WorldWideScience

Sample records for testing molecular-cloud fragmentation

  1. On the fragmentation of filaments in a molecular cloud simulation

    Science.gov (United States)

    Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.

    2018-03-01

    Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes

  2. The thermodynamics of molecular cloud fragmentation : Star formation under non-Milky Way conditions

    NARCIS (Netherlands)

    Hocuk, S.; Spaans, M.

    Context. Properties of candidate stars, forming out of molecular clouds, depend on the ambient conditions of the parent cloud. We present a series of 2D and 3D simulations of fragmentation of molecular clouds in starburst regions, as well as of clouds under conditions in dwarf galaxies, leading to

  3. COLLAPSE AND FRAGMENTATION OF MAGNETIC MOLECULAR CLOUD CORES WITH THE ENZO AMR MHD CODE. I. UNIFORM DENSITY SPHERES

    International Nuclear Information System (INIS)

    Boss, Alan P.; Keiser, Sandra A.

    2013-01-01

    Magnetic fields are important contributors to the dynamics of collapsing molecular cloud cores, and can have a major effect on whether collapse results in a single protostar or fragmentation into a binary or multiple protostar system. New models are presented of the collapse of magnetic cloud cores using the adaptive mesh refinement code Enzo2.0. The code was used to calculate the ideal magnetohydrodynamics (MHD) of initially spherical, uniform density, and rotation clouds with density perturbations, i.e., the Boss and Bodenheimer standard isothermal test case for three-dimensional (3D) hydrodynamics codes. After first verifying that Enzo reproduces the binary fragmentation expected for the non-magnetic test case, a large set of models was computed with varied initial magnetic field strengths and directions with respect to the cloud core axis of rotation (parallel or perpendicular), density perturbation amplitudes, and equations of state. Three significantly different outcomes resulted: (1) contraction without sustained collapse, forming a denser cloud core; (2) collapse to form a single protostar with significant spiral arms; and (3) collapse and fragmentation into binary or multiple protostar systems, with multiple spiral arms. Comparisons are also made with previous MHD calculations of similar clouds with a barotropic equations of state. These results for the collapse of initially uniform density spheres illustrate the central importance of both magnetic field direction and field strength for determining the outcome of dynamic protostellar collapse.

  4. Gravitational Contraction and Fragmentation of Filamentary Molecular Clouds: Breakdown of Isothermality and Appearance of Two- Dimensionality

    Science.gov (United States)

    Tetsu, Hiroyuki

    2016-03-01

    & Rachford (1956) (DROS), and linearizing the Planck function (LIN). From some numerical tests, we find that DROS and LIN can be chosen as the alternative scheme. Third, using DROS, we perform two-dimensional RHD calculations with the FLD approximation to investigate the fragmentation process of radially contracting filamentary clouds. As a result, we find when the fragmentation occurs, which cannot be determined by one-dimensional approaches. We define the criteria for judging the appearance of two-dimensionality using the mean central density, which was approximately one order of magnitude higher than previous implicit understandings. The density when fragmentations appear is corresponding to several Jupiter mass, which is several times smaller than previously predicted. The mass is in agreement with planet mass objects observed using the microlensing effect and the candidates of the first hydrostatic cores observed by ALMA along filamentary clouds.

  5. Collapse and fragmentation of molecular cloud cores. 2: Collapse induced by stellar shock waves

    Science.gov (United States)

    Boss, Alan P.

    1995-01-01

    The standard scenario for low-mass star formation involves 'inside-out' collapse of a dense molecular cloud core following loss of magnetic field support through ambipolar diffusion. However, isotopic anomalies in presolar grains and meteoritical inclusions imply that the collapse of the presolar cloud may have been triggered by a stellar shock wave. This paper explores 'outside-in' collapse, that is, protostellar collapse initiated directly by the compression of quiescent dense cloud cores impacted by relatively slow stellar shock waves. A second-order accurate, gravitational hydrodynamics code has been used to study both the spherically symmetrical and three-dimensional evolution of initially centrally condensed, isothermal, self-gravitating, solar-mass cloud cores that are struck by stellar shock waves with velocities up to 25 km/s and postshock temperatures of 10 to 10,000 K. The models show that such mild shock waves do not completely shred and destroy the cloud, and that the dynamical ram pressure can compress the cloud to the verge of self-gravitational collapse. However, compression caused by a high postshock temperature is a considerably more effective means of inducing collapse. Shock-induced collapse produces high initial mass accretion rates (greater than 10(exp -4) solar mass/yr in a solar-mass cloud) that decline rapidly to much lower values, depending on the presence (approximately 10(exp -6) solar mass/yr) or absence (approximately 10(exp -8) to 10(exp -7) solar mass/yr) of an infinite reservoir of mass. Stellar mass accretion rates approximately 10(exp -7) solar mass/yr have been previously inferred from the luminosities of T Tauri stars; balanced mass accretion (stellar rate = envelope rate) at approximately 10(exp -7) solar mass/yr could then be possible if accretion occurs from a finite mass reservoir. Fluid tracers are used to determine what fraction of the stellar shock material is incorporated into the resulting protostellar object and disk

  6. Dust coagulation and fragmentation in molecular clouds I. How collisions between dust aggregates alter the dust size distribution

    NARCIS (Netherlands)

    Ormel, C. W.; Paszun, D.; Dominik, C.; Tielens, A. G. G. M.

    The cores in molecular clouds are the densest and coldest regions of the interstellar medium (ISM). In these regions ISM-dust grains have the potential to coagulate. This study investigates the collisional evolution of the dust population by combining two models: a binary model that simulates the

  7. Molecular clouds in Orion and Monoceros

    International Nuclear Information System (INIS)

    Maddalena, R.J.

    1986-01-01

    About one-eighth of a well-sampled 850 deg 2 region of Orion and Monoceros, extending from the Taurus dark cloud complex to the CMa OB 1 association, shows emission at the frequency of the J = 1 → 0 transition of CO coming from either local clouds (d 8 from the galactic plane or from more distant objects located within a few degrees of the plane and well outside the solar circle. Local giant molecular clouds associated with Orion A and B have enhanced temperatures and densities near their western edges possibly due to compression of molecular gas by a high pressure region created by the cumulative effects of ∼10 supernovae that occurred in the Orion OB association. Another giant molecular cloud found to be associated with Mon R2 may be related to the Orion clouds. Two filamentary clouds (one possible 200 pc long but only 3-10 pc wide) were found that may represent a new class of object; magnetic fields probably play a role in confining these filaments. An expanding ring of clouds concentric with the H II region S 264 and its ionizing 08 star λ Ori was also investigated, and a possible evolutionary sequence for the ring is given in detail: the clouds probably constitute fragments of the original cloud from which λ Ori formed, the gas pressure of the H II region and the rocket effect having disrupted the cloud and accelerated the fragments to their present velocities

  8. Molecular clouds in M31 and M33

    International Nuclear Information System (INIS)

    Blitz, L.

    1985-01-01

    In order to determine the properties of the molecular clouds in nearby spiral galaxies, 49 H II regions in M31 and 6 H II regions in M33 were observed using the J = 1→0 transition of CO. Of these, 17 were detected in M31 and two in M33. For the CO detection in M31, = 0.14 K, = 12.5 km s -1 , and = 2.1 K km s -1 . The two detections in M33, which are toward the giant H II regions NGC 604 and NGC 595, are somewhat weaker than the mean values for clouds in M31, neither T(/sub R/ nor ΔV shows any gradient with galactic radius, but is a decreasing function of radius. The mean values of and are considerably larger than the values that would be obtained by extrapolating local giant molecular clouds to the distance of M31. It is suggested that most of the CO emission is from small clouds in the beam which overwhelm the emission from the giant molecular clouds. Some observational tests of this suggestion are proposed. Like the molecular clouds in the Milky Way, the giant molecular clouds in M31 appear to be tidally limited. In M33 the larger inclination angle would make the observed contribution from small molecular clouds less significant, which is consistent with the observations

  9. Magnetohydrodynamic shocks in molecular clouds

    International Nuclear Information System (INIS)

    Chernoff, D.F.

    1985-01-01

    Part one develops the mathematical and physical theory of one-dimensional, time-independent subalfvenic flow in partially ionized gas with magnetic fields, for application to shocks in molecular clouds. Unlike normal gas-dynamic shocks, the neutral flow may be continuous and cool if the gas radiates efficiently and does not self-ionize. Analytic solutions are given in the limit that the neutral gas is either adiabatic or isothermal (cold). Numerical techniques are developed and applied to find the neutral flow under general circumstances. Part two extends the theory and results of part one in three ways: (1) to faster, superalfvenic flow, (2) to complex gases containing heavy charged particles (grains) in addition to ions, containing heavy charged particles (grains) in addition to ions, electrons and neutrals, and (3) to the entire range in (Omega tau), the ratio of charged particle damping time to gyroperiod, expected in gas flows in molecular clouds

  10. Chemistry and structure of giant molecular clouds in energetic environments

    Science.gov (United States)

    Anderson, Crystal Nicole

    2016-09-01

    Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I observe

  11. Molecular clouds near supernova remnants

    International Nuclear Information System (INIS)

    Wootten, H.A.

    1978-01-01

    The physical properties of molecular clouds near supernova remnants were investigated. Various properties of the structure and kinematics of these clouds are used to establish their physical association with well-known remmnants. An infrared survey of the most massive clouds revealed embedded objects, probably stars whose formation was induced by the supernova blast wave. In order to understand the relationship between these and other molecular clouds, a control group of clouds was also observed. Excitation models for dense regions of all the clouds are constructed to evaluate molecular abundances in these regions. Those clouds that have embedded stars have lower molecular abundances than the clouds that do not. A cloud near the W28 supernova remnant also has low abundances. Molecular abundances are used to measure an important parameter, the electron density, which is not directly observable. In some clouds extensive deuterium fractionation is observed which confirms electron density measurements in those clouds. Where large deuterium fractionation is observed, the ionization rate in the cloud interior can also be measured. The electron density and ionization rate in the cloud near W28 are higher than in most clouds. The molecular abundances and electron densities are functions of the chemical and dynamical state of evolution of the cloud. Those clouds with lowest abundances are probably the youngest clouds. As low-abundance clouds, some clouds near supernova remnants may have been recently swept from the local interstellar material. Supernova remnants provide sites for star formation in ambient clouds by compressing them, and they sweep new clouds from more diffuse local matter

  12. MODES OF STAR FORMATION IN FINITE MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pon, A.; Johnstone, D.; Heitsch, F.

    2011-01-01

    We analytically investigate the modes of gravity-induced star formation possible in idealized finite molecular clouds where global collapse competes against both local Jeans instabilities and discontinuous edge instabilities. We examine these timescales for collapse in spheres, disks, and cylinders, with emphasis on the structure, size, and degree of internal perturbations required in order for local collapse to occur before global collapse. We find that internal, local collapse is more effective for the lower dimensional objects. Spheres and disks, if unsupported against global collapse, must either contain strong perturbations or must be unrealistically large in order for small density perturbations to collapse significantly faster than the entire cloud. We find, on the other hand, that filamentary geometry is the most favorable situation for the smallest perturbations to grow before global collapse overwhelms them and that filaments containing only a few Jeans masses and weak density perturbations can readily fragment. These idealized solutions are compared with simulations of star-forming regions in an attempt to delineate the role of global, local, and edge instabilities in determining the fragmentation properties of molecular clouds. The combined results are also discussed in the context of recent observations of Galactic molecular clouds.

  13. Waves on the surface of the Orion molecular cloud.

    Science.gov (United States)

    Berné, Olivier; Marcelino, Núria; Cernicharo, José

    2010-08-19

    Massive stars influence their parental molecular cloud, and it has long been suspected that the development of hydrodynamical instabilities can compress or fragment the cloud. Identifying such instabilities has proved difficult. It has been suggested that elongated structures (such as the 'pillars of creation') and other shapes arise because of instabilities, but alternative explanations are available. One key signature of an instability is a wave-like structure in the gas, which has hitherto not been seen. Here we report the presence of 'waves' at the surface of the Orion molecular cloud near where massive stars are forming. The waves seem to be a Kelvin-Helmholtz instability that arises during the expansion of the nebula as gas heated and ionized by massive stars is blown over pre-existing molecular gas.

  14. Characterising the Structure of Molecular Clouds

    Science.gov (United States)

    Wong, Graeme Francis

    CO (4-3) and column density of [C I] 3P1-3P0 have been derived. Discussions have been made of the complex morphology of the Northern Carina Nebular Complex region, compared to optical features, and supported the assertion of the HII region (Car I) expanding into the molecular cloud. The selected areas within the Lupus molecular clouds (regions I, III and IV) were observed with the DSS43 (also known as Tid-70m), the largest steerable single dish radio telescope (70-m) in the Southern Hemisphere located at Canberra Deep Space Communication Complex (CDSCC) near Canberra, in the ammonia transitions (1,1) and (2,2). Due to the observation modes and limited amount of time available for the Astronomical community, the targeted areas were mapped in a series of position-switching strips. Column density, kinetic and rotation temperatures were derived, which were compared and analysed to low-resolution maps towards the dense clumps. As Tid-70m had limited observing capabilities, this project has been able to improve the observation capabilities by implementing on-the-fly (OTF) mapping. With its size and unique capabilities, implementing OTF mapping will increase the efficiency of observations. Test observations were carried out towards the well known sources of Orion A, and Sagittarius A through the newly implemented OTF observing mode. Analysis and comparison of Orion A and Sagittarius A, shows consistency with the new maps produced.

  15. Star formation in evolving molecular clouds

    Science.gov (United States)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  16. Filamentary molecular clouds and their prolate cores

    Science.gov (United States)

    Fiege, Jason Dieter

    We develop a model of self-gravitating, pressure truncated, filamentary molecular clouds with a rather general helical magnetic field topology. By comparing with existing observational data, our analysis suggests that the mass per unit length of many filamentary clouds is significantly reduced by the effects of external pressure, and that toroidal fields play a significant role in squeezing clouds. We show that there is an upper limit to the mass per unit length allowed for equilibrium, whose value depends on the strength and character of the magnetic field threading the filament. Clouds that are below this critical mass per unit length are always stable against radial gravitational collapse. Our theoretical models involve 3 parameters; two to describe the mass loading of the poloidal and toroidal fields, and a third to describe the radial concentration of the filament. We find that many of our models with helical fields are in good agreement with the observed ˜r-2 radial density structure of filamentary clouds. Unmagnetized filaments and models with purely poloidal magnetic fields result in steep density gradients that are not allowed by the observations. We consider the stability of our models against axisymmetric modes of fragmentation. Many of our models fragment gravitationally, although some are subject to MHD-driven "sausage" modes of instability. Our main result is that the toroidal magnetic field helps to stabilize long wavelength gravitational instabilities, but short wavelength MHD "sausage" instabilities result when the toroidal field is sufficiently strong. Many of our models lie in a physical regime where the growth rates of gravitational and MHD instabilities are at a minimum. We then go on to develop a model of the helically magnetized cores that might originate from finite segments of our filament models. Only modest toroidal fields are required to produce prolate cores, with mean projected axis ratios in the range 0.3--1. Thus, many of our models

  17. The Search for Primordial Molecular Cloud Matter

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M M E

    evolution. Some of the least altered, most primitive meteorites can give us clues to the original make-up of the interstellar molecular cloud from which the Sun and its surrounding planets formed, thus, permitting us to trace Solar System formation from its most early conditions. Using state......-of-the-art magnesium and chromium isotope techniques, we can distinguish a class of metal-rich meteorites with primordial molecular cloud signatures that show these objects formed in accretion regions akin to comets. As comets are proposed to have delivered some of the prerequisites of life to Earth, for example...

  18. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  19. Gun Testing Ballistics Issues for Insensitive Munitions Fragment Impact Testing

    Science.gov (United States)

    Baker, Ernest; Schultz, Emmanuel; NATO Munitions Safety Information Analysis Centre Team

    2017-06-01

    The STANAG 4496 Ed. 1 Fragment Impact, Munitions Test Procedure is normally conducted by gun launching a projectile for attack against a munition. The purpose of this test is to assess the reaction of a munition impacted by a fragment. The test specifies a standardized projectile (fragment) with a standard test velocity of 2530+/-90 m/s, or an alternate test velocity of 1830+/-60 m/s. The standard test velocity can be challenging to achieve and has several loosely defined and undefined characteristics that can affect the test item response. This publication documents the results of an international review of the STANAG 4496 related to the fragment impact test. To perform the review, MSIAC created a questionnaire in conjunction with the custodian of this STANAG and sent it to test centers. Fragment velocity variation, projectile tilt upon impact and aim point variation were identified as observed gun testing issues. Achieving 2530 m/s consistently and cost effectively can be challenging. The aim point of impact of the fragment is chosen with the objective of obtaining the most violent reaction. No tolerance for aim point is specified, although aim point variation can be a source for IM response variation. Fragment tilt on impact is also unspecified. The standard fragment fabricated from a variety of different steels which have a significant margin for mechanical properties. These, as well as other gun testing issues, have significant implications to resulting IM response.

  20. Turbulence and star formation in molecular clouds

    International Nuclear Information System (INIS)

    Larson, R.B.

    1981-01-01

    Data for many molecular clouds and condensations show that the internal velocity dispersion of each region is well correlated with its size and mass, and these correlations are approximately of power-law form. The dependence of velocity dispersion on region size is similar to the Kolmogoroff law for subsonic turbulence, suggesting that the observed motions are all part of a common hierarchy of interstellar turbulent motions. The regions studied are mostly gravitationally bound and in approximate virial equilibrium. However, they cannot have formed by simple gravitational collapse, and it appears likely that molecular clouds and their substructures have been created at least partly by processes of supersonic hydrodynamics. The hierarchy of subcondensations may terminate with objects so small that their internal motions are no longer supersonic; this predicts a minimum protostellar mass of the order of a few tenths of a solar mass. Massive 'protostellar' clumps always have supersonic internal motions and will therefore develop complex internal structures, probably leading to the formation of many pre-stellar condensation nuclei that grow by accretion to produce the final stellar mass spectrum. Molecular clouds must be transient structures, and are probably dispersed after not much more than 10 7 yr. (author)

  1. Structure of bright-rimmed molecular clouds

    International Nuclear Information System (INIS)

    Wootten, A.; Sargent, A.; Knapp, G.; Huggins, P.J.

    1983-01-01

    Five bright-rimmed molecular clouds, NGC 1977, IC 1396, IC 1848 A, B35, and NGC 7822, have been mapped with 30'' resolution in the J = 2--1 lines of 12 co. For the first three, 13 CO maps have also been made. The spatial distributions of temperature, density, and molecular abundance in these clouds have been determined, particularly in the vicinity of the rims. In general, the gas densities increase close to the rims, but temperature enhancements occur over comparatively extended regions. Near the rims the gas kinematics is varied: velocity gradients are observed in several regions, and in IC 1396 line broadening is distinguishable. A detailed study of the excitation of 13 CO demonstrates that near the well-resolved rim in NGC 1977 where C I and carbon recombination lines have been observed, there is a definite decline in the CO abundance. These molecular clouds span a variety of stages of star formation, but in none does the interaction with the adjacent H II region appear to have substantially affected the course of the star-forming history of the cloud

  2. The chemical evolution of molecular clouds

    Science.gov (United States)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  3. Isolator fragmentation and explosive initiation tests

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rae, Philip John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Foley, Timothy J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Novak, Alan M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Armstrong, Christopher Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baca, Eva V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gunderson, Jake Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-19

    Three tests were conducted to evaluate the effects of firing an isolator in proximity to a barrier or explosive charge. The tests with explosive were conducted without a barrier, on the basis that since any barrier will reduce the shock transmitted to the explosive, bare explosive represents the worst-case from an inadvertent initiation perspective. No reaction was observed. The shock caused by the impact of a representative plastic material on both bare and cased PBX 9501 is calculated in the worst-case, 1-D limit, and the known shock response of the HE is used to estimate minimum run-to-detonation lengths. The estimates demonstrate that even 1-D impacts would not be of concern and that, accordingly, the divergent shocks due to isolator fragment impact are of no concern as initiating stimuli.

  4. Testing Procedure for the Single Fiber Fragmentation Test

    DEFF Research Database (Denmark)

    Feih, Stefanie; Wonsyld, Karen; Minzari, Daniel

    , specimens with one E-glass fiber placed inside an epoxy or polyester matrix were used. Elongating the specimens with a mini tensile tester, which was placed under a microscope, leads to fiber fragmentations. Different bonding strengths between fiber and matrix result in differences in the critical fracture......This report describes the details of the single fiber fragmentation test as conducted at the materials research department (AFM) at Risø. The equipment and specimen manufacture is described in detail. Furthermore, examples of results interpretation are given. For the experiments in this report...... length for the fiber and fracture characteristics....

  5. ANGULAR MOMENTUM IN GIANT MOLECULAR CLOUDS. I. THE MILKY WAY

    International Nuclear Information System (INIS)

    Imara, Nia; Blitz, Leo

    2011-01-01

    We present a detailed analysis comparing the velocity fields in molecular clouds and the atomic gas that surrounds them in order to address the origin of the gradients. To that end, we present first-moment intensity-weighted velocity maps of the molecular clouds and surrounding atomic gas. The maps are made from high-resolution 13 CO observations and 21 cm observations from the Leiden/Argentine/Bonn Galactic H I Survey. We find that (1) the atomic gas associated with each molecular cloud has a substantial velocity gradient-ranging from 0.02 to 0.07 km s -1 pc -1 -whether or not the molecular cloud itself has a substantial linear gradient. (2) If the gradients in the molecular and atomic gas were due to rotation, this would imply that the molecular clouds have less specific angular momentum than the surrounding H I by a factor of 1-6. (3) Most importantly, the velocity gradient position angles in the molecular and atomic gas are generally widely separated-by as much as 130 deg. in the case of the Rosette molecular cloud. This result argues against the hypothesis that molecular clouds formed by simple top-down collapse from atomic gas.

  6. Fragmentation characteristics analysis of sandstone fragments based on impact rockburst test

    Directory of Open Access Journals (Sweden)

    Dongqiao Liu

    2014-06-01

    Full Text Available Impact rockburst test on sandstone samples with a central hole is carried out under true triaxial static loads and vertical dynamic load conditions, and rock fragments after the test are collected. The fragments of sandstone generated from strain rockburst test and uniaxial compression test are also collected. The fragments are weighed and the length, width and thickness of each piece of fragments are measured respectively. The fragment quantities with coarse, medium, fine and micro grains in different size ranges, mass and particles distributions are also analyzed. Then, the fractal dimension of fragments is calculated by the methods of size-frequency, mass-frequency and length-to-thickness ratio-frequency. It is found that the crushing degree of impact rockburst fragments is higher, accompanied with blocky characteristics observably. The mass percentage of small grains, including fine and micro grains, in impact rockburst test is higher than those in strain rockburst test and uniaxial compression test. Energy dissipation from rockburst tests is more than that from uniaxial compression test, as the quantity of micro grains generated does.

  7. Molecular cloud distance determination from deep NIR survey extinction measurements

    Science.gov (United States)

    Stead, J. J.; Hoare, M. G.

    2010-09-01

    Using near-infrared United Kingdom Infrared Deep Sky Survey (UKIDSS) Galactic Plane Survey data, we make extinction measurements to individual stars along the same line of sight as molecular clouds. Using an existing 3D extinction map of the inner Galaxy, that provides line of sight specific extinction-distance relationships, we convert the measured extinction of molecular clouds to a corresponding distance. These distances are derived independently from kinematic methods, typically used to derive distances to molecular clouds, and as such they have no near/far ambiguity. The near/far distance ambiguity has been resolved for 27 clouds, and distances have been derived to 20 clouds. The results are found to be in good agreement with kinematic measurements to molecular clouds where the ambiguity has already been resolved, using HI self-absorption techniques.

  8. Young Star Clusters In Nearby Molecular Clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-02-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalog of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association to molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1 - 3.5 Myr. Inferred gas removal timescales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An Appendix compares the performance of the mixture models and nonparametric Minimum Spanning Tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disk longevity, age gradients, and dynamical modeling.

  9. Compression and ablation of the photo-irradiated molecular cloud the Orion Bar.

    Science.gov (United States)

    Goicoechea, Javier R; Pety, Jérôme; Cuadrado, Sara; Cernicharo, José; Chapillon, Edwige; Fuente, Asunción; Gerin, Maryvonne; Joblin, Christine; Marcelino, Nuria; Pilleri, Paolo

    2016-09-08

    The Orion Bar is the archetypal edge-on molecular cloud surface illuminated by strong ultraviolet radiation from nearby massive stars. Our relative closeness to the Orion nebula (about 1,350 light years away from Earth) means that we can study the effects of stellar feedback on the parental cloud in detail. Visible-light observations of the Orion Bar show that the transition between the hot ionized gas and the warm neutral atomic gas (the ionization front) is spatially well separated from the transition between atomic and molecular gas (the dissociation front), by about 15 arcseconds or 6,200 astronomical units (one astronomical unit is the Earth-Sun distance). Static equilibrium models used to interpret previous far-infrared and radio observations of the neutral gas in the Orion Bar (typically at 10-20 arcsecond resolution) predict an inhomogeneous cloud structure comprised of dense clumps embedded in a lower-density extended gas component. Here we report one-arcsecond-resolution millimetre-wave images that allow us to resolve the molecular cloud surface. In contrast to stationary model predictions, there is no appreciable offset between the peak of the H 2 vibrational emission (delineating the H/H 2 transition) and the edge of the observed CO and HCO + emission. This implies that the H/H 2 and C + /C/CO transition zones are very close. We find a fragmented ridge of high-density substructures, photoablative gas flows and instabilities at the molecular cloud surface. The results suggest that the cloud edge has been compressed by a high-pressure wave that is moving into the molecular cloud, demonstrating that dynamical and non-equilibrium effects are important for the cloud evolution.

  10. A dense molecular cloud in the OMC-1/OMC-2 region

    International Nuclear Information System (INIS)

    Kutner, M.L.; Evans, N.J. II; Tucker, K.D.; and Department of Physics, Rensselaer Polytechnic Institute)

    1976-01-01

    H 2 CO emission at 2mm is seen over a region 30' in extent which includes OMC-1 and OMC-2. The mass of this cloud, estimated from H 2 CO and CO observations, is approx.7 x 10 3 D 7 Alembertian/sub sun/. The velocity pattern is one of rotation, with evidence for fragmentation into two or three distinct condensations. A sharp boundary to the molecular cloud is observed at the edge of the H II region in NGC 1977. It appears likely that NGC 1977 is a condensation at the northern end of the cloud, complementary to the Orion Nebula at the southern end

  11. A dense molecular cloud in the OMC-1/OMC-2 region

    Science.gov (United States)

    Kutner, M. L.; Evans, N. J., II; Tucker, K. D.

    1976-01-01

    H2CO emission at 2 mm is seen over a region 30 arcmin in extent which includes OMC-1 and OMC-2. The mass of this cloud, estimated from H2CO and CO observations, is about 7000 solar masses. The velocity pattern is one of rotation, with evidence for fragmentation into two or three distinct condensations. A sharp boundary to the molecular cloud is observed at the edge of the H II region in NGC 1977. It appears likely that NGC 1977 is a condensation at the northern end of the cloud, complementary to the Orion Nebula at the southern end.

  12. Supernova Driving. IV. The star-formation rate of molecular clouds

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2017-01-01

    We compute the star-formation rate (SFR) in molecular clouds (MCs) that originate ab initio in a new, higher-resolution simulation of supernova-driven turbulence. Because of the large number of well-resolved clouds with self-consistent boundary and initial conditions, we obtain a large range...... simulations, and compare a revised version of our turbulent fragmentation model with the numerical results. The dependences on Mach number, ℳ, gas to magnetic pressure ratio, β, and compressive to solenoidal power ratio, χ at fixed αvir are not well constrained, because of random scatter due to time and cloud...

  13. Dust and gas distribution in molecular clouds: an observational approach

    International Nuclear Information System (INIS)

    Campeggio, Loretta; Elia, Davide; Maiolo, Berlinda M T; Strafella, Francesco; Cecchi-Pestellini, Cesare

    2005-01-01

    The interstellar medium (ISM), gas and dust, appears to be arranged in clouds, whose dimensions, masses and densities span a large range of scales: from giant molecular clouds to small isolated globules. The structure of these objects show a high degree of complexity appearing, in the range of the observed scales, as a non-homogeneous ('clumpy') distribution of matter. The arrangement of the ISM is clearly relevant for the study of the fragmentation of the clouds and then of the star formation processes. To quantify observationally the ISM structure, many methods have been developed and our study is focused on some of them, exploiting multiwavelength observations of IS objects. The investigations presented here have been carried out by considering both the dust absorption (in optical and near IR wavelengths) and the gas emission (in the submm-radio spectral range). We present the maps obtained from the reduction of raw data and a first tentative analysis by means of methods as the structure function, the autocorrelation, and the Δ-variance. These are appropriate tools to highlight the complex structure of the ISM with reference to the paradigm given by the supersonic turbulence. Three observational cases are briefly discussed. In order to analyse the structure of objects characterized by different sizes, we applied the above-mentioned algorithms to the extinction map of the dark globule CB 107 and to the CO(J = 1-0) integrated intensity map of Vela Molecular Ridge, D Cloud. Finally we compare the results obtained with synthetic fractal maps known as 'fractional Brownian motion' fBm images

  14. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  15. Spatial and mass distributions of molecular clouds and spiral structure

    International Nuclear Information System (INIS)

    Kwan, J.; Valdes, F.; National Optical Astronomy Observatories, Tucson, AZ)

    1987-01-01

    The growth of molecular clouds resulting from cloud-cloud collisions and coalescence in the Galactic ring between 4 and 8 kpc are modeled, taking into account the presence of a spiral potential and the mutual cloud-cloud gravitational attraction. The mean lifetime of molecular clouds is determined to be about 200 million years. The clouds are present in both spiral arm and interarm regions, but a spiral pattern in their spatial distribution is clearly discernible, with the more massive clouds showing a stronger correlation with the spiral arms. As viewed from within the Galactic disk, however, it is very difficult to ascertain that the molecular cloud distribution in longitude-velocity space has a spiral pattern. 19 references

  16. Experimental tests of limiting fragmentation at the ISR

    CERN Document Server

    Bellettini, G; Bradaschia, C; Castaldi, R; Del Prete, T; Finocchiaro, G; Firomini, P; Foà, L; Grannis, P; Green, D; Laurelli, P; Menzione, A; Mustard, R; Thun, R; Valdata, M

    1973-01-01

    The authors present direct tests of the hypothesis of limiting fragmentation from an experiment at the CERN Intersecting Storage Rings at centre-of-mass energies between 31 and 53 GeV. Single- particle inclusive distributions and partial multiplicity distributions are observed for the case in which the energy of one beam is fixed while varying the energy of the other beam. Within cones around the beam, limiting fragmentation is shown to be valid. (4 refs) .

  17. Primordial Molecular Cloud Material in Metal-Rich Carbonaceous Chondrites

    Science.gov (United States)

    Taylor, G. J.

    2016-03-01

    The menagerie of objects that make up our Solar System reflects the composition of the huge molecular cloud in which the Sun formed, a late addition of short-lived isotopes from an exploding supernova or stellar winds from a neighboring massive star, heating and/or alteration by water in growing planetesimals that modified and segregated the primordial components, and mixing throughout the Solar System. Outer Solar System objects, such as comets, have always been cold, hence minimizing the changes experienced by more processed objects. They are thought to preserve information about the molecular cloud. Elishevah Van Kooten (Natural History Museum of Denmark and the University of Copenhagen) and co-authors in Denmark and at the University of Hawai'i, measured the isotopic compositions of magnesium and chromium in metal-rich carbonaceous chondrites. They found that the meteorites preserve an isotopic signature of primordial molecular cloud materials, providing a potentially detailed record of the molecular cloud's composition and of materials that formed in the outer Solar System.

  18. Planck early results. XXV. Thermal dust in nearby molecular clouds

    DEFF Research Database (Denmark)

    Poutanen, T.; Natoli, P.; Polenta, G.

    2011-01-01

    Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission...

  19. A quantitative analysis of IRAS maps of molecular clouds

    Science.gov (United States)

    Wiseman, Jennifer J.; Adams, Fred C.

    1994-01-01

    We present an analysis of IRAS maps of five molecular clouds: Orion, Ophiuchus, Perseus, Taurus, and Lupus. For the classification and description of these astrophysical maps, we use a newly developed technique which considers all maps of a given type to be elements of a pseudometric space. For each physical characteristic of interest, this formal system assigns a distance function (a pseudometric) to the space of all maps: this procedure allows us to measure quantitatively the difference between any two maps and to order the space of all maps. We thus obtain a quantitative classification scheme for molecular clouds. In this present study we use the IRAS continuum maps at 100 and 60 micrometer(s) to produce column density (or optical depth) maps for the five molecular cloud regions given above. For this sample of clouds, we compute the 'output' functions which measure the distribution of density, the distribution of topological components, the self-gravity, and the filamentary nature of the clouds. The results of this work provide a quantitative description of the structure in these molecular cloud regions. We then order the clouds according to the overall environmental 'complexity' of these star-forming regions. Finally, we compare our results with the observed populations of young stellar objects in these clouds and discuss the possible environmental effects on the star-formation process. Our results are consistent with the recently stated conjecture that more massive stars tend to form in more 'complex' environments.

  20. Radioisotope thermoelectric generator/thin fragment impact test

    Science.gov (United States)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  1. Radioisotope thermoelectric generator/thin fragment impact test

    International Nuclear Information System (INIS)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238 Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel

  2. Testing independence of fragment lengths within VNTR loci

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, S. (Univ. of Minnesota, Minneapolis, MN (United States)); Johnson, W. (Univ. of California, Davis, CA (United States))

    1993-11-01

    Methods that were devised to test independence of the bivariate fragment lengths obtained from VNTR loci are applied to several population databases. It is shown that for many of the probes independence (Hardy-Weinberg equilibrium) cannot be sustained. 3 refs., 3 tabs.

  3. Evidence for magnetic and virial equilibrium in molecular clouds

    Energy Technology Data Exchange (ETDEWEB)

    Myers, P.C.; Goodman, A.A.

    1988-03-01

    Recent measurements of the magnetic-field strength, velocity dispersion, and size of 14 molecular clouds agree, within uncertainty of a factor of about 2, with the predictions of a simple model in which the magnetic, kinetic, and gravitational energies are all equal. The clouds range from extended dark clouds to massive dense cores associated with OH masers and compact H II regions. Their field strengths range over a factor of about 1000, from about 10 microG to about 10 mG. This result suggests that the magnetic contribution to the internal motions and energy of many molecular clouds is crucial for cloud dynamics, cloud evolution, and star formation. 47 references.

  4. A WISE Survey of Star Formation in Nearby Molecular Clouds

    Science.gov (United States)

    Huard, Tracy

    During the last decade, sensitive mid-infrared observations obtained by the Spitzer Space Telescope significantly increased the known population of Young Stellar Objects (YSOs) associated with nearby molecular clouds. With such a census, recent studies have derived efficiencies of the star formation rates in the different environments. Given the small Spitzer coverage of these molecular clouds, relative to their large extended regions, these YSO populations may represent a limited view of star formation in these regions. We propose to take advantage of mid-infrared observations from the recent WISE mission, which provides an all-sky view and therefore full coverage of the nearby molecular clouds, to assess the degree to which their currently known YSO populations may be under-representative of the extended, more complete populations. We will extend and apply the well established classification method, developed by Spitzer Legacy teams, to archived WISE observations in order to identify and assemble a more complete census of YSOs associated with nearby clouds. Large-scale, high angular resolution extinction maps covering the full extent of these clouds will also be constructed in a uniform manner to enable cross-comparison studies of star formation rates in these different environments. Finally, we plan to provide enhanced WISE data products to the community through the Infrared Processing and Analysis Center, which will promote a diversity of studies by a wider group of investigators, facilitate star-formation studies across different environments, and help ensure the legacy of WISE data.

  5. Modelling dust polarization observations of molecular clouds through MHD simulations

    Science.gov (United States)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  6. Magnetic and turbulent evolution of the Taurus molecular cloud

    International Nuclear Information System (INIS)

    Hemeon-Heyer, M.C.

    1986-01-01

    The role of the interstellar magnetic field in the dynamics of molecular clouds is investigated from extensive mapping of the 13 CO J = 1 - 0 emission to delineate gas morphology and kinematics and polarization of background starlight to determine the magnetic field direction within the Taurus Molecular Cloud Complex. The signature for a dynamically significant magnetic field is a rotating, flattened cloud with the rotational and minor axes parallel to the direction of the magnetic field. It was found that molecular regions characterized by mean densities less than 10 3 cm -3 exhibit such magnetic signatures and are likely a result of magnetically dominated evolution. A method to spatially and kinematically isolate the subcondensations within the clouds is developed. These cores are characterized by mean densities greater than 10 4 cm -3 and are the sites of star formation. However, based on core morphology and kinematics, it appears the magnetic field no longer provides a significant stress to the mostly neutral gas. Therefore, a constraint on the mean density at which the magnetic field decouples from the gas is a molecular density of less than 10 4 cm -3 . The role of stellar winds from pre-main sequence stars as an internal energy source for molecular clouds is investigated from 12 CO and 13 CO mapping of star forming regions delineated by point sources of far infrared emission. Evidence for mass outflow is found toward three of the thirty sources surveyed

  7. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  8. Molecular cloud formation by gravitational instabilities in a clumpy interstellar medium

    International Nuclear Information System (INIS)

    Elmegreen, B.G.

    1989-01-01

    A dispersion relation is derived for gravitational instabilities in a medium with cloud collisional cooling, using a time-dependent energy equation instead of the adiabatic equation of state. The instability extends to much smaller length scales than in the conventional Jeans analysis, and, in regions temporarily without cloud stirring, it has a large growth rate down to the cloud collision mean free path. These results suggests that gravitational instabilities in a variety of environments, such as galactic density wave shocks, swept-up shells, and extended, quiescent regions of the interstellar medium, can form molecular clouds with masses much less than the conventional Jeans mass, e.g., from 100 to 10 million solar masses for the ambient medium, and they can do this even when the unperturbed velocity dispersion remains high. Similar processes operating inside existing clouds might promote gravitationally driven fragmentation. 29 refs

  9. Properties of molecular clouds containing Herbig-Haro objects

    International Nuclear Information System (INIS)

    Loren, R.B.; Evans, N.J. II; Knapp, G.R.

    1979-01-01

    We have studied the physical conditions in the molecular clouds associated with a large number of Herbig-Haro and related objects. Formaldehyde emission at 2 mm was detected in the direction of approx.15 out of 30 objects observed. Using the 2 mm H 2 CO emission and observations of 2 cm H 2 CO absorption, along the the 2.6 mm CO line, we calculate core densities of these molecular clouds. Dense cores are found near but not necessarily coincident with the HH objects. Known embedded infrared sources are more likely to be at the position of greatest density than are the HH objects themselves. The densities determined for the cloud cores are intermediate between the densities of cold, dark clouds such as L134 N and the hot clouds associated with H II regions. Thus, a continuous spectrum of densities is observed in molecular clouds. The temperature and density of the clouds in this study are not well correlated. The cores associated with HH 29 IR and T Tau are very dense (6 x 10 4 and 9 x 10 4 cm -3 ), yet have temperatures typical of cold dark clouds.The strong inverse correlation between X (H 2 CO) and density found by Wootten et al. is also found in the clouds associated with HH objects. This correlation also holds within a single cloud, indicating that the correlation is not due to differences in cloud age and evolution toward gas-phase chemical equilibrium. The decrease of X (H 2 CO) with density is more rapid than predicted by steady state ion-molecule chemistry and may be the result of increased depletion of molecules onto grain surfaces at higher density

  10. The Lifetimes and Evolution of Molecular Cloud Cores

    Science.gov (United States)

    Vázquez-Semadeni, Enrique; Kim, Jongsoo; Shadmehri, Mohsen; Ballesteros-Paredes, Javier

    2005-01-01

    We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In order to maintain a broad perspective, we consider both the magnetic and nonmagnetic cases. In the latter, we argue that clumps are unlikely to reach a hydrostatic state if molecular clouds can in general be described as single-phase media with an effective polytropic exponent γecriticality of their ``parent clouds'' (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A minority of moderately gravitationally bound clumps form, which however are dispersed by the turbulence in ~1.3 Myr, suggesting that these few longer lived cores can marginally be ``captured'' by AD to increase their mass-to-flux ratio and eventually collapse, although on timescales not significantly longer than the dynamical ones. In supercritical boxes, some cores manage to become locally supercritical and collapse in typical timescales of 2 tfc (~1 Myr). In the most supercritical simulation, a few longer lived cores are observed, which last for up to ~3 Myr, but these end up re-expanding rather than collapsing, because they are sub-Jeans in spite of being supercritical. Fewer clumps and cores form in these simulations than in their nonmagnetic counterpart. Our results suggest the following: (1) not all cores observed in molecular clouds will necessarily form stars and that a class of ``failed cores'' should exist, which will eventually redisperse and which may be related to the observed starless cores; (2) cores may be out-of-equilibrium, transient structures, rather than quasi-magnetostatic configurations; (3) the magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores, even in magnetically supercritical clouds.

  11. Kinematics of molecular clouds: evidence for agglomeration in spiral arms

    International Nuclear Information System (INIS)

    Stark, A.A.

    1983-01-01

    A new survey of CO in the first Galactic quadrant has been analysed to yield a catalog of 320 molecular clouds near the tangent velocity. These clouds have known distances, so that cloud sizes and heights above the Galactic plane can be determined. The largest clouds (Msub(C) > 10sup(5.5) solar masses) have a reduced scale height relative to smaller clouds by an amount which is consistent with equipartition of energy. This can be interpreted as evidence for small clouds combining to form giant clouds in spiral arms. (Auth.)

  12. An infrared study of Orion Molecular Cloud-2 (OMC-2)

    Science.gov (United States)

    Johnson, J. J.; Gehrz, R. D.; Jones, T. J.; Hackwell, J. A.; Grasdalen, G. L.

    1990-01-01

    This paper reports 1.2-23 micron photometry for 11 discrete sources in Orion Molecular Cloud-2 (OMC-2). These data, combined with H and K photometric and K polarimetric images, are used to model the cluster sources. Most appear to be young stars of roughly solar mass. Some have circumstellar dust reradiation or reflection nebulosity. A model based on single scattering of light from an exciting star explains some features of the IRS 1 nebula, the largest reflection nebula in OMC-2. However, the red colors and high surface brightness of the IRS 1 nebula require a cool excitation source that is more luminous than far-infrared observations would indicate.

  13. Dynamical evolution of supernova remnants breaking through molecular clouds

    OpenAIRE

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-01-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code (Harten et al. 1983). We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the ou...

  14. Compression of turbulent magnetized gas in giant molecular clouds

    Science.gov (United States)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  15. Cold Water Vapor in the Barnard 5 Molecular Cloud

    Science.gov (United States)

    Wirstrom, E. S.; Charnley, S. B.; Persson, C. M.; Buckle, J. V.; Cordiner, M. A.; Takakuwa, S.

    2014-01-01

    After more than 30 yr of investigations, the nature of gas-grain interactions at low temperatures remains an unresolved issue in astrochemistry. Water ice is the dominant ice found in cold molecular clouds; however, there is only one region where cold ((is) approximately 10 K) water vapor has been detected-L1544. This study aims to shed light on ice desorption mechanisms under cold cloud conditions by expanding the sample. The clumpy distribution of methanol in dark clouds testifies to transient desorption processes at work-likely to also disrupt water ice mantles. Therefore, the Herschel HIFI instrument was used to search for cold water in a small sample of prominent methanol emission peaks. We report detections of the ground-state transition of o-H2O (J = 110-101) at 556.9360 GHz toward two positions in the cold molecular cloud, Barnard 5. The relative abundances of methanol and water gas support a desorption mechanism which disrupts the outer ice mantle layers, rather than causing complete mantle removal.

  16. A Catalog of Molecular Clouds in the Milky Way Galaxy

    Science.gov (United States)

    Wahl, Matthew; Koda, J.

    2010-01-01

    We have created a complete catalog of molecular clouds in the Milky Way Galaxy. This is an extension of our previous study (Koda et al. 2006) which used a preliminary data set from The Boston University Five College Radio Astronomy Observatory Galactic Ring Survey (BUFCRAO GRS). This work is of the complete data set from this GRS. The data covers the inner part of the northern Galactic disk between galactic longitudes 15 to 56 degrees, galactic latitudes -1.1 to 1.1 degrees, and the entire Galactic velocities. We used the standard cloud identification method. This method searches the data cube for a peak in temperature above a specified value, and then searches around that peak in all directions until the extents of the cloud are found. This method is iterated until all clouds are found. We prefer this method over other methods, because of its simplicity. The properties of our molecular clouds are very similar to those based on a more evolved method (Rathborne et al. 2009).

  17. 21 CFR 866.5540 - Immunoglobulin G (Fd fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fd fragment specific... Test Systems § 866.5540 Immunoglobulin G (Fd fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fd fragment specific) immunological test system is a device that consists of...

  18. 21 CFR 866.5520 - Immunoglobulin G (Fab fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fab fragment specific... Test Systems § 866.5520 Immunoglobulin G (Fab fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fab fragment specific) immunological test system is a device that consists...

  19. 21 CFR 866.5530 - Immunoglobulin G (Fc fragment specific) immunological test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunoglobulin G (Fc fragment specific... Test Systems § 866.5530 Immunoglobulin G (Fc fragment specific) immunological test system. (a) Identification. An immunoglobulin G (Fc fragment specific) immunological test system is a device that consists of...

  20. QUANTIFYING OBSERVATIONAL PROJECTION EFFECTS USING MOLECULAR CLOUD SIMULATIONS

    International Nuclear Information System (INIS)

    Beaumont, Christopher N.; Offner, Stella S.R.; Shetty, Rahul; Glover, Simon C. O.; Goodman, Alyssa A.

    2013-01-01

    The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to 'real' density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into corresponding intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ∼40% uncertainty in masses, sizes, and velocity dispersions derived from 13 CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a

  1. Correlation analysis of the Taurus molecular cloud complex

    International Nuclear Information System (INIS)

    Kleiner, S.C.

    1985-01-01

    Autocorrelation and power spectrum methods were applied to the analysis of the density and velocity structure of the Taurus Complex and Heiles Cloud 2 as traced out by 13 CO J = 1 → 0 molecular line observations obtained with the 14m antenna of the Five College Radio Astronomy Observatory. Statistically significant correlations in the spacing of density fluctuations within the Taurus Complex and Heiles 2 were uncovered. The length scales of the observed correlations correspond in magnitude to the Jeans wavelengths characterizing gravitational instabilities with (i) interstellar atomic hydrogen gas for the case of the Taurus complex, and (ii) molecular hydrogen for Heiles 2. The observed correlations may be the signatures of past and current gravitational instabilities frozen into the structure of the molecular gas. The appendices provide a comprehensive description of the analytical and numerical methods developed for the correlation analysis of molecular clouds

  2. An infrared study of Orion Molecular Cloud-2 (OMC-2)

    International Nuclear Information System (INIS)

    Johnson, J.J.; Gehrz, R.D.; Jones, T.J.; Hackwell, J.A.; Grasdalen, G.L.

    1990-01-01

    This paper reports 1.2-23 micron photometry for 11 discrete sources in Orion Molecular Cloud-2 (OMC-2). These data, combined with H and K photometric and K polarimetric images, are used to model the cluster sources. Most appear to be young stars of roughly solar mass. Some have circumstellar dust reradiation or reflection nebulosity. A model based on single scattering of light from an exciting star explains some features of the IRS 1 nebula, the largest reflection nebula in OMC-2. However, the red colors and high surface brightness of the IRS 1 nebula require a cool excitation source that is more luminous than far-infrared observations would indicate. 34 refs

  3. Young stellar objects in the Monoceros OB1 molecular cloud

    International Nuclear Information System (INIS)

    Margulis, M.; Lada, C.J.; Young, E.T.

    1989-01-01

    Detailed results of an IRAS survey of a large portion of the Monoceros OB1 molecular cloud for discrete far-IR sources are presented. IRAS spectral energy distributions are constructed for 27 of the 30 sources identified in the region. Many are bright class I energy distributions, indicating that star formation is still occurring in the complex which produced the visible cluster, NGC 2264. Far-IR luminosities are calculated for each source, and the bolometric luminosity functions for class I and class II sources in the Mon OB1 cloud are found to be significantly different. Of all class I and II sources more luminous than 5 solar, 50 percent of class I sources are more luminous than 60 solar while only 4 percent of class II sources are. An attempt is made to determine the type of young stellar object in the cloud with which molecular outflows are associated. 35 refs

  4. Turbulence in molecular clouds - A new diagnostic tool to probe their origin

    Science.gov (United States)

    Canuto, V. M.; Battaglia, A.

    1985-01-01

    A method is presented to uncover the instability responsible for the type of turbulence observed in molecular clouds and the value of the physical parameters of the 'placental medium' from which turbulence originated. The method utilizes the observational relation between velocities and sizes of molecular clouds, together with a recent model for large-scale turbulence (constructed by Canuto and Goldman, 1985).

  5. Fast Molecular Cloud Destruction Requires Fast Cloud Formation

    Energy Technology Data Exchange (ETDEWEB)

    Mac Low, Mordecai-Mark [American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024 (United States); Burkert, Andreas [Universitäts Sternwarte München, Ludwigs-Maximilian-Universität, D-81679 München (Germany); Ibáñez-Mejía, Juan C., E-mail: mordecai@amnh.org, E-mail: burkert@usm.lmu.de, E-mail: ibanez@ph1.uni-koeln.de [Max-Planck-Institut für Extraterrestrische Physik, D-85748 Garching bei München (Germany)

    2017-09-20

    A large fraction of the gas in the Galaxy is cold, dense, and molecular. If all this gas collapsed under the influence of gravity and formed stars in a local free-fall time, the star formation rate in the Galaxy would exceed that observed by more than an order of magnitude. Other star-forming galaxies behave similarly. Yet, observations and simulations both suggest that the molecular gas is indeed gravitationally collapsing, albeit hierarchically. Prompt stellar feedback offers a potential solution to the low observed star formation rate if it quickly disrupts star-forming clouds during gravitational collapse. However, this requires that molecular clouds must be short-lived objects, raising the question of how so much gas can be observed in the molecular phase. This can occur only if molecular clouds form as quickly as they are destroyed, maintaining a global equilibrium fraction of dense gas. We therefore examine cloud formation timescales. We first demonstrate that supernova and superbubble sweeping cannot produce dense gas at the rate required to match the cloud destruction rate. On the other hand, Toomre gravitational instability can reach the required production rate. We thus argue that, although dense, star-forming gas may last only around a single global free-fall time; the dense gas in star-forming galaxies can globally exist in a state of dynamic equilibrium between formation by gravitational instability and disruption by stellar feedback. At redshift z ≳ 2, the Toomre instability timescale decreases, resulting in a prediction of higher molecular gas fractions at early times, in agreement with the observations.

  6. General-Purpose Heat Source development: Safety Verification Test Program. Bullet/fragment test series

    Energy Technology Data Exchange (ETDEWEB)

    George, T.G.; Tate, R.E.; Axler, K.M.

    1985-05-01

    The radioisotope thermoelectric generator (RTG) that will provide power for space missions contains 18 General-Purpose Heat Source (GPHS) modules. Each module contains four /sup 238/PuO/sub 2/-fueled clads and generates 250 W/sub (t)/. Because a launch-pad or post-launch explosion is always possible, we need to determine the ability of GPHS fueled clads within a module to survive fragment impact. The bullet/fragment test series, part of the Safety Verification Test Plan, was designed to provide information on clad response to impact by a compact, high-energy, aluminum-alloy fragment and to establish a threshold value of fragment energy required to breach the iridium cladding. Test results show that a velocity of 555 m/s (1820 ft/s) with an 18-g bullet is at or near the threshold value of fragment velocity that will cause a clad breach. Results also show that an exothermic Ir/Al reaction occurs if aluminum and hot iridium are in contact, a contact that is possible and most damaging to the clad within a narrow velocity range. The observed reactions between the iridium and the aluminum were studied in the laboratory and are reported in the Appendix.

  7. The Galactic Distribution of OB Associations in Molecular Clouds

    Science.gov (United States)

    Williams, Jonathan P.; McKee, Christopher F.

    1997-02-01

    Molecular clouds account for half of the mass of the interstellar medium interior to the solar circle and for all current star formation. Using cloud catalogs of two CO surveys of the first quadrant, we have fitted the mass distribution of molecular clouds to a truncated power law in a similar manner as the luminosity function of OB associations in the companion paper to this work. After extrapolating from the first quadrant to the entire inner Galaxy, we find that the mass of cataloged clouds amounts to only 40% of current estimates of the total Galactic molecular mass. Following Solomon & Rivolo, we have assumed that the remaining molecular gas is in cold clouds, and we normalize the distribution accordingly. The predicted total number of clouds is then shown to be consistent with that observed in the solar neighborhood where cloud catalogs should be more complete. Within the solar circle, the cumulative form of the distribution is \\Nscrc(>M)=105[(Mu/M)0.6-1], where \\Nscrc is the number of clouds, and Mu = 6 × 106 M⊙ is the upper mass limit. The large number of clouds near the upper cutoff to the distribution indicates an underlying physical limit to cloud formation or destruction processes. The slope of the distribution corresponds to d\\Nscrc/dM~M-1.6, implying that although numerically most clouds are of low mass, most of the molecular gas is contained within the most massive clouds. The distribution of cloud masses is then compared to the Galactic distribution of OB association luminosities to obtain statistical estimates of the number of massive stars expected in any given cloud. The likelihood of massive star formation in a cloud is determined, and it is found that the median cloud mass that contains at least one O star is ~105 M⊙. The average star formation efficiency over the lifetime of an association is about 5% but varies by more than 2 orders of magnitude from cloud to cloud and is predicted to increase with cloud mass. O stars photoevaporate

  8. Large Area, High Resolution N2H+ studies of dense gas in the Perseus and Serpens Molecular Clouds

    Science.gov (United States)

    Storm, Shaye; Mundy, Lee

    2014-07-01

    simulations of planar converging, turbulent flows. All of these initial results imply that over-dense, sheet-like regions in molecular clouds fragment into filaments, and build up hierarchical structures on the pathway to forming dense cores.

  9. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    Science.gov (United States)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star

  10. THE PERILS OF CLUMPFIND: THE MASS SPECTRUM OF SUBSTRUCTURES IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Rosolowsky, Erik W.

    2009-01-01

    We study the mass spectrum of substructures in the Perseus Molecular Cloud Complex traced by 13 CO(1-0), finding that dN/dM ∝ M -2.4 for the standard Clumpfind parameters. This result does not agree with the classical dN/dM ∝ M -1.6 . To understand this discrepancy, we study the robustness of the mass spectrum derived using the Clumpfind algorithm. Both two- and three-dimensional Clumpfind versions are tested, using 850 μm dust emission and 13 CO spectral-line observations of Perseus, respectively. The effect of varying threshold is not important, but varying stepsize produces a different effect for two- and three-dimensional cases. In the two-dimensional case, where emission is relatively isolated (associated with only the densest peaks in the cloud), the mass spectrum variability is negligible compared to the mass function fit uncertainties. In the three-dimensional case, however, where the 13 CO emission traces the bulk of the molecular cloud (MC), the number of clumps and the derived mass spectrum are highly correlated with the stepsize used. The distinction between 'two dimension' and 'three dimension' here is more importantly also a distinction between 'sparse' and 'crowded' emission. In any 'crowded' case, Clumpfind should not be used blindly to derive mass functions. Clumpfind's output in the 'crowded' case can still offer a statistical description of emission useful in intercomparisons, but the clump-list should not be treated as a robust region decomposition suitable to generate a physically meaningful mass function. We conclude that the 13 CO mass spectrum depends on the observations resolution, due to the hierarchical structure of the MC.

  11. Linking the formation of molecular clouds and high-mass stars: a multi-tracer and multi-scale study

    International Nuclear Information System (INIS)

    Nguyen-Luong, Quang

    2012-01-01

    -forming molecular clouds, following the division made between mini-starburst normal spiral galaxies in the extragalactic context. With respect to SiO extended emission, both regions exhibit signatures of converging flows, thus they provide the perfect laboratory for testing this scenario. (author)

  12. Optical polarimetry and molecular line studies of L1157 dark molecular cloud

    Science.gov (United States)

    Sharma, Ekta; Soam, Archana; Gopinathan, Maheswar

    2018-04-01

    Filaments are omnipresent in molecular clouds which are believed to fragment into cores. The detailed process of the evolution from filaments to cores depends critically on the physical conditions in the star forming region. This study aims at characterising gas motions using velocity structure and finding the dynamical importance of magnetic fields in the filament morphology. The plane-of-the-sky component of the magnetic field has been measured using optical polarization of the background stars. The orientation is found to be almost perpendicular to the filament implying its dynamical importance in the evolution of the cloud. Optical polarimetric results match very well with the sub millimetre polarization angles obtained in the inner core regions. The magnetic fields are found to have an orientation of 130° east with respect to north. The angular offset between the outflow axis and the magnetic field direction is found to be 25°. Values for parameters like the excitation temperature, optical depth and column densities have been derived using molecular lines. Optically thick lines show non-gaussian features. The non-thermal widths tell about the presence of turbulent motions whereas the C180 lines follow Gaussian features almost at all the locations observed in the filament.

  13. Ice in the Taurus molecular cloud: modelling of the 3-μm profile

    International Nuclear Information System (INIS)

    Bult, C.E.P.M. van de; Greenberg, J.M.; Whittet, D.C.B.

    1985-01-01

    Detailed calculations of the absorption by interstellar core-mantle particles with mantles of different compositions are compared with observations of the 3μm ice band in the Taurus molecular cloud. The strength and shape of the 3-μm band is shown to be a remarkably good diagnostic of the physical state and evolution of the dust in molecular clouds. The strength of the band is consistent with large fractional H 2 O mantle concentrations, in the range 60-70 per cent, as predicted by theoretical studies of cloud chemistry and as expected from the high oxygen abundance in pre-molecular clouds. (author)

  14. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events

    DEFF Research Database (Denmark)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin

    2015-01-01

    The presence of isotope heterogeneity of nucleosynthetic origin amongst meteorites and their components provides a record of the diverse stars that contributed matter to the protosolar molecular cloud core. Understanding how and when the solar system's nucleosynthetic heterogeneity was established...... variability reflects unmixing of old, galactically-inherited homogeneous dust from a new, supernovae-derived dust component formed shortly prior to or during the evolution of the giant molecular cloud parental to the protosolar molecular cloud core. This implies that similarly to 43Ca, 46Ca and 48Ca...

