WorldWideScience

Sample records for testing mitochondrial sequences

  1. A functional test of Neandertal and modern human mitochondrial targeting sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gralle, Matthias, E-mail: gralle@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, 21941-590 Rio de Janeiro (Brazil); Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany); Schaefer, Ingo; Seibel, Peter [Department of Molecular Cell Therapy, Leipzig University, Deutscher Platz 5, 04103 Leipzig (Germany); Paeaebo, Svante [Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany)

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  2. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing.

    Science.gov (United States)

    Davis, Carey; Peters, Dixie; Warshauer, David; King, Jonathan; Budowle, Bruce

    2015-03-01

    Mitochondrial DNA testing is a useful tool in the analysis of forensic biological evidence. In cases where nuclear DNA is damaged or limited in quantity, the higher copy number of mitochondrial genomes available in a sample can provide information about the source of a sample. Currently, Sanger-type sequencing (STS) is the primary method to develop mitochondrial DNA profiles. This method is laborious and time consuming. Massively parallel sequencing (MPS) can increase the amount of information obtained from mitochondrial DNA samples while improving turnaround time by decreasing the numbers of manipulations and more so by exploiting high throughput analyses to obtain interpretable results. In this study 18 buccal swabs, three different tissue samples from five individuals, and four bones samples from casework were sequenced at hypervariable regions I and II using STS and MPS. Sample enrichment for STS and MPS was PCR-based. Library preparation for MPS was performed using Nextera® XT DNA Sample Preparation Kit and sequencing was performed on the MiSeq™ (Illumina, Inc.). MPS yielded full concordance of base calls with STS results, and the newer methodology was able to resolve length heteroplasmy in homopolymeric regions. This study demonstrates short amplicon MPS of mitochondrial DNA is feasible, can provide information not possible with STS, and lays the groundwork for development of a whole genome sequencing strategy for degraded samples. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    Abstract. Odontamblyopus rubicundus is a species of gobiid fishes, inhabits muddy-bottomed coastal waters. In this paper, the first complete mitochondrial genome sequence of O. rubicundus is reported. The complete mitochondrial genome sequence is. 17119 bp in length and contains 13 protein-coding genes, two rRNA ...

  4. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    Supplementary data: Complete sequence of the mitochondrial genome of Odontamblyopus rubicundus (Perciformes: Gobiidae): genome characterization and phylogenetic analysis. Tianxing Liu, Xiaoxiao Jin, Rixin Wang and Tianjun Xu. J. Genet. 92, 423–432. Figure 1. Gene map of O. rubicundus mitochondrial genome.

  5. PCR primers for metazoan mitochondrial 12S ribosomal DNA sequences.

    Directory of Open Access Journals (Sweden)

    Ryuji J Machida

    Full Text Available BACKGROUND: Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. METHODOLOGY/PRINCIPAL FINDINGS: A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. CONCLUSIONS/SIGNIFICANCE: Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans.

  6. Testing the utility of mitochondrial cytochrome oxidase subunit 1 sequences for phylogenetic estimates of relationships between crane (Grus) species.

    Science.gov (United States)

    Yu, D B; Chen, R; Kaleri, H A; Jiang, B C; Xu, H X; Du, W-X

    2011-12-21

    Morphology and biogeography are widely used in animal taxonomy. Recent study has suggested that a DNA-based identification system, using a 648-bp portion of the mitochondrial gene cytochrome oxidase subunit 1 (CO1), also known as the barcoding gene, can aid in the resolution of inferences concerning phylogenetic relationships and for identification of species. However, the effectiveness of DNA barcoding for identifying crane species is unknown. We amplified and sequenced 894-bp DNA fragments of CO1 from Grus japonensis (Japanese crane), G. grus (Eurasian crane), G. monacha (hooded crane), G. canadensis (sandhill crane), G. leucogeranus (Siberian crane), and Balearica pavonina (crowned crane), along with those of 15 species obtained from GenBank and DNA barcoding, to construct four algorithms using Tringa stagnatilis, Scolopax rusticola, and T. erythropus as outgroups. The four phylum profiles showed good resolution of the major taxonomic groups. We concluded that reconstruction of the molecular phylogenetic tree can be helpful for classification and that CO1 sequences are suitable for studying the molecular evolution of cranes. Although support for several deeper branches was limited, CO1 data gave remarkably good separations, especially considering that our analysis was based on just a fragment of the gene and that CO1 has generally been viewed as useful only for resolving shallow divergences.

  7. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  8. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  9. Mitochondrial sequence changes in keratoconus patients.

    Science.gov (United States)

    Abu-Amero, Khaled K; Azad, Taif Anwar; Kalantan, Hatem; Sultan, Tahira; Al-Muammar, Abdulrahman M

    2014-03-20

    We investigated whether a group of patients with keratoconus (KTCN) harbor mutations in the mitochondrial genome. We sequenced the full mitochondrial genome in a group of Saudi patients with KTCN (n = 26) and 100 ethnically matched controls who had no KTCN by examination. A total of 10 KTCN patients (38.5%) had potentially pathogenic nonsynonymous mtDNA mutations. Of the nonsynonymous sequence changes detected, 4 (40%) were in Complex I, one was in the tRNA(Glutamine), one was in tRNA(Tryptophan), one was in tRNA(Asparagine), one was in tRNA(Histidine), and two were in the tRNA(Leucine2). One nonsynonymous sequence change was heteroplasmic, whereas all the remaining 9 were homoplasmic. These sequence changes were not detected in controls of similar ethnicity. Four sequence changes were novel (were not reported previously) and 5 were reported previously. Additionally, we detected 54 synonymous (does not result in an amino acid change) sequence changes with no pathologic significance. If our results are confirmed in a larger cohort and multiple ethnicities, then mtDNA mutation may be considered as a genetic risk factor contributing indirectly through the oxidative stress mechanism to the development and/or progression of KTCN.

  10. mitoSAVE: mitochondrial sequence analysis of variants in Excel.

    Science.gov (United States)

    King, Jonathan L; Sajantila, Antti; Budowle, Bruce

    2014-09-01

    The mitochondrial genome (mtGenome) contains genetic information amenable to numerous applications such as medical research, population and evolutionary studies, and human identity testing. However, inconsistent nomenclature assignment makes haplotype comparison difficult and can lead to false exclusion of potentially useful profiles. Massively Parallel Sequencing (MPS) is a platform for sequencing large datasets and potentially whole populations with relative ease. However, the data generated are not easily parsed and interpreted. With this in mind, mitoSAVE has been developed to enable fast conversion of Variant Call Format (VCF) files. mitoSAVE is an Excel-based workbook that converts data within the VCF into mtDNA haplotypes using phylogenetically-established nomenclature as well as rule-based alignments consistent with current forensic standards. mitoSAVE is formatted for human mitochondrial genome; however, it can easily be adapted to support other reasonably small genomes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Mitochondrial genome sequences from wild and cultivated barley (Hordeum vulgare).

