric display of degradation due to primary water stress corrosion cracking, on the inside surface of the plug. To date, successful inspections have been conducted at two nuclear units with two different robotic delivery systems. While designed specifically for mechanical plugs with a bottle bore cavity, the inspection system can also be used for expanded straight bore plugs. Details of the inspection system along with a discussion of qualification activities and actual field results are presented in this paper

  9. Tube plug removal machine

    International Nuclear Information System (INIS)

    Hawkins, P.J.

    1987-01-01

    In a nuclear steam generator wherein some faulty tubes have been isolated by mechanical plugging, to remove a selected plug without damaging the associated tube, a plug removal machine is used. The machine drills into a plug portion with a tap drill bit having a drill portion a tap portion and a threaded portion, engaging that plug portion with the threaded portion after the drilled hole has been threaded by the tap portion thereof, and removing a portion of the plug in the tube with a counterbore drill bit mounted concentrically about the tap drill bit. A trip pin and trip spline disengage the tap drill bit from the motor. The counterbore drill bit is thereafter self-centered with respect to the tube and plug about the now stationary tap drill bit. After a portion of the plug has been removed by the counterbore drill bit, pulling on the top drill bit by grippers on slots will remove the remaining plug portion from the tube. (author)

  10. Comparisons of Energy Management Methods for a Parallel Plug-In Hybrid Electric Vehicle between the Convex Optimization and Dynamic Programming

    Directory of Open Access Journals (Sweden)

    Renxin Xiao

    2018-01-01

    Full Text Available This paper proposes a comparison study of energy management methods for a parallel plug-in hybrid electric vehicle (PHEV. Based on detailed analysis of the vehicle driveline, quadratic convex functions are presented to describe the nonlinear relationship between engine fuel-rate and battery charging power at different vehicle speed and driveline power demand. The engine-on power threshold is estimated by the simulated annealing (SA algorithm, and the battery power command is achieved by convex optimization with target of improving fuel economy, compared with the dynamic programming (DP based method and the charging depleting–charging sustaining (CD/CS method. In addition, the proposed control methods are discussed at different initial battery state of charge (SOC values to extend the application. Simulation results validate that the proposed strategy based on convex optimization can save the fuel consumption and reduce the computation burden obviously.

  11. Recommended analysis plan for the borehole plugging program potash core test

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1980-05-01

    A four-year old plugged potash core hole near the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico has been proposed for overcoring, in order to examine the behavior of known grout mix constituents in contact with a variety of rock types during an extended grout-curing interval. This report recommends that various geochemical analyses be applied to the core samples containing both grout and rock and the interface between the two. The methods to be used include optical petrography, electron microscopy, electron probe microanalysis, x-ray diffraction, thermal analysis (TGA, DSC, DTA) with gas chromatography/mass spectrometry, and bulk chemical analysis. These analyses would allow identification of phases which have developed during grout curing, and provide evidence of reactions which may have taken place among constituents in the system grout-rock-groundwater. These reactions, and their sequence of occurrence will be compared with reactions predicted by thermodynamic modeling as the system seeks its lowest Gibbs' free energy. Identification of reactions which have the potential for compromising the integrity of a grout plug will receive special attention. Since not all such detrimental reactions can be observed directly in a human lifetime, due to kinetic inhibitions, and since a capability of time-dependent prediction of their degree of occurrence cannot be developed, thermodynamic modeling is the only known way of evaluating the long-term stability of a grout plug. The analysis of the plug-rock system will give an indication of in situ curing history of grout plug, and will allow an early occurrence of potentially detrimental reactions to be detected. Thus, this activity will be a case-study of suitability of certain grout mixtures for use in evaporites, as an example of evaluation of grouts for long-term compatability with a variety of rock types

  12. Cast-to-cast variation in end-plug welds for TRIGA fuel elements

    International Nuclear Information System (INIS)

    Gondac, C.; Truta, C.

    2013-01-01

    In the Institute for Nuclear Research (INR) Pitesti - TRIGA Reactor Department there are under development activities for assembling TRIGA-LEU fuel elements locally manufactured, through autogenous Tungsten-Inert-Gas (TIG) welding. Due to specific problems occurring in welding Ni alloys, namely the dissimilar joint between Inconel 600 and Inconel 800 at the end-plug weld, weldability tests on Inconel 600 under various conditions were performed. The tests had been carried out in two stages: basic tests, on simple turned rods of Inconel 600; confirmation tests, on real (actual) end plug –to – clad welding. The basic tests had been done on simple rods machined (turned) at 13.8 mm (main diameter of the plugs) on which there have been made simple semicircular weldings ( no joint involved). Confirmation tests were done on the plug-clad assembly (dissimilar welding Incoloy-Inconel), with the welding parameters resulted from the preliminary conclusions of the basic tests. After welding, the samples were transversally sectioned, prepared for metallographic examination according to the specific procedure. The samples were examined at the metallographic microscope, and photo records for each sectioned welding bead have been taken . Measurements have been made on the recorded photos resulting the essential characteristics of the penetration: width W, depth d and ratio W/d. From the obtained results the following conclusions can be formulated: the penetration depth of the end-plug weld at the TRIGA fuel element varies substantially depending on the material cast of which the plug is produced; the optimization tests had covered the whole range of parameters in which do not appear systematic defects in welds that are specific to the alloys of Nickel ( porosity, hot cracking); for 2011-2012 casts higher energy (640 As) is required compared to the welding energy used for the 2009 batch, but to be sure that the manufacturing requirements are fulfilled, it is necessary to carry

  13. Preparation and Evaluation of Biodegradable Scleral Plug Containing Curcumin in Rabbit Eye.

    Science.gov (United States)

    Zhang, Jun; Sun, Haiyan; Zhou, Nalei; Zhang, Bin; Ma, Jingxue

    2017-12-01

    To test whether biodegradable curcumin-loaded scleral plug is a promising choice for treating posterior ocular diseases, the study investigated the in vitro release profile of the scleral plug and its safety in vivo. Scleral plugs containing 0.5 mg, 1.0 mg and 1.5 mg curcumin were synthesized by a compression-sintering method. These scleral plugs were placed in tubes containing balanced salt solution (BSS) buffer, which was replaced by fresh buffer daily. The curcumin concentration in the removed aliquot was tested daily for 14 days using high-performance liquid chromatography (HPLC). In the study, 44 rabbits were randomly divided into four groups: control, 0.5 mg, 1.0 mg and 1.5 mg curcumin groups. The scleral plug was trans-scleral fixed in the right eye of the rabbits in the three curcumin-treated groups. The control rabbits only received sclerotomy. The treated rabbit eyes were examined by a slit-lamp biomicroscope, an indirect ophthalmoscope and electroretinogram (ERG), and subjected to histological analysis. The concentration of the 1.5 mg curcumin-loaded scleral plug was higher than 15 μg/ml for consecutive 14 days in vitro. The in vivo experiments revealed intraocular pressure, a-wave and b-wave amplitudes of ERG, and conjunctival reaction degree were not significantly different between the four groups. Retinal structure was normal in the curcumin-treated groups. The sclerotomy wound healed after the plug was completely degraded. Anterior chamber reaction or complications were not observed. The study suggests that curcumin-loaded scleral plug could sustain high concentration of curcumin in vitro and is safe in vivo. It might be a promising alternative choice for the treatment of posterior ocular diseases.

  14. Drill pipe bridge plug

    International Nuclear Information System (INIS)

    Winslow, D.W.; Brisco, D.P.

    1991-01-01

    This patent describes a method of stopping flow of fluid up through a pipe bore of a pipe string in a well. It comprises: lowering a bridge plug apparatus on a work string into the pipe string to a position where the pipe bore is to be closed; communicating the pipe bore below a packer of the bridge plug apparatus through the bridge plug apparatus with a low pressure zone above the packer to permit the fluid to flow up through the bridge plug apparatus; engaging the bridge plug apparatus with an internal upset of the pipe string; while the fluid is flowing up through the bridge plug apparatus, pulling upward on the work string and the bridge plug apparatus and thereby sealing the packer against the pipe bore; isolating the pipe bore below the packer from the low pressure zone above the packer and thereby stopping flow of the fluid up through the pipe bore; disconnecting the work string from the bridge plug apparatus; and maintaining the bridge plug apparatus in engagement with the internal upset and sealed against the pipe bore due to an upward pressure differential applied to the bridge plug apparatus by the fluid contained therebelow

  15. Retained Herrick Plug

    Directory of Open Access Journals (Sweden)

    Justin B. Hellman

    2018-05-01

    Full Text Available A 79-year-old female with a history of keratoconjunctivitis sicca presented with several years of epiphora of both eyes. Thirteen years earlier, intracanalicular Herrick lacrimal plugs (Lacrimedics, Eastsound, WA, USA had been placed in both eyes to treat her dry eye syndrome. After 13 years the patient felt the epiphora was intolerable and underwent endoscopic dacryocystorhinostomy (DCR of the left, then the right side. Intraoperatively, during the right endoscopic DCR, a Herrick lacrimal plug was found in the common canaliculus into the lacrimal sac. Postoperatively, the patient did well with improved epiphora. The Herrick plug is designed to be intracanalicular, and this case illustrates that the plug can migrate and be retained for many years. Collared punctal plugs have a lower risk of this type of complication.

  16. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Eppstein, Margaret J.; Grover, David K.; Marshall, Jeffrey S.; Rizzo, Donna M.

    2011-01-01

    A spatially explicit agent-based vehicle consumer choice model is developed to explore sensitivities and nonlinear interactions between various potential influences on plug-in hybrid vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold effects, homophily, and conformity) and media influences. Preliminary simulations demonstrate how such a model could be used to identify nonlinear interactions among potential leverage points, inform policies affecting PHEV market penetration, and help identify future data collection necessary to more accurately model the system. We examine sensitivity of the model to gasoline prices, to accuracy in estimation of fuel costs, to agent willingness to adopt the PHEV technology, to PHEV purchase price and rebates, to PHEV battery range, and to heuristic values related to gasoline usage. Our simulations indicate that PHEV market penetration could be enhanced significantly by providing consumers with ready estimates of expected lifetime fuel costs associated with different vehicles (e.g., on vehicle stickers), and that increases in gasoline prices could nonlinearly magnify the impact on fleet efficiency. We also infer that a potential synergy from a gasoline tax with proceeds is used to fund research into longer-range lower-cost PHEV batteries. - Highlights: → We model consumer agents to study potential market penetration of PHEVs. → The model accounts for spatial, social, and media effects. → We identify interactions among potential leverage points that could inform policy. → Consumer access to expected lifetime fuel costs may enhance PHEV market penetration. → Increasing PHEV battery range has synergistic effects on fleet efficiency.

  17. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.

    Science.gov (United States)

    Majeau-Bettez, Guillaume; Hawkins, Troy R; Strømman, Anders Hammer

    2011-05-15

    This study presents the life cycle assessment (LCA) of three batteries for plug-in hybrid and full performance battery electric vehicles. A transparent life cycle inventory (LCI) was compiled in a component-wise manner for nickel metal hydride (NiMH), nickel cobalt manganese lithium-ion (NCM), and iron phosphate lithium-ion (LFP) batteries. The battery systems were investigated with a functional unit based on energy storage, and environmental impacts were analyzed using midpoint indicators. On a per-storage basis, the NiMH technology was found to have the highest environmental impact, followed by NCM and then LFP, for all categories considered except ozone depletion potential. We found higher life cycle global warming emissions than have been previously reported. Detailed contribution and structural path analyses allowed for the identification of the different processes and value-chains most directly responsible for these emissions. This article contributes a public and detailed inventory, which can be easily be adapted to any powertrain, along with readily usable environmental performance assessments.

  18. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Markel, Lawrence C [ORNL; Hadley, Stanton W [ORNL; Hinds, Shaun [Sentech, Inc.; DeVault, Robert C [ORNL

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs

  19. The viscoelastic properties of the cervical mucus plug

    DEFF Research Database (Denmark)

    Kjær Bastholm, Sara; Becher, Naja; Stubbe, Peter Reimer

    2013-01-01

    The objective of this study was to characterize the viscoelastic properties of cervical mucus plugs (CMPs) shed during labor at term. Spontaneously shed cervical mucus plugs from healthy women in active labor, were tested. The viscoelastic properties of cervical mucus plugs were investigated...... with using frequency and stress sweep experiments within the linear viscoelastic region. Random-effects regression was used for statistical analysis. The CMPs are solid-like viscoelastic structures and the elastic modulus dominated the viscous modulus at all frequencies. These rheological characteristics...

  20. Multi-Period Optimization Model for Electricity Generation Planning Considering Plug-in Hybrid Electric Vehicle Penetration

    Directory of Open Access Journals (Sweden)

    Lena Ahmadi

    2015-05-01

    Full Text Available One of the main challenges for widespread penetration of plug-in hybrid electric vehicles (PHEVs is their impact on the electricity grid. The energy sector must anticipate and prepare for this extra demand and implement long-term planning for electricity production. In this paper, the additional electricity demand on the Ontario electricity grid from charging PHEVs is incorporated into an electricity production planning model. A case study pertaining to Ontario energy planning is considered to optimize the value of the cost of the electricity over sixteen years (2014–2030. The objective function consists of the fuel costs, fixed and variable operating and maintenance costs, capital costs for new power plants, and the retrofit costs of existing power plants. Five different case studies are performed with different PHEVs penetration rates, types of new power plants, and CO2 emission constraints. Among all the cases studied, the one requiring the most new capacity, (~8748 MW, is assuming the base case with 6% reduction in CO2 in year 2018 and high PHEV penetration. The next highest one is the base case, plus considering doubled NG prices, PHEV medium penetration rate and no CO2 emissions reduction target with an increase of 34.78% in the total installed capacity in 2030. Furthermore, optimization results indicate that by not utilizing coal power stations the CO2 emissions are the lowest: ~500 tonnes compared to ~900 tonnes when coal is permitted.

  1. Technology Status and Expected Greenhouse Gas Emissions of Battery, Plug-In Hybrid, and Fuel Cell Electric Vehicles

    Science.gov (United States)

    Lipman, Timothy E.

    2011-11-01

    Electric vehicles (EVs) of various types are experiencing a commercial renaissance but of uncertain ultimate success. Many new electric-drive models are being introduced by different automakers with significant technical improvements from earlier models, particularly with regard to further refinement of drivetrain systems and important improvements in battery and fuel cell systems. The various types of hybrid and all-electric vehicles can offer significant greenhouse gas (GHG) reductions when compared to conventional vehicles on a full fuel-cycle basis. In fact, most EVs used under most condition are expected to significantly reduce lifecycle GHG emissions. This paper reviews the current technology status of EVs and compares various estimates of their potential to reduce GHGs on a fuel cycle basis. In general, various studies show that battery powered EVs reduce GHGs by a widely disparate amount depending on the type of powerplant used and the particular region involved, among other factors. Reductions typical of the United States would be on the order of 20-50%, depending on the relative level of coal versus natural gas and renewables in the powerplant feedstock mix. However, much deeper reductions of over 90% are possible for battery EVs running on renewable or nuclear power sources. Plug-in hybrid vehicles running on gasoline can reduce emissions by 20-60%, and fuel cell EV reduce GHGs by 30-50% when running on natural gas-derived hydrogen and up to 95% or more when the hydrogen is made (and potentially compressed) using renewable feedstocks. These are all in comparison to what is usually assumed to be a more advanced gasoline vehicle "baseline" of comparison, with some incremental improvements by 2020 or 2030. Thus, the emissions from all of these EV types are highly variable depending on the details of how the electric fuel or hydrogen is produced.

  2. Laser ignition - Spark plug development and application in reciprocating engines

    Science.gov (United States)

    Pavel, Nicolaie; Bärwinkel, Mark; Heinz, Peter; Brüggemann, Dieter; Dearden, Geoff; Croitoru, Gabriela; Grigore, Oana Valeria

    2018-03-01

    Combustion is one of the most dominant energy conversion processes used in all areas of human life, but global concerns over exhaust gas pollution and greenhouse gas emission have stimulated further development of the process. Lean combustion and exhaust gas recirculation are approaches to improve the efficiency and to reduce pollutant emissions; however, such measures impede reliable ignition when applied to conventional ignition systems. Therefore, alternative ignition systems are a focus of scientific research. Amongst others, laser induced ignition seems an attractive method to improve the combustion process. In comparison with conventional ignition by electric spark plugs, laser ignition offers a number of potential benefits. Those most often discussed are: no quenching of the combustion flame kernel; the ability to deliver (laser) energy to any location of interest in the combustion chamber; the possibility of delivering the beam simultaneously to different positions, and the temporal control of ignition. If these advantages can be exploited in practice, the engine efficiency may be improved and reliable operation at lean air-fuel mixtures can be achieved, making feasible savings in fuel consumption and reduction in emission of exhaust gasses. Therefore, laser ignition can enable important new approaches to address global concerns about the environmental impact of continued use of reciprocating engines in vehicles and power plants, with the aim of diminishing pollutant levels in the atmosphere. The technology can also support increased use of electrification in powered transport, through its application to ignition of hybrid (electric-gas) engines, and the efficient combustion of advanced fuels. In this work, we review the progress made over the last years in laser ignition research, in particular that aimed towards realizing laser sources (or laser spark plugs) with dimensions and properties suitable for operating directly on an engine. The main envisaged

  3. A life-cycle approach to technology, infrastructure, and climate policy decision making: Transitioning to plug-in hybrid electric vehicles and low-carbon electricity

    Science.gov (United States)

    Samaras, Constantine

    In order to mitigate the most severe effects of climate change, large global reductions in the current levels of anthropogenic greenhouse gas (GHG) emissions are required in this century to stabilize atmospheric carbon dioxide (CO2) concentrations at less than double pre-industrial levels. The Intergovernmental Panel on Climate Change (IPCC) fourth assessment report states that GHG emissions should be reduced to 50-80% of 2000 levels by 2050 to increase the likelihood of stabilizing atmospheric CO2 concentrations. In order to achieve the large GHG reductions by 2050 recommended by the IPCC, a fundamental shift and evolution will be required in the energy system. Because the electric power and transportation sectors represent the largest GHG emissions sources in the United States, a unique opportunity for coupling these systems via electrified transportation could achieve synergistic environmental (GHG emissions reductions) and energy security (petroleum displacement) benefits. Plug-in hybrid electric vehicles (PHEVs), which use electricity from the grid to power a portion of travel, could play a major role in reducing greenhouse gas emissions from the transport sector. However, this thesis finds that life cycle GHG emissions from PHEVs depend on the electricity source that is used to charge the battery, so meaningful GHG emissions reductions with PHEVs are conditional on low-carbon electricity sources. Power plants and their associated GHGs are long-lived, and this work argues that decisions made regarding new electricity supplies within the next ten years will affect the potential of PHEVs to play a role in a low-carbon future in the coming decades. This thesis investigates the life cycle engineering, economic, and policy decisions involved in transitioning to PHEVs and low-carbon electricity. The government has a vast array of policy options to promote low-carbon technologies, some of which have proven to be more successful than others. This thesis uses life

  4. Preliminary Plugging tests in Narrow Sodium Channels by Sodium and Carbon Dioxide reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This report is on the investigation of the physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in PCHEs in realistic operating conditions. The first phenomenon is potential channel plugging inside the narrow PCHE channel. Unlike a conventional shell and- tube type HXs, failures in a PCHE are expected to be small cracks. If the faulted channel is blocked, it may have a positive function for plant safety because the pressure boundary would automatically recover due to this self-plugging. The other one is damage propagation on pressure boundary, which is referred to as potential wastage with combined corrosion/erosion effect. Physical/chemical phenomena that a slow loss of CO{sub 2} inventory into sodium after the sodium-CO{sub 2} boundary failure in printed circuit heat exchangers (PCHEs) were investigated. Our preliminary experimental results of plugging show that sodium flow immediately stopped as CO{sub 2} was injected through the nozzle at 300-400 .deg. C in 3 mm sodium channels, whereas sodium flow stopped about 60 min after CO{sub 2} injection in 5 mm sodium channels.

  5. Optimal control strategy design for extending all-electric driving capability of plug-in hybrid electric vehicles (PHEVs)

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, S.S [Concordia Univ., Montreal, PQ (Canada). Dept. of Electrical and Computer Engineering, P.D Ziogas Power Electronics Laboratory

    2007-07-01

    The high voltage energy storage system in plug-in hybrid electric vehicles (PHEVs) is usually a rechargeable type that service a dual purpose, notably to supplement the power delivered by the internal combustion engine, and to provide partial propulsion energy from an off-board source of electricity. The energy storage devices in electric vehicles typically improve vehicle efficiency through engine downsizing and by recapturing braking energy. However, since PHEVs have the ability to recharge their energy storage systems directly from the power grid, the periods of all-electric operation can be extended, thereby reducing the dependence on the internal combustion engine. This is particularly useful in city driving conditions. Developers of PHEV technology are faced with the challenge of choosing the appropriate energy storage battery in order to improve the all-electric drive range. In this study, control strategies were modeled for specific driving load conditions using the Advanced Vehicle Simulator (ADVISOR) software. This paper presented specific control algorithms for PHEV operation for various city driving loads. The optimal design strategy considered the improvement of critical energy storage parameters, overall drive train efficiency, and vehicle performance characteristics. Future trends in the design and development of PHEV drive trains were also presented. 13 figs.

  6. Mastering Eclipse plug-in development

    CERN Document Server

    Blewitt, Alex

    2014-01-01

    If you are a Java developer who is familiar with the Eclipse plug-in environment, this book covers the advanced concepts that you need to know to achieve true expertise. Prior experience in creating Eclipse plug-ins is assumed for this book.

  7. Reduction Methods for Real-time Simulations in Hybrid Testing

    DEFF Research Database (Denmark)

    Andersen, Sebastian

    2016-01-01

    Hybrid testing constitutes a cost-effective experimental full scale testing method. The method was introduced in the 1960's by Japanese researchers, as an alternative to conventional full scale testing and small scale material testing, such as shake table tests. The principle of the method...... is performed on a glass fibre reinforced polymer composite box girder. The test serves as a pilot test for prospective real-time tests on a wind turbine blade. The Taylor basis is implemented in the test, used to perform the numerical simulations. Despite of a number of introduced errors in the real...... is to divide a structure into a physical substructure and a numerical substructure, and couple these in a test. If the test is conducted in real-time it is referred to as real time hybrid testing. The hybrid testing concept has developed significantly since its introduction in the 1960', both with respect...

  8. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    Science.gov (United States)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  9. Inhibition of Microbial Growth by Fatty Amine Catalysts from Polyurethane Foam Test Tube Plugs

    Science.gov (United States)

    Bach, John A.; Wnuk, Richard J.; Martin, Delano G.

    1975-01-01

    When polyurethane foam test tube plugs are autoclaved, they release volatile fatty amines that inhibit the growth of some microorganisms. The chemical structures of these amines were determined by the use of a gas chromatographmass spectrometer. They are catalysts used to produce the foam. The problem of contaminating growth media with toxic substances released from polymeric materials is discussed. PMID:1096816

  10. Power system operation risk analysis considering charging load self-management of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Liu, Zhe; Wang, Dan; Jia, Hongjie; Djilali, Ned

    2014-01-01

    Highlights: • The interactive mechanism between system and PHEVs is presented. • The charging load self-management without sacrificing user requirements is proposed. • The charging load self-management is coupled to system operation risk analysis. • The charging load self-management can reduce the extra risk brought by PHEVs. • The charging load self-management can shift charging power to the time with low risk. - Abstract: Many jurisdictions around the world are supporting the adoption of electric vehicles through incentives and the deployment of a charging infrastructure to reduce greenhouse gas emissions. Plug-in hybrid electric vehicles (PHEVs), with offer mature technology and stable performance, are expected to gain an increasingly larger share of the consumer market. The aggregated effect on power grid due to large-scale penetration of PHEVs needs to be analyzed. Nighttime-charging which typically characterizes PHEVs is helpful in filling the nocturnal load valley, but random charging of large PHEV fleets at night may result in new load peaks and valleys. Active response strategy is a potentially effective solution to mitigate the additional risks brought by the integration of PHEVs. This paper proposes a power system operation risk analysis framework in which charging load self-management is used to control system operation risk. We describe an interactive mechanism between the system and PHEVs in conjunction with a smart charging model is to simulate the time series power consumption of PHEVs. The charging load is managed with adjusting the state transition boundaries and without violating the users’ desired charging constraints. The load curtailment caused by voltage or power flow violation after outages is determined by controlling charging power. At the same time, the system risk is maintained under an acceptable level through charging load self-management. The proposed method is implemented using the Roy Billinton Test System (RBTS) and

  11. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  12. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    Science.gov (United States)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  13. Rotary plug

    International Nuclear Information System (INIS)

    Yamada, Keiji.

    1979-01-01

    Purpose: In a rotating plug of a reactor using a liquid metal as a coolant as in the case of a fbr type reactor, to prevent the ingress of Na vapor into the sliding surface of the rotating plug. Constitution: A rotating plug comprising a large disc covering the upper part of a reactor pressure vessel containing therein a liquid metal and forming surfaces for mounting a shielding device and various other devices, and at least one or more of small discs provided rotatably and eccentrically within said large disc, which is characterized in that an elastic member consisting of bellows and a sealing is interposed between said large disc and said small discs. (Nakamura, S.)

  14. An ecologic accompanying research on the fleet test electromobility. Final report; Oekologische Begleitforschung zum Flottenversuch Elektromobilitaet. Endbericht

    Energy Technology Data Exchange (ETDEWEB)

    Helms, Heinrich; Lambrecht, Udo; Joehrens, Julius; Pehnt, Martin; Liebich, Axel; Weiss, Uta; Kaemper, Claudia

    2013-06-15

    Mobility is a prerequisite for numerous economic and private activities and thus a central component of our life. The demand for mobility in Germany is predominantly covered by the road traffic. The Institute for Energy and Environmental Research (Heidelberg, Federal Republic of Germany) carried out an ecologic accompanying research in the course of a fleet test in order to determine the potentials of environmental improvement of the vehicles tested in a field test. These potentials were perpetuated for future serial vehicles and projected to Germany. The main themes of this contribution are: (a) Production and disposal of plug-in-hybrids; (b) The TwinDrive in the fleet test; (c) Plug-in-hybrid serial vehicles 2020; (d) Perspective of electromobility in Germany 2030; (e) Strategic evaluation of the electomobility.

  15. Experimental and numerical modeling of sulfur plugging in a carbonate oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Al-Awadhy, F. [ADMA-OPCO, Abudhabi (United Arab Emirates); Kocabas, I.; Abou-Kassem, J.H. [UAE University, Al Ain (United Arab Emirates); Islam, M.R. [Dalhousie University, Halifax, NS (United States)

    2005-01-15

    Many oil and gas reservoirs in the United Arab Emirates produce large amounts of sour gas, mainly in the form of hydrogen sulfide. In addition to creating problems in the production line, wellbore damage is often reported due to the precipitation of elemental sulfur in the vicinity of the wellbore. While there have been several studies performed on the role of solid deposition in a gas reservoir, the role of sulfur deposition in oil reservoirs has not been investigated. This article presents experimental results along with a comprehensive wellbore model that predicts sulfur precipitation as well as plugging. The experiments were conducted in a core (linear) system. Both analytical and numerical modelings were performed in a linear coordinate system. Data for the numerical model was obtained from both test tube and coreflood experiments. By using a phenomenological model, the wellbore plugging was modeled with an excellent match (with experimental results). The crude oil was de-asphalted prior to conducting the experiment in order to isolate the effect of asphaltene plugging. A series of coreflood tests was carried out to observe sulfur precipitation and plugging in a carbonate rock. Significant plugging was observed and was found to be dependent on flow rate and initial sulfur concentration. This information was used in the phenomenological model and can be incorporated in the wellbore numerical model. (author)

  16. The aspects regarding plugging the defective tubes of the steam generator using plastic deformation of the plug wall by conventional or unconventional techniques

    International Nuclear Information System (INIS)

    Gyongyosi, Tiberiu

    2006-01-01

    After a brief introduction the advantages and disadvantages of two plugging methods of the defective tubes from steam generator by plastic deformation of the wall of the plug, deformation performed by mechanical rolling (conventional technique) and by electrohydraulic shock (unconventional technique), respectively, are showed. The paper gives the results of the experimental tests to install the plugs at the end of the tube having the same geometry with those of the steam generator, the performance reached in this stage and some conclusions in the end

  17. Instrumentation development for the Waste Isolation Pilot Plant (WIPP) borehole plugging program (BHP)

    International Nuclear Information System (INIS)

    Cook, C.W.

    1979-11-01

    This report discusses the instrumentation development needs of the borehole testing program as it now exists. Although requirements may change as the program progresses, the items indicated are basic to any borehole plugging program. Instrumentation is discussed both for the plug environment and for the plug itself. For the plug environment, a probe for measuring the disturbed region and a coordinate logging tool are required. For the plug itself, instrumentation includes measurements above, within, and below the plug. Instrumentation for most measurements above the plug is currently available; for measurements within and below the plug, however, further development is required. Specifically, resistivity, induction, and acoustic probes; an in situ stressmeter; and a hardwire, feedthrough system need to be developed

  18. Application of the X-in-the-Loop Testing Method in the FCV Hybrid Degree Test

    Directory of Open Access Journals (Sweden)

    Haiyu Gao

    2018-02-01

    Full Text Available With the development of fuel cell vehicle technology, an effective testing method that can be applied to develop and verify the fuel cell vehicle powertrain system is urgently required. This paper presents the X-in-the-Loop (XiL testing method in the fuel cell vehicle (FCV hybrid degree test to resolve the first and key issues for the powertrain system design, and the test process and scenarios were designed. The hybrid degree is redefined into the static hybrid degree for system architecture design and the dynamic hybrid degree for vehicle control strategy design, and an integrated testing platform was introduced and a testing application was implemented by following the designed testing flowchart with two loops. Experimental validations show that the sizing of the FCE (Fuel Cell Engine, battery pack, and traction motor with the powertrain architecture can be determined, the control strategy can be evaluated seamlessly, and a systematic powertrain testing solution can be achieved through the whole development process. This research has developed a new testing platform and proposed a novel testing method on the fuel cell vehicle powertrain system, which will be a contribution to fuel cell vehicle technology and its industrialization.

  19. Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles

    International Nuclear Information System (INIS)

    Shiau, Ching-Shin Norman; Samaras, Constantine; Hauffe, Richard; Michalek, Jeremy J.

    2009-01-01

    Plug-in hybrid electric vehicle (PHEV) technology is receiving attention as an approach to reducing US dependency on foreign oil and greenhouse gas (GHG) emissions from the transportation sector. PHEVs require large batteries for energy storage, which affect vehicle cost, weight, and performance. We construct PHEV simulation models to account for the effects of additional batteries on fuel consumption, cost, and GHG emissions over a range of charging frequencies (distance traveled between charges). We find that when charged frequently, every 20 miles or less, using average US electricity, small-capacity PHEVs are less expensive and release fewer GHGs than hybrid electric vehicles (HEVs) or conventional vehicles. For moderate charging intervals of 20-100 miles, PHEVs release fewer GHGs, but HEVs have lower lifetime costs. High fuel prices, low-cost batteries, or high carbon taxes combined with low-carbon electricity generation would make small-capacity PHEVs cost competitive for a wide range of drivers. In contrast, increased battery specific energy or carbon taxes without decarbonization of the electricity grid would have limited impact. Large-capacity PHEVs sized for 40 or more miles of electric-only travel do not offer the lowest lifetime cost in any scenario, although they could minimize GHG emissions for some drivers and provide potential to shift air pollutant emissions away from population centers. The tradeoffs identified in this analysis can provide a space for vehicle manufacturers, policymakers, and the public to identify optimal decisions for PHEV design, policy and use. Given the alignment of economic, environmental, and national security objectives, policies aimed at putting PHEVs on the road will likely be most effective if they focus on adoption of small-capacity PHEVs by urban drivers who can charge frequently.

  20. Cement technology for plugging boreholes in radioactive-waste-repository sites. Progress report, October 1, 1978-September 30, 1979

    International Nuclear Information System (INIS)

    Moore, J.G.; Morgan, M.T.; McDaniel, E.W.; Greene, H.B.; West, G.A.

    1980-08-01

    Laboratory evaluations were made of several borehole plug formulations proposed for the Bell Canyon field test. Measurements included compressive strength, permeability, density, and thermal conductivity. A few preliminary tests with saltcrete formulations showed no significant difference in physical properties of the solid as a function of fly ash or cement composition. The saltcrete proposed for the field test gave acceptable pushout strength and permeability values using miniature borehole plugs in anhydrite. Similar laboratory tests made with a freshwater formulation indicated high permeability. Electron micrographs showed dissolution cavities or cracks at the plug-wall interface. These studies showed that the reactions occurring between the borehole plug and the adjacent rock wall are an important factor in obtaining a good seal and that laboratory tests are useful to indicate the possibility of success or failure of field tests

  1. The design and validation of a hybrid digital-signal-processing plug-in for traditional cochlear implant speech processors.

    Science.gov (United States)

    Hajiaghababa, Fatemeh; Marateb, Hamid R; Kermani, Saeed

    2018-06-01

    Cochlear implants (CIs) are electronic devices restoring partial hearing to deaf individuals with profound hearing loss. In this paper, a new plug-in for traditional IIR filter-banks (FBs) is presented for cochlear implants based on wavelet neural networks (WNNs). Having provided such a plug-in for commercially available CIs, it is possible not only to use available hardware in the market but also to optimize their performance compared with the-state-of-the-art. An online database of Dutch diphone perception was used in our study. The weights of the WNNs were tuned using particle swarm optimization (PSO) on a training set (speech-shaped noise (SSN) of 2 dB SNR), while its performance was assessed on a test set in terms of objective and composite measures in the hold-out validation framework. The cost function was defined based on the combination of mean square error (MSE), short‑time objective intelligibility (STOI) criteria on the training set. Variety of performance indices were used including segmental signal- to -noise ratio (SNRseg), MSE, STOI, log-likelihood ratio (LLR), weighted spectral slope (WSS), and composite measures C sig , C bak and C ovl . Meanwhile, the following CI speech processing techniques were used for comparison: traditional FBs, dual resonance nonlinear (DRNL) and simple dual path nonlinear (SPDN) models. The average SNRseg, MSE, and LLR values for the WNN in the entire data set were 2.496 ± 2.794, 0.086 ± 0.025 and 2.323 ± 0.281, respectively. The proposed method significantly improved MSE, SNR, SNRseg, LLR, C sig C bak and C ovl compared with the other three methods (repeated-measures analysis of variance (ANOVA); P < 0.05). The average running time of the proposed algorithm (written in Matlab R2013a) on the training and test sets for each consonant or vowel on an Intel dual-core 2.10 GHz CPU with 2GB of RAM was 9.91 ± 0.87 (s) and 0.19 ± 0.01 (s), respectively. The proposed algorithm is accurate and

  2. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  3. Biomass plug development and propagation in porous media.

    Science.gov (United States)

    Stewart, T L; Fogler, H S

    2001-02-05

    Exopolymer-producing bacteria can be used to modify soil profiles for enhanced oil recovery or bioremediation. Understanding the mechanisms associated with biomass plug development and propagation is needed for successful application of this technology. These mechanisms were determined from packed-bed and micromodel experiments that simulate plugging in porous media. Leuconostoc mesenteroides was used, because production of dextran, a water-insoluble exopolymer, can be controlled by using different carbon sources. As dextran was produced, the pressure drop across the porous media increased and began to oscillate. Three pressure phases were identified under exopolymer-producing conditions: the exopolymer-induction phase, the plugging phase, and the plug-propagation phase. The exopolymer-induction phase extended from the time that exopolymer-producing conditions were induced until there was a measurable increase in pressure drop across the porous media. The plugging phase extended from the first increase in pressure drop until a maximum pressure drop was reached. Changes in pressure drop in these two phases were directly related to biomass distribution. Specifically, flow channels within the porous media filled with biomass creating a plugged region where convective flow occurred only in water channels within the biofilm. These water channels were more restrictive to flow causing the pressure drop to increase. At a maximum pressure drop across the porous media, the biomass yielded much like a Bingham plastic, and a flow channel was formed. This behavior marked the onset of the plug-propagation phase which was characterized by sequential development and breakthrough of biomass plugs. This development and breakthrough propagated the biomass plug in the direction of nutrient flow. The dominant mechanism associated with all three phases of plugging in porous media was exopolymer production; yield stress is an additional mechanism in the plug-propagation phase. Copyright

  4. Methods of preventing fast breeder reactor shield plug from adhesion of sodium

    International Nuclear Information System (INIS)

    Hashiguchi, Koh; Hara, Johji; Nei, Hiromichi; Daiku, Motoichi; Wagatsuma, Kenji

    1980-01-01

    The shield plug, which is located at the upper part of a reactor vessel of a sodium-cooled fast breeder reactor, is composed of a rotating and a stationary plug. Fuel exchange is performed easily by the rotation of the rotating plug. The vapor or mist of sodium evaporated from liquid sodium deposits on the gap surfaces of the rotating and stationary plugs and is solidified or changed into a solid reactant. If such condition continues for a long period, harmful effects are exerted on the fuel exchange operation. In order to develop methods of preventing the sodium deposition, investigation was made on the phenomenon of sodium deposition. By the use of the testing equipment simulating the shield plug, deposition tests and specimen measurements were made for different gap width test section size and condition. On the basis of the effects of these parameters clarified by experiments, the effectiveness of three kinds of mechanism for preventing sodium deposition were investigated experimentally. In addition, by using a thermo-siphon analogical model, analysis was performed to deduce experimental equations for sodium deposition. (author)

  5. Multiobjective Synergistic Scheduling Optimization Model for Wind Power and Plug-In Hybrid Electric Vehicles under Different Grid-Connected Modes

    Directory of Open Access Journals (Sweden)

    Liwei Ju

    2014-01-01

    Full Text Available In order to promote grid’s wind power absorptive capacity and to overcome the adverse impacts of wind power on the stable operation of power system, this paper establishes benefit contrastive analysis models of wind power and plug-in hybrid electric vehicles (PHEVs under the optimization goal of minimum coal consumption and pollutant emission considering multigrid connected modes. Then, a two-step adaptive solving algorithm is put forward to get the optimal system operation scheme with the highest membership degree based on the improved ε constraints method and fuzzy decision theory. Thirdly, the IEEE36 nodes 10-unit system is used as the simulation system. Finally, the sensitive analysis for PHEV’s grid connected number is made. The result shows the proposed algorithm is feasible and effective to solve the model. PHEV’s grid connection could achieve load shifting effect and promote wind power grid connection. Especially, the optimization goals reach the optimum in fully optimal charging mode. As PHEV’s number increases, both abandoned wind and thermal power generation cost would decrease and the peak and valley difference of load curve would gradually be reduced.