  15. Formation and Evolution of Giant Molecular Clouds in Disk Galaxies

    Science.gov (United States)

    Tasker, Elizabeth J.; Tan, J.

    2009-01-01

    The formation of stars from gas in disk galaxies is one of the most basic processes controlling galactic evolution. While there are many other important effects, such as galaxy interactions and infall of diffuse gas, ultimately a large fraction of the gas settles into a rotationally supported disk where the majority of the stellar population is born. Due to restrictions in resolution, galactic-scale simulations have largely modeled star formation using empirical correlations between the gas density and star formation rate. While useful, these methods are unable to tell us about the early stages of star formation and the evolution of the interstellar medium (ISM). In this talk, we show results from a set of high adaptive mesh resolution ( 15 pc) global galaxy simulations (32 kpc) that follows the birth, evolution and death of star-forming clouds in the ISM. We present a technique to track the clouds through their life and compare the properties of clouds at different ages. Our clouds are defined with a density threshold that should give them similar properties to giant molecular clouds, and this allows us to make detailed comparison of our simulation results to observations of the Milky Way and other galaxies.

  16. CO line ratios in molecular clouds: the impact of environment

    Science.gov (United States)

    Peñaloza, Camilo H.; Clark, Paul C.; Glover, Simon C. O.; Klessen, Ralf S.

    2018-04-01

    Line emission is strongly dependent on the local environmental conditions in which the emitting tracers reside. In this work, we focus on modelling the CO emission from simulated giant molecular clouds (GMCs), and study the variations in the resulting line ratios arising from the emission from the J = 1-0, J = 2-1, and J = 3-2 transitions. We perform a set of smoothed particle hydrodynamics simulations with time-dependent chemistry, in which environmental conditions - including total cloud mass, density, size, velocity dispersion, metallicity, interstellar radiation field (ISRF), and the cosmic ray ionization rate (CRIR) - were systematically varied. The simulations were then post-processed using radiative transfer to produce synthetic emission maps in the three transitions quoted above. We find that the cloud-averaged values of the line ratios can vary by up to ±0.3 dex, triggered by changes in the environmental conditions. Changes in the ISRF and/or in the CRIR have the largest impact on line ratios since they directly affect the abundance, temperature, and distribution of CO-rich gas within the clouds. We show that the standard methods used to convert CO emission to H2 column density can underestimate the total H2 molecular gas in GMCs by factors of 2 or 3, depending on the environmental conditions in the clouds.

  17. Large, cold, and unusual molecular cloud in Monoceros

    International Nuclear Information System (INIS)

    Maddalena, R.J.; Thaddeus, P.; and Columbia University)

    1985-01-01

    Observations of the J = 1 → 0 rotational transition of CO near the galactic plane in Monoceros (lroughly-equal216 0 ) reveal a molecular cloud with unusually low peak CO temperatures (T/sub R/ -1 ) typical of much warmer clouds. At the assumed distance of 3 kpc, the cloud is large (250 x 100 pc), has a mass of 7-11 x 10 5 M/sub sun/, and is well removed from the galactic midplane (130 pc). Except for a possible H II region, all the signs of star formation usually shown by clouds of comparable mass are missing. The cloud, unlike cloud complexes of similar size, is a single, continuous object that apparently has not been torn apart by star formation. Clouds with such properties are rare in the Galaxy; only one or two similar objects have been found. We discuss the possibility that the cloud is young and not yet forming stars but will evolve into a typical cloud complex once star formation begins

  18. Streaming motions and kinematic distances to molecular clouds

    Science.gov (United States)

    Ramón-Fox, F. G.; Bonnell, Ian A.

    2018-02-01

    We present high-resolution smoothed particle hydrodynamics simulations of a region of gas flowing in a spiral arm and identify dense gas clouds to investigate their kinematics with respect to a Milky Way model. We find that, on average, the gas in the arms can have a net radial streaming motion of vR ≈ -9 km s-1 and rotate ≈ 6 km s-1 slower than the circular velocity. This translates to average peculiar motions towards the Galaxy centre and opposite to Galactic rotation. These results may be sensitive to the assumed spiral arm perturbation, which is ≈ 3 per cent of the disc potential in our model. We compare the actual distance and the kinematic estimate and we find that streaming motions introduce systematic offsets of ≈1 kpc. We find that the distance error can be as large as ±2 kpc, and the recovered cloud positions have distributions that can extend significantly into the inter-arm regions. We conclude that this poses a difficulty in tracing spiral arm structure in molecular cloud surveys.

  19. Submillimeter Spectroscopy of the R Coronae Australis Molecular Cloud Region

    Science.gov (United States)

    Dunn, Marina Madeline; Walker, Christopher K.; Pat, Terrance; Sirsi, Siddhartha; Swift, Brandon J.; Peters, William L.

    2018-01-01

    The Interstellar Medium is comprised of large amounts of gas and dust which coalesce to form stars. Observing in the Terahertz regime of the electromagnetic spectrum, approximately 0.3 -300 microns, allows astronomers to study the ISM in unprecedented detail. Using the high spectral resolution imaging system of the SuperCam receiver, a 64-pixel array previously installed on the Submillimeter Telescope on Mt. Graham, AZ, we have begun a 500 square degree survey of the galactic plane. This instrument was designed to do a complete survey of the Milky Way from the ground, with the main focus being to observe two specific transitions of the carbon monoxide molecule, 12CO(3-2) and 13CO(3-2), at 345 GHz. In this work, we present results from these observations for the R Coronae Australis (R Cr A) complex, a region in the southern hemisphere of the sky, using spectroscopic data from a portion of the survey to gain better insight into the life cycle of the ISM. The majority of stars being formed here are similar to the stellar class of the Sun, making it an excellent area of observing interest. Using these results, we attempt to better ascertain the large-scale structure and kinematics inside of the molecular cloud.

  20. Formation of Massive Molecular Cloud Cores by Cloud-Cloud Collision

    Science.gov (United States)

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-01

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  1. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  2. MAGNETIC FIELD OF THE VELA C MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Kusune, Takayoshi; Sugitani, Koji; Nakamura, Fumitaka; Tamura, Motohide; Watanabe, Makoto; Kwon, Jungmi; Sato, Shuji

    2016-01-01

    We have performed extensive near-infrared ( JHK s ) imaging polarimetry toward the Vela C molecular cloud, which covers the five high-density sub-regions (North, Centre-Ridge, Centre-Nest, South-Ridge, and South-Nest) with distinct morphological characteristics. The obtained polarization vector map shows that three of these sub-regions have distinct plane-of-the-sky (POS) magnetic-field characteristics according to the morphological characteristics. (1) In the Centre-Ridge sub-region, a dominating ridge, the POS magnetic field is mostly perpendicular to the ridge. (2) In the Centre-Nest sub-region, a structure having a slightly extended nest of filaments, the POS magnetic field is nearly parallel to its global elongation. (3) In the South-Nest sub-region, which has a network of small filaments, the POS magnetic field appears to be chaotic. By applying the Chandrasekhar–Fermi method, we derived the POS magnetic field strength as ∼70–310 μ G in the Centre-Ridge, Centre-Nest, and South-Ridge sub-regions. In the South-Nest sub-region, the dispersion of polarization angles is too large to apply the C-F method. Because the velocity dispersion in this sub-region is not greater than those in the other sub-regions, we suggest that the magnetic field in this sub-region is weaker than those in other sub-regions. We also discuss the relationship between the POS magnetic field (configuration and strength) and the cloud structure of each sub-region.

  3. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    International Nuclear Information System (INIS)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-01-01

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds

  4. Complex Organic Molecules in Taurus Molecular Cloud-1

    Science.gov (United States)

    Soma, Tatsuya; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi

    2018-02-01

    We have observed the millimeter-wave rotational spectral lines of CH3CHO, H2CCO, cyclopropenone, and H2CO toward the cyanoployyne peak of Taurus Molecular Cloud-1 (TMC-1 CP). The spectral line profile of CH3CHO is found to reveal a well-separated double peak. It is similar to the line profile of CH3OH, but is much different from those of carbon-chain molecules and C34S. The different line profiles mean different distributions along the line of sight. The similarity of the spectral line profiles between CH3CHO and CH3OH suggests that CH3CHO is mainly formed on dust grains as CH3OH or through gas-phase reactions starting from CH3OH. On the other hand, the spectral line profiles of H2CCO and cyclopropenone are rather similar to those of carbon-chain molecules and C34S, implying their gas-phase productions. H2CO shows a composite spectral line profile reflecting the contributions of both gas-phase and grain-surface productions. In addition, we have detected the spectral lines of CH3CHO and HCOOCH3 toward the methanol peak near TMC-1 CP. We have also tentatively detected one line of (CH3)2O. Considering the chemical youth of TMC-1, the present results indicate that fairly complex organic species have already been formed in the early evolutionary phase of starless cores. TMC-1 is thus recognized as a novel source where formation processes of complex organic molecules can be studied on the basis of the line profiles.

  5. MAGNETIC FIELD OF THE VELA C MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kusune, Takayoshi; Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya, Aichi 467-8501 (Japan); Nakamura, Fumitaka; Tamura, Motohide [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Watanabe, Makoto [Department of Applied Physics, Okayama University of Science, 1-1 Ridai-cho, Okayama-city, Okayama 700-0005 (Japan); Kwon, Jungmi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yohinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Sato, Shuji, E-mail: t_kusune@nsc.nagoya-cu.ac.jp [Department of Astrophysics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8602 (Japan)

    2016-10-20

    We have performed extensive near-infrared ( JHK {sub s}) imaging polarimetry toward the Vela C molecular cloud, which covers the five high-density sub-regions (North, Centre-Ridge, Centre-Nest, South-Ridge, and South-Nest) with distinct morphological characteristics. The obtained polarization vector map shows that three of these sub-regions have distinct plane-of-the-sky (POS) magnetic-field characteristics according to the morphological characteristics. (1) In the Centre-Ridge sub-region, a dominating ridge, the POS magnetic field is mostly perpendicular to the ridge. (2) In the Centre-Nest sub-region, a structure having a slightly extended nest of filaments, the POS magnetic field is nearly parallel to its global elongation. (3) In the South-Nest sub-region, which has a network of small filaments, the POS magnetic field appears to be chaotic. By applying the Chandrasekhar–Fermi method, we derived the POS magnetic field strength as ∼70–310 μ G in the Centre-Ridge, Centre-Nest, and South-Ridge sub-regions. In the South-Nest sub-region, the dispersion of polarization angles is too large to apply the C-F method. Because the velocity dispersion in this sub-region is not greater than those in the other sub-regions, we suggest that the magnetic field in this sub-region is weaker than those in other sub-regions. We also discuss the relationship between the POS magnetic field (configuration and strength) and the cloud structure of each sub-region.

  6. Dissipation of Molecular Cloud Turbulence by Magnetohydrodynamic Shockwaves

    Science.gov (United States)

    Lehmann, Andrew; Wardle, Mark

    2015-08-01

    The character of star formation is intimately related to the supersonic magnetohydrodynamic (MHD) turbulent dynamics of the giant molecular clouds in which stars form. A significant amount of the turbulent energy dissipates in low velocity shock waves. These shocks cause molecular line cooling of the compressed and heated gas, and so their radiative signatures probe the nature of the turbulence. In MHD fluids the three distinct families of shocks—fast, intermediate and slow—differ in how they compress and heat the molecular gas, and so observational differences between them may also distinguish driving modes of turbulent regions.Here we use a two-fluid model to compare the characteristics of one-dimensional fast and slow MHD shocks. Fast MHD shocks are magnetically driven, forcing ion species to stream through the neutral gas ahead of the shock front. This magnetic precursor heats the gas sufficiently to create a large, warm transition zone where all the fluid variables only weakly change in the shock front. In contrast, slow MHD shocks are driven by gas pressure where neutral species collide with ion species in a thin hot slab that closely resembles an ordinary gas dynamic shock.We computed observational diagnostics for fast and slow shocks at velocities vs = 2-4 km/s and preshock Hydrogen nuclei densities n(H) = 102-4 cm-3. We followed the abundances of molecules relevant for a simple oxygen chemistry and include cooling by CO, H2 and H2O. Estimates of intensities of CO rotational lines show that high-J lines, above J = 6→5, are more strongly excited in slow MHD shocks. We discuss how these shocks could help interpret recently observed anomalously strong mid- and high-J CO lines emitted by warm gas in the Milky Way and external galaxies, and implications for simulations of MHD turbulence.

  7. On the star-forming ability of Molecular Clouds

    Science.gov (United States)

    Anathpindika, S.; Burkert, A.; Kuiper, R.

    2018-02-01

    The star-forming ability of a molecular cloud depends on the fraction of gas it can cycle into the dense-phase. Consequently, one of the crucial questions in reconciling star formation in clouds is to understand the factors that control this process. While it is widely accepted that the variation in ambient conditions can alter significantly the ability of a cloud to spawn stars, the observed variation in the star-formation rate in nearby clouds that experience similar ambient conditions, presents an interesting question. In this work, we attempted to reconcile this variation within the paradigm of colliding flows. To this end we develop self-gravitating, hydrodynamic realizations of identical flows, but allowed to collide off-centre. Typical observational diagnostics such as the gas-velocity dispersion, the fraction of dense-gas, the column density distribution (N-PDF), the distribution of gas mass as a function of K-band extinction and the strength of compressional/solenoidal modes in the post-collision cloud were deduced for different choices of the impact parameter of collision. We find that a strongly sheared cloud is terribly inefficient in cycling gas into the dense phase and that such a cloud can possibly reconcile the sluggish nature of star formation reported for some clouds. Within the paradigm of cloud formation via colliding flows this is possible in case of flows colliding with a relatively large impact parameter. We conclude that compressional modes - though probably essential - are insufficient to ensure a relatively higher star-formation efficiency in a cloud.

  8. The Far Infrared Lines of OH as Molecular Cloud Diagnostics

    Science.gov (United States)

    Smith, Howard A.

    2004-01-01

    Future IR missions should give some priority to high resolution spectroscopic observations of the set of far-IR transitions of OH. There are 15 far-IR lines arising between the lowest eight rotational levels of OH, and ISO detected nine of them. Furthermore, ISO found the OH lines, sometimes in emission and sometimes in absorption, in a wide variety of galactic and extragalactic objects ranging from AGB stars to molecular clouds to active galactic nuclei and ultra-luminous IR galaxies. The ISO/LWS Fabry-Perot resolved the 119 m doublet line in a few of the strong sources. This set of OH lines provides a uniquely important diagnostic for many reasons: the lines span a wide wavelength range (28.9 m to 163.2 m); the transitions have fast radiative rates; the abundance of the species is relatively high; the IR continuum plays an important role as a pump; the contribution from shocks is relatively minor; and, not least, the powerful centimeter-wave radiation from OH allows comparison with radio and VLBI datasets. The problem is that the large number of sensitive free parameters, and the large optical depths of the strongest lines, make modeling the full set a difficult job. The SWAS montecarlo radiative transfer code has been used to analyze the ISO/LWS spectra of a number of objects with good success, including in both the lines and the FIR continuum; the DUSTY radiative transfer code was used to insure a self-consistent continuum. Other far IR lines including those from H2O, CO, and [OI] are also in the code. The OH lines all show features which future FIR spectrometers should be able to resolve, and which will enable further refinements in the details of each cloud's structure. Some examples are given, including the case of S140, for which independent SWAS data found evidence for bulk flows.

  9. Is Molecular Cloud Turbulence Driven by External Supernova Explosions?

    Science.gov (United States)

    Seifried, Daniel; Walch, Stefanie; Haid, Sebastian; Girichidis, Philipp; Naab, Thorsten

    2018-03-01

    We present high-resolution (∼0.1 pc), hydrodynamical and magnetohydrodynamical simulations to investigate whether the observed level of molecular cloud (MC) turbulence can be generated and maintained by external supernova (SN) explosions. The MCs are formed self-consistently within their large-scale galactic environment following the non-equilibrium formation of H2 and CO, including (self-) shielding and important heating and cooling processes. The MCs inherit their initial level of turbulence from the diffuse ISM, where turbulence is injected by SN explosions. However, by systematically exploring the effect of individual SNe going off outside the clouds, we show that at later stages the importance of SN-driven turbulence is decreased significantly. This holds for different MC masses as well as for MCs with and without magnetic fields. The SN impact also decreases rapidly with larger distances. Nearby SNe (d ∼ 25 pc) boost the turbulent velocity dispersions of the MC by up to 70% (up to a few km s‑1). For d > 50 pc, however, their impact decreases fast with increasing d and is almost negligible. For all probed distances the gain in velocity dispersion decays rapidly within a few 100 kyr. This is significantly shorter than the average timescale for an MC to be hit by a nearby SN under solar neighborhood conditions (∼2 Myr). Hence, at these conditions SNe are not able to sustain the observed level of MC turbulence. However, in environments with high gas surface densities and SN rates, like the Central Molecular Zone, observed elevated MC dispersions could be triggered by external SNe.

  10. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    Science.gov (United States)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  11. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  12. METHANOL IN THE STARLESS CORE, TAURUS MOLECULAR CLOUD-1

    Energy Technology Data Exchange (ETDEWEB)

    Soma, Tatsuya; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi, E-mail: soma@taurus.phys.s.u-tokyo.ac.jp [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-04-01

    To explore the formation mechanisms of gas phase CH{sub 3}OH in cold starless cores, we have conducted high spectral resolution observations toward the cyanopolyyne peak of Taurus Molecular Cloud-1 (TMC-1 CP) with the IRAM 30 m telescope, the Green Bank Telescope, and the Nobeyama 45 m telescope. The spectral lines of CH{sub 3}OH toward TMC-1 CP are found to have a double-peaked profile separated by 0.5 km s{sup −1}. Since the double-peaked profile is observed for {sup 13}CH{sub 3}OH, it is not due to optical depth and/or self-absorption effects. The spectral line profile of CH{sub 3}OH is much different from those of C{sup 34}S, C{sub 3}S, and HC{sub 7}N observed toward this source. The H{sub 2} densities of the emitting region of CH{sub 3}OH for the blueshifted and redshifted components are derived to be (1.7 ± 0.5) × 10{sup 4} cm{sup −3} and (4.3 ± 1.2) × 10{sup 4} cm{sup −3}, respectively. These densities are similar to or slightly lower than those found for the other molecules. These results suggest a chemical differentiation between CH{sub 3}OH and the other molecules, which has indeed been confirmed by mapping observations of the CH{sub 3}OH and C{sup 34}S lines. These results are consistent with the general idea that CH{sub 3}OH is formed on dust grains and is liberated into the gas phase by non-thermal desorption. The grain-surface origin of CH{sub 3}OH is further confirmed by the CH{sub 3}OH/{sup 13}CH{sub 3}OH ratio. Weak shocks caused by accreting diffuse gas to the TMC-1 filament, photoevaporation caused by cosmic-ray induced UV radiation, and the desorption of excess reaction energy in the formation of CH{sub 3}OH on dust grains are discussed for the desorption mechanisms.

  13. A simple approach to CO cooling in molecular clouds

    Science.gov (United States)

    Whitworth, A. P.; Jaffa, S. E.

    2018-03-01

    Carbon monoxide plays an important role in interstellar molecular clouds, both as a coolant, and as a diagnostic molecule. However, a proper evaluation of the cooling rate due to CO requires a determination of the populations of many levels, the spontaneous and stimulated radiative de-excitation rates between these levels, and the transfer of the emitted multi-line radiation; additionally, this must be done for three isotopologues. It would be useful to have a simple analytic formulation that avoided these complications and the associated computational overhead; this could then be used in situations where CO plays an important role as a coolant, but the details of this role are not the main concern. We derive such a formulation here, by first considering the two asymptotic forms that obtain in the limits of (a) low volume-density and optical depth, and (b) high volume-density and optical depth. These forms are then combined in such a way as to fit the detailed numerical results from Goldsmith & Langer (1978, ApJ, 222, 881; hereafter GL78). The GL78 results cover low temperatures, and a range of physical conditions where the interplay of thermal and sub-thermal excitation, optical-depth effects, and the contributions from rare isotopologues, are all important. The fit is obtained using the Metropolis-Hastings method, and reproduces the results of GL78 well. It is a purely local and analytic function of state — specifically a function of the density, ρ, isothermal sound speed, a, CO abundance, XCO, and velocity divergence, ∇ṡυ. As an illustration of its use, we consider the cooling layer following a slow steady non-magnetic planar J-shock. We show that, in this idealised configuration, if the post-shock cooling is dominated by CO and its isotopologues, the thickness of the post-shock cooling layer is very small and approximately independent of the pre-shock velocity, υo, or pre-shock isothermal sound speed, ao.

  14. The impact of X-rays on molecular cloud fragmentation and the inital mass function

    NARCIS (Netherlands)

    Hocuk, S.; Spaans, M.

    2010-01-01

    Star formation is regulated through a variety of feedback processes. In this study, we treat feedback by X-rays and discuss its implications. Our aim is to investigate whether star formation is significantly affected when a star forming cloud resides in the vicinity of a strong X-ray source. We

  15. Interaction between the SNR Sagittarius A East and the 50-km s-1 Molecular Cloud

    International Nuclear Information System (INIS)

    Tsuboi, Masato; Okumura, Sachiko K; Miyazaki, Atsushi

    2006-01-01

    We performed high-resolution observations of the Galactic Center 50-km s -1 molecular cloud in the CS J = 1 - 0 line using the Nobeyama Millimeter Array. The 50-km s -1 molecular cloud corresponds to a break in the Sagittarius (Sgr) A east shell. A very broad and negative velocity wing feature is detected at an apparent contact spot between the molecular cloud and the Sgr A east shell. The velocity width of the wing feature is over 50-km s -1 . The width is three times wider than those of typical Galactic Center clouds. This strongly suggests that the shell is interacting physically with the molecular cloud. The asymmetric velocity profile of the wing feature indicates that the Sgr A east shell expands and crashes into the far side of the molecular cloud. About 50 clumps are identified in the cloud using CLUMPFIND. The velocity width-size relation and the mass spectrum of clumps in the cloud are similar to those in Central Molecular Zone (CMZ)

  16. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    Science.gov (United States)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  17. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    Science.gov (United States)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-05-01

    We propose a simple analytic theory for environmentally dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations, and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  18. A general theory for the lifetimes of giant molecular clouds under the influence of galactic dynamics

    Science.gov (United States)

    Jeffreson, Sarah M. R.; Kruijssen, J. M. Diederik

    2018-03-01

    We propose a simple analytic theory for environmentally-dependent molecular cloud lifetimes, based on the large-scale (galactic) dynamics of the interstellar medium. Within this theory, the cloud lifetime is set by the time-scales for gravitational collapse, galactic shear, spiral arm interactions, epicyclic perturbations and cloud-cloud collisions. It is dependent on five observable quantities, accessible through measurements of the galactic rotation curve, the gas and stellar surface densities, and the gas and stellar velocity dispersions of the host galaxy. We determine how the relative importance of each dynamical mechanism varies throughout the space of observable galactic properties, and conclude that gravitational collapse and galactic shear play the greatest role in setting the cloud lifetime for the considered range of galaxy properties, while cloud-cloud collisions exert a much lesser influence. All five environmental mechanisms are nevertheless required to obtain a complete picture of cloud evolution. We apply our theory to the galaxies M31, M51, M83, and the Milky Way, and find a strong dependence of the cloud lifetime upon galactocentric radius in each case, with a typical cloud lifetime between 10 and 50 Myr. Our theory is ideally-suited for systematic observational tests with the Atacama Large Millimetre/submillimetre array.

  19. Study of Molecular Clouds, Variable Stars and Related Topics at NUU and UBAI

    Science.gov (United States)

    Hojaev, A. S.

    2017-07-01

    The search of young PMS stars made by our team at Maidanak, Lulin and Beijing observatories, especially in NGC 6820/23 area, as well as monitoring of a sample of open clusters will be described and results will be presented. We consider physical conditions in different star forming regions, particularly in TDC and around Vul OB1, estimate SFE and SFR, energy balance and instability processes in these regions. We also reviewed all data on molecular clouds in the Galaxy and in other galaxies where the clouds were observed to prepare general catalog of molecular clouds, to study physical conditions, unsteadiness and possible star formation in them, the formation and evolution of molecular cloud systems, to analyze their role in formation of different types of galaxies and structural features therein.

  20. Isotopic evidence for primordial molecular cloud material in metal-rich carbonaceous chondrites

    DEFF Research Database (Denmark)

    van Kooten, Elishevah M. M. E.; Wielandt, Daniel Kim Peel; Schiller, Martin

    2016-01-01

    )Mg*-depleted and (54)Cr-enriched component. This composition is consistent with that expected for thermally unprocessed primordial molecular cloud material before its pollution by stellar-derived (26)Al. The (26)Mg* and (54)Cr compositions of bulk metal-rich chondrites require significant amounts (25...... addition of stellar-derived (26)Al has not been identified yet but may be preserved in planetesimals that accreted in the outer Solar System. We show that metal-rich carbonaceous chondrites and their components have a unique isotopic signature extending from an inner Solar System composition toward a (26......-50%) of primordial molecular cloud matter in their precursor material. Given that such high fractions of primordial molecular cloud material are expected to survive only in the outer Solar System, we infer that, similarly to cometary bodies, metal-rich carbonaceous chondrites are samples of planetesimals...

  1. A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1)

    DEFF Research Database (Denmark)

    Nissen, H.D.; Cunningham, N.J.; Sherson, Maiken Gustafsson

    2012-01-01

    The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Here we study the structure and dynamics of outflows in OMC-1. We combine radial velocity...

  2. The abundance and emission of H2O and O-2 in clumpy molecular clouds

    NARCIS (Netherlands)

    Spaans, M; van Dishoeck, EF

    2001-01-01

    Recent observations with the Submillimeter Wave Astronomy Satellite (SWAS) indicate abundances of gaseous H2O and O-2 in dense molecular clouds that are significantly lower than those found in standard homogeneous chemistry models. We present here results for the thermal and chemical balance of

  3. [Cii] emission from L1630 in the Orion B molecular cloud.

    Science.gov (United States)

    Pabst, C H M; Goicoechea, J R; Teyssier, D; Berné, O; Ochsendorf, B B; Wolfire, M G; Higgins, R D; Riquelme, D; Risacher, C; Pety, J; Le Petit, F; Roueff, E; Bron, E; Tielens, A G G M

    2017-10-01

    L1630 in the Orion B molecular cloud, which includes the iconic Horsehead Nebula, illuminated by the star system σ Ori, is an example of a photodissociation region (PDR). In PDRs, stellar radiation impinges on the surface of dense material, often a molecular cloud, thereby inducing a complex network of chemical reactions and physical processes. Observations toward L1630 allow us to study the interplay between stellar radiation and a molecular cloud under relatively benign conditions, that is, intermediate densities and an intermediate UV radiation field. Contrary to the well-studied Orion Molecular Cloud 1 (OMC1), which hosts much harsher conditions, L1630 has little star formation. Our goal is to relate the [Cii] fine-structure line emission to the physical conditions predominant in L1630 and compare it to studies of OMC1. The [Cii] 158 μ m line emission of L1630 around the Horsehead Nebula, an area of 12' × 17', was observed using the upgraded German Receiver for Astronomy at Terahertz Frequencies (upGREAT) onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). Of the [Cii] emission from the mapped area 95%, 13 L ⊙ , originates from the molecular cloud; the adjacent Hii region contributes only 5%, that is, 1 L ⊙ . From comparison with other data (CO(1-0)-line emission, far-infrared (FIR) continuum studies, emission from polycyclic aromatic hydrocarbons (PAHs)), we infer a gas density of the molecular cloud of n H ∼ 3 · 10 3 cm -3 , with surface layers, including the Horsehead Nebula, having a density of up to n H ∼ 4 · 10 4 cm -3 . The temperature of the surface gas is T ∼ 100 K. The average [Cii] cooling efficiency within the molecular cloud is 1.3 · 10 -2 . The fraction of the mass of the molecular cloud within the studied area that is traced by [Cii] is only 8%. Our PDR models are able to reproduce the FIR-[Cii] correlations and also the CO(1-0)-[Cii] correlations. Finally, we compare our results on the heating efficiency of the

  4. Observational Approach to Molecular Cloud Evolution with the Submillimeter CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.; Mt. Fuji Submillimeter-Wave Telescope Group

    Neutral carbon atoms (CI) play important role both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to investigate formation processes and thermal balance of molecular clouds. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter CI lines, 3P1--3P0 (492 GHz) and 3P2--3P1 (809 GHz), of atomic carbon. It has been operated successfully during 4 observing seasons since July 1998 in a remote way from the Hongo campus of the University of Tokyo. We have already revealed large-scale CI 492 GHz distributions of many giant molecular clouds, including Orion MC, Taurus MC, DR15, DR21, NGC2264, M17, W3, W44, W51, Rosette MC, covering more than 40 square degrees of the sky. The distribution of CI 492 GHz emission is found to be different from those of the 13CO or C18O emission in some clouds. We found the spatial order of C+/CO/C from UV sources. This is the general property of the cloud illuminated by intense UV radiation, whereas it is apparently inconsistent with the standard photodissociation region (PDR) picture. We also found CI-rich areas (C/CO˜1) in several dark clouds without strong UV sources. These results are discussed in relation to formation processes of molecular clouds and dense cloud cores.

  5. Multi-phase Turbulence Density Power Spectra in the Perseus Molecular Cloud

    Science.gov (United States)

    Pingel, N. M.; Lee, Min-Young; Burkhart, Blakesley; Stanimirović, Snežana

    2018-04-01

    We derive two-dimensional spatial power spectra of four distinct interstellar medium tracers, H I, 12CO(J = 1–0), 13CO(J = 1–0), and dust, in the Perseus molecular cloud, covering linear scales ranging from ∼0.1 pc to ∼90 pc. Among the four tracers, we find the steepest slopes of ‑3.23 ± 0.05 and ‑3.22 ± 0.05 for the uncorrected and opacity-corrected H I column density images. This result suggests that the H I in and around Perseus traces a non-gravitating, transonic medium on average, with a negligible effect from opacity. On the other hand, we measure the shallowest slope of ‑2.72 ± 0.12 for the 2MASS dust extinction data and interpret this as the signature of a self-gravitating, supersonic medium. Possible variations in the dust-to-gas ratio likely do not alter our conclusion. Finally, we derive slopes of ‑3.08 ± 0.08 and ‑2.88 ± 0.07 for the 12CO(1–0) and 13CO(1–0) integrated intensity images. Based on theoretical predictions for an optically thick medium, we interpret these slopes of roughly ‑3 as implying that both CO lines are susceptible to the opacity effect. While simple tests for the impact of CO formation and depletion indicate that the measured slopes of 12CO(1–0) and 13CO(1–0) are not likely affected by these chemical effects, our results generally suggest that chemically more complex and/or fully optically thick media may not be a reliable observational tracer for characterizing turbulence.

  6. Ionization impact on molecular clouds and star formation: Numerical simulations and observations

    International Nuclear Information System (INIS)

    Tremblin, Pascal

    2012-01-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H II regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  7. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  8. SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi, 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Center for Computational Sciences, The University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Kawamura, Akiko [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2016-02-20

    Spectral line survey observations of seven molecular clouds in the Large Magellanic Cloud (LMC) have been conducted in the 3 mm band with the Mopra 22 m telescope to reveal chemical compositions in low metallicity conditions. Spectral lines of fundamental species such as CS, SO, CCH, HCN, HCO{sup +}, and HNC are detected in addition to those of CO and {sup 13}CO, while CH{sub 3}OH is not detected in any source and N{sub 2}H{sup +} is marginally detected in two sources. The molecular-cloud scale (10 pc scale) chemical composition is found to be similar among the seven sources regardless of different star formation activities, and hence, it represents the chemical composition characteristic of the LMC without influences by star formation activities. In comparison with chemical compositions of Galactic sources, the characteristic features are (1) deficient N-bearing molecules, (2) abundant CCH, and (3) deficient CH{sub 3}OH. Feature (1) is due to a lower elemental abundance of nitrogen in the LMC, whereas features (2) and (3) seem to originate from extended photodissociation regions and warmer temperature in cloud peripheries due to a lower abundance of dust grains in the low metallicity condition. In spite of general resemblance of chemical abundances among the seven sources, the CS/HCO{sup +} and SO/HCO{sup +} ratios are found to be slightly higher in a quiescent molecular cloud. An origin of this trend is discussed in relation to possible depletion of sulfur along the molecular cloud formation.

  9. Observational Approach to Molecular Cloud Evolutation with the Submillimeter-Wave CI Lines

    Science.gov (United States)

    Oka, T.; Yamamoto, S.

    Neutral carbon atoms (CI) play important roles both in chemistry and cooling processes of interstellar molecular clouds. It is thus crucial to explore its large area distribution to obtain information on formation processes and thermal balance of molecular clouds. However, observations of the submillimeter-wave CI lines have been limited to small areas around some representative objects. We have constructed a 1.2 m submillimeter-wave telescope at the summit of Mt.Fuji. The telescope was designed for the exclusive use of surveying molecular clouds in two submillimeter-wave CI lines, 3 P1 -3 P0 (492GHz) and 3 P2 -3 P1 (809 GHz), of atomic carbon. A superconductor-insulator-superconductor (SIS) mixer receiver was equipped on the Nasmyth focus of the telescope. The receiver noise temperatures [Trx(DSB)] are 300 K and 1000 K for the 492 GHz and the 809 GHz mixers, respectively. The intermediate frequency is centered at 2 GHz, having a 700 MHz bandwidth. An acousto-optical spectrometer (AOS) with 1024 channel outputs is used as a receiver backend. The telescope was installed at Nishi-yasugawara (alt. 3725 m), which is 200 m north of the highest peak, Kengamine (3776 m), in July 1998. It has b en operatede successfully during 4 observing seasons in a remote way from the Hongo campus of the University of Tokyo. We have already observed more than 40 square degrees of the sky with the CI 492 GHz line. The distribution of CI emission is found to be different from those of the 13 CO or C1 8 O emission in some clouds. These differences are discussed in relation to formation processes of molecular clouds.

  10. Mapping of the extinction in Giant Molecular Clouds using optical star counts

    OpenAIRE

    Cambresy, L.

    1999-01-01

    This paper presents large scale extinction maps of most nearby Giant Molecular Clouds of the Galaxy (Lupus, rho-Ophiuchus, Scorpius, Coalsack, Taurus, Chamaeleon, Musca, Corona Australis, Serpens, IC 5146, Vela, Orion, Monoceros R1 and R2, Rosette, Carina) derived from a star count method using an adaptive grid and a wavelet decomposition applied to the optical data provided by the USNO-Precision Measuring Machine. The distribution of the extinction in the clouds leads to estimate their total...

  11. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Franco, G. A. P.; Alves, F. O.

    2015-01-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales

  12. TRACING THE MAGNETIC FIELD MORPHOLOGY OF THE LUPUS I MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Franco, G. A. P. [Departamento de Física—ICEx—UFMG, Caixa Postal 702, 30.123-970 Belo Horizonte (Brazil); Alves, F. O., E-mail: franco@fisica.ufmg.br, E-mail: falves@mpe.mpg.de [Max-Planck-Institut für extraterrestrische Physik, Giessenbachstr. 1, D-85748 Garching (Germany)

    2015-07-01

    Deep R-band CCD linear polarimetry collected for fields with lines of sight toward the Lupus I molecular cloud is used to investigate the properties of the magnetic field within this molecular cloud. The observed sample contains about 7000 stars, almost 2000 of them with a polarization signal-to-noise ratio larger than 5. These data cover almost the entire main molecular cloud and also sample two diffuse infrared patches in the neighborhood of Lupus I. The large-scale pattern of the plane-of-sky projection of the magnetic field is perpendicular to the main axis of Lupus I, but parallel to the two diffuse infrared patches. A detailed analysis of our polarization data combined with the Herschel/SPIRE 350 μm dust emission map shows that the principal filament of Lupus I is constituted by three main clumps that are acted on by magnetic fields that have different large-scale structural properties. These differences may be the reason for the observed distribution of pre- and protostellar objects along the molecular cloud and the cloud’s apparent evolutionary stage. On the other hand, assuming that the magnetic field is composed of large-scale and turbulent components, we find that the latter is rather similar in all three clumps. The estimated plane-of-sky component of the large-scale magnetic field ranges from about 70 to 200 μG in these clumps. The intensity increases toward the Galactic plane. The mass-to-magnetic flux ratio is much smaller than unity, implying that Lupus I is magnetically supported on large scales.

  13. DDT_pandre_6: Striated Cold Neutral HI Clouds: Precursors to Filamentary Molecular Clouds ?

    Science.gov (United States)

    André, P.

    2012-12-01

    One of the early discoveries made with Herschel is the fascinating omnipresence of filamentary structures in all Galactic molecular clouds and the intimate relationship between these filaments and the star formation process. The physical origin of the dusty filaments imaged with Herschel remains an open issue, however. One likely possibility is that they originate from primordial structures in the diffuse, cold neutral (atomic) medium. We propose to use Herschel in parallel mode to image a unique region of the sky, centered on the Riegel-Crutcher clouds, where hair-like striations have been detected in HI absorption. These HI striations are aligned with the local magnetic field and parallel to faint dust filaments seen in Herschel Gould Belt Survey images of the adjacent Pipe molecular cloud. SPIRE has the sensitivity to detect the dust continuum emission from these faint HI striations (Av ~ 0.5), which will allow us to establish, for the first time, a direct connection between the filamentary texture of the cold atomic medium and that of star-forming molecular clouds.

  14. A large catalog of accurate distances to molecular clouds from PS1 photometry

    Energy Technology Data Exchange (ETDEWEB)

    Schlafly, E. F.; Rix, H.-W.; Martin, N. F. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Green, G.; Finkbeiner, D. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Bell, E. F. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Kaiser, N.; Magnier, E. A.; Tonry, J. L. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Draper, P. W.; Metcalfe, N. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Price, P. A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-01

    Distance measurements to molecular clouds are important but are often made separately for each cloud of interest, employing very different data and techniques. We present a large, homogeneous catalog of distances to molecular clouds, most of which are of unprecedented accuracy. We determine distances using optical photometry of stars along lines of sight toward these clouds, obtained from PanSTARRS-1. We simultaneously infer the reddenings and distances to these stars, tracking the full probability distribution function using a technique presented in Green et al. We fit these star-by-star measurements using a simple dust screen model to find the distance to each cloud. We thus estimate the distances to almost all of the clouds in the Magnani et al. catalog, as well as many other well-studied clouds, including Orion, Perseus, Taurus, Cepheus, Polaris, California, and Monoceros R2, avoiding only the inner Galaxy. Typical statistical uncertainties in the distances are 5%, though the systematic uncertainty stemming from the quality of our stellar models is about 10%. The resulting catalog is the largest catalog of accurate, directly measured distances to molecular clouds. Our distance estimates are generally consistent with available distance estimates from the literature, though in some cases the literature estimates are off by a factor of more than two.

  15. JCMT SCUBA-Diving in Nearby Molecular Clouds: The Case for Large Systematic Surveys with FIRST

    Science.gov (United States)

    Johnstone, D.

    2001-07-01

    Results from two sub-millimeter surveys of the nearby molecular clouds rho Oph, Taurus, Orion A and Orion B are presented. Combining large area (100's of square arc-minute) JCMT continuum emission images at 450 microns (8") and 850 microns (14"), sensitive to ~ 0.01 Msolar condensations, with molecular line data (CO isotopes, formaldehyde, etc.) allows for a glimpse into the physical properties of molecular clouds on small scales. Both barely resolved condensations and large scale features are visible in the maps, revealing the variety of dynamical events which operate in star forming regions. The important physics associated with these regions, as evidenced by the survey results, are discussed. Equilibrium Bonnor-Ebert models are fit to the compact clumps found in the dust continuum images in order to derive their physical properties - mass, temperature, and bounding pressure. The cumulative mass functions for the clumps in both Orion B and rho Oph are remarkably similar to the stellar IMF. The survey results are used to argue for a strong multi-wavelength and multi-instrument survey component to the FIRST mission in order to best unlock the secrets of star formation in molecular clouds.

  16. Gravity or turbulence? - II. Evolving column density probability distribution functions in molecular clouds

    Science.gov (United States)

    Ballesteros-Paredes, Javier; Vázquez-Semadeni, Enrique; Gazol, Adriana; Hartmann, Lee W.; Heitsch, Fabian; Colín, Pedro

    2011-09-01

    It has been recently shown that molecular clouds do not exhibit a unique shape for the column density probability distribution function (N-PDF). Instead, clouds without star formation seem to possess a lognormal distribution, while clouds with active star formation develop a power-law tail at high column densities. The lognormal behaviour of the N-PDF has been interpreted in terms of turbulent motions dominating the dynamics of the clouds, while the power-law behaviour occurs when the cloud is dominated by gravity. In the present contribution, we use thermally bi-stable numerical simulations of cloud formation and evolution to show that, indeed, these two regimes can be understood in terms of the formation and evolution of molecular clouds: a very narrow lognormal regime appears when the cloud is being assembled. However, as the global gravitational contraction occurs, the initial density fluctuations are enhanced, resulting, first, in a wider lognormal N-PDF, and later, in a power-law N-PDF. We thus suggest that the observed N-PDF of molecular clouds are a manifestation of their global gravitationally contracting state. We also show that, contrary to recent suggestions, the exact value of the power-law slope is not unique, as it depends on the projection in which the cloud is being observed.

  17. Submillimeter and far infrared line observations of M17 SW: A clumpy molecular cloud penetrated by UV radiation

    Science.gov (United States)

    Stutzki, J.; Stacey, G. J.; Genzel, R.; Harris, A. I.; Jaffe, d. T.; Lugten, J. B.

    1987-01-01

    Millimeter, submillimeter, and far infrared spectroscopic observations of the M17 SW star formation region are discussed. The results require the molecular cloud near the interface to be clumpy or filamentary. As a consequence, far ultraviolet radiation from the central OB stellar cluster can penetrate into the dense molecular cloud to a depth of several pc, thus creating bright and extended (CII) emission from the photodissociated surfaces of dense atomic and molecular clumps or sheets. The extended (CII) emission throughout the molecular cloud SW of the M17 complex has a level 20 times higher than expected from a single molecular cloud interface exposed to an ultraviolet radiation field typical of the solar neighborhood. This suggests that the molecular cloud as a whole is penetrated by ultraviolet radiation and has a clumpy or filamentary structure. The number of B stars expected to be embedded in the M17 molecular cloud probably can provide the UV radiation necessary for the extended (CII) emission. Alternatively, the UV radiation could be external, if the interstellar radiation in the vicinity of M17 is higher than in the solar neighborhood.

  18. Characterizing molecular clouds in the earliest phases of high-mass star formation

    Science.gov (United States)

    Sanhueza, Patricio A.

    High-mass stars play a key role in the energetics and chemical evolution. of molecular clouds and galaxies. However, the mechanisms that allow. the formation of high-mass stars are far less clear than those of. their low-mass. counterparts. Most of the research on high-mass star formation has focused. on regions currently undergoing star formation. In contrast, objects. in the earlier prestellar stage have been more difficult to identify. Recently, it has been. suggested that the cold, massive, and dense Infrared Dark Clouds (IRDCs) host. the earliest stages of high-mass star formation. The chemistry of IRDCs remains poorly explored. In this dissertation, an. observational program to search for chemical. variations in IRDC clumps as a function of their age is described. An increase in N2H+ and HCO+ abundances. is found from the quiescent, cold phase to the protostellar, warmer phases, reflecting chemical. evolution. For HCO+ abundances, the observed trend is consistent with. theoretical predictions. However, chemical models fail to explain the observed. trend of increasing N2H+ abundances. Pristine high-mass prestellar clumps are ideal for testing and constraining. theories of high-mass star formation because their predictions differ. the most at the early stages of evolution. From the initial IRDC sample, a high-mass clump that is the best candidate to be in the prestellar phase. was selected (IRDC G028.23-00.19 MM1). With a new set of observations, the prestellar nature of the clump is confirmed. High-angular resolution. observations of IRDC G028.23-00.19 suggest that in. order to form high-mass stars, the detected cores have to accrete a large. amount of material, passing through a low- to intermediate-mass phase. before having the necessary mass to form a. high-mass star. The turbulent core accretion model. is inconsistent with this observational result, but on the other hand, the. observations support the competitive accretion model. Embedded cores have. to

  19. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E.; Hughes, Annie; Maddison, Sarah; Ott, Jürgen; Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji; Pineda, Jorge L.; Bernard, Jean-Philippe; Paradis, Deborah; Henkel, Christian; Klein, Ulrich

    2011-01-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL∝L –2 , suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  20. Evidence for nucleosynthetic enrichment of the protosolar molecular cloud core by multiple supernova events.

    Science.gov (United States)

    Schiller, Martin; Paton, Chad; Bizzarro, Martin

    2015-01-15

    The presence of isotope heterogeneity of nucleosynthetic origin amongst meteorites and their components provides a record of the diverse stars that contributed matter to the protosolar molecular cloud core. Understanding how and when the solar system's nucleosynthetic heterogeneity was established and preserved within the solar protoplanetary disk is critical for unraveling the earliest formative stages of the solar system. Here, we report calcium and magnesium isotope measurements of primitive and differentiated meteorites as well as various types of refractory inclusions, including refractory inclusions (CAIs) formed with the canonical 26 Al/ 27 Al of ~5 × 10 -5 ( 26 Al decays to 26 Mg with a half-life of ~0.73 Ma) and CAIs that show fractionated and unidentified nuclear effects (FUN-CAIs) to understand the origin of the solar system's nucleosynthetic heterogeneity. Bulk analyses of primitive and differentiated meteorites along with canonical and FUN-CAIs define correlated, mass-independent variations in 43 Ca, 46 Ca and 48 Ca. Moreover, sequential dissolution experiments of the Ivuna carbonaceous chondrite aimed at identifying the nature and number of presolar carriers of isotope anomalies within primitive meteorites have detected the presence of multiple carriers of the short-lived 26 Al nuclide as well as carriers of anomalous and uncorrelated 43 Ca, 46 Ca and 48 Ca compositions, which requires input from multiple and recent supernovae sources. We infer that the solar system's correlated nucleosynthetic variability reflects unmixing of old, galactically-inherited homogeneous dust from a new, supernovae-derived dust component formed shortly prior to or during the evolution of the giant molecular cloud parental to the protosolar molecular cloud core. This implies that similarly to 43 Ca, 46 Ca and 48 Ca, the short-lived 26 Al nuclide was heterogeneously distributed in the inner solar system at the time of CAI formation.

  1. C3H2 observations as a diagnostic probe for molecular clouds

    Science.gov (United States)

    Avery, L. W.

    1986-01-01

    Recently the three-membered ring molecule, cyclopropenylidene, C3H2, has been identified in the laboratory and detected in molecular clouds by Thaddeus, Vrtilek and Gottlieb (1985). This molecule is wide-spread throughout the Galaxy and has been detected in 25 separate sources including cold dust clouds, circumstellar envelopes, HII regions, and the spiral arms observed against the Cas supernova remnant. In order to evaluate the potential of C3H2 as a diagnostic probe for molecular clouds, and to attempt to identify the most useful transitions, statistical equilibrium calculations were carried out for the lowest 24 levels of the ortho species and the lowest 10 levels of the para species. Many of the sources observed by Matthews and Irvine (1985) show evidence of being optically thick in the 1(10)-1(01) line. Consequently, the effects of radiative trapping should be incorporated into the equilibrium calculations. This was done using the Large Velocity Gradient approximation for a spherical cloud of uniform density. Some results of the calculations for T(K)=10K are given. Figures are presented which show contours of the logarithm of the ratio of peak line brightness temperatures for ortho-para pairs of lines at similar frequencies. It appears that the widespread nature of C3H2, the relatively large strength of its spectral lines, and their sensitivity to density and molecular abundance combine to make this a useful molecule for probing physical conditions in molecular clouds. The 1(10)-1(01) and 2(20)-2(11) K-band lines may be especially useful in this regard because of the ease with which they are observed and their unusual density-dependent emission/absorption properties.

  2. ULTRAVIOLET ESCAPE FRACTIONS FROM GIANT MOLECULAR CLOUDS DURING EARLY CLUSTER FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Corey; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4M1 (Canada); Klessen, Ralf [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany)

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction ( f {sub esc}) arising as a consequence of star cluster formation in a turbulent, 10{sup 6} M {sub ⊙} giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f {sub esc} of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and f {sub esc} drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average f {sub esc} of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for f {sub esc} from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  3. Kinematics of the Optically Visible YSOs toward the Orion B Molecular Cloud

    Science.gov (United States)

    Kounkel, Marina; Hartmann, Lee; Mateo, Mario; Bailey, John I., III

    2017-08-01

    We present results from high-resolution optical spectra toward 66 young stars in the Orion B molecular cloud to study their kinematics and other properties. Observations of the Hα and Li I 6707 Å lines are used to check membership and accretion properties. While the stellar radial velocities of NGC 2068 and L1622 are in good agreement with that of the molecular gas, many of the stars in NGC 2024 show a considerable offset. This could be a signature of either the expansion of the cluster, the high degree of the ejection of the stars from the cluster through dynamical interaction, or the acceleration of the gas due to stellar feedback.

  4. RESEARCH ABOUT RESULTS REPRODUTIBILITY AND ABRASIVE PARTICLES FRAGMENTATION IN BALL-CRATERING TESTS

    Directory of Open Access Journals (Sweden)

    Ronaldo Câmara Cozza

    2013-06-01

    Full Text Available The micro-abrasive wear tests by rotating ball (crater wear have played an important role in abrasive wear researches. In this type of test, the contact between a specimen and a ball on rotating motion and abrasive particles supplied between these two elements, results in a crater on the specimen, based on which the abrasive wear behaviour is analysed. The purpose of this work is to study results the reprodutibility and the silicon carbide (SiC abrasive particles fragmentation during micro-abrasive wear tests. Tests were conducted with carburized AISI 1010 steel balls and high speed steel specimens, “with” and “without” titanium nitride (TiN coatings. The abrasive slurry was prepared with black silicon carbide (average particle size of 5 µm and distilled water. Grooving abrasion is related with lower reprodutibility results. For the test conditions of this work, no abrasive particles fragmentation was observed, independently of the sliding distance, what is justified, among others factors, by the low normal force applied.

  5. Evidence for grain growth in molecular clouds: A Bayesian examination of the extinction law in Perseus

    Science.gov (United States)

    Foster, Jonathan B.; Mandel, Kaisey S.; Pineda, Jaime E.; Covey, Kevin R.; Arce, Héctor G.; Goodman, Alyssa A.

    2013-01-01

    We investigate the shape of the extinction law in two 1° square fields of the Perseus molecular cloud complex. We combine deep red-optical (r, i and z band) observations obtained using Megacam on the MMT with UKIRT (United Kingdom Infrared Telescope) Infrared Deep Sky Survey near-infrared (J, H and K band) data to measure the colours of background stars. We develop a new hierarchical Bayesian statistical model, including measurement error, intrinsic colour variation, spectral type and dust reddening, to simultaneously infer parameters for individual stars and characteristics of the population. We implement an efficient Markov chain Monte Carlo algorithm utilizing generalized Gibbs sampling to compute coherent probabilistic inferences. We find a strong correlation between the extinction (AV) and the slope of the extinction law (parametrized by RV). Because the majority of the extinction towards our stars comes from the Perseus molecular cloud, we interpret this correlation as evidence of grain growth at moderate optical depths. The extinction law changes from the `diffuse' value of RV ˜ 3 to the `dense cloud' value of RV ˜ 5 as the column density rises from AV = 2 to 10 mag. This relationship is similar for the two regions in our study, despite their different physical conditions, suggesting that dust grain growth is a fairly universal process.

  6. Gravitational instability of filamentary molecular clouds, including ambipolar diffusion; non-isothermal filament

    Science.gov (United States)

    Hosseinirad, Mohammad; Abbassi, Shahram; Roshan, Mahmood; Naficy, Kazem

    2018-04-01

    Recent observations of the filamentary molecular clouds show that their properties deviate from the isothermal equation of state. Theoretical investigations proposed that the logatropic and the polytropic equations of state with negative indexes can provide a better description for these filamentary structures. Here, we aim to compare the effects of these softer non-isothermal equations of state with their isothermal counterpart on the global gravitational instability of a filamentary molecular cloud. By incorporating the ambipolar diffusion, we use the non-ideal magnetohydrodynamics framework for a filament that is threaded by a uniform axial magnetic field. We perturb the fluid and obtain the dispersion relation both for the logatropic and polytropic equations of state by taking the effects of magnetic field and ambipolar diffusion into account. Our results suggest that, in absence of the magnetic field, a softer equation of state makes the system more prone to gravitational instability. We also observed that a moderate magnetic field is able to enhance the stability of the filament in a way that is sensitive to the equation of state in general. However, when the magnetic field is strong, this effect is suppressed and all the equations of state have almost the same stability properties. Moreover, we find that for all the considered equations of state, the ambipolar diffusion has destabilizing effects on the filament.

  7. More Than Filaments and Cores: Statistical Study of Structure Formation and Dynamics in Nearby Molecular Clouds

    Science.gov (United States)

    Chen, How-Huan; Goodman, Alyssa

    2018-01-01

    In the past decade, multiple attempts at understanding the connection between filaments and star forming cores have been made using observations across the entire epectrum. However, the filaments and the cores are usually treated as predefined--and well-defined--entities, instead of structures that often come at different sizes, shapes, with substantially different dynamics, and inter-connected at different scales. In my dissertation, I present an array of studies using different statistical methods, including the dendrogram and the probability distribution function (PDF), of structures at different size scales within nearby molecular clouds. These structures are identified using observations of different density tracers, and where possible, in the multi-dimensional parameter space of key dynamic properties--the LSR velocity, the velocity dispersion, and the column density. The goal is to give an overview of structure formation in nearby star-forming clouds, as well as of the dynamics in these structures. I find that the overall statistical properties of a larger structure is often the summation/superposition of sub-structures within, and that there could be significant variations due to local physical processes. I also find that the star formation process within molecular clouds could in fact take place in a non-monolithic manner, connecting potentially merging and/or transient structures, at different scales.

  8. Star formation in the bright-rimmed molecular cloud IC 1848 A

    International Nuclear Information System (INIS)

    Loren, R.B.; Wootten, H.A.

    1978-01-01

    A bright IR source has been detected within a bright-rimmed dust cloud at the edge of the IC 1848 H II region. The source appears to be an early-type star with a circumstellar dust shell typical of protostars. This star is associated with the position of greatest CO excitation in a dense molecular cloud. The contours of CO emission correspond to those of the bright-rimmed dust cloud, showing that the star formed within the bright rim. Formaldehyde observations at 6 cm, 2 cm, and 2 mm are used to determine the density of the layer between the star and the ionized gas of the bright Hα rim. The location of this star, with respect to the dense molecular cloud which is subject to the external pressure of HII region, indicates the possible role of the expansion of IC 1848 in triggering star formation in dense regions at the perimeter of the H II region. The observed CO emission is used to determine the required luminosity of the embedded star. An early-type star of this luminosity should be detectable as a compact continuum source

  9. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D. [Department of Astronomy, University of Illinois at Urbana—Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Arce, H. G.; Plunkett, A. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Isella, A.; Kauffmann, J. [Astronomy Department, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Rosolowsky, E. [Departments of Physics and Statistics, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC V1V 1V7 (Canada); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747-AD Groningen (Netherlands); Ostriker, E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Tassis, K. [Department of Physics and Institute of Theoretical and Computational Physics, University of Crete, P.O. Box 2208, GR-710 03 Heraklion, Crete (Greece); Shirley, Y. L., E-mail: manferna@gmail.com [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  10. Penetration of Cosmic Rays into Dense Molecular Clouds: Role of Diffuse Envelopes

    Science.gov (United States)

    Ivlev, A. V.; Dogiel, V. A.; Chernyshov, D. O.; Caselli, P.; Ko, C.-M.; Cheng, K. S.

    2018-03-01

    A flux of cosmic rays (CRs) propagating through a diffuse ionized gas can excite MHD waves, thus generating magnetic disturbances. We propose a generic model of CR penetration into molecular clouds through their diffuse envelopes, and identify the leading physical processes controlling their transport on the way from a highly ionized interstellar medium to the dense interior of the cloud. The model allows us to describe a transition between a free streaming of CRs and their diffusive propagation, determined by the scattering on the self-generated disturbances. A self-consistent set of equations, governing the diffusive transport regime in an envelope and the MHD turbulence generated by the modulated CR flux, is characterized by two dimensionless numbers. We demonstrate a remarkable mutual complementarity of different mechanisms leading to the onset of the diffusive regime, which results in a universal energy spectrum of the modulated CRs. In conclusion, we briefly discuss implications of our results for several fundamental astrophysical problems, such as the spatial distribution of CRs in the Galaxy as well as the ionization, heating, and chemistry in dense molecular clouds. This paper is dedicated to the memory of Prof. Vadim Tsytovich.

  11. A Catalog of Distances to Molecular Clouds from Pan-STARRS1

    Science.gov (United States)

    Schlafly, Eddie; Green, G.; Finkbeiner, D. P.; Rix, H.

    2014-01-01

    We present a catalog of distances to molecular clouds, derived from PanSTARRS-1 photometry. We simultaneously infer the full probability distribution function of reddening and distance of the stars towards these clouds using the technique of Green et al. (2013) (see neighboring poster). We fit the resulting measurements using a simple dust screen model to infer the distance to each cloud. The result is a large, homogeneous catalog of distances to molecular clouds. For clouds with heliocentric distances greater than about 200 pc, typical statistical uncertainties in the distances are 5%, with systematic uncertainty stemming from the quality of our stellar models of about 10%. We have applied this analysis to many of the most well-studied clouds in the δ > -30° sky, including Orion, California, Taurus, Perseus, and Cepheus. We have also studied the entire catalog of Magnani, Blitz, and Mundy (1985; MBM), though for about half of those clouds we can provide only upper limits on the distances. We compare our distances with distances from the literature, when available, and find good agreement.