    Science.gov (United States)

    Hisano, Hiroshi; Tsujimura, Mai; Yoshida, Hideya; Terachi, Toru; Sato, Kazuhiro

    2016-10-24

    Sequencing analysis of mitochondrial genomes is important for understanding the evolution and genome structures of various plant species. Barley is a self-pollinated diploid plant with seven chromosomes comprising a large haploid genome of 5.1 Gbp. Wild barley (Hordeum vulgare ssp. spontaneum) and cultivated barley (H. vulgare ssp. vulgare) have cross compatibility and closely related genomes, although a significant number of nucleotide polymorphisms have been reported between their genomes. We determined the complete nucleotide sequences of the mitochondrial genomes of wild and cultivated barley. Two independent circular maps of the 525,599 bp barley mitochondrial genome were constructed by de novo assembly of high-throughput sequencing reads of barley lines H602 and Haruna Nijo, with only three SNPs detected between haplotypes. These mitochondrial genomes contained 33 protein-coding genes, three ribosomal RNAs, 16 transfer RNAs, 188 new ORFs, six major repeat sequences and several types of transposable elements. Of the barley mitochondrial genome-encoded proteins, NAD6, NAD9 and RPS4 had unique structures among grass species. The mitochondrial genome of barley was similar to those of other grass species in terms of gene content, but the configuration of the genes was highly differentiated from that of other grass species. Mitochondrial genome sequencing is essential for annotating the barley nuclear genome; our mitochondrial sequencing identified a significant number of fragmented mitochondrial sequences in the reported nuclear genome sequences. Little polymorphism was detected in the barley mitochondrial genome sequences, which should be explored further to elucidate the evolution of barley.

  12. High-throughput sequencing in mitochondrial DNA research.

    Science.gov (United States)

    Ye, Fei; Samuels, David C; Clark, Travis; Guo, Yan

    2014-07-01

    Next-generation sequencing, also known as high-throughput sequencing, has greatly enhanced researchers' ability to conduct biomedical research on all levels. Mitochondrial research has also benefitted greatly from high-throughput sequencing; sequencing technology now allows for screening of all 16,569 base pairs of the mitochondrial genome simultaneously for SNPs and low level heteroplasmy and, in some cases, the estimation of mitochondrial DNA copy number. It is important to realize the full potential of high-throughput sequencing for the advancement of mitochondrial research. To this end, we review how high-throughput sequencing has impacted mitochondrial research in the categories of SNPs, low level heteroplasmy, copy number, and structural variants. We also discuss the different types of mitochondrial DNA sequencing and their pros and cons. Based on previous studies conducted by various groups, we provide strategies for processing mitochondrial DNA sequencing data, including assembly, variant calling, and quality control. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  13. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae)

    Science.gov (United States)

    Kingston, Sarah E; Adams, Lara D; Rosel, Patricia E

    2009-01-01

    Background Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Results Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA) control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP) analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. Conclusion For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference. PMID:19811651

  14. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae).

    Science.gov (United States)

    Kingston, Sarah E; Adams, Lara D; Rosel, Patricia E

    2009-10-07

    Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA) control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP) analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.

  15. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae

    Directory of Open Access Journals (Sweden)

    Kingston Sarah E

    2009-10-01

    Full Text Available Abstract Background Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Results Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. Conclusion For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.

  16. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    OpenAIRE

    Miller, Webb; Drautz, Daniela I.; Janecka, Jan E; Lesk, Arthur M.; Ratan, Aakrosh; Tomsho, Lynn P.; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R.; Qi, Ji; Zhao, Fangqing; Gilbert, M Thomas P; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G. P.

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences dif...

  17. Mitochondrial DNA sequence variation in Drosophilid species ...

    Indian Academy of Sciences (India)

    ... 82 for 16S rRNA, 238 forCOI, 223 for COII with 21, 47 and 45 mitochondrial haplotypes for 16S rRNA, COI and COII genes,respectively. Almost all species were represented by 2–3 unique mitochondrial haplotypes, depicting a significant impact of environmental heterogeneity along altitudinal gradient on genetic diversity.

  18. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii)

    DEFF Research Database (Denmark)

    Xu, Shu Qing; Yang, Ying Zhong; Zhou, Jun

    2005-01-01

    To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis aries and Capra hircus, as well as other mammals. The complete mitochondrial...

  19. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    DEFF Research Database (Denmark)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the ......We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support...

  20. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    The phylogenetic relationships among flesh flies of the family Sarcophagidae has been based mainly on the morphology of male genitalia. However, the male genitalic character-based relationships are far from satisfactory. Therefore, in the present study mitochondrial DNA has been used as marker to unravel genetic ...

  1. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    Introduction. Mitochondrial DNA (mtDNA) has been one of the most widely used molecular markers for phylogenetic studies in animals, because of its simple genomic structure (Avise. 2004). Among insects, the maximum .... 2007 Population structure of the malaria vector Anopheles dar- lingi in Rondonia, Brazilian Amazon, ...

  2. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus).

    Science.gov (United States)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E; Lesk, Arthur M; Ratan, Aakrosh; Tomsho, Lynn P; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R; Qi, Ji; Zhao, Fangqing; Gilbert, M Thomas P; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G P; Huson, Daniel H; Helgen, Kristofer M; Murphy, William J; Götherström, Anders; Schuster, Stephan C

    2009-02-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes.

  3. Complete mitochondrial genome sequence of the Tyrolean Iceman.

    Science.gov (United States)

    Ermini, Luca; Olivieri, Cristina; Rizzi, Ermanno; Corti, Giorgio; Bonnal, Raoul; Soares, Pedro; Luciani, Stefania; Marota, Isolina; De Bellis, Gianluca; Richards, Martin B; Rollo, Franco

    2008-11-11

    The Tyrolean Iceman was a witness to the Neolithic-Copper Age transition in Central Europe 5350-5100 years ago, and his mummified corpse was recovered from an Alpine glacier on the Austro-Italian border in 1991 [1]. Using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products, we have retrieved the first complete mitochondrial-genome sequence of a prehistoric European. We have then compared it with 115 related extant lineages from mitochondrial haplogroup K. We found that the Iceman belonged to a branch of mitochondrial haplogroup K1 that has not yet been identified in modern European populations. This is the oldest complete Homo sapiens mtDNA genome generated to date. The results point to the potential significance of complete-ancient-mtDNA studies in addressing questions concerning the genetic history of human populations that the phylogeography of modern lineages is unable to tackle.

  4. Mitochondrial genome sequences effectively reveal the phylogeny of Hylobates gibbons.

    Directory of Open Access Journals (Sweden)

    Yi-Chiao Chan

    Full Text Available BACKGROUND: Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. CONCLUSIONS/SIGNIFICANCE: Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species.