  6. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  7. Hybrid Testing of Composite Structures with Single-Axis Control

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Stang, Henrik

    2013-01-01

    Correlation (DIC) is therefore implemented for displacement control of the experimental setup. The hybrid testing setup was verified on a multicomponent structure consisting of a beam loaded in three point bending and a numerical structure of a frame. Furthermore, the stability of the hybrid testing loop......Hybrid testing is a substructuring technique where a structure is emulated by modelling a part of it in a numerical model while testing the remainder experimentally. Previous research in hybrid testing has been performed on multi-component structures e.g. damping fixtures, however in this paper...... a hybrid testing platform is introduced for single-component hybrid testing. In this case, the boundary between the numerical model and experimental setup is defined by multiple Degrees-Of-Freedoms (DOFs) which highly complicate the transferring of response between the two substructures. Digital Image...

  8. Aspergillus fumigatus colonization of punctal plugs.

    Science.gov (United States)

    Tabbara, Khalid F

    2007-01-01

    Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.

  9. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  10. Scalable Asset Discovery, Vulnerability Scanning, and Penetration Testing for Remote Sites and Wireless Spectrums Utilizing an Embedded Linux Plug - PwniPlug and the Raspberry Pi B+ as a Sample Pen Test

    Science.gov (United States)

    Ganzy, Ethan G.

    2014-01-01

    All devices attached to the NASA KSC network are subject to security vulnerability scanning and/or penetration testing. In today's changing environment, vulnerable and/or unprotected systems can easily be overlooked. Systems that are not properly managed can become a potential threat to the operational integrity of our systems and networks. This includes all NASA (internal and external) information systems within NASA KSC Internet Protocol (IP) address space, and NASA KSC facilities. The Office of the Chief Information Officer (OCIO) recommends that all NASA Centers and information systems be subject to penetration testing on a regular interval in accordance with the guidelines identified by the National Institute of Standards and Technology (NIST). (ITS-HBK-2810.04-02A) Protecting information and equipment at NASA is an area of increasing concern. In addition to the CPU's on the network; Supervisory, Control and Data Acquisition (SCADA) systems are especially vulnerable because these systems have lacked standards, use embedded controllers with little computational power and informal software, are connected to physical processes, have few operators, and are increasingly also being connected to corporate networks. The scope of work is comprised of several individual components which together build upon previous work by Drew Branch, NASA KSC Intern. The Pwn Plug is the selected COTS (Commercial-Off-The-Shelf) device chosen to test simplification of mandatory IT Security tasks. The device will be utilized to provide services to NASA KSC and enable an assessment of infrastructure soundness and regulatory compliance in an efficient, economical, and business responsive manner. The Pwn Plug is designed as a pen testing appliance which provides a hardware platform that can support commercial penetration testing efforts at significantly reduced costs. The expected outcomes are: 1) External Penetration Testing, 2) Social Engineering, 3) Procedural Documentation, 4

  11. Borehole plugging of man-made accesses to a basalt repository: a preliminary study

    International Nuclear Information System (INIS)

    Taylor, C.L.; Anttonen, G.J.; O'Rourke, J.E.; Niccum, M.R.

    1979-09-01

    This report describes the status of work currently in progress for the Basalt Borehole Plugging Program (BBPP). The primary objectives of the BBPP outlined in this report have been met during this first phase of work. These objectives included: (1) the preparation of a preliminary list of candidate plug materials; (2) a description of available machinery capable of placing candidate plug materials; and (3) the development of physical and geochemical testing programs to help evaluate the chemical stability and physical properties of candidate plug materials. The most significant finding from work to date is that given reasonable regulatory criteria, nothing has been identified which would prevent design of a plug system to seal manmade openings leading to a nuclear waste repository in Columbia River basalt for significantly long periods of time (on the order of thousands of years). Work accomplished to date indicates that this plug system can be designed using both natural and manufactured materials and can be emplaced with existing placement machinery and modifications of that machinery. The objectives of Task II are to conduct laboratory tests to evaluate the suitability of preferred candidate materials for plugging boreholes in the proposed repository, select plug system(s), initiate preconceptual machinery design for the placement of materials in plug system(s), and prepare a preliminary Task II report. As with Task I project organization, Task II is divided into subtasks that are identified by written subtask work summaries

  12. Development of weld plugging for steam generator tubes of FBR

    International Nuclear Information System (INIS)

    Shimoyama, T.; Matsuyama, T.; Matsumoto, O.; Nagura, Y.; Nakamura, H.; Tohguchi, Y.; Kurokawa, M.; Fukada, T.

    2002-01-01

    This study was undertaken to develop a method of weld plugging of the heat-exchanger tubes of steam generator of Prototype FBR 'MONJU' in case these tubes are damaged for some reason. We studied mainly the shape of plug, welding procedure and effect of postweld heat treatment (PWHT). Evaporator tube sheet, tube and plug are made of 2-1/4Cr-1Mo steel and usually preheating and PWHT will be required for welding of this steel. The results of this study is as follows. 1) Plug was designed to make butt joint welding with grooved tube sheet around the tube hole to satisfy the requirements of plug designing, stress analysis, and good weldability. 2) TIG welding process was selected and certified its good weldability and good performance. 3) PWHT can be done by using high frequency induction heating method locally and also designing the plug to weld joint with tube sheet which was grooved around the tube hole. 4) Mock up test was done and it was certified that this plugging procedure has good weldability and good performance ability for Non Destructive Inspection. (author)

  13. Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles

    International Nuclear Information System (INIS)

    Bizon, Nicu

    2012-01-01

    Highlights: ► It is proposed a new FC hybrid power source topology for plug-in FC vehicle (PFCV). ► An energy efficiency analysis of three architectures for Multiport Power Converter (MPC) of HPS is performed. ► The MPC energy efficiency features were shown by analytical computing in all PFCV regimes. -- Abstract: In this paper is presented an analysis of energy efficiency for the Multiport Power Converters (MPCs) used in Plug-in Fuel Cell Vehicles (PFCVs). A generic MPC architecture for PFCVs is proposed, which is analyzed for different operating modes of MPC in relation with PFCV operating regimes and the plug-in feature. The basic MPC architecture is described in relation with the PFCV operating regimes. Two MPC architectures are derived from the basic MPC architecture: (1) the MPC1 architecture, which is the MPC architecture without reverse power flow during regenerative braking process, and (2) the MPC2 architecture – MPC architecture without charging mode of Energy Storage System (ESS) from the FC system. Taking in account the imposed window for the ESS state-of-charge, the MPC can be connected to Plug-in Charging Stations (PCS) to exchange power with the Electric Power (EP) system, which will include renewable Distributed Generation (DG) systems. The Energy Management Unit (EMU) of MPC can communicate with the EP system to determine the moments that match the energy demand of plug-in vehicle with the supply availability of the EP system, stabilizing the EP system. The MPC features regarding its energy efficiency were shown by analytical computing performed and appropriate simulations presented in relation with the ESS that can be charged (discharged) from (to) the home/DG/EP system.

  14. Double-plug seismic connector

    International Nuclear Information System (INIS)

    Annoot, I.R.

    1984-01-01

    The double-plug seismic electric connector comprises an elongated insulating body. A male connector plug is at one end of the body and a female connector plug is at the opposite end of the body. Each plug has a pair of male and female contacts. A pair of spaced axial conductors is embedded within the insulating body for interconnecting the opposite male and female contacts. The inner end of a double-wire cable is embedded within the insulating body and each wire inner end is connected to one of the conductors

  15. 75 FR 76636 - Anthropomorphic Test Devices; Hybrid III 6-Year-Old Child Test Dummy, Hybrid III 6-Year-Old...

    Science.gov (United States)

    2010-12-09

    ... provision: ``When a motor vehicle safety standard is in effect under this chapter, a State or a political... [Docket No. NHTSA-2010-0147] RIN 2127-AK34 Anthropomorphic Test Devices; Hybrid III 6-Year-Old Child Test Dummy, Hybrid III 6-Year-Old Weighted Child Test Dummy AGENCY: National Highway Traffic Safety...

  16. A Genre Classification Plug-in for Data Collection

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue; Arenas-García, Jerónimo; Petersen, Kaare Brandt

    2006-01-01

    This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermor...... be used as a data collection platform. After informed consent from a selected set of users the plug-in will report on music consumption behavior back to a central server.......This demonstration illustrates how the methods developed in the MIR community can be used to provide real-time feedback to music users. By creating a genre classifier plug-in for a popular media player we present users with relevant information as they play their songs. The plug-in can furthermore...

  17. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    Energy Technology Data Exchange (ETDEWEB)

    Beck, J.; Ziegler, B.; Schoenheit, N. [AREVA NP Gmbh, Erlangen (Germany); Kostroun, F. [AREVA NP Canada Ltd., Pickering, ON (Canada)

    2012-07-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  18. Repair of steam generator heating tubes by roll-expanded plugs: approach to cover multiple national regulations

    International Nuclear Information System (INIS)

    Beck, J.; Ziegler, B.; Schoenheit, N.; Kostroun, F.

    2012-01-01

    During operation, steam generators in nuclear power plants are subject to degradation mechanisms which have an impact on the component life-time. Most affected are the heating tubes which constitute the barrier of the contaminated primary cycle to the secondary side. Various corrosive attacks may cause wall thinning which requires tube repair. A common repair method is to plug the tubes by roll expanded plugs. This is a fast method, easily applicable and requires less equipment or personnel qualification as needed for weld plugs. After insertion, the plugs act as a pressure boundary from primary to secondary side. Although the function of the roll plug is simple, the different national regulations define the requirements which need to be fulfilled by a roll plug differently. In order to reduce the tooling as well as the plug types to a minimum, an approach according to one common design for different regulations and steam generator types is profitable. It was found, that the regulations according to the ASME Boiler and Pressure Vessel code in combination with the German Safety Standards of the German Nuclear Safety Standards Commission covers the regulations of the majority of utilities. To develop a roll plug which suits the different regulatory demands, efforts were made to consider all technical and regulatory boundary conditions implied on roll expanded plugs. This covering approach had an impact on the plug design, which was required to be Helium tight after installation and suitable for a 40 year component lifetime also in accident and emergency conditions. To prove the suitability of the plug design a comprehensive testing programme of the mechanical and chemical properties of the designed roll-expanded plug was launched. A summary of the plug design and testing as well as the main test results are described. (author)

  19. Principle plug design for deposition tunnels

    International Nuclear Information System (INIS)

    Haaramo, M.; Lehtonen, A.

    2009-06-01

    This report examines the plug structures to be built in the deposition tunnels of the repository. The deposition tunnels located below the depth of 400 metres have been used as input data. Each plug consists of a massive concrete structure. The planned maximum pressure acting on the plug is 7.5 MPa. It consists of 4.5 MPa of groundwater pressure and 3 MPa of swelling pressure of the backfill. Five different plug types have been examined. Two of them (butt and irregular plug) turned out to be difficult from the point of view of other works in the central and deposition tunnels. One type (straight plug) requires a lot of construction material. Wedge-shaped and dome plugs have been examined more carefully. The wedge shaped plug has advantageous properties in comparison with the dome plug, such as a three dimensional state of stress, the wedging effect which increases strength as pressure increases and larger tolerances for the excavation of the slot. Leakage water has a longer path through the wedge shaped plug than through the dome plug. Pressure load affects the wedge shaped plug, creating normal stresses, which are compressive along each coordinate axis. The long-term rise in temperature in the deposition tunnels can produce high extra stresses in all the plug alternatives. These stresses make it necessary to increase the strength of the concrete or the distance between the plug and the nearest deposition hole. The stability effects of different plug distances and deposition tunnel orientations have been examined. The plug does not significantly affect stresses in the surrounding bedrock or the stability of the bedrock. Stresses caused by excavation and temperature rise are decisive factors. A groundwater chloride content of 0-3% in the environment of the repository is used as input data. It affects the tightness of the concrete and the quality of the cement. Cement has to be sulphate resistant with a low pH value. Low pH results in the weakening of the corrosion

  20. Core barrel plug

    International Nuclear Information System (INIS)

    Tolino, R.W.; Hopkins, R.J.; Congleton, R.L.; Popalis, C.H.

    1986-01-01

    A plug is described for preventing flow through a port in a core barrel of a pressurized water nuclear reactor which consists of: a substantially cylindrical body formed with a cylindrical portion and a flange and defining a tapered leading open end with the other end being closed by an end plug attached to the flange, the body defining a bore therein extending from the open end to the end plug with the bore having a smaller diameter near the open end than near the end plug, the cylindrical portion having a lip near the open end and being formed with longitudinal slots extending from the open end toward the flange and extending entirely through the thickness of the cylindrical portion, the cylindrical portion having a circumferential first groove on the outer surface thereof located near the forwardmost portion of the cylindrical portion but not in the section of the cylindrical portion that has the slots therein, and a plurality of circumferential second grooves on the outer surface thereof located in the section of the cylindrical portion that has the slots therein, the first and second grooves establishing a seal between the cylindrical portion and the inside surface of the port when the cylindrical portion is expanded, and the flange and the end plug having a passageway defined therein for introducing a fluid into the body; a metal ring disposed in each of the second grooves; a mandrel slidably disposed and captured in the body and capable of being moved toward the open end of the body when the fluid is introduced through the passageway, thereby causing the cylindrical portion to be expanded into contact with the inside surface of the port; and a locking mechanism disposed in the end plug for preventing inadvertent movement of the mandrel

  1. Preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt

    International Nuclear Information System (INIS)

    Taylor, C.L.; O'Rourke, J.E.; Allirot, D.; O'Connor, K.

    1980-09-01

    This report presents results of a study leading to preconceptual designs for plugging boreholes, shafts, and tunnels to a nuclear waste repository in basalt. Beginning design criteria include a list of preferred plug materials and plugging machines that were selected to suit the environmental conditions, and depths, diameters, and orientations of the accesses to a nuclear waste repository in the Columbia River basalts located in eastern Washington State. The environmental conditions are described. The fiscal year 1979-1980 Task II work is presented in two parts: preliminary testing of materials for plugging of man-made accesses to a repository in basalt (described in a separate report); and preconceptual systems and equipment for plugging of man-made accesses to a repository in basalt (described in this report). To fulfill the scope of the Task II work, Woodward-Clyde Consultants (WCC) was requested to: provide preconceptual systems for plugging boreholes, tunnels, and shafts in basalt; describe preconceptual borehole plugging equipment for placing the selected materials in man-made accesses; utilize the quality assurance program, program plan and schedule, and work plans previously developed for Task II; and prepare a preliminary report

  2. Shielding plug for LMFBR type reactors

    International Nuclear Information System (INIS)

    Hashiguchi, Ko.

    1979-01-01

    Purpose: To enable effective removal of liquid metals deposited, if any, in the gaps between a rotary plug and a fixed plug in LMFBR type reactors. Constitution: A plate incorporated with a heater and capable of projecting in a gap between a rotary plug and a fixed plug, and a scraper connected in perpendicular to it are provided to the rotary plug. Solidified liquid metals such as sodium deposited in the gap are effectively removed by the heating with the heater and the scraping action due to the rotation. (Horiuchi, T.)

  3. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    Thompson, Tammy M; King, Carey W; Webber, Michael E; Allen, David T

    2011-01-01

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NO x emissions from EGUs during times of day when the vehicle is charging, and a decrease in NO x from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NO x emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  4. Rechargeable Energy Storage Systems for Plug-in Hybrid Electric Vehicles—Assessment of Electrical Characteristics

    Directory of Open Access Journals (Sweden)

    Noshin Omar

    2012-08-01

    Full Text Available In this paper, the performances of various lithium-ion chemistries for use in plug-in hybrid electric vehicles have been investigated and compared to several other rechargeable energy storage systems technologies such as lead-acid, nickel-metal hydride and electrical-double layer capacitors. The analysis has shown the beneficial properties of lithium-ion in the terms of energy density, power density and rate capabilities. Particularly, the nickel manganese cobalt oxide cathode stands out with the high energy density up to 160 Wh/kg, compared to 70–110, 90 and 71 Wh/kg for lithium iron phosphate cathode, lithium nickel cobalt aluminum cathode and, lithium titanate oxide anode battery cells, respectively. These values are considerably higher than the lead-acid (23–28 Wh/kg and nickel-metal hydride (44–53 Wh/kg battery technologies. The dynamic discharge performance test shows that the energy efficiency of the lithium-ion batteries is significantly higher than the lead-acid and nickel-metal hydride technologies. The efficiency varies between 86% and 98%, with the best values obtained by pouch battery cells, ahead of cylindrical and prismatic battery design concepts. Also the power capacity of lithium-ion technology is superior compared to other technologies. The power density is in the range of 300–2400 W/kg against 200–400 and 90–120 W/kg for lead-acid and nickel-metal hydride, respectively. However, considering the influence of energy efficiency, the power density is in the range of 100–1150 W/kg. Lithium-ion batteries optimized for high energy are at the lower end of this range and are challenged to meet the United States Advanced Battery Consortium, SuperLIB and Massachusetts Institute of Technology goals. Their association with electric-double layer capacitors, which have low energy density (4–6 Wh/kg but outstanding power capabilities, could be very interesting. The study of the rate capability of the lithium-ion batteries has

  5. Method for preventing plugging of water wells by clay

    Energy Technology Data Exchange (ETDEWEB)

    Blazhkov, V I

    1966-01-01

    A method is suggested for preventing the plugging of water-bearing sands by clay from drilling fluids. It consists in placing a cement plug in the upper nipple above the filter, in order to prevent its plugging during the installation. The drilling mud passes through the rinsing windows and fills the internal void of the filter column, thus preventing further percolation and plugging of the filter during its lowering. When a 2-filter column is lowered, the clay solution is pumped into the interval between the cement plug and the next filter; this is done gradually in proportion to the addition of new pipes. When the drilling mud level lowers in the annular space between the pipes, the mud cake, together with water-saturated sand, passes through the rinsing windows into the pipes and is removed to the surface by airlift or other methods. This procedure is described in detail, discussed for various conditions of well structure, and illustrated by schematic drawings. Its advantage is in the possibility of separate testing and production of all water-bearing zones in the well, and it does not require the use of pure water for well washing.

  6. Plugging of drinking water flow into horizontal high diameter pipeline with artificial ice plug

    International Nuclear Information System (INIS)

    Gyongyosi, T.; Valeca, S.; Panaitescu, V. N.; Prisecaru, I.

    2013-01-01

    Local isolation of a pipeline section, placed horizontally into a loop of drinking water supply network, can be made with an ice plug resulting after controlled process inside of pipeline without stopping the consumer supply. The technique is applying in order to perform repairs or items replacement, without closing the drinking water supply network at the same time decreasing the fluid loss resulted after discharge of the affected loop. In facts, the technique is simple one and assumes to apply a special device sized for each case using a freezing liquid agent injected continuously. The paper contains a constructive description of the experimental technological facilities and of the experimental model for ice plugging device used. The test, the first results get and some conclusion are following. The paper is dedicated to the specialists working in the research and technological engineering. (authors)

  7. Plug-In Tutor Agents: Still Pluggin'

    Science.gov (United States)

    Ritter, Steven

    2016-01-01

    "An Architecture for Plug-in Tutor Agents" (Ritter and Koedinger 1996) proposed a software architecture designed around the idea that tutors could be built as plug-ins for existing software applications. Looking back on the paper now, we can see that certain assumptions about the future of software architecture did not come to be, making…

  8. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    Redelbach, Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  9. Borehole Plugging Program. Plugging of ERDA No. 10 drill hole

    International Nuclear Information System (INIS)

    Gulick, C.W. Jr.

    1979-06-01

    A requirement exists to plug exploratory drill holes located in the proposed Waste Isolation Pilot Plant area of Southeastern New Mexico. Sandia Laboratories, in cooperation with the US Army Corps of Engineers, Waterways Experiment Station, Concrete Laboratory, developed pumpable and durable cement grouts. These grouts were successfully used to plug an existing drill hole in the area. Results of this project are presented, along with comments and conclusions

  10. Staged fracturing of horizontal shale gas wells with temporary plugging by sand filling

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2017-03-01

    Full Text Available Due to downhole complexities, shale-gas horizontal well fracturing in the Sichuan Basin suffered from casing deformation and failure to apply the technique of cable-conveyed perforation bridge plug. In view of these problems, a new technique of staged volume fracturing with temporary plugging by sand filling is employed. Based on theoretical analyses and field tests, a design of optimized parameters of coiled tubing-conveyed multi-cluster sand-blasting perforation and temporary plugging by sand filling was proposed. It was applied in the horizontal Well ZJ-1 in which casing deformation occurred. The following results are achieved in field operations. First, this technique enables selective staged fracturing in horizontal sections. Second, this technique can realize massive staged fracturing credibly without mechanical plugging, with the operating efficiency equivalent to the conventional bridge plug staged fracturing. Third, full-hole is preserved after fracturing, thus it is possible to directly conduct an open flow test without time consumption of a wiper trip. The staged volume fracturing with temporary plugging by sand filling facilitated the 14-stage fracturing in Well ZJ-1, with similar SRV to that achieved by conventional bridge plug staged fracturing and higher gas yield than neighboring wells on the same well pad. Thus, a new and effective technique is presented in multi-cluster staged volume fracturing of shale gas horizontal wells.

  11. The sound field of a rotating dipole in a plug flow.

    Science.gov (United States)

    Wang, Zhao-Huan; Belyaev, Ivan V; Zhang, Xiao-Zheng; Bi, Chuan-Xing; Faranosov, Georgy A; Dowell, Earl H

    2018-04-01

    An analytical far field solution for a rotating point dipole source in a plug flow is derived. The shear layer of the jet is modelled as an infinitely thin cylindrical vortex sheet and the far field integral is calculated by the stationary phase method. Four numerical tests are performed to validate the derived solution as well as to assess the effects of sound refraction from the shear layer. First, the calculated results using the derived formulations are compared with the known solution for a rotating dipole in a uniform flow to validate the present model in this fundamental test case. After that, the effects of sound refraction for different rotating dipole sources in the plug flow are assessed. Then the refraction effects on different frequency components of the signal at the observer position, as well as the effects of the motion of the source and of the type of source are considered. Finally, the effect of different sound speeds and densities outside and inside the plug flow is investigated. The solution obtained may be of particular interest for propeller and rotor noise measurements in open jet anechoic wind tunnels.

  12. Pressure Drop Test of Hybrid Mixing Vane Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D. S.; Chang, S. K.; Kim, B. D.; Chun, S. Y.; Chun, T. H

    2007-08-15

    The pressure loss test has been accomplished in the test section containing 5x5 rod bundle with a length of 2 m including 3 spacer grids. The test has been performed for the 5 kinds of spacer grids to compare the pressure loss characteristics: 1. Plain spacer grid which has the same body of the Hybrid but without vane (Plain), 2. Hybrid Vane spacer grid (Hybrid), 3. Hybrid-SC spacer grid which is constructed with coined, chamfered strip and is fabricated by spot welding, 4. Hybrid-LC spacer grid which is constructed with coined, chamfered strip and is fabricated by line welding along intersection line, 5. Westinghouse spacer grid with split vane (Plus-7). The pressure loss coefficient of the Plain, Hybrid, Hybrid-SC, Hybrid-LC, and Plus-7 spacer grid is 0.93, 1.15, 1.02, 1.04, and 1.08, respectively.

  13. Mechanical and thermo-mechanical analyses of the tapered plug for plugging of deposition tunnels. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Faelth, Billy (Clay Technology AB, Lund (Sweden)); Gatter, Patrik (Vattenfall Power Consultant AB, Stockholm (Sweden))

    2009-09-15

    This report presents results from a study that was carried out in order to examine the applicability of the tapered plug concept for plugging of deposition tunnels in the deep repository for spent nuclear fuel. The report presents results from mechanical and thermo-mechanical models of the tapered plug. The models were analyzed with 3DEC. The models included a portion of a deposition tunnel and its intersection with a main tunnel. In the deposition tunnel, a tapered concrete plug was installed. The plug was subjected to the combined load from the swelling backfill material and from pore pressure inside the deposition tunnel. The thermo-mechanical effects due to the heat generation in the spent fuel were also included in the analyses. Generic material parameter values for the concrete were used. The following items were studied: - Stresses and displacements in the plug. - Shear stresses and shear displacements in the rock-concrete interface. - Stress additions in the rock due to the loads. The sensitivity of the results to changes of constitutive models, to changes of the plug geometry and to pore water pressure in the rock-concrete interface was examined. The results indicate that the displacements in the plug will be within reasonable ranges but the stresses may locally be high enough that they exceed acceptable levels. However, they can be reduced by choice of advantageous plug geometry and by having a good rock-concrete bond. The results also show that the stress additions in the rock due to the thermal load may yield stresses that locally exceed the spalling strength of the rock. At most locations, however, the rock stresses will amount at lower levels. It was concluded that, with choice of an appropriate design, the tapered plug seems to be an applicable concept for plugging of deposition tunnels. It was also concluded that further studies of the tapered plug concept should use material properties parameter values for low-pH concrete. Further, they should also

  14. A hybrid waveguide cell for the dielectric properties of reservoir rocks

    International Nuclear Information System (INIS)

    Siggins, A F; Gunning, J; Josh, M

    2011-01-01

    A hybrid waveguide cell is described for broad-band measurements of the dielectric properties of hydrocarbon reservoir rocks. The cell is designed to operate in the radio frequency range of 1 MHz to 1 GHz. The waveguide consists of 50 Ω coaxial lines feeding into a central cylindrical section which contains the sample under test. The central portion of the waveguide acts as a circular waveguide and can accept solid core plugs of 38 mm diameter and lengths from 2 to 150 mm. The central section can also be used as a conventional coaxial waveguide when a central electrode with spring-loaded end collets is installed. In the latter mode the test samples are required to be in the form of hollow cylinders. An additional feature of the cell is that the central section is designed to telescope over a limited range of 1–2 mm with the application of an axial load. Effective pressures up to 35 MPa can be applied to the sample under the condition of uniaxial strain. The theoretical basis of the hybrid waveguide cell is discussed together with calibration results. Two reservoir rocks, a Donnybrook sandstone and a kaolin rich clay, are then tested in the cell, both as hollow cylinders in coaxial mode and in the form of solid core plugs. The complex dielectric properties of the two materials over the bandwidth of 1 MHz to 1 GHz are compared with the results of the two testing methods

  15. A hybrid waveguide cell for the dielectric properties of reservoir rocks

    Science.gov (United States)

    Siggins, A. F.; Gunning, J.; Josh, M.

    2011-02-01

    A hybrid waveguide cell is described for broad-band measurements of the dielectric properties of hydrocarbon reservoir rocks. The cell is designed to operate in the radio frequency range of 1 MHz to 1 GHz. The waveguide consists of 50 Ω coaxial lines feeding into a central cylindrical section which contains the sample under test. The central portion of the waveguide acts as a circular waveguide and can accept solid core plugs of 38 mm diameter and lengths from 2 to 150 mm. The central section can also be used as a conventional coaxial waveguide when a central electrode with spring-loaded end collets is installed. In the latter mode the test samples are required to be in the form of hollow cylinders. An additional feature of the cell is that the central section is designed to telescope over a limited range of 1-2 mm with the application of an axial load. Effective pressures up to 35 MPa can be applied to the sample under the condition of uniaxial strain. The theoretical basis of the hybrid waveguide cell is discussed together with calibration results. Two reservoir rocks, a Donnybrook sandstone and a kaolin rich clay, are then tested in the cell, both as hollow cylinders in coaxial mode and in the form of solid core plugs. The complex dielectric properties of the two materials over the bandwidth of 1 MHz to 1 GHz are compared with the results of the two testing methods.

  16. Aespoe Hard Rock Laboratory. Backfill and Plug test. Hydraulic testing of core drilled boreholes in the ZEDEX drift

    Energy Technology Data Exchange (ETDEWEB)

    Ludvigson, Jan-Erik; Nordqvist, Rune; Ekman, Lennart; Hansson, Kent (GEOSIGMA AB, Uppsala (Sweden))

    2009-07-01

    The present report documents the performance and results of hydraulic testing in selected core boreholes in the Zedex drift. The holes will be used as rock instrumentation boreholes during the Backfill and Plug Test at Aespoe HRL. The testing involves both 1 m long boreholes with 56 mm diameter as well as longer boreholes c. 5 m, 8 m and 25 m long with 56 mm or 76 mm diameter. Only single-hole tests were performed. The tests were carried out as short-time constant head injection tests since all boreholes tested (except one) were non-flowing before tests. The injection phase was followed by a pressure recovery phase. Furthermore, the tests were carried out as single-packer tests. A specially designed test system was used for the tests. The main evaluation of the tests was performed on data from the recovery phase by a new approach based on a non-linear regression technique combined with a flow simulation model (SUTRA). The tests in the 1 m-holes (testing the interval c. 0.3-0.7 m in the rock perpendicular to the tunnel face) show that the hydraulic conductivity of the superficial rock around the Zedex drift in general is low. However, during testing in some boreholes, visible leakage in the rock occurred through superficial fractures into the tunnel. These fractures were mainly located in the floor of the Zedex drift and are probably blast-induced. These fractures have a high hydraulic conductivity. The tests in the longer boreholes show that the hydraulic conductivity further into the rock in general is below c. 1x10-10 m/s. Increased hydraulic conductivity (c.1.5x10-8 m/s) was only observed in the flowing borehole KXZSD8HL.

  17. Plug Power

    Energy Technology Data Exchange (ETDEWEB)

    Marsh, A. [Plug Power Inc., New York, NY (United States)

    2009-07-01

    This presentation described Plug Power's GenDrive hydrogen fuel cell unit that supplies the power needs for folk lift trucks used in high-throughput distribution and high-volume manufacturing operations. The system offers an alternative to lead acid batteries, providing maximum performance at all times during use. The system is particularly useful in the material handling industry, where the revenue generated is based on operator uptime and lift truck productivity. The use of the system allows customers to reduce operational costs and expand valuable floor space by eliminating batteries and associated recharging infrastructure. Fuel cell units also reduce the wear on truck motors. Truck operators can easily and safely refuel at hydrogen fueling stations in 1-5 minutes. GenDrive works with all major OEM lift trucks, making the transition seamless. Commercial customers are investing in this solution to improve their current operations. In 2008, Plug Power sold to Wal-Mart, Bridgestone Firestone and Nestle. Most notably, Central Grocers purchased 220 fuel cell units for a new greenfield distribution center. Plug Power currently has more than 380 systems in operation.

  18. Gonad morphogenesis defects drive hybrid male sterility in asymmetric hybrid breakdown of Caenorhabditis nematodes.

    Science.gov (United States)

    Dey, Alivia; Jin, Qi; Chen, Yen-Chu; Cutter, Asher D

    2014-01-01

    Determining the causes and evolution of reproductive barriers to gene flow between populations, speciation, is the key to understanding the origin of diversity in nature. Many species manifest hybrid breakdown when they intercross, characterized by increasingly exacerbated problems in later generations of hybrids. Recently, Caenorhabditis nematodes have emerged as a genetic model for studying speciation, and here we investigate the nature and causes of hybrid breakdown between Caenorhabditis remanei and C. latens. We quantify partial F1 hybrid inviability and extensive F2 hybrid inviability; the ~75% F2 embryonic arrest occurs primarily during gastrulation or embryonic elongation. Moreover, F1 hybrid males exhibit Haldane's rule asymmetrically for both sterility and inviability, being strongest when C. remanei serves as maternal parent. We show that the mechanism by which sterile hybrid males are incapable of transferring sperm or a copulatory plug involves defective gonad morphogenesis, which we hypothesize results from linker cell defects in migration and/or cell death during development. This first documented case of partial hybrid male sterility in Caenorhabditis follows expectations of Darwin's corollary to Haldane's rule for asymmetric male fitness, providing a powerful foundation for molecular dissection of intrinsic reproductive barriers and divergence of genetic pathways controlling organ morphogenesis. © 2014 Wiley Periodicals, Inc.

  19. Design and force analysis of end-effector for plug seedling transplanter.

    Science.gov (United States)

    Jiang, Zhuohua; Hu, Yang; Jiang, Huanyu; Tong, Junhua

    2017-01-01

    Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients). Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  20. Battery sizing for serial plug-in hybrid electric vehicles: A model-based economic analysis for Germany

    International Nuclear Information System (INIS)

    Ernst, Christian-Simon; Hackbarth, Andre; Madlener, Reinhard; Lunz, Benedikt; Uwe Sauer, Dirk; Eckstein, Lutz

    2011-01-01

    The battery size of a Plug-in Hybrid Electric Vehicle (PHEV) is decisive for the electrical range of the vehicle and crucial for the cost-effectiveness of this particular vehicle concept. Based on the energy consumption of a conventional reference car and a PHEV, we introduce a comprehensive total cost of ownership model for the average car user in Germany for both vehicle types. The model takes into account the purchase price, fixed annual costs and variable operating costs. The amortization time of a PHEV also depends on the recharging strategy (once a day, once a night, after each trip), the battery size, and the battery costs. We find that PHEVs with a 4 kWh battery and at current lithium-ion battery prices reach the break-even point after about 6 years (5 years when using the lower night-time electricity tariffs). With higher battery capacities the amortization time becomes significantly longer. Even for the small battery size and assuming the EU-15 electricity mix, a PHEV is found to emit only around 60% of the CO 2 emissions of a comparable conventional car. Thus, with the PHEV concept a cost-effective introduction of electric mobility and reduction of greenhouse gas emissions per vehicle can be reached. - Highlights: → Total cost of ownership of a PHEV and a conventional car are compared for the average German car user.→ PHEVs with a 4 kWh battery reach the break-even after 5-6 years at current Li-Ion battery prices.→ Even with a small battery, PHEVs emit about 40% less CO 2 emissions than the average conventional car.

  1. Life-cycle assessment of a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) in comparison with a conventional tractor

    International Nuclear Information System (INIS)

    Mousazadeh, Hossein; Keyhani, Alireza; Javadi, Arzhang; Mobli, Hossein; Abrinia, Karen; Sharifi, Ahmad

    2011-01-01

    The most well-known reason of global warming is equivalent carbon dioxide (CO 2equ ) emitted from fossil fuels combustion in on-road and off-road vehicles. An appreciable portion of off-road pollution is allocated to farm implements. All cited studies have shown that renewable based electric vehicles (EVs) decrease petroleum consumption and consequently reduce criteria emissions under nearly all circumstances. Considering this, a Solar Assist Plug-in Hybrid electric Tractor (SAPHT) was designed, constructed and evaluated. This research evaluated the life cycle analysis of SAPHT project and compared the results with that of an internal combustion engine tractor (ICET). The life cycle was analyzed based on economical cost and environmental emissions. The externality of environmental pollutions was calculated to derive the life-cycle costs (LCC). The results showed that substituting each ICET by SAPHT can prevent 14 ton CO 2equ emission to atmosphere annually. Also it prevents a high volume of other emissions such as CO, NO x and PM 10 entering the atmosphere. LCC assessment emphasizes on economical effectiveness of SAPHT rather than ICET at any diesel fuel price, therefore, increasing fuel unit prices leads to more effectiveness. It is concluded that levelized cost of energy (LCE) in Euro /kW h for ICET is almost twice as that of SAPHT. Some of these advantages for SAPHT are offset in part by high purchase costs, heavy and massive batteries and low operating range.

  2. Design and development of face seal type sealing plug for advanced heavy water reactor

    International Nuclear Information System (INIS)

    Bansal, S.; Bhattacharyya, S.; Patel, R.J.; Agrawal, R.G.; Vaze, K.K.

    2005-09-01

    Advanced Heavy Water Reactor is a vertical pressure tube type reactor having light water as its coolant and heavy water as moderator. Sealing plug is required to close the pressure boundary of main heat transport system of the reactor by preventing escape of light water/steam From the coolant channel. There are 452 coolant channels in the reactor located in square lattice pitch. Sealing plug is located at the top of each coolant channel (in the top end fitting). Top end fitting is having a stepped bore to create a sealing face. Sealing plug is held through its expanded jaws in a specially provided groove of the end fitting. The plug was designed and prototypes were manufactured considering its functional importance, intricate design and precision machining requirements. Sealing plug consists of about 20 components mostly made up of precipitation hardening stainless steel, which is suitable for water environment and meets other requirements of strength and resistance to wear and galling. Seal disc is a critical component of the sealing plug as it is the pressure-retaining component. It is a circular disc with protruded stem. One face of the seal disc is nickel plated in the peripheral area that creates the sealing by abutting against the sealing face provided in the end fitting. The typical shape and profile of seal disc provides flexibility and allows elastic deformation to assist in locking of sealing plug and creating adequate seating force for effective sealing. Design and development aspects of the sealing plug have been detailed out in this report. Also results of stress analysis and experimental studies for seal disc have been mentioned in the report. Stress analysis and experimental testing was required for the seal disc because high stresses are developed due to its exposure to high pressure and temperature environment of Main Heat Transport system. Hot testing was carried out to simulate the reactor-simulated condition. The performance was found to be

  3. Explosive plugging of nuclear heat exchangers

    International Nuclear Information System (INIS)

    Crossland, B.; Bahrani, A.S.; Townsley, W.J.