  12. Equiparatition of energy for turbulent astrophysical fluids: Accounting for the unseen energy in molecular clouds

    Science.gov (United States)

    Zweibel, Ellen G.; Mckee, Christopher F.

    1995-01-01

    Molecular clouds are observed to be partially supported by turbulent pressure. The kinetic energy of the turbulence is directly measurable, but the potential energy, which consists of magnetic, thermal, and gravitational potential energy, is largly unseen. We have extended previous results on equipartition between kinetic and potential energy to show that it is likely to be a very good approximation in molecular clouds. We have used two separate approaches to demonstrate this result: For small-amplitude perturbations of a static equilibrium, we have used the energy principle analysis of Bernstein et al. (1958); this derivation applies to perturbations of arbitary wavelength. To treat perturbations of a nonstatic equilibrium, we have used the Lagrangian analysis of Dewar (1970); this analysis applies only to short-wavelength perturbations. Both analysis assume conservation of energy. Wave damping has only a small effect on equipartition if the wave frequency is small compared to the neutral-ion collision frequency; for the particular case we considered, radiative losses have no effect on equipartition. These results are then incorporated in a simple way into analyses of cloud equilibrium and global stability. We discuss the effect of Alfvenic turbulence on the Jeans mass and show that it has little effect on the magnetic critical mass.

  13. Star cluster formation in a turbulent molecular cloud self-regulated by photoionization feedback

    Science.gov (United States)

    Gavagnin, Elena; Bleuler, Andreas; Rosdahl, Joakim; Teyssier, Romain

    2017-12-01

    Most stars in the Galaxy are believed to be formed within star clusters from collapsing molecular clouds. However, the complete process of star formation, from the parent cloud to a gas-free star cluster, is still poorly understood. We perform radiation-hydrodynamical simulations of the collapse of a turbulent molecular cloud using the RAMSES-RT code. Stars are modelled using sink particles, from which we self-consistently follow the propagation of the ionizing radiation. We study how different feedback models affect the gas expulsion from the cloud and how they shape the final properties of the emerging star cluster. We find that the star formation efficiency is lower for stronger feedback models. Feedback also changes the high-mass end of the stellar mass function. Stronger feedback also allows the establishment of a lower density star cluster, which can maintain a virial or sub-virial state. In the absence of feedback, the star formation efficiency is very high, as well as the final stellar density. As a result, high-energy close encounters make the cluster evaporate quickly. Other indicators, such as mass segregation, statistics of multiple systems and escaping stars confirm this picture. Observations of young star clusters are in best agreement with our strong feedback simulation.

  14. THE PHYSICAL CONDITIONS IN A PRE-SUPER STAR CLUSTER MOLECULAR CLOUD IN THE ANTENNAE GALAXIES

    International Nuclear Information System (INIS)

    Johnson, K. E.; Indebetouw, R.; Evans, A. S.; Leroy, A. K.; Brogan, C. L.; Hibbard, J.; Sheth, K.; Whitmore, B. C.

    2015-01-01

    We present an analysis of the physical conditions in an extreme molecular cloud in the Antennae merging galaxies. This cloud has properties consistant with those required to form a globular cluster. We have obtained ALMA CO and 870 μm observations of the Antennae galaxy system with ∼0.″5 resolution. This cloud stands out in the data with a radius of ≲24 pc and mass of >5 × 10 6 M ⊙ . The cloud appears capable of forming a globular cluster, but the lack of associated thermal radio emission indicates that star formation has not yet altered the environment. The lack of thermal radio emission places the cloud in an early stage of evolution, which we expect to be short-lived (≲1 Myr) and thus rare. Given its mass and kinetic energy, for the cloud to be confined (as its appearance strongly suggests) it must be subject to an external pressure of P/k B ≳ 10 8 K cm −3 –10,000 times higher than typical interstellar pressure. This would support theories that high pressures are required to form globular clusters and may explain why extreme environments like the Antennae are preferred environments for generating such objects. Given the cloud temperature of ∼25 K, the internal pressure must be dominated by non-thermal processes, most likely turbulence. We expect the molecular cloud to collapse and begin star formation in ≲1 Myr

  15. LARGE-SCALE CO MAPS OF THE LUPUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Tothill, N. F. H.; Loehr, A.; Stark, A. A.; Lane, A. P.; Harnett, J. I.; Bourke, T. L.; Myers, P. C.; Parshley, S. C.; Wright, G. A.; Walker, C. K.

    2009-01-01

    Fully sampled degree-scale maps of the 13 CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex-Lupus I, III, and IV-trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13 CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km s -1 . CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B 228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding H I shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an H I shell.

  16. Planck intermediate results XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    2016-01-01

    Within ten nearby (d molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures...... with increasing N-H, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvenic or sub-Alfvenic turbulence, implying that the magnetic field is significant...... for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution....

  17. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    International Nuclear Information System (INIS)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-01

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H 2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n H 2 ≥10 6 cm –3 ), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  18. Synthetic human parathyroid hormone 1-34 fragment for diagnostic testing.

    Science.gov (United States)

    Mallette, L E

    1988-11-15

    Since bovine parathyroid extract became unavailable for stimulatory testing, the differentiation between hypoparathyroidism and pseudohypoparathyroidism has been made from the measurement of serum parathyroid hormone (PTH) values alone. Responsiveness to PTH can once again be tested with teriparatide acetate, the newly available, biologically active 1-34 fragment of human PTH. The PTH infusion test can be used to confirm a preliminary diagnosis based on serum immunoreactive PTH values, to differentiate between type 1 and type 2 pseudohypoparathyroidism, or to detect a subtle abnormality of calcium metabolism in normocalcemic patients with features suggesting pseudohypoparathyroidism. Of several variables used to express changes in renal metabolism of cyclic adenosine 3',5'-monophosphate (cAMP) or phosphate, the 30-minute change in cAMP excretion per unit of glomerular filtration and the 60-minute percentage fall in the tubular maximum for phosphate reabsorption provide the best discrimination. Teriparatide has a low incidence of adverse reactions and provides an effective diagnostic tool.

  19. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  20. The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility

    Science.gov (United States)

    Cho, Chak-Lam; Majzoub, Ahmad; Esteves, Sandro C.

    2017-01-01

    Sperm DNA fragmentation (SDF) testing has been emerging as a valuable tool for male fertility evaluation. While the essential role of sperm DNA integrity in human reproduction was extensively studied, the clinical indication of SDF testing is less clear. This clinical practice guideline provides recommendations of clinical utility of the test supported by evidence. It is intended to serve as a reference for fertility specialists in identifying the circumstances in which SDF testing should be of greatest clinical value. SDF testing is recommended in patients with clinical varicocele and borderline to normal semen parameters as it can better select varicocelectomy candidates. Outcomes of natural pregnancy and assisted reproductive techniques (ART) can be predicted by result of SDF tests. High SDF is also linked with recurrent pregnancy loss (RPL) and failure of ART. Result of SDF testing may change the management decision by selecting the most appropriate ART with the highest success rate for infertile couples. Several studies have demonstrated the benefit in using testicular instead of ejaculated sperm in men with high SDF, oligozoospermia or recurrent in vitro fertilization (IVF) failure. Infertile men with modifiable lifestyle factor may benefit from SDF testing by reinforcing risk factor modification and monitoring patient’s progress to intervention. PMID:29082206

  1. Tests of landscape influence: nest predation and brood parasitism in fragmented ecosystems

    Science.gov (United States)

    Joshua J. Tewksbury; Lindy Garner; Shannon H. Garner; John D. Lloyd; Victoria A. Saab; Thomas E. Martin

    2006-01-01

    The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked...

  2. A SEARCH FOR CO-EVOLVING ION AND NEUTRAL GAS SPECIES IN PRESTELLAR MOLECULAR CLOUD CORES

    International Nuclear Information System (INIS)

    Tassis, Konstantinos; Hezareh, Talayeh; Willacy, Karen

    2012-01-01

    A comparison between the widths of ion and neutral molecule spectral lines has been recently used to estimate the strength of the magnetic field in turbulent star-forming regions. However, the ion (HCO + ) and neutral (HCN) species used in such studies may not be necessarily co-evolving at every scale and density, and thus, may not trace the same regions. Here, we use coupled chemical/dynamical models of evolving prestellar molecular cloud cores including non-equilibrium chemistry, with and without magnetic fields, to study the spatial distribution of HCO + and HCN, which have been used in observations of spectral line width differences to date. In addition, we seek new ion-neutral pairs that are good candidates for such observations, because they have similar evolution and are approximately co-spatial in our models. We identify three such good candidate pairs: HCO + /NO, HCO + /CO, and NO + /NO.

  3. An infrared study of the NGC 1977 H II region/molecular cloud interface

    Science.gov (United States)

    Makinen, P.; Harvey, P. M.; Wilking, B. A.; Evans, N. J., II

    1985-01-01

    The results of an infrared study of the H II region NGC 1977 and the adjacent dense molecular cloud are reported. Extensive far-infrared maps with 45 arcsec resolution allow the spatial structure of the dust temperature and optical depth variations across the ionization front to be delineated. Analysis of the dust energetics indicates that the only significant energy source is the B1 V star HD 37018 which ionizes the H II region. This result, together with a favorable geometry, provides a good opportunity to determine the ratio of ultraviolet absorption efficiency to far-infrared emission efficiency, 790 + 460 or - 180. Analysis of the gas energetics indicates that collisions with warm dust grains can explain the observed gas temperatures.

  4. Observations of the J = 2 → 1 CO line in molecular clouds near compact H+ regions

    International Nuclear Information System (INIS)

    Riley, P.W.; Little, L.T.; Brown, A.T.; Hills, R.E.; Padman, R.; Vizard, D.; Lesurf, J.C.G.; Cronin, N.J.

    1982-01-01

    Observations of the J = 2 → 1 transitions of 12 CO and 13 CO at 230 and 220 GHz in 13 molecular clouds near compact H + regions have been made at UKIRT using an uncooled Schottky diode mixer and a digital auto-correlation spectrometer. The sources were chosen on the basis of their ammonia emission. A comparison between 12 CO and 13 CO spectra reveals a variety of self-absorption effects, ranging from slight asymmetries in the 12 CO profiles relative to their 13 CO counterparts (W43S, S88), to a deep narrow self-absorption dip (S68). The asymmetry observed in six sources out of ten is most easily explained if the clouds are collapsing; there is no clear evidence for expansion. The 13 CO linewidths are systematically wider than those from the NH 3 cores, suggesting that the velocity dispersion in the sources increases with distance from the centre. (author)

  5. Rotational explanation of the high-velocity meolecular emission from the Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Clark, F.O.; Biretta, J.A.; Martin, H.M.

    1979-01-01

    The high-velocity molecular emission of the Orion Molecular Cloud has been sampled using the J/sub N/=2 2 --1 1 rotational spectral line of the SO molecule. The resulting profile, including the high-velocity wings, has been reproduced using only known large-scale properties of the gas and applications of the results of published theoretical calculations. No new physical mechanism is required; observed rotation and conservation of angular momentum are sufficient to reproduce the line profile. The resulting physical state appears to be consistent with all known physical properties. This solution is not unique, but indicates the strengths and weaknesses of such a model for interpretation of Orion as well as the similarities of alternative explanations

  6. Kinematics of the Optically Visible YSOs toward the Orion B Molecular Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kounkel, Marina; Hartmann, Lee; Mateo, Mario [Department of Astronomy, University of Michigan, 1085 S. University Street, Ann Arbor, MI 48109 (United States); Bailey, John I. III, E-mail: mkounkel@umich.edu [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands)

    2017-08-01

    We present results from high-resolution optical spectra toward 66 young stars in the Orion B molecular cloud to study their kinematics and other properties. Observations of the H α and Li i 6707 Å lines are used to check membership and accretion properties. While the stellar radial velocities of NGC 2068 and L1622 are in good agreement with that of the molecular gas, many of the stars in NGC 2024 show a considerable offset. This could be a signature of either the expansion of the cluster, the high degree of the ejection of the stars from the cluster through dynamical interaction, or the acceleration of the gas due to stellar feedback.

  7. 1300 micron continuum observations of the Sagittarius B2 molecular cloud core

    International Nuclear Information System (INIS)

    Goldsmith, P.F.; Snell, R.L.; Lis, D.C.

    1987-01-01

    Observations with 23-arcsec angular resolution are obtained of the continuum emission at 1300 microns wavelength from the central region of the Sgr B2 molecular cloud, which contains the north and middle high-mass star-forming regions and associated radio continuum and maser sources. The spatial resolution of the present data shows that the 1300-micron continuum emission peak is located at Sgr B2(N), in contrast to the midinfrared emission, which is centered on Sgr B2(M). Comparison with 53 micron data having comparable angular resolution suggests that there is optically thick foreground dust which prevents detection of Sgr B2(N) at wavelengths not greater than 100 microns. Within the about 1.5 x 3.5 pc region mapped, the total mass is 500,000 solar masses and the mean H2 density is 300,000/cu cm, somewhat larger than found in previous investigations. 27 references

  8. Bright-rimmed molecular cloud around S140 IRS. I. CS (J = 1-0) observations

    International Nuclear Information System (INIS)

    Hayashi, M.; Suzuki, S.; Omodaka, T.; Hasegawa, T.

    1985-01-01

    The bright-rimmed molecular cloud around S140 IRS has been mapped in the CS (J = 1-0) emission with an angular resolution of 33''. The relation between the CS emission and the distance from the ionization front is discussed, based on the position of the optical rim determined from an Hα photograph. The CS intensity decreases rapidly like a step function toward the rim. The step lies 40'' away from the optical rim. The distribution of the CS emission in the vicinity of S140 IRS shows a barlike east-west elongation which is prominent at V/sub LSR/ = -6 km s -1 , and an archlike structure clearly seen at V/sub LSR/ = -8 km s -1

  9. The pillars of creation giant molecular clouds, star formation, and cosmic recycling

    CERN Document Server

    Beech, Martin

    2017-01-01

    This book explores the mechanics of star formation, the process by which matter pulls together and creates new structures. Written for science enthusiasts, the author presents an accessible explanation of how stars are born from the interstellar medium and giant molecular clouds. Stars produce the chemicals that lead to life, and it is they that have enabled the conditions for planets to form and life to emerge. Although the Big Bang provided the spark of initiation, the primordial universe that it sired was born hopelessly sterile. It is only through the continued recycling of the interstellar medium, star formation, and stellar evolution that the universe has been animated beyond a chaotic mess of elementary atomic particles, radiation, dark matter, dark energy, and expanding spacetime. Using the Milky Way and the Eagle Nebula in particular as case studies, Beech follows every step of this amazing process. .

  10. NEW X-RAY-SELECTED PRE-MAIN-SEQUENCE MEMBERS OF THE SERPENS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Isa [McDonald Observatory, The University of Texas at Austin, 1 University Station, C1402, Austin, TX 78712 (United States); Van der Laan, Margriet [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Brown, Joanna M., E-mail: oliveira@astro.as.utexas.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States)

    2013-11-01

    The study of young stars no longer surrounded by disks can greatly add to our understanding of how protoplanetary disks evolve and planets form. We have used VLT/FLAMES optical spectroscopy to confirm the youth and membership of 19 new young diskless stars in the Serpens Molecular Cloud, identified at X-ray wavelengths. Spectral types, effective temperatures, and stellar luminosities were determined using optical spectra and optical/near-infrared photometry. Stellar masses and ages were derived based on pre-main-sequence evolutionary tracks. The results yield remarkable similarities for age and mass distribution between the diskless and disk-bearing stellar populations in Serpens. We discuss the important implications these similarities may have on the standard picture of disk evolution.

  11. Environmental Catastrophes in the Earth's History Due to Solar Systems Encounters with Giant Molecular Clouds

    Science.gov (United States)

    Pavlov, Alexander A.

    2011-01-01

    In its motion through the Milky Way galaxy, the solar system encounters an average density (>=330 H atoms/cubic cm) giant molecular cloud (GMC) approximately every 108 years, a dense (approx 2 x 103 H atoms/cubic cm) GMC every approx 109 years and will inevitably encounter them in the future. However, there have been no studies linking such events with severe (snowball) glaciations in Earth history. Here we show that dramatic climate change can be caused by interstellar dust accumulating in Earth's atmosphere during the solar system's immersion into a dense (approx ,2 x 103 H atoms/cubic cm) GMC. The stratospheric dust layer from such interstellar particles could provide enough radiative forcing to trigger the runaway ice-albedo feedback that results in global snowball glaciations. We also demonstrate that more frequent collisions with less dense GMCs could cause moderate ice ages.

  12. Observations of the interstellar ice grain feature in the Taurus molecular clouds

    International Nuclear Information System (INIS)

    Whittet, D.C.B.; Bode, H.F.; Longmore, A.J.; Baines, D.W.T.; Evans, A.

    1983-01-01

    Although water ice was originally proposed as a major constituent of the interstellar grain population (e.g. Oort and van de Hulst, 1946), the advent of infrared astronomy has shown that the expected absorption due to O-H stretching vibrations at 3 μm is illusive. Observations have in fact revealed that the carrier of this feature is apparently restricted to regions deep within dense molecular clouds (Merrill et al., 1976; Willner et al., 1982). However, the exact carrier of this feature is still controversial, and many questions remain as to the conditions required for its appearance. It is also uncertain whether it is restricted to circumstellar shells, rather than the general cloud medium. Detailed discussion of the 3 μm band properties is given elsewhere in this volume. 15 references, 4 figures

  13. Near-infrared sources in the molecular cloud G35.2-0.74

    International Nuclear Information System (INIS)

    Tapia, M.; Roth, M.; Persi, P.; Ferrari-Toniolo, M.

    1985-01-01

    Near-infrared (1-4 μm) observations of the molecular cloud G35.2-0.74 reveal the presence of four infrared sources in the vicinity of two previously reported centres of recent star formation. The northern part of G35.2-0.74 contains three point sources which are interpreted as highly obscured stars. Irs 1 coincides with H 2 O and OH maser sources and seems to be a very young early-type star. The southern part of G35.2-0.74 shows a diffuse 2.2-μm source with a flux distribution in the short-wavelength region compatible with free-free emission and a large excess at lambda > or approx. 3 μm attributed to warm dust mixed with the gas. These data are consistent with a fully developed HII region. (author)

  14. Evolution of Density Perturbations in a Cylindrical Molecular Cloud Using Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Nejad-Asghar, M.

    2009-12-01

    Full Text Available Molecular clouds have a hierarchical structure from few tens of parsecs for giants to few tenth of a parsec for proto-stellar cores. Nowadays, our observational techniques are so advanced that it has become possible to detect the small-scale substructures inside the molecular cores. The question that arises is how these small condensations are formed. In the present research, we study the effect of ambipolar diffusion heating on the ubiquitous perturbations in a molecular cloud and investigate the possibility of converting them to dense substructures. For this purpose, a small azimuthal perturbation is implemented on the density of an axisymmetric two-dimensional cylindrical cloud, and its evolution is simulated bythe technique of two-fluid smoothed particle hydrodynamics. Theself-gravity is not included and the initial state has uniformdensity, temperature and magnetic field, parallel to theaxis of cylinder. In addition, all perturbed quantities are assumed todepend onlyon azimuth angle and time. Computer experiments show that if theambipolar diffusion heating is ignored, the perturbation willbe dispersed over the time. Including the heating due to ambipolardiffusion heats the matter in regions adjacent to the perturbation, thus,leading to the transfer of matter into the perturbed area. In this case, the density of perturbations can be increased. Also, the results ofsimulations show that an increase of the initial magnetic pressureleads to the intensification of difference between density ofperturbations and their surroundings (i.e. increasing of density contrast. This effect is due to the direct relationship of the drift velocity to the intensity of the magnetic field and its gradient. Simulations with different initial uniform densities show that the growth of relative density contrast is more clear with a special density. This result can be explained by the intensification of thermal instability in this special density.

  15. Evolution of density perturbations in a cylindrical molecular cloud using smoothed particle hydrodynamics

    Directory of Open Access Journals (Sweden)

    Nejad-Asghar M.

    2009-01-01

    Full Text Available Molecular clouds have a hierarchical structure from few tens of parsecs for giants to few tenth of a parsec for proto-stellar cores. Nowadays, our observational techniques are so advanced that it has become possible to detect the small-scale substructures inside the molecular cores. The question that arises is how these small condensations are formed. In the present research, we study the effect of ambipolar diffusion heating on the ubiquitous perturbations in a molecular cloud and investigate the possibility of converting them to dense substructures. For this purpose, a small azimuthal perturbation is implemented on the density of an axisymmetric two-dimensional cylindrical cloud, and its evolution is simulated by the technique of two-fluid smoothed particle hydrodynamics. The self-gravity is not included and the initial state has uniform density, temperature and magnetic field, parallel to the axis of cylinder. In addition, all perturbed quantities are assumed to depend only on azimuth angle and time. Computer experiments show that if the ambipolar diffusion heating is ignored, the perturbation will be dispersed over the time. Including the heating due to ambipolar diffusion heats the matter in regions adjacent to the perturbation, thus, leading to the transfer of matter into the perturbed area. In this case, the density of perturbations can be increased. Also, the results of simulations show that an increase of the initial magnetic pressure leads to the intensification of difference between density of perturbations and their surroundings (i.e. increasing of density contrast. This effect is due to the direct relationship of the drift velocity to the intensity of the magnetic field and its gradient. Simulations with different initial uniform densities show that the growth of relative density contrast is more clear with a special density. This result can be explained by the intensification of thermal instability in this special density.

  16. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  17. Evolution of star-bearing molecular clouds: the high-velocity HCO+ flow in NGC 2071

    International Nuclear Information System (INIS)

    Wootten, A.; Loren, R.B.; Sandqvist, A.; Friberg, P.; Hjalmarson, Aa.

    1984-01-01

    The J = 1-0 and J = 302 lines of HCO + and H 13 CO + have been observed in the molecular cloud NGC 2071, where they map the dense portions of a bidirectional molecular flow. The high resolution (42'') of our observations has enabled us to determine the distribution of mass, momentum , and energy in the flow as a function of projected distance from the cluster. Both momentum and energy diminish with distance from the central cluster of infrared sources. The highest velocities at a given intensity in this dense flow occur in a limited region coincident with an infrared cluster and the densest part of the molecular cloud. Higher resolution (33'') CO and 13 CO observations reveal that the extreme velocities in the flow occur in regions displaced on opposite sides of the cluster, suggesting that the flow only becomes visible in molecular line emission at distances approx.0.1 pc from its supposed source. Lower velocity material containing most of the mass of the flow is found over larger regions, as expected if the flow has decelerated as it has evolved. Assuming conservation of momentum, the historical rate of momentum injection is found to have been roughly constant over a period of 10 4 years, suggesting a constancy of the average luminosity of the central cluster over that time. The J = 3--2 HCO + profile does not show the absorption which is a prominent feature of the J = 1--0 profile, and the J = 3--2 line appears to be a useful probe of conditions specific to the dense cores of clouds. The high velocity HCO + emission correlates very well with spatial and velocity events of molecular hydrogen emission. The abundance of HCO + [X(HCO + )approx.10 -8 ], and by inference the electron density, is similar in material at all velocities

  18. Dense gas and star formation in individual Giant Molecular Clouds in M31

    Science.gov (United States)

    Viaene, S.; Forbrich, J.; Fritz, J.

    2018-04-01

    Studies both of entire galaxies and of local Galactic star formation indicate a dependency of a molecular cloud's star formation rate (SFR) on its dense gas mass. In external galaxies, such measurements are derived from HCN(1-0) observations, usually encompassing many Giant Molecular Clouds (GMCs) at once. The Andromeda galaxy (M31) is a unique laboratory to study the relation of the SFR and HCN emission down to GMC scales at solar-like metallicities. In this work, we correlate our composite SFR determinations with archival HCN, HCO+, and CO observations, resulting in a sample of nine reasonably representative GMCs. We find that, at the scale of individual clouds, it is important to take into account both obscured and unobscured star formation to determine the SFR. When correlated against the dense-gas mass from HCN, we find that the SFR is low, in spite of these refinements. We nevertheless retrieve an SFR-dense-gas mass correlation, confirming that these SFR tracers are still meaningful on GMC scales. The correlation improves markedly when we consider the HCN/CO ratio instead of HCN by itself. This nominally indicates a dependency of the SFR on the dense-gas fraction, in contradiction to local studies. However, we hypothesize that this partly reflects the limited dynamic range in dense-gas mass, and partly that the ratio of single-pointing HCN and CO measurements may be less prone to systematics like sidelobes. In this case, the HCN/CO ratio would importantly be a better empirical measure of the dense-gas content itself.

  19. Chemical Variation in Molecular Cloud Cores in the Orion A Cloud

    Science.gov (United States)

    Tatematsu, Ken'ichi; Hirota, Tomoya; Kandori, Ryo; Umemoto, Tomofumi

    2010-12-01

    We have observed molecular cloud cores in the Orion A giant molecular cloud (GMC) in CCS, HC3N, DNC, and HN13C to study their chemical characteristics. We detected CCS in the Orion A GMC for the first time. CCS was detected in about a third of the observed cores. The cores detected in CCS are not localized, but widely distributed over the Orion A GMC. The CCS peak intensity of the core tends to be high in the southern region of the Orion A GMC. The HC3N peak intensity of the core also tends to be high in the southern region, while there are HC3N intense cores near Orion KL, which is not seen in CCS. The core associated with Orion KL shows a broad HC3N line profile, and the star-formation activity near to Orion KL seems to enhance the HC3N emission. The column density ratio of NH3 to CCS is lower near the middle of the filament, and higher toward the northern and southern regions along the Orion A GMC filament. This ratio is known to trace the chemical evolution in nearby dark cloud cores, but seems to be affected by the core gas temperature in the Orion A GMC: cores with low NH3 to CCS column density ratios tend to have a warmer gas temperature. The value of the column density ratio of DNC to HN13 is generally similar to that in dark cloud cores, but becomes lower around Orion KL due to a higher gas temperature.

  20. Gamma-ray observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; D' Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; do Couto e Silva, E.; Drell, P. S.; Drlica-Wagner, A.; Enoto, T.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hayashi, K.; Horan, D.; Hou, X.; Hughes, R. E.; Jackson, M. S.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Larsson, S.; Lee, S. -H.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Makishima, K.; Mazziotta, M. N.; Mehault, J.; Mitthumsiri, W.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Orienti, M.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Razzano, M.; Reimer, A.; Reimer, O.; Roth, M.; Sadrozinski, H. F. -W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibolla, O.; Tinivella, M.; Torres, D. F.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Zimmer, S.

    2012-08-08

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between ~100 MeV and ~100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to ~10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W CO) at a 1° × 1° pixel level. The correlation is found to be linear over a W CO range of ~10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W CO-to-mass conversion factor, X CO, is found to be ~2.3 × 1020 cm-2(K km s–1)–1 for the high-longitude part of Orion A (l > 212°), ~1.7 times higher than ~1.3 × 1020 found for the rest of Orion A and B. We interpret the apparent high X CO in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas. W CO decreases faster than the H2 column density in the region making the gas "darker" to W CO.

  1. [Does the Fragmented Images Test measure locally oriented visual processing in autism spectrum disorders?].

    Science.gov (United States)

    Scheurich, Armin; Fellgiebel, Andreas; Müller, Mattias J; Poustka, Fritz; Bölte, Sven

    2010-03-01

    The cognitive phenotype of autism spectrum disorders (ASD) is characterized among other things by local processing (weak central coherence). It was examined whether a test that measures identification of fragmented pictures (FBT) is able to seize this preference for local processing. The FBT performance of 15 patients with ASD, 16 with depression, 16 with schizophrenia and of 16 control subjects was compared. In addition, two tests well known to be sensitive to local processing were assessed, namely the Embedded Figures Test (EFT) and the Block Design Test (BDT). ASD patients demonstrated a preference for local processing. Difficulties in global processing, or more specifically in gestalt perception (FBT), were accompanied by good performance on the EFT and BDT as expected. Controlling for age and nonverbal intelligence (ANCOVA) reduced differences to trends. However, the calculation of difference scores (i.e., subtraction of FBT from EFT performance) resulted in significant differences between ASD and control groups even after controlling for of age and intelligence. The FBT is a suitable exploratory test of local visual processing in ASD. In particular, a difference criterion can be generated (FBT vs. EFT) that discriminates between ASD and clinical as well as healthy control groups.

  2. The Herschel Exploitation of Local Galaxy Andromeda (HELGA). VI. The Distribution and Properties of Molecular Cloud Associations in M31

    NARCIS (Netherlands)

    Kirk, J. M.; Gear, W. K.; Fritz, J.; Smith, M. W. L.; Ford, G.; Baes, M.; Bendo, G. J.; De Looze, I.; Eales, S. A.; Gentile, G.; Gomez, H. L.; Gordon, K.; O'Halloran, B.; Madden, S. C.; Roman-Duval, J.; Verstappen, J.; Viaene, S.; Boselli, A.; Cooray, A.; Lebouteiller, V.; Spinoglio, L.

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results

  3. Habitat fragmentation, vole population fluctuations, and the ROMPA hypothesis: An experimental test using model landscapes.

    Science.gov (United States)

    Batzli, George O

    2016-11-01

    Increased habitat fragmentation leads to smaller size of habitat patches and to greater distance between patches. The ROMPA hypothesis (ratio of optimal to marginal patch area) uniquely links vole population fluctuations to the composition of the landscape. It states that as ROMPA decreases (fragmentation increases), vole population fluctuations will increase (including the tendency to display multi-annual cycles in abundance) because decreased proportions of optimal habitat result in greater population declines and longer recovery time after a harsh season. To date, only comparative observations in the field have supported the hypothesis. This paper reports the results of the first experimental test. I used prairie voles, Microtus ochrogaster, and mowed grassland to create model landscapes with 3 levels of ROMPA (high with 25% mowed, medium with 50% mowed and low with 75% mowed). As ROMPA decreased, distances between patches of favorable habitat (high cover) increased owing to a greater proportion of unfavorable (mowed) habitat. Results from the first year with intensive live trapping indicated that the preconditions for operation of the hypothesis existed (inversely density dependent emigration and, as ROMPA decreased, increased per capita mortality and decreased per capita movement between optimal patches). Nevertheless, contrary to the prediction of the hypothesis that populations in landscapes with high ROMPA should have the lowest variability, 5 years of trapping indicated that variability was lowest with medium ROMPA. The design of field experiments may never be perfect, but these results indicate that the ROMPA hypothesis needs further rigorous testing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  4. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I.; Simon, M. N. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Edwards, S. [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States); Heyer, M. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003-9305 (United States); Rigliaco, E. [Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Hillenbrand, L. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Gorti, U.; Hollenbach, D., E-mail: pascucci@lpl.arizona.edu [SETI Institute, Mountain View, CA 94043 (United States)

    2015-11-20

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions.

  5. NARROW Na AND K ABSORPTION LINES TOWARD T TAURI STARS: TRACING THE ATOMIC ENVELOPE OF MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Pascucci, I.; Simon, M. N.; Edwards, S.; Heyer, M.; Rigliaco, E.; Hillenbrand, L.; Gorti, U.; Hollenbach, D.

    2015-01-01

    We present a detailed analysis of narrow Na i and K i absorption resonance lines toward nearly 40 T Tauri stars in Taurus with the goal of clarifying their origin. The Na i λ5889.95 line is detected toward all but one source, while the weaker K i λ7698.96 line is detected in about two-thirds of the sample. The similarity in their peak centroids and the significant positive correlation between their equivalent widths demonstrate that these transitions trace the same atomic gas. The absorption lines are present toward both disk and diskless young stellar objects, which excludes cold gas within the circumstellar disk as the absorbing material. A comparison of Na i and CO detections and peak centroids demonstrates that the atomic gas and molecular gas are not co-located, the atomic gas being more extended than the molecular gas. The width of the atomic lines corroborates this finding and points to atomic gas about an order of magnitude warmer than the molecular gas. The distribution of Na i radial velocities shows a clear spatial gradient along the length of the Taurus molecular cloud filaments. This suggests that absorption is associated with the Taurus molecular cloud. Assuming that the gradient is due to cloud rotation, the rotation of the atomic gas is consistent with differential galactic rotation, whereas the rotation of the molecular gas, although with the same rotation axis, is retrograde. Our analysis shows that narrow Na i and K i absorption resonance lines are useful tracers of the atomic envelope of molecular clouds. In line with recent findings from giant molecular clouds, our results demonstrate that the velocity fields of the atomic and molecular gas are misaligned. The angular momentum of a molecular cloud is not simply inherited from the rotating Galactic disk from which it formed but may be redistributed by cloud–cloud interactions

  6. Menstrual Cycle Effects on Perceptual Closure Mediate Changes in Performance on a Fragmented Objects Test of Implicit Memory

    Science.gov (United States)

    Hampson, E.; Finestone, J.M.; Levy, N.

    2005-01-01

    Healthy premenopausal women with regular menstrual cycles were assessed on a fragmented objects test of implicit memory. Testing took place at either the low estrogen (n=17) or the high estrogen (n=16) stages of the menstrual cycle. Concentrations of ovarian hormones were confirmed by saliva assays. Both groups of women exhibited a priming effect,…

  7. Clustering the Orion B giant molecular cloud based on its molecular emission

    Science.gov (United States)

    Bron, Emeric; Daudon, Chloé; Pety, Jérôme; Levrier, François; Gerin, Maryvonne; Gratier, Pierre; Orkisz, Jan H.; Guzman, Viviana; Bardeau, Sébastien; Goicoechea, Javier R.; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Sievers, Albrecht; Tremblin, Pascal

    2018-02-01

    Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims: We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods: We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results: A clustering analysis based only on the J = 1-0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH 100 cm-3, 500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1-0 line of HCO+ and the N = 1-0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH 7 × 103 cm-3, 4 × 104 cm-3) for the densest regions are also

  8. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (XEST)

    Science.gov (United States)

    Guedel, M.; Briggs, K. R.; Arzner, K.; Audard, M.; Bouvier, J.; Feigelson, E. D.; Franciosini, E.; Glauser, A.; Grosso, N.; Micela, G.; hide

    2007-01-01

    The Taurus Molecular Cloud (TMC) is the nearest large star-forming region, prototypical for the distributed mode of low-mass star formation. Pre-main sequence stars are luminous X-ray sources, probably mostly owing to magnetic energy release. Aims. The XMM-Newton Extended Survey of the Taurus Molecular Cloud (EST) presented in this paper surveys the most populated =5 square degrees of the TMC, using the XMM-Newton X-ray observatory to study the thermal structure, variability, and long-term evolution of hot plasma, to investigate the magnetic dynamo, and to search for new potential members of the association. Many targets are also studied in the optical, and high-resolution X-ray grating spectroscopy has been obtained for selected bright sources. Methods. The X-ray spectra have been coherently analyzed with two different thermal models (2-component thermal model, and a continuous emission measure distribution model). We present overall correlations with fundamental stellar parameters that were derived from the previous literature. A few detections from Chandra observations have been added. Results. The present overview paper introduces the project and provides the basic results from the X-ray analysis of all sources detected in the XEST survey. Comprehensive tables summarize the stellar properties of all targets surveyed. The survey goes deeper than previous X-ray surveys of Taurus by about an order of magnitude and for the first time systematically accesses very faint and strongly absorbed TMC objects. We find a detection rate of 85% and 98% for classical and weak-line T Tau stars (CTTS resp. WTTS), and identify about half of the surveyed protostars and brown dwarfs. Overall, 136 out of 169 surveyed stellar systems are detected. We describe an X-ray luminosity vs. mass correlation, discuss the distribution of X-ray-to-bolometric luminosity ratios, and show evidence for lower X-ray luminosities in CTTS compared to WTTS. Detailed analysis (e.g., variability, rotation

  9. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  10. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    Science.gov (United States)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO

  11. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  12. THE DISSOCIATIVE RECOMBINATION OF PROTONATED ACRYLONITRILE, CH2CHCNH+, WITH IMPLICATIONS FOR THE NITRILE CHEMISTRY IN DARK MOLECULAR CLOUDS AND THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Vigren, E.; Hamberg, M.; Zhaunerchyk, V.; Kaminska, M.; Thomas, R. D.; Larsson, M.; Geppert, W. D.; Millar, T. J.; Walsh, C.

    2009-01-01

    Measurements on the dissociative recombination (DR) of protonated acrylonitrile, CH 2 CHCNH + , have been performed at the heavy ion storage ring CRYRING located in the Manne Siegbahn Laboratory in Stockholm, Sweden. It has been found that at ∼2 meV relative kinetic energy about 50% of the DR events involve only ruptures of X-H bonds (where X = C or N) while the rest leads to the production of a pair of fragments each containing two heavy atoms (alongside H and/or H 2 ). The absolute DR cross section has been investigated for relative kinetic energies ranging from ∼1 meV to 1 eV. The thermal rate coefficient has been determined to follow the expression k(T) = 1.78 x 10 -6 (T/300) - 0.80 cm 3 s -1 for electron temperatures ranging from ∼10 to 1000 K. Gas-phase models of the nitrile chemistry in the dark molecular cloud TMC-1 have been run and results are compared with observations. Also, implications of the present results for the nitrile chemistry of Titan's upper atmosphere are discussed.

  13. Lane-Emden equation with inertial force and general polytropic dynamic model for molecular cloud cores

    Science.gov (United States)

    Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken

    2018-01-01

    We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.

  14. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    Science.gov (United States)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  15. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    International Nuclear Information System (INIS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  16. Submillimeter/millimeter observations of the molecular clouds associated with Tycho's supernova remnant

    International Nuclear Information System (INIS)

    Xu Jinlong; Wang Junjie; Miller, Martin

    2011-01-01

    We have carried out CO J = 2 - 1 and CO J = 3 - 2 observations toward Tycho's supernova remnant (SNR) using the KOSMA 3m-telescope. From these observations, we identified three molecular clouds (MCs) around the SNR. The small cloud in the southwest was discovered for the first time. In the north and east, two MCs (Cloud A and Cloud B) adjacent in space display a bow-shaped morphology, and have broad emission lines, which provide some direct evidences of the SNR-MCs interaction. The MCs are revealed at -69∼ -59 km s -1 , coincident with Tycho's SNR. The MCs associated with Tycho's SNR have a mass of ∼ 2.13 x 10 3 M circleddot . Position-velocity diagrams show the two clouds to be adjacent in velocity, which means cloud-cloud collision could occur in this region. The maximum value (0.66 ± 0.10) of the integrated CO line intensity ratio (I COJ=3-2 /I COJ=2-1 ) for the three MCs agrees well with the previous measurement of individual Galactic MCs, implying that the SNR shock drove into the MCs. The two MCs have a line intensity ratio gradient. The distribution of the ratio appears to indicate that the shock propagates from the southwest to the northeast.

  17. Observations of HC3N, HC5N, and HC7N in molecular clouds

    International Nuclear Information System (INIS)

    Snell, R.L.; Schloerb, F.P.; Young, J.S.; Hjalmarson, A.; Friberg, P.

    1981-01-01

    We present observations of HC 3 N, HC 5 N, and HC 7 N in five molecular clouds. Statistical equilibrium calculations have been performed for HC 5 N and HC 7 N and compared with our data and data on other transitions of these molecules reported in the literature to derive the densities and the column densities of the cyanopolyynes in these clouds. We derive densities for TMC 1, TMC 2, and L1544 of between 1 and 4 x 10 4 cm -3 . We have found that the ratios of the cyanopolyynes in these three clouds are the following: HC 3 N/HC 5 Nroughly-equal1.4 and HC 5 N/HC 7 Nroughly-equal3. In L134 N and DR 21(OH) we have measured limits on the HC 5 N emission and find the HC 3 N/HC 5 N ratio to be substantially greater than in the three Taurus clouds. We have also compared the cyanopolyyne column densities with those of 13 CO and find that the abundance of HC 3 N in L134 N and DR 21(OH) is an order of magnitude smaller than that found in the Taurus clouds. The chemical differences between L134 N and the Taurus clouds are particularly interesting in view of their similar physical properties

  18. Magnetic suppression of turbulence and the star formation activity of molecular clouds

    Science.gov (United States)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique; Körtgen, Bastian; Banerjee, Robi; Hartmann, Lee

    2018-03-01

    We present magnetohydrodynamic simulations aimed at studying the effect of the magnetic suppression of turbulence (generated through various instabilities during the formation of molecular clouds by converging) on the subsequent star formation (SF) activity. We study four magnetically supercritical models with magnetic field strengths B = 0, 1, 2, and 3 μG (corresponding to mass-to-flux ratios of ∞, 4.76, 2.38, and 1.59 times the critical value), with the magnetic field, initially being aligned with the flows. We find that, for increasing magnetic field strength, the clouds formed tend to be more massive, denser, less turbulent, and with higher SF activity. This causes the onset of SF activity in the non-magnetic or more weakly magnetized cases to be delayed by a few Myr in comparison to the more strongly magnetized cases. We attribute this behaviour to the suppression of the non-linear thin shell instability (NTSI) by the magnetic field, previously found by Heitsch and coworkers. This result is contrary to the standard notion that the magnetic field provides support to the clouds, thus reducing their star formation rate. However, our result is a completely non-linear one, and could not be foreseen from simple linear considerations.

  19. Chemical composition of interstellar molecular clouds: a millimeter and submillimeter spectral line survey of OMC-1

    International Nuclear Information System (INIS)

    Blake, G.A.

    1986-01-01

    Results are presented from a millimeter and submillimeter spectral line survey of the core of the Orion molecular cloud (OMC-1). The millimeter-wave survey, conducted at the Owens Valley Radio Observatory (OVRO), covers a 55 GHz interval in 1.3 mm (23 GHz) atmospheric window and contains emission from 29 molecules. Together with the frequency selective submillimeter observations of H 2 D + (372.4 GHz), Cl(492.2 GHz), NH 3 (572.5 GHz), and HCl (625.9 GHz) performed from the NASA Kuiper Airborne Observatory, over 800 emission lines have been detected from 33 chemically distinct species during the course of this work. The uniformly calibrated results from the unique and extensive OVRO spectral line survey place significant constraints on models of interstellar chemistry, and have allowed the chemical composition of the various regions in OMC-1 to be definitively characterized. A global analysis of the observed abundances showed that the markedly different chemical composition of the kinematically distinct Orion subsources may be simply interpreted in the framework of an evolving, initially quiescent, gas phase chemistry influenced by the process of massive star formation

  20. Submillimeter Continuum Imaging of the Orion A Molecular Cloud with SHARC

    Science.gov (United States)

    Lis, D. C.; Serabyn, E.; Keene, J. B.; Dowell, C. D.; Benford, D. J.; Phillips, T. G.; Wang, N.; Hunter, T. R.

    1998-05-01

    We have used the SHARC bolometer camera at the Caltech Submillimeter Observatory to map the distribution of the broad-band 350 micron continuum emission toward the Orion A Molecular Cloud. A comparison of the 350 and 1100 micron flux densities in OMC-1 indicates a strong variation of the grain emissivity exponent along the Orion Ridge. The lowest value (beta= 1.75) is found toward the Orion Bar, while the highest value is found north of IRc2. This variation is consistent with the destruction of grain mantles by the UV photons from the Trapezium cluster. The 350 micron continuum emission in the Orion Bar correlates well with the CO J=6-5 peak brightness temperature and is shifted from the molecular bar traced by 13CO J=6-5 emission. This indicates that the dust emission originates in the outer PDR layers with increased kinetic temperature. Over 30 compact dust sources have been detected in OMC-2 and OMC-3. The dust temperature is around 18K for most of the compact sources, but for three sources it may be only around 10K or is very optically thick.

  1. Very High Excitation Lines of H2 in the Orion Molecular Cloud Outflow

    Science.gov (United States)

    Geballe, T. R.; Burton, M. G.; Pike, R. E.

    2017-03-01

    Vibration-rotation lines of H2 from highly excited levels approaching the dissociation limit have been detected at a number of locations in the shocked gas of the Orion Molecular Cloud (OMC-1), including in a Herbig-Haro object near the tip of one of the OMC-1 “fingers.” Population diagrams show that, while the excited H2 is almost entirely at a kinetic temperature of ˜1800 K (typical for vibrationally shock-excited H2), as in the previously reported case of Herbig-Haro object HH 7 up to a few percent of the H2 is at a kinetic temperature of ˜5000 K. The location with the largest fraction of hot H2 is the Herbig-Haro object, where the outflowing material is moving at a higher speed than at the other locations. Although theoretical work is required for a better understanding of the 5000 K H2 (including how it cools), its existence and the apparent dependence of its abundance relative to that of the cooler component on the relative velocities of the outflow and the surrounding ambient gas appear broadly consistent with it having recently reformed. The existence of this high-temperature H2 appears to be a common characteristic of shock-excited molecular gas.

  2. A Search for O2 in CO-Depleted Molecular Cloud Cores With Herschel

    Science.gov (United States)

    Wirstroem, Eva S.; Charnley, Steven B.; Cordiner, Martin; Ceccarelli, Cecilia

    2016-01-01

    The general lack of molecular oxygen in molecular clouds is an outstanding problem in astrochemistry. Extensive searches with the Submillimeter Astronomical Satellite, Odin, and Herschel have only produced two detections; upper limits to the O2 abundance in the remaining sources observed are about 1000 times lower than predicted by chemical models. Previous atomic oxygen observations and inferences from observations of other molecules indicated that high abundances of O atoms might be present in dense cores exhibiting large amounts of CO depletion. Theoretical arguments concerning the oxygen gas-grain interaction in cold dense cores suggested that, if O atoms could survive in the gas after most of the rest of the heavy molecular material has frozen out onto dust, then O2 could be formed efficiently in the gas. Using Herschel HIFI, we searched a small sample of four depletion cores-L1544, L694-2, L429, and Oph D-for emission in the low excitation O2 N(sub J)?=?3(sub 3)-1(sub 2) line at 487.249 GHz. Molecular oxygen was not detected and we derive upper limits to its abundance in the range of N(O2)/N (H2) approx. = (0.6-1.6) x10(exp -7). We discuss the absence of O2 in the light of recent laboratory and observational studies.

  3. Hydroxyl as a Tracer of Dark Gas in a Diffuse Molecular Cloud

    Science.gov (United States)

    White, Josh; Donate, Emmanuel; Magnani, Loris A.

    2017-06-01

    In an attempt to determine the extent of dark molecular gas at high Galactic latitudes, we have conducted a survey of OH at 18 cm in a region containing the diffuse molecular cloud MBM 53. Dark molecular gas is a term that refers to molecular hydrogen that is either difficult or impossible to detect by conventional spectroscopic means. While models of photo-dissociation regions predict that some molecular hydrogen is found under conditions where other species are too low in abundance to be detected by radio spectroscopy, recent estimates have predicted that as much dark molecular gas exists as that normally detected by CO(1-0) surveys. However, more sensitive surveys either in the CO(1-0) line or other tracers should detect some of this gas. We observed 44 lines of sight at 18 cm to see if very sensitive OH observations could detect some of the dark molecular gas in the Pegasus-Pisces region. Our data were taken with the 305 m Arecibo radiotelescope and have typical rms values of 6-7 mK. We compared our OH observations with the Georgia/Harvard-Smithsonian CfA high-latitude CO(1-0) survey. Of 8 OH detections at 1667 MHz, 5 were not detected by the CO survey and indicate that at least some of the dark molecular gas may be traced by sensitive OH observations.

  4. GAMMA-RAY EMISSION OF ACCELERATED PARTICLES ESCAPING A SUPERNOVA REMNANT IN A MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Ellison, Donald C.; Bykov, Andrei M.

    2011-01-01

    We present a model of gamma-ray emission from core-collapse supernovae (SNe) originating from the explosions of massive young stars. The fast forward shock of the supernova remnant (SNR) can accelerate particles by diffusive shock acceleration (DSA) in a cavern blown by a strong, pre-SN stellar wind. As a fundamental part of nonlinear DSA, some fraction of the accelerated particles escape the shock and interact with a surrounding massive dense shell producing hard photon emission. To calculate this emission, we have developed a new Monte Carlo technique for propagating the cosmic rays (CRs) produced by the forward shock of the SNR, into the dense, external material. This technique is incorporated in a hydrodynamic model of an evolving SNR which includes the nonlinear feedback of CRs on the SNR evolution, the production of escaping CRs along with those that remain trapped within the remnant, and the broadband emission of radiation from trapped and escaping CRs. While our combined CR-hydro-escape model is quite general and applies to both core collapse and thermonuclear SNe, the parameters we choose for our discussion here are more typical of SNRs from very massive stars whose emission spectra differ somewhat from those produced by lower mass progenitors directly interacting with a molecular cloud.

  5. Simulating Molecular Clouds in Dwarf Spheroidal Galaxies: Simplified Aarseth N body Code with Super Storage

    Science.gov (United States)

    Brecht, J.; Byrd, G.

    1996-12-01

    Variations have been implemented on the standard Aarseth individual time step n body code for future use in simulations of the dynamical effects of molecular clouds in dwarf spheriodal galaxies. The clouds will be many times more massive than a typical star so that various simplifying approximations can be made to speed up the code. One variation has been to assume that large variations from sphericity will not occur so that only the first (m=0) multipole approximation will be needed i.e. particles interior to the clould act as a common mass at the center and particles exterior have no effect. Only the cloud is felt as a single particle by the stars in the galaxy. We will describe various strategies which are used to speed operation of the code under these assumptions in terms of tabulating interior and exterior particles. We also discuss how the individual time step nature of the Aarseth code can be used to greatly save on storage space required to record the positions and velocities of stars and clouds at different times during the simulations. This work was supported by NSF REU grant AST-9424226

  6. Investigating very extended objects with HAWC: from Molecular Clouds to Fermi Bubbles

    Science.gov (United States)

    Ayala, Hugo; Coel, Matthew; Hüntemeyer, Petra; Casanova, Sabrina; HAWC Collaboration

    2017-01-01

    The observation of large gamma-ray emission structures is useful for tracing the propagation and distribution of cosmic rays throughout our Galaxy. For example, the search for gamma-ray emission from Giant Molecular Clouds may allow us to probe the flux of cosmic rays in distant galactic regions and compare it with the flux measured at Earth. Also, by observing at the gamma-ray signal, the composition of the cosmic rays can be measured by studying the emission from hadronic or leptonic processes. In the case of emission from the Fermi Bubbles specifically, constraining the mechanism of gamma-ray production can point to their origin. The High Altitude Water Cherenkov (HAWC) Observatory is located at 4100m above sea level in Mexico. It is designed to measure high-energy gamma rays between 300GeV to 100TeV. HAWC possesses a large field of view and good sensitivity to spatially extended sources, which currently makes it the best suited ground-based observatory to detect extended regions. NSF; DoE; Michigan Technological University; Los Alamos National Lab; CONACyT; UNAM; BUAP; others.

  7. The collapse of a molecular cloud core to stellar densities using radiation non-ideal magnetohydrodynamics

    Science.gov (United States)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-04-01

    We present results from radiation non-ideal magnetohydrodynamics (MHD) calculations that follow the collapse of rotating, magnetized, molecular cloud cores to stellar densities. These are the first such calculations to include all three non-ideal effects: ambipolar diffusion, Ohmic resistivity, and the Hall effect. We employ an ionization model in which cosmic ray ionization dominates at low temperatures and thermal ionization takes over at high temperatures. We explore the effects of varying the cosmic ray ionization rate from ζcr = 10-10 to 10-16 s-1. Models with ionization rates ≳10-12 s-1 produce results that are indistinguishable from ideal MHD. Decreasing the cosmic ray ionization rate extends the lifetime of the first hydrostatic core up to a factor of 2, but the lifetimes are still substantially shorter than those obtained without magnetic fields. Outflows from the first hydrostatic core phase are launched in all models, but the outflows become broader and slower as the ionization rate is reduced. The outflow morphology following stellar core formation is complex and strongly dependent on the cosmic ray ionization rate. Calculations with high ionization rates quickly produce a fast (≈14 km s-1) bipolar outflow that is distinct from the first core outflow, but with the lowest ionization rate, a slower (≈3-4 km s-1) conical outflow develops gradually and seamlessly merges into the first core outflow.

  8. Gas, dust, stars, star formation, and their evolution in M 33 at giant molecular cloud scales

    Science.gov (United States)

    Komugi, Shinya; Miura, Rie E.; Kuno, Nario; Tosaki, Tomoka

    2018-04-01

    We report on a multi-parameter analysis of giant molecular clouds (GMCs) in the nearby spiral galaxy M 33. A catalog of GMCs identifed in 12CO(J = 3-2) was used to compile associated 12CO(J = 1-0), dust, stellar mass, and star formation rate. Each of the 58 GMCs are categorized by their evolutionary stage. Applying the principal component analysis on these parameters, we construct two principal components, PC1 and PC2, which retain 75% of the information from the original data set. PC1 is interpreted as expressing the total interstellar matter content, and PC2 as the total activity of star formation. Young (clouds. Comparison of average cloud properties in different evolutionary stages imply that GMCs may be heated or grow denser and more massive via aggregation of diffuse material in their first ˜ 10 Myr. The PCA also objectively identified a set of tight relations between ISM and star formation. The ratio of the two CO lines is nearly constant, but weakly modulated by massive star formation. Dust is more strongly correlated with the star formation rate than the CO lines, supporting recent findings that dust may trace molecular gas better than CO. Stellar mass contributes weakly to the star formation rate, reminiscent of an extended form of the Schmidt-Kennicutt relation with the molecular gas term substituted by dust.

  9. Ammonia observations of the molecular clouds near S68, S140, OMC2 and S106

    International Nuclear Information System (INIS)

    Little, L.T.; Brown, A.T.; Macdonald, G.H.; Riley, P.W.; Matheson, D.N.

    1980-01-01

    The J=1, K=1 and J=2, K=2 transitions of interstellar ammonia have been observed in the molecular clouds near S68, S140, OMC2 and S106. Maps of the ammonia emission obtained with a 2.2-arcmin beam are presented and compared with observations of other interstellar molecules, in particular carbon monoxide and formaldehyde. The distribution of the ammonia emission in OMC2 and S140 resembles more closely that of 2-mm formaldehyde than 13 CO, which is generally more extended. On the other hand, the densities of hydrogen molecules derived from the ammonia observations on the basis of a simple uniform-density model for the source are much lower than those obtained from 2-mm formaldehyde observations. This discrepancy may be resolved either by assuming a 'core-halo' or a 'clumped' structure for the source. The limits to 'halo' emission are used to suggest that the latter possibility is more probable, in which case the medium is well modelled as many clumps of density approximately 10 6 cm -3 and size -2 pc, immersed in a more tenuous medium of density approximately 10sup(3 to 4)cm -3 . (author)

  10. A Velocity Structure Analysis of Giant Molecular Cloud Associated with HII Region S152

    Directory of Open Access Journals (Sweden)

    Woo-Yeol Choi

    2005-06-01

    Full Text Available S152 is a small bright emission nebula located in the Perseus arm. Its optical diameter corresponds to 1.5 pc for an adopted distance 3.5 kpc. However, S152 is a part of a giant molecular cloud complex, which consists of several dense cores, containing active star-forming sites, and well aligned arm-like features. We analyzed the FCRAO 12CO (J = 1→0 Outer Galaxy Survey data in this region to study the kinematical structure of this region, which resembles a big ``scorpion". We found that there exist three different velocity components, about --54.5, --50.4, --48.8 km s-1, depending on the position of the ``scorpion". There also exist velocity gradients of 0.21 km s-1 pc-1 and 0.16 km s-1 pc-1 through the whole extent of the ``scorpion". Interestingly, these two velocity gradients show an opposite direction with each other. It is likely that the velocity structure of this region may result from the mergence of different gas clouds, and the interaction with the SNR 109.1-1.0 occurred later, mostly at the region around the ``head of the scorpion" only.

  11. The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud

    NARCIS (Netherlands)

    White, Glenn J.; Drabek-Maunder, Emily; Rosolowsky, Erik; Ward-Thompson, Derek; Davis, C. J.; Gregson, Jon; Hatchell, Jenny; Etxaluze, Mireya; Stickler, Sarah; Buckle, Jane; Johnstone, Doug; Friesen, Rachel; Sadavoy, Sarah; Natt, Kieran. V.; Currie, Malcolm; Richer, J. S.; Pattle, Kate; Spaans, Marco; Francesco, James Di; Hogerheijde, M. R.

    CO, 13CO, and C18O J = 3-2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding

  12. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  13. [Construction and pathogenicity tests of a mutated specific fragment SCF73 in Verticillium dahliae].

    Science.gov (United States)

    Wang, Jinlong; Chen, Jieyin; Liu, Shaoyan; Li, Lei; Dai, Xiaofeng

    2012-11-04

    To identify preliminarily the specific fragment SCF73's function in Verticillium dahlia virulence. The specific fragment SCF73 exposed to be existed in the high-virulent V. dahliae strain VDG1 and not in the mild one VDG2. The SCF73 fragment was obtained from comparatively aligned genome sequences of the two strains and its existence was confirmed using PCR method. According to SCF73's DNA sequence, a homologous recombination plasmid was constructed to knock out the fragment. The Agrobacterium tumefaciens-mediated transformation technique was used to initiate the mutant deltaSCF73, followed by antibiotic resistance screening, and PCR verification. The mutant's ability to secrete carbohydrate hydrolase was analyzed using pectin, cellulose and starch media and its virulence to the susceptible cotton cultivar Gossypium hirsutum cv. Junmian1 was assessed. SCF73 (27.1 kb) contains 5 genes, two of them have glycosyl hydrolase activity. Although the, mutant deltaSCF73's carbohydrate hydrolase secretion was not significantly different from the control VDG1, virulence of the mutant to cotton plants decreased significantly accompanied with disease outburst delay. The specific fragment SCF73 plays an important role in the virulence of V. dahlia towards its cotton host plants.