  5. The conservation of mitochondrial genome sequence in Leucadendron (Proteaceae

    Directory of Open Access Journals (Sweden)

    MADE PHARMAWATI

    2012-04-01

    Full Text Available Pharmawati M, Yan G, Finnegan PM. 2012. The conservation of mitochondrial genome sequence in Leucadendron (Proteaceae. Biodiversitas 13: 00-00. Mitochondrial DNA (mtDNA is useful for developing molecular markers and for studying plant phylogeny. However, its usefulness depends on the degree of detectable sequence variation. In seven species of the genus Leucadendron, PCR-RFLP failed to reveal any polymorphisms in seven separate regions of the mtDNA. Sixty-two primer pair - enzyme combinations were used to assay at least 248 restriction sites, resulting in the direct sampling of a minimum of 992 bp across 17,500 bp of mt DNA. The highly conserved nature of the mtDNA sequence in the genus Leucadendron was confirmed by the absence of sequence variation in the 1434 bp mtDNA nad1/B-C intron across these species. Mitochondrial DNA sequences are more highly conserved than the chloroplast DNA sequences in Leucadendron and the mtDNA sequences in many other plant genera. Phylogenetic analysis using this intron sequence was consistent with other phylogenetic analyses in regard to the position of Proteaceae.

  6. The complete mitochondrial genome sequence of Gloydius shedaoensis (Squamata: Viperidae).

    Science.gov (United States)

    Liu, Qin; Zhu, Fei; Wang, Xiaoping; Xiao, Rong; Fang, Min; Sun, Lixin; Li, Pipeng; Guo, Peng

    2016-11-01

    Gloydius shedaoensis is an insular and vulnerable pitviper that is endemic to Snake Island, northeastern China. In this study, we successfully sequenced mitochondrial genomes of two individuals of G. shedaoensis. The complete mitochondrial genomes of G. shedaoensis are circular molecular with 17 222 and 17 221 bp in length respectively, which both contain 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, an origin of light-strand replication (OL) and two non-coding control regions. Compared with previously published mitochondrial genomes of Gloydius species, the base composition and gene arrangement are rather conservative. A Bayesian phylogenetic tree using the complete mitochondrial genomes of all viper species available showed a consistent result with previous studies.

  7. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  8. Highly conserved D-loop-like nuclear mitochondrial sequences ...

    Indian Academy of Sciences (India)

    -1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses ...

  9. Multiplexed DNA sequence capture of mitochondrial genomes using PCR products.

    Directory of Open Access Journals (Sweden)

    Tomislav Maricic

    Full Text Available BACKGROUND: To utilize the power of high-throughput sequencers, target enrichment methods have been developed. The majority of these require reagents and equipment that are only available from commercial vendors and are not suitable for the targets that are a few kilobases in length. METHODOLOGY/PRINCIPAL FINDINGS: We describe a novel and economical method in which custom made long-range PCR products are used to capture complete human mitochondrial genomes from complex DNA mixtures. We use the method to capture 46 complete mitochondrial genomes in parallel and we sequence them on a single lane of an Illumina GA(II instrument. CONCLUSIONS/SIGNIFICANCE: This method is economical and simple and particularly suitable for targets that can be amplified by PCR and do not contain highly repetitive sequences such as mtDNA. It has applications in population genetics and forensics, as well as studies of ancient DNA.

  10. The complete mitochondrial genome sequence of Pampus argenteus (Perciformes: Stromateidae).

    Science.gov (United States)

    Sun, Dandan; Cheng, Qiqun; Qiao, Huiying; Chen, Ying

    2016-01-01

    In this study, we sequenced and annotated the complete mitochondrial genome of Pampus argenteus (Perciformes: Stromateidae). The mitogenome is 17,098 bp in length, which contains 13 protein-coding genes, 2 rRNA genes, 23 tRNA genes and 2 non-coding regions: origin of light-strand replication (OL) and control region (D-loop). The overall nucleotide base composition of P. argenteus mtDNA is A 30.35%, C 25.55%, G 15.28% and T 28.82%, with an A + T content of 59.17%. Except for ND6 gene and eight tRNA genes, all other mitochondrial genes were encoded on the heavy strand. The mitochondrial genome of P. argenteus may be helpful to the studies on conservation genetics and stock evaluation of P. argenteus resource, as well as molecular phylogeny and species identification of Stromateidae.

  11. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria.

    Science.gov (United States)

    Marcus, Dana; Lichtenstein, Michal; Cohen, Natali; Hadad, Rita; Erlich-Hadad, Tal; Greif, Hagar; Lorberboum-Galski, Haya

    2016-12-01

    Mitochondrial Targeting Sequences (MTSs) are responsible for trafficking nuclear-encoded proteins into mitochondria. Once entering the mitochondria, the MTS is recognized and cleaved off. Some MTSs are long and undergo two-step processing, as in the case of the human frataxin (FXN) protein (80aa), implicated in Friedreich's ataxia (FA). Therefore, we chose the FXN protein to examine whether nuclear-encoded mitochondrial proteins can efficiently be targeted via a heterologous MTS (hMTS) and deliver a functional protein into mitochondria. We examined three hMTSs; that of citrate synthase (cs), lipoamide deydrogenase (LAD) and C6ORF66 (ORF), as classically MTS sequences, known to be removed by one-step processing, to deliver FXN into mitochondria, in the form of fusion proteins. We demonstrate that using hMTSs for delivering FXN results in the production of 4-5-fold larger amounts of the fusion proteins, and at 4-5-fold higher concentrations. Moreover, hMTSs delivered a functional FXN protein into the mitochondria even more efficiently than the native MTSfxn, as evidenced by the rescue of FA patients' cells from oxidative stress; demonstrating a 18%-54% increase in cell survival; and a 13%-33% increase in ATP levels, as compared to the fusion protein carrying the native MTS. One fusion protein with MTScs increased aconitase activity within patients' cells, by 400-fold. The implications form our studies are of vast importance for both basic and translational research of mitochondrial proteins as any mitochondrial protein can be delivered efficiently by an hMTS. Moreover, effective targeting of functional proteins is important for restoration of mitochondrial function and treatment of related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    Science.gov (United States)

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene.

  13. Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota).