    1977-01-01

    Explosive welding is a well established process for cladding one metal on another or for welding tubes to tubeplates or lap welding, etc. Recently, the process has been adapted to plugging of heat exchangers in conventional and nuclear power plant, where it has already been accepted especially in situations where the access is difficult and remote from the site of plugging. The paper describes the explosive plugging techniques developed in the Department of Mechanical and Industrial Engineering of The Queen's University of Belfast for the reheater and superheater of the PFR, and for the reheater of the AGR. For the PFR a point charge system has been used which causes a spherical expansion of the plug, which gives two zones of welding. Initially for the much larger plug required for the AGR it was proposed to use a parallel stand-off welding set-up, but it proved difficult or impossible to avoid a crevice. Consequently, a rim charge set-up has been developed which gives a circular ring expansion of the plug with two zones of welding. Besides the problem of the design of the plug and explosive charge geometry it has also been necessary to consider the distortion of holes adjoining the hole in which a plug is welded. Bunging of adjoining holes in order to reduce the distortion has also been investigated

  4. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : final report.

    Science.gov (United States)

    2012-02-01

    The University of Toledo University Transportation Center (UT-UTC) has identified : hybrid vehicles as one of the three areas of the research. The activities in this research : are directed towards the noise, vibration, and harshness (NVH) solutions ...

  5. Experiences from the design and construction of plug II in the Prototype Repository

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof (NCC Teknik (Sweden))

    2009-12-15

    The intention with this document is to summarise the comprehensive documentation and experience that was gained during the design and construction of the temporary plugs in the Prototype Repository experiment at Aespoe HRL. The Prototype Repository experiment was designed to in full scale test the engineered barriers and their function, including the plug that separate the deposition tunnel from the temporary access- and transportation tunnels that are at atmospheric pressure. This plug is designed and constructed as a concrete plug with a spherical front side and a flat pressurised side. This report presents the processes and operations that were considered when developing the 'plug', design, construction and verification. In the Prototype Repository the demand of leakage control is very high and the maximum length of the plugs is constrained due to available clearance space, experimental set-up and configuration. Therefore a typical 'friction plug' normally used to block waterways in connection with hydropower plants, is not suitable. Instead a plug constructed as an 'arch plug' with abutments was considered. In order to minimize the Excavation Disturbed Zone (EDZ) the abutments, in which the plug is inserted, was excavated by seam drilling with coring technique. The steel formwork was pre-assembled at the ground surface before taken down to the tunnel. The steel was bolted and welded together and crossbars and plywood were mounted on top. Before taken down to the tunnel, the formwork was separated into smaller pieces that were easier to transport down the tunnel but easy to assembly at the Prototype Repository experiment. Before assembling the formwork, a retaining wall was installed to resist the earth and compaction pressure developed from the backfill material. The retaining wall consists of pre-fabricated concrete beams that were installed parallel with the installation of the backfill. Reinforcement was cut and bent at the

  6. Experiences from the design and construction of plug II in the Prototype Repository

    International Nuclear Information System (INIS)

    Dahlstroem, Lars-Olof

    2009-12-01

    The intention with this document is to summarise the comprehensive documentation and experience that was gained during the design and construction of the temporary plugs in the Prototype Repository experiment at Aespoe HRL. The Prototype Repository experiment was designed to in full scale test the engineered barriers and their function, including the plug that separate the deposition tunnel from the temporary access- and transportation tunnels that are at atmospheric pressure. This plug is designed and constructed as a concrete plug with a spherical front side and a flat pressurised side. This report presents the processes and operations that were considered when developing the 'plug', design, construction and verification. In the Prototype Repository the demand of leakage control is very high and the maximum length of the plugs is constrained due to available clearance space, experimental set-up and configuration. Therefore a typical 'friction plug' normally used to block waterways in connection with hydropower plants, is not suitable. Instead a plug constructed as an 'arch plug' with abutments was considered. In order to minimize the Excavation Disturbed Zone (EDZ) the abutments, in which the plug is inserted, was excavated by seam drilling with coring technique. The steel formwork was pre-assembled at the ground surface before taken down to the tunnel. The steel was bolted and welded together and crossbars and plywood were mounted on top. Before taken down to the tunnel, the formwork was separated into smaller pieces that were easier to transport down the tunnel but easy to assembly at the Prototype Repository experiment. Before assembling the formwork, a retaining wall was installed to resist the earth and compaction pressure developed from the backfill material. The retaining wall consists of pre-fabricated concrete beams that were installed parallel with the installation of the backfill. Reinforcement was cut and bent at the factory and was ready for

  7. Plug-in electric vehicles integrating fluctuating renewable electricity

    Energy Technology Data Exchange (ETDEWEB)

    Dallinger, David

    2013-11-01

    This paper examines a method to model plug-in electric vehicles as part of the power system and presents results for the contribution of plug-in electric vehicles to balance the fluctuating electricity generation of renewable energy sources. The scientific contribution includes: - A novel approach to characterizing fluctuating generation. This allows the detailed comparison of results from energy analysis and is the basis to describe the effect of electricity from renewable energy sources and plug-in electric vehicles on the power system. - The characterization of mobile storage, which includes the description of mobility behavior using probabilities and battery discharging costs. - The introduction of an agent-based simulation approach, coupling energy markets and distributed grids using a price-based mechanism design. - The description of an agent with specific driving behavior, battery discharging costs and optimization algorithm suitable for real plug-in vehicles and simulation models. - A case study for a 2030 scenario describing the contribution of plug-in electric vehicles to balance generation from renewable energy sources in California and Germany.

  8. Members of the team responsable for the strength test stand on the plug for the main CMS shaft on which 2500 tonnes of steel blocks have been placed

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The plug over the CMS shaft, which will be required to bear the weight of the various detector sub-assemblies when they are lowered into the experiment hall, has just passed a strength test. The plug, a huge 2.2-metre-thick rectangular block of reinforced concrete measuring 15 x 20 metres and weighing 2000 tonnes, underwent its first strength test on 15 May.

  9. Design and force analysis of end-effector for plug seedling transplanter.

    Directory of Open Access Journals (Sweden)

    Zhuohua Jiang

    Full Text Available Automatic transplanters have been very important in greenhouses since the popularization of seedling nurseries. End-effector development is a key technology for transplanting plug seedlings. Most existing end-effectors have problems with holding root plugs or releasing plugs. An efficient end-effector driven by a linear pneumatic cylinder was designed in this study, which could hold root plugs firmly and release plugs easily. This end-effector with four needles could clamp the plug simultaneously while the needles penetrate into the substrate. The depth and verticality of the needles could be adjusted conveniently for different seedling trays. The effectiveness of this end-effector was tested by a combinational trial examining three seedling nursery factors (the moisture content of the substrate, substrate bulk density and the volume proportion of substrate ingredients. Results showed that the total transplanting success rate for the end-effector was 100%, and the root plug harm rate was below 17%. A force measure system with tension and pressure transducers was installed on the designed end-effector. The adhesive force FL between the root plug and the cell of seedling trays and the extrusion force FK on the root plug were measured and analyzed. The results showed that all three variable factors and their interactions had significant effects on the extrusion force. Each factor had a significant effect on adhesive force. Additionally, it was found that the end-effector did not perform very well when the value of FK/FL was beyond the range of 5.99~8.67. This could provide a scientific basis for end-effector application in transplanting.

  10. Simulation of shear plugging through thin plates using the GRIM Eulerian hydrocode

    Science.gov (United States)

    Church, P.; Cornish, R.; Cullis, I.; Lynch, N.

    2000-03-01

    Ballistic experiments have been performed using aluminum spheres against 10-mm rolled homogenous armour (RHA), MARS270, MARS300, and titanium alloy plates to investigate the influence of the plugging mechanism on material properties. The experiments have measured the threshold for plug mass and velocity as well as the recovered aluminum sphere mass over a range of velocities. Some of the experiments have been simulated using the in-house second generation Eulerian hydrocode GRIM. The calculations feature advanced material algorithms derived from interrupted tensile testing techniques and a triaxial failure model derived from notched tensile tests over a range of strain rates and temperatures. The effect of mesh resolution on the results has been investigated and understood. The simulation results illustrate the importance of the constitutive model in the shear localization process and the subsequent plugging phenomena. The stress triaxiality is seen as the dominant feature in controlling the onset and subsequent propagation of the crack leading to the shear plug. The simulations have demonstrated that accurate numerics coupled with accurate constitutive and fracture algorithms can successfully reproduce the observed experimental features. However, extrapolation of the fracture data leads to the simulations overpredicting the plug damage. The reasons for this are discussed.

  11. Acoustic and aerodynamic performance investigation of inverted velocity profile coannular plug nozzles. [variable cycle engines

    Science.gov (United States)

    Knott, P. R.; Blozy, J. T.; Staid, P. S.

    1981-01-01

    The results of model scale parametric static and wind tunnel aerodynamic performance tests on unsuppressed coannular plug nozzle configurations with inverted velocity profile are discussed. The nozzle configurations are high-radius-ratio coannular plug nozzles applicable to dual-stream exhaust systems typical of a variable cycle engine for Advanced Supersonic Transport application. In all, seven acoustic models and eight aerodynamic performance models were tested. The nozzle geometric variables included outer stream radius ratio, inner stream to outer stream ratio, and inner stream plug shape. When compared to a conical nozzle at the same specific thrust, the results of the static acoustic tests with the coannular nozzles showed noise reductions of up to 7 PNdB. Extensive data analysis showed that the overall acoustic results can be well correlated using the mixed stream velocity and the mixed stream density. Results also showed that suppression levels are geometry and flow regulation dependent with the outer stream radius ratio, inner stream-to-outer stream velocity ratio and inner stream velocity ratio and inner stream plug shape, as the primary suppression parameters. In addition, high-radius ratio coannular plug nozzles were found to yield shock associated noise level reductions relative to a conical nozzle. The wind tunnel aerodynamic tests showed that static and simulated flight thrust coefficient at typical takeoff conditions are quite good - up to 0.98 at static conditions and 0.974 at a takeoff Mach number of 0.36. At low inner stream flow conditions significant thrust loss was observed. Using an inner stream conical plug resulted in 1% to 2% higher performance levels than nozzle geometries using a bent inner plug.

  12. Refueling system with small diameter rotatable plugs

    International Nuclear Information System (INIS)

    Ritz, W.C.

    1987-01-01

    This patent describes a liquid-metal fastbreeder nuclear reactor comprising a reactor pressure vessel and closure head therefor, a reactor core barrel disposed within the reactor vessel and enclosing a reactor core having therein a large number of closely spaced fuel assemblies, and the reactor core barrel and the reactor core having an approximately concentric circular cross-sectional configuration with a geometric center in predetermined location within the reactor vessel. The improved refueling system described here comprises: a large controllably rotatable plug means comprising the substantial portion of the closure head, a reactor upper internals structure mounted from the large rotatable plug means. The large rotatable plug means has an approximately circular configuration which approximates the cross-sectional configuration of the reactor core barrel with a center of rotation positioned a first predetermined distance from the geometric center of the reactor core barrel so that the large rotatable plug means rotates eccentrically with respect to the reactor core barrel; a small controllably rotatable plug means affixed to the large rotatable plug means and rotatable with respect thereto. The small rotatable plug means has a center of rotation which is offset a second predetermined distance from the rotational center of the large rotatable plug means so that the small rotatable plug means rotates eccentrically with respect to the large rotatable plug means

  13. Plug and Play PV Systems for American Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, Christian [Fraunhofer USA, Inc., Boston, MA (United States)

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work during this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.

  14. Amplatzer Vascular Plugs Versus Coils for Embolization of Pulmonary Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Tau, Noam, E-mail: taunoam@gmail.com; Atar, Eliyahu [Rabin Medical Center – Beilinson and HaSharon Campuses, Department of Diagnostic Imaging (Israel); Mei-Zahav, Meir [Schneider Children’s Medical Center of Israel, Department of Pulmonology and National HHT Center (Israel); Bachar, Gil N. [Rabin Medical Center – Beilinson and HaSharon Campuses, Department of Diagnostic Imaging (Israel); Dagan, Tamir; Birk, Einat; Bruckheimer, Elchanan [Schneider Children’s Medical Center of Israel, Institute of Pediatric Cardiology (Israel)

    2016-08-15

    PurposeCoil embolization of pulmonary arteriovenous malformations (PAVMs) has a high re-canalization/re-perfusion rate. Embolization with Amplatzer plugs has been previously described, but the long-term efficacy is not established. This study reports the experience of a referral medical center with the use of coils and Amplatzer plugs for treating PAVMs in patients with hereditary hemorrhagic telangiectasia.MethodsThe study was approved by the Institutional Review Board with waiver of informed consent. The cohort included all patients who underwent PAVM embolization in 2004–2014 for whom follow-up imaging scans were available. The medical files were retrospectively reviewed for background data, embolization method (coils, Amplatzer plugs, both), and complications. Re-canalization of treated PAVMs was assessed from intrapulmonary angiograms (following percutaneous procedures) or computed tomography angiograms. Fisher’s exact test and Pearson Chi-squared test or t test were used for statistical analysis, with significance at p < 0.05.Results16 patients met the study criteria. Imaging scans were available for 63 of the total 110 PAVMs treated in 41 procedures. Coils were used for embolization in 37 PAVMs, Amplatzer plugs in 21, and both in five. Median follow-up time was 7.7 years (range 1.4–18.9). Re-canalization was detected in seven vessels, all treated with coils; there were no cases of re-canalization in plug-occluded vessels (p = 0.0413).ConclusionThe use of Amplatzer plugs for the embolization of PAVMs in patients with hemorrhagic telangiectasia is associated with a significantly lower rate of re-canalization of feeding vessels than coils. Long-term prospective studies are required to confirm these findings.

  15. Amplatzer Vascular Plugs Versus Coils for Embolization of Pulmonary Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia

    International Nuclear Information System (INIS)

    Tau, Noam; Atar, Eliyahu; Mei-Zahav, Meir; Bachar, Gil N.; Dagan, Tamir; Birk, Einat; Bruckheimer, Elchanan

    2016-01-01

    PurposeCoil embolization of pulmonary arteriovenous malformations (PAVMs) has a high re-canalization/re-perfusion rate. Embolization with Amplatzer plugs has been previously described, but the long-term efficacy is not established. This study reports the experience of a referral medical center with the use of coils and Amplatzer plugs for treating PAVMs in patients with hereditary hemorrhagic telangiectasia.MethodsThe study was approved by the Institutional Review Board with waiver of informed consent. The cohort included all patients who underwent PAVM embolization in 2004–2014 for whom follow-up imaging scans were available. The medical files were retrospectively reviewed for background data, embolization method (coils, Amplatzer plugs, both), and complications. Re-canalization of treated PAVMs was assessed from intrapulmonary angiograms (following percutaneous procedures) or computed tomography angiograms. Fisher’s exact test and Pearson Chi-squared test or t test were used for statistical analysis, with significance at p < 0.05.Results16 patients met the study criteria. Imaging scans were available for 63 of the total 110 PAVMs treated in 41 procedures. Coils were used for embolization in 37 PAVMs, Amplatzer plugs in 21, and both in five. Median follow-up time was 7.7 years (range 1.4–18.9). Re-canalization was detected in seven vessels, all treated with coils; there were no cases of re-canalization in plug-occluded vessels (p = 0.0413).ConclusionThe use of Amplatzer plugs for the embolization of PAVMs in patients with hemorrhagic telangiectasia is associated with a significantly lower rate of re-canalization of feeding vessels than coils. Long-term prospective studies are required to confirm these findings.

  16. Plug cementing: Horizontal to vertical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, D.G.; Heathman, J.F.; Griffith, J.E.

    1995-12-31

    This paper presents an in-depth study of cement plug placement that was conducted with large-scale models for the improvement of plug cementing practices and plug integrity. Common hole and workstring geometries were examined with various rheology and density ratios between the drilling fluid and cement. The critical conditions dictating the difference between success and failure for various wellbore angles and conditions were explored, and the mechanisms controlling slurry movement before and after placement are now better understood. An understanding of these mechanisms allows the engineer to better tailor a design to specific hole conditions. Controversial concepts regarding plug-setting practices have been examined and resolved. The cumulative effects of density, rheology, and hole angle are major factors affecting plug success. While the Boycott effect and an extrusion effect were observed to be predominant in inclined wellbores, a spiraling or {open_quotes}roping{close_quotes} effect controls slurry movement in vertical wellbores. Ultimate success of a cement plug can be obtained if allowances are made for these effects in the job design, provided all other previously published recommended placement practices are followed. Results of this work can be applied to many sidetracking and plug-to-abandon operations. Additionally, the understanding of the fluid movement (creep) mechanisms holds potential for use in primary and remedial cementing work, and in controlling the placement of noncementitious fluids in the wellbore.

  17. Remote Handling behind port plug in ITER

    International Nuclear Information System (INIS)

    Bede, O.; Neuberger, H.

    2006-01-01

    Different Test Blanket Modules (TBM) will be used in succession in the same equatorial ports of ITER. The remote handling operations for connection/disconnection of an interface between the port plug of the EU-HCPB-TBM and the port cell equipment are investigated with the goal to reach a quick and simple TBM exchange procedure. This paper describes the operations and systems which are required for connection of the TBM to its supply lines at this interface. The interface is located inside the free space of the port plug flange between the port plug shield and the bioshield of the port cell behind. The approach of the operation place is only available through a narrow gate in the bioshield opened temporarily during maintenance periods. This gate limits the dimensions of the whole system and its tools. The current design of the EU-HCPB-TBM foresees up to 9 supply lines which have to be connected inside the free space of one half of the port plug flange. The connection operations require positioning and adjustment of the tools for each pipe separately. Despite the strict circumstances it is still possible to find such an industrial jointed-arm robot with sufficient payload, which can penetrate into the working area. A mechanical system is necessary to move the robot from its storing place in the hot cell to the port plug on 6 m distance. Each operation requires different end-of-arm tools. The most special one is a pipe positioner tool, which can position and pull the pipe ends to each other and align the tool before welding and hold them in proper position during the welding process. Weld seams can be made by orbital welding tool. The pipe positioner tool has to provide place for welding tool. Using of inbore tool is impossible because pipes have no open ends where the tool could leave it. Orbital tool must be modified to meet requirements of remote handling because it is designed for human handling. The coolant is helium, so for eliminating the leak of helium it is

  18. Shielding plugs

    International Nuclear Information System (INIS)

    Makishima, Kenji.

    1986-01-01

    Purpose: In shielding plugs of an LMFBR type reactor, to restrain natural convection of heat in an annular space between a thermal shield layer and a shield shell, to prevent the lowering of heat-insulation performance, and to alleviate a thermal stress in a reactor container and the shield shell. Constitution: A ring-like leaf spring split in the direction of height is disposed in an annular space between a thermal shield layer and a shield shell. In consequence, the space is partitioned in the direction of height and, therefore, if axial temperature conditions and space width are the same and the space is low, the natural convection is hard to occur. Thus the rise of upper surface temperature of the shielding plugs can prevent the lowering of the heat insulation performance which will result in the increment of shielding plug cooling capacity, thereby improving reliability. In the meantime, since there is mounted an earthquake-resisting support, the thermal shield layer will move for a slight gap in case of an earthquake, being supported by the earthquake-resisting support, and the movement of the thermal shield layer is restricted, thereby maintaining integrity without increasing the stroke of the ring-like spring. (Kawakami, Y.)

  19. Freeway Driving Cycle Construction Based on Real-Time Traffic Information and Global Optimal Energy Management for Plug-In Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Hongwen He

    2017-11-01

    Full Text Available This paper presents a freeway driving cycle (FDC construction method based on traffic information. A float car collected different type of roads in California and we built a velocity fragment database. We selected a real freeway driving cycle (RFDC and established the corresponding time traffic information tensor model by using the data in California Department of Transportation performance measure system (PeMS. The correlation of road velocity in the time dimension and spatial dimension are analyzed. According to the average velocity of road sections at different times, the kinematic fragments are stochastically selected in the velocity fragment database to construct a real-time FDC of each section. The comparison between construction freeway driving cycle (CFDC and real freeway driving cycle (RFDC show that the CFDC well reflects the RFDC characteristic parameters. Compared to its application in plug-in electric hybrid vehicle (PHEV optimal energy management based on a dynamic programming (DP algorithm, CFDC and RFDC fuel consumption are similar within approximately 5.09% error, and non-rush hour fuel economy is better than rush hour 3.51 (L/100 km at non-rush hour, 4.29 (L/km at rush hour. Moreover, the fuel consumption ratio can be up to 13.17% in the same CFDC at non-rush hour.

  20. Rotary plug seal

    International Nuclear Information System (INIS)

    Ito, Koji; Abiko, Yoshihiro.

    1981-01-01

    Purpose: To enable fuel exchange even upon failure of regular seals and also to enable safety seal exchange by the detection of the reduction in the contact pressure of a rotary plug seal. Constitution: If one of a pair of regular tube seals for the rotary plug is failed during ordinary operation of a FBR type reactor, the reduction in the contact pressure of the seal to the plug gibbousness is detected by a pressure gauge and a solenoid valve is thereby closed. Thus, a back-up-tube seal provided above or below the tube seal is press-contacted by way of argon gas to the gibbousness to enter into operation state and lubricants are supplied from an oil tank. In such a structure, the back-up-tube seal is operated before the failure of the tube seal to enable to continue the fuel exchange work, as well as safety exchange for the tube seal. (Moriyama, K.)

  1. Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

    International Nuclear Information System (INIS)

    Walker, Paul D.; Roser, Holger M.

    2015-01-01

    Highlights: • We analyse several driving cycles to for the preliminary design of hybrid two wheelers. • Simulation of alternate configurations to compare achievable driving range and economy. • Demonstrate that pure electric vehicles provide cost benefits over the vehicle life. • Hybrid and plug-in hybrid two wheelers have comparable costs to conventional vehicles. - Abstract: The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve

  2. Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Davies, Jamie; Kurani, Kenneth S.

    2013-01-01

    Plug-in hybrid electric vehicles (PHEVs) are currently for sale in most parts of the United States, Canada, Europe and Japan. These vehicles are promoted as providing distinct consumer and public benefits at the expense of grid electricity. However, the specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. While considerable effort has been dedicated to understanding PHEV impacts on a per mile basis few studies have assessed the impacts of PHEV given actual consumer use patterns or operating conditions. Instead, simplifying assumptions have been made about the types of cars individual consumers will choose to purchase and how they will drive and charge them. Here, we highlight some of these consumer purchase and use assumptions, studies which have employed these assumptions and compare these assumptions to actual consumer data recorded in a PHEV demonstration project. Using simulation and hypothetical scenarios we discuss the implication for PHEV impact analyses and policy if assumptions about key PHEV consumer use variables such as vehicle choice, home charging frequency, distribution of driving distances, and access to workplace charging were to change. -- Highlights: •The specific benefits or impacts of PHEVs ultimately relies on consumers purchase and vehicle use patterns. •Simplifying, untested, assumptions have been made by prior studies about PHEV consumer driving, charging and vehicle purchase behaviors. •Some simplifying assumptions do not match observed data from a PHEV demonstration project. •Changing the assumptions about PHEV consumer driving, charging, and vehicle purchase behaviors affects estimates of PHEV impacts. •Premature simplification may have lasting consequences for standard setting and performance based incentive programs which rely on these estimates

  3. Plugging of feed inlet tube upstands with Ni/Ti shape memory alloy plugs - Heysham 1 power station

    International Nuclear Information System (INIS)

    Mathews, A.J.

    1988-01-01

    The paper contains a description of a new approach for Plugging feed inlet tubes of Gas-Cooled Reactors. Instead of utilizing the original explosive method plugging by fitting a shape memory alloy plug into the upstand is being described. (author)

  4. Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

    Science.gov (United States)

    Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle

  5. Development of end plug welding method in the fabrication of FBR fuel pins

    International Nuclear Information System (INIS)

    Ohtani, Seiji; Sawayama, Takeo; Tateishi, Yoshinori

    1977-01-01

    As a part of the development of the automatic and remote controlled fabrication of FBR fuel pins, welding of fuel pin end plugs has been examined. Cladding tubes and end plugs used for this experiment are made of SUS 316, and they are the components of fuel pins for the prototype fast breeder reactor (Monju) or the second core of Joyo (Joyo MK-II). The welding tests of cladding tubes and four kinds of end plugs were carried out by means of two techniques; tungsten inert gas welding and laser welding. It can be said that no considerable difference was observed in weld penetration, occurrence rate of weld defects and breaking strength between the tight fit and the loose fit plugs. The face-to-face fit welding requires the least welding heat input, but involves much difficulty in the control of weld penetration and bead zone diameter. The good concentrative property and high energy density of laser beam make the face of weld hollow due to the vaporization of weld metal. However, this problem can be easily solved by changing the shape of end plugs. Good results in the other characteristics of the weld also were obtained by this laser welding. Further experiment is needed in connection with the compatibility of weld metal with sodium and neutron irradiation before final judgement is made on the laser welding technique. (Nakai, Y.)

  6. Roll-expanded plugs for steam generator heating tubes verification of leak tightness over the component lifetime

    International Nuclear Information System (INIS)

    Beck, J.; Ziegler, R.; Schönheit, N.

    2013-01-01

    Highlights: • Design description of roll-expanded plugs. • Experimental simulation of 40 years lifetime of plugged steam generator tubes. • Destructive testing for off-design loads. • Evaluation of release pressure and tightness before and after the tests. -- Abstract: Steam generator heating tubes are the boundary between the irradiated primary cycle and the conventional secondary cycle in a pressurized water reactor. Despite their operational task to transfer the heat from the primary to the secondary cycle, these tubes have a crucial safety function: the retention of irradiated primary coolant inside the circuit in all operating, emergency and off-design conditions. The heating tubes are subject to various degradation mechanisms during operation. To verify the integrity of each single tube, nuclear power plants carry out frequent in-service inspections. In case of a tube wall degradation beyond the permissible limit, the tube needs to be taken out of service in order to maintain the overall component integrity. The most common method to do so is to plug a damaged tube by a roll-expanded plug. After plugging, the roll-expanded plug acts as pressure boundary between the primary and the secondary cycle instead of the damaged heating tube. The plug must be able to maintain this function, previously provided by the heating tube, in all operational, emergency and off-design conditions. This article describes the approach to this verification by launching several comprehensive process qualification programmes consisting of mechanical analyses as well as static and dynamic testing programmes. The result was a qualified roll-expanded plug which remains leak-tight even during off-design conditions

  7. An optimal design for millimeter-wide facture plugging zone

    Directory of Open Access Journals (Sweden)

    Yili Kang

    2015-01-01

    Full Text Available Lost circulation control in millimeter-wide fractures has been a challenge in well drilling all the time. Low pressure-bearing capacity of a plugging zone will result in excessive consumption of lost circulation materials (LCMs and extra down time. In this study, laboratory experiments were conducted on the plugging of millimeter-wide fractures to evaluate the plugging effects of different types of LCM including rigid granules, elastic particles and fiber. Maximum plugging pressure, total loss volume before sealing and plugging time were taken as the evaluation index of the LCM plugging effect. According to the experimental results, the synergistic plugging mechanisms of different LCM combinations were also analyzed. Experimental results showed that the total loss volume of the plugging zone formed by rigid and elastic particle combination was generally greater than 400 mL, and the maximum plugging pressure of the plugging zone formed by elastic particle and fiber combination was generally less than 6 MPa. In contrast, the plugging zone formed by the combination of the three types of LCMs has the maximum plugging pressure of up to 13 MPa and total loss volume before sealing of 75 mL. In the synergistic plugging process, rigid granules form a frame with high pressure-bearing capacity in the narrower parts of the fractures; elastic particles generate elastic force through elastic deformation to increase the friction between a fracture and a plugging zone to make the plugging zone more stable; fibers filling in the pore space between the particles increase the tightness and integrity of the plugging zone. The experimental results can provide guidance for the optimal design of LCMs used in the field.

  8. Thermographic study of the preheating plugs in diesel engines

    OpenAIRE

    Royo Pastor, Rafael; Albertos Arranz, M.A.; CÁRCEL CUBAS, JUAN ANTONIO; Payá Herrero, Jorge

    2012-01-01

    The use of direct injection diesel engines has been widely applied during the past ten years. In such engines, the preheating plugs are a key element which has a significant contribution in the pollutant emissions. In this paper, two different plug designs from Renault are analyzed. The new plug reduces substantially the required electrical consumption. Nevertheless, the pollutant emissions are higher (fundamentally CO and HCs) and hereby a thorough analysis is required to underst...

  9. The Novel Application of Optimization and Charge Blended Energy Management Control for Component Downsizing within a Plug-in Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Ravi Shankar

    2012-11-01

    Full Text Available  The adoption of Plug-in Hybrid Electric Vehicles (PHEVs is widely seen as an interim solution for the decarbonization of the transport sector. Within a PHEV, determining the required energy storage capacity of the battery remains one of the primary concerns for vehicle manufacturers and system integrators. This fact is particularly pertinent since the battery constitutes the largest contributor to vehicle mass. Furthermore, the financial cost associated with the procurement, design and integration of battery systems is often cited as one of the main barriers to vehicle commercialization. The ability to integrate the optimization of the energy management control system with the sizing of key PHEV powertrain components presents a significant area of research. Contained within this paper is an optimization study in which a charge blended strategy is used to facilitate the downsizing of the electrical machine, the internal combustion engine and the high voltage battery. An improved Equivalent Consumption Method has been used to manage the optimal power split within the powertrain as the PHEV traverses a range of different drivecycles. For a target CO2 value and drivecycle, results show that this approach can yield significant downsizing opportunities, with cost reductions on the order of 2%–9% being realizable.

  10. Development of Near Optimal Rule-Based Control for Plug-In Hybrid Electric Vehicles Taking into Account Drivetrain Component Losses

    Directory of Open Access Journals (Sweden)

    Hanho Son

    2016-05-01

    Full Text Available A near-optimal rule-based mode control (RBC strategy was proposed for a target plug-in hybrid electric vehicle (PHEV taking into account the drivetrain losses. Individual loss models were developed for drivetrain components including the gears, planetary gear (PG, bearings, and oil pump, based on experimental data and mathematical governing equations. Also, a loss model for the power electronic system was constructed, including loss from the motor-generator while rotating in the unloaded state. To evaluate the effect of the drivetrain losses on the operating mode control strategy, backward simulations were performed using dynamic programming (DP. DP selects the operating mode, which provides the highest efficiency for given driving conditions. It was found that the operating mode selection changes when drivetrain losses are included, depending on driving conditions. An operating mode schedule was developed with respect to the wheel power and vehicle speed, and based on the operating mode schedule, a RBC was obtained, which can be implemented in an on-line application. To evaluate the performance of the RBC, a forward simulator was constructed for the target PHEV. The simulation results show near-optimal performance of the RBC compared with dynamic-programming-based mode control in terms of the mode operation time and fuel economy. The RBC developed with drivetrain losses taken into account showed a 4%–5% improvement of the fuel economy over a similar RBC, which neglected the drivetrain losses.

  11. Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips

    International Nuclear Information System (INIS)

    Arslan, Okan; Yıldız, Barış; Ekin Karaşan, Oya

    2014-01-01

    In a road network with refueling and fast charging stations, the minimum-cost driving path of a plug-in hybrid electric vehicle (PHEV) depends on factors such as location and availability of refueling/fast charging stations, capacity and cost of PHEV batteries, and driver tolerance towards extra mileage or additional stopping. In this paper, our focus is long-distance trips of PHEVs. We analyze the impacts of battery characteristics, often-overlooked driver preferences and road network features on PHEV travel costs for long-distance trips and compare the results with hybrid electric and conventional vehicles. We investigate the significance of these factors and derive critical managerial insights for shaping the future investment decisions about PHEVs and their infrastructure. In particular, our findings suggest that with a certain level of deployment of fast charging stations, well established cost and emission benefits of PHEVs for the short range trips can be extended to long distance. Drivers' stopping intolerance may hamper these benefits; however, increasing battery capacity may help overcome the adverse effects of this intolerance. - Highlights: • We investigate the travel costs of CVs, HEVs and PHEVs for long-distance trips. • We analyze the impacts of battery, driver and road network characteristics on the costs. • We provide critical managerial insights to shape the investment decisions about PHEVs. • Drivers' stopping intolerance may hamper the cost and emission benefits of PHEVs. • Negative effect of intolerance on cost may be overcome by battery capacity expansion

  12. A Rule-Based Energy Management Strategy for a Plug-in Hybrid School Bus Based on a Controller Area Network Bus

    Directory of Open Access Journals (Sweden)

    Jiankun Peng

    2015-06-01

    Full Text Available This paper presents a rule-based energy management strategy for a plug-in hybrid school bus (PHSB. In order to verify the effectiveness and rationality of the proposed energy management strategy, the powertrain and control models were built with MATLAB/Simulink. The PHSB powertrain model includes an engine model, ISG (integrated started and generator model, drive motor model, power battery packs model, driver model, and vehicle longitudinal dynamics model. To evaluate the controller area network (CAN bus performance features such as the bus load, signal hysteresis, and to verify the reliability and real-time performance of the CAN bus multi-node control method, a co-simulation platform was built with CANoe and MATLAB/Simulink. The co-simulation results show that the control strategy can meet the requirements of the PHSB’s dynamic performance. Meanwhile, the charge-depleting mode (CD and charge-sustaining mode (CS can switch between each other and maintain a state-of-charge (SoC of around 30%, indicating that the energy management strategy effectively extends the working period of the CD mode and improves the fuel economy further. The energy consumption per 100 km includes 13.7 L diesel and 10.5 kW·h electricity with an initial SoC of 75%. The CANoe simulation results show that the bus communication performs well without error frames.

  13. Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ferroni, Paolo [Westinghouse Electric Company LLC, Cranberry Township, PA (United States). Global Technology Development; Tatli, Emre [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Czerniak, Luke [Westinghouse Electric Company LLC, Cranberry Township, PA (United States); Sienicki, James J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chien, Hual-Te [Argonne National Lab. (ANL), Argonne, IL (United States); Yoichi, Momozaki [Argonne National Lab. (ANL), Argonne, IL (United States); Bakhtiari, Sasan [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-06-29

    The project “Modeling and Validation of Sodium Plugging for Heat Exchangers in Sodium-cooled Fast Reactor Systems” was conducted jointly by Westinghouse Electric Company (Westinghouse) and Argonne National Laboratory (ANL), over the period October 1, 2013- March 31, 2016. The project’s motivation was the need to provide designers of Sodium Fast Reactors (SFRs) with a validated, state-of-the-art computational tool for the prediction of sodium oxide (Na2O) deposition in small-diameter sodium heat exchanger (HX) channels, such as those in the diffusion bonded HXs proposed for SFRs coupled with a supercritical CO2 (sCO2) Brayton cycle power conversion system. In SFRs, Na2O deposition can potentially occur following accidental air ingress in the intermediate heat transport system (IHTS) sodium and simultaneous failure of the IHTS sodium cold trap. In this scenario, oxygen can travel through the IHTS loop and reach the coldest regions, represented by the cold end of the sodium channels of the HXs, where Na2O precipitation may initiate and continue. In addition to deteriorating HX heat transfer and pressure drop performance, Na2O deposition can lead to channel plugging especially when the size of the sodium channels is small, which is the case for diffusion bonded HXs whose sodium channel hydraulic diameter is generally below 5 mm. Sodium oxide melts at a high temperature well above the sodium melting temperature such that removal of a solid plug such as through dissolution by pure sodium could take a lengthy time. The Sodium Plugging Phenomena Loop (SPPL) was developed at ANL, prior to this project, for investigating Na2O deposition phenomena within sodium channels that are prototypical of the diffusion bonded HX channels envisioned for SFR-sCO2 systems. In this project, a Computational Fluid Dynamic (CFD) model capable of simulating the thermal-hydraulics of the SPPL test

  14. Full scale demonstration of shotcrete sealing plug under realistic working conditions

    International Nuclear Information System (INIS)

    Barcena, Ignacio; Garcia-Sineriz, Jose-Luis

    2008-01-01

    shotcrete formulated to obtain a final low-pH prod uct and, therefore, testing of this specific material under realistic conditions is needed. The research activities carried out in this sense within the IP ESDRED have provided a low-pH concrete formulation suitable of being shotcreted. In a series of field tests, this concrete fulfilled the established functional requirements in terms of low pH, long distance pumpability and sprayability. Thereafter, a short low-pH shotcrete plug was successfully constructed and tested (load test to determine its bearing capacity) at the Aespoe URL. The feasibility of the construction in accordance to the established requirements was demonstrated, and the plug behaved as expected, showing a good enduring capacity under mechanical load. The results from the test provided valuable information on the mechanical behaviour of confined granite-shotcrete interfaces, which has been used for improving the plug design calculations. As a final step, a full-scale low-pH shotcrete plug has been constructed in the Grimsel URL to check the feasibility and performance of this type of plug construction under realistic conditions - swelling pressure exerted by the saturated bentonite and the local hydraulic gradient. The construction was successfully carried out in winter time, with no access by road to the Laboratory, and producing the concrete 'in situ', within a restricted space, what demonstrated its feasibility in the toughest conditions. The proposed paper is mainly focused on the construction of the full-scale tests and the results obtained. (author)

  15. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  16. Nuclear determination of saturation profiles in core plugs

    International Nuclear Information System (INIS)

    Sletsgaard, J.; Oelgaard, P.L.