  14. HP2 survey. III. The California Molecular Cloud: A sleeping giant revisited

    Science.gov (United States)

    Lada, Charles J.; Lewis, John A.; Lombardi, Marco; Alves, João

    2017-10-01

    We present new high resolution and dynamic range dust column density and temperature maps of the California Molecular Cloud derived from a combination of Planck and Herschel dust-emission maps, and 2MASS NIR dust-extinction maps. We used these data to determine the ratio of the 2.2 μm extinction coefficient to the 850 μm opacity and found the value to be close to that found in similar studies of the Orion B and Perseus clouds but higher than that characterizing the Orion A cloud, indicating that variations in the fundamental optical properties of dust may exist between local clouds. We show that over a wide range of extinction, the column density probability distribution function (pdf) of the cloud can be well described by a simple power law (I.e., PDFN ∝ AK -n) with an index (n = 4.0 ± 0.1) that represents a steeper decline with AK than found (n ≈ 3) in similar studies of the Orion and Perseus clouds. Using only the protostellar population of the cloud and our extinction maps we investigate the Schmidt relation, that is, the relation between the protostellar surface density, Σ∗, and extinction, AK, within the cloud. We show that Σ∗ is directly proportional to the ratio of the protostellar and cloud pdfs, I.e., PDF∗(AK)/PDFN(AK). We use the cumulative distribution of protostars to infer the functional forms for both Σ∗ and PDF∗. We find that Σ∗ is best described by two power-law functions. At extinctions AK ≲ 2.5 mag, Σ∗ ∝ AK β with β = 3.3 while at higher extinctions β = 2.5, both values steeper than those (≈2) found in other local giant molecular clouds (GMCs). We find that PDF∗ is a declining function of extinction also best described by two power-laws whose behavior mirrors that of Σ∗. Our observations suggest that variations both in the slope of the Schmidt relation and in the sizes of the protostellar populations between GMCs are largely driven by variations in the slope, n, of PDFN(AK). This confirms earlier studies

  15. Origin of CH+ in diffuse molecular clouds. Warm H2 and ion-neutral drift

    Science.gov (United States)

    Valdivia, Valeska; Godard, Benjamin; Hennebelle, Patrick; Gerin, Maryvonne; Lesaffre, Pierre; Le Bourlot, Jacques

    2017-04-01

    Context. Molecular clouds are known to be magnetised and to display a turbulent and complex structure where warm and cold phases are interwoven. The turbulent motions within molecular clouds transport molecules, and the presence of magnetic fields induces a relative velocity between neutrals and ions known as the ion-neutral drift (vd). These effects all together can influence the chemical evolution of the clouds. Aims: This paper assesses the roles of two physical phenomena which have previously been invoked to boost the production of CH+ under realistic physical conditions: the presence of warm H2 and the increased formation rate due to the ion-neutral drift. Methods: We performed ideal magnetohydrodynamical (MHD) simulations that include the heating and cooling of the multiphase interstellar medium (ISM), and where we treat dynamically the formation of the H2 molecule. In a post-processing step we compute the abundances of species at chemical equilibrium using a solver that we developed. The solver uses the physical conditions of the gas as input parameters, and can also prescribe the H2 fraction if needed. We validate our approach by showing that the H2 molecule generally has a much longer chemical evolution timescale compared to the other species. Results: We show that CH+ is efficiently formed at the edge of clumps, in regions where the H2 fraction is low (0.3-30%) but nevertheless higher than its equilibrium value, and where the gas temperature is high (≳ 300 K). We show that warm and out of equilibrium H2 increases the integrated column densities of CH+ by one order of magnitude up to values still 3-10 times lower than those observed in the diffuse ISM. We balance the Lorentz force with the ion-neutral drag to estimate the ion-drift velocities from our ideal MHD simulations. We find that the ion-neutral drift velocity distribution peaks around 0.04 km s-1, and that high drift velocities are too rare to have a significant statistical impact on the

  16. FERMI LARGE AREA TELESCOPE STUDY OF COSMIC RAYS AND THE INTERSTELLAR MEDIUM IN NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bottacini, E.; Buehler, R. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Baldini, L.; Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Brandt, T. J. [CNRS, IRAP, F-31028 Toulouse cedex 4 (France); Brigida, M. [Dipartimento di Fisica ' M. Merlin' dell' Universita e del Politecnico di Bari, I-70126 Bari (Italy); Bruel, P., E-mail: hayashi@hep01.hepl.hiroshima-u.ac.jp, E-mail: mizuno@hep01.hepl.hiroshima-u.ac.jp [Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2012-08-10

    We report an analysis of the interstellar {gamma}-ray emission from the Chamaeleon, R Coronae Australis (R CrA), and Cepheus and Polaris flare regions with the Fermi Large Area Telescope. They are among the nearest molecular cloud complexes, within {approx}300 pc from the solar system. The {gamma}-ray emission produced by interactions of cosmic rays (CRs) and interstellar gas in those molecular clouds is useful to study the CR densities and distributions of molecular gas close to the solar system. The obtained {gamma}-ray emissivities above 250 MeV are (5.9 {+-} 0.1{sub stat}{sup +0.9}{sub -1.0sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, (10.2 {+-} 0.4{sub stat}{sup +1.2}{sub -1.7sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1}, and (9.1 {+-} 0.3{sub stat}{sup +1.5}{sub -0.6sys}) Multiplication-Sign 10{sup -27} photons s{sup -1} sr{sup -1} H-atom{sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively. Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by {approx}20% in the neighborhood of the solar system, even if we consider systematic uncertainties. The molecular mass calibrating ratio, X{sub CO} = N(H{sub 2})/W{sub CO}, is found to be (0.96 {+-} 0.06{sub stat}{sup +0.15}{sub -0.12sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, (0.99 {+-} 0.08{sub stat}{sup +0.18}{sub -0.10sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1}, and (0.63 {+-} 0.02{sub stat}{sup +0.09}{sub -0.07sys}) Multiplication-Sign 10{sup 20} H{sub 2}-molecule cm{sup -2} (K km s{sup -1}){sup -1} for the Chamaeleon, R CrA, and Cepheus and Polaris flare regions, respectively, suggesting a variation of X{sub CO} in the vicinity of the solar system. From the

  17. Abundances of ethylene oxide and acetaldehyde in hot molecular cloud cores

    Science.gov (United States)

    Nummelin, A.; Dickens, J. E.; Bergman, P.; Hjalmarson, A.; Irvine, W. M.; Ikeda, M.; Ohishi, M.

    1998-01-01

    We have searched for millimetre-wave line emission from ethylene oxide (c-C2H4O) and its structural isomer acetaldehyde (CH3CHO) in 11 molecular clouds using SEST. Ethylene oxide and acetaldehyde were detected through multiple lines in the hot cores NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2. Acetaldehyde was also detected towards G10.47+0.03, G322.2+0.6, and Orion 3'N, and one ethylene oxide line was tentatively detected in G10.47+0.03. Column densities and rotational excitation temperatures were derived using a procedure which fits the observed line intensifies by finding the minimum chi 2-value. The resulting rotational excitation temperatures of ethylene oxide and acetaldehyde are in the range 16-38 K, indicating that these species are excited in the outer, cooler parts of the hot cores or that the excitation is significantly subthermal. For an assumed source size of 20", the deduced column densities are (0.6-1)x10(14) cm-2 for ethylene oxide and (2-5)x10(14) cm-2 for acetaldehyde. The fractional abundances with respect to H2 are X[c-C2H4O]=(2-6)xl0(-10), and X[CH3CHO]=(0.8-3)x10(-9). The ratio X[CH3CHO]/X[c-C2H4O] varies between 2.6 (NGC 6334F) and 8.5 (G327.3-0.6). We also detected and analysed multiple transitions of CH3OH, CH3OCH3, C2H5OH, and HCOOH. The chemical, and possibly evolutionary, states of NGC 6334F, G327.3-0.6, G31.41+0.31, and G34.3+0.2 seem to be very similar.

  18. Feeding versus Falling: The Growth and Collapse of Molecular Clouds in a Turbulent Interstellar Medium

    Science.gov (United States)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.; Baczynski, Christian

    2017-11-01

    In order to understand the origin of observed molecular cloud (MC) properties, it is critical to understand how clouds interact with their environments during their formation, growth, and collapse. It has been suggested that accretion-driven turbulence can maintain clouds in a highly turbulent state, preventing runaway collapse and explaining the observed non-thermal velocity dispersions. We present 3D, adaptive-mesh-refinement, magnetohydrodynamical simulations of a kiloparsec-scale, stratified, supernova-driven, self-gravitating, interstellar medium (ISM), including diffuse heating and radiative cooling. These simulations model the formation and evolution of a MC population in the turbulent ISM. We use zoom-in techniques to focus on the dynamics of the mass accretion and its history for individual MCs. We find that mass accretion onto MCs proceeds as a combination of turbulent flow and near free-fall accretion of a gravitationally bound envelope. Nearby supernova explosions have a dual role, compressing the envelope and increasing mass accretion rates, but also disrupting parts of the envelope and eroding mass from the cloud’s surface. It appears that the inflow rate of kinetic energy onto clouds from supernova explosions is insufficient to explain the net rate of change of the cloud kinetic energy. In the absence of self-consistent star formation, the conversion of gravitational potential into kinetic energy during contraction seems to be the main driver of non-thermal motions within clouds. We conclude that although clouds interact strongly with their environments, bound clouds are always in a state of gravitational contraction, close to runaway, and their properties are a natural result of this collapse.

  19. Star Formation and Outflows in Molecular Clouds: The Role of Radiative Feedback

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.

    2015-08-01

    Radiation feedback from massive clusters is expected to play a key role in setting the rate and efficiency of star formation on the scale of Giant Molecular Clouds (GMCs). However, due to the extreme cost of implementing full radiative transfer in 3D hydrodynamic simulations, the influence of radiation feedback on GMCs has been poorly understood. We employ the recently developed Hyperion extension of the Athena code, which solves the equations of radiation hydrodynamics (RHD) using the Reduced Speed of Light (RSL) approximation and M1 closure of the moment equations, to investigate the effects of direct, non-ionizing UV radiation on cloud dynamical evolution and star formation. Our model GMCs span a range of surface densities between 10 and 500 solar masses per square parsec, making them optically thick to UV and thin to reprocessed IR.We find that radiation feedback has little effect on the density structure in the cloud or its star formation rate, both of which are set by the interaction between turbulence and gravity. Instead, the main effect of radiation is to truncate star formation and disperse gas rapidly whena sufficiently luminous cluster has formed. We show that our numerical results can be explained by a simple paradigm of feedback-limited star formation that operates across a wide range of cloud surface densities. In this model, stars form steadily in a turbulent medium with log-normally distributed surface and volume densities, and successively larger portions of the original cloud become unbound when the forces on successively denser local patches of gas become super-Eddington. The global stellar efficiency in a GMC is therefore set not by the radiative force at the mean cloud surface density, but by the Eddington ratio in the high surface density tail of the gas distribution.

  20. Globular cluster formation with multiple stellar populations: self-enrichment in fractal massive molecular clouds

    Science.gov (United States)

    Bekki, Kenji

    2017-08-01

    Internal chemical abundance spreads are one of fundamental properties of globular clusters (GCs) in the Galaxy. In order to understand the origin of such abundance spreads, we numerically investigate GC formation from massive molecular clouds (MCs) with fractal structures using our new hydrodynamical simulations with star formation and feedback effects of core-collapse supernovae (SNe) and asymptotic giant branch (AGB) stars. We particularly investigate star formation from gas chemically contaminated by SNe and AGB stars ('self-enrichment') in forming GCs within MCs with different initial conditions and environments. The principal results are as follows. GCs with multiple generations of stars can be formed from merging of hierarchical star cluster complexes that are developed from high-density regions of fractal MCs. Feedback effects of SNe and AGB stars can control the formation efficiencies of stars formed from original gas of MCs and from gas ejected from AGB stars. The simulated GCs have strong radial gradients of helium abundances within the central 3 pc. The original MC masses need to be as large as 107 M⊙ for a canonical initial stellar mass function (IMF) so that the final masses of stars formed from AGB ejecta can be ˜105 M⊙. Since star formation from AGB ejecta is rather prolonged (˜108 yr), their formation can be strongly suppressed by SNe of the stars themselves. This result implies that the so-called mass budget problem is much more severe than ever thought in the self-enrichment scenario of GC formation and thus that IMF for the second generation of stars should be 'top-light'.

  1. THE MID-INFRARED EXTINCTION LAW IN THE OPHIUCHUS, PERSEUS, AND SERPENS MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Mundy, Lee G.; Lai, Shih-Ping; Evans, Neal J. II

    2009-01-01

    We compute the mid-IR extinction law from 3.6 to 24 μm in three molecular clouds-Ophiuchus, Perseus, and Serpens-by combining data from the 'Cores to Disks' Spitzer Legacy Science program with deep JHK s imaging. Using a new technique, we are able to calculate the line-of-sight (LOS) extinction law toward each background star in our fields. With these LOS measurements, we create, for the first time, maps of the χ 2 deviation of the data from two extinction law models. Because our χ 2 maps have the same spatial resolution as our extinction maps, we can directly observe the changing extinction law as a function of the total column density. In the Spitzer Infrared Array Camera (IRAC) bands, 3.6-8 μm, we see evidence for grain growth. Below A K s = 0.5, our extinction law is well fitted by the Weingartner and Draine R V = 3.1 diffuse interstellar-medium dust model. As the extinction increases, our law gradually flattens, and for A K s ≥1, the data are more consistent with the Weingartner and Draine R V = 5.5 model that uses larger maximum dust grain sizes. At 24 μm, our extinction law is 2-4 times higher than the values predicted by theoretical dust models, but is more consistent with the observational results of Flaherty et al. Finally, from our χ 2 maps we identify a region in Perseus where the IRAC extinction law is anomalously high considering its column density. A steeper near-IR extinction law than the one we have assumed may partially explain the IRAC extinction law in this region.

  2. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  3. SILCC-Zoom: the dynamic and chemical evolution of molecular clouds

    Science.gov (United States)

    Seifried, D.; Walch, S.; Girichidis, P.; Naab, T.; Wünsch, R.; Klessen, R. S.; Glover, S. C. O.; Peters, T.; Clark, P.

    2017-12-01

    We present 3D 'zoom-in' simulations of the formation of two molecular clouds out of the galactic interstellar medium. We model the clouds - identified from the SILCC simulations - with a resolution of up to 0.06 pc using adaptive mesh refinement in combination with a chemical network to follow heating, cooling and the formation of H2 and CO including (self-) shielding. The two clouds are assembled within a few million years with mass growth rates of up to ∼10-2 M⊙ yr-1 and final masses of ∼50 000 M⊙. A spatial resolution of ≲0.1 pc is required for convergence with respect to the mass, velocity dispersion and chemical abundances of the clouds, although these properties also depend on the cloud definition such as based on density thresholds, H2 or CO mass fraction. To avoid grid artefacts, the progressive increase of resolution has to occur within the free-fall time of the densest structures (1-1.5 Myr) and ≳200 time-steps should be spent on each refinement level before the resolution is progressively increased further. This avoids the formation of spurious, large-scale, rotating clumps from unresolved turbulent flows. While CO is a good tracer for the evolution of dense gas with number densities n ≥ 300 cm-3, H2 is also found for n ≲ 30 cm-3 due to turbulent mixing and becomes dominant at column densities around 30-50 M⊙ pc-2. The CO-to-H2 ratio steadily increases within the first 2 Myr, whereas XCO ≃ 1-4 × 1020 cm-2 (K km s-1)-1 is approximately constant since the CO(1-0) line quickly becomes optically thick.

  4. First Near-infrared Imaging Polarimetry of Young Stellar Objects in the Circinus Molecular Cloud

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Choi, Minho; Kandori, Ryo; Nagata, Tetsuya; Kang, Miju

    2018-02-01

    We present the results of near-infrared (NIR) linear imaging polarimetry in the J, H, and K s bands of the low-mass star cluster-forming region in the Circinus Molecular Cloud Complex. Using aperture polarimetry of point-like sources, positive detection of 314, 421, and 164 sources in the J, H, and K s bands, respectively, was determined from among 749 sources whose photometric magnitudes were measured. For the source classification of the 133 point-like sources whose polarization could be measured in all 3 bands, a color–color diagram was used. While most of the NIR polarizations of point-like sources are well-aligned and can be explained by dichroic polarization produced by aligned interstellar dust grains in the cloud, 123 highly polarized sources have also been identified with some criteria. The projected direction on the sky of the magnetic field in the Cir-MMS region is indicated by the mean polarization position angles (70°) of the point-like sources in the observed region, corresponding to approximately 1.6× 1.6 pc2. In addition, the magnetic field direction is compared with the outflow orientations associated with Infrared Astronomy Satellite sources, in which two sources were found to be aligned with each other and one source was not. We also show prominent polarization nebulosities over the Cir-MMS region for the first time. Our polarization data have revealed one clear infrared reflection nebula (IRN) and several candidate IRNe in the Cir-MMS field. In addition, the illuminating sources of the IRNe are identified with near- and mid-infrared sources.

  5. Emission from small dust particles in diffuse and molecular cloud medium

    International Nuclear Information System (INIS)

    Bernard, J.P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances

  6. The parsec-scale relationship between ICO and AV in local molecular clouds

    Science.gov (United States)

    Lee, Cheoljong; Leroy, Adam K.; Bolatto, Alberto D.; Glover, Simon C. O.; Indebetouw, Remy; Sandstrom, Karin; Schruba, Andreas

    2018-03-01

    We measure the parsec-scale relationship between integrated CO intensity (ICO) and visual extinction (AV) in 24 local molecular clouds using maps of CO emission and dust optical depth from Planck. This relationship informs our understanding of CO emission across environments, but clean Milky Way measurements remain scarce. We find uniform ICO for a given AV, with the results bracketed by previous studies of the Pipe and Perseus clouds. Our measured ICO-AV relation broadly agrees with the standard Galactic CO-to-H2 conversion factor, the relation found for the Magellanic clouds at coarser resolution, and numerical simulations by Glover & Clark (2016). This supports the idea that CO emission primarily depends on shielding, which protects molecules from dissociating radiation. Evidence for CO saturation at high AV and a threshold for CO emission at low AV varies remains uncertain due to insufficient resolution and ambiguities in background subtraction. Resolution of order 0.1 pc may be required to measure these features. We use this ICO-AV relation to predict how the CO-to-H2 conversion factor (XCO) would change if the Solar Neighbourhood clouds had different dust-to-gas ratio (metallicity). The calculations highlight the need for improved observations of the CO emission threshold and H I shielding layer depth. They are also sensitive to the shape of the column density distribution. Because local clouds collectively show a self-similar distribution, we predict a shallow metallicity dependence for XCO down to a few tenths of solar metallicity. However, our calculations also imply dramatic variations in cloud-to-cloud XCO at subsolar metallicity.

  7. The Chemical Composition of a Molecular Cloud at the Outer Edge of the Galaxy

    Science.gov (United States)

    Lubowich, D. A.; Brammer, G.; Roberts, H.; Millar, T. J.; Henkel, C.; Pasachoff, J. M.

    Centimeter and millimeter-wave observations of a molecular cloud at the extreme outer edge of the Galactic disk (kinematic ga lactocentric distance: ˜28 kpc) are presented. We detected CO, 13CO, 18CO, CS, CN, SO, HCN, HNC, C2H, HCO+, H13CO+, HCS+, NH3, H2CO, C3H2 and CH3OH, while 17CO, 34CS, SiO, SiS, N2H+, D CN, DNC, DCO+, SO2 and HC3N remained undetected. From the NH3 and H2CO data, a kinetic temperature of Tkin ˜20 K and a density of n(H2) ˜5×103 cm-3 are derived. Nitrogen bearing molecules show , when detected, only weak lines. Commonly strong line emitters such as N2H+ and HC3N were not seen. Using a numeri cal network including 5300 chemical reactions we determined that N is depleted by approximately 24 times, and the metallicit y is reduced by a factor of five (similar to dwarf irregular galaxies or damped Lyman alpha systems) relative to the solar ne ighborhood. These unusual abundances are probably the result of the infall of halo gas enriched in O, C, and S from a burst o f massive star formation in the Galactic halo shortly after the Milky Way was formed. This activity would have produced both O and S, which are produced by massive stars; C, which is produced by massive and intermediate mass stars; but less N abundan ce because the secondary element N is produced primarily from low mass stars. Thus the edge cloud probably results from infal ling halo gas from the early Galaxy that was not significantly processed during the last 10 Gyr and provides a new way to und erstand the origin of the Galactic disk. Our observations of the early Galactic disk abundances will constrain models of nu cleosynthesis, Galactic chemical evolution, and astrochemistry.

  8. Nonlinear eigen-structures in star-forming gyratory nonthermal complex molecular clouds

    Science.gov (United States)

    Karmakar, Pralay Kumar; Dutta, Pranamika

    2018-01-01

    This paper deals with the nonlinear gravito-electrostatic fluctuations in star-forming rotating complex partially ionized dust molecular clouds, evolutionarily well-governed by a derived pair of the Korteweg-de Vries (KdV) equations of a unique analytical shape, in a bi-fluidic-model fabric. The lighter constituent species, such as electrons and ions, are considered thermo-statistically as the nonthermal ones in nature, governed by the anti-equilibrium kappa-distribution laws, due to inherent nonlocal gradient effects stemming from large-scale inhomogeneity. The heavier species, such as the constitutive identical neutral and charged dust micro-spheres, are treated as separate turbulent viscous fluids in the Larson logatropic tapestry. Application of a standard technique of multiple scale analysis over the nonlinearly perturbed cloud procedurally yields the pair KdV system. It comprises of the gravitational KdV and electrostatic KdV equations with exclusive constructs of diversified multi-parametric coefficients. A numerical constructive platform is provided to see the excitation and propagatory dynamics of gravitational rarefactive periodic soliton-trains and electrostatic rarefactive aperiodic damped soliton-trains of distinctive patterns as the pair-KdV-supported discrete coherent eigen-mode structures illustratively. The varied key stabilizing and tonality destabilizing factors behind the cloud dynamics are identified. An elaborated contrast of the eigen-mode conjugacy is reconnoitered. The main implications and applications of the semi-analytical results explored here are summarily outlined in the real astro-space-cosmic statuses.

  9. Assessment of sperm DNA fragmentation in stallion (Equus caballus) and donkey (Equus asinus) using the sperm chromatin dispersion test.

    Science.gov (United States)

    Cortés-Gutiérrez, E I; Crespo, F; Serres-Dalmau, C; Gutiérrez de las Rozas, A L; Dávila-Rodríguez, M I; López-Fernández, C; Gósalvez, J

    2009-10-01

    Sperm DNA fragmentation (sDF) is an important parameter to assessing sperm quality. Information about sperm quality is not available for donkeys, especially in some breeds at risk of extinction. The objectives of this research were to test the four commercial variants of sperm chromatin dispersion test (SCD; sperm Halomax test), originally developed to assess sDF in boars, bulls, rams and stallions, in order to scrutinize their applicability in the study of sDF in a donkey breed at risk of extinction (Zamorano-Leonesa), for which there is no specific test available to analyze sperm at present. Only the SCD test, originally developed for stallions, produced stable and consistent results, and was deemed suitable to assess DNA fragmentation in sperm samples from donkeys. Image analysis was used to compare differences between the SCD methodology applied to stallion and donkey semen samples processed under the same experimental conditions. The extent of SCD in the SCD test was approximately 20% lower in donkey sperm than in stallion sperm. Yet, the ratio of chromatin sperm dispersion achieved in fragmented and unfragmented nuclei did not differ significantly between species. These data suggest that a similar protein depletion treatment can cause differences in protein removal in equivalent cells from different species and that sperm chromatin may be organized differently in stallions and donkeys.

  10. Tests of models for parton fragmentation in e+e- annihilation

    International Nuclear Information System (INIS)

    Gary, J.W.

    1985-11-01

    We examine the distribution of particles in the three jet events of e + e - annihilation. The data was collected with the PEP-4/Time Projection Chamber detector at 29 GeV center-of-mass energy at PEP. The experimental distributions are compared to the predictions of several fragmentation models which describe the transition of quarks and gluons into hadrons. In particular, our study emphasizes the three fragmentation models which are currently in widest use: the Lund string model, the Webber cluster model and the independent fragmentation model. These three models each possess different Lorentz frame structures for the distribution of hadron sources relative to the overall event c.m. in three jet events. The Lund string and independent fragmentation models are tuned to describe global event properties of our multihadronic annihilation event sample. This tuned Lund string model provides a good description of the distribution of particles between jet axes in three jet events, while the independent fragmentation model does not. We verify that the failure of the independent fragmentation model is not a consequence of parameter tuning or of model variant. The Webber cluster model, which is untuned, does not describe the absolute particle densities between jets but correctly predicts the ratios of those densities, which are less sensitive to the tuning. These results provide evidence that the sources of hadrons are boosted with respect to the overall center-of-mass in three jet events, with components of motion normal to the jet axes. The distribution of particles close to jet axes provides additional support for this conclusion. 94 refs

  11. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Teixeira, Paula S. [Institut fuer Astrophysik, Universitaet Wien, Tuerkenschanzstrasse 17, A-1180, Wien (Austria); Zapata, Luis A., E-mail: satoko_t@asiaa.sinica.edu.tw [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia, Michoacan 58090 (Mexico)

    2013-01-20

    We present a high angular resolution map of the 850 {mu}m continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 Multiplication-Sign 2.'0 (0.88 Multiplication-Sign 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H{sub 2} mass between 0.3-5.7 M {sub Sun} and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n{sub H{sub 2}}{>=}10{sup 6} cm{sup -3}), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of Almost-Equal-To 17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud ( Almost-Equal-To 35 pc), large-scale clumps ( Almost-Equal-To 1.3 pc), and small-scale clumps ( Almost-Equal-To 0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  12. THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Pineda, Jorge L.; Goldsmith, Paul F.; Chapman, Nicholas; Li Di; Snell, Ronald L.; Cambresy, Laurent; Brunt, Chris

    2010-01-01

    We report a study of the relation between dust and gas over a 100 deg 2 area in the Taurus molecular cloud. We compare the H 2 column density derived from dust extinction with the CO column density derived from the 12 CO and 13 CO J = 1 → 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200'' corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction A V and N(CO) is linear between A V ≅ 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for A V ∼> 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by ∼30%-70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO 2 ices and A V , we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data ≅23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 x 10 4 cm -3 and a CO depletion age of about 4.2 x 10 5 yr. At visual extinctions smaller than ∼3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H 2 mass of Taurus to be about 1.5 x 10 4 M sun , independently derived from the A V and N(CO) maps. We derive a CO integrated intensity to H 2 conversion factor of about 2.1 x 10 20 cm -2 (K km s -1 ) -1 , which applies even in the region where the [CO]/[H 2 ] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log

  13. UNUSUALLY LUMINOUS GIANT MOLECULAR CLOUDS IN THE OUTER DISK OF M33

    International Nuclear Information System (INIS)

    Bigiel, F.; Blitz, L.; Plambeck, R. L.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Rosolowsky, E. W.; Lopez, L. A.

    2010-01-01

    We use high spatial resolution (∼7 pc) observations from the Combined Array for Research in Millimeter Wave Astronomy (CARMA) to derive detailed properties for eight giant molecular clouds (GMCs) at a galactocentric radius corresponding to approximately two CO scale lengths, or ∼0.5 optical radii (r 25 ), in the Local Group spiral galaxy M33. At this radius, molecular gas fraction, dust-to-gas ratio, and metallicity are much lower than in the inner part of M33 or in a typical spiral galaxy. This allows us to probe the impact of environment on GMC properties by comparing our measurements to previous data from the inner disk of M33, the Milky Way, and other nearby galaxies. The outer disk clouds roughly fall on the size-linewidth relation defined by extragalactic GMCs, but are slightly displaced from the luminosity-virial mass relation in the sense of having high CO luminosity compared to the inferred virial mass. This implies a different CO-to-H 2 conversion factor, which is on average a factor of 2 lower than the inner disk and the extragalactic average. We attribute this to significantly higher measured brightness temperatures of the outer disk clouds compared to the ancillary sample of GMCs, which is likely an effect of enhanced radiation levels due to massive star formation in the vicinity of our target field. Apart from brightness temperature, the properties we determine for the outer disk GMCs in M33 do not differ significantly from those of our comparison sample. In particular, the combined sample of inner and outer disk M33 clouds covers roughly the same range in size, line width, virial mass, and CO luminosity than the sample of Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find even the brightest outer disk clouds to be smaller than most of their inner disk counterparts. This may be due to incomplete sampling or a potentially steeper cloud mass function at larger radii.

  14. Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core

    Science.gov (United States)

    Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.

    1994-01-01

    We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is

  15. Molecular Gas toward the Gemini OB1 Molecular Cloud Complex. II. CO Outflow Candidates with Possible WISE Associations

    Science.gov (United States)

    Li, Yingjie; Li, Fa-Cheng; Xu, Ye; Wang, Chen; Du, Xin-Yu; Yang, Wenjin; Yang, Ji

    2018-03-01

    We present a large-scale survey of CO outflows in the Gem OB1 molecular cloud complex and its surroundings, using the Purple Mountain Observatory Delingha 13.7 m telescope. A total of 198 outflow candidates were identified over a large area (∼58.5 square degrees), of which 193 are newly detected. Approximately 68% (134/198) are associated with the Gem OB1 molecular cloud complex, including clouds GGMC 1, GGMC 2, BFS 52, GGMC 3, and GGMC 4. Other regions studied are: the Local arm (Local Lynds, West Front), Swallow, Horn, and Remote cloud. Outflow candidates in GGMC 1, BFS 52, and Swallow are mainly located at ring-like or filamentary structures. To avoid excessive uncertainty in distant regions (≳3.8 kpc), we only estimated the physical parameters for clouds in the Gem OB1 molecular cloud complex and in the Local arm. In those clouds, the total kinetic energy and the energy injection rate of the identified outflow candidates are ≲1% and ≲3% of the turbulent energy and the turbulent dissipation rate of each cloud, indicating that the identified outflow candidates cannot provide enough energy to balance turbulence of their host cloud at the scale of the entire cloud (several to dozens of parsecs). The gravitational binding energy of each cloud is ≳135 times the total kinetic energy of the identified outflow candidates within the corresponding cloud, indicating that the identified outflow candidates cannot cause major disruptions to the integrity of their host cloud at the scale of the entire cloud.

  16. H2 spectroscopy as an agent for extinction determinations The near-infrared curve for the Orion molecular cloud

    International Nuclear Information System (INIS)

    Davis, D.S.; Larson, H.P.; Hofmann, R.; Arizona Univ., Tucson; Max-Planck-Institut fuer Physik und Astrophysik, Garching, West Germany)

    1986-01-01

    A near-infrared (1.8 to 3.5) microns extinction curve for the Orion molecular cloud is presented. The curve is derived from high-resolution spectra of the Orion H2 source recorded from the Kuiper Airborne Observatory. The data reveal that the Orion extinction law is indistinguishable from a 1/lambda form in the near-infrared, except for strongly enhanced extinction near a wavelength of about 3 microns. The implications of these results, in the context of current interstellar grain models, are discussed. 53 references

  17. Confinement and Isotropization of Galactic Cosmic Rays by Molecular-Cloud Magnetic Mirrors When Turbulent Scattering Is Weak

    International Nuclear Information System (INIS)

    Chandran, Benjamin D. G.

    2000-01-01

    Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it

  18. 74 MHz nonthermal emission from molecular clouds: evidence for a cosmic ray dominated region at the galactic center.

    Science.gov (United States)

    Yusef-Zadeh, F; Wardle, M; Lis, D; Viti, S; Brogan, C; Chambers, E; Pound, M; Rickert, M

    2013-10-03

    We present 74 MHz radio continuum observations of the Galactic center region. These measurements show nonthermal radio emission arising from molecular clouds that is unaffected by free–free absorption along the line of sight. We focus on one cloud, G0.13-0.13, representative of the population of molecular clouds that are spatially correlated with steep spectrum (α(327MHz)(74MHz) = 1.3 ± 0.3) nonthermal emission from the Galactic center region. This cloud lies adjacent to the nonthermal radio filaments of the Arc near l 0.2° and is a strong source of 74 MHz continuum, SiO (2-1), and Fe I Kα 6.4 keV line emission. This three-way correlation provides the most compelling evidence yet that relativistic electrons, here traced by 74 MHz emission, are physically associated with the G0.13-0.13 molecular cloud and that low-energy cosmic ray electrons are responsible for the Fe I Kα line emission. The high cosmic ray ionization rate 10(–1)3 s(–1) H(–1) is responsible for heating the molecular gas to high temperatures and allows the disturbed gas to maintain a high-velocity dispersion. Large velocity gradient (LVG) modeling of multitransition SiO observations of this cloud implies H2 densities 10(4–5) cm(–3) and high temperatures. The lower limit to the temperature of G0.13-0.13 is 100 K, whereas the upper limit is as high as 1000 K. Lastly, we used a time-dependent chemical model in which cosmic rays drive the chemistry of the gas to investigate for molecular line diagnostics of cosmic ray heating. When the cloud reaches chemical equilibrium, the abundance ratios of HCN/HNC and N2H+/HCO+ are consistent with measured values. In addition, significant abundance of SiO is predicted in the cosmic ray dominated region of the Galactic center. We discuss different possibilities to account for the origin of widespread SiO emission detected from Galactic center molecular clouds.

  19. Tests of landscape influence: Nest predation and brood parasitism in fragmented ecosystems

    Science.gov (United States)

    Tewksbury, J.J.; Garner, L.; Garner, S.; Lloyd, J.D.; Saab, V.; Martin, T.E.

    2006-01-01

    The effects of landscape fragmentation on nest predation and brood parasitism, the two primary causes of avian reproductive failure, have been difficult to generalize across landscapes, yet few studies have clearly considered the context and spatial scale of fragmentation. Working in two river systems fragmented by agricultural and rural-housing development, we tracked nesting success and brood parasitism in >2500 bird nests in 38 patches of deciduous riparian woodland. Patches on both river systems were embedded in one of two local contexts (buffered from agriculture by coniferous forest, or adjacent to agriculture), but the abundance of agriculture and human habitation within 1 km of each patch was highly variable. We examined evidence for three models of landscape effects on nest predation based on (1) the relative importance of generalist agricultural nest predators, (2) predators associated with the natural habitats typically removed by agricultural development, or (3) an additive combination of these two predator communities. We found strong support for an additive predation model in which landscape features affect nest predation differently at different spatial scales. Riparian habitat with forest buffers had higher nest predation rates than sites adjacent to agriculture, but nest predation also increased with increasing agriculture in the larger landscape surrounding each site. These results suggest that predators living in remnant woodland buffers, as well as generalist nest predators associated with agriculture, affect nest predation rates, but they appear to respond at different spatial scales. Brood parasitism, in contrast, was unrelated to agricultural abundance on the landscape, but showed a strong nonlinear relationship with farm and house density, indicating a critical point at which increased human habitat causes increased brood parasitism. Accurate predictions regarding landscape effects on nest predation and brood parasitism will require an

  20. An Experimental Test of Competition among Mice, Chipmunks, and Squirrels in Deciduous Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Jesse L Brunner

    Full Text Available Mixed hardwood forests of the northeast United States support a guild of granivorous/omnivorous rodents including gray squirrels (Sciurus carolinensis, eastern chipmunks (Tamias striatus, and white-footed mice (Peromyscus leucopus. These species coincide geographically, co-occur locally, and consume similar food resources. Despite their idiosyncratic responses to landscape and patch variables, patch occupancy models suggest that competition may influence their respective distributions and abundances, and accordingly their influence on the rest of the forest community. Experimental studies, however, are wanting. We present the result of a large-scale experiment in which we removed white-footed mice or gray squirrels from small, isolated forest fragments in Dutchess County, New York, and added these mammals to other fragments in order to alter the abundance of these two species. We then used mark-recapture analyses to quantify the population-level and individual-level effects on resident mice, squirrels, and chipmunks. Overall, we found little evidence of competition. There were essentially no within-season numerical responses to changes in the abundance of putative competitors. Moreover, while individual-level responses (apparent survival and capture probability did vary with competitor densities in some models, these effects were often better explained by site-specific parameters and were restricted to few of the 19 sites we studied. With only weak or nonexistent competition among these three common rodent species, we expect their patterns of habitat occupancy and population dynamics to be largely independent of one another.

  1. A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)

    2013-12-10

    Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.

  2. VizieR Online Data Catalog: Molecular clouds with GLIMPSE/MIPSGAL data (Retes-Romero+, 2017)

    Science.gov (United States)

    Retes-Romero, R.; Mayya, Y. D.; Luna, A.; Carrasco, L.

    2017-11-01

    All of the 12 selected molecular clouds have GLIMPSE and MIPSGAL public data available. Typical Spitzer RGB images (3.6um, 8.0um, and 24um) of the resulting sample of clouds are shown in Figure 1, where the position of the IRAS source is identified. In order to define the parent molecular cloud that harbors the high-mass star-forming regions, we used 13CO(J=1-0) emission data from the Galactic Ring Survey (GRS) database (Jackson+ 2006ApJS..163..145J). The survey data have a velocity resolution of 0.21km/s, a typical (1σ) rms sensitivity of ~0.13K, a main beam efficiency of {eta}mb=0.48, and a beam of 46". The 13CO emission spectra for the line of sight (LOS) to the selected IRAS sources are shown in Figure 2, where the observed velocity of the CS(J=2-1) emission line (Bronfman+ 1996, J/A+AS/115/81) is also marked. (3 data files).

  3. Significance of pregnancy test false negative results due to elevated levels of β-core fragment hCG.

    Science.gov (United States)

    Johnson, Sarah; Eapen, Saji; Smith, Peter; Warren, Graham; Zinaman, Michael

    2017-01-01

    Very high levels of β-core fragment human chorionic gonadotrophin (βcf-hCG) are reported to potentially cause false negative results in point-of-care (POC)/over-the-counter (OTC) pregnancy tests. To investigate this further, women's daily early morning urine samples, collected prior to conception and during pregnancy, were analysed for intact, free β-, and βcf-hCG. The proportion of βcf-hCG was found to be related to that of hCG produced and in circulation. Therefore, best practice for accuracy testing of POC/OTC pregnancy tests would be to test devices against clinical samples containing high levels of βcf-hCG as well as standards spiked with biologically relevant ratios.

  4. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    Science.gov (United States)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  5. Envelope structure of deeply embedded young stellar objects in the Serpens Molecular Cloud

    Science.gov (United States)

    Hogerheijde, M. R.; van Dishoeck, E. F.; Salverda, J. M.; Blake, G. A.

    1999-01-01

    Aperture-synthesis and single-dish (sub-) millimeter molecular-line and continuum observations reveal in great detail the envelope structure of deeply embedded young stellar objects (SMM 1 = FIRS 1, SMM 2, SMM 3, SMM 4) in the densely star-forming Serpens Molecular Cloud. SMM 1, 3, and 4 show partially resolved (>2" = 800 AU) continuum emission in the beam of the Owens Valley Millimeter Array at lambda = 3.4-1.4 mm. The continuum visibilities accurately constrain the density structure in the envelopes, which can be described by a radial power law with slope -2.0 +/- 0.5 on scales of 300 to 8000 AU. Inferred envelope masses within a radius of 8000 AU are 8.7, 3.0, and 5.3 Msolar for SMM 1, 3, and 4, respectively. A point source with 20%-30% of the total flux at 1.1 mm is required to fit the observations on long baselines, corresponding to warm envelope material within approximately 100 AU or a circumstellar disk. No continuum emission is detected interferometrically toward SMM 2, corresponding to an upper limit of 0.2 Msolar assuming Td = 24 K. The lack of any compact dust emission suggests that the SMM 2 core does not contain a central protostar. Aperture-synthesis observations of the 13CO, C18O, HCO+, H13CO+, HCN, H13CN, N2H+ 1-0, SiO 2-1, and SO 2(2)-1(1) transitions reveal compact emission toward SMM 1, 3, and 4. SMM 2 shows only a number of clumps scattered throughout the primary field of view, supporting the conclusion that this core does not contain a central star. The compact molecular emission around SMM 1, 3, and 4 traces 5"-10" (2000-4000 AU) diameter cores that correspond to the densest regions of the envelopes, as well as material directly associated with the molecular outflow. Especially prominent are the optically thick HCN and HCO+ lines that show up brightly along the walls of the outflow cavities. SO and SiO trace shocked material, where their abundances may be enhanced by 1-2 orders of magnitude over dark-cloud values. A total of 31 molecular

  6. THE GOULD’S BELT DISTANCES SURVEY (GOBELINS). II. DISTANCES AND STRUCTURE TOWARD THE ORION MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kounkel, Marina; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Street, Ann Arbor, MI 48109 (United States); Loinard, Laurent; Ortiz-León, Gisela N.; Rodríguez, Luis F.; Pech, Gerardo; Rivera, Juana L. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de Mexico, Morelia 58089 (Mexico); Mioduszewski, Amy J. [National Radio Astronomy Observatory, Domenici Science Operations Center, 1003 Lopezville Road, Socorro, NM 87801 (United States); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Torres, Rosa M. [Centro Universitario de Tonalá, Universidad de Guadalajara, Avenida Nuevo Perifrico No. 555, Ejido San José, Tatepozco, C.P. 48525, Tonalá, Jalisco, México (Mexico); Galli, Phillip A. B. [Université Grenoble Alpes, IPAG, F-38000, Grenoble (France); Boden, Andrew F. [Division of Physics, Math and Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Evans II, Neal J. [Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Briceño, Cesar [Cerro Tololo Interamerican Observatory, Casilla 603, La Serena (Chile); Tobin, John J., E-mail: mkounkel@umich.edu [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States)

    2017-01-10

    We present the results of the Gould’s Belt Distances Survey of young star-forming regions toward the Orion Molecular Cloud Complex. We detected 36 young stellar objects (YSOs) with the Very Large Baseline Array, 27 of which have been observed in at least three epochs over the course of two years. At least half of these YSOs belong to multiple systems. We obtained parallax and proper motions toward these stars to study the structure and kinematics of the Complex. We measured a distance of 388 ± 5 pc toward the Orion Nebula Cluster, 428 ± 10 pc toward the southern portion L1641, 388 ± 10 pc toward NGC 2068, and roughly ∼420 pc toward NGC 2024. Finally, we observed a strong degree of plasma radio scattering toward λ Ori.

  7. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  8. The kinetic temperature and density of the Sagittarius B2 molecular cloud from observations of methyl cyanide

    Science.gov (United States)

    Cummins, S. E.; Green, S.; Thaddeus, P.; Linke, R. A.

    1983-01-01

    Observations of the K components of the CH3CN J = 4-to-3 rotational transition at 73.6 GHz, the 6-to-5 transition at 110.4 GHz, and the 7-to-6 transition at 128.7 GHz, yield a mean kinetic temperature value of 85 + or - 10 K and a mean H2 density of 110,000 + or - 50,000/cu cm for the central 2.0 arcmin of the Sgr B2 molecular cloud. Within the K = zero-to-4 ladders of CH3CN in Sgr B2, the populations of the radiatively coupled J levels are relaxed and exhibit a rotational temperature of about 16 K, which is similar to that of several linear molecules.

  9. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  10. The Survey of Water and Ammonia in the Galactic Center (SWAG): Molecular Cloud Evolution in the Central Molecular Zone

    Science.gov (United States)

    Krieger, Nico; Ott, Jürgen; Beuther, Henrik; Walter, Fabian; Kruijssen, J. M. Diederik; Meier, David S.; Mills, Elisabeth A. C.; Contreras, Yanett; Edwards, Phil; Ginsburg, Adam; Henkel, Christian; Henshaw, Jonathan; Jackson, James; Kauffmann, Jens; Longmore, Steven; Martín, Sergio; Morris, Mark R.; Pillai, Thushara; Rickert, Matthew; Rosolowsky, Erik; Shinnaga, Hiroko; Walsh, Andrew; Yusef-Zadeh, Farhad; Zhang, Qizhou

    2017-11-01

    The Survey of Water and Ammonia in the Galactic Center (SWAG) covers the Central Molecular Zone (CMZ) of the Milky Way at frequencies between 21.2 and 25.4 GHz obtained at the Australia Telescope Compact Array at ˜0.9 pc spatial and ˜2.0 km s-1 spectral resolution. In this paper, we present data on the inner ˜250 pc (1.°4) between Sgr C and Sgr B2. We focus on the hyperfine structure of the metastable ammonia inversion lines (J, K) = (1, 1)-(6, 6) to derive column density, kinematics, opacity, and kinetic gas temperature. In the CMZ molecular clouds, we find typical line widths of 8-16 km s-1 and extended regions of optically thick (τ > 1) emission. Two components in kinetic temperature are detected at 25-50 K and 60-100 K, both being significantly hotter than the dust temperatures throughout the CMZ. We discuss the physical state of the CMZ gas as traced by ammonia in the context of the orbital model by Kruijssen et al. that interprets the observed distribution as a stream of molecular clouds following an open eccentric orbit. This allows us to statistically investigate the time dependencies of gas temperature, column density, and line width. We find heating rates between ˜50 and ˜100 K Myr-1 along the stream orbit. No strong signs of time dependence are found for column density or line width. These quantities are likely dominated by cloud-to-cloud variations. Our results qualitatively match the predictions of the current model of tidal triggering of cloud collapse, orbital kinematics, and the observation of an evolutionary sequence of increasing star formation activity with orbital phase.

  11. Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yuri [Institute of Astronomy, The University of Tokyo, 2-21-1, Osawa, Mitaka, Tokyo 181-0015 (Japan); Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harada, Nanase [Academia Sinica Institute of Astronomy and Astrophysics, No.1, Sec. 4, Roosevelt Road, 10617 Taipei, Taiwan, R.O.C. (China); Shimonishi, Takashi [Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Aramakiazaaoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578 (Japan); Sakai, Nami [RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aikawa, Yuri [Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kawamura, Akiko [Chile Observatory, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-10-10

    To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) are identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.

  12. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  13. THE TURBULENCE SPECTRUM OF MOLECULAR CLOUDS IN THE GALACTIC RING SURVEY: A DENSITY-DEPENDENT PRINCIPAL COMPONENT ANALYSIS CALIBRATION

    International Nuclear Information System (INIS)

    Roman-Duval, Julia; Jackson, James; Federrath, Christoph; Klessen, Ralf S.; Brunt, Christopher; Heyer, Mark

    2011-01-01

    Turbulence plays a major role in the formation and evolution of molecular clouds. Observationally, turbulent velocities are convolved with the density of an observed region. To correct for this convolution, we investigate the relation between the turbulence spectrum of model clouds, and the statistics of their synthetic observations obtained from principal component analysis (PCA). We apply PCA to spectral maps generated from simulated density and velocity fields, obtained from hydrodynamic simulations of supersonic turbulence, and from fractional Brownian motion (fBm) fields with varying velocity, density spectra, and density dispersion. We examine the dependence of the slope of the PCA pseudo-structure function, α PCA , on intermittency, on the turbulence velocity (β v ) and density (β n ) spectral indexes, and on density dispersion. We find that PCA is insensitive to β n and to the log-density dispersion σ s , provided σ s ≤ 2. For σ s > 2, α PCA increases with σ s due to the intermittent sampling of the velocity field by the density field. The PCA calibration also depends on intermittency. We derive a PCA calibration based on fBm structures with σ s ≤ 2 and apply it to 367 13 CO spectral maps of molecular clouds in the Galactic Ring Survey. The average slope of the PCA structure function, (α PCA ) = 0.62 ± 0.2, is consistent with the hydrodynamic simulations and leads to a turbulence velocity exponent of (β v ) = 2.06 ± 0.6 for a non-intermittent, low density dispersion flow. Accounting for intermittency and density dispersion, the coincidence between the PCA slope of the GRS clouds and the hydrodynamic simulations suggests β v ≅ 1.9, consistent with both Burgers and compressible intermittent turbulence.

  14. Photon-dominated region modeling of the [C I], [C II], and CO Line Emission From A Boundary In The Taurus molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Orr, Matthew E. [Physics and Astronomy Department, University of Southern California, Los Angeles, CA 90089 (United States); Pineda, Jorge L.; Goldsmith, Paul F. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States)

    2014-11-01

    We present [C I] and [C II] observations of a linear edge region in the Taurus molecular cloud, and model this region as a cylindrically symmetric photon-dominated region (PDR) exposed to a low-intensity UV radiation field. The sharp, long profile of the linear edge makes it an ideal case to test PDR models and determine cloud parameters. We compare observations of the [C I], {sup 3} P {sub 1} → {sup 3} P {sub 0} (492 GHz), [C I] {sup 3} P {sub 2} → {sup 3} P {sub 1} (809 GHz), and [C II] {sup 2} P {sub 3/2} → {sup 2} P {sub 1/2} (1900 GHz) transitions, as well as the lowest rotational transitions of {sup 12}CO and {sup 13}CO, with line intensities produced by the RATRAN radiative transfer code from the results of the Meudon PDR code. We constrain the density structure of the cloud by fitting a cylindrical density function to visual extinction data. We study the effects of variation of the FUV field, {sup 12}C/{sup 13}C isotopic abundance ratio, sulfur depletion, cosmic ray ionization rate, and inclination of the filament relative to the sky-plane on the chemical network of the PDR model and resulting line emission. We also consider the role of suprathermal chemistry and density inhomogeneities. We find good agreement between the model and observations, and that the integrated line intensities can be explained by a PDR model with an external FUV field of 0.05 G {sub 0}, a low ratio of {sup 12}C to {sup 13}C ∼43, a highly depleted sulfur abundance (by a factor of at least 50), a cosmic ray ionization rate (3-6) × 10{sup –17} s{sup –1}, and without significant effects from inclination, clumping or suprathermal chemistry.

  15. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    Energy Technology Data Exchange (ETDEWEB)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán 58089 (Mexico)

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  16. Effect of OH depletion on measurements of the mass-to-flux ratio in molecular cloud cores

    Science.gov (United States)

    Tassis, K.; Willacy, K.; Yorke, Harold W.; Turner, Neal J.

    2014-11-01

    The ratio of mass and magnetic flux determines the relative importance of magnetic and gravitational forces in the evolution of molecular clouds and their cores. Its measurement is thus central in discriminating between different theories of core formation and evolution. Here, we discuss the effect of chemical depletion on measurements of the mass-to-flux ratio using the same molecule (OH) both for Zeeman measurements of the magnetic field and the determination of the mass of the region. The uncertainties entering through the OH abundance in determining separately the magnetic field and the mass of a region have been recognized in the literature. It has been proposed however that, when comparing two regions of the same cloud, the abundance will in both cases be the same. We show that this assumption is invalid. We demonstrate that when comparing regions with different densities, the effect of OH depletion, in measuring changes of the mass-to-flux ratio between different parts of the same cloud can even reverse the direction of the underlying trends (for example, the mass-to-flux ratio may appear to decrease as we move to higher density regions). The systematic errors enter primarily through the inadequate estimation of the mass of the region.

  17. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yunhee; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Bourke, Tyler L. [Square Kilometre Array Organisation, Jodrell Bank Observatory, Lower Withington, Cheshire SK11 9DL (United Kingdom); II, Neal J. Evans, E-mail: yunhee.choi@khu.ac.kr, E-mail: jeongeun.lee@khu.ac.kr [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States)

    2017-04-01

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Class II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.

  18. Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles

    Science.gov (United States)

    Donkov, Sava; Stefanov, Ivan Z.

    2018-03-01

    We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.

  19. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    Energy Technology Data Exchange (ETDEWEB)

    Poidevin, Frédérick [UCL, KLB, Department of Physics and Astronomy, Gower Place, London WC1E 6BT (United Kingdom); Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey [Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104 (United States); Benton, Steven J.; Netterfield, Calvin B. [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Chapin, Edward L. [XMM SOC, ESAC, Apartado 78, E-28691 Villanueva de la Canãda, Madrid (Spain); Fissel, Laura M.; Gandilo, Natalie N. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Fukui, Yasuo [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Gundersen, Joshua O. [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Korotkov, Andrei L. [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912 (United States); Matthews, Tristan G.; Novak, Giles [Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Moncelsi, Lorenzo; Mroczkowski, Tony K. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Olmi, Luca, E-mail: fpoidevin@iac.es [Physics Department, University of Puerto Rico, Rio Piedras Campus, Box 23343, UPR station, San Juan, PR 00931 (United States); and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  20. The embedded young stars in the Taurus-Auriga molecular cloud. II - Models for scattered light images

    Science.gov (United States)

    Kenyon, Scott J.; Whitney, Barbara A.; Gomez, Mercedes; Hartmann, Lee

    1993-01-01

    We describe NIR imaging observations of embedded young stars in the Taurus-Auriga molecular cloud. We find a large range in J-K and H-K colors for these class I sources. The bluest objects have colors similar to the reddest T Tauri stars in the cloud; redder objects lie slightly above the reddening line for standard ISM dust and have apparent K extinctions of up to 5 mag. Most of these sources also show extended NIR emission on scales of 10-20 arcsec which corresponds to linear sizes of 1500-3000 AU. The NIR colors and nebular morphologies for this sample and the magnitude of linear polarization in several sources suggest scattered light produces most of the NIR emission in these objects. We present modeling results that suggest mass infall rates that agree with predictions for cold clouds and are generally consistent with rates estimated from radiative equilibrium models. For reasonable dust grain parameters, the range of colors and extinctions require flattened density distributions with polar cavities evacuated by bipolar outflows. These results support the idea that infall and outflow occur simultaneously in deeply embedded bipolar outflow sources. The data also indicate fairly large centrifugal radii and large inclinations to the rotational axis for a typical source.

  1. Nuclear fragmentation

    International Nuclear Information System (INIS)

    Chung, K.C.

    1989-01-01

    An introduction to nuclear fragmentation, with emphasis in percolation ideas, is presented. The main theoretical models are discussed and as an application, the uniform expansion approximation is presented and the statistical multifragmentation model is used to calculate the fragment energy spectra. (L.C.)

  2. TWO-FLUID MAGNETOHYDRODYNAMICS SIMULATIONS OF CONVERGING H I FLOWS IN THE INTERSTELLAR MEDIUM. II. ARE MOLECULAR CLOUDS GENERATED DIRECTLY FROM A WARM NEUTRAL MEDIUM?

    International Nuclear Information System (INIS)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2009-01-01

    Formation of interstellar clouds as a consequence of thermal instability is studied using two-dimensional two-fluid magnetohydrodynamic simulations. We consider the situation of converging, supersonic flows of warm neutral medium in the interstellar medium that generate a shocked slab of thermally unstable gas in which clouds form. We find, as speculated in Paper I, that in the shocked slab magnetic pressure dominates thermal pressure and the thermal instability grows in the isochorically cooling, thermally unstable slab that leads to the formation of H I clouds whose number density is typically n ∼ -3 , even if the angle between magnetic field and converging flows is small. We also find that even if there is a large dispersion of magnetic field, evolution of the shocked slab is essentially determined by the angle between the mean magnetic field and converging flows. Thus, the direct formation of molecular clouds by piling up warm neutral medium does not seem to be a typical molecular cloud formation process, unless the direction of supersonic converging flows is biased to the orientation of mean magnetic field by some mechanism. However, when the angle is small, the H I shell generated as a result of converging flows is massive and possibly evolves into molecular clouds, provided gas in the massive H I shell is piled up again along the magnetic field line. We expect that another subsequent shock wave can again pile up the gas of the massive shell and produce a larger cloud. We thus emphasize the importance of multiple episodes of converging flows, as a typical formation process of molecular clouds.

  3. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    International Nuclear Information System (INIS)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo; Matsumoto, Ryoji

    2017-01-01

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  4. The Spitzer survey of interstellar clouds in the gould belt. VI. The Auriga-California molecular cloud observed with IRAC and MIPS

    Energy Technology Data Exchange (ETDEWEB)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8W 3P6 (Canada); Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Tothill, Nicholas F. H. [School of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751 (Australia); Nutter, David [School of Physics and Astronomy, Cardiff University, Queen' s Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); DiFrancesco, James [National Research Council Herzberg Astronomy and Astrophysics, Victoria, BC, V9E 2E7 (Canada); Jørgensen, Jes K. [Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-DK-2100 Copenhagen Ø. (Denmark); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Merín, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); and others

    2014-05-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70, and 160 μm observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg{sup 2} with IRAC and 10.47 deg{sup 2} with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors, and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkHα 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the relative fraction of YSOs in earlier (Class I and F) and later (Class II) classes compared to other clouds. We perform simple SED modeling of the YSOs with disks to compare the mid-IR properties to disks in other clouds and identify 14 classical transition disk candidates. Although the AMC is similar in mass, size, and distance to the OMC, it is forming about 15-20 times fewer stars.

  5. SCUBA-Diving In Nearby Molecular Clouds: Large-Area Mapping of Star-Forming Regions at Sub-millimeter Wavelengths

    Science.gov (United States)

    Johnstone, D.

    Wide area sub-millimeter mapping of nearby molecular clouds allows for the study of large scale structures such as the Integral Shaped Filament in the Orion A cloud. Examination of these regions suggests that they are not equilibrium isothermal structures but rather require significant, and radially dependent, non-thermal support such as produced by helical magnetic fields Also observed in the large area maps are dense condensations with masses typical for stars. The mass distribution of these clumps is similar to the stellar initial mass function; however, the clumps appear stable against collapse. The clumps are clustered within the cores of molecular clouds and restricted to those locations where the molecular cloud column density is high (A_v > 4). As well, the typical sub-millimeter clump reveals little or no emission from isotopes of CO, likely indicating that the combination of high density and low temperatures within the clumps provides an environment in which these molecules freeze-out onto dust grain surfaces.

  6. The Spitzer Survey of Interstellar Clouds in the Gould Belt. VI. The Auriga-California Molecular Cloud Observed with IRAC and MIPS

    Science.gov (United States)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Harvey, Paul M.; Gutermuth, Robert A.; Huard, Tracy L.; Tothill, Nicholas F. H.; Nutter, David; Bourke, Tyler L.; DiFrancesco, James; Jorgensen, Jes K.; hide

    2014-01-01

    We present observations of the Auriga-California Molecular Cloud (AMC) at 3.6, 4.5, 5.8, 8.0, 24, 70 and 160 micrometers observed with the IRAC and MIPS detectors as part of the Spitzer Gould Belt Legacy Survey. The total mapped areas are 2.5 deg(exp 2) with IRAC and 10.47 deg2 with MIPS. This giant molecular cloud is one of two in the nearby Gould Belt of star-forming regions, the other being the Orion A Molecular Cloud (OMC). We compare source counts, colors and magnitudes in our observed region to a subset of the SWIRE data that was processed through our pipeline. Using color-magnitude and color-color diagrams, we find evidence for a substantial population of 166 young stellar objects (YSOs) in the cloud, many of which were previously unknown. Most of this population is concentrated around the LkH(alpha) 101 cluster and the filament extending from it. We present a quantitative description of the degree of clustering and discuss the fraction of YSOs in the region with disks relative to an estimate of the diskless YSO population. Although the AMC is similar in mass, size and distance to the OMC, it is forming about 15 - 20 times fewer stars.