    Science.gov (United States)

    Hassanin, Alexandre; Hugot, Jean-Pierre; van Vuuren, Bettine Jansen

    2015-04-01

    The complete mitochondrial genome was sequenced for three species of pangolins, Manis javanica, Phataginus tricuspis, and Smutsia temminckii, and comparisons were made with two other species, Manis pentadactyla and Phataginus tetradactyla. The genome of Manidae contains the 37 genes found in a typical mammalian genome, and the structure of the control region is highly conserved among species. In Manis, the overall base composition differs from that found in African genera. Phylogenetic analyses support the monophyly of the genera Manis, Phataginus, and Smutsia, as well as the basal division between Maninae and Smutsiinae. Comparisons with GenBank sequences reveal that the reference genomes of M. pentadactyla and P. tetradactyla (accession numbers NC_016008 and NC_004027) were sequenced from misidentified taxa, and that a new species of tree pangolin should be described in Gabon. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences

    Directory of Open Access Journals (Sweden)

    Min Gi-Sik

    2011-08-01

    Full Text Available Abstract Background The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution. Results For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp representing Ascaridida, Wellcomia siamensis (14,128 bp representing Oxyurida, and Heliconema longissimum (13,610 bp representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming

  15. Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences

    Science.gov (United States)

    2011-01-01

    Background The orders Ascaridida, Oxyurida, and Spirurida represent major components of zooparasitic nematode diversity, including many species of veterinary and medical importance. Phylum-wide nematode phylogenetic hypotheses have mainly been based on nuclear rDNA sequences, but more recently complete mitochondrial (mtDNA) gene sequences have provided another source of molecular information to evaluate relationships. Although there is much agreement between nuclear rDNA and mtDNA phylogenies, relationships among certain major clades are different. In this study we report that mtDNA sequences do not support the monophyly of Ascaridida, Oxyurida and Spirurida (clade III) in contrast to results for nuclear rDNA. Results from mtDNA genomes show promise as an additional independently evolving genome for developing phylogenetic hypotheses for nematodes, although substantially increased taxon sampling is needed for enhanced comparative value with nuclear rDNA. Ultimately, topological incongruence (and congruence) between nuclear rDNA and mtDNA phylogenetic hypotheses will need to be tested relative to additional independent loci that provide appropriate levels of resolution. Results For this comparative phylogenetic study, we determined the complete mitochondrial genome sequences of three nematode species, Cucullanus robustus (13,972 bp) representing Ascaridida, Wellcomia siamensis (14,128 bp) representing Oxyurida, and Heliconema longissimum (13,610 bp) representing Spirurida. These new sequences were used along with 33 published nematode mitochondrial genomes to investigate phylogenetic relationships among chromadorean orders. Phylogenetic analyses of both nucleotide and amino acid sequence datasets support the hypothesis that Ascaridida is nested within Rhabditida. The position of Oxyurida within Chromadorea varies among analyses; in most analyses this order is sister to the Ascaridida plus Rhabditida clade, with representative Spirurida forming a distinct clade

  16. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    Science.gov (United States)

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.

  17. Mitochondrial D-loop sequence variation among Italian horse breeds

    Directory of Open Access Journals (Sweden)

    Zanotti Marta

    2004-11-01

    Full Text Available Abstract The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences.

  18. Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics.

    Science.gov (United States)

    Bandelt, Hans-Jürgen; van Oven, Mannis; Salas, Antonio

    2012-11-01

    Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.

  19. About Instruction Sequence Testing

    NARCIS (Netherlands)

    Bergstra, J.A.

    2012-01-01

    Software testing is presented as a so-called theme within which different authors and groups have defined different subjects each of these subjects having a different focus on testing. A uniform concept of software testing is non-existent and the space of possible coherent perspectives on software

  20. Comparative sequence analysis of the non-protein-coding mitochondrial DNA of inbred rat strains.

    Science.gov (United States)

    Abhyankar, Avinash; Park, Hee-Bok; Tonolo, Giancarlo; Luthman, Holger

    2009-12-07

    The proper function of mammalian mitochondria necessitates a coordinated expression of both nuclear and mitochondrial genes, most likely due to the co-evolution of nuclear and mitochondrial genomes. The non-protein coding regions of mitochondrial DNA (mtDNA) including the D-loop, tRNA and rRNA genes form a major component of this regulated expression unit. Here we present comparative analyses of the non-protein-coding regions from 27 Rattus norvegicus mtDNA sequences. There were two variable positions in 12S rRNA, 20 in 16S rRNA, eight within the tRNA genes and 13 in the D-loop. Only one of the three neutrality tests used demonstrated statistically significant evidence for selection in 16S rRNA and tRNA-Cys. Based on our analyses of conserved sequences, we propose that some of the variable nucleotide positions identified in 16S rRNA and tRNA-Cys, and the D-loop might be important for mitochondrial function and its regulation.

  1. Cloning and molecular genetics analyses of Deschampsia antarctica Desv. chloroplast and mitochondrial DNA sequence

    Directory of Open Access Journals (Sweden)

    O.P. Savchuk

    2012-03-01

    Full Text Available Chloroplast and mitochondrial DNA sequences of Deschampsia antarctica were studied. We had made comparison analysis with completely sequenced genomes of other temperateness plants to find homology.

  2. Sequencing of mitochondrial HV1 and HV2 DNA with length heteroplasmy

    DEFF Research Database (Denmark)

    Rasmussen, E. Michael; Eriksen, Birthe; Larsen, Hans Jakob

    2003-01-01

    This study presents a fast method for sequencing the poly C/G regions in HV1 and HV2 in the mitochondrial DNA (mtDNA)......This study presents a fast method for sequencing the poly C/G regions in HV1 and HV2 in the mitochondrial DNA (mtDNA)...

  3. Yeast mitochondrial RNA polymerase primes mitochondrial DNA polymerase at origins of replication and promoter sequences.

    Science.gov (United States)

    Sanchez-Sandoval, Eugenia; Diaz-Quezada, Corina; Velazquez, Gilberto; Arroyo-Navarro, Luis F; Almanza-Martinez, Norineli; Trasviña-Arenas, Carlos H; Brieba, Luis G

    2015-09-01

    Three proteins phylogenetically grouped with proteins from the T7 replisome localize to yeast mitochondria: DNA polymerase γ (Mip1), mitochondrial RNA polymerase (Rpo41), and a single-stranded binding protein (Rim1). Human and T7 bacteriophage RNA polymerases synthesize primers for their corresponding DNA polymerases. In contrast, DNA replication in yeast mitochondria is explained by two models: a transcription-dependent model in which Rpo41 primes Mip1 and a model in which double stranded breaks create free 3' OHs that are extended by Mip1. Herein we found that Rpo41 transcribes RNAs that can be extended by Mip1 on single and double-stranded DNA. In contrast to human mitochondrial RNA polymerase, which primes DNA polymerase γ using transcripts from the light-strand and heavy-strand origins of replication, Rpo41 primes Mip1 at replication origins and promoter sequences in vitro. Our results suggest that in ori1, short transcripts serve as primers, whereas in ori5 an RNA transcript longer than 29 nucleotides is used as primer. Copyright © 2015 © Elsevier B.V. and Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  4. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  5. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  6. The complete mitochondrial genome sequence of Japanese murrelet (Aves: Alcidae) and its phylogenetic position in Charadriiformes.