    1997-01-01

    A method to determine liquid saturations in core plugs during flooding is of importance when the relative permeability and capillary pressure function are to be determined. This part of the EFP-95 project uses transmission of γ-radiation to determine these saturations. In γ-transmission measurements, the electron density of the given substance is measured. This is an advantage as compared to methods that use electric conductivity, since neither oil nor gas conducts electricity. At the moment a single 137 Cs-source is used, but a theoretical investigation of whether it is possible to determine three saturations, using two radioactive sources with different γ-energies, has been performed. Measurements were made on three core plugs. To make sure that the measurements could be reproduced, all the plugs had a point of reference, i.e. a mark so that it was possible to place the plug same way every time. Two computer programs for calculation of saturation and porosity and the experimental setup are listed. (EG)

  17. Plug Load Behavioral Change Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Kandt, A.; VanGeet, O.

    2011-08-01

    This report documents the methods and results of a plug load study of the Environmental Protection Agency's Region 8 Headquarters in Denver, Colorado, conducted by the National Renewable Energy Laboratory. The study quantified the effect of mechanical and behavioral change approaches on plug load energy reduction and identified effective ways to reduce plug load energy. Load reduction approaches included automated energy management systems and behavioral change strategies.

  18. Study of ITER equatorial port plug handling system and vacuum sealing interface

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Jean-Pierre [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, F-13108 Saint-Paul-lez-Durance (France)], E-mail: jean-pierre.martins@cea.fr; Doceul, Louis; Marol, Sebastien; Delchie, Elise [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Cordier, Jean-Jacques; Levesy, Bruno; Tesini, Alessandro [ITER International Organization, F-13108 Saint-Paul-lez-Durance cedex (France); Ciattaglia, Emanuela [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching (Germany); Tivey, Richard [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Gillier, Rene; Abbes, Christophe [GARLOCK - Sealing Technologies - 90, rue de la roche du Geai, F-42029 St-Etienne cedex 1 (France)

    2009-06-15

    In the field of the ITER port plug engineering and integration task, CEA has contributed to define proposals concerning the port plugs vacuum sealing interface with the vessel flange and the equatorial plug handling. The 2001 baseline vacuum flange sealing consisted of TIG welding of a 316L strip plate on to U shapes. This arrangement presented some issues like welding access, implementation of tools, lip consumption, complex local leak test, continuous leak checking. Therefore, an alternate sealing solution based on the use of metallic gaskets is proposed. The different technical aspects are discussed to explain how this design can simplify the maintenance and deal with safety and vacuum requirements. The design of the mechanical attachment and vacuum sealing of the plug has constantly evolved, but the associated remote handling equipment was not systematically reviewed. An update of the cask and maintenance procedure was studied in order to design it in accordance with the last generic plug flange design. This includes a concept of a gripping system that uses the plug flange bolting area and, to help the remote handling process, a cantilever assisting system is suggested to increase the reliability of the transfer operation between vacuum vessel and cask.

  19. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    International Nuclear Information System (INIS)

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10 -4 darcy for a neat cement paste to a low of 5 x 10 -8 darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10 -5 to -8 darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys

  20. Progress in application of hybrid numerical simulation methods to magnetic confinement systems. Annual report

    International Nuclear Information System (INIS)

    Morse, R.L.

    1979-06-01

    Hybrid codes have been developed to simulate high density, high β confined plasmas. The major areas of application have been end plugging and heating of linear confinement systems. In particular, significant progress has been made in understanding the role of line and recombination radiation in recent experiments which showed large increases in energy confinement times from the use of solid end plugs. Another accomplishment is the conception and theoretical analysis of an efficient, low frequency, axial heating method which we believe could significantly increase the attractiveness of linear systems as reactors

  1. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  2. Plugging regime in the pump limiter throat

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-08-01

    The plugging regime -with no outstreaming neutral flux- is studied for a closed configuration pump limiter (throat). We derive the plugging length and the neutral density build-up at the neutralizer plate. The analytical expressions are supported by numerical evidence. We find an improved efficiency related to the throat effect mainly due to neutral-sidewall interactions

  3. An Investigation of the Applicability and Limitations of the ORNL Expanded Plug Test

    Energy Technology Data Exchange (ETDEWEB)

    McAfee, Wallace J. [ORNL; Hemrick, James G. [ORNL

    2014-01-15

    The expanded plug test technique for measuring the circumferential tensile properties of irradiated nuclear fuel cladding was developed at Oak Ridge National Laboratory (ORNL) and has been used successfully in several applications. The primary advantage of this technique over other procedures is its simplicity for application in the complex hot cell environment. During the development stage, efforts were made to both qualify the technique as much as possible regarding its experimental application and to develop and validate the data reduction procedures. However, since this is a new technique, the technical community is cautious in adopting a procedure that has not been fully vetted. The purpose of this effort was to address several baseline issues regarding the applicability of the technique and the precision of the use of experimental expanded ring load-deformation data to calculate material circumferential stress-strain properties. The tests performed, in conjunction with the developed data reduction procedures, demonstrate good reliability in the prediction of ring material stress-strain behavior for several materials of widely different strengths.

  4. Fatigue Testing of Maglev-Hybrid Box Beam

    Science.gov (United States)

    2009-03-02

    04142009 3. DATES COVERED: (From - To) 23052006-14092008 4. TITLE AND SUBTITLE Fatigue Testing of Maglev -Hybrid Box Beam 5a. CONTRACT NUMBER NA...was previously built under collaboration between Maglev Inc. and Lehigh University. The girder was instrumented with strain gages and LVDT’s to monitor...report March 2,2009 Contract N00014-06-1-0872 Project: Fatigue Testing of Maglev -Hybrid Box Beam Prepared by Dr. J.L. Grenestedt and Dr. R. Sause

  5. An Overview of the HomePlug AV2 Technology

    Directory of Open Access Journals (Sweden)

    Larry Yonge

    2013-01-01

    Full Text Available HomePlug AV2 is the solution identified by the HomePlug Alliance to achieve the improved data rate performance required by the new generation of multimedia applications without the need to install extra wires. Developed by industry-leading participants in the HomePlug AV Technical Working Group, the HomePlug AV2 technology provides Gigabit-class connection speeds over the existing AC wires within home. It is designed to meet the market demands for the full set of future in-home networking connectivity. Moreover, HomePlug AV2 guarantees backward interoperability with other HomePlug systems. In this paper, the HomePlug AV2 system architecture is introduced and the technical details of the key features at both the PHY and MAC layers are described. The HomePlug AV2 performance is assessed, through simulations reproducing real home scenarios.

  6. Plug-in Hybrid Electric Vehicles in the Smart Grid Environment: An Economic Model of Load Management by Demand Response

    Directory of Open Access Journals (Sweden)

    Poudineh R.

    2012-10-01

    Full Text Available Environmental concern regarding the consumption of fossil fuels is among the most serious challenges facing the world. As a result, utilisation of more renewable resources and promotion of a clean transport system such as the use of Plug in Hybrid Electric Vehicles (PHEVs became the forefront of the new energy policies. However, the breakthrough of PHEVs in the automotive fleet increases concerns around the stability of power system and in particular, the power network. This research simulates the aggregate load profile of the UK with presence of PHEVs based upon different price scenarios. The results show that under the fixed rate and time of use programmes in the current grid, the extra load of the electric vehicles intensifies the consumption profile and also creates new critical points. Thus, there should always be excess standby capacity to satisfy peak demand even for a short period of time. On the other hand, when the consumers do not pay the price based on the actual cost of supply, those who consume less in peak hours subsidise the ones who consume more and this cross subsidy raises a regulatory issue. On the contrary, a smart grid can accommodate PHEVs without creating technical and regulatory problems. This positive consequence is the result of demand response to the real time pricing. From a technical point of view, the biggest chunk of PHEVs' load will be shifted to the late evening and the hours of minimum demand. Besides, from a welfare analysis standpoint, real time pricing creates no deadweight losses and corresponding demand response will limit the ability of suppliers to increase the spot market clearing price above its equilibrium level.

  7. Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids

    International Nuclear Information System (INIS)

    Kavousi-Fard, Abdollah; Abunasri, Alireza; Zare, Alireza; Hoseinzadeh, Rasool

    2014-01-01

    This paper suggests a new stochastic expert framework to investigate the charging effect of plug-in hybrid electric vehicles (PHEVs) on the optimal operation and management of micro-grids (MGs). In this way, a useful method based on smart charging approach is proposed to consider the charging demand of PHEVs in both residential location and public charging stations. The analysis is simulated for 24 h considering the uncertainties associated with the forecast error in the charging demand of PHEVs, hourly load consumption, hourly energy price and Renewable Energy Sources (RESs) output power. In order to see the effect of storage devices on the operation of the MG, NiMH-Battery is also incorporated in the MG. According to the high complexity of the problem, a new optimization method called θ-krill herd (θ-KH) algorithm is proposed which uses the phase angle vectors to update the velocity/position of krill animals with faster and more stable convergence. In addition, a new modification method is proposed to improve the search ability of the algorithm, effectively. The suggested problem is examined on an MG including different RESs such as photovoltaic (PV), fuel cells (FCs), wind turbine (WT), micro turbine (MT) and battery as the storage device. - Highlights: • Introducing an expert stochastic framework for optimal operation and management of MGs including PHEVs. • Introducing a new artificial optimization algorithm based on KH evolutionary technique. • Introducing a new version of KH algorithm called θ-KH for the optimization applications. • Modeling the uncertainty of forecast error in Wind turbine, Photovoltaics, market price, load data, PHEVs electric charging demand in an intelligent framework

  8. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    International Nuclear Information System (INIS)

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  9. A Test Setup for Quality Assurance of Front End Hybrids

    CERN Document Server

    Axer, Markus; Camps, Clemens; Commichau, Volker; Flügge, Günter; Franke, Torsten; Hangarter, Klaus; Ilgin, Can; Mnich, Joachim; Niehusmann, Jan; Poettgens, Michael; Schorn, Peter; Schulte, Reiner; Struczinski, Wolfgang

    2001-01-01

    The APV Readout Control (ARC) Test Setup is a compact, cost efficient test and diagnostic tool which is suited for full operation and characterisation of FE hybrids and Si-Detector modules. This note gives an overview of the construction and the features of the test facility. Based on the ARC setup and the experience gained with one prototype FE hybrid, possible quality assurance scenarios for short and long term tests of FE hybrids are also presented.

  10. Numerical simulation of ion confinement in the Phaedrus plugs

    International Nuclear Information System (INIS)

    Horne, S.F.

    1984-01-01

    Neutral beams of up to 60 amps were injected into the plugs of the tandem mirror Phaedrus. Substantial heating of the target RF-sustained plasma has been observed, but fueling has been negligible. In order to understand the lack of significant fueling, a model of the trapping and loss processes occurring in the Phaedrus plug was developed, and is presented in this thesis. The model includes neutral beam effects, RF trapping, Coulomb losses, and charge exchange on background gas, in a framework which includes finite gyro-orbit effects. A numerical simulation based on the model is compared to data from 2XIIB and TMX, and shows good agreement. The model is then applied to the Phaedrus plugs, and compared to RF-sustained and neutral-beam data obtained during machine operation in hydrogen and deuterium. The modeling of the Phaedrus plugs indicates that during beam injection, a two-step process occurs that results in the rapid loss of ions. Charge exchange of trapped plasma on the energetic neutral beam causes rapid radial diffusion of the plasma, which then charge exchanges on the background gas, or is lost to the limiter. Because this is a finite gyro-orbit effect, increasing the plug magnetic field should improve the net beam fueling by reducing this diffusion. Results from the model indicate that increasing the plug midplane field from 2600 to 4000 gauss will improve the beam fueling significantly

  11. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    International Nuclear Information System (INIS)

    Lin, Zhenhong

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  12. Hybrid rocket motor testing at Nammo Raufoss A/S

    Science.gov (United States)

    Rønningen, Jan-Erik; Kubberud, Nils

    2005-08-01

    Hybrid rocket motor technology and the use of hybrid rockets have gained increased interest in recent years in many countries. A typical hybrid rocket consists of a tank containing the oxidizer in either liquid or gaseous state connected to the combustion chamber containing an injector, inert solid fuel grain and nozzle. Nammo Raufoss A/S has for almost 40 years designed and produced high-performance solid propellant rocket motors for many military missile systems as well as solid propellant rocket motors for civil space use. In 2003 an in-house technology program was initiated to investigate and study hybrid rocket technology. On 23 September 2004 the first in-house designed hybrid test rocket motor was static test fired at Nammo Raufoss Test Center. The oxidizer was gaseous oxygen contained in a tank pressurized to 10MPa, flow controlled through a sonic orifice into the combustion chamber containing a multi port radial injector and six bore cartridge-loaded fuel grain containing a modified HTPB fuel composition. The motor was ignited using a non-explosive heated wire. This paper will present what has been achieved at Nammo Raufoss since the start of the program.

  13. System and method for charging a plug-in electric vehicle

    Science.gov (United States)

    Bassham, Marjorie A.; Spigno, Jr., Ciro A.; Muller, Brett T.; Newhouse, Vernon L.

    2017-05-02

    A charging system and method that may be used to automatically apply customized charging settings to a plug-in electric vehicle, where application of the settings is based on the vehicle's location. According to an exemplary embodiment, a user may establish and save a separate charging profile with certain customized charging settings for each geographic location where they plan to charge their plug-in electric vehicle. Whenever the plug-in electric vehicle enters a new geographic area, the charging method may automatically apply the charging profile that corresponds to that area. Thus, the user does not have to manually change or manipulate the charging settings every time they charge the plug-in electric vehicle in a new location.

  14. Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics

    International Nuclear Information System (INIS)

    Fazelpour, Farivar; Vafaeipour, Majid; Rahbari, Omid; Rosen, Marc A.

    2014-01-01

    Highlights: • The proposed algorithms handled design steps of an efficient parking lot of PHEVs. • Optimizations are performed with 1 h intervals to find optimum charging rates. • Multi-objective optimization is performed to find the optimum size and site of DG. • Optimal sizing of a PV–wind–diesel HRES is attained. • Charging rates are optimized intelligently during peak and off-peak times. - Abstract: Widespread application of plug-in hybrid electric vehicles (PHEVs) as an important part of smart grids requires drivers and power grid constraints to be satisfied simultaneously. We address these two challenges with the presence of renewable energy and charging rate optimization in the current paper. First optimal sizing and siting for installation of a distributed generation (DG) system is performed through the grid considering power loss minimization and voltage enhancement. Due to its benefits, the obtained optimum site is considered as the optimum location for constructing a movie theater complex equipped with a PHEV parking lot. To satisfy the obtained size of DG, an on-grid hybrid renewable energy system (HRES) is chosen. In the next set of optimizations, optimal sizing of the HRES is performed to minimize the energy cost and to find the best number of decision variables, which are the number of the system’s components. Eventually, considering demand uncertainties due to the unpredictability of the arrival and departure times of the vehicles, time-dependent charging rate optimizations of the PHEVs are performed in 1 h intervals for the 24-h of a day. All optimization problems are performed using genetic algorithms (GAs). The outcome of the proposed optimization sets can be considered as design steps of an efficient grid-friendly parking lot of PHEVs. The results indicate a reduction in real power losses and improvement in the voltage profile through the distribution line. They also show the competence of the utilized energy delivery method in

  15. Time-dependent plug-in hybrid electric vehicle charging based on national driving patterns and demographics

    International Nuclear Information System (INIS)

    Kelly, Jarod C.; MacDonald, Jason S.; Keoleian, Gregory A.

    2012-01-01

    Highlights: ► Analyzed National Household Travel Survey to simulate driving and charging patterns. ► Average compact PHEVs used 49 kW h of electricity and 6.8 L of gasoline per week. ► Percent of electrically driven miles increased from 64.3 in 2001 to 66.7 in 2009. ► Investigated demographic effects of sex, age, income, and household location. ► Analysis shows higher utility factors for females versus males and high age variation. -- Abstract: Plug-in hybrid electric vehicles (PHEVs) are one promising technology for addressing concerns around petroleum consumption, energy security and greenhouse gas emissions. However, there is much uncertainty in the impact that PHEVs can have on energy consumption and related emissions, as they are dependent on vehicle technology, driving patterns, and charging behavior. A methodology is used to simulate PHEV charging and gasoline consumption based on driving pattern data in USDOT’s National Household Travel Survey. The method uses information from each trip taken by approximately 170,000 vehicles to track their battery state of charge throughout the day, and to determine the timing and quantity of electricity and gasoline consumption for a fleet of PHEVs. Scenarios were developed to examine the effects of charging location, charging rate, time of charging and battery size. Additionally, demographic information was examined to see how driver and household characteristics influence consumption patterns. Results showed that a compact vehicle with a 10.4 kW h useable battery (approximately a 42 mile [68 km] all electric range) travels between 62.5% and 75.7% on battery electricity, depending on charging scenario. The percent of travel driven electrically (Utility Factor, UF) in a baseline charging scenario increased from 64.3% using 2001 NHTS data to 66.7% using 2009 data. The average UF was 63.5% for males and 72.9% for females and in both cases they are highly sensitive to age. Vehicle charging load profiles across

  16. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-in Electric Vehicle

    DEFF Research Database (Denmark)

    Ghiasi, Mohammad Iman; Aliakbar Golkar, Masoud; Hajizadeh, Amin

    2017-01-01

    This paper presents a distributed control strategy based on Fuzzy-Sliding Mode Control (FSMC) for power control of an infrastructure integrated with a DC-Microgrid, which includes photovoltaic, fuel cell and energy storage systems with Plug-in Electric Vehicles (PEVs). In order to implement...... the proposed control strategy, first a general nonlinear modeling of a DC-Microgrid based on related DC-DC converters to each DC power sources is introduced. Secondly, a power management strategy based on fuzzy control for regulating the power flow between the hybrid DC sources, PEVs is proposed. Third...

  17. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  18. Interaction of clay and concrete plugs - Plugging of 5 m deep hole KA1621G01 at Aespoe

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, Roland [Drawrite AB, Lund (Sweden); Luleaa Technical Univ., Luleaa (Sweden); Ramqvist, Gunnar [Eltekno AB, Figeholm (Sweden)

    2011-11-15

    Sealing of deep boreholes in repository rock is planned to be made by installing dense smectite clay plugs where the rock is low-permeable and casting concrete where the holes intersect water-bearing fracture zones. Such zones have to be stabilized before sealing starts because fragments of rock can otherwise fall off and make it difficult to bring equipment for concrete casting and clay plug units down. These parts of the holes are filled with concrete and clay plugs are then inserted up to the nearest fracture zone where concrete is filled to the required level etc. The role of the concrete in the hole and in the closest part of the surrounding fracture zone is to provide stable parts that are sufficiently fine-porous to prevent clay particles from contacting clay plugs to migrate into the fractures and be lost by erosion. While the larger parts of long clay plugs are believed to stay largely intact chemically for hundreds of thousands of years, the parts adjacent to concrete plugs may undergo changes and so can the concrete plugs themselves. The objective of the presently reported project was to identify the detailed processes and quantify associated changes in physical properties by investigating samples of clay and concrete from a 2.5 m long plug of clay over which an equally long concrete plug had been cast and left to rest for 3 years. The outcome of the investigations was that significant chemically induced changes in mineralogy and physical performance had occurred within a few centimetres distance from the clay/concrete contact but that virtually no changes had taken place at larger distance. A comprehensive laboratory study including X-ray diffraction (XRD), X-ray fluorescence (XRF) and electron microscopy study (SEM and TEM) on the sample material was performed including also dual beam (combined ion and electron) microscopy. It was found that the clay had infiltrated the contacting concrete plug after filling of the borehole since clay was detected both

  19. Interaction of clay and concrete plugs - Plugging of 5 m deep hole KA1621G01 at Aespoe

    International Nuclear Information System (INIS)

    Pusch, Roland; Ramqvist, Gunnar

    2011-11-01

    Sealing of deep boreholes in repository rock is planned to be made by installing dense smectite clay plugs where the rock is low-permeable and casting concrete where the holes intersect water-bearing fracture zones. Such zones have to be stabilized before sealing starts because fragments of rock can otherwise fall off and make it difficult to bring equipment for concrete casting and clay plug units down. These parts of the holes are filled with concrete and clay plugs are then inserted up to the nearest fracture zone where concrete is filled to the required level etc. The role of the concrete in the hole and in the closest part of the surrounding fracture zone is to provide stable parts that are sufficiently fine-porous to prevent clay particles from contacting clay plugs to migrate into the fractures and be lost by erosion. While the larger parts of long clay plugs are believed to stay largely intact chemically for hundreds of thousands of years, the parts adjacent to concrete plugs may undergo changes and so can the concrete plugs themselves. The objective of the presently reported project was to identify the detailed processes and quantify associated changes in physical properties by investigating samples of clay and concrete from a 2.5 m long plug of clay over which an equally long concrete plug had been cast and left to rest for 3 years. The outcome of the investigations was that significant chemically induced changes in mineralogy and physical performance had occurred within a few centimetres distance from the clay/concrete contact but that virtually no changes had taken place at larger distance. A comprehensive laboratory study including X-ray diffraction (XRD), X-ray fluorescence (XRF) and electron microscopy study (SEM and TEM) on the sample material was performed including also dual beam (combined ion and electron) microscopy. It was found that the clay had infiltrated the contacting concrete plug after filling of the borehole since clay was detected both

  20. Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles

    OpenAIRE

    Serrano Guillén, Isabel; Bermejo Fernández, Álvaro

    2013-01-01

    In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to reduce the size and cost of the charger. One solution to achieve this is to include the devices used in the traction circuit in the charger circuit; this is called an integrated motor drive and battery charger. A split-phase PM motor, a motor with double set of windings, gives the opportunity to implement different wind...

  1. Capillarity Induced Negative Pressure of Water Plugs in Nanochannels

    NARCIS (Netherlands)

    Tas, Niels Roelof; Mela, P.; Kramer, Tobias; Berenschot, Johan W.; van den Berg, Albert

    2003-01-01

    We have found evidence that water plugs in hydrophilic nanochannels can be at significant negative pressure due to tensile capillary forces. The negative pressure of water plugs in nanochannels induces bending of the thin channel capping layer, which results in a visible curvature of the liquid

  2. Tube Plugging Criteria for the High-pressure Heaters of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungnam; Cho, Nam-Cheoul; Lee, Kuk-hee [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this paper, a method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of a nuclear power plant. This method relies on the similar plugging criteria used in the steam generator tubes. Power generation field urges nuclear power plants to reduce operating and maintaining costs to remain competitive. To reduce the cost by means of preventing the lowering thermal efficiency, the inspection of balance-of-plant heat exchanger, which was treated as not important work, becomes important. The tubing materials and tube thickness of heat exchangers in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. But tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. The feed water heater is a kind of heat exchanger which raises the temperature of water supplied from the condenser. The heat source of high-pressure heaters is the extraction steam from the high-pressure turbine and moisture separator re-heater. If the tube wall of the heater is broken, the feed water flowing inside the tube intrudes to shell side. This forces the turbine to be stop in order to protect it. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. A method to establish the tube plugging criteria of BOP heat exchangers is introduced and the tube plugging criteria for the high pressure heaters of Ulchin NPP No. 3 and 4. This method relies on the similar plugging

  3. Plug the socket of the main closing valve in a nuclear power plant

    International Nuclear Information System (INIS)

    Neupauer, J.; Bednar, B.

    1988-01-01

    The plug is designed for closing the main closing valve socket during a refuelling shutdown of a nuclear power plant. The plug is fixed in the using jaws forced against the socket ring part. The socket is sealed by expanding a ring between two cone trays. A valve provided in the plug allows draining the pipe. The plug is inserted in the socket using a jib suspended on a rail. Following sealing both sockets the inner surfaces of the closing valve can be decontaminated. Following decontamination, a water-proof cover is slid over the plug protecting the plug moving mechanism from damage. (J.B.). 1 fig

  4. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase III final report.

    Science.gov (United States)

    2011-08-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  5. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II final report.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  6. Fuel rod end plug

    International Nuclear Information System (INIS)

    McGeary, R.K.; Bucher, G.D.

    1989-01-01

    This patent describes an end plug for welded disposition within the end of a tube. It comprises a circumferentially extending, axially oriented land surface, having a radial extent defined by means of a first predetermined dimension, for disposition within the end of the tube; a circumferentially extending, axially oriented land surface, having a radial extent defined by means of a second predetermined dimension which is greater than the first predetermined dimension, for disposition outside of the end of the tube. The second land surface being disposed upstream of the first land surface; an annularly extending, radially oriented shoulder portion, defined at the downstream end of the second land surface and having a radially inward depth which is greater than the difference defined between the first and second radial dimensions of the first and second land surfaces, for engaging the end of the tube in a butt contact fashion; and annular groove means defined between the upstream end of the first land surface and the shoulder portion of the end plug, for eliminating porosity defects normally developed within a weldment defined between the tube end and the end plug when the end plug is welded within the tube end, and including a conical surface which extends radially outwardly from the innermost radial depth extent of the shoulder portion to the upstream end of the first land surface

  7. The Plug-in Concept: Technology and Aesthetics of Change

    Directory of Open Access Journals (Sweden)

    Peter Šenk

    2013-01-01

    Full Text Available The architecture concept of plug-in is based on the duality of the infrastructure system and units or elements connected to it. In the context of megastructures, the concept was most vividly characterised by works of Archigram and Japanese Metabolists in the 1960s and early 1970s. Blurring the boundary between the building and the city, the plug-in concept outgrew architectural boundaries and was slowly transformed into an urbanistic concept.The paper presents the cultural context relevant to contemporaneity, which influenced specific development of the technology-driven concept of plug-in in the British Archigram Group and Japanese Metabolists. Based on the aesthetics of change and incompleteness, which was characterised by similar architectural manifestations despite entirely different cultural backgrounds, the plug-in concept foreshadowed social transformation based on freedom, individualisation and mobility in an utopian manner and held a promise of urban development with adaptability to unpredictable needs and desires of residents, who would become its co-creators with an active approach.Although the revolutionary sixties are quite some time behind, the plug-in concept in its commodified form has become and remained operational and relevant at least on the metaphorical level; in the contemporary space it is evident primarily in urbanism and not as much in its original architectural form.

  8. Rotary plug device for use in LMFBR type reactors

    International Nuclear Information System (INIS)

    Azuma, Kazuhiko; Imayoshi, Sho.

    1988-01-01

    Purpose: To prevent adhesion of sodium in the rotational gap of a rotational plug. Constitution: One of the walls of a cylindrical gap formed between the outer circumference of a small rotary plug and a large rotary plug that constitute a double rotary plug is cooled to lower than the sodium coagulation temperature, while a stater of a linear motor in a cylindrical shape and wound with linear coils around the iron core is attached to the inside of the other of the walls. Then, one of the walls of the gap to which sodium adheres is cooled to less than sodium coagulation temperature, so that sodium is or tends to be deposited to the wall. Then, eddy currents are resulted to sodium by the current supplied to the stater of the linear motor attached to the other of the walls, to produce thrusting force. Sodium on the wall surface is scraped off by this. (Yoshihara, H.)

  9. Real-Time Occupant Based Plug-in Device Control Using ICT in Office Buildings

    Directory of Open Access Journals (Sweden)

    Woo-Bin Bae

    2016-03-01

    Full Text Available The purpose of this study is to reduce the unnecessary plug loads used by computers, monitors, and computer peripheral devices, all of which account for more than 95% of the entire plug loads of an office building. To this end, an occupant-based plug-in device control (OBC-P software was developed. The OBC-P software collects real-time information about the presence or absence of occupants who are connected to the access point through the Wifi and controls the power of monitors or computers, while a standby power off device controls computer peripheral devices. To measure the plug load saving of the occupant-based plug-in device control, an experiment was conducted, targeting 10 occupants of three research labs of the graduate school, for two weeks. The experiment results showed that it could save the plug loads of monitors and computer peripheral devices by 15% in the Awake mode, and by 26% in the Sleep mode.

  10. A States of Matter Search-Based Approach for Solving the Problem of Intelligent Power Allocation in Plug-in Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Arturo Valdivia-Gonzalez

    2017-01-01

    Full Text Available Recently, many researchers have proved that the electrification of the transport sector is a key for reducing both the emissions of green-house pollutants and the dependence on oil for transportation. As a result, Plug-in Hybrid Electric Vehicles (or PHEVs are receiving never before seen increased attention. Consequently, large-scale penetration of PHEVs into the market is expected to take place in the near future, however, an unattended increase in the PHEVs needs may cause several technical problems which could potentially compromise the stability of power systems. As a result of the growing necessity for addressing such issues, topics related to the optimization of PHEVs’ charging infrastructures have captured the attention of many researchers. Related to this, several state-of-the-art swarm optimization methods (such as the well-known Particle Swarm Optimization (PSO or the recently proposed Gravitational Search Algorithm (GSA approach have been successfully applied in the optimization of the average State of Charge (SoC, which represents one of the most important performance indicators in the context of PHEVs’ intelligent power allocation. Many of these swarm optimization methods, however, are known to be subject to several critical flaws, including premature convergence and a lack of balance between the exploration and exploitation of solutions. Such problems are usually related to the evolutionary operators employed by each of the methods on the exploration and exploitation of new solutions. In this paper, the recently proposed States of Matter Search (SMS swarm optimization method is proposed for maximizing the average State of Charge of PHEVs within a charging station. In our experiments, several different scenarios consisting on different numbers of PHEVs were considered. To test the feasibility of the proposed approach, comparative experiments were performed against other popular PHEVs’ State of Charge maximization approaches

  11. In-use fuel economy of hybrid-electric school buses in Iowa.

    Science.gov (United States)

    Hallmark, Shauna; Sperry, Bob; Mudgal, Abhisek

    2011-05-01

    Although it is much safer and more fuel-efficient to transport children to school in buses than in private vehicles, school buses in the United States still consume 822 million gal of diesel fuel annually, and school transportation costs can account for a significant portion of resource-constrained school district budgets. Additionally, children in diesel-powered school buses may be exposed to higher levels of particulates and other pollutants than children in cars. One solution to emission and fuel concerns is use of hybrid-electric school buses, which have the potential to reduce emissions and overall lifecycle costs compared with conventional diesel buses. Hybrid-electric technologies are available in the passenger vehicle market as well as the transit bus market and have a track record indicating fuel economy and emissions benefits. This paper summarizes the results of an in-use fuel economy evaluation for two plug-in hybrid school buses deployed in two different school districts in Iowa. Each school district selected a control bus with a route similar to that of the hybrid bus. Odometer readings, fuel consumption, and maintenance needs were recorded for each bus. The buses were deployed in 2008 and data were collected through May 2010. Fuel consumption was calculated for each school district. In Nevada, IA, the overall average fuel economy was 8.23 mpg for the hybrid and 6.35 mpg for the control bus. In Sigourney, IA, the overall average fuel economy was 8.94 mpg for the hybrid and 6.42 mpg for the control bus. The fuel consumption data were compared for the hybrid and control buses using a Wilcoxon signed rank test. Results indicate that fuel economy for the Nevada hybrid bus was 29.6% better than for the Nevada control bus, and fuel economy for the Sigourney hybrid bus was 39.2% higher than for the Sigourney control bus. Both differences were statistically significant.

  12. Revascularization and Apical Plug in an Immature Molar

    Science.gov (United States)

    Roghanizadeh, Leyla; Fazlyab, Mahta

    2018-01-01

    Managing of necrotic permanent teeth with immature apices is a treatment challenges. Treatment of such teeth includes apexification, apical plug and more recently, revascularization technique with the probable advantage of continuation of root development. In the present case report the referred patient had discomfort with a necrotic immature mandibular first molar. Periapical radiography showed a rather large apical lesion around immature roots. Revascularization protocol using calcium-enriched mixture (CEM) cement was indicated for the mesial root. However, in distal canal apical plug technique was applied. At 2-year follow-up, both procedures were successful in relieving patient’s symptoms. Dentin formation and increase in length of the mesial root was obvious. Apical plug and revascularization technique proved to be successful in management of necrotic immature teeth; moreover, revascularization carried the advantage of continuation of root development. PMID:29692851

  13. Preparation and Performance of an Adsorption Type Gel Plugging Agent as Enhanced Oil Recovery Chemical

    Directory of Open Access Journals (Sweden)

    Xiaoping Qin

    2015-01-01

    Full Text Available A novel adsorption type gel plugging agent (ATGPA was prepared using acrylamide (AM, acrylic acid (AA, diallyl dimethyl ammonium chloride (DMDAAC, 2-acrylamido-2-methylpropanesulfonate (AMPS, formaldehyde (HCHO, resorcinol (C6H6O2, and thiocarbamide (CH4N2S as raw materials under mild conditions. ATGPA was characterized by infrared (IR spectroscopy, elemental analysis, and scanning electron microscope (SEM. It was found that ATGPA exhibited higher elastic modulus (G′ and viscous modulus (G′′ than AM/AA gel plugging agent (AAGPA under the same scanning frequency. It was also found that ATGPA had moderate temperature resistance and salt tolerance. Core plugging tests results indicated that ATGPA could achieve up to higher plugging rate (PR than AAGPA (97.2% versus 95.7% at 65°C. In addition, ATGPA possessed stronger antiscouring ability by core plugging experiments at 65°C.

  14. Experimental investigation of liquid-liquid plug formation in a T-junction microchannel

    Science.gov (United States)

    Angeli, Panagiota; Chinaud, Maxime; Roumpea, Eynagelia-Panagiota; Weheliye, Weheliye; Omar. K. Matar Collaboration; Lyes Kahouadji Collaboration

    2015-11-01

    Plug formation mechanism of two immiscible liquids was studied experimentally in a 200 μm microchannel using two innovative micro Particle Image Velocimetry (μ PIV) techniques i.e. two-colour μ PIV and high speed bright field μ PIV. The aqueous phase was a water/glycerol solution whereas the organic phase was silicon oil with a range of viscosities from 5 to 155 cSt. Experiments were conducted for different fluid flow rate combinations in the T-junction inlet and it was observed that velocity profiles within the forming plugs depend on the flow rate ratios. The velocity field studies provided insight into the plug mechanism revealing that the interface curvature at the rear of the forming plug changes sign at the later stages of plug formation and accelerates the thinning of the meniscus leading to plug breakage. Results from the two-colour PIV show that the continuous phase resists the flow of the dispersed phase into the main channel at the rear of the plug meniscus and causes the change in the interface curvature. Department of Chemical Engineering South Kensington Campus Imperial College London SW7 2AZ.

  15. Characterization of samples of a cement-borehole plug in bedded evaporites

    International Nuclear Information System (INIS)

    Scheetz, B.E.; Grutzeck, M.W.; Wakeley, L.D.; Roy, D.M.

    1979-07-01

    This report describes the laboratory characterization of a section of an eighteen-year-old cement-based plug emplaced to seal a four-inch (ten-centimeter) borehole in the Salado Formation near Carlsbad, NM. The dominantly halite salt strata contain a horizon rich in potassium-bearing minerals such as langbeinite, in the plug region. Other host rock minerals identified include illite, kainite, magnesite, syngenite and polyhalite. Identified in the plug were: the cement phase calcium silicate hydrate (C-S-H having an intermediate degree of crystallinity), Friedel's salt, halite, sylvite and portlandite. The plug, though intact, unfractured on a macroscale, and forming an adequate physical bond with the salt formation, was weak and permeable relative to the surrounding bedded salt. Characterization of the plug and rock was carried out by a combination of measurements: compressive strength, permeability, density and porosity, thermal measurements (DTA, TGA), x-ray diffractometry, SEM and optical (including thin section) microscopy, and energy-dispersive x-ray analysis for chemical composition

  16. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  17. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  18. Pore-scale investigation of biomass plug development and propagation in porous media.

    Science.gov (United States)

    Stewart, Terri L; Scott Fogler, H

    2002-03-05

    Biomass plugging of porous media finds application in enhanced oil recovery and bioremediation. An understanding of biomass plugging of porous media was sought by using a porous glass micromodel through which biomass and nutrient were passed. This study describes the pore-scale physics of biomass plug propagation of Leuconostoc mesenteroides under nutrient-rich conditions. It was found that, as the nutrient flowed through the micromodel, the initial biomass plug occurred at the nutrient-inoculum interface due to growth in the larger pore throats. As growth proceeded, biomass filled and closed these larger pore throats, until only isolated groupings of pore throats with smaller radii remained empty. As nutrient flow continued, a maximum pressure drop was reached. At the maximum pressure drop, the biomass yielded in a manner similar to a Bingham plastic to form a breakthrough channel consisting of a path of interconnected pore throats. The channel incorporated the isolated groupings of empty pore throats that had been present before breakthrough. As the nutrient flow continued, subsequent plugs developed as breakthrough channels refilled with biomass and in situ growth was stimulated in the region just downstream of the previous plug. The downstream plugs had a higher fraction of isolated groupings of empty pore throats, which can be attributed to depletion of nutrient downstream. When the next breakthrough channel formed, it incorporated these isolated groupings, causing the breakthrough channels to be branched. It was observed that the newly formed plug could be less stable with this higher fraction of empty pore throats and that the location of breakthrough channels changed in subsequent plugs. This change in breakthrough channel location could be attributed to the redistribution of nutrient flow and the changes in flowrate in the pore throats. Copyright 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 577-588, 2002; DOI 10.1002/bit.10044

  19. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    Science.gov (United States)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  20. Analyzing the Risk of Well Plug Failure after Abandonment

    International Nuclear Information System (INIS)

    Mainguy, M.; Longuemare, P.; Audibert, A.; Lecolier, E.