  7. Molecular clouds in the Carina arm - the largest objects, associated regions of star formation, and the Carina arm in the Galaxy

    International Nuclear Information System (INIS)

    Grabelsky, D.A.; Cohen, R.S.; Bronfman, L.; Thaddeus, P.

    1988-01-01

    The Columbia CO survey of the southern Galactic plane is used to identify giant molecular clouds and cloud complexes in the Vela-Carina-Centaurus section of the Galaxy. Twenty-seven giant molecular clouds between l = 270 and 300 deg are catalogued and their heliocentric distances given. In addition, 16 clouds at l greater than 300 deg beyond the solar circle extend the catalog to include the very distant portion of the Carina arm. The most massive clouds in the catalog trace the Carina arm over 23 kpc in the plane of the Galaxy. The average mass of these objects is 1.4 x 10 to the 6th solar, and their average spacing along the arm is 700 pc. The composite distribution projected onto the Galactic plane of the largest molecular clouds in the Carina arm and of similarly massive clouds in the first and second quadrants strongly suggests that the Carina and Sagittarius arms form a single spiral arm about 40 kpc in length wrapping two-thirds of the way around the Galaxy. Descriptions of each cloud, including identification of associated star-forming regions, are presented in an appendix. 76 references

  8. Formation and fragmentation of protostellar dense cores

    International Nuclear Information System (INIS)

    Maury, Anaelle

    2009-01-01

    Stars form in molecular clouds, when they collapse and fragment to produce protostellar dense cores. These dense cores are then likely to contract under their own gravity, and form young protostars, that further evolve while accreting their circumstellar mass, until they reach the main sequence. The main goal of this thesis was to study the formation and fragmentation of protostellar dense cores. To do so, two main studies, described in this manuscript, were carried out. First, we studied the formation of protostellar cores by quantifying the impact of protostellar outflows on clustered star formation. We carried out a study of the protostellar outflows powered by the young stellar objects currently formed in the NGc 2264-C proto-cluster, and we show that protostellar outflows seem to play a crucial role as turbulence progenitors in clustered star forming regions, although they seem unlikely to significantly modify the global infall processes at work on clump scales. Second, we investigated the formation of multiple systems by core fragmentation, by using high - resolution observations that allow to probe the multiplicity of young protostars on small scales. Our results suggest that the multiplicity rate of protostars on small scales increase while they evolve, and thus favor dynamical scenarios for the formation of multiple systems. Moreover, our results favor magnetized scenarios of core collapse to explain the small-scale properties of protostars at the earliest stages. (author) [fr

  9. ERRATUM: FERMI Large Area Telescope Study of Cosmic-Rays and the Interstellar Medium in Nearby Molecular Clouds

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; hide

    2013-01-01

    In the published version of the paper, errors were made in calculating the exposure time due to an analysis mistake. While they do not affect gas emissivities of the R CrA and Cepheus & Polaris flare regions significantly (the differences are within the systematic uncertainty), that of the Chamaeleon region is increased by approx.20%. Although we claimed a difference of 50% in gas emissivity among these molecular cloud regions in the original paper, it is decreased to 30% (comparable to the sum of the statistical and systematic uncertainties) in the revised analysis. Therefore, our conclusion of the original paper, that a small variation (approx. 20%) of the CR density in the solar neighborhood exists, is not supported by the data if we take these uncertainties into account. On the other hand, the obtained XCO and XAv values, and the masses of gas calculated from them are not changed significantly (the differences are within the statistical errors). Errors and corrections in the original paper are summarized below. 1. In the Abstract (lines 5-6) and Section 3 (lines 4-5 in the 3rd paragraph) in the original paper, the gamma -ray emissivity above 250 MeV for the Chamaeleon region should be (7.2 +/- 0.1stat +/- 1.0sys) × 10(exp -27) photons/s/sr/H-atom, not (5.9 +/-0.1stat +0.9-1.0sys) × 10(exp -27) photons/s/sr/H-atom. 2. In the Abstract (lines 8-10), "Whereas the energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth, the measured emissivities from 250 MeV to 10 GeV indicate a variation of the CR density by approx.20% in the neighborhood of the solar system, even if we consider the systematic uncertainties." should be changed to "The energy dependences of the emissivities agree well with that predicted from direct CR observations at the Earth. Although the measured emissivities from 250 MeV to 10 GeV differ by approx.30% among these molecular cloud regions, the difference is not significant if we take the

  10. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, J. M. [Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE (United Kingdom); Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, Wales CF24 3AA (United Kingdom); Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Bendo, G. J. [UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); O' Halloran, B. [Astrophysics Group, Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom); Madden, S. C.; Lebouteiller, V. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service, Paris, F-91190 Gif-sur-Yvette (France); Roman-Duval, J. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Boselli, A. [Laboratoire d' Astrophysique de Marseille, UMR 7326 CNRS, 38 rue F. Joliot-Curie, F-13388 Marseille (France); Cooray, A. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ☉} are identified; their cumulative mass distribution is found to be proportional to M {sup –2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon et al., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.°9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  11. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. II. Radiation-Gas Interactions and Outflows

    Science.gov (United States)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2017-12-01

    Momentum deposition by radiation pressure from young, massive stars may help to destroy molecular clouds and unbind stellar clusters by driving large-scale outflows. We extend our previous numerical radiation hydrodynamic study of turbulent star-forming clouds to analyze the detailed interaction between non-ionizing UV radiation and the cloud material. Our simulations trace the evolution of gas and star particles through self-gravitating collapse, star formation, and cloud destruction via radiation-driven outflows. These models are idealized in that we include only radiation feedback and adopt an isothermal equation of state. Turbulence creates a structure of dense filaments and large holes through which radiation escapes, such that only ˜50% of the radiation is (cumulatively) absorbed by the end of star formation. The surface density distribution of gas by mass as seen by the central cluster is roughly lognormal with {σ }{ln{{Σ }}}=1.3{--}1.7, similar to the externally projected surface density distribution. This allows low surface density regions to be driven outwards to nearly 10 times their initial escape speed {v}{esc}. Although the velocity distribution of outflows is broadened by the lognormal surface density distribution, the overall efficiency of momentum injection to the gas cloud is reduced because much of the radiation escapes. The mean outflow velocity is approximately twice the escape speed from the initial cloud radius. Our results are also informative for understanding galactic-scale wind driving by radiation, in particular, the relationship between velocity and surface density for individual outflow structures and the resulting velocity and mass distributions arising from turbulent sources.

  12. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    Science.gov (United States)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  13. ALMA Observations of Elias 2–24: A Protoplanetary Disk with Multiple Gaps in the Ophiuchus Molecular Cloud

    Science.gov (United States)

    Cieza, Lucas A.; Casassus, Simon; Pérez, Sebastian; Hales, Antonio; Cárcamo, Miguel; Ansdell, Megan; Avenhaus, Henning; Bayo, Amelia; Bertrang, Gesa H.-M.; Cánovas, Hector; Christiaens, Valentin; Dent, William; Ferrero, Gabriel; Gamen, Roberto; Olofsson, Johan; Orcajo, Santiago; Osses, Axel; Peña-Ramirez, Karla; Principe, David; Ruíz-Rodríguez, Dary; Schreiber, Matthias R.; van der Plas, Gerrit; Williams, Jonathan P.; Zurlo, Alice

    2017-12-01

    We present ALMA 1.3 mm continuum observations at 0\\buildrel{\\prime\\prime}\\over{.} 2 (25 au) resolution of Elias 2–24, one of the largest and brightest protoplanetary disks in the Ophiuchus Molecular Cloud, and we report the presence of three partially resolved concentric gaps located at ∼20, 52, and 87 au from the star. We perform radiative transfer modeling of the disk to constrain its surface density and temperature radial profile and place the disk structure in the context of mechanisms capable of forming narrow gaps such as condensation fronts and dynamical clearing by actively forming planets. In particular, we estimate the disk temperature at the locations of the gaps to be 23, 15, and 12 K (at 20, 52, and 87 au, respectively), very close to the expected snowlines of CO (23–28 K) and N2 (12–15 K). Similarly, by assuming that the widths of the gaps correspond to 4–8× the Hill radii of forming planets (as suggested by numerical simulations), we estimate planet masses in the range of 0.2{--}1.5 {M}{Jup}, 1.0{--}8.0 {M}{Jup}, and 0.02{--}0.15 {M}{Jup} for the inner, middle, and outer gap, respectively. Given the surface density profile of the disk, the amount of “missing mass” at the location of each one of these gaps (between 4 and 20 {M}{Jup}) is more than sufficient to account for the formation of such planets.

  14. When electrons meet molecular ions and what happens next: dissociative recombination from interstellar molecular clouds to internal combustion engines.

    Science.gov (United States)

    Thomas, Richard D

    2008-01-01

    The interaction of matter with its environment is the driving force behind the evolution of 99% of the observed matter in the universe. The majority of the visible universe exists in a state of weak ionization, the so called fourth state of matter: plasma. Plasmas are ubiquitous, from those occurring naturally; interstellar molecular clouds, cometary comae, circumstellar shells, to those which are anthropic in origin; flames, combustion engines and fusion reactors. The evolution of these plasmas is driven by the interaction of the plasma constituents, the ions, and the electrons. One of the most important subsets of these reactions is electron-molecular ion recombination. This process is significant for two very important reasons. It is an ionization reducing reaction, removing two ionised species and producing neutral products. Furthermore, these products may themselves be reactive radical species which can then further drive the evolution of the plasma. The rate at which the electron reacts with the ion depends on many parameters, for examples the collision energy, the internal energy of the ion, and the structure of the ion itself. Measuring these properties together with the manner in which the system breaks up is therefore critical if the evolution of the environment is to be understood at all. Several techniques have been developed to study just such reactions to obtain the necessary information on the parameters. In this paper the focus will be on one the most recently developed of these, the Ion Storage Ring, together with the detection tools and techniques used to extract the necessary information from the reaction. Copyright 2008 Wiley Periodicals, Inc.

  15. DETECTION OF EXTREMELY BROAD WATER EMISSION FROM THE MOLECULAR CLOUD INTERACTING SUPERNOVA REMNANT G349.7+0.2

    Energy Technology Data Exchange (ETDEWEB)

    Rho, J. [SETI Institute, 189 N. Bernardo Avenue, Mountain View, CA 94043 (United States); Hewitt, J. W. [CRESST/University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Boogert, A. [SOFIA Science Center, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035 (United States); Kaufman, M. [Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192-0106 (United States); Gusdorf, A., E-mail: jrho@seti.org, E-mail: john.w.hewitt@nasa.gov, E-mail: aboogert@sofia.usra.edu, E-mail: michael.kaufman@sjsu.edu, E-mail: antoine.gusdorf@lra.ens.fr [LERMA, UMR 8112 du CNRS, Observatoire de Paris, École Normale Suprieure, 24 rue Lhomond, F-75231 Paris Cedex 05 (France)

    2015-10-10

    We performed Herschel HIFI, PACS, and SPIRE observations toward the molecular cloud interacting supernova remnant G349.7+0.2. An extremely broad emission line was detected at 557 GHz from the ground state transition 1{sub 10}-1{sub 01} of ortho-water. This water line can be separated into three velocity components with widths of 144, 27, and 4 km s{sup −1}. The 144 km s{sup −1} component is the broadest water line detected to date in the literature. This extremely broad line width shows the importance of probing shock dynamics. PACS observations revealed three additional ortho-water lines, as well as numerous high-J carbon monoxide (CO) lines. No para-water lines were detected. The extremely broad water line is indicative of a high velocity shock, which is supported by the observed CO rotational diagram that was reproduced with a J-shock model with a density of 10{sup 4} cm{sup −3} and a shock velocity of 80 km s{sup −1}. Two far-infrared fine-structure lines, [O i] at 145 μm and [C ii] line at 157 μm, are also consistent with the high velocity J-shock model. The extremely broad water line could be simply from short-lived molecules that have not been destroyed in high velocity J-shocks; however, it may be from more complicated geometry such as high-velocity water bullets or a shell expanding in high velocity. We estimate the CO and H{sub 2}O densities, column densities, and temperatures by comparison with RADEX and detailed shock models.

  16. ALMA Reveals Molecular Cloud N55 in the Large Magellanic Cloud as a Site of Massive Star Formation

    Science.gov (United States)

    Naslim, N.; Tokuda, K.; Onishi, T.; Kemper, F.; Wong, T.; Morata, O.; Takada, S.; Harada, R.; Kawamura, A.; Saigo, K.; Indebetouw, R.; Madden, S. C.; Hony, S.; Meixner, M.

    2018-02-01

    We present the molecular cloud properties of N55 in the Large Magellanic Cloud using 12CO(1–0) and 13CO(1–0) observations obtained with Atacama Large Millimeter Array. We have done a detailed study of molecular gas properties, to understand how the cloud properties of N55 differ from Galactic clouds. Most CO emission appears clumpy in N55, and molecular cores that have young stellar objects (YSOs) show larger linewidths and masses. The massive clumps are associated with high and intermediate mass YSOs. The clump masses are determined by local thermodynamic equilibrium and virial analysis of the 12CO and 13CO emissions. These mass estimates lead to the conclusion that (a) the clumps are in self-gravitational virial equilibrium, and (b) the 12CO(1–0)-to-H2 conversion factor, {X}{CO}, is 6.5 × 1020 cm‑2 (K km s‑1)‑1. This CO-to-H2 conversion factor for N55 clumps is measured at a spatial scale of ∼0.67 pc, which is about two times higher than the {X}{CO} value of the Orion cloud at a similar spatial scale. The core mass function of N55 clearly show a turnover below 200 {M}ȯ , separating the low-mass end from the high-mass end. The low-mass end of the 12CO mass spectrum is fitted with a power law of index 0.5 ± 0.1, while for 13CO it is fitted with a power law index 0.6 ± 0.2. In the high-mass end, the core mass spectrum is fitted with a power index of 2.0 ± 0.3 for 12CO, and with 2.5 ± 0.4 for 13CO. This power law behavior of the core mass function in N55 is consistent with many Galactic clouds.

  17. Simulating the UV escape fractions from molecular cloud populations in star-forming dwarf and spiral galaxies

    Science.gov (United States)

    Howard, Corey S.; Pudritz, Ralph E.; Harris, William E.; Klessen, Ralf S.

    2018-04-01

    The escape of ultraviolet photons from the densest regions of the interstellar medium (ISM) - giant molecular clouds (GMCs) - is a poorly constrained parameter which is vital to understanding the ionization of the ISM and the intergalactic medium. We characterize the escape fraction, fesc,GMC, from a suite of individual GMC simulations with masses in the range 104-6 M⊙ using the adaptive-mesh refinement code FLASH. We find significantly different fesc,GMC depending on the GMC mass that can reach >90 per cent in the evolution of 5 × 104 and 105 M⊙ clouds or remain low at ˜5 per cent for most of the lifetime of more massive GMCs. All clouds show fluctuations over short, sub-Myr time-scales produced by flickering H II regions. We combine our results to calculate the total escape fraction (fesc,tot) from GMC populations in dwarf starburst and spiral galaxies by randomly drawing clouds from a GMC mass distribution (dN/dM ∝ Mα, where α is either -1.5 or -2.5) over fixed time intervals. We find typical fesc,tot values of 8 per cent for both the dwarf and spiral models. The fluctuations of fesc,tot, however, are much larger for the dwarf models with values as high as 90 per cent. The photons escaping from the 5 × 104 and 105 M⊙ GMCs are the dominant contributors to fesc,tot in all cases. We also show that the accompanying star formation rates (SFRs) of our model (˜2 × 10-2 and 0.73 M⊙yr-1) are consistent with observations of SFRs in dwarf starburst and spiral galaxies, respectively.

  18. The JCMT Gould Belt Survey: A First Look at SCUBA-2 Observations of the Lupus I Molecular Cloud

    Science.gov (United States)

    Mowat, C.; Hatchell, J.; Rumble, D.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Jenness, T.; Johnstone, D.; Mottram, J. C.; Pattle, K.; Tisi, S.; Di Francesco, J.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chen, M.; Chrysostomou, A.; Coudé, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fich, M.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Rawlings, J.; Retter, B.; Richer, J.; Robertson, D.; Rosolowsky, E.; Sadavoy, S.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2017-05-01

    This paper presents observations of the Lupus I molecular cloud at 450 and 850 μm with Submillimetre Common User Bolometer Array (SCUBA-2) as part of the James Clerk Maxwell Telescope Gould Belt Survey (JCMT GBS). Nine compact sources, assumed to be the discs of young stellar objects (YSOs), 12 extended protostellar, pre-stellar and starless cores, and one isolated, low-luminosity protostar, are detected in the region. Spectral energy distributions, including submillimetre fluxes, are produced for 15 YSOs, and each is fitted with the models of Robitaille et al. The proportion of Class 0/I protostars is higher than that seen in other Gould Belt regions such as Ophiuchus and Serpens. Circumstellar disc masses are calculated for more evolved sources, while protostellar envelope masses are calculated for protostars. Up to four very low luminosity objects are found; a large fraction when compared to other Spitzer c2d regions. One YSO has a disc mass greater than the minimum mass solar nebula. 12 starless/protostellar cores are detected by SCUBA-2 and their masses are calculated. The stability of these cores is examined using both the thermal Jeans mass and a turbulent virial mass when possible. Two cores in Lupus I are super-Jeans and contain no known YSOs. One of these cores has a virial parameter of 1.1 ± 0.4, and could therefore be pre-stellar. The high ratio of Class 0/I to Class III YSOs (1:1), and the presence of a pre-stellar core candidate, provides support for the hypothesis that a shock recently triggered star formation in Lupus I.

  19. GRAVITATIONAL CONTRACTION VERSUS SUPERNOVA DRIVING AND THE ORIGIN OF THE VELOCITY DISPERSION–SIZE RELATION IN MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Ibáñez-Mejía, Juan C.; Mac Low, Mordecai-Mark; Klessen, Ralf S.; Baczynski, Christian, E-mail: jibanez@zah.uni-heidelberg.de [Institut für Theoretische Astrophysik, Zentrum für Astronomie der Universität Heidelberg, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany)

    2016-06-10

    Molecular cloud (MC) observations show that clouds have non-thermal velocity dispersions that scale with the cloud size as σ ∝ R {sup 1/2} at a constant surface density, and for varying surface density scale with both the cloud’s size and surface density, σ {sup 2} ∝ R Σ. The energy source driving these chaotic motions remains poorly understood. We describe the velocity dispersions observed in a cloud population formed in a numerical simulation of a magnetized, stratified, supernova (SN)-driven, interstellar medium, including diffuse heating and radiative cooling, before and after we include the effects of the self-gravity of the gas. We compare the relationships between velocity dispersion, size, and surface density measured in the simulated cloud population to those found in observations of Galactic MCs. Our simulations prior to the onset of self-gravity suggest that external SN explosions alone do not drive turbulent motions of the observed magnitudes within dense clouds. On the other hand, self-gravity induces non-thermal motions as gravitationally bound clouds begin to collapse in our model, approaching the observed relations between velocity dispersion, size, and surface density. Energy conservation suggests that the observed behavior is consistent with the kinetic energy being proportional to the gravitational energy. However, the clouds in our model show no sign of reaching a stable equilibrium state at any time, even for strongly magnetized clouds. We conclude that gravitationally bound MCs are always in a state of gravitational contraction and their properties are a natural result of this chaotic collapse. In order to agree with observed star formation efficiencies, this process must be terminated by the early destruction of the clouds, presumably from internal stellar feedback.

  20. Relativistic polarized deuteron fragmentation into protons as test of six-quark nature of deuteron at small distances

    International Nuclear Information System (INIS)

    Kobushkin, A.P.; Vizireva, L.

    1981-01-01

    A study of the nature of the short-range few-nucleon correlations in nuclei is proposed in the polarized high-energy deuteron fragmentation experiments. The presence of 6q-state in deuteron with probability of several percents is shown to change essentially the cross-section behaviour of this process in the momentum region where the fraction of the deuteron momentum carried out by proton in the infinite momentum frame is about 0.78. It is shown how the character of the cross-section of the transverse polarized deuteron fragmentation is changed depending on the parameters of 6q-admixure in deuteron [ru

  1. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  2. Fragmentation of Solid Materials Using Shock Tubes. Part 1: First Test Series in a Small Diameter Shock Tube

    Science.gov (United States)

    2017-01-01

    major issues. Table 7. Issues faced in curve fitting experimental fragment size distributions. Issue Discussion Solution 1. Independent...results in overpopulated small bins and underpopulated large bins, both of which adversely impact fit quality. Away from the extremes, choose bin...implement the solutions given in Table 7. Unfortunately, because of the difficulty of optimizing across two variables using MS Excel macros, these

  3. Viability of meta-populations of wetland birds in a fragmented landscape: Testing the key-patch approach

    NARCIS (Netherlands)

    Vermaat, J.E.; Vigneau, N.; Omtzigt, N.

    2008-01-01

    The key patch approach assumes that metapopulations in fragmented landscapes are likely to be viable with at least one "key" sub-population that is sufficiently large to ensure re-colonization of surrounding minor habitat patches. It is based on a minimum viable number of breeding pairs and

  4. Chameleon fragmentation

    International Nuclear Information System (INIS)

    Brax, Philippe; Upadhye, Amol

    2014-01-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ 4 and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments

  5. Chameleon fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Upadhye, Amol, E-mail: philippe.brax@cea.fr, E-mail: aupadhye@anl.gov [Institute for the Early Universe, Ewha University, International Education, Building #601, 11-1, Daehyun-Dong Seodaemun-Gu, Seoul 120-750 (Korea, Republic of)

    2014-02-01

    A scalar field dark energy candidate could couple to ordinary matter and photons, enabling its detection in laboratory experiments. Here we study the quantum properties of the chameleon field, one such dark energy candidate, in an ''afterglow'' experiment designed to produce, trap, and detect chameleon particles. In particular, we investigate the possible fragmentation of a beam of chameleon particles into multiple particle states due to the highly non-linear interaction terms in the chameleon Lagrangian. Fragmentation could weaken the constraints of an afterglow experiment by reducing the energy of the regenerated photons, but this energy reduction also provides a unique signature which could be detected by a properly-designed experiment. We show that constraints from the CHASE experiment are essentially unaffected by fragmentation for φ{sup 4} and 1/φ potentials, but are weakened for steeper potentials, and we discuss possible future afterglow experiments.

  6. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  7. Synthetic observations of molecular clouds in a galactic centre environment - I. Studying maps of column density and integrated intensity

    Science.gov (United States)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Ragan, Sarah E.; Klessen, Ralf S.

    2016-02-01

    We run numerical simulations of molecular clouds, adopting properties similar to those found in the central molecular zone (CMZ) of the Milky Way. For this, we employ the moving mesh code AREPO and perform simulations which account for a simplified treatment of time-dependent chemistry and the non-isothermal nature of gas and dust. We perform simulations using an initial density of n0 = 103 cm-3 and a mass of 1.3 × 105 M⊙. Furthermore, we vary the virial parameter, defined as the ratio of kinetic and potential energy, α = Ekin/|Epot|, by adjusting the velocity dispersion. We set it to α = 0.5, 2.0 and 8.0, in order to analyse the impact of the kinetic energy on our results. We account for the extreme conditions in the CMZ and increase both the interstellar radiation field (ISRF) and the cosmic ray flux (CRF) by a factor of 1000 compared to the values found in the solar neighbourhood. We use the radiative transfer code RADMC-3D to compute synthetic images in various diagnostic lines. These are [C II] at 158 μm, [O I] (145 μm), [O I] (63 μm), 12CO (J = 1 → 0) and 13CO (J = 1 → 0) at 2600 and 2720 μm, respectively. When α is large, the turbulence disperses much of the gas in the cloud, reducing its mean density and allowing the ISRF to penetrate more deeply into the cloud's interior. This significantly alters the chemical composition of the cloud, leading to the dissociation of a significant amount of the molecular gas. On the other hand, when α is small, the cloud remains compact, allowing more of the molecular gas to survive. We show that in each case the atomic tracers accurately reflect most of the physical properties of both the H2 and the total gas of the cloud and that they provide a useful alternative to molecular lines when studying the interstellar medium in the CMZ.

  8. SHORT- AND LONG-TERM RADIO VARIABILITY OF YOUNG STARS IN THE ORION NEBULA CLUSTER AND MOLECULAR CLOUD

    International Nuclear Information System (INIS)

    Rivilla, V. M.; Martín-Pintado, J.; Chandler, C. J.; Sanz-Forcada, J.; Jiménez-Serra, I.; Forbrich, J.

    2015-01-01

    We have used the Karl G. Jansky Very Large Array (VLA) to carry out multi-epoch radio continuum monitoring of the Orion Nebula Cluster (ONC) and the background Orion Molecular Cloud (OMC; 3 epochs at Q band and 11 epochs at Ka band). Our new observations reveal the presence of 19 radio sources, mainly concentrated in the Trapezium Cluster and the Orion Hot Core (OHC) regions. With the exception of the Becklin–Neugebauer object and source C (which we identify here as dust emission associated with a proplyd) the sources all show radio variability between the different epochs. We have found tentative evidence of variability in the emission from the massive object related to source I. Our observations also confirm radio flux density variations of a factor >2 on timescales of hours to days in five sources. One of these flaring sources, OHC-E, has been detected for the first time. We conclude that the radio emission can be attributed to two different components: (i) highly variable (flaring) non-thermal radio gyrosynchrotron emission produced by electrons accelerated in the magnetospheres of pre-main-sequence low-mass stars and (ii) thermal emission due to free–free radiation from ionized gas and/or heated dust around embedded massive objects and proplyds. Combining our sample with other radio monitoring at 8.3 GHz and the X-ray catalog provided by Chandra, we have studied the properties of the entire sample of radio/X-ray stars in the ONC/OMC region (51 sources). We have found several hints of a relation between the X-ray activity and the mechanisms responsible for (at least some fraction of) the radio emission. We have estimated a radio flaring rate of ∼0.14 flares day −1 in the dense stellar cluster embedded in the OHC region. This suggests that radio flares are more common events during the first stages of stellar evolution than previously thought. The advent of improved sensitivity with the new VLA and ALMA will dramatically increase the number of stars in

  9. SHORT- AND LONG-TERM RADIO VARIABILITY OF YOUNG STARS IN THE ORION NEBULA CLUSTER AND MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Rivilla, V. M.; Martín-Pintado, J. [Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125, Firenze (Italy); Chandler, C. J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Sanz-Forcada, J. [Centro de Astrobiología (CSIC/INTA), ESAC Campus, P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Jiménez-Serra, I. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748, Garching (Germany); Forbrich, J., E-mail: rivilla@arcetri.astro.it [Department of Astrophysics, University of Vienna, Türkenschanzstr. 17, 1180 Vienna (Austria)

    2015-08-01

    We have used the Karl G. Jansky Very Large Array (VLA) to carry out multi-epoch radio continuum monitoring of the Orion Nebula Cluster (ONC) and the background Orion Molecular Cloud (OMC; 3 epochs at Q band and 11 epochs at Ka band). Our new observations reveal the presence of 19 radio sources, mainly concentrated in the Trapezium Cluster and the Orion Hot Core (OHC) regions. With the exception of the Becklin–Neugebauer object and source C (which we identify here as dust emission associated with a proplyd) the sources all show radio variability between the different epochs. We have found tentative evidence of variability in the emission from the massive object related to source I. Our observations also confirm radio flux density variations of a factor >2 on timescales of hours to days in five sources. One of these flaring sources, OHC-E, has been detected for the first time. We conclude that the radio emission can be attributed to two different components: (i) highly variable (flaring) non-thermal radio gyrosynchrotron emission produced by electrons accelerated in the magnetospheres of pre-main-sequence low-mass stars and (ii) thermal emission due to free–free radiation from ionized gas and/or heated dust around embedded massive objects and proplyds. Combining our sample with other radio monitoring at 8.3 GHz and the X-ray catalog provided by Chandra, we have studied the properties of the entire sample of radio/X-ray stars in the ONC/OMC region (51 sources). We have found several hints of a relation between the X-ray activity and the mechanisms responsible for (at least some fraction of) the radio emission. We have estimated a radio flaring rate of ∼0.14 flares day{sup −1} in the dense stellar cluster embedded in the OHC region. This suggests that radio flares are more common events during the first stages of stellar evolution than previously thought. The advent of improved sensitivity with the new VLA and ALMA will dramatically increase the number of stars

  10. Intermediate Fragment

    DEFF Research Database (Denmark)

    Kruse Aagaard, Anders

    2015-01-01

    ‘Engaging Through Architecture’ in 2015 by Aarhus School of Architecture as a part of the Ventura Lambrate Milan Design Week, where it was exhibited under the name Concrete. The fundamental pool of techniques and knowledge that set the agenda for the fragment was established before the intentions...

  11. Framing Fragmentation

    DEFF Research Database (Denmark)

    Bundgaard, Charlotte

    2009-01-01

    to create architectural meaning and give character to an architecture of fragmentation. Layers are both seen as conceptual as well as material frames which define certain strong properties or meanings in the architectural work. Defining layers is a way of separating and organizing; it both defines...

  12. Rock fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Brown, W.S.; Green, S.J.; Hakala, W.W.; Hustrulid, W.A.; Maurer, W.C. (eds.)

    1976-01-01

    Experts in rock mechanics, mining, excavation, drilling, tunneling and use of underground space met to discuss the relative merits of a wide variety of rock fragmentation schemes. Information is presented on novel rock fracturing techniques; tunneling using electron beams, thermocorer, electric spark drills, water jets, and diamond drills; and rock fracturing research needs for mining and underground construction. (LCL)

  13. A CRITICAL THOUGHT OF INSTRUCTIONAL STRATEGY: DEVELOPING ANALYTICAL CAPABILITY OF AUTOMOTIVE STUDENTS BY MANAGING MORE APPLICABLE MOVIE FRAGMENTS, POWER POINT, AND INTERACTIVE TEST

    Directory of Open Access Journals (Sweden)

    Agus Riyanto -

    2017-02-01

    Full Text Available What most sensed about Technical High School (known as SMK students is their lack of analytical capability. As their nature of academic orientation is aimed at job fullfillment, the students are enhanced to follow Standard Operational Procedure (SOP without questioning why such SOP should be followed. As for automotive students, they simply following the steps of doing things related to any activities of repairing car and other mechanical work required just because the job will be done well when the procedure completed.  This kind of mentality “following order or SOP” fits to those who only want to be workers not the men who take higher responsibilities. The progress of automotive technology demand on understanding the concept of how some system used in a car. Failure to comprehend to concept will jeopardize the performance of a car. At the same time, the progress of automotive technology is also propelled by the progress of information technology which provides more open resources that can be used to promote the quality of instuctional process.  Realizing that having analysis compentence is terribly important to run higher responsibilites and continuing education to a university, automotive students need to learn how to analyze. To promote this, teacher can use some automotive movies or animations and then chop them into many fragments related to instructional objectives. The way how the teachers arrange and present the fragments can be combined into power point and ended up with an interactive test with different model of methods, strategies, or techniques. Movies, movie cutter application, interactive test Creator ,  paint into fragments can be obtained freely from the internet. The using of movie fragments integrated into power point, arrange the fragment into various strategies, ended up with interactive test will likely focus the students into more realistic understanding toward the concept taught in the classroom. In return the

  14. Fragmented Authoritarianism or Integrated Fragmentation

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik

    or from a position as business leader to a position in the state apparatus or in the Party and vice versa. To conceptualize the coexistence of the contradicting forces for further enterprise autonomy and continued central control that characterizes the evolving relationship between business groups...... and the Party-state, I suggest the notion of integrated fragmentation....

  15. Kinetic temperature of massive star-forming molecular clumps measured with formaldehyde. III. The Orion molecular cloud 1

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Menten, K. M.; Wyrowski, F.; Brinkmann, N.; Zheng, X. W.; Gong, Y.; Lin, Y. X.; Esimbek, J.; Zhou, J. J.; Yuan, Y.; Li, D. L.; He, Y. X.

    2018-01-01

    We mapped the kinetic temperature structure of the Orion molecular cloud 1 (OMC-1) with para-H2CO (JKaKc = 303-202, 322-221, and 321-220) using the APEX 12 m telescope. This is compared with the temperatures derived from the ratio of the NH3 (2, 2)/(1, 1) inversion lines and the dust emission. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured averaged line ratios of para-H2CO 322-221/303-202 and 321-220/303-202. The gas kinetic temperatures derived from the para-H2CO line ratios are warm, ranging from 30 to >200 K with an average of 62 ± 2 K at a spatial density of 105 cm-3. These temperatures are higher than those obtained from NH3 (2, 2)/(1, 1) and CH3CCH (6-5) in the OMC-1 region. The gas kinetic temperatures derived from para-H2CO agree with those obtained from warm dust components measured in the mid infrared (MIR), which indicates that the para-H2CO (3-2) ratios trace dense and warm gas. The cold dust components measured in the far infrared (FIR) are consistent with those measured with NH3 (2, 2)/(1, 1) and the CH3CCH (6-5) line series. With dust at MIR wavelengths and para-H2CO (3-2) on one side, and dust at FIR wavelengths, NH3 (2, 2)/(1, 1), and CH3CCH (6-5) on the other, dust and gas temperatures appear to be equivalent in the dense gas (n(H2) ≳ 104 cm-3) of the OMC-1 region, but provide a bimodal distribution, one more directly related to star formation than the other. The non-thermal velocity dispersions of para-H2CO are positively correlated with the gas kinetic temperatures in regions of strong non-thermal motion (Mach number ≳ 2.5) of the OMC-1, implying that the higher temperature traced by para-H2CO is related to turbulence on a 0.06 pc scale. Combining the temperature measurements with para-H2CO and NH3 (2, 2)/(1, 1) line ratios, we find direct evidence for the dense gas along the northern part of the OMC-1 10 km s-1 filament heated by radiation from the central Orion nebula. The reduced datacubes are

  16. Squeezed between shells? The origin of the Lupus I molecular cloud. II. APEX CO and GASS H I observations

    Science.gov (United States)

    Gaczkowski, B.; Roccatagliata, V.; Flaischlen, S.; Kröll, D.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Ngoumou, J.; Preibisch, T.

    2017-12-01

    Context. Lupus I cloud is found between the Upper Scorpius (USco) and Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B stars of UCL. Aims: We investigate whether the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. Methods: We performed APEX 13CO(2-1)and C18O(2-1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H I survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. Results: We present evidence that the molecular gas of Lupus Iis tightly linked to the atomic material of the USco shell. The CO emission in Lupus Iis found mainly at velocities between vLSR = 3-6 km s-1, which is in the same range as the H I velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H I shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The nonthermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario in which Lupus Iis located in the interaction zone between the USco shell and the UCL wind bubble. Conclusions: The kinematics observations are consistent with a scenario in which the Lupus Icloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counterpressure from the UCL wind bubble and pre-existing density enhancements

  17. The physical properties of giant molecular cloud complexes in the outer Galaxy - Implications for the ratio of H2 column density to (C-12)O intensity

    Science.gov (United States)

    Sodroski, T. J.

    1991-01-01

    The physical properties of 35 giant molecular cloud complexes in the outer Galaxy were derived from the Goddard-Columbia surveys of the Galactic plane region (Dame et al., 1987). The spatial and radial velocity boundaries for the individual cloud complexes were estimated by analyzing the spatial and velocity structure of emission features in the (C-12)O surveys, and the distance to each cmplex was determined kinematically on the assumption of a flat rotation curve. The ratio of the H2 column density to the (C-12)O intensity for the outer Galaxy complexes was found to be about 6.0 x 10 to the 20th molecules/sq cm K per km/sec, which is by a factor of 2-3 greater than the value derived by other auhtors for the inner Galaxy complexes. This increase in the H2 column density/(C-12)O intensity with the distance from with the Galactic center is consistent with predictions of the optically thick cloudlet model of giant molecular cloud complexes.

  18. Discovery of very high energy gamma-ray emission coincident with molecular clouds in the W 28 (G6.4-0.1) field

    Science.gov (United States)

    Aharonian, F.; Akhperjanian, A. G.; Bazer-Bachi, A. R.; Behera, B.; Beilicke, M.; Benbow, W.; Berge, D.; Bernlöhr, K.; Boisson, C.; Bolz, O.; Borrel, V.; Braun, I.; Brion, E.; Brown, A. M.; Bühler, R.; Bulik, T.; Büsching, I.; Boutelier, T.; Carrigan, S.; Chadwick, P. M.; Chounet, L.-M.; Clapson, A. C.; Coignet, G.; Cornils, R.; Costamante, L.; Degrange, B.; Dickinson, H. J.; Djannati-Ataï, A.; Domainko, W.; O'C. Drury, L.; Dubus, G.; Dyks, J.; Egberts, K.; Emmanoulopoulos, D.; Espigat, P.; Farnier, C.; Feinstein, F.; Fiasson, A.; Förster, A.; Fontaine, G.; Fukui, Y.; Funk, Seb.; Funk, S.; Füßling, M.; Gallant, Y. A.; Giebels, B.; Glicenstein, J. F.; Glück, B.; Goret, P.; Hadjichristidis, C.; Hauser, D.; Hauser, M.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hoffmann, A.; Hofmann, W.; Holleran, M.; Hoppe, S.; Horns, D.; Jacholkowska, A.; de Jager, O. C.; Kendziorra, E.; Kerschhaggl, M.; Khélifi, B.; Komin, Nu.; Kosack, K.; Lamanna, G.; Latham, I. J.; Le Gallou, R.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Lohse, T.; Martin, J. M.; Martineau-Huynh, O.; Marcowith, A.; Masterson, C.; Maurin, G.; McComb, T. J. L.; Moderski, R.; Moriguchi, Y.; Moulin, E.; de Naurois, M.; Nedbal, D.; Nolan, S. J.; Olive, J.-P.; Orford, K. J.; Osborne, J. L.; Ostrowski, M.; Panter, M.; Pedaletti, G.; Pelletier, G.; Petrucci, P.-O.; Pita, S.; Pühlhofer, G.; Punch, M.; Ranchon, S.; Raubenheimer, B. C.; Raue, M.; Rayner, S. M.; Reimer, O.; Renaud, M.; Ripken, J.; Rob, L.; Rolland, L.; Rosier-Lees, S.; Rowell, G.; Rudak, B.; Ruppel, J.; Sahakian, V.; Santangelo, A.; Saugé, L.; Schlenker, S.; Schlickeiser, R.; Schröder, R.; Schwanke, U.; Schwarzburg, S.; Schwemmer, S.; Shalchi, A.; Sol, H.; Spangler, D.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Superina, G.; Takeuchi, T.; Tam, P. H.; Tavernet, J.-P.; Terrier, R.; van Eldik, C.; Vasileiadis, G.; Venter, C.; Vialle, J. P.; Vincent, P.; Vivier, M.; Völk, H. J.; Volpe, F.; Wagner, S. J.; Ward, M.

    2008-04-01

    Aims: Observations of shell-type supernova remnants (SNRs) in the GeV to multi-TeV γ-ray band, coupled with those at millimetre radio wavelengths, are motivated by the search for cosmic-ray accelerators in our Galaxy. The old-age mixed-morphology SNR W 28 (distance ~2 kpc) is a prime target due to its interaction with molecular clouds along its northeastern boundary and other clouds situated nearby. Methods: We observed the W 28 field (for ~40 h) at very high energy (VHE) γ-ray energies (E > 0.1 TeV) with the HESS. Cherenkov telescopes. A reanalysis of EGRET E > 100 MeV data was also undertaken. Results from the NANTEN 4 m telescope Galactic plane survey and other CO observations were used to study molecular clouds. Results: We have discovered VHE γ-ray emission (HESS J1801-233) coincident with the northeastern boundary of W 28 and a complex of sources (HESS J1800-240A, B and C) ~0.5° south of W 28 in the Galactic disc. The EGRET source (GRO J1801-2320) is centred on HESS J1801-233 but may also be related to HESS J1800-240 given the large EGRET point spread function. The VHE differential photon spectra are well fit by pure power laws with indices Γ ~2.3 to 2.7. The spectral indices of HESS J1800-240A, B, and C are consistent within statistical errors. All VHE sources are ~10' in intrinsic radius except for HESS J1800-240C, which appears pointlike. The NANTEN 12CO(J = 1-0) data reveal molecular clouds positionally associating with the VHE emission, spanning a ~15 km s-1 range in local standard of rest velocity. Conclusions: The VHE/molecular cloud association could indicate a hadronic origin for HESS J1801-233 and HESS J1800-240, and several cloud components in projection may contribute to the VHE emission. The clouds have components covering a broad velocity range encompassing the distance estimates for W 28 (~2 kpc) and extending up to ~4 kpc. Assuming hadronic origin and distances of 2 and 4 kpc for cloud components, the required cosmic-ray density

  19. Fragmentation based

    Directory of Open Access Journals (Sweden)

    Shashank Srivastava

    2014-01-01

    Gaining the understanding of mobile agent architecture and the security concerns, in this paper, we proposed a security protocol which addresses security with mitigated computational cost. The protocol is a combination of self decryption, co-operation and obfuscation technique. To circumvent the risk of malicious code execution in attacking environment, we have proposed fragmentation based encryption technique. Our encryption technique suits the general mobile agent size and provides hard and thorny obfuscation increasing attacker’s challenge on the same plane providing better performance with respect to computational cost as compared to existing AES encryption.

  20. Architectural fragments

    DEFF Research Database (Denmark)

    Bang, Jacob Sebastian

    2018-01-01

    the photographs as a starting point for a series of paintings. This way of creating representations of something that already exists is for me to see a way forward in the "decoding" of my own models into other depictions. The models are analyzed through a series of representations in different types of drawings....... I try to invent the ways of drawing the models - that decode and unfold them into architectural fragments- into future buildings or constructions in the landscape. [1] Luigi Moretti: Italian architect, 1907 - 1973 [2] Man Ray: American artist, 1890 - 1976. in 2015, I saw the wonderful exhibition...

  1. Validation of a new test for Schistosoma haematobium based on detection of Dra1 DNA fragments in urine: evaluation through latent class analysis.

    Directory of Open Access Journals (Sweden)

    Olufunmilola Ibironke

    2012-01-01

    Full Text Available Diagnosis of urogenital schistosomiasis in chronically infected adults is challenging but important, especially because long term infection of the bladder and urinary tract can have dire consequences. We evaluated three tests for viable infection: detection of parasite specific DNA Dra1 fragments, haematuria and presence of parasite eggs for sensitivity (Se and specificity (Sp.Over 400 urine specimens collected from adult volunteers in an endemic area in Western Nigeria were assessed for haematuria then filtered in the field, the filter papers dried and later examined for eggs and DNA. The results were stratified according to sex and age and subjected to Latent Class analysis.Presence of Dra1 in males (Se=100%; Sp=100% exceeded haematuria (Se=87.6%: Sp=34.7% and detection of eggs (Se=70.1%; Sp=100%. In females presence of Dra1 was Se=100%: Sp=100%, exceeding haematuria (Se=86.7%: Sp=77.0% and eggs (Se=70.1%; Sp=100%. Dra1 became undetectable 2 weeks after praziquantel treatment. We conclude detection of Dra1 fragment is a definitive test for the presence of Schistosoma haematobium infection.

  2. An Algebra for Program Fragments

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    1985-01-01

    Program fragments are described either by strings in the concrete syntax or by constructor applications in the abstract syntax. By defining conversions between these forms, both may be intermixed. Program fragments are constructed by terminal and nonterminal symbols from the grammar and by variab......Program fragments are described either by strings in the concrete syntax or by constructor applications in the abstract syntax. By defining conversions between these forms, both may be intermixed. Program fragments are constructed by terminal and nonterminal symbols from the grammar...... and by variables having program fragments as values. Basic operations such as valuetransfer, composition and decomposition are defined for program fragments allowing more complicated operations to be implemented. Usual operations such as testing for equality are defined, and in addition more specialized operations...... such as testing that a program fragment is derivable from another and converting program fragments in concrete form to abstract form are defined. By introducing regular expressions in the grammar these may be used in program fragments in concrete form. By defining constructors for regular expressions these may...

  3. A search for pre-main-sequence stars in high-latitude molecular clouds. 3: A survey of the Einstein database

    Science.gov (United States)

    Caillault, Jean-Pierre; Magnani, Loris; Fryer, Chris

    1995-01-01

    In order to discern whether the high-latitude molecular clouds are regions of ongoing star formation, we have used X-ray emission as a tracer of youthful stars. The entire Einstein database yields 18 images which overlap 10 of the clouds mapped partially or completely in the CO (1-0) transition, providing a total of approximately 6 deg squared of overlap. Five previously unidentified X-ray sources were detected: one has an optical counterpart which is a pre-main-sequence (PMS) star, and two have normal main-sequence stellar counterparts, while the other two are probably extragalactic sources. The PMS star is located in a high Galactic latitude Lynds dark cloud, so this result is not too suprising. The translucent clouds, though, have yet to reveal any evidence of star formation.

  4. Distances to Supernova Remnants G31.9+0.0 and G54.4−0.3 Associated with Molecular Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Ranasinghe, S.; Leahy, D. A. [Department of Physics and Astronomy, University of Calgary, Calgary, AB T2N 1N4 (Canada)

    2017-07-10

    New distances to the supernova remnants (SNRs) G31.9+0.0 and G54.4−0.3 have been found. The analysis method uses H i absorption spectra and CO channel maps. Individual H i channel maps are used to verify absorption features in the H i absorption spectrum or to determine if they have noise. Both of the SNRs are associated with molecular clouds so accurate kinematic velocities are determined. The H iabsorption is used to resolve the kinematic distance ambiguity. The resulting new distance for G31.9+0.0 is 7.1 ± 0.4 kpc and for G54.4−0.3 it is 6.6 ± 0.6 kpc. These are significant revisions to the previous values.

  5. A FIRST LOOK AT THE AURIGA-CALIFORNIA GIANT MOLECULAR CLOUD WITH HERSCHEL AND THE CSO: CENSUS OF THE YOUNG STELLAR OBJECTS AND THE DENSE GAS

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Paul M. [Astronomy Department, University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Fallscheer, Cassandra [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2 (Canada); Ginsburg, Adam [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309-0389 (United States); Terebey, Susan [Department of Physics and Astronomy PS315, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Andre, Philippe; Koenyves, Vera [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Di Francesco, James; Matthews, Brenda C. [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peterson, Dawn E., E-mail: pmh@astro.as.utexas.edu, E-mail: Cassandra.Fallscheer@nrc-cnrc.gc.ca, E-mail: adam.ginsburg@colorado.edu, E-mail: sterebe@calstatela.edu, E-mail: pandre@cea.fr, E-mail: vera.konyves@cea.fr, E-mail: tbourke@cfa.harvard.edu, E-mail: James.DiFrancesco@nrc-cnrc.gc.ca, E-mail: Brenda.Matthews@nrc-cnrc.gc.ca, E-mail: dpeterson@spacescience.org [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80303 (United States)

    2013-02-20

    We have mapped the Auriga/California molecular cloud with the Herschel PACS and SPIRE cameras and the Bolocam 1.1 mm camera on the Caltech Submillimeter Observatory with the eventual goal of quantifying the star formation and cloud structure in this giant molecular cloud (GMC) that is comparable in size and mass to the Orion GMC, but which appears to be forming far fewer stars. We have tabulated 60 compact 70/160 {mu}m sources that are likely pre-main-sequence objects and correlated those with Spitzer and WISE mid-IR sources. At 1.1 mm, we find 18 cold, compact sources and discuss their properties. The most important result from this part of our study is that we find a modest number of additional compact young objects beyond those identified at shorter wavelengths with Spitzer. We also describe the dust column density and temperature structure derived from our photometric maps. The column density peaks at a few Multiplication-Sign 10{sup 22} cm{sup -2} (N {sub H2}) and is distributed in a clear filamentary structure along which nearly all of the pre-main-sequence objects are found. We compare the young stellar object surface density to the gas column density and find a strong nonlinear correlation between them. The dust temperature in the densest parts of the filaments drops to {approx}10 K from values {approx}14-15 K in the low-density parts of the cloud. We also derive the cumulative mass fraction and probability density function of material in the cloud, which we compare with similar data on other star-forming clouds.

  6. THE BOLOCAM GALACTIC PLANE SURVEY. XII. DISTANCE CATALOG EXPANSION USING KINEMATIC ISOLATION OF DENSE MOLECULAR CLOUD STRUCTURES WITH {sup 13}CO(1-0)

    Energy Technology Data Exchange (ETDEWEB)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason [CASA, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Rosolowsky, Erik [Department of Physics, 4-183 CCIS, University of Alberta, Edmonton, AB T6G 2E1 (Canada); Ginsburg, Adam [European Southern Observatory, Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Evans II, Neal J. [Department of Astronomy, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Battersby, Cara [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shirley, Yancy L.; Svoboda, Brian, E-mail: timothy.ellsworthbowers@colorado.edu [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2015-01-20

    We present an expanded distance catalog for 1710 molecular cloud structures identified in the Bolocam Galactic Plane Survey (BGPS) version 2, representing a nearly threefold increase over the previous BGPS distance catalog. We additionally present a new method for incorporating extant data sets into our Bayesian distance probability density function (DPDF) methodology. To augment the dense-gas tracers (e.g., HCO{sup +}(3-2), NH{sub 3}(1,1)) used to derive line-of-sight velocities for kinematic distances, we utilize the Galactic Ring Survey (GRS) {sup 13}CO(1-0) data to morphologically extract velocities for BGPS sources. The outline of a BGPS source is used to select a region of the GRS {sup 13}CO data, along with a reference region to subtract enveloping diffuse emission, to produce a line profile of {sup 13}CO matched to the BGPS source. For objects with a HCO{sup +}(3-2) velocity, ≈95% of the new {sup 13}CO(1-0) velocities agree with that of the dense gas. A new prior DPDF for kinematic distance ambiguity (KDA) resolution, based on a validated formalism for associating molecular cloud structures with known objects from the literature, is presented. We demonstrate this prior using catalogs of masers with trigonometric parallaxes and H II regions with robust KDA resolutions. The distance catalog presented here contains well-constrained distance estimates for 20% of BGPS V2 sources, with typical distance uncertainties ≲ 0.5 kpc. Approximately 75% of the well-constrained sources lie within 6 kpc of the Sun, concentrated in the Scutum-Centaurus arm. Galactocentric positions of objects additionally trace out portions of the Sagittarius, Perseus, and Outer arms in the first and second Galactic quadrants, and we also find evidence for significant regions of interarm dense gas.

  7. THE SPITZER SPACE TELESCOPE SURVEY OF THE ORION A AND B MOLECULAR CLOUDS. II. THE SPATIAL DISTRIBUTION AND DEMOGRAPHICS OF DUSTY YOUNG STELLAR OBJECTS

    International Nuclear Information System (INIS)

    Megeath, S. T.; Kryukova, E.; Gutermuth, R.; Muzerolle, J.; Hora, J. L.; Myers, P. C.; Fazio, G. G.; Allen, L. E.; Flaherty, K.; Hartmann, L.; Pipher, J. L.; Stauffer, J.; Young, E. T.

    2016-01-01

    We analyze the spatial distribution of dusty young stellar objects (YSOs) identified in the Spitzer Survey of the Orion Molecular clouds, augmenting these data with Chandra X-ray observations to correct for incompleteness in dense clustered regions. We also devise a scheme to correct for spatially varying incompleteness when X-ray data are not available. The local surface densities of the YSOs range from 1 pc −2 to over 10,000 pc −2 , with protostars tending to be in higher density regions. This range of densities is similar to other surveyed molecular clouds with clusters, but broader than clouds without clusters. By identifying clusters and groups as continuous regions with surface densities ≥10 pc −2 , we find that 59% of the YSOs are in the largest cluster, the Orion Nebula Cluster (ONC), while 13% of the YSOs are found in a distributed population. A lower fraction of protostars in the distributed population is evidence that it is somewhat older than the groups and clusters. An examination of the structural properties of the clusters and groups shows that the peak surface densities of the clusters increase approximately linearly with the number of members. Furthermore, all clusters with more than 70 members exhibit asymmetric and/or highly elongated structures. The ONC becomes azimuthally symmetric in the inner 0.1 pc, suggesting that the cluster is only ∼2 Myr in age. We find that the star formation efficiency (SFE) of the Orion B cloud is unusually low, and that the SFEs of individual groups and clusters are an order of magnitude higher than those of the clouds. Finally, we discuss the relationship between the young low mass stars in the Orion clouds and the Orion OB 1 association, and we determine upper limits to the fraction of disks that may be affected by UV radiation from OB stars or dynamical interactions in dense, clustered regions

  8. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. I. THE W51 REGION IN CO AND 13CO J = 2-1 EMISSION

    International Nuclear Information System (INIS)

    Bieging, John H.; Peters, William L.; Kang, Miju

    2010-01-01

    We present 38'' resolution maps of the CO and 13 CO J = 2-1 lines in the molecular clouds toward the H II region complex W51. The maps cover a 1. 0 25 x 1 0 section of the galactic plane and span +30 to +85 km s -1 (LSR) in velocity. The spectral resolution is ∼1.3 km s -1 . The velocity range of the images includes all the gas in the Sagittarius spiral arm. Color figures display the peak line brightness temperature, the velocity-integrated intensity, and 2 km s -1 channel-averaged maps for both isotopologs, and also the CO/ 13 CO J = 2-1 line intensity ratio as a function of velocity. The CO and 13 CO line intensity image cubes are made available in standard FITS format as electronically readable tables. We compare our molecular line maps with the 1.1 mm continuum image from the BOLOCAM Galactic Plane Survey. From our 13 CO image cube, we derive kinematic information for the 99 BGPS sources in the mapped field in the form of Gaussian component fits. The integrated 13 CO line intensity and the 1.1 mm source flux density show only a modest degree of correlation for the 99 sources, likely due to a range of dust and gas physical conditions within the sources. However, the 1.1 mm continuum surface brightness and the integrated 13 CO line intensity for small regions containing single BGPS sources and molecular clouds show very good correlations in many cases. Differences in the shapes of these correlations from one spatial region to another probably result from different physical conditions or structure in the clouds.

  9. Shaken and stirred: the effects of turbulence and rotation on disc and outflow formation during the collapse of magnetised molecular cloud cores

    Science.gov (United States)

    Lewis, Benjamin T.; Bate, Matthew R.

    2018-03-01

    We present the results of eighteen magnetohydrodynamical calculations of the collapse of a molecular cloud core to form a protostar. Some calculations include radiative transfer in the flux limited diffusion approximation while others employ a barotropic equation of state. We cover a wide parameter space, with mass-to-flux ratios ranging from μ = 5 to 20; initial turbulent amplitudes ranging from a laminar calculation (i.e. where the Mach number, M = 0) to transonic M = 1; and initial rotation rates from β _{rot} = 0.005 to 0.02. We first show that using a radiative transfer scheme produces warmer pseudodiscs than the barotropic equation of state, making them more stable. We then shake the core by increasing the initial turbulent velocity field, and find that at all three mass-to-flux ratios transonic cores are weakly bound and do not produce pseudo-discs; M = 0.3 cores produce very disrupted discs; and M = 0.1 cores produce discs broadly comparable to a laminar core. In our previous paper we showed that a pseudo-disc coupled with sufficent magnetic field is necessary to form a bipolar outflow. Here we show that only weakly turbulent cores exhibit collimated jets. We finally take the M = 1.0, μ = 5 core and stir it by increasing the initial angular momentum, finding that once the degree of rotational energy exceeds the turbulent energy in the core the disc returns, with a corresponding (though slower), outflow. These conclusions place constraints on the initial mixtures of rotation and turbulence in molecular cloud cores which are conducive to the formation of bipolar outflows early in the star formation process.

  10. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    Science.gov (United States)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  11. Fragmented Authoritarianism or Integrated Fragmentation

    DEFF Research Database (Denmark)

    Brødsgaard, Kjeld Erik

    proved their influence by obstructing the creation of new ministries and regulatory commissions that would limit their powers. The heads of these business groups often outrank their counterparts in state administrative organs and bureaus that are supposed to regulate their activities. The increased role...... of these business leaders prompts the question of whether we are seeing the development of distinct interest groups that could challenge Party and state authority and create a fragmented polity. However, through the nomenklatura system the Party has an important instrument of control to wield over business groups....... Through this system the Party controls the appointment and promotion of the heads of the most important state-owned enterprises. The nomenklatura system also enables the Party to rotate leaders in big business from a position as CEO in one company to a similar position in another state-owned company...

  12. Fragmentation of kidney stones

    International Nuclear Information System (INIS)

    Kovacs, K.; Kun, F.; Vertse, T.

    2005-01-01

    the stone gradually grows as a result of the interference of relatively low amplitude shock waves, see Fig. 1. In the framework of the model we can find the optimal set of parameters which provide the highest fragmentation efficiency (less number of pulses) in order to minimize the difficulties of clinical tests. The three-dimensional version of the model and the implementation of the simulation code is in progress. (author)

  13. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios

    Science.gov (United States)

    Agarwal, Ashok; Cho, Chak-Lam; Majzoub, Ahmad

    2017-01-01

    Background Sperm DNA fragmentation (SDF) is recognized as a leading cause of male infertility because it can impair the paternal genome through distinct pathophysiological mechanisms. Current evidence supports SDF as a major factor in the pathophysiology of several conditions, including varicocele, unexplained infertility, assisted reproductive technology failure, and environmental lifestyle factors, although the mechanisms involved have not been fully described yet. Measurement of the levels of DNA fragmentation in semen provides valuable information on the integrity of paternal chromatin and may guide therapeutic strategies. A recently published clinical practice guideline (CPG) highlighted how to use the information provided by SDF testing in daily practice, which triggered a series of commentaries by leading infertility experts. These commentaries contained an abundance of information and conflicting views about the clinical utility of SDF testing, which underline the complex nature of SDF. Methods A search of papers published in response to the CPG entitled “Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios” was performed within the Translational Andrology and Urology (TAU) website (http://tau.amegroups.com/). The start and end dates for the search were May 2017 and August 2017, respectively. Each commentary meeting our inclusion criteria was rated as “supportive without reservation”, “supportive with reservation”, “not supportive” or “neutral”. We recorded whether articles discussed either SDF characteristics as a laboratory test method or clinical scenarios, or both. Subsequently, we extracted the particulars from each commentary and utilized the ‘Strengths-Weaknesses-Opportunities-Threats’ (SWOT) analysis to understand the perceived advantages and drawbacks of SDF as a specialized sperm function method in clinical practice. Results Fifty-eight fertility experts from six

  14. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios.