    Science.gov (United States)

    Eo, Soo Hyung; An, Junghwa

    2016-11-01

    The Japanese murrelet (Synthliboramphus wumizusume) is a threatened bird endemic to Japan, Korea, and Russia. We generated the complete mitochondrial genome sequence to provide molecular genetic information for phylogeny and conservation of the species. The S. wumizusume mitochondrial genome is 16 714 bp in length and comprises 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs, a non-coding control region, and a repeat region. Gene composition and order in the genome is consistent with that of other mitochondrial genomes of the order Charadriiformes currently available in the GenBank. Phylogenetic analysis using all available Charadriiform mitochondrial genomes revealed that interfamilial relationships of the birds based on mitochondrial genes were in agreement with those based on multilocus nuclear genes. The complete mitochondrial genome of S. wumizusume we sequenced might be a useful genetic resource for phylogenetic relationships, evolutionary biology, and conservation of the species.

  7. Mitochondrial DNA sequence diversity in a sedentary population from Egypt.

    Science.gov (United States)

    Stevanovitch, A; Gilles, A; Bouzaid, E; Kefi, R; Paris, F; Gayraud, R P; Spadoni, J L; El-Chenawi, F; Béraud-Colomb, E

    2004-01-01

    The mitochondrial DNA (mtDNA) diversity of 58 individuals from Upper Egypt, more than half (34 individuals) from Gurna, whose population has an ancient cultural history, were studied by sequencing the control-region and screening diagnostic RFLP markers. This sedentary population presented similarities to the Ethiopian population by the L1 and L2 macrohaplogroup frequency (20.6%), by the West Eurasian component (defined by haplogroups H to K and T to X) and particularly by a high frequency (17.6%) of haplogroup M1. We statistically and phylogenetically analysed and compared the Gurna population with other Egyptian, Near East and sub-Saharan Africa populations; AMOVA and Minimum Spanning Network analysis showed that the Gurna population was not isolated from neighbouring populations. Our results suggest that the Gurna population has conserved the trace of an ancestral genetic structure from an ancestral East African population, characterized by a high M1 haplogroup frequency. The current structure of the Egyptian population may be the result of further influence of neighbouring populations on this ancestral population.

  8. The complete mitochondrial genome sequence of Tylototriton taliangensis (Amphibia: Caudata).

    Science.gov (United States)

    Jiang, Ye; Li, Ziyuan; Liu, Jiabin; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    Tylototriton taliangensis was listed as a Near Threatened amphibian in IUCN red list. In this study, we sequenced the complete mitochondrial (mt) genome of this species (GenBank: KP979646) and found it contains 16,265 base pairs, which encode 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA) and 1 control region (CR). We also found that almost all PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codon, while used four types of stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The L-strand replication origin (OL) and a non-coding region were also found. The new mitogenomic phylogenetic tree confirms the reciprocally monophyly of the genus Tylototriton, Echinotriton and Pleurodeles with high bootstrap value. The present study will provide information for future studies on the conservation genetics and phylogeny of this species and its relatives.

  9. Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences.

    Science.gov (United States)

    Darst, Catherine R; Cannatella, David C

    2004-05-01

    Advanced frogs (Neobatrachia) are usually divided into two taxa, Ranoidea (the firmisternal frogs) and Hyloidea (all other neobatrachians). We investigated phylogenetic relationships among several groups of Hyloidea using 12S and 16S rRNA mitochondrial gene sequences and tested explicit relationships of certain problematic hyloid taxa using a sample of 93 neobatrachians. Parsimony, maximum likelihood, and Bayesian inference methods suggest that both the Ranoidea and Hyloidea are well-supported monophyletic groups. We reject three hypotheses using parametric bootstrap simulation: (1) Dendrobatidae lies within the Ranoidea; (2) The group containing Hylidae, Pseudidae, and Centrolenidae is monophyletic; and (3) Brachycephalus is part of Bufonidae.

  10. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    Science.gov (United States)

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  11. Complete sequence and characterization of mitochondrial DNA genome of Channa asiatica (Perciformes: Channidae).

    Science.gov (United States)

    Meng, Yan; Zhang, Yan

    2016-01-01

    The complete nucleotide sequence of Channa asiatica mitochondrial (mtDNA) genome was determined in this study. The genome sequence (GenBank accession number KJ930190) was 16,550 base pairs in length, and the gene content and organization on the mitochondrial genome were similar to the other Channa fishes. The overall base composition of C. asiatica mitogenome is 29.4% A, 26.3% T, 15.3% G, 29.0% C, with a high A + T content of 55.7%. The mitochondrial sequence could provide useful genetic information for studying the molecular identification, population genetics, phylogenetic analysis and conservation genetics.

  12. Mitochondrial mutations in patients with congenital heart defects by next generation sequencing technology.

    Science.gov (United States)

    Abaci, Neslihan; Arıkan, Muzaffer; Tansel, Türkan; Sahin, Nazlı; Cakiris, Aris; Pacal, Ferda; Sırma Ekmekci, Sema; Gök, Emre; Üstek, Duran

    2015-04-01

    It has been shown that mitochondrial deoxyribo nucleic acid mutations may play an important role in the development of cardiomyopathy, and various types of cardiomyopathy can be attributed to disturbed mitochondrial oxidative energy metabolism. Several studies have described many mutations in mitochondrial genes encoding for subunits of respiratory chain complexes. Thus, recent studies confirm that pathologic mitochondrial deoxyribo nucleic acid mutations are a major reason of diseases and determining them by next-generation sequencing will improve our understanding of dysregulation of heart development. To analyse mitochondrial deoxyribo nucleic acid mutations, the entire mitochondrial deoxyribo nucleic acid was amplified in two overlapping polymerase chain reaction fragments from the cardiac tissue of the 22 patients with congenital heart disease, undergoing cardiac surgery. Mitochondrial deoxyribo nucleic acid was deep sequenced by next-generation sequencing. A total of 13 novel mitochondrial deoxyribo nucleic acid mutations were identified in nine patients. Of the patients, three have novel mutations together with reported cardiomyopathy mutations. In all, 65 mutations were found, and 13 of them were unreported. This study represents the most comprehensive mitochondrial deoxyribo nucleic acid mutational analysis in patients with congenital heart disease.

  13. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  14. Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences

    National Research Council Canada - National Science Library

    Pardo, Belén G; Machordom, Annie; Foresti, Fausto; Porto-Foresti, Fábio; Azevedo, Marisa F. C; Bañon, Rafael; Sánchez, Laura; Martínez, Paulino

    2005-01-01

    .... In the present study, the phylogenetic relationships of 30 flatfish species pertaining to seven different families were examined by sequence analysis of the first half of the 16S mitochondrial DNA gene...