    2007-01-01

    All oil and gas wells will have to be plugged and abandoned at some time. The plugging and abandonment procedure must provide an effective isolation of the well fluids all along the well to reduce environmental risks of contamination and prevent from costly remedial jobs. Previous works have analyzed the plug behavior when submitted to local pressure or thermal changes but no work has looked to the effects of external pressure, thermal and stress changes resulting from a global equilibrium restoration in a hydrocarbon reservoir once production has stopped. This work estimates those changes after abandonment on a reservoir field case using a reservoir simulator in conjunction with a geomechanical simulator. Such simulations provide the pressure and thermal changes and the maximum effective stress changes in the reservoir cap rock where critical plugs are put in place for isolating the production intervals. These changes are used as loads in a well bore stress model that explicitly models an injector well and predict stress rearrangements in the plug after abandonment. Results obtained with the well bore stress model for a conventional class G cement plug show that the main risk of failure is tensile failure because of the low tensile strength of the cement. Actually, soft sealing materials or initially pre-stressed plug appears to be more adapted to the downhole conditions changes that may occurs after well plugging and abandonment. (authors)

  1. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    International Nuclear Information System (INIS)

    Malm, Richard

    2012-01-01

    on being watertight, which also affects the design of the concrete plug. In the spent fuel repository, low-pH concrete should be used instead of conventional concrete. The reason for this is to the largest extent to reduce the negative effect that basic materials could have on the function of the bentonite clay. For this purpose, a new low-pH concrete recipe has been developed and this changes the conditions for using reinforcement, cooling and grouting compared to the use of conventional concrete. The report shows the possibilities to use an unreinforced plug made of low-pH concrete as a resistance in the deposition tunnels. Today, some parameters are unknown and some data may be classified as uncertain, primarily regarding the long-term properties of the low-pH concrete material and the bentonite clay. It will take several years until all questions can be answered and a full-scale test is vital to validate the assumptions and the performed numerical simulations. The report should therefore be considered based on that data and conclusions will be studied further and be experimentally verified under realistic and controlled conditions. The project group consists of: Patrik Gatter (VPC), Richard Malm (VPC), Lennart Boergesson (Clay Technology AB), Lars-Olof Dahlstroem (NCC-Teknik), Jonas Magnusson (NCC-Teknik), Christina Claeson-Jonsson (NCC-Teknik), Morgan Johansson (Reinertsen), Rikard Karlzen (SKB), Paer Grahm (SKB), Sten Palmer (Sten Palmer Engineering AB) and Hans Wimelius (NCC AB)

  2. Low-pH concrete plug for sealing the KBS-3V deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Malm, Richard (Vattenfall Power Consultant AB (Sweden))

    2012-01-15

    requirement on being watertight, which also affects the design of the concrete plug. In the spent fuel repository, low-pH concrete should be used instead of conventional concrete. The reason for this is to the largest extent to reduce the negative effect that basic materials could have on the function of the bentonite clay. For this purpose, a new low-pH concrete recipe has been developed and this changes the conditions for using reinforcement, cooling and grouting compared to the use of conventional concrete. The report shows the possibilities to use an unreinforced plug made of low-pH concrete as a resistance in the deposition tunnels. Today, some parameters are unknown and some data may be classified as uncertain, primarily regarding the long-term properties of the low-pH concrete material and the bentonite clay. It will take several years until all questions can be answered and a full-scale test is vital to validate the assumptions and the performed numerical simulations. The report should therefore be considered based on that data and conclusions will be studied further and be experimentally verified under realistic and controlled conditions. The project group consists of: Patrik Gatter (VPC), Richard Malm (VPC), Lennart Boergesson (Clay Technology AB), Lars-Olof Dahlstroem (NCC-Teknik), Jonas Magnusson (NCC-Teknik), Christina Claeson-Jonsson (NCC-Teknik), Morgan Johansson (Reinertsen), Rikard Karlzen (SKB), Paer Grahm (SKB), Sten Palmer (Sten Palmer Engineering AB) and Hans Wimelius (NCC AB)

  3. Corneal sensitivity, ocular surface health and tear film stability after punctal plug therapy of aqueous deficient dry eye

    Directory of Open Access Journals (Sweden)

    Azza Mohamed Ahmed Said

    2016-11-01

    Full Text Available AIM: To evaluate the effect of punctal occlusion using thermosensitive (smart plug versus silicone plug for management of aqueous deficient dry eye on corneal sensitivity, ocular surface health and tear film stability. METHODS: A comparative prospective interventional case study included 45 patients with bilateral severe form of aqueous deficient dry eye. In each patient, the smart plug was inserted in the lower punctum of the right eye which was considered as study group 1 and silicone plug was inserted in the lower punctum of the left eye of the same patient which was considered as study group 2. All patients were subjected to careful history taking and questionnaire for subjective assessment of severity of symptoms. Corneal sensitivity, corneal fluorescein, rose bengal staining, Schirmer’s I test, tear film break up time and conjunctival impression cytology were performed pre and 1, 3 and 6mo post plug insertion. RESULTS: A statistically significant improvement in subjective and objective manifestations occurred following treatment with both types of plugs (P<0.01. The thermosensitive plug caused significant overall improvement, decrease in frequency of application of tear substitutes and improvement of conjunctival impression cytology parameters in the inserted side (P<0.01. Canaliculitis was reported in two eyes (4.4% following punctal occlusion using thermosensitive plug (study group 1. Spontaneous plug loss occurred in 21 eyes (46.6% in the silicone plug group (study group 2. CONCLUSION: Improvement of subjective and objective manifestations of aqueous deficient dry eye occurs following punctal plug occlusion. Thermosensitive plug has good patient's compliance with fewer complications and lower rates of loss compared to the silicone plug.

  4. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  5. In vitro sealing of iatrogenic fetal membrane defects by a collagen plug imbued with fibrinogen and plasma.

    Science.gov (United States)

    Engels, A C; Hoylaerts, M F; Endo, M; Loyen, S; Verbist, G; Manodoro, S; DeKoninck, P; Richter, J; Deprest, J A

    2013-02-01

    We aimed to demonstrate local thrombin generation by fetal membranes, as well as its ability to generate fibrin from fibrinogen concentrate. Furthermore, we aimed to investigate the efficacy of collagen plugs, soaked with plasma and fibrinogen, to seal iatrogenic fetal membrane defects. Thrombin generation by homogenized fetal membranes was measured by calibrated automated thrombography. To identify the coagulation caused by an iatrogenic membrane defect, we analyzed fibrin formation by optical densitometry, upon various concentrations of fibrinogen. The ability of a collagen plug soaked with fibrinogen and plasma was tested in an ex vivo model for its ability to seal an iatrogenic fetal membrane defect. Fetal membrane homogenates potently induced thrombin generation in amniotic fluid and diluted plasma. Upon the addition of fibrinogen concentrate, potent fibrin formation was triggered. Measured by densiometry, fibrin formation was optimal at 1250 µg/mL fibrinogen in combination with 4% plasma. A collagen plug soaked with fibrinogen and plasma sealed an iatrogenic membrane defect about 35% better than collagen plugs without these additives (P = 0.037). These in vitro experiments suggest that the addition of fibrinogen and plasma may enhance the sealing efficacy of collagen plugs in closing iatrogenic fetal membrane defects. © 2013 John Wiley & Sons, Ltd.

  6. Evaluation of preconceptual plug designs using experts' judgement

    International Nuclear Information System (INIS)

    Sioshansi, F.P.; O'Rourke, J.E.

    1980-03-01

    A number of preconceptual plug designs for an underground nuclear waste repository were to be evaluated based on the available information on plug materials and placement techniques. Because of complex environment and loading conditions, long time frame under consideration, rigid performance characteristics and considerable uncertainties present in preconceptual design and material properties, a qualitative and judgmental evaluation procedure was needed to supplement technical studies. A structured procedure was developed to qualitatively capture evaluator's views and reservations on the proposed preconceptual schemes. Since a thorough evaluation of each proposed plug scheme required in-depth experience and familiarity with many components of the plug, three knowledgeable experts with specialties in the most relevant aspects of the problem were independently interviewed. Each plug scheme was broken down into three subcomponents and each subcomponent was evaluated separately. The proposed schemes were then rated taking their subcomponents into consideration. Because the experts had different specialties, their subcomponent and overall ratings were not in full agreement. Each plug scheme's lowest overall rating was used as the most significant determinant of the judgmental preference categories reported in this study. The approach used discriminated between the proposed schemes for those with highest probability of being successful. The most preferred schemes were then reviewed with respect to the data produced in the technical analysis performed during the project. The results of the judgmental analysis were then synthesized and modified with results of the technical analysis to produce the preconceptual plug designs

  7. Sealing efficiency of an argillite-bentonite plug subjected to gas pressure, in the context of deep underground nuclear waste storage

    International Nuclear Information System (INIS)

    Liu, Jiang-Feng

    2013-01-01

    In France, the deep underground nuclear waste repository consists of a natural barrier (in an argillaceous rock named argillite), associated to artificial barriers, including plugs of swelling clay (bentonite)-sand for tunnel sealing purposes. The main objective of this thesis is to assess the sealing efficiency of the bentonite-sand plug in contact with argillite, in presence of both water and gas pressures. To assess the sealing ability of partially water-saturated bentonite/sand plugs, their gas permeability is measured under varying confining pressure (up to 12 MPa). It is observed that tightness to gas is achieved under confinement greater than 9 MPa for saturation levels of at least 86-91%. We than assess the sealing efficiency of the bentonite-sand plug placed in a tube of argillite or of Plexiglas-aluminium (with a smooth or a rough interface). The presence of pressurized gas affects the effective swelling pressure at values P gas from 4 MPa. Continuous gas breakthrough of fully water-saturated bentonite-sand plugs is obtained for gas pressures on the order of full swelling pressure (7-8 MPa), whenever the plug is applied along a smooth interface. Whenever a rough interface is used in contact with the bentonite-sand plug, a gas pressure significantly greater than its swelling pressure is needed for gas to pass continuously. Gas breakthrough tests show that the interface between plug/argillite or the argillite itself are two preferential pathways for gas migration, when the assembly is fully saturated. (author)

  8. Plug-in vehicles and the future of road infrastructure funding in the United States

    International Nuclear Information System (INIS)

    Dumortier, Jerome; Kent, Matthew W.; Payton, Seth B.

    2016-01-01

    In the United States, road infrastructure funding is declining due to an increase in fuel efficiency and the non-adjustment of fuel taxes to inflation. Legislation to tax plug-in vehicles has been proposed or implemented in several states. Those propositions are contrary to policies to promote fuel efficient vehicles. This paper assesses (1) the magnitude of the decline in federal fuel tax revenue caused by plug-in vehicles and (2) quantifies the revenue that could be generated from a federal plug-in vehicle registration fee. We find that the contribution of plug-in vehicles to the decline of the federal fuel tax revenue is at most 1.6% and the majority of the shortfall can be attributed to the non-adjustment of the fuel tax rate and the increase in vehicle fuel efficiency by 2040. An additional tax of $50–$200 per plug-in vehicle per year in the reference case would generate $188–$745 million in 2040 which represents an increase of 1.69–6.71% in federal fuel tax revenue compared to no tax. The lesson for policy makers is that plug-in vehicles do not contribute significantly to the funding shortfall in the short- and medium-run and a supplemental tax would generate a small percentage of additional revenue. - Highlights: •Fees on plug-in cars are proposed or implemented to collect foregone fuel taxes. •Plug-in cars are responsible for a very small percentage of declining tax revenue. •An additional tax on plug-in cars does not stop the decline in fuel tax revenue. •Adjusting fuel taxes to inflation is a more effective tool to increase tax revenue.

  9. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    Directory of Open Access Journals (Sweden)

    Samir Saoudi

    2008-07-01

    Full Text Available The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs. Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE depends directly upon J(f which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of J(f, the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  10. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.; Hirsh, Richard F.

    2009-01-01

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world

  11. Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore)], E-mail: bsovacool@nus.edu.sg; Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)], E-mail: richard@vt.edu

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition-and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world.

  12. Beyond batteries. An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Energy Governance Program, Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Hirsh, Richard F. [History and Science and Technology Studies, Virginia Polytechnic Institute and State University, Blacksburg (United States)

    2009-03-15

    This paper explores both the promise and the possible pitfalls of the plug-in hybrid electric vehicles (PHEV) and vehicle-to-grid (V2G) concept, focusing first on its definition and then on its technical state-of-the-art. More originally, the paper assesses significant, though often overlooked, social barriers to the wider use of PHEVs (a likely precursor to V2G) and implementation of a V2G transition. The article disputes the idea that the only important barriers facing the greater use of PHEVs and V2G systems are technical. Instead, it provides a broader assessment situating such 'technical' barriers alongside more subtle impediments relating to social and cultural values, business practices, and political interests. The history of other energy transitions, and more specifically the history of renewable energy technologies, implies that these 'socio-technical' obstacles may be just as important to any V2G transition - and perhaps even more difficult to overcome. Analogously, the article illuminates the policy implications of such barriers, emphasizing what policymakers need to achieve a transition to a V2G and PHEV world. (author)

  13. Method for in-use measurement and evaluation of the activity, fuel use, electricity use, and emissions of a plug-in hybrid diesel-electric school bus.

    Science.gov (United States)

    Choi, Hyung-Wook; Frey, H Christopher

    2010-05-01

    The purpose of this study is to demonstrate a methodology for characterizing at high resolution the energy use and emissions of a plug-in parallel-hybrid diesel-electric school bus (PHSB) to support assessments of sensitivity to driving cycles and comparisons to a conventional diesel school bus (CDSB). Data were collected using onboard instruments for a first-of-a-kind prototype PHSB and a CDSB of the same chassis and engine, operated on actual school bus routes. The engine load was estimated on the basis of vehicle specific power (VSP) and an empirically derived relationship between VSP and engine manifold absolute pressure (MAP). VSP depends on speed, acceleration, and road grade. For the PHSB, the observed electrical discharge or recharge to the traction motor battery was characterized on the basis of VSP. The energy use and emission rates of the PHSB from tailpipe and electricity use were estimated for five real-world driving cycles and compared to the engine fuel use and emissions of the CDSB. The PHSB had the greatest advantage on arterial routes and less advantage on highway or local routes. The coupled VSP-MAP modeling approach enables assessment of a wide variety of driving conditions and comparisons of vehicles with different propulsion technologies.

  14. Novel Field Test Equipment for Lithium-Ion Batteries in Hybrid Electrical Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Goran Lindbergh

    2011-04-01

    Full Text Available Lifetime testing of batteries for hybrid-electrical vehicles (HEV is usually performed in the lab, either at the cell, module or battery pack level. Complementary field tests of battery packs in vehicles are also often performed. There are, however, difficulties related to field testing of battery-packs. Some examples are cost issues and the complexity of continuously collecting battery performance data, such as capacity fade and impedance increase. In this paper, a novel field test equipment designed primarily for lithium-ion battery cell testing is presented. This equipment is intended to be used on conventional vehicles, not hybrid vehicles, as a cheaper and faster field testing method for batteries, compared to full scale HEV testing. The equipment emulates an HEV environment for the tested battery cell by using real time vehicle sensor information and the existing starter battery as load and source. In addition to the emulated battery cycling, periodical capacity and pulse testing capability are implemented as well. This paper begins with presenting some background information about hybrid electrical vehicles and describing the limitations with today’s HEV battery testing. Furthermore, the functionality of the test equipment is described in detail and, finally, results from verification of the equipment are presented and discussed.

  15. A new carbon additive compounded Li3V1.97Zn0.05(PO4)3/C cathode for plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Wang, Wenhui; Zhang, Jiaolong; Lin, Yue; Ding, Fei; Chen, Zhenyu; Dai, Changsong

    2015-01-01

    The application of lithium ion batteries in plug-in hybrid electric vehicles (PHEVs) requires safety, high energy density, high power density, excellent cyclability and good low temperature performance. On the basis of thermally stable Li 3 V 2 (PO 4 ) 3 /C and cost-effective performance carbon additives, we designed a Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (PB stands for performance carbon additives PBX101) cathode that meets the above requirements for PHEVs battery. Firstly, its Ragone plot presents an excellent energy density retention at high power rates; secondly, the excellent capacity retention and high Coulombic efficiency of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB)-Li half-cell clearly indicates a potential good cyclability of full cells based on Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) cathode. Finally, we believe the good low temperature performance of Li 3 V 1.97 Zn 0.05 (PO 4 ) 3 /(C+10PB) (i.e. retains 91.6% and 76.3% of its capacity at ∼25 °C, when cycled at 0 and -15 °C) is also beneficial to its application in PHEVs

  16. Review on Automotive Power Generation System on Plug-in Hybrid Electric Vehicles & Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Leong Yap Wee

    2016-01-01

    Full Text Available Regenerative braking is a function to recharge power bank on the Plug-in electric vehicles (PHEV and electric vehicles (EV. The weakness of this system is, it can only perform its function when the vehicle is slowing down or by stepping the brake foot pedal. In other words, the electricity recharging system is inconsistent, non-continuous and geography dependent. To overcome the weakness of the regenerative braking system, it is suggested that to apply another generator which is going to be parallel with the regenerative braking system so that continuous charging can be achieved. Since the ironless electricity generator has a less counter electromotive force (CEMF comparing to an ironcored electricity generator and no cogging torque. Applying the ironless electricity generator parallel to the regenerative braking system is seen one of the options which creates sustainable charging system compared to cored electricity generator.

  17. EBR-II rotating plug seal maintenance

    International Nuclear Information System (INIS)

    Allen, K.J.

    1986-01-01

    The EBR-II rotating plug seals require frequent cleaning and maintenance to keep the plugs from sticking during fuel handling. Time consuming cleaning on the cover gas and air sides of the dip ring seal is required to remove oxidation and sodium reaction products that accumulate and stop plug rotation. Despite severely limited access, effective seal cleaning techniques have removed 11 800 lb (5 352 kg) of deposits from the seals since 1964. Temperature control modifications and repairs have also required major maintenance work. Suggested seal design recommendations could significantly reduce maintenance on future similar seals

  18. MFTF-α+T end plug magnet design

    International Nuclear Information System (INIS)

    Srivastava, V.C.; O'Toole, J.A.

    1983-01-01

    The conceptual design of the end-plug magnets for MFTF-α+T is described. MFTF-α+ T is a near-term upgrade of MFTF-B, which features new end plugs to improve performance. The Fusion Engineering Design Center has performed the engineering design of MFTF-α+T under the overall direction of Lawrence Livermore National Laboratory. Each end plug consists of two Yin-Yang pairs, each with approx.2.5:1 mirror ratio and approx.5-T peak field on axis; two transition coils; and a recircularizing solenoid. This paper describes the end-plug magnet system functional requirements and presents a conceptual design that meets them. The peak field at the windings of the end-plug coils is approx.6-T. These coils are designed using the NbTi MFTF-B conductor and cooled by a 4.2K liquid helium bath. All the end-plug magnets are designed to operate in the cryostable mode with adequate quench protection for safety. Shielding requirements are stated and a summary of heat loads is provided. Field and force calculations are discussed. The field on axis is shown to meet the functional requirements. Force resultants are reported in terms of winding running loads and resultant coil forces are also given. The magnet structural support is described. A trade study to determine the optimum end-cell coil internal nuclear shield thickness and the resulting coil size based on minimizing the end-cell life cycle cost is summarized

  19. Effect of cloacal plugging on microbial recovery from partially processed broilers.

    Science.gov (United States)

    Musgrove, M T; Cason, J A; Fletcher, D L; Stern, N J; Cox, N A; Bailey, J S

    1997-03-01

    Experiments were performed to test the contribution of bacteria contained in the intestinal tract of broilers at the beginning of processing to counts on the exterior of modified New York-dressed carcasses. Thirty-two birds were processed for each of seven replications. Within each replication, batches of four birds were electrocuted, scalded, and picked, with batches alternating between treatment and control groups. Treated birds were cloacally plugged with rayon fiber tampons prior to electrocution to prevent escape of intestinal contents during scalding and picking. Control birds were processed in the same manner, except that cloacal plugs were inserted immediately after defeathering to reduce escape of intestinal contents during sampling. Gram-negative enteric bacteria and Campylobacter spp. were enumerated on carcasses by whole carcass rinse procedure and in cecal contents. Counts were converted to log10 and subjected to analysis of variance. Cecal levels of Gram-negative enterics were significantly higher for plugged birds, but there was not a significant difference between levels of cecal Campylobacter spp. between treatment groups. Plugging before electrocution resulted in significantly lower levels (2.5 vs 3.0 log10 cfu/mL) of Campylobacter spp. and Gram-negative enteric bacteria (3.0 vs 3.4 log10 cfu/mL) in carcass rinses of treatment birds than in those of controls. All carcasses were positive for Gram-negative enterics. Cloacal plugging resulted in significantly lower incidence of Campylobacter spp. carcass contamination as determined by chi-square. Intestinal carriage of both campylobacters and Gram-negative enteric bacteria appears to influence the microbial quality of the carcass during processing.

  20. An Overview of the HomePlug AV2 Technology

    OpenAIRE

    Yonge, Larry; Abad, Jose; Afkhamie, Kaywan; Guerrieri, Lorenzo; Katar, Srinivas; Lioe, Hidayat; Pagani, Pascal; Riva, Raffaele; Schneider, Daniel M.; Schwager, Andreas

    2013-01-01

    HomePlug AV2 is the solution identified by the HomePlug Alliance to achieve the improved data rate performance required by the new generation of multimedia applications without the need to install extra wires. Developed by industry-leading participants in the HomePlug AV Technical Working Group, the HomePlug AV2 technology provides Gigabit-class connection speeds over the existing AC wires within home. It is designed to meet the market demands for the full set of future in-home networking co...

  1. Ice plugging of pipes using liquid nitrogen

    International Nuclear Information System (INIS)

    Twigg, R.J.

    1987-03-01

    This report presents a study on the ice plugging of pipe using liquid nitrogen, and is based on a literature review and on discussions with individuals who use the technique. Emphasis is placed on ferritic alloys, primarily carbon steels, in pipe sized up to 60 cm in diameter and on austenitic stainless steels in pipe sizes up to 30 cm in diameter. This technique is frequently used for leak testing in nuclear facilities

  2. A constrained tracking algorithm to optimize plug patterns in multiple isocenter Gamma Knife radiosurgery planning

    International Nuclear Information System (INIS)

    Li Kaile; Ma Lijun

    2005-01-01

    We developed a source blocking optimization algorithm for Gamma Knife radiosurgery, which is based on tracking individual source contributions to arbitrarily shaped target and critical structure volumes. A scalar objective function and a direct search algorithm were used to produce near real-time calculation results. The algorithm allows the user to set and vary the total number of plugs for each shot to limit the total beam-on time. We implemented and tested the algorithm for several multiple-isocenter Gamma Knife cases. It was found that the use of limited number of plugs significantly lowered the integral dose to the critical structures such as an optical chiasm in pituitary adenoma cases. The main effect of the source blocking is the faster dose falloff in the junction area between the target and the critical structure. In summary, we demonstrated a useful source-plugging algorithm for improving complex multi-isocenter Gamma Knife treatment planning cases

  3. Protective effect of unilateral and bilateral ear plugs on noise-induced hearing loss: Functional and morphological evaluation in animal model

    Directory of Open Access Journals (Sweden)

    Dong-Kee Kim

    2014-01-01

    Full Text Available The aim of the following study is to evaluate immediate protective effect of ear plug from noise morphologically and functionally. An 1-month aged 29 male C57BL/6 mice. Subjects were divided into four groups as normal control(G1, bilaterally plugged group (G2, unilaterally plugged group (G3 and noise control group (G4 and later 3 groups were exposed to 110 sound pressure level white noise for 60 min. Immediately after noise exposure, audiologic tests were performed and cochlear morphology and expression levels of a-synuclein in the cochlea were investigated. There were no functional changes in G2 and plugged ears of G3 after noise exposure, whereas unplugged ears of G3 and G4 showed significant hearing loss. In morphological study, there were a significant degeneration of the organ of Corti and mean number and diameter of efferent buttons, in unplugged ears of G3 and G4. Plugged ears of G3 also showed mild changes in morphological study. Reduction of a-synuclein was observed at the efferent terminals or cochlear extracts after noise exposure. The protective effect of ear plug on noise exposure was proven morphologically and functionally in the animal model of noise-induced hearing loss. Further study on cellular or ultrastructural level with ear plug will be needed to reveal more precise mechanism.

  4. Implementation of a solar thermal electricity pilot plant (Concentrated Tower) of 1MW and introduction of a bus fleet of plug-in hybrids on the Ilha do Fundao, Rio de Janeiro, Brazil; Implementacao de uma planta piloto de heliotermia (Torre de Concentracao) de 1MW e introducao de uma frota de onibus hibridos plug-in na Ilha do Fundao

    Energy Technology Data Exchange (ETDEWEB)

    Borba, Bruno Soares Moreira Cesar; Malagueta, Diego Cunha [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PPE/COPPE/UFRJ), RJ (Brazil). Programa de Planejamento Energetico

    2010-07-01

    The aim of this paper is to simulate a solar thermal electricity pilot plant at the Campus of the Federal University of Rio de Janeiro (UFRJ), at Fundao Island, which would generate part of the electricity demanded by the Technology Center (CT) of the UFRJ. Based on the electricity demand from UFRJ and the electric prices paid by the institution, this study proposes the construction of a 1MW Concentrated Solar Power (CSP) pilot plant and analyses the economical, energy and environmental viability of implementation of this plant, operating from 2015 to 2045. This CSP plant would cover a field of 0,01km{sup 2} and have a 30% of capacity factor. This study also evaluates the impact caused by the substitution of the current Campus internal bus fleet for plug-in hybrid electric buses. The current service is provided by Normandy, which operates 12 buses plus 1 backup. These new buses would be regularly partially recharged by the energy generated from CSP. All the simulations have been made with the RETScreen software, which simulated the operation of the CSP, the amount of electricity produced, the carbon emissions avoided, the acquisition and implementation of the plug-in hybrid electric bus fleet and the cash flow. Six scenarios generated were, namely A1, B1, C1 (all for lower costs for the CSP plants) and A2, B2, C2 (for higher costs). For a social discount rate around 8% and along 30 years, only the A1, C1 and C2 scenarios showed a non-negative cash flow. Also, the emissions avoided were around 222 tCO{sub 2}/yr (or 6.660 tCO{sub 2} over 30 years) in the A1 and A2 scenarios, and around 550 tCO{sub 2}/yr (or 16.512 tCO{sub 2} over 30 years) in all others scenarios. (author)

  5. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  6. Bigger hybrid loader on the drawing board : Mining Technologies International hybrid gets rave reviews for power and comfort

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, N.

    2010-12-01

    This article presented a hybrid loader that reduces diesel emissions in underground mining. Sudbury-based Mining Technologies International (MTI) plans to build a 4 cubic yard loader in 2011, following the successful trial of a smaller 1.5 cubic yard machine at the CANMET experimental mine in Val d'Or, Quebec. The prototype hybrid loader was equipped with a metal hydride battery pack and a 2-cylinder, 35 hp Deutz engine. Performance testing revealed that the machine is capable of providing much more torque than originally expected and that it has more power compared to a mechanical drive machine. Operators at the CANMET mine also gave the hybrid loader high marks for comfort. The MTI loaders are equipped with a load sensing hydraulics system to eliminate jarring movement. The prototype experienced some premature failures in the flex coupling, which was subsequently replaced at the MTI shop in Sudbury. The primary reason for building the hybrid loader was to reduce diesel emissions underground in anticipation of stricter emission standards planned by the Mine Safety and Health Administration, the United States Environmental Protection Agency and CANMET for 2014. Compared to a conventional machine, there is virtually no exhaust from the hybrid loader. It is an ideal machine for a mine with very limited ventilation. Since the loader runs off the battery, MTI is currently looking at battery technologies other than metal hydrides to obtain a much higher energy density. Diesel is used to recharge the loader, and eliminates the need to plug in the unit between shifts. 1 ref., 2 figs.

  7. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  8. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing [Lamar University; Dong, Jing [Iowa State University; Lin, Zhenhong [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  9. Plugging solution

    Energy Technology Data Exchange (ETDEWEB)

    Sharipov, A U; Yangirov, I Z

    1982-01-01

    A clay-powder, cement, and water-base plugging solution is proposed having reduced solution viscosity characteristics while maintaining tensile strength in cement stone. This solution utilizes silver graphite and its ingredients, by mass weight, are as follows: cement 51.2-54.3%; claypowder 6.06-9.1%; silver graphite 0.24-0.33%; with water making up the remainder.

  10. Performance and energy management of a novel full hybrid electric powertrain system

    International Nuclear Information System (INIS)

    Chung, Cheng-Ta; Hung, Yi-Hsuan

    2015-01-01

    This study compared the performance and energy management between a novel full hybrid electric powertrain and a traditional power-split hybrid system. The developed planetary gearset and dual clutch configuration provides five operation modes. Equations for the torque and speed of power sources for the planetary gearset and dual clutch system and the Toyota Hybrid System are firstly derived. By giving vehicle performance of gradability, maximal speeds in hybrid and pure electric modes, the power sources of the 210 kg target vehicle are: a 125 cc engine and two 1.8 kW motor and generator. The optimal tank-to-wheel efficiencies, ratios of circulating power, and operation points at specific vehicle speeds and out loads are calculated. Simulation results show that the dual-motor electric vehicle mode offers superior performance regarding electric drive; the low capacity of the battery is conducive to reducing manufacturing and maintenance costs; the tank-to-wheel efficiency is mainly operated above 20% while the power split electronic-continuously-variable-transmission mode is the major operation mode, and a maximum of 17% fuel economy improvement is achieved compared with the Toyota Hybrid System in most of the vehicle speed ranges. The outstanding performance warrants further real-system development, especially regarding the implementation in plug-in and sport hybrid powertrain designs. - Highlights: • An innovative power split hybrid powertrain was designed. • Dual-motor electric-vehicle mode highlighted for plug-in function. • Power circulation ratios and five driving modes were analyzed. • Global search method utilized for optimal energy management. • Maximal 17+% fuel improvement compared to Toyota Hybrid System

  11. Circuit reliability boosted by soldering pins of disconnect plugs to sockets

    Science.gov (United States)

    Pierce, W. B.

    1964-01-01

    Where disconnect pins must be used for wiring and testing a circuit, improved system reliability is obtained by making a permanent joint between pins and sockets of the disconnect plug. After the circuit has been tested, contact points may be fused through soldering, brazing, or welding.

  12. HYBRID CONTINUUM-DISCONTINUUM MODELLING OF ROCK FRACUTRE PROCESS IN BRAZILIAN TENSILE STRENGTH TEST

    Directory of Open Access Journals (Sweden)

    Huaming An

    2017-10-01

    Full Text Available A hybrid continuum-discontinuum method is introduced to model the rock failure process in Brazilian tensile strength (BTS test. The key component of the hybrid continuum-discontinuum method, i.e. transition from continuum to discontinuum through fracture and fragmentation, is introduced in detail. A laboratory test is conducted first to capture the rock fracture pattern in the BTS test while the tensile strength is calculated according to the peak value of the loading forces. Then the proposed method is used to model the rock behaviour during BTS test. The stress propagation is modelled and compared with those modelled by finite element method in literatures. In addition, the crack initiation and propagation are captured and compared with the facture patter in laboratory test. Moreover, the force-loading displacement curve is obtained which represents a typical brittle material failure process. Furthermore, the stress distributions along the vertical direction are compared with the theoretical solution. It is concluded that the hybrid continuum-discontinuum method can model the stress propagation process and the entire rock failure process in BTS test. The proposed method is a valuable numerical tool for studying the rock behaviour involving the fracture and fragmentation processes.

  13. Analytical Plug-In Method for Kernel Density Estimator Applied to Genetic Neutrality Study

    Science.gov (United States)

    Troudi, Molka; Alimi, Adel M.; Saoudi, Samir

    2008-12-01

    The plug-in method enables optimization of the bandwidth of the kernel density estimator in order to estimate probability density functions (pdfs). Here, a faster procedure than that of the common plug-in method is proposed. The mean integrated square error (MISE) depends directly upon [InlineEquation not available: see fulltext.] which is linked to the second-order derivative of the pdf. As we intend to introduce an analytical approximation of [InlineEquation not available: see fulltext.], the pdf is estimated only once, at the end of iterations. These two kinds of algorithm are tested on different random variables having distributions known for their difficult estimation. Finally, they are applied to genetic data in order to provide a better characterisation in the mean of neutrality of Tunisian Berber populations.

  14. Towards sustainable urban transportation: Test, demonstration and development of fuel cell and hybrid-electric buses

    International Nuclear Information System (INIS)

    Folkesson, Anders

    2008-05-01

    Several aspects make today's transport system non-sustainable: - Production, transport and combustion of fossil fuels lead to global and local environmental problems. - Oil dependency in the transport sector may lead to economical and political instability. - Air pollution, noise, congestion and land-use may jeopardise public health and quality of life, especially in urban areas. In a sustainable urban transport system most trips are made with public transport because high convenience and comfort makes travelling with public transport attractive. In terms of emissions, including noise, the vehicles are environmentally sustainable, locally as well as globally. Vehicles are energy-efficient and the primary energy stems from renewable sources. Costs are reasonable for all involved, from passengers, bus operators and transport authorities to vehicle manufacturers. The system is thus commercially viable on its own merits. This thesis presents the results from three projects involving different concept buses, all with different powertrains. The first two projects included technical evaluations, including tests, of two different fuel cell buses. The third project focussed on development of a series hybrid-bus with internal combustion engine intended for production around 2010. The research on the fuel cell buses included evaluations of the energy efficiency improvement potential using energy mapping and vehicle simulations. Attitudes to hydrogen fuel cell buses among passengers, bus drivers and bus operators were investigated. Safety aspects of hydrogen as a vehicle fuel were analysed and the use of hydrogen compared to electrical energy storage were also investigated. One main conclusion is that a city bus should be considered as one energy system, because auxiliaries contribute largely to the energy use. Focussing only on the powertrain is not sufficient. The importance of mitigating losses far down an energy conversion chain is emphasised. The Scania hybrid fuel cell

  15. Plug-Load Control and Behavioral Change Research in GSA Office Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, I.; Cutler, D.; Sheppy, M.

    2012-10-01

    The U.S. General Services Administration (GSA) owns and leases over 354 million square feet (ft2) of space in over 9,600 buildings [1]. GSA is a leader among federal agencies in aggressively pursuing energy efficiency (EE) opportunities for its facilities and installing renewable energy (RE) systems to provide heating, cooling, and power to these facilities. According to several energy assessments of GSA's buildings conducted by the National Renewable Energy Laboratory (NREL), plug-loads account for approximately 21% of the total electricity consumed within a standard GSA Region 3 office building. This study aims to provide insight on how to effectively manage plug-load energy consumption and attain higher energy and cost savings for plug-loads. As GSA improves the efficiency of its building stock, plug-loads will become an even greater portion of its energy footprint.

  16. Applying HAZOP analysis in assessing remote handling compatibility of ITER port plugs

    International Nuclear Information System (INIS)

    Duisings, L.P.M.; Til, S. van; Magielsen, A.J.; Ronden, D.M.S.; Elzendoorn, B.S.Q.; Heemskerk, C.J.M.

    2013-01-01

    Highlights: ► We applied HAZOP analysis to assess the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. ► We identified several weak points in the general upper port plug maintenance concept. ► We made clear recommendations on redesign in port plug design, operational sequence and Hot Cell equipment. ► The use of a HAZOP approach for the ECH UL port can also be applied to ITER port plugs in general. -- Abstract: This paper describes the application of a Hazard and Operability Analysis (HAZOP) methodology in assessing the criticality of remote handling maintenance activities on port plugs in the ITER Hot Cell facility. As part of the ECHUL consortium, the remote handling team at the DIFFER Institute is developing maintenance tools and procedures for critical components of the ECH Upper launcher (UL). Based on NRG's experience with nuclear risk analysis and Hot Cell procedures, early versions of these tool concepts and maintenance procedures were subjected to a HAZOP analysis. The analysis identified several weak points in the general upper port plug maintenance concept and led to clear recommendations on redesigns in port plug design, the operational sequence and ITER Hot Cell equipment. The paper describes the HAZOP methodology and illustrates its application with specific procedures: the Steering Mirror Assembly (SMA) replacement and the exchange of the Mid Shield Optics (MSO) in the ECH UPL. A selection of recommended changes to the launcher design associated with the accessibility, maintainability and manageability of replaceable components are presented

  17. Combustion aided by a glow plug in diesel engines under cold idling conditions

    OpenAIRE

    Li, Qile

    2016-01-01

    Glow plugs are widely used to promote the desired cold start and post-cold start combustion characteristics of light duty diesel engines. The importance of the glow plug becomes more apparent when the compression ratio is low. An experimental investigation of combustion initiation and development aided by the glow plug has been carried out on a single cylinder HPCR DI diesel engine with a low compression ratio of 15.5:1. High speed imaging of combustion initiated by the glow plug in a combust...