    Science.gov (United States)

    Esteves, Sandro C; Agarwal, Ashok; Cho, Chak-Lam; Majzoub, Ahmad

    2017-09-01

    Sperm DNA fragmentation (SDF) is recognized as a leading cause of male infertility because it can impair the paternal genome through distinct pathophysiological mechanisms. Current evidence supports SDF as a major factor in the pathophysiology of several conditions, including varicocele, unexplained infertility, assisted reproductive technology failure, and environmental lifestyle factors, although the mechanisms involved have not been fully described yet. Measurement of the levels of DNA fragmentation in semen provides valuable information on the integrity of paternal chromatin and may guide therapeutic strategies. A recently published clinical practice guideline (CPG) highlighted how to use the information provided by SDF testing in daily practice, which triggered a series of commentaries by leading infertility experts. These commentaries contained an abundance of information and conflicting views about the clinical utility of SDF testing, which underline the complex nature of SDF. A search of papers published in response to the CPG entitled "Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios" was performed within the Translational Andrology and Urology ( TAU ) website (http://tau.amegroups.com/). The start and end dates for the search were May 2017 and August 2017, respectively. Each commentary meeting our inclusion criteria was rated as "supportive without reservation", "supportive with reservation", "not supportive" or "neutral". We recorded whether articles discussed either SDF characteristics as a laboratory test method or clinical scenarios, or both. Subsequently, we extracted the particulars from each commentary and utilized the 'Strengths-Weaknesses-Opportunities-Threats' (SWOT) analysis to understand the perceived advantages and drawbacks of SDF as a specialized sperm function method in clinical practice. Fifty-eight fertility experts from six continents and twenty-two countries contributed

  15. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  16. Impact failure and fragmentation properties of metals

    Energy Technology Data Exchange (ETDEWEB)

    Grady, D.E. [Applied Research Associates, Albuquerque, NM (United States); Kipp, M.E. [Sandia National Labs., Albuquerque, NM (United States)

    1998-03-01

    In the present study we describe the development of an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  17. MOLECULAR CLOUDS IN THE TRIFID NEBULA M20: POSSIBLE EVIDENCE FOR A CLOUD-CLOUD COLLISION IN TRIGGERING THE FORMATION OF THE FIRST GENERATION STARS

    International Nuclear Information System (INIS)

    Torii, K.; Enokiya, R.; Sano, H.; Yoshiike, S.; Hanaoka, N.; Ohama, A.; Furukawa, N.; Dawson, J. R.; Moribe, N.; Oishi, K.; Nakashima, Y.; Okuda, T.; Yamamoto, H.; Kawamura, A.; Mizuno, N.; Onishi, T.; Fukui, Y.; Maezawa, H.; Mizuno, A.

    2011-01-01

    A large-scale study of the molecular clouds toward the Trifid Nebula, M20, has been made in the J = 2-1 and J = 1-0 transitions of 12 CO and 13 CO. M20 is ionized predominantly by an O7.5 star HD164492. The study has revealed that there are two molecular components at separate velocities peaked toward the center of M20 and that their temperatures-30-50 K as derived by a large velocity gradient analysis-are significantly higher than the 10 K of their surroundings. We identify the two clouds as the parent clouds of the first generation stars in M20. The mass of each cloud is estimated to be ∼10 3 M sun and their separation velocity is ∼8 km s -1 over ∼1-2 pc. We find that the total mass of stars and molecular gas in M20 is less than ∼3.2 x 10 3 M sun , which is too small by an order of magnitude to gravitationally bind the system. We argue that the formation of the first generation stars, including the main ionizing O7.5 star, was triggered by the collision between the two clouds in a short timescale of ∼1 Myr, a second example alongside Westerlund 2, where a super-star cluster may have been formed due to cloud-cloud collision triggering.

  18. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  19. THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Y.; Torii, K.; Ohama, A.; Hasegawa, K.; Hattori, Y.; Sano, H.; Yamamoto, H.; Tachihara, K. [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Ohashi, S.; Fujii, K.; Kuwahara, S. [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Mizuno, N.; Okuda, T. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Dawson, J. R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Onishi, T. [Department of Astrophysics, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Mizuno, A., E-mail: torii@a.phys.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-03-20

    We present distributions of two molecular clouds having velocities of 2 and 14 km s{sup −1} toward RCW 38, the youngest super star cluster in the Milky Way, in the {sup 12}CO J = 1–0 and 3–2 and {sup 13}CO J = 1–0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3–2 emission to the J = 1–0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s{sup −1} cloud. We suggest that the collision is currently continuing toward part of the 2 km s{sup −1} cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud–cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.

  20. Small Magellanic Cloud Ultraviolet Dust Extinction: A Focused Study of Four Sightlines Near a Molecular Cloud with Variable 2175 A bumps

    Science.gov (United States)

    Gordon, Karl

    2015-10-01

    We propose to obtain low-resolution STIS spectra covering the entire ultraviolet for four stars in the SMC to measure their UV extinction curves and HI columns. The SMC is the critical galaxy in which to study the strong 2175 A extinction bump as the this galaxy shows sightlines with and without this feature. This proposal will increase the number of sightlines in the SMC with high quality extinction curves showing a obvious 2175 A bump from one to three. The sightlines proposed here were previously observed by Maiz Apellaniz & Rubio (2012) at very low resolution in the mid-UV using STIS slitless prism observations in a 25x25 region centered on a known molecular cloud. They found two sightlines to having obvious 2175 A bumps and two sightlines with very weak to absent bumps. New observations are needed to improve the details of the mid-UV extinction curve (e.g. 2175 A bump centroid), measure the far-UV extinction curve, and measure the HI columns. We will combine these four new high quality extinction curves with the existing 16 SMC curves and use this enhanced sample to study environmental factors that influence the presence of the 2175 A bump (e.g., gas-to-dust ratio, PAH grain mass fraction, & radiation field).

  1. Thermal Jeans Fragmentation within ∼1000 au in OMC-1S

    Science.gov (United States)

    Palau, Aina; Zapata, Luis A.; Román-Zúñiga, Carlos G.; Sánchez-Monge, Álvaro; Estalella, Robert; Busquet, Gemma; Girart, Josep M.; Fuente, Asunción; Commerçon, Benoit

    2018-03-01

    We present subarcsecond 1.3 mm continuum ALMA observations toward the Orion Molecular Cloud 1 South (OMC-1S) region, down to a spatial resolution of 74 au, which reveal a total of 31 continuum sources. We also present subarcsecond 7 mm continuum VLA observations of the same region, which allow further study of fragmentation down to a spatial resolution of 40 au. By applying a method of “mean surface density of companions” we find a characteristic spatial scale at ∼560 au, and we use this spatial scale to define the boundary of 19 “cores” in OMC-1S as groupings of millimeter sources. We find an additional characteristic spatial scale at ∼2800 au, which is the typical scale of the filaments in OMC-1S, suggesting a two-level fragmentation process. We measured the fragmentation level within each core and find a higher fragmentation toward the southern filament. In addition, the cores of the southern filament are also the densest cores (within 1100 au) in OMC-1S. This is fully consistent with previous studies of fragmentation at spatial scales one order of magnitude larger, and suggests that fragmentation down to 40 au seems to be governed by thermal Jeans processes in OMC-1S.

  2. Linear dose-response of acentric chromosome fragments down to 1 R of x-rays in grasshopper neuroblasts, a potential mutagen-test system

    International Nuclear Information System (INIS)

    Gaulden, M.E.; Read, C.B.

    1978-01-01

    Grasshopper-embryo neuroblasts have no spontaneous chromosome breakage; therefore they permit easy detection of agents that break chromosomes. An X-ray exposure of 1 R induces in them a detectable number of chromosome fragments. The dose-response of acentric fragment frequency fits a linear model between 0 and 128 R. Thus another cell type is added to those previously demonstrated to have no threshold dose for the induction of chromosome or gene mutations

  3. G0.253 + 0.016: A MOLECULAR CLOUD PROGENITOR OF AN ARCHES-LIKE CLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Longmore, Steven N.; Ascenso, Joana; Testi, Leonardo; Bressert, Eli [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen (Germany); Rathborne, Jill [CSIRO Astronomy and Space Science, Epping, Sydney (Australia); Bastian, Nate [Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Alves, Joao; Meingast, Stefan [Institute of Astronomy, University of Vienna, Tuerkenschanzstrasse 17, 1180 Vienna (Austria); Bally, John; Battersby, Cara [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Longmore, Andy [UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Purcell, Cormac [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Walsh, Andrew [Department of Astronomy, James Cook University, Townesville (Australia); Jackson, James; Foster, Jonathan [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Molinari, Sergio [INAF-Istituto Fisica Spazio Interplanetario, Via Fosso del Cavaliere 100, I-00133, Rome (Italy); Amorim, A.; Lima, J.; Marques, R.; Moitinho, A., E-mail: slongmor@eso.org [SIM, Faculdade de Ciencias da Universidade de Lisboa, Ed. C8. Campo Grande 1749-016 Lisbon (Portugal); and others

    2012-02-20

    Young massive clusters (YMCs) with stellar masses of 10{sup 4}-10{sup 5} M{sub Sun} and core stellar densities of 10{sup 4}-10{sup 5} stars per cubic pc are thought to be the 'missing link' between open clusters and extreme extragalactic super star clusters and globular clusters. As such, studying the initial conditions of YMCs offers an opportunity to test cluster formation models across the full cluster mass range. G0.253 + 0.016 is an excellent candidate YMC progenitor. We make use of existing multi-wavelength data including recently available far-IR continuum (Herschel/Herschel Infrared Galactic Plane Survey) and mm spectral line (H{sub 2}O Southern Galactic Plane Survey and Millimetre Astronomy Legacy Team 90 GHz Survey) data and present new, deep, multiple-filter, near-IR (Very Large Telescope/NACO) observations to study G0.253 + 0.016. These data show that G0.253 + 0.016 is a high-mass (1.3 Multiplication-Sign 10{sup 5} M{sub Sun }), low-temperature (T{sub dust} {approx} 20 K), high-volume, and column density (n {approx} 8 Multiplication-Sign 10{sup 4} cm{sup -3}; N{sub H{sub 2}}{approx}4 Multiplication-Sign 10{sup 23} cm{sup -2}) molecular clump which is close to virial equilibrium (M{sub dust} {approx} M{sub virial}) so is likely to be gravitationally bound. It is almost devoid of star formation and, thus, has exactly the properties expected for the initial conditions of a clump that may form an Arches-like massive cluster. We compare the properties of G0.253 + 0.016 to typical Galactic cluster-forming molecular clumps and find it is extreme, and possibly unique in the Galaxy. This uniqueness makes detailed studies of G0.253 + 0.016 extremely important for testing massive cluster formation models.

  4. An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud. I. Physical Properties of Filaments and Dense Cores

    Science.gov (United States)

    Seo, Young Min; Shirley, Yancy L.; Goldsmith, Paul; Ward-Thompson, Derek; Kirk, Jason M.; Schmalzl, Markus; Lee, Jeong-Eun; Friesen, Rachel; Langston, Glen; Masters, Joe; Garwood, Robert W.

    2015-06-01

    We present deep NH3 observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3° angular range using the K-band focal plane array on the 100 m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH3 (1, 1) and (2, 2) with a spectral resolution of 0.038 km s-1 and a spatial resolution of 31″. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 and 500 μm. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8-15 K, velocity dispersions of 0.05-0.25 km s-1, and NH3 column densities of 5 × 1012 to 1 × 1014 cm-2. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH3 structures, including 39 leaves and 16 branches. The masses of the NH3 sources range from 0.05 to 9.5 {{M}⊙ }. The masses of NH3 leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests that these leaves are gravitationally unbound structures. Nine out of 39 NH3 leaves are gravitationally bound, and seven out of nine gravitationally bound NH3 leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.

  5. THE INFLUENCE OF FAR-ULTRAVIOLET RADIATION ON THE PROPERTIES OF MOLECULAR CLOUDS IN THE 30 DOR REGION OF THE LARGE MAGELLANIC CLOUD

    International Nuclear Information System (INIS)

    Pineda, Jorge L.; Klein, Ulrich; Ott, Juergen; Wong, Tony; Muller, Erik; Hughes, Annie

    2009-01-01

    We present a complete 12 CO J = 1 → 0 map of the prominent molecular ridge in the Large Magellanic Cloud (LMC) obtained with the 22 m ATNF Mopra Telescope. The region stretches southward by ∼2 deg. (or 1.7 kpc) from 30 Doradus, the most vigorous star-forming region in the Local Group. The location of this molecular ridge is unique insofar as it allows us to study the properties of molecular gas as a function of the ambient radiation field in a low-metallicity environment. We find that the physical properties of CO-emitting clumps within the molecular ridge do not vary with the strength of the far-ultraviolet radiation field. Since the peak CO brightness of the clumps shows no correlation with the radiation field strength, the observed constant value for CO-to-H 2 conversion factor along the ridge seems to require an increase in the kinetic temperature of the molecular gas that is offset by a decrease in the angular filling factor of the CO emission. We find that the difference between the CO-to-H 2 conversion factor in the molecular ridge and the outer Milky Way is smaller than has been reported by previous studies of the CO emission: applying the same cloud identification and analysis methods to our CO observations of the LMC molecular ridge and CO data from the outer Galaxy survey by Dame et al., we find that the average CO-to-H 2 conversion factor in the molecular ridge is X CO ≅ (3.9 ± 2.5) x 10 20 cm -2 (K km s -1 ) -1 , approximately twice the value that we determine for the outer Galaxy clouds. The mass spectrum and the scaling relations between the properties of the CO clumps in the molecular ridge are similar, but not identical, to those that have been established for Galactic molecular clouds.

  6. Reframing landscape fragmentation's effects on ecosystem services.

    Science.gov (United States)

    Mitchell, Matthew G E; Suarez-Castro, Andrés F; Martinez-Harms, Maria; Maron, Martine; McAlpine, Clive; Gaston, Kevin J; Johansen, Kasper; Rhodes, Jonathan R

    2015-04-01

    Landscape structure and fragmentation have important effects on ecosystem services, with a common assumption being that fragmentation reduces service provision. This is based on fragmentation's expected effects on ecosystem service supply, but ignores how fragmentation influences the flow of services to people. Here we develop a new conceptual framework that explicitly considers the links between landscape fragmentation, the supply of services, and the flow of services to people. We argue that fragmentation's effects on ecosystem service flow can be positive or negative, and use our framework to construct testable hypotheses about the effects of fragmentation on final ecosystem service provision. Empirical efforts to apply and test this framework are critical to improving landscape management for multiple ecosystem services. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. A statistical study of giant molecular clouds traced by 13CO, C18O, CS, and CH3OH in the disk of NGC 1068 based on ALMA observations

    Science.gov (United States)

    Tosaki, Tomoka; Kohno, Kotaro; Harada, Nanase; Tanaka, Kunihiko; Egusa, Fumi; Izumi, Takuma; Takano, Shuro; Nakajima, Taku; Taniguchi, Akio; Tamura, Yoichi

    2017-04-01

    We present 1{^''.}4 (98 pc) resolution ALMA observations of 13CO(J = 1-0), C18O(J = 1-0), CS(J = 2-1), and CH3OH(JK = 2K-1K) molecular rotational lines in the central 1΄ (4.2 kpc) diameter region of NGC 1068 to study the physical and chemical properties of giant molecular clouds (GMCs) and to test whether these GMC-scale properties are linked to the larger-scale galactic environment. Using the derived 13CO cube, we have identified 187 high-significance (>8 σ) GMCs by employing the CLUMPFIND algorithm. The molecular gas masses of GMCs (M_^{13CO}), derived from the 13CO data, range from 1.8 × 104 M⊙ to 4.2 × 107 M⊙. A mass function of GMCs in NGC 1068 has been obtained for the first time at ∼100 pc resolution. We find the slope of the mass function γ = -1.25 ± 0.07 for a mass range of M_^{13CO} ≥ 105 M⊙. This is shallower than the GMCs in the disk regions of the Milky Way, M 51, and NGC 300. Further, we find that the high mass cut-off of the GMC mass function occurs at M_^{13CO} ˜ 6 × 107 M⊙, which is an order of magnitude larger than that in the nuclear bar region of M 51, indicating that the more massive clouds dominate the mass budget in NGC 1068. The observed C18O(J = 1-0)/13CO(J = 1-0) intensity ratios are found to be fairly uniform (0.27 ± 0.05) among the identified GMCs. In contrast, the CH3OH(JK = 2K-1K)/13CO(J = 1-0) ratios exhibit striking spatial variation across the disk, with the smallest values around the bar-end (<0.03), and larger ratios along the spiral arms (∼0.1-0.2). We find that GMCs with detectable methanol emission tend to have systematically larger velocity widths than those without methanol emission, suggesting that (relatively weak) shocks are responsible for the enhancement of the CH3OH/13CO ratios of GMCs in the disk of NGC 1068.

  8. Universal elements of fragmentation

    International Nuclear Information System (INIS)

    Yanovsky, V. V.; Tur, A. V.; Kuklina, O. V.

    2010-01-01

    A fragmentation theory is proposed that explains the universal asymptotic behavior of the fragment-size distribution in the large-size range, based on simple physical principles. The basic principles of the theory are the total mass conservation in a fragmentation process and a balance condition for the energy expended in increasing the surface of fragments during their breakup. A flux-based approach is used that makes it possible to supplement the basic principles and develop a minimal theory of fragmentation. Such a supplementary principle is that of decreasing fragment-volume flux with increasing energy expended in fragmentation. It is shown that the behavior of the decreasing flux is directly related to the form of a power-law fragment-size distribution. The minimal theory is used to find universal asymptotic fragment-size distributions and to develop a natural physical classification of fragmentation models. A more general, nonlinear theory of strong fragmentation is also developed. It is demonstrated that solutions to a nonlinear kinetic equation consistent with both basic principles approach a universal asymptotic size distribution. Agreement between the predicted asymptotic fragment-size distributions and experimental observations is discussed.

  9. The Fragmentation and Stability of Hierarchical Structure in Serpens South

    Science.gov (United States)

    Friesen, R. K.; Bourke, T. L.; Di Francesco, J.; Gutermuth, R.; Myers, P. C.

    2016-12-01

    Filamentary structures are ubiquitous in molecular clouds, and have been recently argued to play an important role in regulating the size and mass of embedded clumps through fragmentation and mass accretion. Here, we reveal the dynamical state and fragmentation of filamentary molecular gas associated with the Serpens South protocluster through analysis of wide (˜ 4 {pc}× 4 {pc}) observations of NH3 (1, 1) and (2, 2) inversion transitions with the Green Bank Telescope. Detailed modeling of the NH3 lines reveals that the kinematics of the cluster and surrounding filaments are complex. We identify hierarchical structure using a dendrogram analysis of the NH3 emission. The distance between neighbor structures that are embedded within the same parent structure is generally greater than expected from a spherical Jeans analysis, and is in better agreement with cylindrical fragmentation models. The NH3 line width-size relation is flat, and average gas motions are sub- or trans-sonic over all physical scales observed. Subsonic regions extend far beyond the typical 0.1 pc scale previously identified in star-forming cores. As a result, we find a strong trend of decreasing virial parameter with increasing structure mass in Serpens South. Extremely low virial parameters on the largest scales probed by our data suggest that the previously observed, ordered magnetic field is insufficient to support the region against collapse, in agreement with large radial infall motions previously measured toward some of the filaments. A more complex magnetic field configuration in the dense gas, however, may be able to support the filaments.

  10. Fission fragment angular momentum

    International Nuclear Information System (INIS)

    Frenne, D. De

    1991-01-01

    Most of the energy released in fission is converted into translational kinetic energy of the fragments. The remaining excitation energy will be distributed among neutrons and gammas. An important parameter characterizing the scission configuration is the primary angular momentum of the nascent fragments. Neutron emission is not expected to decrease the spin of the fragments by more than one unit of angular momentum and is as such of less importance in the determination of the initial fragment spins. Gamma emission is a suitable tool in studying initial fragment spins because the emission time, number, energy, and multipolarity of the gammas strongly depend on the value of the primary angular momentum. The main conclusions of experiments on gamma emission were that the initial angular momentum of the fragments is large compared to the ground state spin and oriented perpendicular to the fission axis. Most of the recent information concerning initial fragment spin distributions comes from the measurement of isomeric ratios for isomeric pairs produced in fission. Although in nearly every mass chain isomers are known, only a small number are suitable for initial fission fragment spin studies. Yield and half-life considerations strongly limit the number of candidates. This has the advantage that the behavior of a specific isomeric pair can be investigated for a number of fissioning systems at different excitation energies of the fragments and fissioning nuclei. Because most of the recent information on primary angular momenta comes from measurements of isomeric ratios, the global deexcitation process of the fragments and the calculation of the initial fragment spin distribution from measured isomeric ratios are discussed here. The most important results on primary angular momentum determinations are reviewed and some theoretical approaches are given. 45 refs., 7 figs., 2 tabs

  11. Screening for dihydrofolate reductase inhibitors using MOLPRINT 2D, a fast fragment-based method employing the naïve Bayesian classifier: limitations of the descriptor and the importance of balanced chemistry in training and test sets.

    Science.gov (United States)

    Bender, Andreas; Mussa, Hamse Y; Glen, Robert C

    2005-10-01

    A fragment-based similarity searching method, MOLPRINT 2D, was employed for virtual screening of Escherichia coli dihydrofolate reductase inhibitors. Using the original training set of 50,000 compounds, only marginal enrichment factors (between 1 and 3) could be achieved on the test library. The active structures contained in the training and test libraries represented different types of "chemistry", that is, different substructural features associated with activity. Training and test sets were pooled in a 2nd step and randomly split into training and test of equal size, with the objective of smoothing out the different chemical characteristics of both libraries. In a 10-fold cross-validation study on the new training and test sets, typically 10-fold enrichment could be found in the first 96 positions, 4-fold enrichment in the first 384 positions, and 3-fold enrichment in the first 1536 positions, corresponding to 6, 10, and 28 hits, respectively (out of a total of 307; activity defined as average residual activity of less than 80%). The conclusions are 2-fold. On one hand, the exact fragment-matching similarity searching method employed here is not capable of finding completely novel hit structures. On the other hand, this study emphasizes the requirement for a comparable distribution of chemical features of the training and test sets. MOLPRINT 2D is freely downloadable from http://www.cheminformatics.org.

  12. The VERDI fission fragment spectrometer

    International Nuclear Information System (INIS)

    Fregeau, M. O.; Brys, T.; Gamboni, T.; Geerts, W.; Oberstedt, S.; Oberstedt, A.; Borcea, R.

    2013-01-01

    The VERDI time-of-flight spectrometer is dedicated to measurements of fission product yields and of prompt neutron emission data. Pre-neutron fission-fragment masses will be determined by the double time-of-flight (TOF) technique. For this purpose an excellent time resolution is required. The time of flight of the fragments will be measured by electrostatic mirrors located near the target and the time signal coming from silicon detectors located at 50 cm on both sides of the target. This configuration, where the stop detector will provide us simultaneously with the kinetic energy of the fragment and timing information, significantly limits energy straggling in comparison to legacy experimental setup where a thin foil was usually used as a stop detector. In order to improve timing resolution, neutron transmutation doped silicon will be used. The high resistivity homogeneity of this material should significantly improve resolution in comparison to standard silicon detectors. Post-neutron fission fragment masses are obtained form the time-of-flight and the energy signal in the silicon detector. As an intermediary step a diamond detector will also be used as start detector located very close to the target. Previous tests have shown that poly-crystalline chemical vapour deposition (pCVD) diamonds provides a coincidence time resolution of 150 ps not allowing complete separation between very low-energy fission fragments, alpha particles and noise. New results from using artificial single-crystal diamonds (sCVD) show similar time resolution as from pCVD diamonds but also sufficiently good energy resolution. (authors)

  13. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  14. Fragmented Work Stories

    DEFF Research Database (Denmark)

    Humle, Didde Maria; Reff Pedersen, Anne

    2015-01-01

    , edited and performed by the storyteller in an ongoing process allowing tensions, discontinuities and editing between failures and achievements, between dreams and work realities and between home and work life. We argue that by including different types of fragmentation, we offer a new type......Following a strand of narrative studies pointing to the living conditions of storytelling and the micro-level implications of working within fragmented narrative perspectives, this article contributes to narrative research on work stories by focusing on how meaning is created from fragmented...... stories. We argue that meaning by story making is not always created by coherence and causality; meaning is created by different types of fragmentation: discontinuities, tensions and editing. The objective of this article is to develop and advance antenarrative practice analysis of work stories...

  15. Fragmentation Main Model

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The fragmentation model combines patch size and patch continuity with diversity of vegetation types per patch and rarity of vegetation types per patch. A patch was...

  16. Physics of projectile fragments

    International Nuclear Information System (INIS)

    Minamisono, Tadanori

    1982-01-01

    This is a study report on the polarization phenomena of the projectile fragments produced by heavy ion reactions, and the beta decay of fragments. The experimental project by using heavy ions with the energy from 50 MeV/amu to 250 MeV/amu was designed. Construction of an angle-dispersion spectrograph for projectile fragments was proposed. This is a two-stage spectrograph. The first stage is a QQDQQ type separator, and the second stage is QDQD type. Estimation shows that Co-66 may be separated from the nuclei with mass of 65 and 67. The orientation of fragments can be measured by detecting beta-ray. The apparatus consists of a uniform field magnet, an energy absorber, a stopper, a RF coil and a beta-ray hodoscope. This system can be used for not only this purpose but also for the measurement of hyperfine structure. (Kato, T.)

  17. Fragment Impact Toolkit (FIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shevitz, Daniel Wolf [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Key, Brian P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garcia, Daniel B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-05

    The Fragment Impact Toolkit (FIT) is a software package used for probabilistic consequence evaluation of fragmenting sources. The typical use case for FIT is to simulate an exploding shell and evaluate the consequence on nearby objects. FIT is written in the programming language Python and is designed as a collection of interacting software modules. Each module has a function that interacts with the other modules to produce desired results.

  18. Decoupling habitat fragmentation from habitat loss: butterfly species mobility obscures fragmentation effects in a naturally fragmented landscape of lake islands.

    Science.gov (United States)

    MacDonald, Zachary G; Anderson, Iraleigh D; Acorn, John H; Nielsen, Scott E

    2018-01-01

    Since the publication of the theory of island biogeography, ecologists have postulated that fragmentation of continuous habitat presents a prominent threat to species diversity. However, negative fragmentation effects may be artifacts; the result of species diversity declining with habitat loss, and habitat loss correlating positively with degree of fragmentation. In this study, we used butterfly assemblages on islands of Lake of the Woods, Ontario, Canada to decouple habitat fragmentation from habitat loss and test two competing hypotheses: (1) the island effect hypothesis, which predicts that decreasing fragment size and increasing fragment isolation reduces species diversity beyond the effects of habitat loss, and (2) the habitat amount hypothesis, which negates fragmentation effects and predicts that only total habitat area determines the diversity of species persisting on fragmented landscapes. Using eight independent size classes of islands (ranging from 0.1 to 8.0 ha) that varied in number of islands while holding total area constant, species diversity comparisons, species accumulation curves, and species-area relationship extrapolations demonstrated that smaller insular habitats contained at least as many butterfly species as continuous habitat. However, when highly mobile species occurring on islands without their larval food plants were excluded from analyses, island effects on potentially reproducing species became apparent. Similarily, generalized linear models suggested that effects of island isolation and vascular plant richness on insular butterfly richness were confounded by species of high mobility. We conclude that inter-fragment movements of highly mobile species may obscure important fragmentation effects on potentially reproducing populations, questioning support for the habitat amount hypothesis.

  19. Fragmentation of percolation cluster perimeters

    Science.gov (United States)

    Debierre, Jean-Marc; Bradley, R. Mark

    1996-05-01

    We introduce a model for the fragmentation of porous random solids under the action of an external agent. In our model, the solid is represented by a bond percolation cluster on the square lattice and bonds are removed only at the external perimeter (or `hull') of the cluster. This model is shown to be related to the self-avoiding walk on the Manhattan lattice and to the disconnection events at a diffusion front. These correspondences are used to predict the leading and the first correction-to-scaling exponents for several quantities defined for hull fragmentation. Our numerical results support these predictions. In addition, the algorithm used to construct the perimeters reveals itself to be a very efficient tool for detecting subtle correlations in the pseudo-random number generator used. We present a quantitative test of two generators which supports recent results reported in more systematic studies.

  20. Dual Fragment Impact of PBX Charges

    Science.gov (United States)

    Haskins, Peter; Briggs, Richard; Leeming, David; White, Nathan; Cheese, Philip; DE&S MoD UK Team; Ordnance Test Solutions Ltd Team

    2017-06-01

    Fragment impact can pose a significant hazard to many systems containing explosives or propellants. Testing for this threat is most commonly carried out using a single fragment. However, it can be argued that an initial fragment strike (or strikes) could sensitise the energetic material to subsequent impacts, which may then lead to a more violent reaction than would have been predicted based upon single fragment studies. To explore this potential hazard we have developed the capability to launch 2 fragments from the same gun at a range of velocities, and achieve impacts on an acceptor charge with good control over the spatial and temporal separation of the strikes. In this paper we will describe in detail the experimental techniques we have used, both to achieve the dual fragment launch and observe the acceptor charge response. In addition, we will describe the results obtained against PBX filled explosive targets; discuss the mechanisms controlling the target response and their significance for vulnerability assessment. Results of these tests have clearly indicated the potential for detonation upon the second strike, at velocities well below those needed for shock initiation by a single fragment.

  1. The jet and arc molecular clouds toward Westerlund 2, RCW 49, and HESS J1023–575; 12CO and 13CO (J = 2-1 and J = 1-0) observations with NANTEN2 and Mopra telescope

    International Nuclear Information System (INIS)

    Furukawa, N.; Ohama, A.; Fukuda, T.; Torii, K.; Hayakawa, T.; Sano, H.; Okuda, T.; Yamamoto, H.; Moribe, N.; Mizuno, A.; Maezawa, H.; Onishi, T.; Kawamura, A.; Mizuno, N.; Dawson, J. R.; Dame, T. M.; Yonekura, Y.; Aharonian, F.; De Oña Wilhelmi, E.; Rowell, G. P.

    2014-01-01

    We have made new CO observations of two molecular clouds, which we call 'jet' and 'arc' clouds, toward the stellar cluster Westerlund 2 and the TeV γ-ray source HESS J1023–575. The jet cloud shows a linear structure from the position of Westerlund 2 on the east. In addition, we have found a new counter jet cloud on the west. The arc cloud shows a crescent shape in the west of HESS J1023–575. A sign of star formation is found at the edge of the jet cloud and gives a constraint on the age of the jet cloud to be ∼Myr. An analysis with the multi CO transitions gives temperature as high as 20 K in a few places of the jet cloud, suggesting that some additional heating may be operating locally. The new TeV γ-ray images by H.E.S.S. correspond to the jet and arc clouds spatially better than the giant molecular clouds associated with Westerlund 2. We suggest that the jet and arc clouds are not physically linked with Westerlund 2 but are located at a greater distance around 7.5 kpc. A microquasar with long-term activity may be able to offer a possible engine to form the jet and arc clouds and to produce the TeV γ-rays, although none of the known microquasars have a Myr age or steady TeV γ-rays. Alternatively, an anisotropic supernova explosion which occurred ∼Myr ago may be able to form the jet and arc clouds, whereas the TeV γ-ray emission requires a microquasar formed after the explosion.

  2. On disciplinary fragmentation and scientific progress.

    Directory of Open Access Journals (Sweden)

    Stefano Balietti

    Full Text Available Why are some scientific disciplines, such as sociology and psychology, more fragmented into conflicting schools of thought than other fields, such as physics and biology? Furthermore, why does high fragmentation tend to coincide with limited scientific progress? We analyzed a formal model where scientists seek to identify the correct answer to a research question. Each scientist is influenced by three forces: (i signals received from the correct answer to the question; (ii peer influence; and (iii noise. We observed the emergence of different macroscopic patterns of collective exploration, and studied how the three forces affect the degree to which disciplines fall apart into divergent fragments, or so-called "schools of thought". We conducted two simulation experiments where we tested (A whether the three forces foster or hamper progress, and (B whether disciplinary fragmentation causally affects scientific progress and vice versa. We found that fragmentation critically limits scientific progress. Strikingly, there is no effect in the opposite causal direction. What is more, our results shows that at the heart of the mechanisms driving scientific progress we find (i social interactions, and (ii peer disagreement. In fact, fragmentation is increased and progress limited if the simulated scientists are open to influence only by peers with very similar views, or when within-school diversity is lost. Finally, disciplines where the scientists received strong signals from the correct answer were less fragmented and experienced faster progress. We discuss model's implications for the design of social institutions fostering interdisciplinarity and participation in science.

  3. Fragments of the Past

    OpenAIRE

    Peter Szende; Annie Holcombe

    2016-01-01

    With travel being made more accessible throughout the decades, the hospitality industry constantly evolved their practices as society and technology progressed. Hotels looked for news ways up service their customers, which led to the invention of the Servidor in 1918. Once revolutionary innovations have gone extinct, merely becoming fragments of the past.

  4. Picking Up (On) Fragments

    NARCIS (Netherlands)

    Ellis, Phil

    2015-01-01

    abstractThis article discusses the implications for archival and media archaeological research and reenactment artwork relating to a recent arts practice project: reenacttv: 30 lines / 60 seconds. It proposes that archival material is unstable but has traces and fragments that are full of creative

  5. Fragments of Time

    DEFF Research Database (Denmark)

    Christiansen, Steen Ledet

    Time travel films necessarily fragment linear narratives, as scenes are revisited with differences from the first time we saw it. Popular films such as Back to the Future mine comedy from these visitations, but there are many different approaches. One extreme is Chris Marker's La Jetée - a film...

  6. Wildlife habitat fragmentation.

    Science.gov (United States)

    John. Lehmkuhl

    2005-01-01

    A primary issue in forest wildlife management is habitat fragmentation and its effects on viability, which is the "bottom line" for plant and animal species of conservation concern. Population viability is the likelihood that a population will be able to maintain itself (remain viable) over a long period of time-usually 100 years or more. Though it is true...

  7. Fragments of the Past

    Directory of Open Access Journals (Sweden)

    Peter Szende

    2016-10-01

    Full Text Available With travel being made more accessible throughout the decades, the hospitality industry constantly evolved their practices as society and technology progressed. Hotels looked for news ways up service their customers, which led to the invention of the Servidor in 1918. Once revolutionary innovations have gone extinct, merely becoming fragments of the past.

  8. Stone fragmentation by ultrasound

    Indian Academy of Sciences (India)

    Some delicate nerves and fibres in the surrounding areas of the stones present in the kidney are also damaged by high ultrasonic intensity used in such systems. In the present work, enhancement of the kidney stone fragmentation by using ultrasound is studied. The cavitation bubbles are found to implode faster, with more ...

  9. Synthesis of arabinoxylan fragments

    DEFF Research Database (Denmark)

    Underlin, Emilie Nørmølle; Böhm, Maximilian F.; Madsen, Robert

    , or production of commercial chemicals which are mainly obtained from fossil fuels today.The arbinoxylan fragments have a backbone of β-1,4-linked xylans with α-L-arabinose units attached at specific positions. The synthesis ultilises an efficient synthetic route, where all the xylan units can be derived from D...

  10. Effects of a Piecewise Polytropic Equation of State on Turbulent Fragmentation

    Science.gov (United States)

    Jappsen, A.-K.; Li, Y.; Mac Low, M.-M.; Klessen, R. S.

    2003-12-01

    We study the effect of a piecewise polytropic equation of state on the formation of stellar clusters in turbulent, self-gravitating molecular clouds using three-dimensional, smoothed particle hydrodynamics simulations. We use the publicly available parallel code GADGET (Springel et al. 2001) in which we have implemented sink particles that can replace high-density gas cores, and with a uniform turbulent driving field. Recently several of us conducted a systematic study of the effects of a varying polytropic index γ on turbulent fragmentation. Their results showed that γ determines how strongly self-gravitating gas fragments. However in their computation, γ was left strictly constant in each simulation. In this study we extend our previous work by using a piecewise polytropic equation of state changing γ at some chosen density. We investigate if a change in γ determines the characteristic mass of the gas clump spectrum and thus perhaps the turn-over mass of the IMF. Preliminary results changing γ from 0.7 to 1.1 seem to corroborate this hypothesis, but with a weaker than expected dependence on the chosen density. We conduct a parameter study on the density at which γ changes to specify its effect on the resulting mass spectra. AKJ acknowledges support by the Kade Fellowship. M-MML acknowledges support by NSF CAREER grant AST99-85392. AKJ and RSK acknowledge support by the Emmy Noether Program of the Deutsche Forschungsgemeinschaft KL1385/1.

  11. Early science with the Large Millimetre Telescope: fragmentation of molecular clumps in the Galaxy

    Science.gov (United States)

    Heyer, M.; Wilson, G. W.; Gutermuth, R.; Lizano, S.; Gomez-Ruiz, A.; Kurtz, S.; Luna, A.; Serrano Bernal, E. O.; Schloerb, F. P.

    2018-01-01

    Sensitive, imaging observations of the λ1.1 mm dust continuum emission from a 1 deg2 area collected with the AzTEC bolometer camera on the Large Millimeter Telescope are presented. A catalogue of 1545 compact sources is constructed based on a Wiener-optimization filter. These sources are linked to larger clump structures identified in the Bolocam Galactic Plane Survey. Hydrogen column densities are calculated for all sources and mass and mean volume densities are derived for the subset of sources for which kinematic distances can be assigned. The AzTEC sources are localized, high-density peaks within the massive clumps of molecular clouds and comprise 5-15 per cent of the clump mass. We examine the role of the gravitational instability in generating these fragments by comparing the mass of embedded AzTEC sources to the Jeans mass of the parent BGPS object. For sources with distances less than 6 kpc the fragment masses are comparable to the clump Jeans mass, despite having isothermal Mach numbers between 1.6 and 7.2. AzTEC sources linked to ultra compact H II regions have mass surface densities greater than the critical value implied by the mass-size relationship of infrared dark clouds with high-mass star formation, while AzTEC sources associated with Class II methanol masers have mass surface densities greater than 0.7 g cm-2 that approaches the proposed threshold required to form massive stars.

  12. Theoretical performance of non-invasive prenatal testing for chromosome imbalances using counting of cell-free DNA fragments in maternal plasma.

    Science.gov (United States)

    Benn, Peter; Cuckle, Howard

    2014-08-01

    The aim of this study was to calculate the theoretical performance of non-invasive prenatal testing based on counting methods. The calculations were based on Gaussian distributions of the percent cell-free DNA from selected chromosome regions in affected and normal pregnancies. The means were derived from the relative genomic size of the chromosome region and the fetal fraction. The standard deviations were derived from the bivariate distributions of proportional counts. Depth of sequencing was varied from 50,000,000 to 100,000 and fetal fraction from 20% to 3%. Detection rate was estimated for a fixed 0.13% false-positive rate. When either depth or fetal fraction is high, expected Down syndrome screening detection rates are high. However, when fetal fraction is low, deeper sequencing is required to obtain high detection rates. For microdeletion and microduplication screening, deeper sequencing is routinely required to consistently achieve high detection rates. There are small differences in the ability to detect a microdeletion compared with a duplication of the same size. While the theoretical calculations do not necessarily reflect the performance of currently available non-invasive prenatal testing tests, it confirms that fetal fraction is a key factor. Efficacy can be substantially altered depending on the abnormality under investigation and the depth of sequencing. © 2014 John Wiley & Sons, Ltd.

  13. Subcloning of DNA fragments.

    Science.gov (United States)

    Struhl, K

    2001-05-01

    The essence of recombinant DNA technology is the joining of two or more separate segments of DNA to generate a single DNA molecule that is capable of autonomous replication in a given host. The simplest constructions of hybrid DNA molecules involve the cloning of insert sequences into plasmid or bacteriophage cloning vectors. The insert sequences can derive from essentially any organism, and they may be isolated directly from the genome, from mRNA, or from previously cloned DNA segments (in which case, the procedure is termed subcloning). Alternatively, insert DNAs can be created directly by DNA synthesis. This unit provides protocols for the subcloning of DNA fragments and ligation of DNA fragments in gels.

  14. The Serendipity of Fragmentation

    DEFF Research Database (Denmark)

    Leixnering, Stephan; Meyer, Renate E.

    , it was the central government’s task to coordinate, steer and control the newly emerged decentralized organizations. This raises questions about the overall design of the public sector at present. Our paper engages with the prevalent public governance phenomenon of fragmentation from a design perspective in order......Reform approaches in the public sector led to significant changes in the sector’s design. Especially NPM-inspired reform measures which had largely aimed at organizational disaggregation created pluriform landscapes of public sector organizations (PSOs). Following a core public governance principle...... form of organizing between networks and formal organization: lacking a single center and featuring multiplex and multifaceted relations within the politico-administrative apparatus and between government and PSOs, high fragmentation, local and robust action, but latent structures of significant formal...

  15. Predicting "Hot" and "Warm" Spots for Fragment Binding.

    Science.gov (United States)

    Rathi, Prakash Chandra; Ludlow, R Frederick; Hall, Richard J; Murray, Christopher W; Mortenson, Paul N; Verdonk, Marcel L

    2017-05-11

    Computational fragment mapping methods aim to predict hotspots on protein surfaces where small fragments will bind. Such methods are popular for druggability assessment as well as structure-based design. However, to date researchers developing or using such tools have had no clear way of assessing the performance of these methods. Here, we introduce the first diverse, high quality validation set for computational fragment mapping. The set contains 52 diverse examples of fragment binding "hot" and "warm" spots from the Protein Data Bank (PDB). Additionally, we describe PLImap, a novel protocol for fragment mapping based on the Protein-Ligand Informatics force field (PLIff). We evaluate PLImap against the new fragment mapping test set, and compare its performance to that of simple shape-based algorithms and fragment docking using GOLD. PLImap is made publicly available from https://bitbucket.org/AstexUK/pli .

  16. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    International Nuclear Information System (INIS)

    Andreoli, M.A.G.; Przybylowicz, W.J.; Kramers, J.; Belyanin, G.; Westraadt, J.; Bamford, M.; Mesjasz-Przybylowicz, J.; Venter, A.

    2015-01-01

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr–Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  17. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    Energy Technology Data Exchange (ETDEWEB)

    Andreoli, M.A.G., E-mail: marco.andreoli@wits.ac.za [School of Geosciences, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Przybylowicz, W.J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kramers, J.; Belyanin, G. [Department of Geology, University of Johannesburg, Auckland Park 2006 (South Africa); Westraadt, J. [Department of Physics, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Bamford, M. [Evolutionary Studies Institute, University of the Witwatersrand, P.O. Box 3, Wits 2050 (South Africa); Mesjasz-Przybylowicz, J. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West 7129 (South Africa); Venter, A. [South African Nuclear Energy Corporation, P.O. Box 582, Pretoria 0001 (South Africa)

    2015-11-15

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr–Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  18. PIXE micro-mapping of minor elements in Hypatia, a diamond bearing carbonaceous stone from the Libyan Desert Glass area, Egypt: Inheritance from a cold molecular cloud?

    Science.gov (United States)

    Andreoli, M. A. G.; Przybylowicz, W. J.; Kramers, J.; Belyanin, G.; Westraadt, J.; Bamford, M.; Mesjasz-Przybylowicz, J.; Venter, A.

    2015-11-01

    Matter originating from space, particularly if it represents rare meteorite samples, is ideally suited to be studied by Particle Induced X-ray Emission (PIXE) as this analytical technique covers a broad range of trace elements and is per se non-destructive. We describe and interpret a set of micro-PIXE elemental maps obtained on two minute (weighing about 25 and 150 mg), highly polished fragments taken from Hypatia, a controversial, diamond-bearing carbonaceous pebble from the SW Egyptian desert. PIXE data show that Hypatia is chemically heterogeneous, with significant amounts of primordial S, Cl, P and at least 10 elements with Z > 21 (Ti, V, Cr, Mn, Fe, Ni, Os, Ir) locally attaining concentrations above 500 ppm. Si, Al, Ca, K, O also occur, but are predominantly confined to cracks and likely represent contamination from the desert environment. Unusual in the stone is poor correlation between elements within the chalcophile (S vs. Cu, Zn) and siderophile (i.e.: Fe vs. Ni, Ir, Os) groups, whereas other siderophiles (Mn, Mo and the Platinum group elements (PGEs)) mimic the distribution of lithophile elements such as Cr and V. Worthy of mention is also the presence of a globular domain (Ø ∼ 120 μm) that is C and metals-depleted, yet Cl (P)-enriched (>3 wt.% and 0.15 wt.% respectively). While the host of the Cl remains undetermined, this chemical unit is enclosed within a broader domain that is similarly C-poor, yet Cr-Ir rich (up to 1.2 and 0.3 wt.% respectively). Our data suggest that the pebble consists of shock-compacted, primitive carbonaceous material enriched in cold, pre-solar dust.

  19. Fragment-fragment correlations in near-binary fragmentation of C60

    International Nuclear Information System (INIS)

    Vandenbosch, R.; Henry, B.; Cooper, C.H.; Liang, J.F.; Will, D.I.

    1997-01-01

    The collision dynamics of C 60 with H 2 and He gas has been studied using reverse kinematics. A beam of C 60 - is obtained by electron attachment to neutral molecules exiting an oven and then accelerated to energies between 75 and 150 keV. The collisions take place in a windowless gas cell. We energy analyze the products in a pair of electrostatic analyzers which are oriented so that coincidences between light and heavy fragments can be observed. Our energy, and hence mass, resolution is sufficient to uniquely identify all C n clusters between n=1 and 60. The principal question we are addressing is whether heavy products in the mass range C 34 to C 56 are produced solely by sequential emission of C 2 fragments, or whether longer chains (and possibly rings) compete with C 2 emission. From our coincidence studies we have conclusive evidence that fragments such as C 8 are fragmentation partners to heavy fragments. In general we find that the products of a binary fragmentation are sufficiently excited that sequential decay follows the initial fragmentation. Although only even-n heavy fragments are observed, the coincident light fragments include both odd and even-n fragments due to subsequent fragmentation of the excited lighter partner of the initial binary fragmentation. This scenario has been confirmed by studying coincidences between two light fragments. copyright 1997 American Institute of Physics

  20. SCALING AND 4-QUARK FRAGMENTATION

    NARCIS (Netherlands)

    SCHOLTEN, O; BOSVELD, GD

    1991-01-01

    The conditions for a scaling behaviour from the fragmentation process leading to slow protons are discussed- The scaling referred to implies that the fragmentation functions depend on the light-cone momentum fraction only. It is shown that differences in the fragmentation functions for valence- and

  1. SCEDS: protein fragments for molecular replacement in Phaser

    International Nuclear Information System (INIS)

    McCoy, Airlie J.; Nicholls, Robert A.; Schneider, Thomas R.

    2013-01-01

    Protein fragments suitable for use in molecular replacement can be generated by normal-mode perturbation, analysis of the difference distance matrix of the original versus normal-mode perturbed structures, and SCEDS, a score that measures the sphericity, continuity, equality and density of the resulting fragments. A method is described for generating protein fragments suitable for use as molecular-replacement (MR) template models. The template model for a protein suspected to undergo a conformational change is perturbed along combinations of low-frequency normal modes of the elastic network model. The unperturbed structure is then compared with each perturbed structure in turn and the structurally invariant regions are identified by analysing the difference distance matrix. These fragments are scored with SCEDS, which is a combined measure of the sphericity of the fragments, the continuity of the fragments with respect to the polypeptide chain, the equality in number of atoms in the fragments and the density of C α atoms in the triaxial ellipsoid of the fragment extents. The fragment divisions with the highest SCEDS are then used as separate template models for MR. Test cases show that where the protein contains fragments that undergo a change in juxtaposition between template model and target, SCEDS can identify fragments that lead to a lower R factor after ten cycles of all-atom refinement with REFMAC5 than the original template structure. The method has been implemented in the software Phaser

  2. SCEDS: protein fragments for molecular replacement in Phaser

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, Airlie J., E-mail: ajm201@cam.ac.uk [University of Cambridge, Hills Road, Cambridge CB2 0XY (United Kingdom); Nicholls, Robert A. [MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH (United Kingdom); Schneider, Thomas R. [Hamburg Unit c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); University of Cambridge, Hills Road, Cambridge CB2 0XY (United Kingdom)

    2013-11-01

    Protein fragments suitable for use in molecular replacement can be generated by normal-mode perturbation, analysis of the difference distance matrix of the original versus normal-mode perturbed structures, and SCEDS, a score that measures the sphericity, continuity, equality and density of the resulting fragments. A method is described for generating protein fragments suitable for use as molecular-replacement (MR) template models. The template model for a protein suspected to undergo a conformational change is perturbed along combinations of low-frequency normal modes of the elastic network model. The unperturbed structure is then compared with each perturbed structure in turn and the structurally invariant regions are identified by analysing the difference distance matrix. These fragments are scored with SCEDS, which is a combined measure of the sphericity of the fragments, the continuity of the fragments with respect to the polypeptide chain, the equality in number of atoms in the fragments and the density of C{sup α} atoms in the triaxial ellipsoid of the fragment extents. The fragment divisions with the highest SCEDS are then used as separate template models for MR. Test cases show that where the protein contains fragments that undergo a change in juxtaposition between template model and target, SCEDS can identify fragments that lead to a lower R factor after ten cycles of all-atom refinement with REFMAC5 than the original template structure. The method has been implemented in the software Phaser.

  3. The Serendipity of Fragmentation

    DEFF Research Database (Denmark)

    Leixnering, Stephan; Meyer, Renate E.

    Reform approaches in the public sector led to significant changes in the sector’s design. Especially NPM-inspired reform measures which had largely aimed at organizational disaggregation created pluriform landscapes of public sector organizations (PSOs). Following a core public governance principle...... form of organizing between networks and formal organization: lacking a single center and featuring multiplex and multifaceted relations within the politico-administrative apparatus and between government and PSOs, high fragmentation, local and robust action, but latent structures of significant formal...

  4. Generic behaviours in impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Sator, N.; Mechkov, S.; Sausset, F. [Paris-6 Univ. Pierre et Marie Curie, Lab. de Physique Theorique de la Matiere Condensee, UMR CNRS 7600, 75 - Paris (France); Mechkov, S. [Ecole Normale Superieure, Lab. de Physique Statistique, 75 - Paris (France)

    2008-02-15

    From atomic nuclei to supernovae, including plates and rocks, every cohesive system can be broken into fragments, provided that the deposited energy is sufficiently large compared to its cohesive energy. We present a simple numerical model for investigating the general properties of fragmentation. By use of molecular dynamics simulations, we study the impact fragmentation of a solid disk of interacting particles with a wall. Regardless of the particular form of the interaction potential, the fragment size distribution exhibits a power law behaviour with an exponent that increases logarithmically with the energy deposited in the system, in agreement with experiments. We expect this behaviour to be generic in fragmentation phenomena. (authors)

  5. Formation of doubly and triply bonded unsaturated compounds HCN, HNC and CH2NH via N + CH4 low temperature solid state reaction: from molecular clouds to solar system objects

    Science.gov (United States)

    Mencos, Alejandro; Krim, Lahouari

    2018-03-01

    We show in the current study carried out in solid phase at cryogenic temperatures, that methane (CH4) ice exposed to nitrogen atoms is a source of two acids HCN, HNC and their corresponding hydrogenated unsaturated species CH2NH, in addition to CH3, C2H6, CN- and three nitrogen hydrides NH, NH2 and NH3. The solid state N + CH4 reaction taken in the ground state seems to be strongly temperature dependent. While at temperatures lower than 10 K only CH3, NH, NH2 and NH3 species formation is promoted due to CH bond dissociation and NH bond formation, stable compounds with CN bonds are formed at temperatures ranged between 10 and 40 K. Many of these reaction products, resulting from CH4 + N reaction, have already been observed in N2-rich regions such as the atmospheres of Titan, Kuiper belt objects and molecular clouds of the interstellar medium. Our results show the power of the solid state N-atom chemistry in the transformation of simple astrochemical relevant species such as CH4 molecules and N atoms into complex organic molecules which are also potentially prebiotic species.

  6. THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. II. THE W3 REGION IN CO J = 2-1, 13CO J = 2-1, AND CO J = 3-2 EMISSION

    International Nuclear Information System (INIS)

    Bieging, John H.; Peters, William L.

    2011-01-01

    We present fully sampled 38'' resolution maps of the CO and 13 CO J = 2-1 lines in the molecular clouds toward the H II region complex W3. The maps cover a 2. 0 0 x 1. 0 67 section of the galactic plane and span -70 to -20 km s -1 (LSR) in velocity with a resolution of ∼1.3 km s -1 . The velocity range of the images includes all the gas in the Perseus spiral arm. We also present maps of CO J = 3-2 emission for a 0. 0 5 x 0. 0 33 area containing the H II regions W3 Main and W3(OH). The J = 3-2 maps have velocity resolution of 0.87 km s -1 and 24'' angular resolution. Color figures display the peak line brightness temperature, the velocity-integrated intensity, and velocity channel maps for all three lines, and also the (CO/ 13 CO) J = 2-1 line intensity ratios as a function of velocity. The line intensity image cubes are made available in standard FITS format as electronically readable files. We compare our molecular line maps with the 1.1 mm continuum image from the BOLOCAM Galactic Plane Survey (BGPS). From our 13 CO image cube, we derive kinematic information for the 65 BGPS sources in the mapped field, in the form of Gaussian component fits.

  7. Fragmentation of Chitosan by Acids

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Kasaai

    2013-01-01

    Full Text Available Fragmentation of chitosan in aqueous solution by hydrochloric acid was investigated. The kinetics of fragmentation, the number of chain scissions, and polydispersity of the fragments were followed by viscometry and size exclusion chromatography. The chemical structure and the degree of N-acetylation (DA of the original chitosan and its fragments were examined by 1H NMR spectroscopy and elemental analysis. The kinetic data indicates that the reaction was of first order. The results of polydispersity and the DA suggest that the selected experimental conditions (temperature and concentration of acid were appropriate to obtain the fragments having the polydispersity and the DA similar to or slightly different from those of the original one. A procedure to estimate molecular weight of fragments as well as the number of chain scissions of the fragments under the experimental conditions was also proposed.

  8. Habitat fragmentation causes rapid genetic differentiation and ...

    African Journals Online (AJOL)

    ... city buildings. These results were supported by multiple statistical analyses including Mantel's test, PCOORDA and AMOVA. Genetic enrichment and epigenetic variation studies can be included in habitat fragmentation analysis and its implications in inducing homogenization and susceptibility in natural plant populations.

  9. Intermediate mass fragments emission in binary fragmentation model

    International Nuclear Information System (INIS)

    Bhattacharya, C.; Bhattacharya, S.

    1991-01-01

    Intermediate mass fragments emission in intermediate-energy nucleus-nucleus collisions has been studied in the framework of a generalized model where the fragments are assumed to be emitted from binary fissionlike decay of the fully equilibrated compound nucleus. The present formulation, with a schematic exit channel shape configuration and simple rotating liquid-drop nuclear potential, has been found to explain most of the intermediate mass fragments emission cross sections reasonably well without incorporating any free parameters in the calculation

  10. Fragmented medial coronoid process

    International Nuclear Information System (INIS)

    Juhasz, Cs.; Juhasz, T.

    1997-01-01

    Fragmented medial coronoid process: (FCP) is often considered to be part of the osteochondrosis dissecans complex, but trauma and growth discrepancies between the radius and ulna are proposed as causes. There is little to clinically differentiate FCP, from osteochondrosis dissecans (OCD) of the elbow. Pain on, flexion-extension of the elbow and lateral rotation of the paw is a little more consistent in FCP. Radiographic examination of the elbow is important despite the, fact that radiographic signs of the FCP are often nonspecific. Excessive osteoarthrosis and superimposition of the radial head and coronoid process make identification of the FCP difficult. Craniocaudal, flexed mediolateral and 25 degree craniocaudal-lateromedial views are necessary for diagnosis. Osteophyte production is more dramatic with FCP than with OCD and suggests therefore the occurrence of OCP in many cases. Although the detached process may be seen on any view, the oblique projection offers the least obstructed view. Exposure of the joint is identical to that for OCD, that means a medial approach with osteotomy of the epicondyle. In most cases the process is loose enough to be readily apparent, but in some it is necessary to exert force on the process in order to find the cleavage plane. It is necessary to remove the osteophytes as well and to inspect and irrigate the joint carefully to remove cartilage fragments before closure. Confinement is advisable for 4 weeks before returning the dog to normal activity. The outlook for function is good if the FCP is removed before secondary degenerative joint disease is well established

  11. Habitat specialization predicts genetic response to fragmentation in tropical birds.

    Science.gov (United States)

    Khimoun, Aurélie; Eraud, Cyril; Ollivier, Anthony; Arnoux, Emilie; Rocheteau, Vincent; Bely, Marine; Lefol, Emilie; Delpuech, Martin; Carpentier, Marie-Laure; Leblond, Gilles; Levesque, Anthony; Charbonnel, Anaïs; Faivre, Bruno; Garnier, Stéphane

    2016-08-01

    Habitat fragmentation is one of the most severe threats to biodiversity as it may lead to changes in population genetic structure, with ultimate modifications of species evolutionary potential and local extinctions. Nonetheless, fragmentation does not equally affect all species and identifying which ecological traits are related to species sensitivity to habitat fragmentation could help prioritization of conservation efforts. Despite the theoretical link between species ecology and extinction proneness, comparative studies explicitly testing the hypothesis that particular ecological traits underlies species-specific population structure are rare. Here, we used a comparative approach on eight bird species, co-occurring across the same fragmented landscape. For each species, we quantified relative levels of forest specialization and genetic differentiation among populations. To test the link between forest specialization and susceptibility to forest fragmentation, we assessed species responses to fragmentation by comparing levels of genetic differentiation between continuous and fragmented forest landscapes. Our results revealed a significant and substantial population structure at a very small spatial scale for mobile organisms such as birds. More importantly, we found that specialist species are more affected by forest fragmentation than generalist ones. Finally, our results suggest that even a simple habitat specialization index can be a satisfying predictor of genetic and demographic consequences of habitat fragmentation, providing a reliable practical and quantitative tool for conservation biology. © 2016 John Wiley & Sons Ltd.