  15. Diversity of sponge mitochondrial introns revealed by cox 1 sequences of Tetillidae

    Directory of Open Access Journals (Sweden)

    Rot Chagai

    2010-09-01

    Full Text Available Abstract Background Animal mitochondrial introns are rare. In sponges and cnidarians they have been found in the cox 1 gene of some spirophorid and homosclerophorid sponges, as well as in the cox 1 and nad 5 genes of some Hexacorallia. Their sporadic distribution has raised a debate as to whether these mobile elements have been vertically or horizontally transmitted among their hosts. The first sponge found to possess a mitochondrial intron was a spirophorid sponge from the Tetillidae family. To better understand the mode of transmission of mitochondrial introns in sponges, we studied cox 1 intron distribution among representatives of this family. Results Seventeen tetillid cox 1 sequences were examined. Among these sequences only six were found to possess group I introns. Remarkably, three different forms of introns were found, named introns 714, 723 and 870 based on their different positions in the cox 1 alignment. These introns had distinct secondary structures and encoded LAGLIDADG ORFs belonging to three different lineages. Interestingly, sponges harboring the same intron form did not always form monophyletic groups, suggesting that their introns might have been transferred horizontally. To evaluate whether the introns were vertically or horizontally transmitted in sponges and cnidarians we used a host parasite approach. We tested for co-speciation between introns 723 (the introns with the highest number of sponge representatives and their nesting cox 1 sequences. Reciprocal AU tests indicated that the intron and cox 1 tree are significantly different, while a likelihood ratio test was not significant. A global test of co-phylogeny had significant results; however, when cnidarian sequences were analyzed separately the results were not significant. Conclusions The co-speciation analyses thus suggest that a vertical transmission of introns in the ancestor of sponges and cnidarians, followed by numerous independent losses, cannot solely

  16. Entire Mitochondrial DNA Sequencing on Massively Parallel Sequencing for the Korean Population.

    Science.gov (United States)

    Park, Sohyung; Cho, Sohee; Seo, Hee Jin; Lee, Ji Hyun; Kim, Moon Young; Lee, Soong Deok

    2017-04-01

    Mitochondrial DNA (mtDNA) genome analysis has been a potent tool in forensic practice as well as in the understanding of human phylogeny in the maternal lineage. The traditional mtDNA analysis is focused on the control region, but the introduction of massive parallel sequencing (MPS) has made the typing of the entire mtDNA genome (mtGenome) more accessible for routine analysis. The complete mtDNA information can provide large amounts of novel genetic data for diverse populations as well as improved discrimination power for identification. The genetic diversity of the mtDNA sequence in different ethnic populations has been revealed through MPS analysis, but the Korean population not only has limited MPS data for the entire mtGenome, the existing data is mainly focused on the control region. In this study, the complete mtGenome data for 186 Koreans, obtained using Ion Torrent Personal Genome Machine (PGM) technology and retrieved from rather common mtDNA haplogroups based on the control region sequence, are described. The results showed that 24 haplogroups, determined with hypervariable regions only, branched into 47 subhaplogroups, and point heteroplasmy was more frequent in the coding regions. In addition, sequence variations in the coding regions observed in this study were compared with those presented in other reports on different populations, and there were similar features observed in the sequence variants for the predominant haplogroups among East Asian populations, such as Haplogroup D and macrohaplogroups M9, G, and D. This study is expected to be the trigger for the development of Korean specific mtGenome data followed by numerous future studies. © 2017 The Korean Academy of Medical Sciences.

  17. Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences.

    Science.gov (United States)

    Yang, Rong; Wu, Xiaobing; Yan, Peng; Su, Xia; Yang, Banghe

    2010-10-01

    The complete nucleotide sequence of mitochondrial genome of the Great bustard (Otis tarda) was determined by using polymerase chain reaction (PCR) method. The genome is 16,849 bp in size, containing 13 protein-coding, 2 ribosomal and 22 transfer RNA genes. Sequences of the tRNA genes can be folded into canonical cloverleaf secondary structure except for tRNA-Cys and tRNA-Ser (AGY), which lose "DHU" arm. Sequence analysis showed that the O. tarda mitochondrial control region (mtCR) contained many elements in common with other avian mtCRs. A microsatellite repeat was found in the 3'-peripheral domain of the O. tarda mtCR. Based on the mitochondrial DNA sequences of 12S rRNA, 16S rRNA and tRNA-Val, a phylogenetic study of Gruiformes was performed. The result showed that Otididae was a sister group to "core Gruiformes" and Charadriiformes with strong support (97% posterior probability values) in Bayesian analysis. The taxonomic status of Rhynochetidae, Mesitornithidae, Pedionomidae and Turnicidae that traditionally belonged to Gruiformes was also discussed in this paper.

  18. The complete mitochondrial genome sequence of Pampus chinensis (Perciformes: Stromateidae).

    Science.gov (United States)

    Sun, Dandan; Cheng, Qiqun; Qiao, Huiying; Zhang, Heng; Chen, Ying

    2016-01-01

    In this study, the complete mitochondrial genome of Pampus chinensis (Perciformes: Stromateidae) was determined. The mitogenome is 16,535 bp in length, which contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and 2 non-coding regions: origin of light-strand replication (OL) and control region (D-loop). The overall mtDNA nucleotide base composition of P. chinensis is A 29.72%, C 28.10%, G 15.34%, and T 26.84%, with an A + T content of 56.56%. Except for ND6 gene and eight tRNA genes, all other mitochondrial genes were encoded on the heavy strand. The mitochondrial genome of P. chinensis may be helpful to the studies on stock evaluation and conservation genetics of P. chinensis resource, as well as molecular phylogeny of Stromateidae.

  19. Molecular Phylogenetics of the Genus Trichosporon Inferred from Mitochondrial Cytochrome b Gene Sequences

    OpenAIRE

    Biswas, Swarajit Kumar; Wang, Li; Yokoyama, Koji; Nishimura, Kazuko

    2005-01-01

    Mitochondrial cytochrome b (cyt b) genes of 42 strains representing 23 species of the genus Trichosporon were partially sequenced to determine their molecular phylogenetic relationships. Almost half of the 22 strains investigated (from 11 different species) contained introns in their sequences. Analysis of a 396-bp coding sequence from each strain of Trichosporon under investigation showed a total of 141 (35.6%) variable nucleotide sites. A phylogenetic tree based on the cyt b gene sequences ...

  20. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  1. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae.

    Directory of Open Access Journals (Sweden)

    Venu M Margam

    Full Text Available We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB, Maruca vitrata (Lepidoptera: Crambidae, which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes.

  2. Highly conserved D-loop-like nuclear mitochondrial sequences ...

    Indian Academy of Sciences (India)

    Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan 610084, China. 3College of Science, Honghe University, Mengzi, Yunnan 661100, China. 4CITES Office, China. Abstract. Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA.