  18. A control-oriented lithium-ion battery pack model for plug-in hybrid electric vehicle cycle-life studies and system design with consideration of health management

    Science.gov (United States)

    Cordoba-Arenas, Andrea; Onori, Simona; Rizzoni, Giorgio

    2015-04-01

    A crucial step towards the large-scale introduction of plug-in hybrid electric vehicles (PHEVs) in the market is to reduce the cost of its battery systems. Currently, battery cycle- and calendar-life represents one of the greatest uncertainties in the total life-cycle cost of battery systems. The field of battery aging modeling and prognosis has seen progress with respect to model-based and data-driven approaches to describe the aging of battery cells. However, in real world applications cells are interconnected and aging propagates. The propagation of aging from one cell to others exhibits itself in a reduced battery system life. This paper proposes a control-oriented battery pack model that describes the propagation of aging and its effect on the life span of battery systems. The modeling approach is such that it is able to predict pack aging, thermal, and electrical dynamics under actual PHEV operation, and includes consideration of random variability of the cells, electrical topology and thermal management. The modeling approach is based on the interaction between dynamic system models of the electrical and thermal dynamics, and dynamic models of cell aging. The system-level state-of-health (SOH) is assessed based on knowledge of individual cells SOH, pack electrical topology and voltage equalization approach.

  19. Plug Load Data

    Data.gov (United States)

    National Aeronautics and Space Administration — We provide MATLAB binary files (.mat) and comma separated values files of data collected from a pilot study of a plug load management system that allows for the...

  20. Simulation of steam generator plugging tubes in a PWR to analyze the operating impact

    Energy Technology Data Exchange (ETDEWEB)

    Pla, Patricia, E-mail: patricia.pla-freixa@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands); Reventos, Francesc, E-mail: francesc.reventos@upc.edu [Technical University of Catalonia (UPC), Barcelona (Spain); Martin Ramos, Manuel, E-mail: manuel.martin-ramos@ec.europa.eu [Nuclear Safety and Security Coordination Unit, Policy Support Coordination, Joint Research Centre of the European Commission, Brussels (Belgium); Sol, Ismael, E-mail: isol@anacnv.com [Asociación Nuclear Ascó-Vandellós-II (ANAV), Tarragona (Spain); Strucic, Miodrag, E-mail: miodrag.strucic@ec.europa.eu [Nuclear Reactor Safety Assessment Unit, Institute for Energy and Transport, Joint Research Centre (JRC) of the European Commission, Petten (Netherlands)

    2016-08-15

    Highlights: • Plugging a fraction of the SG tubes does not affect power output of the plant. • There is a limit to SG plugging in the range of 10–15%. • The rupture of a SG tube in a 12% plugged SG has shown no significant differences in operator actions. • A SBLOCA in a 12% plugged SG has shown no significant differences in operator actions. - Abstract: A number of nuclear power plants (NPPs) with pressurized water reactors (PWR) in the world have replaced their steam generators (SG) due to degradation of the SG tubes caused by different problems. Several methods were attempted to correct the defects of the tubes, but eventually the only permanent solution was to plug them. The consequences of plugging the tubes are the decrease of heat transfer surface, the reduction of the flow area and subsequent reduction of the primary system mass flow and for a fraction of plugged tubes higher than a given value, the reduction of reactor output and economic losses. The objective of this paper is to analyze whether steam generator tube plugging has an impact in the effectiveness of accident management actions. An analysis with Relap5 Mod 3.3 patch03 for the Spanish reactor Ascó-2, a 3-loop 2940.6 MWth Westinghouse PWR, in which plugging of steam generator tubes are simulated, is presented in order to find the limit for the adequate operation of the plant. Several steady state calculations were performed with different fractions of plugged SG tubes, by modeling the reduction of the primary to secondary heat transfer surface and the reduction of the primary coolant mass flow area in the tubes as well. The results of the analysis yield that plugging 12% of the SG tubes is around the limit for optimal reactor operation. To complete the study two events, in which the steam generators are used to cooldown the plant, were simulated to find out if the plugging of SGs tubes could influence the efficiency of the operator actions described in the emergency operating

  1. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  2. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  3. Apparatus for sealing a rotatable shield plug in a liquid metal nuclear reactor

    International Nuclear Information System (INIS)

    Winkleblack, R.K.

    1980-01-01

    An apparatus for sealing a rotatable shield plug in a nuclear reactor having liquid metal coolant is described. The apparatus includes a dip -ring seal adapted to provide a fluid barrier between the liquid metal and the atmosphere and to permit rotation of the shield plug. The apparatus also includes a static seal for the rotatable shield plug located between the dip-ring seal and the liquid metal. The static seal isolates the dip-ring seal from the liquid metal vapor during operation at power and can be disengaged for rotation of the shield plug

  4. Battery algorithm verification and development using hardware-in-the-loop testing

    Science.gov (United States)

    He, Yongsheng; Liu, Wei; Koch, Brain J.

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO 4) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs.

  5. Battery algorithm verification and development using hardware-in-the-loop testing

    Energy Technology Data Exchange (ETDEWEB)

    He, Yongsheng [General Motors Global Research and Development, 30500 Mound Road, MC 480-106-252, Warren, MI 48090 (United States); Liu, Wei; Koch, Brain J. [General Motors Global Vehicle Engineering, Warren, MI 48090 (United States)

    2010-05-01

    Battery algorithms play a vital role in hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), extended-range electric vehicles (EREVs), and electric vehicles (EVs). The energy management of hybrid and electric propulsion systems needs to rely on accurate information on the state of the battery in order to determine the optimal electric drive without abusing the battery. In this study, a cell-level hardware-in-the-loop (HIL) system is used to verify and develop state of charge (SOC) and power capability predictions of embedded battery algorithms for various vehicle applications. Two different batteries were selected as representative examples to illustrate the battery algorithm verification and development procedure. One is a lithium-ion battery with a conventional metal oxide cathode, which is a power battery for HEV applications. The other is a lithium-ion battery with an iron phosphate (LiFePO{sub 4}) cathode, which is an energy battery for applications in PHEVs, EREVs, and EVs. The battery cell HIL testing provided valuable data and critical guidance to evaluate the accuracy of the developed battery algorithms, to accelerate battery algorithm future development and improvement, and to reduce hybrid/electric vehicle system development time and costs. (author)

  6. Plug-in Electric Vehicle Policy Effectiveness: Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan [Argonne National Lab. (ANL), Argonne, IL (United States); Levin, Todd [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steven E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-05-01

    The U.S. federal government first introduced incentives for plug-in electric vehicles (PEVs) through the American Clean Energy and Security Act of 2009, which provided a tax credit of up to $7,500 for a new PEV purchase. Soon after, in December 2010, two mass-market PEVs were introduced, the plug-in hybrid electric vehicle (PHEV) Chevrolet Volt and the battery electric vehicle (BEV) Nissan LEAF. Since that time, numerous additional types of PEV incentives have been provided by federal and regional (state or city) government agencies and utility companies. These incentives cover vehicle purchases as well as the purchase and installation of electric vehicle supply equipment (EVSE) through purchase rebates, tax credits, or discounted purchase taxes or registration fees. Additional incentives, such as free high-occupancy vehicle (HOV) lane access and parking benefits, may also be offered to PEV owners. Details about these incentives, such as the extent to which each type is offered by region, can be obtained from the U.S. Department of Energy (DOE) Alternative Fuel Data Center (http://www.afdc.energy.gov/). In addition to these incentives, other policies, such as zero-emission vehicle (ZEV) mandates,1 have also been implemented, and community-scale federal incentives, such as the DOE PEV Readiness Grants, have been awarded throughout the country to improve PEV market penetration. This report reviews 18 studies that analyze the impacts of past or current incentives and policies that were designed to support PEV adoption in the U.S. These studies were selected for review after a comprehensive survey of the literature and discussion with a number of experts in the field. The report summarizes the lessons learned and best practices from the experiences of these incentive programs to date, as well as the challenges they face and barriers that inhibit further market adoption of PEVs. Studies that make projections based on future policy scenarios and those that focus solely

  7. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Offer, G.J., E-mail: gregory.offer@imperial.ac.u [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom); Contestabile, M. [Centre for Environmental Policy, Imperial College London, SW7 2AZ (United Kingdom); Howey, D.A. [Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ (United Kingdom); Clague, R. [Energy Futures Lab, Imperial College London, SW7 2AZ (United Kingdom); Brandon, N.P. [Department Earth Science Engineering, Imperial College London, SW7 2AZ London (United Kingdom)

    2011-04-15

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: {yields} Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. {yields} The optimum size for a PHEV battery is between 5 and 15 kWh. {yields} Current behaviour decreases percentage electric only miles for larger vehicles. {yields} Low carbon electricity favours larger battery sizes as long as carbon is priced. {yields} Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  8. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK

    International Nuclear Information System (INIS)

    Offer, G.J.; Contestabile, M.; Howey, D.A.; Clague, R.; Brandon, N.P.

    2011-01-01

    This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030. - Research highlights: → Report diminishing returns for plug-in hybrids with battery sizes above 20 kWh. → The optimum size for a PHEV battery is between 5 and 15 kWh. → Current behaviour decreases percentage electric only miles for larger vehicles. → Low carbon electricity favours larger battery sizes as long as carbon is priced. → Reinforces that the FCHEV is a cheaper option than conventional ICE vehicles in 2030.

  9. Axicell design for the end plugs of MFTF-B

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Karpenko, V.N.

    1982-01-01

    Certain changes in the end-plug design in the Mirror Fusion Test Facility (MFTF-B) are described. The Laboratory (LLNL) proposes to implement these changes as soon as possible in order to construct the machine in an axicell configuration. The present physics and technology goals as well as the project cost and schedule will not be affected by these changes

  10. Proceedings of the workshop on borehole and shaft plugging

    International Nuclear Information System (INIS)

    1980-01-01

    Geologic disposal of radioactive waste relies on the capability of many geological formations to provide long-term containment of the waste. The disposal operations could significantly modify the original conditions. In addition to the underground excavations and the thermal input of the waste their is the problem of boreholes and shafts that constitute a potential by-pass of the geological barriers. It is therefore essential to develop techniques and procedures for effective plugging of all penetrations connecting the disposal zone with the surface or with water bearing layers. It will be necessary to produce plugs which effectively restore the original characteristics of the isolating formations. In addition these plugs must be chemically stable in the existing geochemical environment in order to remain effective for very long periods of time and the plugs of disposal holes can be exposed to high temperatures and radiation doses. All countries with geologic disposal programmes will have to face the problem of borehole and shapt plugging

  11. Important Factors for Early Market Microgrids: Demand Response and Plug-in Electric Vehicle Charging

    Science.gov (United States)

    White, David Masaki

    Microgrids are evolving concepts that are growing in interest due to their potential reliability, economic and environmental benefits. As with any new concept, there are many unresolved issues with regards to planning and operation. In particular, demand response (DR) and plug-in electric vehicle (PEV) charging are viewed as two key components of the future grid and both will likely be active technologies in the microgrid market. However, a better understanding of the economics associated with DR, the impact DR can have on the sizing of distributed energy resource (DER) systems and how to accommodate and price PEV charging is necessary to advance microgrid technologies. This work characterizes building based DR for a model microgrid, calculates the DER systems for a model microgrid under DR through a minimization of total cost, and determines pricing methods for a PEV charging station integrated with an individual building on the model microgrid. It is shown that DR systems which consist only of HVAC fan reductions provide potential economic benefits to the microgrid through participation in utility DR programs. Additionally, peak shaving DR reduces the size of power generators, however increasing DR capacity does not necessarily lead to further reductions in size. As it currently stands for a microgrid that is an early adopter of PEV charging, current installation costs of PEV charging equipment lead to a system that is not competitive with established commercial charging networks or to gasoline prices for plug-in hybrid electric vehicles (PHEV).

  12. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase II, final report, March 2010.

    Science.gov (United States)

    2010-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  13. Reducing noise and vibration of hydraulic hybrid and plug-in hybrid electric vehicles : phase I final report, March 2009.

    Science.gov (United States)

    2009-03-01

    The University of Toledo University Transportation Center (UT-UTC) has identified hybrid vehicles as one of the three areas of the research. The activities proposed in this research proposal are directed towards the noise, vibration, and harshness (N...

  14. Intelligent Energy Management for Plug-in Hybrid Electric Vehicles: The Role of ITS Infrastructure in Vehicle Electrification Gestion énergétique intelligente pour véhicules électriques hybrides rechargeables : rôle de l’infrastructure de systèmes de transport intelligents (STI dans l’électrification des véhicules

    Directory of Open Access Journals (Sweden)

    Marano V.

    2012-08-01

    Full Text Available The desire to reduce carbon emissions due to transportation sources has led over the past decade to the development of new propulsion technologies, focused on vehicle electrification (including hybrid, plug-in hybrid and battery electric vehicles. These propulsion technologies, along with advances in telecommunication and computing power, have the potential of making passenger and commercial vehicles more energy efficient and environment friendly. In particular, energy management algorithms are an integral part of plug-in vehicles and are very important for achieving the performance benefits. The optimal performance of energy management algorithms depends strongly on the ability to forecast energy demand from the vehicle. Information available about environment (temperature, humidity, wind, road grade, etc. and traffic (traffic density, traffic lights, etc., is very important in operating a vehicle at optimal efficiency. This article outlines some current technologies that can help achieving this optimum efficiency goal. In addition to information available from telematic and geographical information systems, knowledge of projected vehicle charging demand on the power grid is necessary to build an intelligent energy management controller for future plug-in hybrid and electric vehicles. The impact of charging millions of vehicles from the power grid could be significant, in the form of increased loading of power plants, transmission and distribution lines, emissions and economics (information are given and discussed for the US case. Therefore, this effect should be considered in an intelligent way by controlling/scheduling the charging through a communication based distributed control. Le désir de réduire les émissions de carbone issues des sources de transport a conduit durant la dernière décennie au développement de nouvelles technologies de propulsion, axées sur l’électrification des véhicules (comprenant les véhicules

  15. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production

  16. Maintenance and plugging technology for CANDU steam generator tubing

    International Nuclear Information System (INIS)

    Prince, J.; Nicholson, A.; Hare, J.; McGoey, L.; Stafford, T.; Gowthorpe, P.

    2006-01-01

    In order to keep aging steam generators in service and to successfully manage the life of these critical components, the capability must exist to perform tube plugging and other complex maintenance activities in-situ. In the early days of CANDU steam generator operation, the only option was to perform these activities manually, which had inherent safety and quality risks. The challenge was to be able to perform these activities remotely thus eliminating some of the confined space and radiological exposure risks. The additional challenge was to develop equipment and techniques which would result in significantly improved quality, particularly for the completed plug welds which would be returned to service. Over the past fifteen years, this technology has matured and has produced remarkable results in field application. Some 14000 tube plugs have been successfully installed to date using automated plugging techniques. This paper presents an overview of the development of techniques available to utilities for steam generator tube plugging as well as some highlights of other steam generator tube maintenance activities such as primary side tube removal and tube end damage repair. Aspects covered in the paper include plug and procedure development, automated equipment and manipulators for tool deployment, process controls and personnel requirements. Recently, the steam generator tube plugging performed by OPG has been incorporated into a formal quality program under the requirements of ASME NCA 4000. An overview of the quality program will be presented and details of some of the important aspects of the quality program will be discussed. (author)

  17. Cold metal transfer spot plug welding of AA6061-T6-to-galvanized steel for automotive applications

    International Nuclear Information System (INIS)

    Cao, R.; Huang, Q.; Chen, J.H.; Wang, Pei-Chung

    2014-01-01

    Highlights: • Two Al-to-galvanized steel spot plug welding joints were studied by CMT method. • The optimum process variables for the two joints were gotten by orthogonal test. • Connection mechanism of the two joints were discussed. -- Abstract: In this study, cold metal transfer (CMT) spot plug joining of 1 mm thick Al AA6061-T6 to 1 mm thick galvanized steel (i.e., Q235) was studied. Welding variables were optimized for a plug weld in the center of a 25 mm overlap region with aluminum 4043 wire and 100% argon shielding gas. Microstructures and elemental distributions were characterized by scanning electron microscopy with energy dispersive X-ray spectrometer. Mechanical testing of CMT spot plug welded joints was conducted. It was found that it is feasible to join Al AA6061T6-to-galvanized steel by CMT spot plug welding method. The process variables for two joints with Al AA6061T6-to-galvanized mild steel and galvanized mild steel-to-Al AA6061T6 are optimized. The strength of CMT spot welded Al AA6061T6-to-galvanized mild steel is determined primarily by the strength and area of the brazed interface. While, the strength of the galvanized mild steel-to-Al AA6061T6 joint is mainly dependent upon the area of the weld metal

  18. Results of an integration study of a diagnostics port plug in ITER

    International Nuclear Information System (INIS)

    Salasca, Sophie; Cantone, Bruno; Grosman, André; Esposito, Basilio; Moro, Fabio; Morocco, Daniele; Villari, Rosaria; Angelone, Maurizio; Rincon, Esther; Hidalgo, Carlos; Nagy, Daniel; Kocsis, Gabor; Varela, Paulo; Porempovics, Gabor; Perrollaz, Guillaume; Patel, Kunal; Krivchenkov, Yuri; Walsh, Michael

    2013-01-01

    Highlights: ► An extensive study on the integration of diagnostics in a port plug of ITER has been performed. ► It has shown that the diagnostic performances could not be reached if their number was not decreased. ► A design of Diagnostic Shield Modules has been validated through mechanical and thermal analyses. ► These analyses have confirmed that the highest loads are concentrated in the vicinity of the plasma. -- Abstract: Diagnostics in ITER are mandatory to characterize the parameters of plasma and study its interactions with plasma-facing components. Diagnostics components in the vicinity of the plasma are supported by metallic structures called port plugs. At the tokamak mid-plane, these components are installed in port plugs through intermediate structures called drawers. Apart from hosting the diagnostics, the port plugs act as shielding against neutrons and gammas, in order to limit the nuclear loads in crucial components (such as diagnostics and superconducting coils) as well as the dose levels in the controlled zones of the tokamak. The radiation shielding function of the port plugs is ensured through an optimized mixture of heavy metallic materials and water, forming shielding blocks surrounding the diagnostics and called Diagnostic Shield Modules (DSMs). These DSMs constitute the rear part of the drawers (the front part being composed of the Diagnostic First Wall). This paper presents the main results of a study performed in Europe on the integration of a particular diagnostics port plug, the Equatorial Port Plug 1 (EPP1). The paper first provides the results of the EPP1 diagnostics integration analysis. In a second step it focuses on the design of the EPP1 DSMs and summarizes the major results of a thorough set of analyses aiming at studying the DSMs behaviour under different loads, suggesting recommendations to improve their current design

  19. From catastrophic acceleration to deceleration of liquid plugs in prewetted capillary tubes

    Science.gov (United States)

    Magniez, Juan; Baudoin, Michael; Zoueshtiagh, Farzam; Lemac/Lics Team

    2016-11-01

    Liquid/gas flows in capillaries are involved in a multitude of systems including flow in porous media, petroleum extraction, imbibition of paper or flows in pulmonary airways in pathological conditions. Liquid plugs, witch compose the biphasic flows, can have a dramatic impact on patients with pulmonary obstructive diseases, since they considerably alter the circulation of air in the airways and thus can lead to severe breathing difficulties. Here, the dynamics of liquid plugs in prewetted capillary tube is investigated experimentally and theoretically, with a particular emphasis on the role of the prewetting films and of the driving condition (constant flow rate, constant pressure). For both driving conditions, the plugs can either experience a continuous increase or decrease of their size. While this phenomenon is regular in the case of imposed flow rate, a constant pressure head can lead to a catastrophic acceleration of the plug and eventually its rupture or a dramatic increase of the plug size. A theoretical model is proposed to explain the transition between theses two regimes. These results give a new insight on the critical pressure required for airways obstruction and reopening. IEMN, International Laboratory LEMAC/LICS, UMR CNRS 8520, University of Lille.

  20. Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Morrow; Dimitri Hochard; Jeff Wishart

    2011-09-01

    Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

  1. Analysis of a Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam

    2013-01-01

    The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.

  2. Device for sealing a rotating plug in a nuclear reactor

    International Nuclear Information System (INIS)

    Brandstetter, R.

    1975-01-01

    The invention relates to the sealing of a rotating plug in a nuclear reactor. The sealing arrangement comprises a friction track which is formed along the periphery of the top of a ring mounted on a stationary element. An annular base coaxial with the plug is secured in sealing-tight manner to the stationary bearing around the ring and the track by means of a seal which rests on the annular base and also on the friction track of the ring and which comprises at least one friction ring and a clamping spring ring. The seal is clamped against the friction track to retractable clamping means when the plug is stationary, the retractable clamping means being carried by a ring secured to the first-mentioned ring. (U.S.)

  3. Neutron and ultrasonic determination of residual stress in an aluminum ring-plug

    International Nuclear Information System (INIS)

    Prask, H.J.; Gnaeupel-Herold, T.; Clark, A.V.; Hehman, C.S.; Nguyen, T.N.

    2000-01-01

    Stress is a principal cause of material failure. This has been a well-recognized problem for decades, yet--in general--neutron diffraction remains the only way to measure sub-surface residual stresses without destroying the component. A field-portable ultrasonic strain-meter is being developed at NIST (Boulder) to determine residual stresses in engineering specimens, nondestructively. To test this and other techniques an array of stress-measurement standards are being prepared. These will be characterized by neutron diffraction and then used to evaluate, quantitatively, the potential of new methods. The first standard specimen produced for this purpose is a large shrink-fit ring-plug of 2024 aluminum (305 mm OD, 25.4 mm thick, 101.6 mm diameter plug). Because of large grain size, a sample-rotation averaging technique was developed to make reliable neutron measurements possible. A comparison of the neutron diffraction and ultrasonic results for this specimen will be presented, along with strain gauge results

  4. Emission control of hybrid vehicles. What are the resulting requirements?; Abgasnachbehandlung bei Hybridfahrzeugen. Welche Anforderungen ergeben sich daraus?

    Energy Technology Data Exchange (ETDEWEB)

    Spurk, Paul; Mueller, Wilfried [Umicore AG und Co.KG, Hanau (Germany); Beidl, Christian; Weickgenannt, Philipp [TU Darmstadt (Germany); Hohenberg, Guenter [IVD Prof. Hohenberg, Darmstadt (Germany)

    2010-07-01

    In hybrid powertrain systems the operation of the combustion engine is changed in comparison to an internal combustion or IC engine - only systems. This causes new boundary conditions and challenges for an optimized design of the exhaust aftertreatment system. These specific behavior characteristics have been identified based on results measured with a Toyota Prius III test vehicle on a both chassis dynamometer and road cycle evaluation. NEDC cycle results show a characteristic reduction of catalyst temperature compared to a conventional powertrain as the combustion engine is switched on for only approx. 40% of the cycle time. A further challenge can be identified in hybrid specific events, e.g. when the restart of the engine follows a short standstill period, resulting in high engine out emissions which need to be properly converted by the catalyst. It can also be clearly recognized that the state of charge of the traction battery has significant impact on the emission behavior. Furthermore the highly interesting question about the influence of plug-in hybrid systems with extended periods of electric-only driving needs to be addressed. A test sequence with simulated plug-in operation in which the combustion engine is only active in the EUDC part of the cycle shows the expected reduction of CO{sub 2} - emission but an increase in engine out NOx - emission. An important aspect is given by the cooling behavior of the exhaust system during the engine shut-off time. Detailed knowledge of this behavior is key for generating efficient operating strategies without emission deterioration. ''Real world'' load profiles are required for this task and are derived from the Darmstadt Urban and Extra Urban Cycle road tests. The test vehicle with series application and fresh catalytic converters is safely below the Euro V emission limits under all circumstances. Thus a certain potential can be seen for reducing the precious metal loading with a corresponding

  5. Rotating plug size study for liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Nemeth, L.J.

    1980-01-01

    A study was performed to evaluate possible rotating plug arrangements. The three-, two-, and one-rotating plug schemes were developed using a set of established restrictions and component sizes. The three-rotating plug configuration is the recommended reference design

  6. Improving the energy density of hydraulic hybrid vehicles (HHVS) and evaluating plug-in HHVS.

    Science.gov (United States)

    2010-10-01

    This report describes analyses performed by researchers at The University of Toledo (UT) in : collaboration with researchers at the University of Detroit Mercy (UDM) on the project : Improving the Energy Density of Hydraulic Hybrid Vehicles (HHVs)...

  7. Plug pattern optimization for gamma knife radiosurgery treatment planning

    International Nuclear Information System (INIS)

    Zhang Pengpeng; Wu, Jackie; Dean, David; Xing Lei; Xue Jinyue; Maciunas, Robert; Sibata, Claudio

    2003-01-01

    Purpose: To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. Method and Materials: We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the number of shots and isocenter location, size, and weight of each shot. Then we create a plug quality score system that checks the dose contribution to the volume of interest by each plug in the treatment plan. A positive score implies that the corresponding source could be open to improve tumor coverage, whereas a negative score means the source could be blocked for the purpose of sparing normal and critical structures. The plug pattern is then optimized via the GESA algorithm that is integrated with this score system. Weight and position of each shot are also tuned in this procedure. Results: An acoustic tumor case is used to evaluate our algorithm. Compared to the treatment plan generated without plug patterns, adding an optimized plug pattern into the treatment planning process boosts tumor coverage index from 95.1% to 97.2%, reduces RTOG conformity index from 1.279 to 1.167, lowers Paddick's index from 1.34 to 1.20, and trims the critical structure receiving more than 30% maximum dose from 16 mm 3 to 6 mm 3 . Conclusions: Automated GESA-based plug pattern optimization of gamma knife radiosurgery frees the treatment planning team from the manual forward planning procedure and provides an optimal treatment plan

  8. Borehole plugging by hydrothermal transport: an interim report on experimental studies

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    Five possible systems that might lead to borehole plugs were considered with respect to replacement of the original rock with a material of essentially the same chemical composition and mineralogical makeup or with the introduction of other materials that might be chemically compatible with the surrounding wall rock. The five systems were: Quartz or chalcedony plugs from the SiO 2 -water system, replacement of shale rock by transport in the ''clay''-water system, hydrothermal cement systems, carbonate plugs in limestone and dolomite, and sulfur plugs by transport in the system sulfur-water. Hydrothermal cements appear to be most feasible from an engineering and economic point of view. Pressures and temperatures for reactions in the systems CaO-Al 2 O 3 -SiO 2 -H 2 O are modest and there is evidence that the plug formed would have a lower porosity and permeability than those derived from more conventional cement systems. Further, the mineral phases, principally tobermorite, are likely to be compatible with expected shale, sandstone, and limestone wall rock materials. Calcite (but not dolomite) plugs could be formed in limestone or dolomite rock. Less is known about carbonate plugs and the porosity, permeability, and possible reactions with circulating groundwater. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be the most compatible with the wall rock but would be extremely difficult to form in place. It was concluded that replacement of shales by clay, mica, or other layer silicate transport in hydrothermal solution was limited by the extremely sluggish kinetics of these reactions and that a practical plug of such materials is not feasible. Likewise, the sulfur-water system was found to be unlikely to yield a plug material

  9. Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities

    International Nuclear Information System (INIS)

    Krause, Rachel M.; Carley, Sanya R.; Lane, Bradley W.; Graham, John D.

    2013-01-01

    This paper examines the extent of consumer knowledge about plug-in electric vehicles (PEVs) and the current policies in place to encourage their purchase and use. Data are collected via a survey administered to a sample of 2302 adult drivers in 21 of the largest cities in the United States. Almost two-thirds of the respondents provided incorrect answers to basic factual questions about PEVs and, of those, approximately 75% underestimated their private value or advantages. The vast majority (94.5%) of respondents were not aware of the current state and local incentives in place in their locale to encourage PEV purchase and use. Based on a review of consumer theory, multivariate models are developed and used to assess the factors associated with consumer interest in the two major types of PEV technologies, Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Results show demographic and attitudinal characteristics having the largest influence on interest in either type of PEV. Misperceptions about purchase price and expected fuel and maintenance savings are likewise significant, although their impacts differ between BEVs and PHEVs. Better informing consumers about already available public incentives and advantageous aspects of existing PEV technologies offer promising steps toward their mass commercialization. - Highlights: • Survey analysis examines consumer knowledge of PEVs and current public policies. • Majority of respondents have incorrect perceptions about basic PEV characteristics. • Vast majority of respondents are not aware of current state and local PEV policies. • Misperception about fuel and maintenance savings significantly affects PEV interest

  10. Hydrological responses to channelization and the formation of valley plugs and shoals

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.

    2017-01-01

    Rehabilitation of floodplain systems focuses on restoring interactions between the fluvial system and floodplain, however, there is a paucity of information on the effects of valley plugs and shoals on floodplain hydrological processes. We investigated hydrologic regimes in floodplains at three valley plug sites, two shoal sites, and three unchannelized sites. Valley plug sites had altered surface and sub-surface hydrology relative to unchannelized sites, while only sub-surface hydrology was affected at shoal sites. Some of the changes were unexpected, such as reduced flood duration and flood depth in floodplains associated with valley plugs. Our results emphasize the variability associated with hydrologic processes around valley plugs and our rudimentary understanding of the effects associated with these geomorphic features. Water table levels were lower at valley plug sites compared to unchannelized sites, however, valley plug sites had a greater proportion of days when water table inundation was above mean root collar depth than both shoal and unchannelized sites as a result of lower root collar depths and higher deposition rates. This study has provided evidence that valley plugs can affect both surface and sub-surface hydrology in different ways than previously thought and illustrates the variability in hydrological responses to valley plug formation.

  11. Geochemical factors in borehole-shaft plug longevity

    International Nuclear Information System (INIS)

    Roy, D.M.

    1981-01-01

    Geochemical investigations that address factors controlling the longevity of repository sealing materials in a geochemical environment are discussed. Studies are being made of cement-based materials as major candidates for seals for borehole plugging, and shaft and tunnel sealing in certain potential repository environments. Factors controlling the extent of attainment of equilibrium of the plug components with time and the rate of approach to a state of stable equilibrium of the plug component chemical subsystem within the total system are discussed. The effect of these factors on changes in physical, mechanical and thermal properties of a seal system, and the consequent effectiveness of the seal in preventing transport of radioactive waste species are the dominant features to be determined. Laboratory experiments on the effects of anticipated temperature, pressure, and environmental factors (including chemical composition and specific rock type) are described. Thermodynamic studies are used to determine the potentially stable reaction products under conditions similar to those anticipated for the repository boreholes, shafts, and tunnels during and after the operating stage. Multitemperature reaction series are studied, and reaction kinetics are investigated for the purpose of predicting the course of likely reactions. Detailed studies of permeability, diffusion, and interfacial properties and chemical and microphase characterization of the products of experiments are carried out. Characterization studies of old and ancient cements, mortars, and concretes and prototype man-made seal materials are performed to further assess the factors associated with longevity

  12. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  13. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Cleary, Timothy [Sentech, Inc.

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and

  14. Testing a hypothesis of unidirectional hybridization in plants: Observations on Sonneratia, Bruguiera and Ligularia

    Directory of Open Access Journals (Sweden)

    Wu Chung-I

    2008-05-01

    Full Text Available Abstract Background When natural hybridization occurs at sites where the hybridizing species differ in abundance, the pollen load delivered to the rare species should be predominantly from the common species. Previous authors have therefore proposed a hypothesis on the direction of hybridization: interspecific hybrids are more likely to have the female parent from the rare species and the male parent from the common species. We wish to test this hypothesis using data of plant hybridizations both from our own experimentation and from the literature. Results By examining the maternally inherited chloroplast DNA of 6 cases of F1 hybridization from four genera of plants, we infer unidirectional hybridization in most cases. In all 5 cases where the relative abundance of the parental species deviates from parity, however, the direction is predominantly in the direction opposite of the prediction based strictly on numerical abundance. Conclusion Our results show that the observed direction of hybridization is almost always opposite of the predicted direction based on the relative abundance of the hybridizing species. Several alternative hypotheses, including unidirectional postmating isolation and reinforcement of premating isolation, were discussed.

  15. Plug and Play Framework for Theories of Social Group Dynamics

    DEFF Research Database (Denmark)

    Rehm, Matthias; Endrass, Birgit; André, Elisabeth

    2006-01-01

    We present an extensible framework for behavior control of social agents in a multi-agent system that has the following features. It implements a basic repertoire of socio-psychological models of behavior and interpersonal interactions that can be plugged and unplugged at will depending on the sp......We present an extensible framework for behavior control of social agents in a multi-agent system that has the following features. It implements a basic repertoire of socio-psychological models of behavior and interpersonal interactions that can be plugged and unplugged at will depending...... on the specific context of the application. This enables us to test several theories in isolation or combination to increase the transparency of the system and to investigate how the inclusion of a certain theory influences the behavior of the agents. Unlike earlier approaches, our approach is not bound...

  16. Conceptual design on structure and cooling channel of ITER upper port plug

    International Nuclear Information System (INIS)

    Pak, Sunil; Lee, Hyeon Gon; Jung, Ki Jung; Walker, C.; Kim, Doo Gi; Choi, Kwang Suk; Eo, Sang Gon

    2007-01-01

    This study has performed conceptual design on structure and cooling channel for the upper port plug of the International Thermonuclear Experimental Reactor (ITER), in which electron cyclotron heating (ECH) launcher and various diagnostic modules will be installed with the same structure. There are twelve diagnostic plugs and four ECH plugs at the upper port in ITER Tokamak. The use of the same port plug structure is beneficial for installation of diagnostic modules and ECH launcher from the viewpoint of cost reduction and simple RH maintenance. The diagnostic modules have rectangular cross-section and ECH modules have trapezoidal crosssection with the lower part wider. Here was suggested the bolt-jointed common structure of inverted-U shape beam and bottom plate, where the diagnostic and ECH modules are installed onto the bottom plate and then the assembly is bolted to the inverted-U beam from the bottom. The common structure of Inverted-U type was evaluated by considering several aspects, such as installation, remote handling (RH) maintenance, cooling line connection, manufacturing, and structural stiffness. For the inverted-U port plug structure developed here, this paper proposed a network of water channel for cooling and baking. Pressurized water as working fluid has to be supplied into the whole port plug. It consists of the structure, diagnostic/shielding modules fixed onto the bottom plate, and the blanket shield module (BSM) attached to the front. The internal water ways for these three components were designed in the direction that would not only minimize the RH connections, flow restrictors, and the length of water-vacuum welding, but also make the welding reliable. Independent coolant loops were composed for three parts of the structure, BSM, and diagnostic/shielding modules with bottom plate. These loops, therefore, make it possible to perform the leakage test for each one separately. Finally hydraulic analysis has been performed with ANSYS in order to

  17. Increased adolescent HIV testing with a hybrid mobile strategy in Uganda and Kenya.

    Science.gov (United States)

    Kadede, Kevin; Ruel, Theodore; Kabami, Jane; Ssemmondo, Emmanuel; Sang, Norton; Kwarisiima, Dalsone; Bukusi, Elizabeth; Cohen, Craig R; Liegler, Teri; Clark, Tamara D; Charlebois, Edwin D; Petersen, Maya L; Kamya, Moses R; Havlir, Diane V; Chamie, Gabriel

    2016-09-10

    We sought to increase adolescent HIV testing across rural communities in east Africa and identify predictors of undiagnosed HIV. Hybrid mobile testing. We enumerated 116 326 adolescents (10-24 years) in 32 communities of Uganda and Kenya ( NCT01864603): 98 694 (85%) reported stable (≥6 months of prior year) residence. In each community we performed hybrid testing: 2-week multidisease community health campaign that included HIV testing, followed by home-based testing of community health campaign nonparticipants. We measured adolescent HIV testing coverage and prevalence, and determined predictors of newly diagnosed HIV among HIV-infected adolescents using multivariable logistic regression. A total of 86 421 (88%) stable adolescents tested for HIV; coverage was 86, 90, and 88% in early (10-14), mid (15-17), and late (18-24) adolescents, respectively. Self-reported prior testing was 9, 26, and 55% in early, mid, and late adolescents tested, respectively. HIV prevalence among adolescents tested was 1.6 and 0.6% in Ugandan women and men, and 7.1 and 1.5% in Kenyan women and men, respectively. Prevalence increased in mid-adolescence for women and late adolescence for men. Among HIV-infected adolescents, 58% reported newly diagnosed HIV. In multivariate analysis of HIV-infected adolescents, predictors of newly diagnosed HIV included male sex [odds ratio (OR) = 1.97 (95% confidence interval (CI): 1.42-2.73)], Ugandan residence [OR = 2.63 (95% CI: 2.08-3.31)], and single status [OR = 1.62 (95% CI: 1.23-2.14) vs. married)]. The SEARCH hybrid strategy tested 88% of stable adolescents for HIV, a substantial increase over the 28% reporting prior testing. The majority (57%) of HIV-infected adolescents were new diagnoses. Mobile HIV testing for adults should be leveraged to reach adolescents for HIV treatment and prevention.

  18. Cover-gas-seal component development: dynamic inflatable-plug seal improvement

    International Nuclear Information System (INIS)

    Horton, P.H.

    1977-01-01

    This report documents the 1) radial compliance and 2) low friction coating tests conducted on the CRBRP Rotating Plug Inflatable Seals per test plan N707TR810014. Test results show that narrowing the seal blade from 0.25 to 0.12 in. will effectively reduce dynamic drag from 30 to 20 lb/ft under nominal conditions and will increase seal radial compliance from 0.12 to 0.30 in. without an unacceptable rise in dynamic drag. Tests also demonstrated that application of a teflon coating to the seal wear surface reduced breakaway drag by 25% based on results of comparison dwells

  19. Punctal Plug Retention Rates for the Treatment of Moderate to Severe Dry Eye: A Randomized, Double-Masked, Controlled Clinical Trial.