  12. Fluctuations in the fragmentation process

    International Nuclear Information System (INIS)

    Botet, R.; Ploszajczak, M.

    1993-01-01

    Some general framework of sequential fragmentation is presented, as provided by the newly proposed Fragmentation - Inactivation - Binary model, and to study briefly its basic and universal features. This model includes as particular cases most of the previous kinetic fragmentation models. In particular it is discussed how one arrives in this framework to the critical behaviour, called the shattering transition. This model is then compared to recent data on gold multifragmentation at 600 MeV/nucl. (authors) 20 refs., 5 figs

  13. MRI of displaced meniscal fragments

    International Nuclear Information System (INIS)

    Dunoski, Brian; Zbojniewicz, Andrew M.; Laor, Tal

    2012-01-01

    A torn meniscus frequently requires surgical fixation or debridement as definitive treatment. Meniscal tears with associated fragment displacement, such as bucket handle and flap tears, can be difficult to recognize and accurately describe on MRI, and displaced fragments can be challenging to identify at surgery. A displaced meniscal fragment can be obscured by synovium or be in a location not usually evaluated at arthroscopy. We present a pictorial essay of meniscal tears with displaced fragments in patients referred to a pediatric hospital in order to increase recognition and accurate interpretation by the radiologist, who in turn can help assist the surgeon in planning appropriate therapy. (orig.)

  14. Polymer fragmentation in extensional flow

    International Nuclear Information System (INIS)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech

    2001-01-01

    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments

  15. Fracture mechanics model of fragmentation

    International Nuclear Information System (INIS)

    Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A.

    1986-01-01

    A model of the fragmentation process is developed, based on the theory of linear elastic fracture mechanics, which predicts the average fragment size as a function of strain rate and material properties. This approach permits a unification of previous results, yielding Griffith's solution in the low-strain-rate limit and Grady's solution at high strain rates

  16. Polymer fragmentation in extensional flow

    Energy Technology Data Exchange (ETDEWEB)

    Maroja, Armando M.; Oliveira, Fernando A.; Ciesla, Michal; Longa, Lech

    2001-06-01

    In this paper we present an analysis of fragmentation of dilute polymer solutions in extensional flow. The transition rate is investigated both from theoretical and computational approaches, where the existence of a Gaussian distribution for the breaking bonds has been controversial. We give as well an explanation for the low fragmentation frequency found in DNA experiments.

  17. Improved Barriers to Turbine Engine Fragments: Final Annual Report

    National Research Council Canada - National Science Library

    Shockey, Donald

    2002-01-01

    .... Previous large-scale fragment impact testing of comer peg-mounted fabric barriers indicated that the failure of the fabric around the pegged hole was a significant factor in the barrier's effectiveness...

  18. Extension of moment projection method to the fragmentation process

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Yapp, Edward K.Y.; Akroyd, Jethro; Mosbach, Sebastian [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); Xu, Rong [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore); Yang, Wenming [Department of Mechanical Engineering, National University of Singapore, Engineering Block EA, Engineering Drive 1, 117576 (Singapore); Kraft, Markus, E-mail: mk306@cam.ac.uk [Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA (United Kingdom); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459 (Singapore)

    2017-04-15

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  19. Extension of moment projection method to the fragmentation process

    Science.gov (United States)

    Wu, Shaohua; Yapp, Edward K. Y.; Akroyd, Jethro; Mosbach, Sebastian; Xu, Rong; Yang, Wenming; Kraft, Markus

    2017-04-01

    The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

  20. Dispersal of molecular clouds by ionizing radiation

    Czech Academy of Sciences Publication Activity Database

    Walch, S.K.; Whitworth, A.; Bisbas, T.; Wünsch, Richard; Hubber, D.A.

    2012-01-01

    Roč. 427, č. 1 (2012), s. 625-636 ISSN 0035-8711 R&D Projects: GA ČR GAP209/12/1795 Institutional support: RVO:67985815 Keywords : stars formation * hydrodynamics * ISM bubbles Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.521, year: 2012

  1. Filaments in simulations of molecular cloud formation

    Energy Technology Data Exchange (ETDEWEB)

    Gómez, Gilberto C.; Vázquez-Semadeni, Enrique [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia Apartado Postal 3-72, 58090 Morelia, Michoacán (Mexico)

    2014-08-20

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse soon becomes nearly pressureless, proceeding along its shortest dimension first. This naturally produces filaments in the cloud and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump but other, smaller-scale clumps form along the infalling gas. Correspondingly, the velocity along the filament exhibits a hierarchy of jumps at the locations of the clumps. Two prominent filaments in the simulation have lengths ∼15 pc and masses ∼600 M {sub ☉} above density n ∼ 10{sup 3} cm{sup –3} (∼2 × 10{sup 3} M {sub ☉} at n > 50 cm{sup –3}). The density profile exhibits a central flattened core of size ∼0.3 pc and an envelope that decays as r {sup –2.5} in reasonable agreement with observations. Accretion onto the filament reaches a maximum linear density rate of ∼30 M {sub ☉} Myr{sup –1} pc{sup –1}.

  2. Ammonmia Observations of the Orion Molecular Cloud

    International Nuclear Information System (INIS)

    Ho, P.T.P.; Barrett, A.H.; Myers, P.C.; Matsakis, D.N.; Cheung, A.C.; Chui, M.F.; Townes, C.H.; Yngvesson, K.S.

    1979-01-01

    Emission from several metastable states of NH 3 is mapped in the OMC-1 and OMC-2 regions. Rotational temperatures are deduced from a comparison of the (J,K) = (1,1), (2,2), and (3,3) lines. A hot core is found at KL, embedded in the cooler OMC-1 ridge. Clumping is found to be extended over the entire OMC-1 region with only about one-tenth of the 1'.4 beam filled by regions which provide most of the emission

  3. The small molecular cloud toward HD 169454

    NARCIS (Netherlands)

    Jannuzi, B.T.; Black, J.H.; Lada, C.J.; Dishoeck, van E.F.

    1988-01-01

    Optical absorption line observations of the B1 supergiant HD 169454 reveal the presence of an intervening translucent interstellar cloud. Millimeter wavelength observations of CO emission show that the absorption lines can be attributed to a well-defined cloud approximately 18 by 22 min in extent at

  4. The GBT 3mm Survey of Infall and Fragmentation of Dense Cores in Taurus

    Science.gov (United States)

    Seo, Youngmin; Goldsmith, Paul; Shirley, Yancy L.; Church, Sara; Frayer, David

    2018-01-01

    We present preliminary results of the infall and fragmentation survey toward a complete population of prestellar cores in Taurus that was carried out with the 16-element W-band focal plane array receiver (Argus) on the 100m Green Bank Telescope. The survey is designed take advantage of the 8.5” angular resolution and high sensitivity of Argus on the GBT to trace infall motions in HCN 1-0 & HCO+ 1-0 and find any evidence of fragmentation in N2H+ & NH2D within prestellar cores ranging in size from 0.05 pc to 0.0075 pc (1500 AU), which is a typical size scale of individual planetary systems. The scientific goal is to estimate the fraction of infall candidates from a complete population of prestellar cores and to understand internal velocity structure during the final gravitational collapse before forming stars. The survey started in the winter of 2016 and is to continue to the end of January 2018. So far, we observed 23 prestellar cores out of 65 targets in HCN 1-0 and HCO+ 1-0. We have so far found only two prestellar cores (L1495A-N, L1521D) out of 23 observed that show infall signatures, which is a fraction of infalling cores less than half of that reported by the previous surveys toward the bright, dense cores in various molecular clouds (Lee et al. 2004; Sohn et al. 2007). We also found that L1495A-N has a highly asymmetric infall motion which does not fit to a conventional model of dense core collapse, while L1521D has a slow infall motion similar to L1544.

  5. The spectroscopy of fission fragments

    International Nuclear Information System (INIS)

    Phillips, W.R.

    1998-01-01

    High-resolution measurements on γ rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author)

  6. The spectroscopy of fission fragments

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, W.R. [Department of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    High-resolution measurements on {gamma} rays from fission fragments have provided a rich source of information, unobtainable at the moment in any other way, on the spectroscopy of neutron-rich nuclei. In recent years important data have been obtained on the yrast- and near yrast-structure of neutron-rich fission fragments. We discuss the scope of measurements which can be made on prompt gamma rays from secondary fission fragments, the techniques used in the experiments and some results recently obtained. (author) 24 refs., 8 figs., 1 tab.

  7. Fission fragments transport by gaseous flow with aerosols

    CERN Document Server

    Gangrskij, Y P; Zhemenik, V I; Myshinskij, G V; Penionzhkevich, Yu E; Selesh, O

    2002-01-01

    Paper describes a pilot facility for fission fragment transport by gaseous flow with aerosols. This facility designed for fragment transport consists of a reaction chamber with irradiated target, receipt chamber to collect fragments, aerosol generator, roughing pump to pump put gas and a capillary connecting these units of facility. Paper presents the results of facility testing with fragments of sup 2 sup 3 sup 8 U photofission by microtron Bremsstrahlung. The obtained parameters of facility (up to 70% efficiency of transport, up to 0.1 s time of transport at 1 m distance) enable to use it efficiently in experiments dealing with heavy nuclei fission and with investigation in properties of fission fragments

  8. New restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus.

    Science.gov (United States)

    Semighini, C P; Delmas, G; Park, S; Amstrong, D; Perlin, D; Goldman, G H

    2001-07-01

    In this study, we isolated and tested restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus based on PCR products amplified by the random amplified polymorphic DNA (RAPD) primer R108. Four DNA fragments, Afd, Af5, Af4, and Af4A, were amplified. Fragments Afd and Af5 were 85% and 88% identical at the DNA level to part of the Afut1 retrotransposon from A. fumigatus. Fragment Af4A is a duplication of fragment Af4 and both showed similarity at the amino acid level with endonucleases from other fungal retrotransposons. We used both RAPD with primer R108 and RFLP assays with Afut1, Afd, and Af4A, to determine the genetic relatedness of clinical isolates of A. fumigatus isolated sequentially from four patients colonized with A. fumigatus. The combination of these different methods suggested that the isolates infecting the four patients were not identical.

  9. MUSCLE W49: A multi-scale continuum and line exploration of the most luminous star formation region in the Milky Way. I. Data and the mass structure of the giant molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Galván-Madrid, R.; Pineda, J. E.; Peng, T.-C. [European Southern Observatory, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Liu, H. B.; Ho, P. T. P. [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Zhang, Z.-Y. [Max-Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Zhang, Q.; Keto, E. R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Rodríguez, L. F.; Zapata, L. [Centro de Radioastronomía y Astrofísica, UNAM, A.P. 3-72 Xangari, Morelia 58089 (Mexico); Peters, T. [Institut für Theoretische Physik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); De Pree, C. G. [Department of Physics and Astronomy, Agnes Scott College, Decatur, GA 30030 (United States)

    2013-12-20

    The Multi-scale Continuum and Line Exploration of W49 is a comprehensive gas and dust survey of the giant molecular cloud (GMC) of W49A, the most luminous star-formation region in the Milky Way. The project covers, for the first time, the entire GMC at different scales and angular resolutions. In this paper, we present (1) an all-configuration Submillimeter Array mosaic in the 230 GHz (1.3 mm) band covering the central ∼3' × 3' (∼10 pc, known as W49N), where most of the embedded massive stars reside and (2) Purple Mountain Observatory 14 m telescope observations in the 90 GHz band, covering the entire GMC with maps of up to ∼35' × 35' in size, or ∼113 pc. We also make use of archival data from the Very Large Array, JCMT-SCUBA, the IRAM 30 m telescope, and the Caltech Submillimeter Observatory BOLOCAM Galactic Plane Survey. We derive the basic physical parameters of the GMC at all scales. Our main findings are as follows. (1) The W49 GMC is one of the most massive in the Galaxy, with a total mass M {sub gas} ∼ 1.1 × 10{sup 6} M {sub ☉} within a radius of 60 pc. Within a radius of 6 pc, the total gas mass is M {sub gas} ∼ 2 × 10{sup 5} M {sub ☉}. At these scales, only ∼1% of the material is photoionized. The mass reservoir is sufficient to form several young massive clusters (YMCs) as massive as a globular cluster. (2) The mass of the GMC is distributed in a hierarchical network of filaments. At scales <10 pc, a triple, centrally condensed structure peaks toward the ring of HC H II regions in W49N. This structure extends to scales from ∼10 to 100 pc through filaments that radially converge toward W49N and its less-prominent neighbor W49S. The W49A starburst most likely formed from global gravitational contraction with localized collapse in a 'hub-filament' geometry. (3) Currently, feedback from the central YMCs (with a present mass M {sub cl} ≳ 5 × 10{sup 4} M {sub ☉}) is still not enough to entirely disrupt

  10. QGP and Modified Jet Fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2005-04-18

    Recent progresses in the study of jet modification in hotmedium and their consequences in high-energy heavy-ion collisions are reviewed. In particular, I will discuss energy loss for propagating heavy quarks and the resulting modified fragmentation function. Medium modification of the parton fragmentation function due to quark recombination are formulated within finite temperature field theory and their implication on the search for deconfined quark-gluon plasma is also discussed.

  11. Fragmentation of a 500 MeV/nucleon 86Kr beam, investigated at the GSI projectile fragment separator

    International Nuclear Information System (INIS)

    Weber, M.; Donzaud, C.; Geissel, H.; Grewe, A.; Lewitowicz, M.; Magel, A.; Mueller, A.C.; Nickel, F.; Pfuetzner, M.; Piechaczek, A.; Pravikoff, M.; Roeckl, E.; Rykaczewski, K.; Saint-Laurent, M.G.; Schall, I.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1993-10-01

    Production cross-sections and longitudinal momentum distributions have been investigated for reactions between a 500 MeV/nucleon 86 Kr beam and beryllium, copper and tantalum targets. Fragments in a wide A/Z range were studied at the projectile-fragment separator FRS at GSI. The experimental production cross-sections have been used for testing the predictions obtained from a semi-empirical parameterization, a statistical abrasion model and an intranuclear-cascade model. The present study allows to extrapolate the production cross-sections towards very neutron-rich isotopes such as the doubly magic nucleus 78 Ni. For fragments close to the projectile the measured longitudinal momentum distributions agrees qualitatively with a semi-empirical parameterization, which is based on the two-step picture of the fragmentation process. The momentum widths of lighter fragments, however, show deviations from this simple picture. (orig.)

  12. Genetic effects of habitat fragmentation and population isolation on Etheostoma raneyi (Percidae)

    Science.gov (United States)

    Ken A. Sterling; David H. Reed; Brice P. Noonan; Melvin L. Warren

    2012-01-01

    The use of genetic methods to quantify the effects of anthropogenic habitat fragmentation on population structure has become increasingly common. However, in today’s highly fragmented habitats, researchers have sometimes concluded that populations are currently genetically isolated due to habitat fragmentation without testing the possibility that populations were...

  13. Robust Object Tracking Using Valid Fragments Selection.

    Science.gov (United States)

    Zheng, Jin; Li, Bo; Tian, Peng; Luo, Gang

    Local features are widely used in visual tracking to improve robustness in cases of partial occlusion, deformation and rotation. This paper proposes a local fragment-based object tracking algorithm. Unlike many existing fragment-based algorithms that allocate the weights to each fragment, this method firstly defines discrimination and uniqueness for local fragment, and builds an automatic pre-selection of useful fragments for tracking. Then, a Harris-SIFT filter is used to choose the current valid fragments, excluding occluded or highly deformed fragments. Based on those valid fragments, fragment-based color histogram provides a structured and effective description for the object. Finally, the object is tracked using a valid fragment template combining the displacement constraint and similarity of each valid fragment. The object template is updated by fusing feature similarity and valid fragments, which is scale-adaptive and robust to partial occlusion. The experimental results show that the proposed algorithm is accurate and robust in challenging scenarios.

  14. Recent progress on perturbative QCD fragmentation functions

    International Nuclear Information System (INIS)

    Cheung, K.

    1995-05-01

    The recent development of perturbative QCD (PQCD) fragmentation functions has strong impact on quarkonium production. I shall summarize B c meson production based on these PQCD fragmentation functions, as well as, the highlights of some recent activities on applying these PQCD fragmentation functions to explain anomalous J/ψ and ψ' production at the Tevatron. Finally, I discuss a fragmentation model based on the PQCD fragmentation functions for heavy quarks fragmenting into heavy-light mesons

  15. New fission-fragment detector for experiments at DANCE

    Science.gov (United States)

    Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.

    2015-10-01

    A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.

  16. Gene Prediction in Metagenomic Fragments with Deep Learning

    Directory of Open Access Journals (Sweden)

    Shao-Wu Zhang

    2017-01-01

    Full Text Available Next generation sequencing technologies used in metagenomics yield numerous sequencing fragments which come from thousands of different species. Accurately identifying genes from metagenomics fragments is one of the most fundamental issues in metagenomics. In this article, by fusing multifeatures (i.e., monocodon usage, monoamino acid usage, ORF length coverage, and Z-curve features and using deep stacking networks learning model, we present a novel method (called Meta-MFDL to predict the metagenomic genes. The results with 10 CV and independent tests show that Meta-MFDL is a powerful tool for identifying genes from metagenomic fragments.

  17. The effects of experimental sleep fragmentation on cognitive processing.

    Science.gov (United States)

    Ferri, Raffaele; Drago, Valeria; Aricò, Debora; Bruni, Oliviero; Remington, Roger W; Stamatakis, Katherine; Punjabi, Naresh M

    2010-04-01

    The primary objective of this study was to characterize the association between cyclic alternating pattern (CAP) and neurocognitive performance in a group of normal subjects before and after two nights of experimentally-induced sleep fragmentation. Fifteen healthy subjects underwent one night of uninterrupted and two sequential nights of experimental sleep fragmentation achieved by auditory and mechanical stimuli. Eight subjects were re-examined using a similar paradigm with three nights of uninterrupted sleep. Sleep was polygraphically recorded and CAP analysis was performed for all recordings. A battery of neurocognitive tests was performed for spatial attention, inhibition of return, mental rotation, and Stroop color word test in the afternoon following the first and third night of sleep under fragmented and non-fragmented conditions. With sleep fragmentation, the percentage of slow-wave sleep was dramatically reduced and there was a twofold increase in total CAP rate across all NREM sleep stages. Moreover, the number of all CAP A subtypes/hour of sleep (index) was significantly increased. Total CAP rate during the non-fragmented night correlated with reaction times. Similarly, the percentages of A1 and A3 subtypes were negatively and positively correlated with reaction times, respectively. Of the neurocognitive test battery, however, only values obtained from some subtests of the mental rotation test showed a significant improvement after sleep fragmentation. The results of this study suggest that CAP A1 subtypes are associated with higher cognitive functioning, whereas CAP A3 subtypes are associated with lower cognitive functioning in young healthy subjects. The lack of cognitive functioning impairment after sleep fragmentation may be due to persistence and even enhancement of transient slow-wave activity contained in CAP A1 subtypes which also caused a significant enhancement of the EEG power spectrum in the lower frequencies. Copyright 2010 Elsevier B.V. All

  18. Fragmentation analysis of alumina-nickel cermets subjected to Hopkinson bar tests at high strain rates; Analisis de la fragmentacion de cermets de alumina-niquel ensayados en Barra Hopkinson a altas velocidades de deformacion

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, F.; Lecue, E.; Sanchez Herencia, A. J.; Gomez del Rio, T.

    2014-07-01

    A comparative study of the influence of the strain rate on the dynamic mechanical behaviour of an alumina matrix with 15 and 50 % of dispersed nickel is presented. The fragmentation under high speed impact compression loads have been studied using a compression split Hopkinson pressure bar (SHPB). Dense alumina and alumina-nickel composites were processed by slip casting of water based slurries on porous moulds. Samples with the metallic phase dispersed were pre-oxidized to achieve an effective joining interface and sintered under flowing inert atmosphere. The strain rate was determined from the impact experiments. The statistics of the SHPB recovered fragments have been determined and analysed according to the exponential models of Weibull and Rosin y Rammler and the effects of the strain rate on the average fragment size are described according to the existing energy models. Finally the rupture mechanisms of the samples and the sources of fracture have been explored and compared to the quasi static mechanical behaviour of these materials. (Author)

  19. Commissioning the A1900 projectile fragment separator

    CERN Document Server

    Morrissey, D J; Steiner, M; Stolz, A; Wiedenhöver, I

    2003-01-01

    An important part of the recent upgrade of the NSCL facility is the replacement of the A1200 fragment separator with a new high acceptance device called the A1900. The design of the A1900 device represents a third generation projectile fragment separator (relative to the early work at LBL) as it is situated immediately after the primary accelerator, has a very large acceptance, a bending power significantly larger than that of the cyclotron and is constructed from large superconducting magnets (quadrupoles with 20 and 40 cm diameter warm bores). The A1900 can accept over 90% of a large range of projectile fragmentation products produced at the NSCL, leading to large gains in the intensity of the secondary beams. The results of initial tests of the system with a restricted momentum acceptance (+-0.5%) indicate that the A1900 is performing up to specifications. Further large gains in the intensities of primary beams, typically two or three orders of magnitude, will be possible as the many facets of high current...

  20. Fragmentation properties of 6Li

    International Nuclear Information System (INIS)

    Lovas, R.G.; Kruppa, A.T.; Beck, R.; Dickmann, F.

    1987-01-01

    The α+d and t+τ cluster structure of 6 Li is described in a microscopic α+d cluster model through quantities that enter into the description of cluster fragmentation processes. The states of the separate clusters α, d, t and τ are described as superpositions of Os Slater determinants belonging to different potential size parameters. To describe both the 6 Li and fragment state realistically, nucleon-nucleon forces optimized for the used model state spaces were constructed. The fragmentation properties predicted by them slightly differ from those calculated with some forces of common use provided the latter are modified so as to reproduce the α, d and 6 Li energies. (author) 61 refs.; 9 figs

  1. Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements

    Science.gov (United States)

    Cowardin, H.; Anz-Meador, P.

    2016-01-01

    In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.

  2. Sperm DNA fragmentation, recurrent implantation failure and recurrent miscarriage

    Directory of Open Access Journals (Sweden)

    Carol Coughlan

    2015-01-01

    Full Text Available Evidence is increasing that the integrity of sperm DNA may also be related to implantation failure and recurrent miscarriage (RM. To investigate this, the sperm DNA fragmentation in partners of 35 women with recurrent implantation failure (RIF following in vitro fertilization, 16 women diagnosed with RM and seven recent fathers (control were examined. Sperm were examined pre- and post-density centrifugation by the sperm chromatin dispersion (SCD test and the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay. There were no significant differences in the age of either partner or sperm concentration, motility or morphology between three groups. Moreover, there were no obvious differences in sperm DNA fragmentation measured by either test. However, whilst on average sperm DNA fragmentation in all groups was statistically lower in prepared sperm when measured by the SCD test, this was not seen with the results from the TUNEL assay. These results do not support the hypothesis that sperm DNA fragmentation is an important cause of RIF or RM, or that sperm DNA integrity testing has value in such patients. It also highlights significant differences between test methodologies and sperm preparation methods in interpreting the data from sperm DNA fragmentation tests.

  3. Hands as markers of fragmentation

    Directory of Open Access Journals (Sweden)

    A. Barnard

    2005-07-01

    Full Text Available Margaret Atwood is an internationally read, translated, and critiqued writer whose novels have established her as one of the most esteemed authors in English (McCombs & Palmer, 1991:1. Critical studies of her work deal mainly with notions of identity from psychoanalytical perspectives. This study has identified a gap in current critical studies on Atwood’s works, namely the challenging of textual unity which is paralleled in the challenging of the traditional (single narrative voice. The challenging of textual unity and the single narrative voice brings about the fragmentation of both. This article will focus on the role that hands play as markers of fragmentation in “The Blind Assassin” (2000. In the novel, the writing hand destabilises the narrative voice, since it is not connected to the voice of a single author. If the author of the text – the final signified – is eliminated, the text becomes fragmentary and open, inviting the reader to contribute to the creation of meaning. Hands play a signficant role in foregrounding the narrator’s fragmented identity, and consequently, the fragmentation of the text. We will investigate this concept in the light of Roland Barthes’ notion of the scriptor, whose hand is metaphorically severed from his or her “voice”. Instead of the text being a unified entity, it becomes unstable and it displays the absence of hierarchical textual levels. Based mainly on Barthes’ writings, this article concludes that hands foreground the narrator’s fragmented identity, which is paralleled in the fragmented text.

  4. Fragmented nature: consequences for biodiversity

    NARCIS (Netherlands)

    Olff, H.; Ritchie, M.E.

    2002-01-01

    We discuss how fragmentation of resources and habitat operate differently on species diversity across spatial scales, ranging from positive effects on local species coexistence to negative effect on intermediate spatial scales, to again positive effects on large spatial and temporal scales. Species

  5. Fragmented nature : consequences for biodiversity

    NARCIS (Netherlands)

    Olff, Han; Ritchie, Mark E.

    2002-01-01

    We discuss how fragmentation of resources and habitat operate differently on species diversity across spatial scales, ranging from positive effects on local species coexistence to negative effect on intermediate spatial scales, to again positive effects on large spatial and temporal scales. Species

  6. Nuclear energy release from fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Souza, S.R. [Instituto de Física, Universidade Federal do Rio de Janeiro Cidade Universitária, Caixa Postal 68528, 21945-970 Rio de Janeiro (Brazil); Tsang, M.B. [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); National Superconducting Cyclotron Laboratory and Physics and Astronomy Department, Michigan State University, East Lansing, MI 48824 (United States); Zhang, Feng-Shou, E-mail: fszhang@bnu.edu.cn [The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000 (China)

    2016-08-15

    It is well known that binary fission occurs with positive energy gain. In this article we examine the energetics of splitting uranium and thorium isotopes into various numbers of fragments (from two to eight) with nearly equal size. We find that the energy released by splitting {sup 230,232}Th and {sup 235,238}U into three equal size fragments is largest. The statistical multifragmentation model (SMM) is applied to calculate the probability of different breakup channels for excited nuclei. By weighing the probability distributions of fragment multiplicity at different excitation energies, we find the peaks of energy release for {sup 230,232}Th and {sup 235,238}U are around 0.7–0.75 MeV/u at excitation energy between 1.2 and 2 MeV/u in the primary breakup process. Taking into account the secondary de-excitation processes of primary fragments with the GEMINI code, these energy peaks fall to about 0.45 MeV/u.

  7. Phthalocyanides sensitized fragmentation of proteins

    Czech Academy of Sciences Publication Activity Database

    Klementová, S.; Tothová, D.; Revaková, R.; Kasková, M.; Wagnerová, Dana Marie

    2001-01-01

    Roč. 5, č. 1 (2001), s. 13-18 ISSN 0972-0626 R&D Projects: GA ČR GA203/96/1322 Institutional research plan: CEZ:AV0Z4032918 Keywords : phthalocyanides * photosensitied fragmentation of proteins Subject RIV: CA - Inorganic Chemistry

  8. Experimental Volcanology: Fragmentation and Permeability

    Science.gov (United States)

    Spieler, O.

    2005-12-01

    An increasing number of scientists design new experiments to analyse processes that control the dynamics of explosive eruptions. There research is mostly coupled to numerical models and aims toward its controlling parameters. The fragmentation process, its threshold and the speed of the fragmentation wave as well as the energy consumed by the fragmentation are some hot spots of the experimental volcanology. Analysing the fragmentation behaviour of volcaniclastics as close to the natural system as possible, we found a number of physical constrains. Identifying the porosity as determining factor of the threshold, we realised that neither threshold nor the speed of the fragmentation process are solely controlled by the rock density. The later results of the shock tube type apparatus lead to the analysis of the specific surface area and permeability as direct links to textural features. Permeability analysis performed in a modified shock tube type apparatus, show two clear, distinct trends for dome rock and pyroclastic samples. The specific surface determined by Argon sorbtion (BET) as well as textural features of pumices from Campi Flegrei, Montserrat and Krakatoa (1883) give in contrary evidence of a more complex story. Large spherical, or ellipsoidal bubbles around fractured crystals prove that the high permeability of the pumice has partially developed after the fixing of the bubble size distribution. This puts up the question, if permeability measurements on pyroclastic samples reveal relevant numbers! The surface tension controlled 'self sealing' behaviour of surfaces from foaming obsidian hinders in situ measurements. Close textural investigations will have to clarify how the 'post process' samples deviate from the syneruptive conduit filling.

  9. Artificial Synthesis of Conserved Segment S Gene Fragment of Rift ...

    African Journals Online (AJOL)

    Based on the synthesis of a conserved part of the RVFV S segment gene sequence using overlapping PCR, RT-LAMP assay was first established and evaluated after a series of tests, including, optimization of reaction conditions, and sensitivity and specificity tests. Result: A target RVFV S segment gene fragment of 288 bp ...

  10. Substellar fragmentation in self-gravitating fluids with a major phase transition

    Science.gov (United States)

    Füglistaler, A.; Pfenniger, D.

    2015-06-01

    Context. The observation of various ices in cold molecular clouds, the existence of ubiquitous substellar, cold H2 globules in planetary nebulae and supernova remnants, or the mere existence of comets suggest that the physics of very cold interstellar gas might be much richer than usually envisioned. At the extreme of low temperatures (≲10 K), H2 itself is subject to a phase transition crossing the entire cosmic gas density scale. Aims: This well-known, laboratory-based fact motivates us to study the ideal case of a cold neutral gaseous medium in interstellar conditions for which the bulk of the mass, instead of trace elements, is subject to a gas-liquid or gas-solid phase transition. Methods: On the one hand, the equilibrium of general non-ideal fluids is studied using the virial theorem and linear stability analysis. On the other hand, the non-linear dynamics is studied using computer simulations to characterize the expected formation of solid bodies analogous to comets. The simulations are run with a state-of-the-art molecular dynamics code (LAMMPS) using the Lennard-Jones inter-molecular potential. The long-range gravitational forces can be taken into account together with short-range molecular forces with finite limited computational resources, using super-molecules, provided the right scaling is followed. Results: The concept of super-molecule, where the phase transition conditions are preserved by the proper choice of the particle parameters, is tested with computer simulations, allowing us to correctly satisfy the Jeans instability criterion for one-phase fluids. The simulations show that fluids presenting a phase transition are gravitationally unstable as well, independent of the strength of the gravitational potential, producing two distinct kinds of substellar bodies, those dominated by gravity (planetoids) and those dominated by molecular attractive force (comets). Conclusions: Observations, formal analysis, and computer simulations suggest the

  11. Fragmentation of suddenly heated liquids

    International Nuclear Information System (INIS)

    Blink, J.A.

    1985-03-01

    Fragmentation of free liquids in Inertial Confinement Fusion reactors could determine the upper bound on reactor pulse rate. The x-ray ablated materials must cool and recondense to allow driver beam propagation. The increased surface area caused by fragmentation will enhance the cooling and condensation rates. Relaxation from the suddenly heated state will move a liquid into the negative pressure region under the liquid-vapor P-V dome. The lithium equation of state was used to demonstrate that neutron-induced vaporization uses only a minor fraction of the added heat, much less than would be required to drive the expansion. A 77% expansion of the lithium is required before the rapid vaporization process of spinodal decomposition could begin, and nucleation and growth are too slow to contribute to the expansion

  12. Fragmentering og korridorer i landskabet

    DEFF Research Database (Denmark)

    Hammershøj, M.; Madsen, A. B.

    , at fragmentering af habitater resulterer i en reduktion og isolering af mange plante- og dyrepopulationer. Det er desuden vist, at korridorer har en funktion som habitater, hvilket er medvirkende til, at et område med korridorer kan huse flere arter og individer end et tilsvarende område uden korridorer. Der......Rapporten indeholder en litteraturudredning, der er baseret på en bearbejdning af den tilgængelige nationale og internationale litteratur omhandlende fragmentering og korridorer på det botaniske og zoologiske område. I alt 1.063 titler ligger til grund for udredningen. Udredningen har vist...... mangler dog entydige beviser for, at korridorer kan være af afgørende betydning for rekolonisering af habitater, i hvilke en given art er forsvundet. Afslutningsvis gives en liste med forskningsbehov samt en række anbefalinger....

  13. Fragmented nature: consequences for biodiversity

    OpenAIRE

    Olff, Han; Ritchie, Mark E.

    2002-01-01

    We discuss how fragmentation of resources and habitat operate differently on species diversity across spatial scales, ranging from positive effects on local species coexistence to negative effect on intermediate spatial scales, to again positive effects on large spatial and temporal scales. Species with different size and mobility can be regulated by different processes at the same spatial scale, a principle that may contribute to diversity. Differences in species richness between local commu...

  14. Virtual reunification of papyrus fragments

    OpenAIRE

    Vannini, Lucia

    2015-01-01

    Many Greek and Latin papyri, originally belonging to only one book (be it in roll or codex form), are currently scattered among different libraries. While it is not possible to physically rejoin these fragments as they cannot be moved from their institutions, they may be virtually reunited thanks to the techniques of digitisation, image processing and electronic publishing. This paper focuses on some issues – emerged from the work of my MA dissertation – that virtual reunification of Greek an...

  15. Fragmentation measurement using image processing

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-12-01

    Full Text Available In this research, first of all, the existing problems in fragmentation measurement are reviewed for the sake of its fast and reliable evaluation. Then, the available methods used for evaluation of blast results are mentioned. The produced errors especially in recognizing the rock fragments in computer-aided methods, and also, the importance of determination of their sizes in the image analysis methods are described. After reviewing the previous work done, an algorithm is proposed for the automated determination of rock particles’ boundary in the Matlab software. This method can determinate automatically the particles boundary in the minimum time. The results of proposed method are compared with those of Split Desktop and GoldSize software in two automated and manual states. Comparing the curves extracted from different methods reveals that the proposed approach is accurately applicable in measuring the size distribution of laboratory samples, while the manual determination of boundaries in the conventional software is very time-consuming, and the results of automated netting of fragments are very different with the real value due to the error in separation of the objects.

  16. Residual Fragments after Percutaneous Nephrolithotomy

    Directory of Open Access Journals (Sweden)

    Kaan Özdedeli

    2012-09-01

    Full Text Available Clinically insignificant residual fragments (CIRFs are described as asymptomatic, noninfectious and nonobstructive stone fragments (≤4 mm remaining in the urinary system after the last session of any intervention (ESWL, URS or PCNL for urinary stones. Their insignificance is questionable since CIRFs could eventually become significant, as their presence may result in recurrent stone growth and they may cause pain and infection due to urinary obstruction. They may become the source of persistent infections and a significant portion of the patients will have a stone-related event, requiring auxilliary interventions. CT seems to be the ultimate choice of assessment. Although there is no concensus about the timing, recent data suggests that it may be performed one month after the procedure. However, imaging can be done in the immediate postoperative period, if there are no tubes blurring the assessment. There is some evidence indicating that selective medical therapy may have an impact on decreasing stone formation rates. Retrograde intrarenal surgery, with its minimally invasive nature, seems to be the best way to deal with residual fragments.

  17. PTT Test

    Science.gov (United States)

    ... are injured, bleeding occurs and a process called hemostasis begins. Small cell fragments called platelets adhere to ... be used to evaluate certain components of the hemostasis system. The PTT and PT tests each evaluate ...

  18. Fragmentation during primordial star formation

    Science.gov (United States)

    Dutta, Jayanta

    Understanding the physics of the very first stars in the universe, the so-called Population III (or Pop III) stars, is crucial in determining how the universe evolved into what we observe today. In the standard model of Pop III star formation, the baryonic matter, mainly atomic hydrogen, collapses gravitationally into small Dark Matter (DM) minihalos. However, so far there is little understanding on how the thermal, dynamical and chemical evolution of the primordial gas depend on the initial configuration of the minihalos (for example, rotation of the unstable clumps inside minihalos, turbulence, formation of molecular hydrogen and cosmic variance of the minihalos). We use the modified version of the Gadget-2 code, a three-dimensional smoothed particle hydrodynamics (SPH) simulations, to follow the evolution of the collapsing gas in both idealized as well as more realistic minihalos. Unlike some earlier cosmological calculations, the implementation of sink particles allows us to follow the evolution of the accretion disk that builds up in the centre of each minihalo and fragments. We find that the fragmentation behavior depends on the adopted choice of three-body H2 formation rate coefficient. The increasing cooling rate during rapid conversion of the atomic to molecular hydrogen is offset by the heating due to gas contraction. We propose that the H2 cooling, the heating due to H2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation. We also find that the cloud's initial degree of rotation has a significant effect on the thermal and dynamical evolution of the collapsing gas. Clouds with higher rotation exhibit spiral-arm-like structures that become gravitationally unstable to fragmentation on several scales. These type of clouds tend to fragment more and have lower accretion rates compared to their slowly rotating counterparts. In addition, we find that the distribution of specific angular

  19. Identification of amplified fragment length polymorphism (AFLP ...

    African Journals Online (AJOL)

    Identification of amplified fragment length polymorphism (AFLP) fragments linked to soybean mosaic virus resistance gene in Glycine soja and conversion to a sequence characterized amplified regions (SCAR) marker for rapid selection.

  20. Polarization and alignment of nucleus fission fragments

    International Nuclear Information System (INIS)

    Barabanov, A.L.; Grechukhin, D.P.

    1987-01-01

    Correlation of fragment orientation with orientation axis of fissile nucleus and with n-vector f vector of fragment divergence is considered. Estimations of polarization and alignment of fission fragments of preliminarily oriented nuclei in correlation (with n-vector f recording) and integral (with n-vector f averaging) experiments were conducted. It is shown that high sensitivity of polarization and fragment alignment to the character of nucleus movement at the stage of descent from barrier to rupture point exists

  1. Fission Fragment Yield Data in Support of Advanced Reactor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Hecht, Adam [Univ. of New Mexico, Albuquerque, NM (United States)

    2017-11-21

    Within the 3 year POP we propose to continue to test and further develop the fission spectrometers, to do development tests and full data acquisition run at the national laboratory neutron beam facilities, to measure correlated fission fragment yields at low neutron energies with 235 U fission targets, and make these data available to the nuclear community. The spectrometer development will be both on the university based r\\prototype and on the National Laboratory Spectrometer, and measurements will be performed with both. Over the longer time frame of the collaboration, we will take data over a range of low energies, and use other fission targets available to the laboratory. We will gather energy specific fragment distributions and reaction cross sections. We will further develop the data acquisition capabilities to take correlated fission fragment'gamma ray/neurton data, all on an event-by-event basis. This really is an enabling technology.

  2. Scaling and four-quark fragmentation

    NARCIS (Netherlands)

    Scholten, O.; Bosveld, G. D.

    1991-01-01

    The conditions for a scaling behaviour from the fragmentation process leading to slow protons are discussed. The scaling referred to implies that the fragmentation functions depend on the light-cone momentum fraction only. It is shown that differences in the fragmentation functions for valence- and

  3. Quark fragmentation in e+e- collisions

    International Nuclear Information System (INIS)

    Oddone, P.

    1984-12-01

    This brief review of new results in quark and gluon fragmentation observed in e + e - collisions concentrates mostly on PEP results and, within PEP, mostly on TPC results. The new PETRA results have been reported at this conference by M. Davier. It is restricted to results on light quark fragmentation since the results on heavy quark fragmentation have been reported by J. Chapman

  4. Remarks about the hypothesis of limiting fragmentation

    International Nuclear Information System (INIS)

    Chou, T.T.; Yang, C.N.

    1987-01-01

    Remarks are made about the hypothesis of limiting fragmentation. In particular, the concept of favored and disfavored fragment distribution is introduced. Also, a sum rule is proved leading to a useful quantity called energy-fragmentation fraction. (author). 11 refs, 1 fig., 2 tabs

  5. Scaling and critical behaviour in nuclear fragmentation

    International Nuclear Information System (INIS)

    Campi, X.

    1990-09-01

    These notes review recent results on nuclear fragmentation. An analysis of experimental data from exclusive experiments is made in the framework of modern theories of fragmentation of finite size objects. We discuss the existence of a critical regime of fragmentation and the relevance of scaling and finite size scaling

  6. Self-organized criticality in fragmenting

    DEFF Research Database (Denmark)

    Oddershede, L.; Dimon, P.; Bohr, J.

    1993-01-01

    The measured mass distributions of fragments from 26 fractured objects of gypsum, soap, stearic paraffin, and potato show evidence of obeying scaling laws; this suggests the possibility of self-organized criticality in fragmenting. The probability of finding a fragment scales inversely to a power...

  7. Effects of clonal fragmentation on intraspecific competition of a stoloniferous floating plant.

    Science.gov (United States)

    Wang, P; Xu, Y-S; Dong, B-C; Xue, W; Yu, F-H

    2014-11-01

    Disturbance is common and can fragment clones of plants. Clonal fragmentation may affect the density and growth of ramets so that it could alter intraspecific competition. To test this hypothesis, we grew one (low density), five (medium density) or nine (high density) parent ramets of the floating invasive plant Pistia stratiotes in buckets, and newly produced offspring ramets were either severed (with fragmentation) or remained connected to parent ramets (no fragmentation). Increasing density reduced biomass of the whole clone (i.e. parent ramet plus its offspring ramets), showing intense intraspecific competition. Fragmentation decreased biomass of offspring ramets, but increased biomass of parent ramets and the whole clone, suggesting significant resource translocation from parent to offspring ramets when clones were not fragmented. There was no interaction effect of density x fragmentation on biomass of the whole clone, and fragmentation did not affect competition intensity index. We conclude that clonal fragmentation does not alter intraspecific competition between clones of P. stratiotes, but increases biomass production of the whole clone. Thus, fragmentation may contribute to its interspecific competitive ability and invasiveness, and intentional fragmentation should not be recommended as a measure to stop the rapid growth of this invasive species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. Species-specific responses to landscape fragmentation: implications for management strategies.

    Science.gov (United States)

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-05-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem.

  9. MOJIBAKE – The Rehearsal of Word Fragments In Verbal Recall

    Directory of Open Access Journals (Sweden)

    Dr. Christiane eLange-Küttner

    2015-04-01

    Full Text Available Theories of verbal rehearsal usually assume that whole words are being rehearsed. However, words consist of letter sequences, or syllables, or word onset-vowel-coda, amongst many other conceptualizations of word structure. A more general term is the ‘grain size’ of word units (Ziegler & Goswami, 2005. In the current study, a new method measured the quantitative percentage of correctly remembered word structure. The amount of letters in the correct letter sequence as per cent of word length was calculated, disregarding missing or added letters. A forced rehearsal was tested by repeating each memory list four times. We tested low frequency (LF English words versus geographical UK town names to control for content. We also tested unfamiliar international (INT non-words and names of international (INT European towns to control for familiarity. An immediate versus distributed repetition was tested with a between-subject design. Participants responded with word fragments in their written recall especially when they had to remember unfamiliar words. While memory of whole words was sensitive to content, presentation distribution and individual sex and language differences, recall of word fragments was not. There was no trade-off between memory of word fragments with whole word recall during the repetition, instead also word fragments significantly increased. Moreover, while whole word responses correlated with each other during repetition, and word fragment responses correlated with each other during repetition, these two types of word recall responses were not correlated with each other. Thus there may be a lower layer consisting of free, sparse word fragments and an upper layer that consists of language-specific, orthographically and semantically constrained words.

  10. The Munich accelerator for fission fragments MAFF

    Science.gov (United States)

    Habs, D.; Groß, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P. G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Krücken, R.; Maier-Komor, P.

    2003-05-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (˜3×10 11 s -1) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV· A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups.

  11. The Munich accelerator for fission fragments MAFF

    International Nuclear Information System (INIS)

    Habs, D.; Gross, M.; Assmann, W.; Ames, F.; Bongers, H.; Emhofer, S.; Heinz, S.; Henry, S.; Kester, O.; Neumayr, J.; Ospald, F.; Reiter, P.; Sieber, T.; Szerypo, J.; Thirolf, P.G.; Varentsov, V.; Wilfart, T.; Faestermann, T.; Kruecken, R.; Maier-Komor, P.

    2003-01-01

    The Munich Accelerator for Fission Fragments MAFF has been designed for the new Munich research reactor FRM-II. It will deliver several intense beams (∼3x10 11 s -1 ) of very neutron-rich fission fragments with a final energy of 30 keV (low-energy beam) or energies between 3.7 and 5.9 MeV·A (high-energy beam). Such beams are of interest for the creation of super-heavy elements by fusion reactions, nuclear spectroscopy of exotic nuclei, but they also have a potential for applications, e.g. in medicine. Presently the Munich research reactor FRM-II is ready for operation, but authorities delay the final permission to turn the reactor critical probably till the end of 2002. Only after this final permission the financing of the major parts of MAFF can start. On the other hand all major components have been designed and special components have been tested in separate setups

  12. Influence of Mechanical Properties of Aerial Shells made from Biodegradable Plastics on Smaller Fragmentation

    Science.gov (United States)

    Kudo, Makoto; Murata, Kenji; Kamata, Satoru; Hamada, Fumio

    In this paper, a new aerial shell made of biodegradable plastics was developed and explosion tests were carried out using 2.5-10 gou-size firework aerial shells at a ground test site in order to observe the fragmentation. The dispersed fragments were then collected and their size and distribution measured. In order to monitor the fragmentation visually, a high-speed camera was used to film the ignition of the bursting charge and the scattering of the shell fragments. The shell fragments became much smaller, because mechanical properties of biodegradable plastics that were added improved polyvinyl alcohol (PVA) and chaff powder (CP). Fibrillation was seen in PBS/PVA/CP, and it seemed effective for mechanical properties. As a result, safer aerial shells which disperse into smaller fragments on explosion were successfully developed.

  13. The formation of planets by disc fragmentation

    Directory of Open Access Journals (Sweden)

    Stamatellos Dimitris

    2013-04-01

    Full Text Available I discuss the role that disc fragmentation plays in the formation of gas giant and terrestrial planets, and how this relates to the formation of brown dwarfs and low-mass stars, and ultimately to the process of star formation. Protostellar discs may fragment, if they are massive enough and can cool fast enough, but most of the objects that form by fragmentation are brown dwarfs. It may be possible that planets also form, if the mass growth of a proto-fragment is stopped (e.g. if this fragment is ejected from the disc, or suppressed and even reversed (e.g by tidal stripping. I will discuss if it is possible to distinguish whether a planet has formed by disc fragmentation or core accretion, and mention of a few examples of observed exoplanets that are suggestive of formation by disc fragmentation.

  14. Experimental and numerical studies of high-velocity impact fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kipp, M.E.; Grady, D.E.; Swegle, J.W.

    1993-08-01

    Developments are reported in both experimental and numerical capabilities for characterizing the debris spray produced in penetration events. We have performed a series of high-velocity experiments specifically designed to examine the fragmentation of the projectile during impact. High-strength, well-characterized steel spheres (6.35 mm diameter) were launched with a two-stage light-gas gun to velocities in the range of 3 to 5 km/s. Normal impact with PMMA plates, thicknesses of 0.6 to 11 mm, applied impulsive loads of various amplitudes and durations to the steel sphere. Multiple flash radiography diagnostics and recovery techniques were used to assess size, velocity, trajectory and statistics of the impact-induced fragment debris. Damage modes to the primary target plate (plastic) and to a secondary target plate (aluminum) were also evaluated. Dynamic fragmentation theories, based on energy-balance principles, were used to evaluate local material deformation and fracture state information from CTH, a three-dimensional Eulerian solid dynamics shock wave propagation code. The local fragment characterization of the material defines a weighted fragment size distribution, and the sum of these distributions provides a composite particle size distribution for the steel sphere. The calculated axial and radial velocity changes agree well with experimental data, and the calculated fragment sizes are in qualitative agreement with the radiographic data. A secondary effort involved the experimental and computational analyses of normal and oblique copper ball impacts on steel target plates. High-resolution radiography and witness plate diagnostics provided impact motion and statistical fragment size data. CTH simulations were performed to test computational models and numerical methods.

  15. Fragmentation of DNA affects the accuracy of the DNA quantitation by the commonly used methods

    Directory of Open Access Journals (Sweden)

    Sedlackova Tatiana

    2013-02-01

    Full Text Available Abstract Background Specific applications and modern technologies, like non-invasive prenatal testing, non-invasive cancer diagnostic and next generation sequencing, are currently in the focus of researchers worldwide. These have common characteristics in use of highly fragmented DNA molecules for analysis. Hence, for the performance of molecular methods, DNA concentration is a crucial parameter; we compared the influence of different levels of DNA fragmentation on the accuracy of DNA concentration measurements. Results In our comparison, the performance of the currently most commonly used methods for DNA concentration measurement (spectrophotometric, fluorometric and qPCR based were tested on artificially fragmented DNA samples. In our comparison, unfragmented and three specifically fragmented DNA samples were used. According to our results, the level of fragmentation did not influence the accuracy of spectrophotometric measurements of DNA concentration, while other methods, fluorometric as well as qPCR-based, were significantly influenced and a decrease in measured concentration was observed with more intensive DNA fragmentation. Conclusions Our study has confirmed that the level of fragmentation of DNA has significant impact on accuracy of DNA concentration measurement with two of three mostly used methods (PicoGreen and qPCR. Only spectrophotometric measurement was not influenced by the level of fragmentation, but sensitivity of this method was lowest among the three tested. Therefore if it is possible the DNA quantification should be performed with use of equally fragmented control DNA.

  16. Realistic level densities in fragment emission at high excitation energies

    International Nuclear Information System (INIS)

    Mustafa, M.G.; Blann, M.; Ignatyuk, A.V.

    1993-01-01

    Heavy fragment emission from a 44 100 Ru compound nucleus at 400 and 800 MeV of excitation is analyzed to study the influence of level density models on final yields. An approach is used in which only quasibound shell-model levels are included in calculating level densities. We also test the traditional Fermi gas model for which there is no upper energy limit to the single particle levels. We compare the influence of these two level density models in evaporation calculations of primary fragment excitations, kinetic energies and yields, and on final product yields

  17. Test

    DEFF Research Database (Denmark)

    Bendixen, Carsten

    2014-01-01

    Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers.......Bidrag med en kortfattet, introducerende, perspektiverende og begrebsafklarende fremstilling af begrebet test i det pædagogiske univers....

  18. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    Science.gov (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  19. Fragmentation of Ceramics in Rapid Expansion Mode

    Science.gov (United States)

    Maiti, Spandan; Geubelle, Philippe H.; Rangaswamy, Krishnan

    The study of the fragmentation process goes back to more than a century, motivated primarily by problems related to mining and ore handling (Grady and Kipp, 1985). Various theories have been proposed to predict the fragmentation stress and the fragment size and distribution. But the investigations are generally case specific and relate to only a narrow set of fragmentation processes. A number of theoretical studies of dynamic fragmentation in a rapidly expanding body can be found in the literature. For example, the study summarized in (Grady, 1982) presents a model based on a simple energy balance concept between the surface energy released due to fracture and the kinetic energy of the fragments. Subsequent refinements of the energy balance model have been proposed by (Glenn and Chudnovsky, 1986), which take into account the strain energy of the fragments and specify a threshold stress below which no fragmentation occurs. These models assume that the fracture events are instantaneous and occur simultaneously. Evidently, these assumptions are quite restrictive and these models can not take into account the transient nature of the fragmentation process after the onset of fracture in the material. A more recent model proposed by (Miller et al., 1999) however takes into account this time-dependent nature of the fragmentation event and the distribution of flaws of various strengths in the original material.

  20. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  1. Dynamic effects in fragmentation reactions

    International Nuclear Information System (INIS)

    Bertsch, G. F.; Esbensen, H.

    2002-01-01

    Fragmentation reactions offer a useful tool to study the spectroscopy of halo nuclei, but the large extent of the halo wave function makes the reaction theory more difficult. The simple reaction models based on the eikonal approximation for the nuclear interaction or first-order perturbation theory for the Coulomb interaction have systematic errors that they investigate here, comparing to the predictions of complete dynamical calculations. They find that stripping probabilities are underpredicted by the eikonal model, leading to extracted spectroscopy strengths that are two large. In contrast, the Coulomb excitation is overpredicted by the simple theory. They attribute this to a screening effect, as is well known in the Barkas effect on stopping powers. The errors decrease with beam energy as E(sub beam)(sup -1), and are not significant at beam energies above 50 MeV/u. At lower beam energies, the effects should be taken into account when extracting quantitative spectroscopic strengths

  2. Rules of determining the fragment size and composition of blasted uranium ore for leaching

    International Nuclear Information System (INIS)

    Wang Changhan

    1998-06-01

    The relations of blasted uranium ore fragment size and composition with the processing conditions (such as solvent flow velocity, the thickness of solvent film embracing, the ore fragments, the permeating velocity, the leaching ratio, the solvent consumption, ore grade), the economic feasibility of ore fragmentation and technical mineralogy for in-situ leaching and heap leaching are investigated. The rules for determining the ore fragment size and ore composition adequate for leaching on the basis of field and laboratory test results are established. These rules are very helpful to the selection, design and production of in-situ leaching and heap leaching operations

  3. Investigation of Nuclear Fragmentation in Relativistic Heavy Ion Collisions Using Plastic - Nuclear - Track Detectors

    CERN Multimedia

    2002-01-01

    In this experiment CR39 plastic nuclear track detectors will be used which are sensitive to detect relativistic nuclear fragments with charges Z@$>$5. They will be analyzed using an automatic track measuring system which was developed at the University of Siegen.\\\\ \\\\ This allows to measure large quantities of tracks in these passive detectors and to perform high statistics experiments. We intend to measure cross sections for the production of nuclear fragments from heavy ion beams at the SPS. \\\\ \\\\ The energy independence of the cross sections predicted by the idea of limiting fragmentation will be tested at high energies. In exposures with different targets we plan to analyze the factorization of the fragmentation cross sections into a target depending factor and a factor depending on the beam particle and the fragment. The cross sections for one proton remov Coulomb dissociation. \\\\ \\\\ We plan to investigate Coulomb dissociation for different targets and different energies. Fragment and projectile charges ...

  4. MAFF–The Munich accelerator for fission fragments

    Indian Academy of Sciences (India)

    At the new high flux reactor FRM-II in Munich the accelerator MAFF (Munich accelerator for fission fragments) is under design. In the high neutron flux of 1014 n/cm2 s up to 1014 ... The through-going beam tube has been installed in the heavy water tank of the reactor. Tests of the target ion source in a special oven to test ...

  5. Effects of Amphetamine and β-Endorphin Fragments on Maze Performance in Rats

    NARCIS (Netherlands)

    Boer, S. de; Bohus, B.

    1990-01-01

    Fragments of β-endorphin and amphetamine cause similar effects in some tests of maze behavior in rats. The present study served to compare the influence of amphetamine and two β-endorphin fragments [β-endorphin (βE)-(2-9) and βE-(2-16)] on maze behavior in more detail. In Experiment I no significant

  6. Fragment Size Distribution of Blasted Rock Mass

    Science.gov (United States)

    Jug, Jasmin; Strelec, Stjepan; Gazdek, Mario; Kavur, Boris

    2017-12-01

    Rock mass is a heterogeneous material, and the heterogeneity of rock causes sizes distribution of fragmented rocks in blasting. Prediction of blasted rock mass fragmentation has a significant role in the overall economics of opencast mines. Blasting as primary fragmentation can significantly decrease the cost of loading, transport, crushing and milling operations. Blast fragmentation chiefly depends on the specific blast design (geometry of blast holes drilling, the quantity and class of explosive, the blasting form, the timing and partition, etc.) and on the properties of the rock mass (including the uniaxial compressive strength, the rock mass elastic Young modulus, the rock discontinuity characteristics and the rock density). Prediction and processing of blasting results researchers can accomplish by a variety of existing software’s and models, one of them is the Kuz-Ram model, which is possibly the most widely used approach to estimating fragmentation from blasting. This paper shows the estimation of fragmentation using the "SB" program, which was created by the authors. Mentioned program includes the Kuz-Ram model. Models of fragmentation are confirmed and calibrated by comparing the estimated fragmentation with actual post-blast fragmentation from image processing techniques. In this study, the Kuz-Ram fragmentation model has been used for an open-pit limestone quarry in Dalmatia, southern Croatia. The resulting calibrated value of the rock factor enables the quality prognosis of fragmentation in further blasting works, with changed drilling geometry and blast design parameters. It also facilitates simulation in the program to optimize blasting works and get the desired fragmentations of the blasted rock mass.

  7. The effects of landscape variables on the species-area relationship during late-stage habitat fragmentation.

    Directory of Open Access Journals (Sweden)

    Guang Hu

    Full Text Available Few studies have focused explicitly on the later stages of the fragmentation process, or "late-stage fragmentation", during which habitat area and patch number decrease simultaneously. This lack of attention is despite the fact that many of the anthropogenically fragmented habitats around the world are, or soon will be, in late-stage fragmentation. Understanding the ecological processes and patterns that occur in late-stage fragmentation is critical to protect the species richness in these fragments. We investigated plant species composition on 152 islands in the Thousand Island Lake, China. A random sampling method was used to create simulated fragmented landscapes with different total habitat areas and numbers of patches mimicking the process of late-stage fragmentation. The response of the landscape-scale species-area relationship (LSAR to fragmentation per se was investigated, and the contribution of inter-specific differences in the responses to late-stage fragmentation was tested. We found that the loss of species at small areas was compensated for by the effects of fragmentation per se, i.e., there were weak area effects on species richness in landscapes due to many patches with irregular shapes and high variation in size. The study also illustrated the importance of inter-specific differences for responses to fragmentation in that the LSARs of rare and common species were differently influenced by the effects of fragmentation per se. In conclusion, our analyses at the landscape scale demonstrate the significant influences of fragmentation per se on area effects and the importance of inter-specific differences for responses to fragmentation in late-stage fragmentation. These findings add to our understanding of the effects of habitat fragmentation on species diversity.