  3. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... degradation; third, higher rate of evolution: DNA alterations (mutations) occur in a number of ... The result is that the rate of change, or evolutionary rate, of mitochondrial DNA is about five times greater .... example mass graves in mass disasters, there are newly discovered forensically validated methods ...

  4. Next-generation sequencing of human mitochondrial reference genomes uncovers high heteroplasmy frequency.

    Directory of Open Access Journals (Sweden)

    Maria Ximena Sosa

    Full Text Available We describe methods for rapid sequencing of the entire human mitochondrial genome (mtgenome, which involve long-range PCR for specific amplification of the mtgenome, pyrosequencing, quantitative mapping of sequence reads to identify sequence variants and heteroplasmy, as well as de novo sequence assembly. These methods have been used to study 40 publicly available HapMap samples of European (CEU and African (YRI ancestry to demonstrate a sequencing error rate <5.63×10(-4, nucleotide diversity of 1.6×10(-3 for CEU and 3.7×10(-3 for YRI, patterns of sequence variation consistent with earlier studies, but a higher rate of heteroplasmy varying between 10% and 50%. These results demonstrate that next-generation sequencing technologies allow interrogation of the mitochondrial genome in greater depth than previously possible which may be of value in biology and medicine.

  5. Complete mitochondrial genome sequence of the heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus).

    Science.gov (United States)

    Hu, Bo; Liu, Dong-Xing; Zhang, Yu-Qing; Song, Jian-Tao; Ji, Xian-Fei; Hou, Zhi-Qiang; Zhang, Zhen-Hai

    2016-05-01

    In this study we sequenced the complete mitochondrial genome sequencing of a heart failure model of cardiomyopathic Syrian hamster (Mesocricetus auratus) for the first time. The total length of the mitogenome was 16,267 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region.

  6. Complete Mitochondrial Genome Sequence of Aethina tumida (Coleoptera: Nitidulidae), a Beekeeping Pest.

    Science.gov (United States)

    Duquesne, Véronique; Delcont, Aurélie; Huleux, Anthéa; Beven, Véronique; Touzain, Fabrice; Ribière-Chabert, Magali

    2017-11-02

    We report here the full mitochondrial genome sequence of Aethina tumida, a Nitidulidae species beetle, that is a pest of bee hives. The obtained sequence is 16,576 bp in length and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNAs. Copyright © 2017 Duquesne et al.

  7. Norgal: Extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data

    DEFF Research Database (Denmark)

    Al-Nakeeb, Kosai Ali Ahmed; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-01-01

    and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences...

  8. Sequence analysis of the mitochondrial genomes from Dutch pedigrees with Leber hereditary optic neuropathy

    NARCIS (Netherlands)

    Howell, Neil; Oostra, Roelof-Jan; Bolhuis, Piet A.; Spruijt, Liesbeth; Clarke, Lorne A.; Mackey, David A.; Preston, Gwen; Herrnstadt, Corinna

    2003-01-01

    The complete mitochondrial DNA (mtDNA) sequences for 63 Dutch pedigrees with Leber hereditary optic neuropathy (LHON) were determined, 56 of which carried one of the classic LHON mutations at nucleotide (nt) 3460, 11778, or 14484. Analysis of these sequences indicated that there were several

  9. Investigation of length heteroplasmy in mitochondrial DNA control region by massively parallel sequencing.

    Science.gov (United States)

    Lin, Chun-Yen; Tsai, Li-Chin; Hsieh, Hsing-Mei; Huang, Chia-Hung; Yu, Yu-Jen; Tseng, Bill; Linacre, Adrian; Lee, James Chun-I

    2017-09-01

    Accurate sequencing of the control region of the mitochondrial genome is notoriously difficult due to the presence of polycytosine bases, termed C-tracts. The precise number of bases that constitute a C-tract and the bases beyond the poly cytosines may not be accurately defined when analyzing Sanger sequencing data separated by capillary electrophoresis. Massively parallel sequencing has the potential to resolve such poor definition and provides the opportunity to discover variants due to length heteroplasmy. In this study, the control region of mitochondrial genomes from 20 samples was sequenced using both standard Sanger methods with separation by capillary electrophoresis and also using massively parallel DNA sequencing technology. After comparison of the two sets of generated sequence, with the exception of the C-tracts where length heteroplasmy was observed, all sequences were concordant. Sequences of three segments 16184-16193, 303-315 and 568-573 with C-tracts in HVI, II and III can be clearly defined from the massively parallel sequencing data using the program SEQ Mapper. Multiple sequence variants were observed in the length of C-tracts longer than 7 bases. Our report illustrates the accurate designation of all the length variants leading to heteroplasmy in the control region of the mitochondrial genome that can be determined by SEQ Mapper based on data generated by massively parallel DNA sequencing. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    spacers. In silico analysis predicted genes encoding fourteen protein subunits of complexes of the respiratory chain and ATP synthase, rRNAs of the large and small subunits of the mitochondrial ribosome, and twenty-four transfer RNAs. These genes are organized into two transcription units. In addition......, six intronic ORFs coding for homologues of RNA maturase, reverse transcriptase and DNA endonucleases were identified. In contrast to its overall molecular architecture, the coding sequences of the linear mitochondrial DNA of C. parapsilosis are highly similar to their counterparts in the circular......The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  11. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome C oxidase I sequences.

    Science.gov (United States)

    Barth, Dana; Krenek, Sascha; Fokin, Sergei I; Berendonk, Thomas U

    2006-01-01

    Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.

  12. Complete mitochondrial genomes of two flat-backed millipedes by next-generation sequencing (Diplopoda, Polydesmida

    Directory of Open Access Journals (Sweden)

    Yan Dong

    2016-11-01

    Full Text Available A lack of mitochondrial genome data from myriapods is hampering progress across genetic, systematic, phylogenetic and evolutionary studies. Here, the complete mitochondrial genomes of two millipedes, Asiomorpha coarctata Saussure, 1860 (Diplopoda: Polydesmida: Paradoxosomatidae and Xystodesmus sp. (Diplopoda: Polydesmida: Xystodesmidae were assembled with high coverage using Illumina sequencing data. The mitochondrial genomes of the two newly sequenced species are circular molecules of 15,644 bp and 15,791 bp, within which the typical mitochondrial genome complement of 13 protein-coding genes, 22 tRNAs and two ribosomal RNA genes could be identified. The mitochondrial genome of A. coarctata is the first complete sequence in the family Paradoxosomatidae (Diplopoda: Polydesmida and the gene order of the two flat-backed millipedes is novel among known myriapod mitochondrial genomes. Unique translocations have occurred, including inversion of one half of the two genomes with respect to other millipede genomes. Inversion of the entire side of a genome (trnF-nad5-trnH-nad4-nad4L, trnP, nad1-trnL2-trnL1-rrnL-trnV-rrnS, trnQ, trnC and trnY could constitute a common event in the order Polydesmida. Last, our phylogenetic analyses recovered the monophyletic Progoneata, subphylum Myriapoda and four internal classes.