    Science.gov (United States)

    Brissette, Ashley R; Mednick, Zale D; Schweitzer, Kelly D; Bona, Mark D; Baxter, Stephanie A

    2015-08-01

    To compare retention rates of Super Flex (Eagle Vision, Memphis, Tennessee, USA; Softplug-Oasis Medical Inc, Glendora, California, USA) vs Parasol (Odyssey Medical, Memphis, Tennessee, USA; Beaver Visitec International, Waltham, Massachusetts, USA) punctal plugs. Randomized, double-masked, interventional controlled clinical trial. Institutional study at Hotel Dieu Hospital (Queen's University) of 50 eyes, from patients with moderate to severe dry eye. Each eye from eligible patients was separately randomized to receive Super Flex or Parasol punctal plugs. The main outcome measure was plug retention at 6 months. Secondary outcome measures included objective tests of Schirmer I (mm), tear meniscus height (mm), tear break-up time (s), inferior fluorescein corneal staining (National Eye Institute [NEI] scale), and average lissamine green conjunctival staining (NEI scale). Punctal plug retention was significantly different at 6 months (P = .011). Sixty-eight percent of Parasol plugs were retained compared to 32% of Super Flex plugs. Parasol plugs required less frequent artificial tear use at 6 months (P = .024). There was a statistically significant improvement in all secondary outcome measures (Schirmer, tear meniscus height, tear break-up time, fluorescein corneal staining) at 6 months within plug groups except conjunctival staining. There were no additional significant differences between groups and no plug complications reported. Punctal plugs improve symptoms of moderate to severe dry eye; however, retention rates differ significantly. These data will allow us to guide patient decision making for the safe and effective treatment of punctal plugs for moderate to severe dry eye. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Application and Development of an Environmentally Friendly Blast Hole Plug for Underground Coal Mines

    Directory of Open Access Journals (Sweden)

    Donghui Yang

    2018-01-01

    Full Text Available Drilling and blasting technology is one of the main methods for pressure relief in deep mining. The traditional method for blasting hole blockage with clay stemming has many problems, which include a large volume of transportation, excess loading time, and high labor intensity. An environmentally friendly blast hole plug was designed and developed. This method is cheap, closely blocks the hole, is quickly loaded, and is convenient for transportation. The impact test on the plug was carried out using an improved split Hopkinson pressure bar test system, and the industrial test was carried out in underground tunnel of coal mine. The tests results showed that, compared with clay stemming, the new method proposed in this paper could prolong the action time of the detonation gas, prevent premature detonation gas emissions, reduce the unit consumption of explosives, improve the utilization ratio, reduce the labor intensity of workers, and improve the effect of rock blasting with low cost of rock breaking.

  1. Patterns of surface burrow plugging in a colony of black-tailed prairie dogs occupied by black-footed ferrets

    Science.gov (United States)

    Eads, David E.; Biggins, Dean E.

    2012-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) can surface-plug openings to a burrow occupied by a black-footed ferret (Mustela nigripes). At a coarse scale, surface plugs are more common in colonies of prairie dogs occupied by ferrets than in colonies without ferrets. However, little is known about spatial and temporal patterns of surface plugging in a colony occupied by ferrets. In a 452-ha colony of black-tailed prairie dogs in South Dakota, we sampled burrow openings for surface plugs and related those data to locations of ferrets observed during spotlight surveys. Of 67,574 burrow openings in the colony between June and September 2007, 3.7% were plugged. In a colony-wide grid of 80 m × 80 m cells, the occurrence of surface plugging (≥1 opening plugged) was greater in cells used by ferrets (93.3% of cells) than in cells not observably used by ferrets (70.6%). Rates of surface plugging (percentages of openings plugged) were significantly higher in cells used by ferrets (median = 3.7%) than in cells without known ferret use (median = 3.2%). Also, numbers of ferret locations in cells correlated positively with numbers of mapped surface plugs in the cells. To investigate surface plugging at finer temporal and spatial scales, we compared rates of surface plugging in 20-m-radius circle-plots centered on ferret locations and in random plots 1–4 days after observing a ferret (Jun–Oct 2007 and 2008). Rates of surface plugging were greater in ferret-plots (median = 12.0%) than in random plots (median = 0%). For prairie dogs and their associates, the implications of surface plugging could be numerous. For instance, ferrets must dig to exit or enter plugged burrows (suggesting energetic costs), and surface plugs might influence microclimates in burrows and consequently influence species that cannot excavate soil (e.g., fleas that transmit the plague bacterium Yersinia pestis).

  2. A Personalized Rolling Optimal Charging Schedule for Plug-In Hybrid Electric Vehicle Based on Statistical Energy Demand Analysis and Heuristic Algorithm

    Directory of Open Access Journals (Sweden)

    Fanrong Kong

    2017-09-01

    Full Text Available To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market, a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the driving plan may not be very accurate. To address this problem, in this paper, we analyze energy demands according to a PHEV owner’s historical driving records and build a personalized statistic driving model. Based on the model and the electricity spot prices, a rolling optimization strategy is proposed to help make a charging decision in the current time slot. On one hand, by employing a heuristic algorithm, the schedule is made according to the situations in the following time slots. On the other hand, however, after the current time slot, the schedule will be remade according to the next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate that the proposed method is feasible to help owners save charging costs and also meet requirements for driving.

  3. Electric and hydrogen consumption analysis in plug-in road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ribau, Joao P.; Silva, Carla M.; Faria, Tiago L. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Av. Rovisco Pais, 1 Pav. Mecanica I, 2 andar, 1049-001 Lisboa (Portugal)

    2010-07-01

    The main goal of the present study is to analyze some of the capabilities and behavior of two types of plug-in cars: battery electric and hydrogen fuel cell hybrid electric, facing different driving styles, different road gradients, different occupation rates, different electrical loads, and different battery's initial state of charge. In order to do that, four vehicles with different power/weight (kW/kg) ratio (0.044 to 0.150) were simulated in the software ADVISOR, which gives predictions of energy consumption, and behavior of vehicle's power train components (including energy regeneration) along specified driving cycles. The required energy, electricity and/or hydrogen, to overcome the specified driving schedules, allowed to estimate fuel life cycle's CO2 emissions and primary energy. A vehicle with higher power/weight ratio (kW/kg) demonstrated to be less affected in operation and in variation of the energy consumption, facing the different case studies, however may have higher consumptions in some cases. The autonomy, besides depending on the fuel consumption, is directly associated with the type and capacity (kWh) of the chosen battery, plus the stored hydrogen (if fuel cell vehicles are considered, PHEV-FC). The PHEV-FC showed to have higher autonomy than the battery vehicles, but higher energy consumption which is extremely dependent on the type and ratio of energy used, hydrogen or electricity. An aggressive driving style, higher road gradient and increase of weight, required more energy and power to the vehicle and presented consumption increases near to 77%, 621%, 19% respectively. Higher electrical load and battery's initial state of charge, didn't affect directly vehicle's dynamic. The first one drained energy directly from the battery plus demanded a fraction of its power, with energy consumption maximum increasing near 71%. The second one restricted the autonomy without influence directly the energy consumption per

  4. Dual Spark Plugs For Stratified-Charge Rotary Engine

    Science.gov (United States)

    Abraham, John; Bracco, Frediano V.

    1996-01-01

    Fuel efficiency of stratified-charge, rotary, internal-combustion engine increased by improved design featuring dual spark plugs. Second spark plug ignites fuel on upstream side of main fuel injector; enabling faster burning and more nearly complete utilization of fuel.

  5. Potential formation in the plasma confinement region of a radio-frequency plugged linear device

    International Nuclear Information System (INIS)

    Fujita, Hideki; Kumazawa, Ryuhei; Howald, A.M.; Okamura, Shoichi; Sato, Teruyuki; Adati, Keizo; Garner, H.R.; Nishimura, Kiyohiko.

    1987-08-01

    Plasma potential formation in an open-ended plasma confinement system with RF plugging (the RFC-XX-M device) is investigated. The plasma potential in the central confinement region is measured with a heavy ion beam probe system and potentials at the RF plug section are measured with multi-grid energy analyzers. The measured plasma potential is compared with that deduced from the generalized Pastukhov formula. Results show that the plasma potential develops as an ambipolar potential to equate ion and electron end losses. During RF plugging, electrons are heated by Landau damping, while ions are not heated since adiabatic conditions apply during ion plugging in this experiment. (author)

  6. The effect of an iron plug on the neutron flux distributions in water

    International Nuclear Information System (INIS)

    Lotfi, A.; Maayouf, R.M.A.; Megahid, R.

    1978-01-01

    This work is concerned with studying both fast and thermal neutron fluxes distribution in water and its perturbation due to the presence of a cylindrical iron plug. The measurements were carried out using a collimated neutron beam emitted from one of the horizontal channels of the ET-RR-1 reactor. The fast neutron fluxes were measured using phosphorus activation detectors, while the thermal neutron ones were measured using fission fragment track detectors from glass. The results show that the presence of an iron plug causes a remarkable change in the intensities of both the fast and thermal neutron fluxes distribution in the water medium surrounding the iron plug. The flux intensities at the peaks, formed beyond the iron plug in case of thermal neutrons, are also compared with values calculated using the available emperical formula

  7. Diffuse boundary extraction of breast masses on ultrasound by leak plugging

    International Nuclear Information System (INIS)

    Cary, T.W.; Conant, E.F.; Arger, P.H.; Sehgal, C.M.

    2005-01-01

    We propose a semiautomated seeded boundary extraction algorithm that delineates diffuse region boundaries by finding and plugging their leaks. The algorithm not only extracts boundaries that are partially diffuse, but in the process finds and quantifies those parts of the boundary that are diffuse, computing local sharpness measurements for possible use in computer-aided diagnosis. The method treats a manually drawn seed region as a wellspring of pixel 'fluid' that flows from the seed out towards the boundary. At indistinct or porous sections of the boundary, the growing region will leak into surrounding tissue. By changing the size of structuring elements used for growing, the algorithm changes leak properties. Since larger elements cannot leak as far from the seed, they produce compact, less detailed boundary approximations; conversely, growing from smaller elements results in less constrained boundaries with more local detail. This implementation of the leak plugging algorithm decrements the radius of structuring disks and then compares the regions grown from them as they increase in both area and boundary detail. Leaks are identified if the outflows between grown regions are large compared to the areas of the disks. The boundary is plugged by masking out leaked pixels, and the process continues until one-pixel-radius resolution. When tested against manual delineation on scans of 40 benign masses and 40 malignant tumors, the plugged boundaries overlapped and correlated well in area with manual tracings, with mean overlap of 0.69 and area correlation R 2 of 0.86, but the algorithm's results were more reproducible

  8. Nonlinear Analysis and Preliminary Testing Results of a Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.; Wu, Hsi-Yung T.

    2015-01-01

    A large test article was recently designed, analyzed, fabricated, and successfully tested up to the representative design ultimate loads to demonstrate that stiffened composite panels with through-the-thickness reinforcement are a viable option for the next generation large transport category aircraft, including non-conventional configurations such as the hybrid wing body. This paper focuses on finite element analysis and test data correlation of the hybrid wing body center section test article under mechanical, pressure and combined load conditions. Good agreement between predictive nonlinear finite element analysis and test data is found. Results indicate that a geometrically nonlinear analysis is needed to accurately capture the behavior of the non-circular pressurized and highly-stressed structure when the design approach permits local buckling.

  9. Tube Plugging Criterion for the TPCCW Heat Exchanger of Yonggwang NPP 1 and 2

    International Nuclear Information System (INIS)

    Kim, Hyung Nam; Yoo, Hyun Ju; Choi, Sung Nam; Song, Seok Yoon

    2009-01-01

    The turbine plant component cooling water(TPCCW) system circulates the cooling water to cool the components in the turbine building and discharges the heat from the components through the TPCCW heat exchanger. Recently, Yonggwang NPP 1 and 2 replaced the TPCCW heat exchanger because of tube degradation. The tubing material of new TPCCW heat exchanger of Yonggwang NPP 1 and 2 is titanium. If the tube wall cannot withstand the pressure, the cooling water with the chemicals flows into the tube side and it is discharged to the open water. The chemicals can pollute the open water. Therefore, the tubes of the TPCCW heat exchanger should be inspected and degraded tubes should be plugged. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. However, tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. This method relies on the similar plugging criteria used in the steam generator

  10. Tube Plugging Criterion for the TPCCW Heat Exchanger of Yonggwang NPP 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Nam; Yoo, Hyun Ju; Choi, Sung Nam; Song, Seok Yoon [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-05-15

    The turbine plant component cooling water(TPCCW) system circulates the cooling water to cool the components in the turbine building and discharges the heat from the components through the TPCCW heat exchanger. Recently, Yonggwang NPP 1 and 2 replaced the TPCCW heat exchanger because of tube degradation. The tubing material of new TPCCW heat exchanger of Yonggwang NPP 1 and 2 is titanium. If the tube wall cannot withstand the pressure, the cooling water with the chemicals flows into the tube side and it is discharged to the open water. The chemicals can pollute the open water. Therefore, the tubes of the TPCCW heat exchanger should be inspected and degraded tubes should be plugged. It is inevitable for the materials of the components to be degraded as the power plants become older. The degradation accompanies increasing maintenance cost as well as creating safety issues. The materials and wall thickness of heat exchanger tubes in nuclear power plants are selected to withstand system temperature, pressure, and corrosion. However, tubes have experienced leaks and failures and plugged based upon eddy current testing (ET) results. There are some problems for plugging the heat exchanger tubes since the criterion and its basis are not clearly described. For this reason, the criteria for the tube wall thickness are addressed in order to operate the heat exchangers in nuclear power plant without trouble during the cycle. There are many codes and standards to be referred for calculating the minimum thickness of the heat exchanger tube in the designing stage. However, the codes and standards related to show the tube plugging criteria may not exist currently. In this paper, a method to establish the tube plugging criteria of BOP heat exchangers, which is based on the USNRC Regulatory Guide 1.121, is introduced and the tube plugging criteria for the TPCCW heat exchanger of Yonggwang NPP No. 1 and 2. This method relies on the similar plugging criteria used in the steam generator

  11. Biodegradable microfabricated plug-filters for glaucoma drainage devices.

    Science.gov (United States)

    Maleki, Teimour; Chitnis, Girish; Park, Jun Hyeong; Cantor, Louis B; Ziaie, Babak

    2012-06-01

    We report on the development of a batch fabricated biodegradable truncated-cone-shaped plug filter to overcome the postoperative hypotony in nonvalved glaucoma drainage devices. Plug filters are composed of biodegradable polymers that disappear once wound healing and bleb formation has progressed past the stage where hypotony from overfiltration may cause complications in the human eye. The biodegradable nature of device eliminates the risks associated with permanent valves that may become blocked or influence the aqueous fluid flow rate in the long term. The plug-filter geometry simplifies its integration with commercial shunts. Aqueous humor outflow regulation is achieved by controlling the diameter of a laser-drilled through-hole. The batch compatible fabrication involves a modified SU-8 molding to achieve truncated-cone-shaped pillars, polydimethylsiloxane micromolding, and hot embossing of biodegradable polymers. The developed plug filter is 500 μm long with base and apex plane diameters of 500 and 300 μm, respectively, and incorporates a laser-drilled through-hole with 44-μm effective diameter in the center.

  12. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    Science.gov (United States)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  13. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. Part I: Initial characterizations

    International Nuclear Information System (INIS)

    Dubarry, Matthieu; Truchot, Cyril; Cugnet, Mikael; Liaw, Bor Yann; Gering, Kevin; Sazhin, Sergiy; Jamison, David; Michelbacher, Christopher

    2011-01-01

    Evaluating commercial Li-ion batteries presents some unique benefits. One of them is to use cells made from established fabrication process and form factor, such as those offered by the 18650 cylindrical configuration, to provide a common platform to investigate and understand performance deficiency and aging mechanism of target chemistry. Such an approach shall afford us to derive relevant information without influence from processing or form factor variability that may skew our understanding on cell-level issues. A series of 1.9 Ah 18650 lithium ion cells developed by a commercial source using a composite positive electrode comprising (LiMn1/3Ni1/3Co1/3O2 + LiMn2O4) is being used as a platform for the investigation of certain key issues, particularly path-dependent aging and degradation in future plug-in hybrid electric vehicle (PHEV) applications, under the US Department of Energy's Applied Battery Research (ABR) program. Here we report in Part I the initial characterizations of the cell performance and Part II some aspects of cell degradation in 2C cycle aging. The initial characterizations, including cell-to-cell variability, are essential for life cycle performance characterization in the second part of the report when cell-aging phenomena are discussed. Due to the composite nature of the positive electrode, the features (or signature) derived from the incremental capacity (IC) of the cell appear rather complex. In this work, the method to index the observed IC peaks is discussed. Being able to index the IC signature in details is critical for analyzing and identifying degradation mechanism later in the cycle aging study.

  14. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  15. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    Energy Technology Data Exchange (ETDEWEB)

    Sikes, Karen R [ORNL; Hinds, Shaun [Sentech, Inc.; Hadley, Stanton W [ORNL; McGill, Ralph N [ORNL; Markel, Lawrence C [ORNL; Ziegler, Richard E [ORNL; Smith, David E [ORNL; Smith, Richard L [ORNL; Greene, David L [ORNL; Brooks, Daniel L [ORNL; Wiegman, Herman [GE Global Research; Miller, Nicholas [GE; Marano, Dr. Vincenzo [Ohio State University

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  16. Engineering activities on the ITER representative diagnostic equatorial port plug

    International Nuclear Information System (INIS)

    Meunier, L.; Doceul, L.; Salasca, S.; Martins, J.-P.; Jullien, F.; Dechelle, Christian; Bidaud, Pierre; Pilard, Vincent; Terra, Alexis; Ogea, Mathieu; Ciattaglia, Emanuela; Walker, Christopher

    2009-01-01

    Most of ITER diagnostic systems are integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum vessel ports. The port plug must provide basic functions such as neutron and gamma shielding, supporting the first wall armour (BSM), closing the vacuum vessel ports, while supporting the diagnostic equipments. ITER diagnostic port plug must resist a severe environment like high temperature due to neutron interaction with the structures and high electromechanical loading during disruptions events. CEA has contributed to the design and integration tasks in the frame of the representative equatorial port plug EQ no. 01, in particular on the engineering, structural and thermal finite element analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: -The static mechanical calculations of the top plate closure system under disruption load. -The static mechanical calculations of the BSM attachment to the port plug. These two first studies led to design changes proposals which significantly improved the behaviour of the structures but also showed that the safety margin with respect to design limits is quite low. -The design of a Diagnostic Shield Module (DSM) integrated inside the port plug and a proposition of attachment scheme, with respect to disruption loads. The manufacturing of the DSM has been taken into account, as well as diagnostic integration inside the structure and maintenance aspects. -The thermal assessment of the port plug under neutronic load during normal operation, with the optimization of the cooling system. The maximum temperature calculated in normal operation has been reduced from 900 deg. C to less than 400 deg. C in the front plate; and the cooling arrangement at the back of the port plug has been simplified without important temperature increase.

  17. Engineering activities on the ITER representative diagnostic equatorial port plug

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, L. [Association Euratom CEA, CEA/DSM/IRFM (France)], E-mail: lmeunier@cea.fr; Doceul, L.; Salasca, S.; Martins, J.-P.; Jullien, F.; Dechelle, Christian; Bidaud, Pierre; Pilard, Vincent; Terra, Alexis; Ogea, Mathieu [Association Euratom CEA, CEA/DSM/IRFM (France); Ciattaglia, Emanuela [EFDA CSU, Garching (Germany); Walker, Christopher [ITER International Organisation (France)

    2009-06-15

    Most of ITER diagnostic systems are integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum vessel ports. The port plug must provide basic functions such as neutron and gamma shielding, supporting the first wall armour (BSM), closing the vacuum vessel ports, while supporting the diagnostic equipments. ITER diagnostic port plug must resist a severe environment like high temperature due to neutron interaction with the structures and high electromechanical loading during disruptions events. CEA has contributed to the design and integration tasks in the frame of the representative equatorial port plug EQ no. 01, in particular on the engineering, structural and thermal finite element analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: -The static mechanical calculations of the top plate closure system under disruption load. -The static mechanical calculations of the BSM attachment to the port plug. These two first studies led to design changes proposals which significantly improved the behaviour of the structures but also showed that the safety margin with respect to design limits is quite low. -The design of a Diagnostic Shield Module (DSM) integrated inside the port plug and a proposition of attachment scheme, with respect to disruption loads. The manufacturing of the DSM has been taken into account, as well as diagnostic integration inside the structure and maintenance aspects. -The thermal assessment of the port plug under neutronic load during normal operation, with the optimization of the cooling system. The maximum temperature calculated in normal operation has been reduced from 900 deg. C to less than 400 deg. C in the front plate; and the cooling arrangement at the back of the port plug has been simplified without important temperature increase.

  18. Innovations for ISS Plug-In Plan (IPiP) Operations

    Science.gov (United States)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  19. Hybrid Design, Procurement and Testing for the LHCb Silicon Tracker

    CERN Document Server

    Bay, A; Frei, R; Jiménez-Otero, S; Perrin, A; Tran, MT; Van Hunen, J J; Vervink, K; Vollhardt, A; Agari, M; Bauer, C; Blouw, J; Hofmann, W; Knöpfle, K T; Löchner, S; Schmelling, M; Schwingenheuer, B; Smale, N J; Adeva, B; Esperante-Pereira, D; Lois, C; Vázquez, P; Lehner, F; Bernhard, R P; Bernet, R; Gassner, J; Köstner, S; Needham, M; Steinkamp, O; Straumann, U; Volyanskyy, D; Voss, H; Wenger, A

    2005-01-01

    The Silicon Tracker of the LHCb experiment consists of four silicon detector stations positioned along the beam line of the experiment. The detector modules of each station are constructed from wide pitch silicon microstrip sensors. Located at the module's end, a polyimide hybrid is housing the front-end electronics. The assembly of the more than 600 hybrids has been outsourced to industry. We will report on the design and production status of the hybrids for the LHCb Silicon Tracker and describe the quality assurance tests. Particular emphasis is laid on the vendor qualifying and its impact on our hybrid design that we experienced during the prototyping phase.

  20. HEPA-filter smoke plugging problem

    International Nuclear Information System (INIS)

    Gaskill, J.R.; Magee, M.W.

    1975-01-01

    Actual experiences indicate that during the early stages of a fire, pyrolysis and incomplete combustion of organic materials used in the furnishings or interior finishes of laboratories yield copious quantities of smoke particulates, both liquid and solid. Furthermore, the use of fire retardants in materials used for the above purpose interferes with the combustion process, so that burning of such materials in later stages of a fire will yield dense smoke. These particulates can plug up a HEPA filter or even a more porous prefilter, and thus effectively shut off the exhaust ventilation. In this case, the fire room will pressurize and contamination may spread in an uncontrolled manner. Both small- and large-scale tests have been conducted to evaluate the nature and degree of the problem as a function of materials involved, rate of exposure to the fire, and kinds and temperatures of smoke so generated. Some test work has also been done on scrubbing of smoke. Proposed future work is described. (U.S.)

  1. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  2. Self-similar drag reduction in plug-flow of suspensions of macroscopic fibers

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Hoving, J.P.

    2012-01-01

    Pipe flow experiments show that turbulent drag reduction in plug-flow of concentrated suspensions of macroscopic fibers is a self-similar function of the wall shear stress over the fiber network yield stress. We model the experimental observations, by assuming a central fiber network plug, whose

  3. Data Fusion Modeling for an RT3102 and Dewetron System Application in Hybrid Vehicle Stability Testing

    Directory of Open Access Journals (Sweden)

    Zhibin Miao

    2015-08-01

    Full Text Available More and more hybrid electric vehicles are driven since they offer such advantages as energy savings and better active safety performance. Hybrid vehicles have two or more power driving systems and frequently switch working condition, so controlling stability is very important. In this work, a two-stage Kalman algorithm method is used to fuse data in hybrid vehicle stability testing. First, the RT3102 navigation system and Dewetron system are introduced. Second, a modeling of data fusion is proposed based on the Kalman filter. Then, this modeling is simulated and tested on a sample vehicle, using Carsim and Simulink software to test the results. The results showed the merits of this modeling.

  4. Strategy for evaluating the long-term stability of hole-plugging materials in their geological environments

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1980-01-01

    Material used to plug boreholes will not in general be in chemical equilibrium with its host rock. Adverse long-term performance of a plug can involve changes in phase assemblage in the plug/rock system which are difficult to observe at low temperatures in real time. The thermodynamics of multiphase equilibria provides a technique of predicting what phase changes might occur. The thermodynamic treatment of plug/rock systems utilizes (1) a formulation of possible chemical reactions among phases in the system and (2) determinations of changes in values of Gibbs' free energies for the hypothetical reactions, to identify the theoretically-permitted reactions which could degrade plug performance. Time-dependent prediction of phase changes requires a knowledge of rate laws and constants for specific reactions whose mechanisms are well known

  5. Compact Fluorescent Plug-In Ballast-in-a-Socket

    Energy Technology Data Exchange (ETDEWEB)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other

  6. Design, production and initial state of the backfill and plug in deposition tunnels

    Energy Technology Data Exchange (ETDEWEB)

    Boerjesson, Lennart; Gunnarsson, David; Johannesson, Lars-Erik; Jonsson, Esther

    2010-12-15

    The report is included in a set of Production reports, presenting how the KBS-3 repository is designed, produced and inspected. The set of reports is included in the safety report for the KBS-3 repository and repository facility. The report provides input on the initial state of the backfill and plug in deposition tunnels for the assessment of the long-term safety, SR-Site. The initial state refers to the properties of the engineered barriers once they have been finally placed in the KBS-3 repository and will not be further handled within the repository facility. In addition, the report provides input to the operational safety report, SR-Operation, on how the backfill and plug shall be handled and installed. The report presents the design premises and reference designs of the backfill and plug in deposition tunnels and verifies their conformity to the design premises. It also describes the production of the backfill from excavation and delivery of backfill material to installation in the deposition tunnel, and gives an outline of the installation of the plug. Finally, the initial states of the backfill and plug and their conformity to the reference designs and design premises are presented

  7. Wear on Plugged Tube due to the Foreign Objects on the Secondary Side of Steam Generator

    International Nuclear Information System (INIS)

    Kim, Hyung Nam; Cho, Nam Cheoul; Nam, Min Woo

    2013-01-01

    In this paper, the changes of the tube frequency and amplitude are introduced before and after plugging. The amplitude of the bottom span for the steam generator tube is not much changed after tube plugging. Moreover, the contact force between the plugged tube and the foreign object is the same as that of intact tube and the foreign object. However, the frequencies of plugged tubes are about 9∼12% higher than those of intact tubes. That means the wear due to the foreign object would be accelerated after the tube plugging. Therefore, the tube stabilizer should be installed when the tube is plugged due to the foreign object wear. The tube wall of steam generator is a pressure boundary between the coolant of the primary system and the feedwater of the secondary system. It is very important to insure the structural integrity of the tubes because the radioactive coolant is flow into the feedwater due to the pressure difference as the result of tube failure. The degradations of steam generator tubes are corrosion, wear, fatigue and foreign object wear, etc. The foreign object wear is one of mechanical degradation due to materials flew into the secondary side of steam generator. The steam generator tubes, estimated not to insure structural integrity from the results of the nondestructive evaluation such as eddy current test and visual inspection, are excluded from the service with plugging. However, the tube wear is still being progressed after the plugging because the relative motion between the tube and structure is still existed due to the secondary side flow in the steam generator. If the tube is completely cut because of the degradation, the tube can be a stress or of failure of tubes around the plugged tube. The contact force between the structure and tube is lowered as the wear is progressed. However, the contact force between the foreign object and tube is not changed as the wear is progressed. Therefore, the structural integrity of tubes around the foreign

  8. Multiservice utility plug for remote fuel reprocessing

    International Nuclear Information System (INIS)

    Goldmann, L.H. Jr.; Jensen, D.A.

    1979-10-01

    This paper presents the design of a multiservice utility plug and drive system to be used for reliably engaging and disengaging all utility connections automatically that serve large portable equipment modules. The modules are arranged into a fuel processing production line within the Fuels and Materials Examination Laboratory. The utility plugs allow the modules to be easily replaced, rearranged or removed for maintenance

  9. Feasibility study of a concrete plug made of low pH concrete

    Energy Technology Data Exchange (ETDEWEB)

    Dahlstroem, Lars-Olof; Magnusson, Jonas (NCC Engineering (Sweden)); Gueorguiev, Ginko; Johansson, Morgan (Reinertsen Sverige AB, Goeteborg (Sweden))

    2009-09-15

    In this report a concrete plug, used as a barrier between the deposition tunnels and the access tunnel, is investigated. The objectives of the work is to see whether it is possible to use low pH concrete for the plug and whether it can be designed without using reinforcement. The requirements set on the plug are that the water leakage through it should be small enough and that the concrete stresses are limited to a value valid for the concrete used. A modified geometry of the plug is proposed, which makes it possible to use it as a general solution in all deposition tunnels. Material properties of a low pH concrete (B200) determined by CBI have been used. Loads considered in the study is the pressure from water and swelling, the temperature change in the rock and plug due to heat development from nuclear fuel stored in nearby copper canisters, pre-stressing in the plug due to cooling during construction and the shrinkage of concrete in the plug. Two-dimensional, axis-symmetric finite element analyses, assuming linear elastic material behaviour in rock and concrete where contact friction between concrete and rock is taken into consideration, have been used to study the structural response of the plug. A total of 48 main load combinations, consisting of 8 different load scenarios and 6 material combinations, have been used. It is found that the concrete plug will not remain uncracked when subjected to the loads studied but that it, nevertheless, is possible to achieve an unreinforced concrete plug that satisfies the requirements set up. The minimum size of the concrete compressed zone will be 0.5 m, resulting in a water leakage through the plug determined to be lower than the requirement of 0.01 l/min set up in this study. Further, the maximum compressive stresses of interest are 33 MPa and the maximum displacement in the plug is about 3 mm, which are deemed to be satisfactorily. Consequently, it is concluded that it seems possible to use low pH concrete for the plug

  10. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  11. Storage shaft definitive closure plug and method

    International Nuclear Information System (INIS)

    Dardaine, M.

    1992-01-01

    A definitive closure plug system for radioactive waste storage at any deepness, is presented. The inherent weight of the closure materials is used to set in the plug: these materials display an inclined sliding surface in such a way that when the closure material rests on a stable surface of the shaft storage materials, the relative sliding of the different materials tends to spread them towards the shaft internal wall so as to completely occlude the shaft

  12. Blot hybridization analysis of TCR genes of T cells for five people exposed in a radiation accident

    International Nuclear Information System (INIS)

    Min Rui; Liu Benti; Cheng Tianmin; Yang Rujun; Meng Xiangshun; Xiao Jinsong

    1996-01-01

    Human lymphocyte total DNA was prepared in agarose plug by mixing cells with low melting agarose, and two restriction endonucleases were used for digestion of the total DNA with human α and β TCR cDNA probes. The total digested DNA from five people who were whole body exposed to 2.0-2.5 Gy ionizing radiation in an accident 4.5 years ago was hybridized by Southern blot method. The results showed that no obvious difference in hybridization bands was found between controls and the five victims when hybridizations were fulfilled in the total DNA which was digested by Hind III restriction endonuclease with both α and β probes. However, when the total DNA was digested with restriction endonuclease EcoR I and was hybridized with TCR α probe, four of the five exposed people showed a different hybridizing band pattern compared with the controls. The results are also discussed

  13. Providing free autopoweroff plugs

    DEFF Research Database (Denmark)

    Jensen, Carsten Lynge; Hansen, Lars Gårn; Fjordbak, Troels

    2012-01-01

    Experimental evidence of the effect of providing households with cheap energy saving technology is sparse. We present results from a field experiment in which autopoweroff plugs were provided free of charge to randomly selected households. We use propensity score matching to find treatment effects...

  14. Cyclic variation of heat flux on spark plug; Tenka plug bu no netsuryusoku hendo no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, K.; Sasaki, T.; Urata, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Kagawa, J.; Matsutani, W. [NGK Spark Plug Co. Ltd., Nagoya (Japan)

    1998-02-25

    This paper examines the relationship between the magnitude of the heat flux to the spark plug ground electrode, averaged over an 80` crank angle (CA) of early compression stroke, and the initial burning rate, defined as the CA at which 5% of mass is burned. The heat flux was measured by a thin-film thermocouple with the hot junction on the surface of ground electrode. The results demonstrate that faster initial burning rate correlated well with increasing heat flux from the spark plug to the mixture. The difference in the magnitude and direction of the heat flux is associated with the amount of residual gas concentration and thus the results show the effect of residual gas concentration. The cycle-averaged heat flux from the hot junction is 0.367 MW/m{sup 2}, corresponding to a total heat flow of 20 W from the total surface area of ground electrode. This value is about an order of magnitude larger than that previously reported in the literature for locations away from the spark plug, e. g. at the cylinder wall. 11 refs., 9 figs., 1 tab.

  15. CEA engineering studies and integration of the ITER diagnostic port plugs

    International Nuclear Information System (INIS)

    Doceul, L.; Walker, C.; Ingesson, C.; Ciattaglia, E.; Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C.

    2007-01-01

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel

  16. CEA engineering studies and integration of the ITER diagnostic port plugs

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)], E-mail: louis.doceul@cea.fr; Walker, C. [ITER International Team, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Ingesson, C.; Ciattaglia, E. [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)

    2007-10-15

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel.

  17. Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process.

    Science.gov (United States)

    Ge, Shijian; Peng, Yongzhen; Qiu, Shuang; Zhu, Ao; Ren, Nanqi

    2014-05-15

    This study assessed the technical feasibility of removing nitrogen from municipal wastewater by partial nitrification (nitritation) in a continuous plug-flow step feed process. Nitrite in the effluent accumulated to over 81.5  ± 9.2% but disappeared with the transition of process operation from anoxic/oxic mode to the anaerobic/anoxic/oxic mode. Batch tests showed obvious ammonia oxidizing bacteria (AOB) stimulation (advanced ammonia oxidation rate) and nitrite (NOB) oxidizing bacteria inhibition (reduced nitrite oxidation rate) under transient anoxic conditions. Two main factors contributed to nitritation in this continuous plug-flow process: One was the alternating anoxic and oxic operational condition; the step feed strategy guaranteed timely denitrification in anoxic zones, allowing a reduction in energy supply (nitrite) to NOB. Fluorescence in Situ Hybridization and quantitative real-time polymerase chain reaction analysis indicated that NOB population gradually decreased to 1.0  ± 0.1% of the total bacterial population (dominant Nitrospira spp., 1.55 × 10(9) copies/L) while AOB increased approximately two-fold (7.4  ± 0.9%, 1.25 × 10(10) copies/L) during the above anoxic to anaerobic transition. Most importantly, without addition of external carbon sources, the above wastewater treatment process reached 86.0  ± 4.2% of total nitrogen (TN) removal with only 7.23 ± 2.31 mg/L of TN in the effluent, which met the discharge requirements. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Localization of cask and plug remote handling system in ITER using multiple video cameras

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, João, E-mail: jftferreira@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Vale, Alberto [Instituto de Plasmas e Fusão Nuclear - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Ribeiro, Isabel [Laboratório de Robótica e Sistemas em Engenharia e Ciência - Laboratório Associado, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2013-10-15

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building.

  19. Localization of cask and plug remote handling system in ITER using multiple video cameras

    International Nuclear Information System (INIS)

    Ferreira, João; Vale, Alberto; Ribeiro, Isabel

    2013-01-01

    Highlights: ► Localization of cask and plug remote handling system with video cameras and markers. ► Video cameras already installed on the building for remote operators. ► Fiducial markers glued or painted on cask and plug remote handling system. ► Augmented reality contents on the video streaming as an aid for remote operators. ► Integration with other localization systems for enhanced robustness and precision. -- Abstract: The cask and plug remote handling system (CPRHS) provides the means for the remote transfer of in-vessel components and remote handling equipment between the Hot Cell building and the Tokamak building in ITER. Different CPRHS typologies will be autonomously guided following predefined trajectories. Therefore, the localization of any CPRHS in operation must be continuously known in real time to provide the feedback for the control system and also for the human supervision. This paper proposes a localization system that uses the video streaming captured by the multiple cameras already installed in the ITER scenario to estimate with precision the position and the orientation of any CPRHS. In addition, an augmented reality system can be implemented using the same video streaming and the libraries for the localization system. The proposed localization system was tested in a mock-up scenario with a scale 1:25 of the divertor level of Tokamak building

  20. Strategies for Controlling Plug Loads. A Tool for Reducing Plug Loads in Commercial Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bonnema, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheppy, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Shanti [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    Plug loads are often not considered as part of the energy savings measures in Commercial Buildings; however, they can account for up to 50% of the energy used in the building. These loads are numerous and often scattered throughout a building. Some of these loads are purchased by the owner and some designed into the building or the tenant finishes for a space. This document provides a strategy and a tool for minimizing these loads.

  1. Lack of detection of human papillomavirus infection by hybridization test in prostatic biopsies

    International Nuclear Information System (INIS)

    Gazzaz, Faten S; Mosli, Hisham A

    2009-01-01

    To explore the possibility of finding human papillomavirus (HPV) infection in the prostate tissue of a cohort of Saudi men presenting with benign prostatic hyperplasia (BPH) or prostate cancer. A cohort study on prospectively collected tissue samples was conducted at King Abdulaziz University Hospital (KAUH), Jeddah, Kingdom of Saudi Arabia from March 2007 to December 2008 on a total of 56 male patients, age range 50-93 years (average 68), diagnosed as having BPH or prostate cancer. The HPV DNA hybridization by hybrid capture 2 technology was performed on prostate biopsies of these patients to detect 18 types of HPV infection, and differentiate between 2 HPV DNA groups, the low-risk types, and the high/intermediate risk types.The tissues of all the prostatic biopsies were negative for HPV DNA. Our results, using the hybridization test, indicate that it is unlikely that HPV-16 or HPV-18, or the other tested subtypes, enhance the risk of prostate cancer. (author)

  2. Effect of shear-thinning behaviour on liquid-liquid plug flow in microchannels

    Science.gov (United States)

    Roumpea, Evangelia; Chinaud, Maxime; Weheliye, Weheliye Hashi; Angeli, Panagiota; Kahouadji, Lyes; Matar, Omar K.