  8. The effects of landscape variables on the species-area relationship during late-stage habitat fragmentation.

    Science.gov (United States)

    Hu, Guang; Wu, Jianguo; Feeley, Kenneth J; Xu, Gaofu; Yu, Mingjian

    2012-01-01

    Few studies have focused explicitly on the later stages of the fragmentation process, or "late-stage fragmentation", during which habitat area and patch number decrease simultaneously. This lack of attention is despite the fact that many of the anthropogenically fragmented habitats around the world are, or soon will be, in late-stage fragmentation. Understanding the ecological processes and patterns that occur in late-stage fragmentation is critical to protect the species richness in these fragments. We investigated plant species composition on 152 islands in the Thousand Island Lake, China. A random sampling method was used to create simulated fragmented landscapes with different total habitat areas and numbers of patches mimicking the process of late-stage fragmentation. The response of the landscape-scale species-area relationship (LSAR) to fragmentation per se was investigated, and the contribution of inter-specific differences in the responses to late-stage fragmentation was tested. We found that the loss of species at small areas was compensated for by the effects of fragmentation per se, i.e., there were weak area effects on species richness in landscapes due to many patches with irregular shapes and high variation in size. The study also illustrated the importance of inter-specific differences for responses to fragmentation in that the LSARs of rare and common species were differently influenced by the effects of fragmentation per se. In conclusion, our analyses at the landscape scale demonstrate the significant influences of fragmentation per se on area effects and the importance of inter-specific differences for responses to fragmentation in late-stage fragmentation. These findings add to our understanding of the effects of habitat fragmentation on species diversity.

  9. Gluon fragmentation in T(1S) decays

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1983-05-01

    In T(1S) decays most observables (sphericity, charged multiplicity, photonic energy fraction, inclusive spectra) can be understood assuming that gluons fragment like quarks. New results from LENA use the (axis-independent) Fox-Wolfram moments for the photonic energy deposition. Continuum reactions show 'standard' Field-Feynman fragmentation. T(1S) decays show a significant difference in the photonic energy topology. It is more isotropic than with the Field-Feynman fragmentation scheme. Gluon fragmentation into isoscalar mesons (a la Peterson and Walsh) is excluded. But if one forces the leading particle to be isoscalar, one gets good agreement with the data. (orig.)

  10. Measuring the temperature of hot nuclear fragments

    International Nuclear Information System (INIS)

    Wuenschel, S.; Bonasera, A.; May, L.W.; Souliotis, G.A.; Tripathi, R.; Galanopoulos, S.; Kohley, Z.; Hagel, K.; Shetty, D.V.; Huseman, K.; Soisson, S.N.; Stein, B.C.; Yennello, S.J.

    2010-01-01

    A new thermometer based on fragment momentum fluctuations is presented. This thermometer exhibited residual contamination from the collective motion of the fragments along the beam axis. For this reason, the transverse direction has been explored. Additionally, a mass dependence was observed for this thermometer. This mass dependence may be the result of the Fermi momentum of nucleons or the different properties of the fragments (binding energy, spin, etc.) which might be more sensitive to different densities and temperatures of the exploding fragments. We expect some of these aspects to be smaller for protons (and/or neutrons); consequently, the proton transverse momentum fluctuations were used to investigate the temperature dependence of the source.

  11. Beyond the fragmentation threshold hypothesis: regime shifts in biodiversity across fragmented landscapes.

    Directory of Open Access Journals (Sweden)

    Renata Pardini

    Full Text Available Ecological systems are vulnerable to irreversible change when key system properties are pushed over thresholds, resulting in the loss of resilience and the precipitation of a regime shift. Perhaps the most important of such properties in human-modified landscapes is the total amount of remnant native vegetation. In a seminal study Andrén proposed the existence of a fragmentation threshold in the total amount of remnant vegetation, below which landscape-scale connectivity is eroded and local species richness and abundance become dependent on patch size. Despite the fact that species patch-area effects have been a mainstay of conservation science there has yet to be a robust empirical evaluation of this hypothesis. Here we present and test a new conceptual model describing the mechanisms and consequences of biodiversity change in fragmented landscapes, identifying the fragmentation threshold as a first step in a positive feedback mechanism that has the capacity to impair ecological resilience, and drive a regime shift in biodiversity. The model considers that local extinction risk is defined by patch size, and immigration rates by landscape vegetation cover, and that the recovery from local species losses depends upon the landscape species pool. Using a unique dataset on the distribution of non-volant small mammals across replicate landscapes in the Atlantic forest of Brazil, we found strong evidence for our model predictions--that patch-area effects are evident only at intermediate levels of total forest cover, where landscape diversity is still high and opportunities for enhancing biodiversity through local management are greatest. Furthermore, high levels of forest loss can push native biota through an extinction filter, and result in the abrupt, landscape-wide loss of forest-specialist taxa, ecological resilience and management effectiveness. The proposed model links hitherto distinct theoretical approaches within a single framework

  12. Mechanisms Affecting Population Density in Fragmented Habitat

    Directory of Open Access Journals (Sweden)

    Lutz Tischendorf

    2005-06-01

    Full Text Available We conducted a factorial simulation experiment to analyze the relative importance of movement pattern, boundary-crossing probability, and mortality in habitat and matrix on population density, and its dependency on habitat fragmentation, as well as inter-patch distance. We also examined how the initial response of a species to a fragmentation event may affect our observations of population density in post-fragmentation experiments. We found that the boundary-crossing probability from habitat to matrix, which partly determines the emigration rate, is the most important determinant for population density within habitat patches. The probability of crossing a boundary from matrix to habitat had a weaker, but positive, effect on population density. Movement behavior in habitat had a stronger effect on population density than movement behavior in matrix. Habitat fragmentation and inter-patch distance may have a positive or negative effect on population density. The direction of both effects depends on two factors. First, when the boundary-crossing probability from habitat to matrix is high, population density may decline with increasing habitat fragmentation. Conversely, for species with a high matrix-to-habitat boundary-crossing probability, population density may increase with increasing habitat fragmentation. Second, the initial distribution of individuals across the landscape: we found that habitat fragmentation and inter-patch distance were positively correlated with population density when individuals were distributed across matrix and habitat at the beginning of our simulation experiments. The direction of these relationships changed to negative when individuals were initially distributed across habitat only. Our findings imply that the speed of the initial response of organisms to habitat fragmentation events may determine the direction of observed relationships between habitat fragmentation and population density. The time scale of post-fragmentation

  13. The fragmentation of prestellar clouds

    International Nuclear Information System (INIS)

    Ibanez S, M.H.

    1979-10-01

    The radiative heating problem has been solved analytically, in first approximation, for a semi-infinite cloud model with transverse fluctuations in extinction. The radiative heating problem has been solved with the help of a numerical (approximated) method for the following models: a) semi-infinite cloud with transverse fluctuations in extinction; b) finite cloud with mean optical thickness tau 0 and transverse fluctuations in extinction. Assuming isobaricity as a first approximation, the chemical equation for H 2 formation (in non-equilibrium condition) and the energy equation were solved numerically like a two boundary-value problem. The conditions under which H 2 formation can induce fragmentation in a contracting cloud are examined. A study (in orders of magnitude) of the turbulence as a mechanism generator of density fluctuations has been done. If the Kolmogorov spectral law is assumed, subsonic turbulence is enough to provide any prestellar cloud with the elemental fluctuations which are effectively amplified by molecule formation in a time shorter than one free-fall. (author)

  14. A note on convex renorming and fragmentability

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Using the game approach to fragmentability, we give new and simpler proofs of the following known results: (a) If the Banach space admits an equivalent. Kadec norm, then its weak topology is fragmented by a metric which is stronger than the norm topology. (b) If the Banach space admits an equivalent rotund ...

  15. Fragmentation of eastern United States forest types

    Science.gov (United States)

    Kurt H. Riitters; John W. Coulston

    2013-01-01

    Fragmentation is a continuing threat to the sustainability of forests in the Eastern United States, where land use changes supporting a growing human population are the primary driver of forest fragmentation (Stein and others 2009). While once mostly forested, approximately 40 percent of the original forest area has been converted to other land uses, and most of the...

  16. Thermodynamics of the fuel fragmentation gas

    International Nuclear Information System (INIS)

    Perez, R.B.; Alsmiller, R.G. Jr.

    1977-01-01

    In the context of nuclear reactor safety studies, a program is in progress at ORNL whereby fuel-fragmentation situations are mocked up by the application of high-current capacitor discharges through solid UO 2 samples. The goal of the present work is to predict such quantities as the number of gas and liquid fragments and their energy distributions. The point of view adopted is that upon fragmentation, a cloud of UO 2 vapor is formed containing ''primeval'' liquid fragments which act as condensation centers. In the evolution of time, fragment growth is controlled by nucleation, coagulation and evaporation processes. Eventually, the vapor-droplet system will reach a situation in which clusters (fragments) of various sizes and UO 2 vapor will coexist in an ''association-disassociation'' equilibrium. Thus, the physical model considered here consists of the identification of the fragmentation gas with an ''imperfect'' vapor, made up of interacting UO 2 vapor and liquid fragments. The results of the study are presented

  17. Influence of agricultural environment on the plant mite community in forest fragments

    Directory of Open Access Journals (Sweden)

    PR. Demite

    Full Text Available The mite community has been surveyed in Seasonal Semideciduous Forest with three types of surrounding agricultural environments to test the hypothesis that abundance and richness of mites in forest fragments are influenced by the type of agricultural environment. The survey has been carried out in six fragments, divided into sets of two fragments, each one neighboring one sort of agricultural environment: sugarcane crop (FS, orange crop (FO and pasture (FP. In each fragment, ten individuals of Actinostemon communis (Euphorbiaceae were selected, five at the edge and five within each fragment. Iphiseiodes zuluagai, often registered in orange crops, was more abundant in the fragments neighboring such crop, as well as some species of Tarsonemidae. In this study, the Phytoseiidae were more abundant in the fragments neighboring pasture, while sugarcane crops probably favored occurrence of phytophagous mites in the neighboring fragments. Tetranychidae were less abundant in FO, which can be explained by periodical use of pesticides in the orange crops. Forest fragments are important for colonies of predators in the neighboring crops, mainly for annual crops such as sugarcane, where the close perennial environment is very important for colonization of the crop. Maintenance of those areas, besides favoring preservation of wild species of mite, is very important to increase diversity of the neighboring agricultural ecosystems.

  18. The relative influence of habitat loss and fragmentation: do tropical mammals meet the temperate paradigm?

    Science.gov (United States)

    Thornton, Daniel H; Branch, Lyn C; Sunquist, Melvin E

    2011-09-01

    The relative influence of habitat loss vs. habitat fragmentation per se (the breaking apart of habitat) on species distribution and abundance is a topic of debate. Although some theoretical studies predict a strong negative effect of fragmentation, consensus from empirical studies is that habitat fragmentation has weak effects compared with habitat loss and that these effects are as likely to be positive as negative. However, few empirical investigations of this issue have been conducted on tropical or wide-ranging species that may be strongly influenced by changes in patch size and edge that occur with increasing fragmentation. We tested the relative influence of habitat loss and fragmentation by examining occupancy of forest patches by 20 mid- and large-sized Neotropical mammal species in a fragmented landscape of northern Guatemala. We related patch occupancy of mammals to measures of habitat loss and fragmentation and compared the influence of these two factors while controlling for patch-level variables. Species responded strongly to both fragmentation and loss, and response to fragmentation generally was negative. Our findings support previous assumptions that conservation of large mammals in the tropics will require conservation strategies that go beyond prevention of habitat loss to also consider forest cohesion or other aspects of landscape configuration.

  19. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Science.gov (United States)

    Girão, Luciana Coe; Lopes, Ariadna Valentina; Tabarelli, Marcelo; Bruna, Emilio M

    2007-09-19

    Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits) and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems) in 10 fragments and 10 tracts of forest interior (control plots). As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated). The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores) for pollination systems (-30.3%), floral types (-23.6%), and floral sizes (-20.8%) in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and greatly reduces

  20. Changes in tree reproductive traits reduce functional diversity in a fragmented Atlantic forest landscape.

    Directory of Open Access Journals (Sweden)

    Luciana Coe Girão

    Full Text Available Functional diversity has been postulated to be critical for the maintenance of ecosystem functioning, but the way it can be disrupted by human-related disturbances remains poorly investigated. Here we test the hypothesis that habitat fragmentation changes the relative contribution of tree species within categories of reproductive traits (frequency of traits and reduces the functional diversity of tree assemblages. The study was carried out in an old and severely fragmented landscape of the Brazilian Atlantic forest. We used published information and field observations to obtain the frequency of tree species and individuals within 50 categories of reproductive traits (distributed in four major classes: pollination systems, floral biology, sexual systems, and reproductive systems in 10 fragments and 10 tracts of forest interior (control plots. As hypothesized, populations in fragments and control plots differed substantially in the representation of the four major classes of reproductive traits (more than 50% of the categories investigated. The most conspicuous differences were the lack of three pollination systems in fragments--pollination by birds, flies and non-flying mammals--and that fragments had a higher frequency of both species and individuals pollinated by generalist vectors. Hermaphroditic species predominate in both habitats, although their relative abundances were higher in fragments. On the contrary, self-incompatible species were underrepresented in fragments. Moreover, fragments showed lower functional diversity (H' scores for pollination systems (-30.3%, floral types (-23.6%, and floral sizes (-20.8% in comparison to control plots. In contrast to the overwhelming effect of fragmentation, patch and landscape metrics such as patch size and forest cover played a minor role on the frequency of traits. Our results suggest that habitat fragmentation promotes a marked shift in the relative abundance of tree reproductive traits and

  1. Designation of the European Working Group on Legionella Infection (EWGLI) amplified fragment length polymorphism types of Legionella pneumophila serogroup 1 and results of intercentre proficiency testing Using a standard protocol

    DEFF Research Database (Denmark)

    Fry, N K; Bangsborg, Jette Marie; Bergmans, A

    2002-01-01

    Infections (EWGLI) AFLP types, (ii). describes the EWGLI AFLP types identified for the 130 strains in the EWGLI culture collection, and (iii). reports the results of a newly introduced international programme of proficiency testing. Following preliminary analysis of 20 epidemiologically unrelated isolates...... (recorded as AFLP type 001-016 or untypeable) was determined by participants with reference to these 16 AFLP types, either visually or using gel analysis software where available, and reported to the coordinating centre. Nine of the 12 strains, including an epidemiologically related pair and two pairs...

  2. Microplastic Generation in the Marine Environment Through Degradation and Fragmentation

    Science.gov (United States)

    Perryman, M. E.; Jambeck, J.; Woodson, C. B.; Locklin, J.

    2016-02-01

    Plastic use has become requisite in our global economy; as population continues to increase, so too, will plastic production. At its end-of-life, some amount of plastic is mismanaged and ends up in the ocean. Once there, various environmental stresses eventually fragment plastic into microplastic pieces, now ubiquitous in the marine environment. Microplastics pose a serious threat to marine biota and possibly humans. Though the general mechanisms of microplastic formation are known, the rate and extent is not. Currently, no standard methodology for testing the formation of microplastic exists. We developed a replicable and flexible methodology for testing the formation of microplastics. We used this methodology to test the effects of UV, thermal, and mechanical stress on various types of plastic. We tested for fragmentation by measuring weight and size distribution, and looked for signs of degraded plastic using Fourier transform infrared spectroscopy. Though our results did not find any signs of fragmentation, we did see degradation. Additionally, we established a sound methodology and provided a benchmark for additional studies.

  3. Exact Solutions of Fragmentation Equations with General Fragmentation Rates and Separable Particles Distribution Kernels

    Directory of Open Access Journals (Sweden)

    S. C. Oukouomi Noutchie

    2014-01-01

    Full Text Available We make use of Laplace transform techniques and the method of characteristics to solve fragmentation equations explicitly. Our result is a breakthrough in the analysis of pure fragmentation equations as this is the first instance where an exact solution is provided for the fragmentation evolution equation with general fragmentation rates. This paper is the key for resolving most of the open problems in fragmentation theory including “shattering” and the sudden appearance of infinitely many particles in some systems with initial finite particles number.

  4. Loneliness is associated with sleep fragmentation in a communal society.

    Science.gov (United States)

    Kurina, Lianne M; Knutson, Kristen L; Hawkley, Louise C; Cacioppo, John T; Lauderdale, Diane S; Ober, Carole

    2011-11-01

    Loneliness has been shown to predict poor health. One hypothesized mechanism is that lonely individuals do not sleep as well as individuals who feel more connected to others. Our goal was to test whether loneliness is associated with sleep fragmentation or sleep duration. Cross-sectional study. Members of a traditional, communal, agrarian society living in South Dakota. Ninety-five participants (mean age 39.8 years, 55% female) who were ≥ 19 years of age at the study's inception. Not applicable. We conducted interviews querying loneliness, depression, anxiety, and stress, as well as subjective sleep quality and daytime sleepiness. Study participants wore a wrist actigraph for one week to measure objective sleep properties; the two studied here were sleep fragmentation and sleep duration. Higher loneliness scores were associated with significantly higher levels of sleep fragmentation (β = 0.073, t = 2.55, P = 0.01), controlling for age, sex, body mass index, risk of sleep apnea, and negative affect (a factor comprising symptoms of depression and anxiety, and perceived stress). Loneliness was not associated with sleep duration or with either subjective sleep measure. Loneliness was a significant predictor of sleep fragmentation. Humans' social nature may partly be manifest through our dependence on feeling secure in our social environment to sleep well.

  5. Sleep fragmentation and false memories during pregnancy and motherhood.

    Science.gov (United States)

    Berndt, Christiane; Diekelmann, Susanne; Alexander, Nina; Pustal, Anne; Kirschbaum, Clemens

    2014-06-01

    Pregnant women, both before and after childbirth, frequently experience memory deficits and disrupted sleep. In the present study we assessed the relationship between false memory generation and fragmented sleep during pregnancy and motherhood. We tested 178 pregnant women and 58 female non-pregnant childless controls, during pregnancy (15-35th week of gestation) and again after childbirth (8-13th month). False memories were defined as memories of gist words that were semantically related to studied word lists but were not presented during learning of these lists in the Deese-Roediger-McDermott (DRM) paradigm. Sleep was monitored by actigraphy in the home environment for seven consecutive nights. Compared to the controls, the group of pregnant women produced more false memories and displayed more fragmented sleep both during pregnancy and after childbirth. However, false memory generation was not correlated to measures of sleep fragmentation. These results show that pregnant women suffer from sleep fragmentation and a higher susceptibility to false memories, but leave open the question as to whether both phenomena are related. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Artificial nest experiments in a fragmented neotropical cloud forest

    Science.gov (United States)

    Trujillo, G.; Ahumada, J.A.

    2005-01-01

    We conducted artificial nest experiments in a Neotropical montane forest in the eastern Andes, Colombia, in order to test the effect of placing the nests in forest fragments or continuous forests, at two nest heights and for two different climatic seasons. Predation was not consistently different between nests placed in fragments and controls. However, we found that nests on the ground had a higher daily probability of being predated than nests in the understory. Also, daily nest mortality rate (DNM) was higher in the wet season than in the dry season. Most of the predated nests were attributed to mammals (56%), and predation occurred mostly on the ground (78%). Our estimates of DNM are quite low (= 0.023) and similar to another Neotropical montane forest and other Neotropical sites. Comparisons of DNM between Neotropical and temperate sites suggests that predation rates are similar. Our results suggest that fragmentation may not have a large negative impact in nest predation for bird populations breeding in fragments compared to other sites in tropical and temperate regions. ?? The Neotropical Ornithological Society.

  7. Neutron emission and fragment yield in high-energy fission

    International Nuclear Information System (INIS)

    Grudzevich, O. T.; Klinov, D. A.

    2013-01-01

    The KRIS special library of spectra and emission probabilities in the decays of 1500 nuclei excited up to energies between 150 and 250 MeV was developed for correctly taking into account the decay of highly excited nuclei appearing as fission fragments. The emission of neutrons, protons, and photons was taken into account. Neutron emission fromprimary fragments was found to have a substantial effect on the formation of yields of postneutron nuclei. The library was tested by comparing the calculated and measured yields of products originating from the fission of nuclei that was induced by high-energy protons. The method for calculating these yields was tested on the basis of experimental data on the thermal-neutroninduced fission of 235 U nuclei

  8. Analysis methods for Kevlar shield response to rotor fragments

    Science.gov (United States)

    Gerstle, J. H.

    1977-01-01

    Several empirical and analytical approaches to rotor burst shield sizing are compared and principal differences in metal and fabric dynamic behavior are discussed. The application of transient structural response computer programs to predict Kevlar containment limits is described. For preliminary shield sizing, present analytical methods are useful if insufficient test data for empirical modeling are available. To provide other information useful for engineering design, analytical methods require further developments in material characterization, failure criteria, loads definition, and post-impact fragment trajectory prediction.

  9. Filamentary fragmentation in a turbulent medium

    Science.gov (United States)

    Clarke, S. D.; Whitworth, A. P.; Duarte-Cabral, A.; Hubber, D. A.

    2017-06-01

    We present the results of smoothed particle hydrodynamic simulations investigating the evolution and fragmentation of filaments that are accreting from a turbulent medium. We show that the presence of turbulence and the resulting inhomogeneities in the accretion flow play a significant role in the fragmentation process. Filaments that experience a weakly turbulent accretion flow fragment in a two-tier hierarchical fashion, similar to the fragmentation pattern seen in the Orion Integral Shaped Filament. Increasing the energy in the turbulent velocity field results in more sub-structure within the filaments, and one sees a shift from gravity-dominated fragmentation to turbulence-dominated fragmentation. The sub-structure formed in the filaments is elongated and roughly parallel to the longitudinal axis of the filament, similar to the fibres seen in observations of Taurus, and suggests that the fray and fragment scenario is a possible mechanism for the production of fibres. We show that the formation of these fibre-like structures is linked to the vorticity of the velocity field inside the filament and the filament's accretion from an inhomogeneous medium. Moreover, we find that accretion is able to drive and sustain roughly sonic levels of turbulence inside the filaments, but is not able to prevent radial collapse once the filaments become supercritical. However, the supercritical filaments that contain fibre-like structures do not collapse radially, suggesting that fibrous filaments may not necessarily become radially unstable once they reach the critical line-density.

  10. Fragmentation in DNA double-strand breaks

    International Nuclear Information System (INIS)

    Wei Zhiyong; Suzhou Univ., Suzhou; Zhang Lihui; Li Ming; Fan Wo; Xu Yujie

    2005-01-01

    DNA double strand breaks are important lesions induced by irradiations. Random breakage model or quantification supported by this concept is suitable to analyze DNA double strand break data induced by low LET radiation, but deviation from random breakage model is more evident in high LET radiation data analysis. In this work we develop a new method, statistical fragmentation model, to analyze the fragmentation process of DNA double strand breaks. After charged particles enter the biological cell, they produce ionizations along their tracks, and transfer their energies to the cells and break the cellular DNA strands into fragments. The probable distribution of the fragments is obtained under the condition in which the entropy is maximum. Under the approximation E≅E 0 + E 1 l + E 2 l 2 , the distribution functions are obtained as exp(αl + βl 2 ). There are two components, the one proportional to exp(βl 2 ), mainly contributes to the low mass fragment yields, the other component, proportional to exp(αl), decreases slowly as the mass of the fragments increases. Numerical solution of the constraint equations provides parameters α and β. Experimental data, especially when the energy deposition is higher, support the statistical fragmentation model. (authors)

  11. Evaluation of thermobarometry for spinel lherzolite fragments in alkali basalts

    Science.gov (United States)

    Ozawa, Kazuhito; Youbi, Nasrrddine; Boumehdi, Moulay Ahmed; McKenzie, Dan; Nagahara, Hiroko

    2017-04-01

    various method of estimation of ascent rate of mantle fragments in kimberlite and alkali basalt; one based on fluid dynamics of transportation of entrapped fragments by giving the maximum size and viscosity of magma as a minimum estimate (Spera, 1980) and the other by coupling depth of fragment residence before the entrapment in a magma and time scale of heating by the magma. The depth of entrapment, however, is the least known parameter for spinel lherzolite. Because of nearly adiabatic ascent of magmas loaded with solid fragments, all the fragments underwent the same heating and decompression history with difference in entrapment depth and thus heating duration, from which the depth of their residence just before the extraction may be estimated if ascent rate is known. Therefore, extent of chemical and textural modification induced by heating and decompression may provide independent test for pressure estimation. We have used several reactions for this purpose: (1) Mg-Fe exchange reaction between spinel and olivine (Ozawa, 1983; 1984), (2) Ca zoning in olivine (Takahashi, 1980), (3) partial dissolution of clinopyroxene, (4) partial dissolution of spinel, and (5) formation of melt frozen as glass, which is related to (3) and (4). The depth of melt generation is constrained to be deeper than 70km by modeling the trace element compositions of the host magmas using the methods of McKenzie and O'Nions (1991) and data from El Azzouzi et al. (2010). The host magmas can be produced by melting the convecting upper mantle without requirement of any input from the continental lithosphere. This is consistent with the positive gravity anomalies in the NW Africa showing shallow upwelling in this region allowing decompressional melting owing to the thinner lithosphere in the Middle Atlas.

  12. Fragmentation in the branching coral Acropora palmata (Lamarck): growth, survivorship, and reproduction of colonies and fragments.

    Science.gov (United States)

    Lirman

    2000-08-23

    Acropora palmata, a branching coral abundant on shallow reef environments throughout the Caribbean, is susceptible to physical disturbance caused by storms. Accordingly, the survivorship and propagation of this species are tied to its capability to recover after fragmentation. Fragments of A. palmata comprised 40% of ramets within populations that had experienced recent storms. While the survivorship of A. palmata fragments was not directly related to the size of fragments, removal of fragments from areas where they settled was influenced by size. Survivorship of fragments was also affected by type of substratum; the greatest mortality (58% loss within the first month) was observed on sand, whereas fragments placed on top of live colonies of A. palmata fused to the underlying tissue and did not experience any losses. Fragments created by Hurricane Andrew on a Florida reef in August 1992 began developing new growth (proto-branches) 7 months after the storm. The number of proto-branches on fragments was dependent on size, but growth was not affected by the size of fragments. Growth-rates of proto-branches increased exponentially with time (1.7 cm year(-1) for 1993-1994, 2.7 cm year(-1) for 1994-1995, 4.2 cm year(-1) for 1995-1996, and 6.5 cm year(-1) for 1996-1997), taking over 4 years for proto-branches to achieve rates comparable to those of adult colonies on the same reef (6.9 cm year(-1)). In addition to the initial mortality and reduced growth-rates, fragmentation resulted in a loss of reproductive potential. Neither colonies that experienced severe fragmentation nor fragments contained gametes until 4 years after the initial damage. Although A. palmata may survive periodic fragmentation, the long-term effects of this process will depend ultimately on the balance between the benefits and costs of this process.

  13. Gluon fragmentation into 3 PJ quarkonium

    International Nuclear Information System (INIS)

    Ma, J.P.

    1995-01-01

    The functions of the gluon fragmentation into 3 P j quarkonium are calculated to order α 2 s . With the recent progress in analysing quarkonium systems in QCD it is possible show how the so called divergence in the limit of the zero-binding energy, which is related to P-wave quarkonia, is treated correctly in the case of fragmentation functions. The obtained fragmentation functions satisfy explicitly at the order of α 2 s the Altarelli-Parisi equation and when z → 0 they behave as z -1 as expected. 19 refs., 7 figs

  14. Bone fragments a body can make

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S.D.; Ross, L.M. Jr. (Department of Anthropology, University of Missouri, Columbia (USA))

    1991-05-01

    Data obtained from various analytical techniques applied to a number of small bone fragments recovered from a crime scene were used to provide evidence for the occurrence of a fatality. Microscopic and histomorphometric analyses confirmed that the fragments were from a human skull. X-ray microanalysis of darkened areas on the bone fragments revealed a chemical signature that matched the chemical signature of a shotgun pellet recovered at the scene of the crime. The above findings supported the deoxyribonucleic acid (DNA) fingerprint evidence which, along with other evidence, was used to convict a man for the murder of his wife, even though her body was never recovered.

  15. Heart Rate Fragmentation: A Symbolic Dynamical Approach

    Directory of Open Access Journals (Sweden)

    Madalena D. Costa

    2017-11-01

    Full Text Available Background: We recently introduced the concept of heart rate fragmentation along with a set of metrics for its quantification. The term was coined to refer to an increase in the percentage of changes in heart rate acceleration sign, a dynamical marker of a type of anomalous variability. The effort was motivated by the observation that fragmentation, which is consistent with the breakdown of the neuroautonomic-electrophysiologic control system of the sino-atrial node, could confound traditional short-term analysis of heart rate variability.Objective: The objectives of this study were to: (1 introduce a symbolic dynamical approach to the problem of quantifying heart rate fragmentation; (2 evaluate how the distribution of the different dynamical patterns (“words” varied with the participants' age in a group of healthy subjects and patients with coronary artery disease (CAD; and (3 quantify the differences in the fragmentation patterns between the two sample populations.Methods: The symbolic dynamical method employed here was based on a ternary map of the increment NN interval time series and on the analysis of the relative frequency of symbolic sequences (words with a pre-defined set of features. We analyzed annotated, open-access Holter databases of healthy subjects and patients with CAD, provided by the University of Rochester Telemetric and Holter ECG Warehouse (THEW.Results: The degree of fragmentation was significantly higher in older individuals than in their younger counterparts. However, the fragmentation patterns were different in the two sample populations. In healthy subjects, older age was significantly associated with a higher percentage of transitions from acceleration/deceleration to zero acceleration and vice versa (termed “soft” inflection points. In patients with CAD, older age was also significantly associated with higher percentages of frank reversals in heart rate acceleration (transitions from acceleration to

  16. The energetics of running stability: costs of transport in grass-cutting ants depend on fragment shape.

    Science.gov (United States)

    Moll, Karin; Federle, Walter; Roces, Flavio

    2012-01-01

    Grass-cutting ants (Atta vollenweideri) carry fragments that can be many times heavier and longer than the ants themselves and it is important for them to avoid falling over during load transport. To investigate whether the energetic costs of transport are affected by the need to maintain stability, the rate of CO(2) production was measured in both unladen workers and workers carrying standardized paper fragments of different size and shape. We tested: (1) the effect of mass by comparing workers carrying either light or heavy fragments of the same size, and (2) the effect of shape by comparing short and long fragments of the same mass. Consistent with previous studies, metabolic rate increased but running speed remained constant when ants carried heavier fragments. The net cost of transport (normalized to the total mass of ant and fragment) was the same for heavy and light fragments, and did not differ from the costs of carrying a unit body mass. Ants carrying long fragments showed similar metabolic rates but ran significantly slower than ants carrying short fragments. As a consequence, net cost of transport was significantly higher for long fragments than for short ones, and higher than the costs of carrying a unit body mass. The observed reduction in running speed is likely a result of the ants' need to maintain stability. When the absolute costs of transport were compared, smaller ants required more energy to carry heavier and longer fragments than larger workers, but the opposite was found for lighter and shorter fragments. The absolute costs of transport per unit fragment mass suggest that it is energetically advantageous for a colony to allocate smaller workers for the transport of small fragments and larger workers for large fragments. The present results underline the importance of biomechanical factors for the understanding of leaf-cutting ant foraging strategies.

  17. Lead bullet fragments in venison from rifle-killed deer: potential for human dietary exposure.

    Directory of Open Access Journals (Sweden)

    W Grainger Hunt

    Full Text Available Human consumers of wildlife killed with lead ammunition may be exposed to health risks associated with lead ingestion. This hypothesis is based on published studies showing elevated blood lead concentrations in subsistence hunter populations, retention of ammunition residues in the tissues of hunter-killed animals, and systemic, cognitive, and behavioral disorders associated with human lead body burdens once considered safe. Our objective was to determine the incidence and bioavailability of lead bullet fragments in hunter-killed venison, a widely-eaten food among hunters and their families. We radiographed 30 eviscerated carcasses of White-tailed Deer (Odocoileus virginianus shot by hunters with standard lead-core, copper-jacketed bullets under normal hunting conditions. All carcasses showed metal fragments (geometric mean = 136 fragments, range = 15-409 and widespread fragment dispersion. We took each carcass to a separate meat processor and fluoroscopically scanned the resulting meat packages; fluoroscopy revealed metal fragments in the ground meat packages of 24 (80% of the 30 deer; 32% of 234 ground meat packages contained at least one fragment. Fragments were identified as lead by ICP in 93% of 27 samples. Isotope ratios of lead in meat matched the ratios of bullets, and differed from background lead in bone. We fed fragment-containing venison to four pigs to test bioavailability; four controls received venison without fragments from the same deer. Mean blood lead concentrations in pigs peaked at 2.29 microg/dL (maximum 3.8 microg/dL 2 days following ingestion of fragment-containing venison, significantly higher than the 0.63 microg/dL averaged by controls. We conclude that people risk exposure to bioavailable lead from bullet fragments when they eat venison from deer killed with standard lead-based rifle bullets and processed under normal procedures. At risk in the U.S. are some ten million hunters, their families, and low

  18. The influence of habitat fragmentation on multiple plant-animal interactions and plant reproduction.

    Science.gov (United States)

    Brudvig, Lars A; Damschen, Ellen I; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2015-10-01

    Despite broad recognition that habitat loss represents the greatest threat to the world's biodiyersity, a mechanistic understanding of how habitat loss and associated fragmentation affect ecological systems has proven remarkably challenging. The challenge stems from the multiple interdependent ways that landscapes change following fragmentation and the ensuing complex impacts on populations and communities of interacting species. We confronted these challenges by evaluating how fragmentation affects individual plants through interactions with animals, across five herbaceous species native to longleaf pine savannas. We created a replicated landscape experiment that provides controlled tests of three major fragmentation effects (patch isolation, patch shape [i.e., edge-to-area ratio], and distance to edge), established experimental founder populations of the five species to control for spatial distributions and densities of individual plants, and employed structural equation modeling to evaluate the effects of fragmentation on plant reproductive output and the degree to which these impacts are mediated through altered herbivory, pollination, or pre-dispersal seed predation. Across species, the most consistent response to fragmentation was a reduction in herbivory. Herbivory, however, had little impact.on plant reproductive output, and thus we found little evidence for any resulting benefit to plants in fragments. In contrast, fragmentation rarely impacted pollination or pre-dispersal seed predation, but both of these interactions had strong and consistent impacts on plant reproductive output. As a result, our models robustly predicted plant reproductive output (r2 = 0.52-0.70), yet due to the weak effects of fragmentation on pollination and pre-dispersal seed predation, coupled with the weak effect of herbivory on plant reproduction, the effects of fragmentation on reproductive output were generally small in magnitude and inconsistent. This work provides mechanistic

  19. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    Science.gov (United States)

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Complementary DNA-amplified fragment length polymorphism ...

    African Journals Online (AJOL)

    Complementary DNA-amplified fragment length polymorphism (AFLP-cDNA) analysis of differential gene expression from the xerophyte Ammopiptanthus mongolicus in response to cold, drought and cold together with drought.

  1. Relationship between morphological and amplified fragment length ...

    African Journals Online (AJOL)

    Relationship between morphological and amplified fragment length polymorphism (AFLP) marker based genetic distance with heterosis in hot pepper (Capsicum annuum L.) SL Krishnamurthy, A Mohan Rao, K Madhavi Reddy, S Ramesh, Shailaja Hittalmani, Rao M. Gopinath ...

  2. Extraction of 16th Century Calender Fragments

    DEFF Research Database (Denmark)

    Holck, Jakob Povl; Etheridge, Christian

    The extraction of the calendar fragments requires a careful dissolvement of the old bookbinder’s glue and a meticulous detachment of each calendar leaf. For documentation, each leaf is being photographed by the conservator of Odense City Museums. The 1580 book has an outer cover of parchment made...... at the Cultural Heritage & Archaeometric Research Team, SDU. Upon finding medieval manuscript fragments in the university library’s special collections, scholars at the Centre for Medieval Literature are consulted. In most cases, digital pictures of the finds will circulate in the international community...... of medieval scholars. Thousands of 16th and 17th Century books are stored in the University Library of Southern Denmark. One out of five of these books is expected to contain medieval manuscript fragments or fragments of rare prints, e.g. incunabula....

  3. An improved algorithm for MFR fragment assembly

    International Nuclear Information System (INIS)

    Kontaxis, Georg

    2012-01-01

    A method for generating protein backbone models from backbone only NMR data is presented, which is based on molecular fragment replacement (MFR). In a first step, the PDB database is mined for homologous peptide fragments using experimental backbone-only data i.e. backbone chemical shifts (CS) and residual dipolar couplings (RDC). Second, this fragment library is refined against the experimental restraints. Finally, the fragments are assembled into a protein backbone fold using a rigid body docking algorithm using the RDCs as restraints. For improved performance, backbone nuclear Overhauser effects (NOEs) may be included at that stage. Compared to previous implementations of MFR-derived structure determination protocols this model-building algorithm offers improved stability and reliability. Furthermore, relative to CS-ROSETTA based methods, it provides faster performance and straightforward implementation with the option to easily include further types of restraints and additional energy terms.

  4. The NJL Model for Quark Fragmentation Functions

    Energy Technology Data Exchange (ETDEWEB)

    T. Ito, W. Bentz, I. Cloet, A W Thomas, K. Yazaki

    2009-10-01

    A description of fragmentation functions which satisfy the momentum and isospin sum rules is presented in an effective quark theory. Concentrating on the pion fragmentation function, we first explain the reason why the elementary (lowest order) fragmentation process q → qπ is completely inadequate to describe the empirical data, although the “crossed” process π → qq describes the quark distribution functions in the pion reasonably well. Then, taking into account cascade-like processes in a modified jet-model approach, we show that the momentum and isospin sum rules can be satisfied naturally without introducing any ad-hoc parameters. We present numerical results for the Nambu-Jona-Lasinio model in the invariant mass regularization scheme, and compare the results with the empirical parametrizations. We argue that this NJL-jet model provides a very useful framework to calculate the fragmentation functions in an effective chiral quark theory.

  5. An improved algorithm for MFR fragment assembly.

    Science.gov (United States)

    Kontaxis, Georg

    2012-06-01

    A method for generating protein backbone models from backbone only NMR data is presented, which is based on molecular fragment replacement (MFR). In a first step, the PDB database is mined for homologous peptide fragments using experimental backbone-only data i.e. backbone chemical shifts (CS) and residual dipolar couplings (RDC). Second, this fragment library is refined against the experimental restraints. Finally, the fragments are assembled into a protein backbone fold using a rigid body docking algorithm using the RDCs as restraints. For improved performance, backbone nuclear Overhauser effects (NOEs) may be included at that stage. Compared to previous implementations of MFR-derived structure determination protocols this model-building algorithm offers improved stability and reliability. Furthermore, relative to CS-ROSETTA based methods, it provides faster performance and straightforward implementation with the option to easily include further types of restraints and additional energy terms.

  6. Fragmentation of Care in Ectopic Pregnancy.

    Science.gov (United States)

    Stulberg, Debra B; Dahlquist, Irma; Jarosch, Christina; Lindau, Stacy T

    2016-05-01

    Ectopic pregnancy is an important cause of maternal morbidity and mortality. Women who experience fragmented care may undergo unnecessary delays to diagnosis and treatment. Based on ectopic pregnancy cases observed in clinical practice that raised our concern about fragmentation of care, we designed an exploratory study to describe the number, characteristics, and outcomes of fragmented care among patients with ectopic pregnancy at one urban academic hospital. Chart review with descriptive statistics. Fragmented care was defined as a patient being evaluated at an outside facility for possible ectopic pregnancy and transferred, referred, or discharged before receiving care at the study institution. Of 191 women seen for possible or definite ectopic pregnancy during the study period, 42 (22 %) met the study definition of fragmented care. The study was under-powered to observe statistically significant differences across groups, but we found concerning, non-significant trends: patients with fragmented care were more likely to be Medicaid recipients (65.9 vs. 58.8 %) and to experience a complication (23.8 vs. 18.1 %) compared to those with non-fragmented care. Most patients (n = 37) received no identifiable treatment prior to transfer and arrived to the study hospital with no communication to the receiving hospital from the outside provider (n = 34). Nine patients (21 %) presented with ruptured ectopic pregnancies. The fragmentation we observed in our study may contribute to previously identified socio-economic disparities in ectopic pregnancy outcomes. If future research confirms these findings, health information exchanges and regional coordination of care may be important strategies for reducing maternal mortality.

  7. Quark fragmentation into 3PJ quarkonium

    International Nuclear Information System (INIS)

    Ma, J.P.

    1996-01-01

    The functions of parton fragmentation into 3 P J quarkonium at order α 2 s are calculated, where the parton can be a heavy or a light quark. The obtained functions explicitly satisfy the Altarelli-Parisi equation and they are divergent, behaving as z -1 near z = O. However, if one choses the renormalization scale as twice of the heavy quark mass, the fragmentation functions are regular over the whole range of z. 15 refs., 2 figs

  8. The lund Monte Carlo for jet fragmentation

    International Nuclear Information System (INIS)

    Sjoestrand, T.

    1982-03-01

    We present a Monte Carlo program based on the Lund model for jet fragmentation. Quark, gluon, diquark and hadron jets are considered. Special emphasis is put on the fragmentation of colour singlet jet systems, for which energy, momentum and flavour are conserved explicitly. The model for decays of unstable particles, in particular the weak decay of heavy hadrons, is described. The central part of the paper is a detailed description on how to use the FORTRAN 77 program. (Author)

  9. Habitat fragmentation differentially affects trophic levels and alters behavior in a multi-trophic marine system.

    Science.gov (United States)

    Rielly-Carroll, Elizabeth; Freestone, Amy L

    2017-03-01

    Seagrass, an important subtidal marine ecosystem, is being lost at a rate of 110 km 2  year -1 , leading to fragmented seagrass seascapes. Habitat fragmentation is predicted to affect trophic levels differently, with higher trophic levels being more sensitive, stressing the importance of a multi-trophic perspective. Utilizing the trophic relationship between the blue crab (Callinectes sapidus) and hard clam (Mercenaria mercenaria), where adult blue crabs prey on juvenile blue crabs, and juvenile blue crabs prey on small hard clams, we examined whether predation rates, abundance, and behavior of predators and prey differed between continuous and fragmented seagrass in a multi-trophic context at two sites in Barnegat Bay, NJ. We tested the hypothesis that fragmented habitats would differentially affect trophic levels within a tri-trophic system, and our results supported this hypothesis. Densities of adult blue crabs were higher in fragmented than continuous habitats. Densities of juvenile blue crabs, the primary predator of hard clams, were lower in fragmented habitats than continuous, potentially due to increased predation by adult blue crabs. Clams experienced lower predation and burrowed to a shallower depth in fragmented habitats than in continuous habitat, likely due in part to the low densities of juvenile blue crabs, their primary predator. Our results suggest that while trophic levels are differentially affected, the impact of habitat fragmentation may be stronger on intermediate rather than top trophic levels in some marine systems.

  10. Fragmentation of molten core material by sodium

    International Nuclear Information System (INIS)

    Chu, T.Y.

    1982-01-01

    A series of scoping experiments was performed to study the fragmentation of prototypic high temperature melts in sodium. The quantity of melt involved was at least one order of magnitude larger than previous experiments. Two modes of contact were used: melt streaming into sodium and sodium into melt. The average bulk fragment size distribution was found to be in the range of previous data and the average size distribution was found to be insensitive to mode of contact. SEM studies showed that the metal component typically fragmented in the molten phase while the oxide component fragmented in the solid phase. For UO 2 -ZrO 2 /stainless steel melts no sigificant spatial separation of the metal and oxide was observed. The fragment size distribution was stratified vertically in the debris bed in all cases. While the bulk fragment size showed generally consistent trends, the individual experiments were sufficiently different to cause different degrees of stratification in the debris bed. For the highly stratified beds the permeability can decrease by as much as a factor of 20 from the bottom to the top of the bed

  11. Microstructural characterization of pipe bomb fragments

    International Nuclear Information System (INIS)

    Gregory, Otto; Oxley, Jimmie; Smith, James; Platek, Michael; Ghonem, Hamouda; Bernier, Evan; Downey, Markus; Cumminskey, Christopher

    2010-01-01

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of the smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.

  12. Recent results from the PEP4-TPC on quark fragmentation

    International Nuclear Information System (INIS)

    Hofmann, W.

    1983-01-01

    The physics goals for the PEP-4/PEP-9 experiment concentrate on two areas: the fragmentation properties of quarks and gluons produced in e+e- annihilation, and the investigation of hadron production in 2-photon collisions. Only the first of these topics is addressed. Despite the many successes of QCD in the description of deep inelastic reactions, the basic fragmentation process of quarks and gluons is not very well understood. This lack of knowledge has been shown to jeopardize precise test of QCD, such as the accurate determination of the strong coupling constant. With its ability to disentangle complex hadronic events and to identify most of the final state particles, the TPC allows new and more sensitive tests of fragmentation models. A brief description of the detector is given and particle identification by ionization energy loss is described. Next, the inclusive production of stable hadrons and of resonances is discussed, and limits on the inclusive production of fractional charged particles are given. A new analysis of long-range correlations in e+e- annihilation is given

  13. Fragment library design: using cheminformatics and expert chemists to fill gaps in existing fragment libraries.

    Science.gov (United States)

    Kutchukian, Peter S; So, Sung-Sau; Fischer, Christian; Waller, Chris L

    2015-01-01

    Fragment based screening (FBS) has emerged as a mainstream lead discovery strategy in academia, biotechnology start-ups, and large pharma. As a prerequisite of FBS, a structurally diverse library of fragments is desirable in order to identify chemical matter that will interact with the range of diverse target classes that are prosecuted in contemporary screening campaigns. In addition, it is also desirable to offer synthetically amenable starting points to increase the probability of a successful fragment evolution through medicinal chemistry. Herein we describe a method to identify biologically relevant chemical substructures that are missing from an existing fragment library (chemical gaps), and organize these chemical gaps hierarchically so that medicinal chemists can efficiently navigate the prioritized chemical space and subsequently select purchasable fragments for inclusion in an enhanced fragment library.

  14. Looking for bimodal distributions in multi-fragmentation reactions

    International Nuclear Information System (INIS)

    Gulminelli, F.

    2007-01-01

    The presence of a phase transition in a finite system can be deduced, together with its order, from the form of the distribution of the order parameter. This issue has been extensively studied in multifragmentation experiments, with results that do not appear fully consistent. In this paper we discuss the effect of the statistical ensemble or sorting conditions on the form of fragment distributions, and propose a new method, which can be easily implemented experimentally, to discriminate between different fragmentation scenarios. This method, based on a re-weighting of the measured distribution to account for the experimental constraints linked to the energy deposit, is tested on different simple models, and appears to provide a powerful discrimination. (author)

  15. On the fragmentation of biomolecules: Fragmentation of alanine dipeptide along the polypeptide chain

    International Nuclear Information System (INIS)

    Solov'yov, I. A.; Yakubovich, A. V.; Solov'yov, A. V.; Greiner, W.

    2006-01-01

    The interaction potential between amino acids in alanine dipeptide has been studied for the first time taking into account exact molecular geometry. Ab initio calculation has been performed in the framework of density functional theory taking into account all electrons in the system. The fragmentation of dipeptide along the polypeptide chain, as well as the interaction between alanines, has been considered. The energy of the system has been analyzed as a function of the distance between fragments for all possible dipeptide fragmentation channels. Analysis of the energy barriers makes it possible to estimate the characteristic fragmentation times and to determine the degree of applicability of classical electrodynamics for describing the system energy

  16. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Nityananda; Gadre, Shridhar R., E-mail: gadre@iitk.ac.in [Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2016-03-21

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 3{sub 10}- and α-helix of acetyl(alanine){sub n}NH{sub 2} (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm{sup −1} is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine){sub 20} and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  17. Vibrational infrared and Raman spectra of polypeptides: Fragments-in-fragments within molecular tailoring approach

    Science.gov (United States)

    Sahu, Nityananda; Gadre, Shridhar R.

    2016-03-01

    The present work reports the calculation of vibrational infrared (IR) and Raman spectra of large molecular systems employing molecular tailoring approach (MTA). Further, it extends the grafting procedure for the accurate evaluation of IR and Raman spectra of large molecular systems, employing a new methodology termed as Fragments-in-Fragments (FIF), within MTA. Unlike the previous MTA-based studies, the accurate estimation of the requisite molecular properties is achieved without performing any full calculations (FC). The basic idea of the grafting procedure is implemented by invoking the nearly basis-set-independent nature of the MTA-based error vis-à-vis the respective FCs. FIF has been tested out for the estimation of the above molecular properties for three isomers, viz., β-strand, 310- and α-helix of acetyl(alanine)nNH2 (n = 10, 15) polypeptides, three conformers of doubly protonated gramicidin S decapeptide and trpzip2 protein (PDB id: 1LE1), respectively, employing BP86/TZVP, M06/6-311G**, and M05-2X/6-31G** levels of theory. For most of the cases, a maximum difference of 3 cm-1 is achieved between the grafted-MTA frequencies and the corresponding FC values. Further, a comparison of the BP86/TZVP level IR and Raman spectra of α-helical (alanine)20 and its N-deuterated derivative shows an excellent agreement with the existing experimental spectra. In view of the requirement of only MTA-based calculations and the ability of FIF to work at any level of theory, the current methodology provides a cost-effective solution for obtaining accurate spectra of large molecular systems.

  18. High Fragmentation Steel Production Process

    Science.gov (United States)

    1981-08-01

    martensite with very little amounts of retained austenite. This sample was austenitized at 804"C (1480oF). lOOOx 46 HF-1 As-Quenched Structures iyr ...MATERIAL WILL BE USED IN PERFC»MANCE OF A MM 5 T TEST PROGRAM WIDER A GOVERNPIENT CONTRACT tDAAAOS-T^C-^OCS. JT IS DcSL^ tD THAT YOUR NORTAL^ ROUTINE...TEliS CHART NO.t015𔃿-L /,- _., td &fa&rt 6^ Ok * L-tlT. ^l ̂ : i | .. i roa ■ - • : ’ TCAT ^ ■ SERIAL ..u.r

  19. Numerical solution of Q evolution equations for fragmentation functions

    Science.gov (United States)

    Hirai, M.; Kumano, S.

    2012-04-01

    Semi-inclusive hadron-production processes are becoming important in high-energy hadron reactions. They are used for investigating properties of quark-hadron matters in heavy-ion collisions, for finding the origin of nucleon spin in polarized lepton-nucleon and nucleon-nucleon reactions, and possibly for finding exotic hadrons. In describing the hadron-production cross sections in high-energy reactions, fragmentation functions are essential quantities. A fragmentation function indicates the probability of producing a hadron from a parton in the leading order of the running coupling constant αs. Its Q dependence is described by the standard DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) evolution equations, which are often used in theoretical and experimental analyses of the fragmentation functions and in calculating semi-inclusive cross sections. The DGLAP equations are complicated integro-differential equations, which cannot be solved in an analytical method. In this work, a simple method is employed for solving the evolution equations by using Gauss-Legendre quadrature for evaluating integrals, and a useful code is provided for calculating the Q evolution of the fragmentation functions in the leading order (LO) and next-to-leading order (NLO) of αs. The renormalization scheme is MSbar in the NLO evolution. Our evolution code is explained for using it in one's studies on the fragmentation functions. Catalogue identifier: AELJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1535 No. of bytes in distributed program, including test data, etc.: 10 191 Distribution format: tar.gz Programming language: Fortran77 Computer: Tested on an HP DL360G5-DC-X5160 Operating system: Linux 2.6.9-42.ELsmp RAM: 130 M

  20. Improvement of the method of obtaining human IgA Fc-fragments

    Directory of Open Access Journals (Sweden)

    O. Y. Galkin

    2015-02-01

    Full Text Available To address a number of fundamental and applied problems in immunology, molecular and cellular biology and biotechnology it is necessary to obtain Fc-fragments of immunoglobulins. Fc-fragments may be used for studying of the effector functions of antibodies which are mediated by these areas. They are often used as an immunogen to produce anti-specie (based on so-called secondary antibody conjugate in the development of serological tests for diagnostics (predominantly such conjugate based on monoclonal antibodies. The work is aimed to develop improved methods of obtaining and allocation of Fc-fragments of human IgA. To achieve this objective, optimization of hydrolysis of IgA with subsequent purification of Fс-fragments have been carried out. Improved method of obtaining Fc-fragments of IgA provides: papain hydrolysis of immunoglobulin in the environment of nitrogen for 4 h, allowing to achieve maximum output of Fc-fragments without their further degradation: isolation and purification of Fc-fragments of human IgA by one-stage gel filtration on sephadex G-100; control of purity of the target product by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate and Ouchterlony immunodiffusion. Enzymatic hydrolysis was carried out at the optimal temperature of papain (37 °C. As the oxygen in the air may have inhibitory effect on enzymatic hydrolysis reaction, the reaction mixture was incubated in the nitrogen atmosphere to prevent inactivation of papain. To reduce the incident degradation of immunoglobulin molecules, papain hydrolysis was carried out without using an enzyme activator (cysteine. Usage of the proposed scheme allows obtaining Fc-fragments of human IgA of high purity. Outcome of Fc-fragments after all stages of purification was about 18% of the initial amount of IgA in the preparation. Molecular weight from Fc-fragments of human IgA was equal to approximately 70 kDa.

  1. Investigation on laser induced salivary stone fragmentation

    Science.gov (United States)

    Sroka, Ronald; Pongratz, Thomas; Eder, Matthias; Domes, Mona; Vogeser, Michael; Johnson, Thorsten; Siedeck, Vanessa; Schroetzlmair, Florian; Zengel, Pamela

    2014-03-01

    Objective: It was the objective of this in-vitro study to investigate photon-based techniques for identifying the composition and fragmentation of salivary stones using a Ho:YAG laser. Materials and Method: Salivary stones (n=47) extracted from patients with clinical symptoms of sialolithiasis were examined in-vitro. After extraction, the stones were kept in Ringers solution until size and volume measurements could be performed. Thereafter, dual-energy CT scans (DECT) were performed to classify the composition of the stones. Subsequently, fluorescence measurements were performed by taking images under blue light excitation as well as by fluorescence spectroscopy, measuring excitation-emission-matrixes (EEM). Further investigation to identify the exact composition of the stone was performed by Raman spectroscopy and FTIR spectroscopy of stone fragments and debris. Fragmentation was performed in an aquarium set-up equipped with a mesh (hole: 1.5mm) using a Ho:YAG-laser to deliver laser pulses of 0.5, 1.0 and 1.5J/pulse at a frequency of 3Hz through a 200μm-fibre to the stone surface. The collected data were analyzed and fragmentation rates were calculated. Finally, correlation between stone composition and fragmentation was performed. Results: Blue light fluorescence excitation resulted in either fluorescence in the green spectral region or in a combination of green and red fluorescence emission. EEM-measurement showed the corresponding spectra. Raman spectroscopy showed a mixture of carbonate apatite and keratin. DECT results in evidence of calcium containing components. FTIR-spectroscopy results showed that carbonate apatite is the main component. Fragmentation experiment showed a dependency on the energy per pulse applied if the evaluation implies the ratio of fragmented weight to pulse, while the ratio fragmented weight to energy remains about constant for the three laser parameter used. Conclusion: The composition of salivary stones could be determined using

  2. Light fragment formation at intermediate energies

    International Nuclear Information System (INIS)

    Boal, D.H.

    1982-03-01

    This paper concerns itself mainly with the production of energetic protons and light fragments at wide angles. The experiments point to nucleon emission in proton-induced reactions as involving a mechanism in which the observed nucleon is directly knocked out of the nucleus. A similar feature seems to be required to explain (p,F) and (e,F) reactions: an energetic nucleon is produced in one scattering of the projectile, and the struck nucleon subsequently loses some of its energy as it traverses the remaining part of the nucleus, gathering up other nucleons as it goes, to become a fragment. This is what one might call the extreme snowball model, and a more accurate description probably involves multiple scattering of the projectile in addition to the extreme snowball contribution. This will be particularly true for fragments in the mass 6 to 9 region. This scenario also appears to apply to deuteron-induced fragment production. However, for alpha-induced reactions it would appear that the nucleons forming a fragment can originate from collisions involving different incident nucleons in the projectile. For heavy ions, this effect is even stronger, and the snowball contribution is greatly reduced compared to that of the traditional coalescence model

  3. Supramolecular gel electrophoresis of large DNA fragments.

    Science.gov (United States)

    Tazawa, Shohei; Kobayashi, Kazuhiro; Oyoshi, Takanori; Yamanaka, Masamichi

    2017-10-01

    Pulsed-field gel electrophoresis is a frequent technique used to separate exceptionally large DNA fragments. In a typical continuous field electrophoresis, it is challenging to separate DNA fragments larger than 20 kbp because they migrate at a comparable rate. To overcome this challenge, it is necessary to develop a novel matrix for the electrophoresis. Here, we describe the electrophoresis of large DNA fragments up to 166 kbp using a supramolecular gel matrix and a typical continuous field electrophoresis system. C 3 -symmetric tris-urea self-assembled into a supramolecular hydrogel in tris-boric acid-EDTA buffer, a typical buffer for DNA electrophoresis, and the supramolecular hydrogel was used as a matrix for electrophoresis to separate large DNA fragments. Three types of DNA marker, the λ-Hind III digest (2 to 23 kbp), Lambda DNA-Mono Cut Mix (10 to 49 kbp), and Marker 7 GT (10 to 165 kbp), were analyzed in this study. Large DNA fragments of greater than 100 kbp showed distinct mobility using a typical continuous field electrophoresis system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among conti