    2016-11-01

    The present work investigates the dynamics of plug formation of shear-thinning solutions in a 200 μm microchannel using a two-colour micro-PIV system. Measurements, including phase-averaged velocity fields, have been conducted both at the T-junction inlet and the main channel to enhance understanding of non-Newtonian liquid-liquid flows. Two aqueous glycerol solutions containing xanthan gum are used as the non-Newtonian fluids while 5 cSt silicone oil is the Newtonian phase. The current experimental results revealed a pronounced impact of the xanthan gum (shear-thinning behaviour) on the flow pattern transition boundaries, and enhance the fluid flowrates where plug flow occurred. The addition of polymer resulted also in different hydrodynamic characteristics such as a bullet-shaped plug and an increased film thickness between the plug and the wall. In the present work, the technique allows to capture the velocity field of both phases simultaneously. Experimental results are compared with the numerical simulations provided by the code BLUE. Project funded under the UK Engineering and Physical Sciences Research Council (EPSRC) Programme Grant MEMPHIS.

  3. Test Beam Results of Geometry Optimized Hybrid Pixel Detectors

    CERN Document Server

    Becks, K H; Grah, C; Mättig, P; Rohe, T

    2006-01-01

    The Multi-Chip-Module-Deposited (MCM-D) technique has been used to build hybrid pixel detector assemblies. This paper summarises the results of an analysis of data obtained in a test beam campaign at CERN. Here, single chip hybrids made of ATLAS pixel prototype read-out electronics and special sensor tiles were used. They were prepared by the Fraunhofer Institut fuer Zuverlaessigkeit und Mikrointegration, IZM, Berlin, Germany. The sensors feature an optimized sensor geometry called equal sized bricked. This design enhances the spatial resolution for double hits in the long direction of the sensor cells.

  4. Feasibility study on combined use of residential SOFC cogeneration system and plug-in hybrid electric vehicle from energy-saving viewpoint

    International Nuclear Information System (INIS)

    Wakui, Tetsuya; Wada, Naohiro; Yokoyama, Ryohei

    2012-01-01

    Highlights: ► Optimal operational planning for combined use of SOFC-CGS and PHEV is conducted. ► Charging PHEV with SOFC-CGS increases electric capacity factor of SOFC-CGS. ► Energy-saving effect of combined use is higher than that of their separate use. ► Combined use provides energy savings in both residential and transport sectors. - Abstract: The energy-saving effect of a combined use of a residential solid oxide fuel cell cogeneration system (SOFC-CGS) that adopts a continuous operation, and a plug-in hybrid electric vehicle (PHEV) is discussed by optimal operational planning based on mixed-integer linear programming. This combined use aims to increase the electric capacity factor of the SOFC-CGS by charging the PHEV using the SOFC-CGS electric power output late at night, and targets the application in regions where the reverse power flow from residential cogeneration systems to commercial electric power systems is not permitted, like in Japan. The optimal operation patterns of the combined use of 0.7-kWe SOFC-CGS and PHEV for a simulated energy demand with a sampling time of 1 h and various daily running distances of the PHEV show that this combined use increases the electric capacity factor of the SOFC-CGS and saves more energy in comparison with their separate use in which the SOFC-CGS is used but the PHEV is charged only with purchased electric power. Furthermore, it is found that at the PHEV daily running distance of 12 km/d, the reduction rate of the annual primary energy consumption for this combined use increases by up to 3.7 percentage points relative to their separate use. Consequently, this feasibility study reveals that the combined use of the SOFC-CGS and PHEV provides the synergistic effect on energy savings in the residential and transport sectors. For the practical use, simulation scenarios considering the energy demand fluctuations with short periods and real-time pricing of the purchased electric power must be considered as future

  5. Mechanism of Randall’s Plugs Development

    Directory of Open Access Journals (Sweden)

    Felix Grases

    2017-09-01

    Full Text Available Mechanism of formation and development of intraluminal concretion, also called Randall's plug, extracted from a female patient forming calcium oxalate dihydrate (COD calculi was examined. Some of these calculi were connected to the papillary tip, and had connections with the interior of the papilla with finger-like extensions in the collecting duct (CD. The intraluminal concretion consisted of inter-grown COD crystals of irregular size (30–100 μm, approximately 5% of biological hydroxyapatite (BHAP and an organic matter. Urine of the patient was moderately supersaturated with respect to COD and amorphous calcium phosphate (ACP. Model of kidney, recently refined by Robertson, was used in calculations. Calculated Reynolds number indicated that the flow of liquid through tubules was purely laminar with parabolic velocity profile. COD crystals formed at the beginning of ascending loop of Henle by heterogeneous nucleation. Concentration of COD crystals in urine was limited and considered equal to concentration of crystals during crystaluria. The free particle and the fixed particle mechanisms were considered. The free particle mechanism assumes formation of a single crystal or agglomerate of crystals blocking the CD by virtue of size. The growth of COD crystals at concrete urinary supersaturation was too slow for a single crystal to attain size with settling velocity faster than the translation flow rate of liquid. Hydrodynamic shear caused aggregation of COD solid particles dispersed in a liquid flowing in the nephron. Number of COD crystals present in urine was not sufficient for formation of fractal agglomerate blocking the Bellini duct. Similarly, a fractal agglomerate of urinary phosphate present in the form of Posner's clusters was not large enough to obstruct the Bellini duct. The opening of the CD could not be obstructed by a single crystal of COD or fractal agglomerate composed of either COD crystals or calcium phosphate clusters, formed

  6. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  7. The water intensity of the plugged-in automotive economy.

    Science.gov (United States)

    King, Carey W; Webber, Michael E

    2008-06-15

    Converting light-duty vehicles from full gasoline power to electric power, by using either hybrid electric vehicles or fully electric power vehicles, is likely to increase demand for water resources. In the United States in 2005, drivers of 234 million cars, lighttrucks, and SUVs drove approximately 2.7 trillion miles and consumed over 380 million gallons of gasoline per day. We compare figures from literature and government surveys to calculate the water usage, consumption, and withdrawal, in the United States during petroleum refining and electricity generation. In displacing gasoline miles with electric miles, approximately 2-3 [corrected] times more water is consumed (0.24 [corrected] versus 0.07--0.14 gallons/mile) and over 12 [corrected] times more water is withdrawn (7.8 [corrected] versus 0.6 gallons/mile) primarily due to increased water cooling of thermoelectric power plants to accommodate increased electricity generation. Overall, we conclude that the impact on water resources from a widespread shift to grid-based transportation would be substantial enough to warrant consideration for relevant public policy decision-making. That is not to say that the negative impacts on water resources make such a shift undesirable, but rather this increase in water usage presents a significant potential impact on regional water resources and should be considered when planning for a plugged-in automotive economy.

  8. Apparatus for assembling and welding end plugs to nuclear fuel cladding tubes and inspecting the end plug welds on an automated basis

    International Nuclear Information System (INIS)

    Schoenig, F.C. Jr.; Walker, E.S.; Cueman, M.K.; Haughton, R.A.; Zuloaga, J.A. Jr.

    1989-01-01

    This patent describes an automated apparatus for welding a separate end plug to one open end of each of a succession of nuclear fuel cladding tubes and for inspecting each end plug weld. The apparatus comprising, in combination: a welding station; a cooldown station for cooling each end plug weld in an inert gas atmosphere; a serial number reader station for reading a serial number on each end plug; a first weld inspection station; a second weld inspection station for generating second weld inspection data; a computer system linked with the serial number reader and the first and second weld inspection stations; an input queue for holding a plurality of tubes; a tube transporter for periodically picking individual tubes from the input queque and conveying the tubes in a direction transverse to their tube axis in indexing steps to index positions respectively axially aligned with the welding, serial number reader, and first and second weld inspection stations; and a sorter positioned at an output end of the tube transporter

  9. COMPARISON OF PARALLEL AND SERIES HYBRID POWERTRAINS FOR TRANSIT BUS APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL; Jones, Perry T [ORNL; LaClair, Tim J [ORNL; Parks, II, James E [ORNL

    2016-01-01

    The fuel economy and emissions of both conventional and hybrid buses equipped with emissions aftertreatment were evaluated via computational simulation for six representative city bus drive cycles. Both series and parallel configurations for the hybrid case were studied. The simulation results indicate that series hybrid buses have the greatest overall advantage in fuel economy. The series and parallel hybrid buses were predicted to produce similar CO and HC tailpipe emissions but were also predicted to have reduced NOx tailpipe emissions compared to the conventional bus in higher speed cycles. For the New York bus cycle (NYBC), which has the lowest average speed among the cycles evaluated, the series bus tailpipe emissions were somewhat higher than they were for the conventional bus, while the parallel hybrid bus had significantly lower tailpipe emissions. All three bus powertrains were found to require periodic active DPF regeneration to maintain PM control. Plug-in operation of series hybrid buses appears to offer significant fuel economy benefits and is easily employed due to the relatively large battery capacity that is typical of the series hybrid configuration.

  10. Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm

    OpenAIRE

    Catterall, S.; Karamov, S.

    2001-01-01

    We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.

  11. 2D fringe probing of liquid film dynamics of a plug bubble in a micropipe

    International Nuclear Information System (INIS)

    Ji, H F; Qiu, H H

    2009-01-01

    An extended film thickness measurement method that can obtain the liquid film thickness profile of the whole plug bubble in a capillary tube simultaneously is presented. The approach is based on a 2D spatial fringe scattering technique, where the spatial frequency of scattered fringes is a function of liquid film thickness along the micropipe. Laser sheets are used instead of the laser beams, and the width of the laser sheets can be selected to cover the whole measurement field. Capillary tubes, with inner diameters of 1.0 mm and 0.3 mm, and lengths of 125 mm and 65 mm, are used. A gas plug bubble, 2.5–20 mm long, is introduced and moves through the testing part of the tube, which is filled with water as the working fluid. The interference fringes produced by two incident laser sheets are scattered from the interface between gas and water, and captured by a high-speed camera at a speed of up to 2000 frames s −1 . The experimental results show that the improved method can obtain the liquid film thickness profile at the different times and can be used to analyze the status of the plug bubble movement in a micropipe

  12. Guidelines for Selecting Plugs Used in Thin-Walled Tube Drawing Processes of Metallic Alloys

    Directory of Open Access Journals (Sweden)

    Eva María Rubio

    2017-12-01

    Full Text Available In this paper, some practical guidelines to select the plug or set of plugs more adequate to carry out drawing processes of thin-walled tubes carried out with fixed conical inner plug are presented. For this purpose, the most relevant input parameters have been considered in this study: the tube material, the most important geometrical parameters of the process (die semiangle, α , and cross-sectional area reduction, r and the friction conditions (Coulomb friction coefficients, μ 1 , between the die and the tube outer surface, and μ 2 , between the plug and the tube inner surface. Three work-hardening materials are analyzed: the annealed copper UNS C11000, the aluminum UNS A91100, and the stainless steel UNS S34000. The analysis is realized by means of the upper bound method (UBM, modelling the plastic deformation zone by triangular rigid zones (TRZ, under the validated assumption that the process occurs under plane strain conditions. The obtained results allow establishing, for each material, a group of geometrical parameters, friction conditions, a set of plugs that make possible to carry out the process under good conditions, and the optimum plug to carry out the process using the minimum amount of energy. The proposed model is validated by means of an own finite element analysis (FEA carried out under different conditions and, in addition, by other finite element method (FEM simulations and real experiments taken from other researchers found in the literature (called literature simulations and literature experimental results, respectively. As a main conclusion, it is possible to affirm that the plug that allows carrying out the process with minimum quantity of energy is cylindrical in most cases.

  13. PWR steam generators tube integrity: plugging criteria for PWSCC in roll transition zone

    International Nuclear Information System (INIS)

    Mattar Neto, Miguel; Cruz, Julio R.B.

    1999-01-01

    One of the most important causes for tube plugging in PWR (Pressurized Water Reactor) steam generators is the degradation mechanism called Primary Water Stress Corrosion Cracking (PWSCC) in roll transition zone (RTZ) near the tubesheet, mainly for Alloy 600 tubes. To avoid an excessive tube plugging, alternative criteria have been developed based on an approach that consists in withdrawing from service any tube containing a defect for which there is a high probability of a critical size under accident conditions to be reached during next operation cycle. Predictions of the number of tubes to be plugged can be done aiming at preventive maintenance and tube repair, and even a steam generator replacement, without a large and non-planned plant outage. This work presents important aspects related to tube plugging criteria for PWSCC in RTZ based on the risk of break after a leak detection. Calculations of allowable crack length and allowable leak rate for a particular situation are also shown. (author)

  14. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  15. FY-1979 progress report. Hydrotransport plugging study.

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Lombardo, N.J.

    1980-01-01

    The objective of the Hydrotransport Plugging Study is to investigate phenomena associated with predicting the onset and occurrence of plugging in pipeline transport of coal. This study addresses large particle transport plugging phenomena that may be encountered in run-of-mine operations. The project is being conducted in four tasks: review and analysis of current capabilities and available data, analytical modeling, experimental investigations, and unplugging and static start-up. This report documents work completed in FY-1979 as well as work currently in progress. A review of currently available prediction methods was completed. Applicability of the methods to large particle hydrotransport and the prediction of plugging was evaluated. It was determined that available models were inadequate, either because they are empirical and tuned to a given solid or because they are simplified analytical models incapable of accounting for a wide range of parameters. Complicated regression curve fit models lacking a physical basis cannot be extrapolated with confidence. Several specific conclusions were reached: Recent developments in mechanistic modeling, describing flow conditions at the limit of stationary deposition, provide the best basis for prediction and extrapolation of large particle flow. Certain modeled phenomena require further analytical and experimental investigation to improve confidence levels. Experimental work needs to be performed to support modeling and to provide an adequate data base for comparison purposes. No available model permits treatment of solids mixtures such as coal and rock.

  16. Flow induced vibration studies on PFBR control plug components

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, V., E-mail: prakash@igcar.gov.in [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India); Kumar, P. Anup; Anandaraj, M.; Thirumalai, M.; Anandbabu, C.; Rajan, K.K. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu (India)

    2012-09-15

    susceptible to flow induced vibrations. Since control plug is partially immersed in hot sodium, the reactor transients are felt by the components, hence it is very much essential to understand the vibration response of the control plug components. The main vibration excitation mechanisms are vortex shedding, turbulence buffeting, fluid-elastic instability, etc. In order to assess the susceptibility of CP internals against flow induced vibrations (FIVs), to measure structural response and to validate the analytical codes developed for FIV analysis of CP along with the assumptions of supports for various CP internals therein, a flow induced vibration testing program was formulated in 1:4 scale model of PFBR CP. As the first phase of this program, experimental modal analysis of CP internals was carried out in air to estimate the modal parameters. Subsequently, flow induced vibration studies were conducted in the 1:4 scale model of CP in water. In this model, size of the tubes, shell and plates are reduced to Vulgar-Fraction-One-Quarter size of the PFBR CP. The stiffness of CP parts is reduced by 4 times and mass decreased by 64 times which results in scaling up of modal frequencies by 4 times. The CP internals in the model were instrumented with accelerometers and strain gages. The studies were conducted in water with flows derived on the basis of velocity similitude. The output signals from the sensors were acquired and analyzed to obtain frequency spectra, overall vibration amplitude and strain values at various locations inside CP. The study carried out confirms the absence of resonance due to flow induced vibration mechanisms for the entire operating range. This paper elucidates the modeling details, similitude criteria, instrumentation employed and experimental results obtained with discussion on results.

  17. A strategy for evaluating the long-term stability of hole-plugging materials in their geological environments

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1980-01-01

    Material used to plug boreholes will not in general be in chemical equilibrium with its host rock. Adverse long-term performance of a plug can involve changes in phase assemblage in the plug/rock system which are difficult to observe at low temperatures in real time. The thermodynamics of multiphase equilibria provides a technique of predicting what phase changes might occur. The thermodynamic treatment of plug/rock systems utilizes (1) a formulation of possible chemical reactions among phases in the system and (2) determinations of changes in values of Gibbs' free energies for the hypothetical reactions, to identify the theoretically-permitted reactions which could degrade plug performance. Time-dependent prediction of phase changes requires a knowledge of rate laws and constants for specific reactions whose mechanisms are well known

  18. Microcontroller based automation system for end plug welding of test fuel pins in solgel facility

    International Nuclear Information System (INIS)

    Prabhakar Rao, J.; Srinivas, K.C.; Prabhu, T.V.; Ravi, N.

    2010-01-01

    A microcontroller based stepper motor control and driver Unit for 'XY' positioning system is designed and developed to perform the 'pick-place' of fuel tube to pre-determined coordinates. This Unit provides a fine movement of the fuel tube to get perfect position for welding. The Graphical User Interface software running on PC displays the absolute position of the XY system and provides all the required control buttons to achieve the accurate positioning. The welding of clad tube with end plug is carried out in a high precision welding fixture by operating it remotely. This paper discusses about the Hardware and Software features and implementation of the instrumentation. (author)

  19. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    Meuschke, R.E.; Satterlee, A.E.

    1978-01-01

    A combined fuel assembly and thimble plug gripper for raising and lowering a fuel assembly into a nuclear reactor core, and for lifting and lowering a thimble plug assembly into the fuel assembly is described. It includes a vertically movable mast housing a mechanism which causes pivotally mounted fingers on the bottom of the mast to be moved into and out of latching engagement with the nozzle of a fuel assembly when the mast is resting on the assembly. The mast includes a second mechanism which supports second fingers pivotally mounted thereon and actuable by a third mechanism into and out of engagement with a thimble plug assembly supporting plugs adapted to be inserted in control rod guide thimbles in the fuel assembly. The second mechanism further includes an arrangement for lowering or raising the plug assembly respectively into or out of the guide thimbles in the fuel assembly. The apparatus includes control and interlock systems which preclude operation of the mechanisms under certain prescribed conditions

  20. Polysaccharides and bacterial plugging. Final report, 1992--1993

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1995-02-01

    In situ core plugging experiments and transport experiments, using the model bacteria Leuconostoc m., have been conducted. Results demonstrated that cellular polysaccharide production increases cell distribution in porous media and caused an overall decrease in media permeability. Further, a parallel core plugging experiment was conducted and showed the feasibility of this system to divert injection fluid from high permeability zones into low permeability zones within porous media as is needed for profile modification. To implement this type of application, however, controlled placement of cells and rates of polymer production are needed. Therefore, kinetic studies were performed. A kinetic model was subsequently developed for Leuconostoc m. bacteria. This model is based on data generated from batch growth experiments and allows for the prediction of saccharide utilization, cell generation, and dextran production. These predictions can be used to develop injection strategies for field implementation. Transport and in situ growth micromodel experiments have shown how dextran allow cells to remain as clusters after cell division which enhanced cell capture and retention in porous media. Additional Damkohler experiments have been performed to determine the effects of the nutrient injection rate and nutrient concentration on the rate of porous media plugging. As shown experimentally and as predicted by a model for in situ growth, an increase in nutrient concentration and/or its injection rate will result in a faster rate of porous media plugging. Through continuum model simulations, it has been shown that the initial cell profiles play a key role on the core plugging rate. Controlling the location of the inoculating cells is thus another key factor in using bacteria for profile modification.

  1. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1991-01-01

    This patent describes, for use in facilitating replacement of a neutron absorber control rod on a control assembly spider structure, an end plug. It comprises a pair of separate upper and lower plug portions; the upper section of the upper plug portion being configured for rigid attachment; the middle section of the upper plug portion having angularly displaced flat surfaces formed on the exterior

  2. Development of In-pile Plug Assembly and Primary Shutter for Cold Neutron Guide System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jin Won; Cho, Yeong Garp; Ryu, Jeong Soo; Lee, Jung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    The HANARO, a 30 MW multi-purpose research reactor in Korea, will be equipped with a neutron guide system, in order to transport cold neutrons from the neutron source to the neutron scattering instruments in the neutron guide hall near the reactor building. The neutron guide system of HANARO consists of the in-pile plug assembly with in-pile guides, the primary shutter with in-shutter guides, the neutron guides in the guide shielding room with dedicated secondary shutters, and the neutron guides connected to the instruments in the neutron guide hall. The functions of the in-pile plug assembly are to shield the reactor environment from a nuclear radiation and to support the neutron guides and maintain them precisely oriented. The primary shutter is a mechanical device to be installed just after the in-pile plug assembly, which stops neutron flux on demand. This report describes the mechanical design, fabrication, and installation procedure of the in-pile plug assembly and the primary shutter for the neutron guide system at HANARO. A special tool and procedure for a replacement of in-pile plug and guide cassette is also presented with the interface condition in the reactor hall.

  3. Implante de plug lacrimal termosensível para tratamento da síndrome da disfunção lacrimal Thermo sensitive punctum plug implant for the treatment of dysfunctional tear syndrome

    Directory of Open Access Journals (Sweden)

    Juliana Silverio

    2010-08-01

    Full Text Available OBJETIVO: Avaliar os resultados da oclusão de ponto lacrimal reversível com o uso de plugs termosensíveis para o tratamento da síndrome da disfunção lacrimal. MÉTODOS: Dezoito olhos de 9 pacientes com diagnóstico de olho seco foram selecionados e submetidos à oclusão reversível de ponto lacrimal com o uso de plugs termosensíveis, e acompanhados por 60 dias através de questionário OSDI e testes com fluoresceína, rosa bengala e Schirmer. RESULTADOS: Em todos os pacientes estudados houve melhora nos sintomas de olho seco e melhora nos parâmetros oftalmológicos pesquisados. Em apenas 1 dos pacientes a melhora dos sintomas foi pequena, e não houve diminuição na dependência de colírio lubrificante. Nos outros 8 pacientes houve diminuição no uso de colírio. Durante o estudo não ocorreram complicações infecciosas ou de extrusão. CONCLUSÃO: Oclusão temporária do ponto lacrimal com SmartPlug tm parece ser uma opção efetiva para o tratamento da síndrome da disfunção lacrimal quando o uso de lubrificantes não é suficiente. Sua colocação é relativamente simples e segura, porém estudos mais longos são necessários.PURPOSE: To evaluate the results of occlusion of the lacrimal punctum reversible with the use of thermosensitive plugs to treat the dysfunctional tear syndrome. METHODS: Eighteen eyes of 9 patients with dry eye were selected and subjected to reversible occlusion of the lacrimal punctum with the use of thermosensitive plugs and were followed for 60 days through the OSDI questionnaire, fluorescein staining, rose bengal staining and Schirmer's test. RESULTS: in all studied patients there was improvement in dry eye symptoms and in ophthalmic parameters studied. In only 1 of the patients, symptom improvement was small, and no decrease in dependence on lubricating drops. In the other 8 patients there was a decrease in the use of eye drops. During the study there were no infectious complications or extrusion

  4. POTENTIAL FOR INVASION OF UNDERGROUND SOURCES OF DRINKING WATER THROUGH MUD-PLUGGED WELLS: AN EXPERIMENTAL APPRAISAL

    Science.gov (United States)

    The main objective of the feasibility study described here was to test the hypothesis that properly plugged wells are effectively sealed by drilling mud. In The process of testing the hypothesis, evidence about dynamics of building mud cake on the wellbore-face was obtained, as ...

  5. Predicting the market potential of plug-in electric vehicles using multiday GPS data

    International Nuclear Information System (INIS)

    Khan, Mobashwir; Kockelman, Kara M.

    2012-01-01

    GPS data for a year's worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 mi of range should meet the needs of 50% of one-vehicle households and 80% of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 mi per day and should be able to electrify close to 80% of its miles, while meeting all its travel needs, using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric range. Households owning two or more vehicles can electrify 50 to 70% of their total household miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that, when gas prices are $3.50 per gallon and electricity rates are at 11.2 ct/kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla. - Highlights: ► Daily travel distances over a year were obtained for 255 Seattle households. ► 100-mi-range BEVs can meet 99% of daily needs for 50% of one-vehicle households. ► 100-mi-range BEVs can meet 99% of needs for 80% of multi-vehicle households. ► One-vehicle households will electrify close to 80% of their miles using a PHEV40 while meeting all trip-distance needs. ► Two-vehicle households can electrify 50 to 70% of household miles using a PHEV40 while meeting all trip-distance needs.

  6. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  7. Optimization of batteries for plug-in hybrid electric vehicles

    Science.gov (United States)

    English, Jeffrey Robb

    This thesis presents a method to quickly determine the optimal battery for an electric vehicle given a set of vehicle characteristics and desired performance metrics. The model is based on four independent design variables: cell count, cell capacity, state-of-charge window, and battery chemistry. Performance is measured in seven categories: cost, all-electric range, maximum speed, acceleration, battery lifetime, lifetime greenhouse gas emissions, and charging time. The performance of each battery is weighted according to a user-defined objective function to determine its overall fitness. The model is informed by a series of battery tests performed on scaled-down battery samples. Seven battery chemistries were tested for capacity at different discharge rates, maximum output power at different charge levels, and performance in a real-world automotive duty cycle. The results of these tests enable a prediction of the performance of the battery in an automobile. Testing was performed at both room temperature and low temperature to investigate the effects of battery temperature on operation. The testing highlighted differences in behavior between lithium, nickel, and lead based batteries. Battery performance decreased with temperature across all samples with the largest effect on nickel-based chemistries. Output power also decreased with lead acid batteries being the least affected by temperature. Lithium-ion batteries were found to be highly efficient (>95%) under a vehicular duty cycle; nickel and lead batteries have greater losses. Low temperatures hindered battery performance and resulted in accelerated failure in several samples. Lead acid, lead tin, and lithium nickel alloy batteries were unable to complete the low temperature testing regime without losing significant capacity and power capability. This is a concern for their applicability in electric vehicles intended for cold climates which have to maintain battery temperature during long periods of inactivity

  8. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  9. Plugs for deposition tunnels in a deep geologic repository in granitic rock. Concepts and experience

    International Nuclear Information System (INIS)

    Dixon, D. A.; Boergesson, L.; Gunnarsson, D.; Hansen, J.

    2009-11-01

    Regardless of the emplacement geometry selected in a geological repository for spent nuclear fuel, there will be a requirement for the access tunnels to remain open while repository operations are ongoing. The period of repository operation will stretch for many years (decades to more than a century depending on disposal concept and number of canisters to be installed). Requirements for extended monitoring of the repository before final closure may further extend the period over which the tunnels must remain open. The intersection of the emplacement rooms/drifts and the access tunnels needs to be physically closed in order to ensure that the canisters remain undisturbed and that no undesirable hydraulic conditions are allowed to develop within the backfilled volume. As a result of these requirements, generic guidelines and design concepts have been developed for 'Plugs' that are intended to provide mechanical restraint, physical security and hydraulic control functions over the short-term (repository operational and pre-closure monitoring periods). This report focuses on the role and requirements of plugs to be installed at emplacement room/ tunnel/drift entrances or in other locations within the repository that may require installation of temporary mechanical or hydraulic control structures. These plugs are not necessarily a permanent feature of the repository and may, if required, be removed for later installation of a permanent seal. Room/Drift plugs are also by their defined function, physically accessible during repository operation so their performance can be monitored and remedial actions taken if necessary (e.g. increased seepage past the plug). A considerable number of sealing demonstrations have been undertaken at several research laboratories that are focussed on development of technologies and materials for use in isolation of spent nuclear fuel and these are briefly reviewed in this report. Additionally, technologies developed for non

  10. Plugs for deposition tunnels in a deep geologic repository in granitic rock. Concepts and experience

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, D.A. (AECL, Chalk River (Canada)); Boergesson, L. (Clay Technology, Lund (Sweden)); Gunnarsson, D. (Swedish Nuclear Fuel and Waste Management Co, Stockholm (Sweden)); Hansen, J. (Posiva Oy, Eurajoki (Finland))

    2009-11-15

    Regardless of the emplacement geometry selected in a geological repository for spent nuclear fuel, there will be a requirement for the access tunnels to remain open while repository operations are ongoing. The period of repository operation will stretch for many years (decades to more than a century depending on disposal concept and number of canisters to be installed). Requirements for extended monitoring of the repository before final closure may further extend the period over which the tunnels must remain open. The intersection of the emplacement rooms/drifts and the access tunnels needs to be physically closed in order to ensure that the canisters remain undisturbed and that no undesirable hydraulic conditions are allowed to develop within the backfilled volume. As a result of these requirements, generic guidelines and design concepts have been developed for 'Plugs' that are intended to provide mechanical restraint, physical security and hydraulic control functions over the short-term (repository operational and pre-closure monitoring periods). This report focuses on the role and requirements of plugs to be installed at emplacement room/ tunnel/drift entrances or in other locations within the repository that may require installation of temporary mechanical or hydraulic control structures. These plugs are not necessarily a permanent feature of the repository and may, if required, be removed for later installation of a permanent seal. Room/Drift plugs are also by their defined function, physically accessible during repository operation so their performance can be monitored and remedial actions taken if necessary (e.g. increased seepage past the plug). A considerable number of sealing demonstrations have been undertaken at several research laboratories that are focussed on development of technologies and materials for use in isolation of spent nuclear fuel and these are briefly reviewed in this report. Additionally, technologies developed for non

  11. Valley plugs, land use, and phytogeomorphic response: Chapter 14

    Science.gov (United States)

    Pierce, Aaron R.; King, Sammy L.; Shroder, John F.

    2013-01-01

    Anthropogenic alteration of fluvial systems can disrupt functional processes that provide valuable ecosystem services. Channelization alters fluvial parameters and the connectivity of river channels to their floodplains which is critical for productivity, nutrient cycling, flood control, and biodiversity. The effects of channelization can be exacerbated by local geology and land-use activities, resulting in dramatic geomorphic readjustments including the formation of valley plugs. Considerable variation in the response of abiotic processes, including surface hydrology, subsurface hydrology, and sedimentation dynamics, to channelization and the formation of valley plugs. Altered abiotic processes associated with these geomorphic features and readjustments influence biotic processes including species composition, abundance, and successional processes. Considerable interest exists for restoring altered fluvial systems and their floodplains because of their social and ecological importance. Understanding abiotic and biotic responses of channelization and valley-plug formation within the context of the watershed is essential to successful restoration. This chapter focuses on the primary causes of valley-plug formation, resulting fluvial-geomorphic responses, vegetation responses, and restoration and research needs for these systems.

  12. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    Science.gov (United States)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  13. A Special Application Coiled Tubing Applied Plug for Geothermal Well Casing Remediation

    International Nuclear Information System (INIS)

    Knudsen, S.D.; Sattler, A.R.; Staller, G.E.

    1999-01-01

    Casing deformation in wells is a common problem in many geothermal fields. Casing remediation is necessary to keep wells in production and occasionally, to even enter the well for an approved plug and abandonment procedure. The costly alternative to casing remediation is to incur the expense of drilling a new well to maintain production or drilling a well to intersect a badly damaged well below the deformation for abandonment purposes. The U.S. Department of Energy and the Geothermal Drilling Organization sponsor research and development work at Sandia National Laboratories in an effort to reduce these remediation expenditures. Sandia, in cooperation with Halliburton Energy Services, has developed a low cost, commercially available, bridge-plug-type packer for use in geothermal well environments. This report documents the development and testing of this tool for use in casing remediation work

  14. Investigation of Plugging of Narrow Sodium Channels by Sodium and Carbon Dioxide Interaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Hee; Wi, Myung-Hwan; Min, Jae Hong; Kim, Tae-joon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    The supercritical CO{sub 2} Brayton cycle system is known to be a promising power conversion system for improving the efficiency and preventing the sodium water reaction (SWR) of the current SFR concept using a Rankine steam cycle. PCHEs are known to have potential for reducing the volume occupied by the sodium-to-CO{sub 2} exchangers as well as the heat exchanger mass relative to traditional shell-and-tube heat exchangers. Here, we report a study on a plugging test by the interaction of sodium and CO{sub 2} to investigate design parameters of sodium channels in the realistic operating conditions. We investigated a plugging test by an interaction of sodium and CO{sub 2} with different cross sectional areas of the sodium channels. It was found that the flow rate of sodium decreased earlier and faster with a narrower cross sectional area compared to a wider one. Our experimental results are expected to be used for determining the sodium channel areas of PCHEs.

  15. Self locking drive system for rotating plug of a nuclear reactor

    International Nuclear Information System (INIS)

    Brubaker, J.E.

    1979-01-01

    A self locking drive system for rotating the plugs on the head of a nuclear reactor which is able to restrain plug motion if a seismic event whould occur during reactor refueling is described. A servomotor is engaged via a gear train and a bull gear to the plug. Connected to the gear train is a feedback control system which allows the motor to rotate the plug to predetermined locations for refueling of the reactor. The gear train contains a self locking double enveloping worm gear set. The worm gear set is utilized for its self locking nature to prevent unwanted rotation of the plugs as the result of an earthquake. The double enveloping type is used because its unique contour spreads the load across several teeth providing added strength and allowing the use of a conventional size worm

  16. Structural integrity investigations of feeder pipe ice plugging procedures

    International Nuclear Information System (INIS)

    Flaman, M.T.; Shah, N.N.

    1985-03-01

    A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner

  17. Flexible Plug Repair for Shuttle Wing Leading Edge

    Science.gov (United States)

    Camarda, Charles J.; Sikora, Joseph; Smith, Russel; Rivers, H.; Scotti, Stephen J.; Fuller, Alan M.; Klacka, Robert; Reinders, Martin; Schwind, Francis; Sullivan, Brian; hide

    2012-01-01

    In response to the Columbia Accident Investigation Board report, a plug repair kit has been developed to enable astronauts to repair the space shuttle's wing leading edge (WLE) during orbit. The plug repair kit consists of several 17.78- cm-diameter carbon/silicon carbide (C/SiC) cover plates of various curvatures that can be attached to the refractory carbon-carbon WLE panels using a TZM refractory metal attach mechanism. The attach mechanism is inserted through the damage in the WLE panel and, as it is tightened, the cover plate flexes to conform to the curvature of the WLE panel within 0.050 mm. An astronaut installs the repair during an extravehicular activity (EVA). After installing the plug repair, edge gaps are checked and the perimeter of the repair is sealed using a proprietary material, developed to fill cracks and small holes in the WLE.

  18. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  19. The Porsche Panamera S E-Hybrid drivetrain; Der Antriebsstrang des Porsche Panamera S E-Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Semmler, D.; Kerner, J.; Spiegel, L.; Bitsche, O.; Rauner, T.; Stache, I.; Marques, M. [Dr. Ing. h.c. F. Porsche AG, Weissach (Germany)

    2013-08-01

    With the new Panamera S E-Hybrid, Porsche presents the first standard plug-in hybrid concept for the luxury sector. The drivetrain represents a consistent further development of the full-hybrid vehicles already successful on the market. However, it has been updated to achieve the lowest possible fuel consumption and to meet future emission laws before they even take effect. It was possible to increase the performance and efficiency of the hybrid components, significantly improving both electric performance as well as the electric range. A large part of that is due to the new electric machine. In the same installation space, we have managed to more than double the power to 70 kW. A new intelligent operating strategy also allows us to meet the EU6 exhaust gas limits. In addition to the efficiency improvement measures, the lithium-ion battery with its 9.4 kWh capacity especially contributes to the car's enhanced range. Thanks to the higher energy density of the new cell technology, the battery only needs a little more installation space in comparison with the Panamera S Hybrid. In pure electric operation, the vehicle reaches a top speed of 135 km/h (limited) and has an electric range of 36 kilometres in the NEDC profile. Typical Porsche performance is provided by the system power of 416 hp (306 kW). In NEDC standard consumption, the E-Hybrid's 3.1 l/100 km and CO{sub 2} emissions of 71 g/km have stayed attractively economical. (orig.)

  20. Sealing performance assessments of bentonite and bentonite/crushed rock plugs

    International Nuclear Information System (INIS)

    Ouyang, Shoung.

    1990-01-01

    Bentonite and mixtures of bentonite and crushed rock are potential sealing materials for high level nuclear waste repositories. The materials have been used to form cap layers to reduce infiltration for mined waste tailings and can also be used to construct clay liners for municipal as well as industrial waste managements. American Colloid C/S granular dentonite and Apache Leap tuff have been mixed to prepare samples for laboratory flow testing. Bentonite weight percent and crushed tuff gradation are the major variables studied. The sealing performance assessments include high injection pressure flow tests, polyaxial flow tests, high temperature flow tests, and piping tests. The results indicate that an appropriate composition would have at least 25% bentonite by weight mixed with well-graded crushed rock. Hydraulic properties of the mixture plugs may be highly anisotropic if significant particle segregation occurs during sample installation and compaction. Temperature has no negative effects on the sealing performance within the test range from room temperature to 60C. The piping damage to the sealing performance is small if the maximum hydraulic gradient does not exceed 120 and 280 for 25 and 35% bentonite content, respectively. The hydraulic gradients above which flow of bentonite may take place are deemed critical. Analytical work includes the introduction of bentonite occupancy percentage and water content at saturation as two major parameters for the plug design. A permeability model developed is useful for the prediction of permeability in clays. A piping model permits the estimation of critical hydraulic gradient allowed before the flow of bentonite takes place. It can also be used to define the maximum allowable pore diameter of a protective filter layer