  13. Complete mitochondrial genomes of two flat-backed millipedes by next-generation sequencing (Diplopoda, Polydesmida).

    Science.gov (United States)

    Dong, Yan; Zhu, Lixin; Bai, Yu; Ou, Yongyue; Wang, Changbao

    2016-01-01

    A lack of mitochondrial genome data from myriapods is hampering progress across genetic, systematic, phylogenetic and evolutionary studies. Here, the complete mitochondrial genomes of two millipedes, Asiomorpha coarctata Saussure, 1860 (Diplopoda: Polydesmida: Paradoxosomatidae) and Xystodesmus sp. (Diplopoda: Polydesmida: Xystodesmidae) were assembled with high coverage using Illumina sequencing data. The mitochondrial genomes of the two newly sequenced species are circular molecules of 15,644 bp and 15,791 bp, within which the typical mitochondrial genome complement of 13 protein-coding genes, 22 tRNAs and two ribosomal RNA genes could be identified. The mitochondrial genome of Asiomorpha coarctata is the first complete sequence in the family Paradoxosomatidae (Diplopoda: Polydesmida) and the gene order of the two flat-backed millipedes is novel among known myriapod mitochondrial genomes. Unique translocations have occurred, including inversion of one half of the two genomes with respect to other millipede genomes. Inversion of the entire side of a genome (trnF-nad5-trnH-nad4-nad4L, trnP, nad1-trnL2-trnL1-rrnL-trnV-rrnS, trnQ, trnC and trnY) could constitute a common event in the order Polydesmida. Last, our phylogenetic analyses recovered the monophyletic Progoneata, subphylum Myriapoda and four internal classes.

  14. Comparative and Evolutionary Analyses of Meloidogyne spp. Based on Mitochondrial Genome Sequences

    Science.gov (United States)

    García, Laura Evangelina; Sánchez-Puerta, M. Virginia

    2015-01-01

    Molecular taxonomy and evolution of nematodes have been recently the focus of several studies. Mitochondrial sequences were proposed as an alternative for precise identification of Meloidogyne species, to study intraspecific variability and to follow maternal lineages. We characterized the mitochondrial genomes (mtDNAs) of the root knot nematodes M. floridensis, M. hapla and M. incognita. These were AT rich (81–83%) and highly compact, encoding 12 proteins, 2 rRNAs, and 22 tRNAs. Comparisons with published mtDNAs of M. chitwoodi, M. incognita (another strain) and M. graminicola revealed that they share protein and rRNA gene order but differ in the order of tRNAs. The mtDNAs of M. floridensis and M. incognita were strikingly similar (97–100% identity for all coding regions). In contrast, M. floridensis, M. chitwoodi, M. hapla and M. graminicola showed 65–84% nucleotide identity for coding regions. Variable mitochondrial sequences are potentially useful for evolutionary and taxonomic studies. We developed a molecular taxonomic marker by sequencing a highly-variable ~2 kb mitochondrial region, nad5-cox1, from 36 populations of root-knot nematodes to elucidate relationships within the genus Meloidogyne. Isolates of five species formed monophyletic groups and showed little intraspecific variability. We also present a thorough analysis of the mitochondrial region cox2-rrnS. Phylogenies based on either mitochondrial region had good discrimination power but could not discriminate between M. arenaria, M. incognita and M. floridensis. PMID:25799071

  15. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA, we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1 led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error.

  16. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  17. Complete mitochondrial genome sequencing reveals novel haplotypes in a Polynesian population.

    Directory of Open Access Journals (Sweden)

    Miles Benton

    Full Text Available The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup--B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs--B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations.

  18. Complete sequence of the mitochondrial genome of Taenia saginata: comparison with T. solium and T. asiatica.

    Science.gov (United States)

    Jeon, Hyeong-Kyu; Kim, Kyu-Heon; Eom, Keeseon S

    2007-09-01

    The complete sequence of the Taenia saginata mitochondrial genome was determined, and its organization and structure were compared to other human-tropic Taenia tapeworms for which complete mitochondrial sequence data were available. The mitochondrial genome was 13,670 bp long, contained 12 protein-coding genes, two ribosomal RNAs (rRNAs, a small and a large subunit), and 22 transfer RNAs (tRNAs). It did not encode the atp8 gene. Overlapping regions were found between nad4L and nad4, nad1 and trnN, and cox1 and trnT. The ATG initiation codon was used for 10 protein-coding genes, and the GTG initiation codon was used for the remaining 2 genes (nad4 and atp6). The size of the protein-coding genes of the three human Taenia tapeworms did not vary, except for Taenia solium nad1 (891 aa) and nad4 (1212 aa) and Taenia asiatica cox2 (576 aa). The tRNA genes were 57-75 bp long, and the predicted secondary structures of 18 of these genes had typical clover-leaf shapes with paired dihydrouridine (DHU) arms. The genes in all human Taenia tapeworms for the two mitochondrial rRNA subunits rrnL and rrnS are separated by trnC. The putative T. saginata rrnL and rrnS are 972 and 732 bp long, respectively. The non-coding regions of the mt genome of T. saginata consisted of 2 regions: a short non-coding region (SNR, 66 nucleotides) and a long non-coding region (LNR, 159 nucleotides). The overall sequence difference in the full mitochondrial genome between T. saginata and T. asiatica was 4.6%, while T. solium differed by 11%. In conclusion, the complete sequence of the T. saginata mitochondrial genome will serve as a resource for comparative mitochondrial genomics and systematic studies of the parasitic cestodes.

  19. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  20. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    Energy Technology Data Exchange (ETDEWEB)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  1. Complete genome sequence of the mitochondrial DNA of the river lamprey, Lethenteron japonicum.

    Science.gov (United States)

    Kawai, Yuri L; Yura, Kei; Shindo, Miyuki; Kusakabe, Rie; Hayashi, Keiko; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2015-01-01

    Lampreys are eel-like jawless fishes evolutionarily positioned between invertebrates and vertebrates, and have been used as model organisms to explore vertebrate evolution. In this study we determined the complete genome sequence of the mitochondrial DNA of the Japanese river lamprey, Lethenteron japonicum, using next-generation sequencers. The sequence was 16,272 bp in length. The gene content and order were identical to those of the sea lamprey, Petromyzon marinus, which has been the reference among lamprey species. However, the sequence similarity was less than 90%, suggesting the need for the whole-genome sequencing of L. japonicum.

  2. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants.

    Directory of Open Access Journals (Sweden)

    Aijaz A Wani

    Full Text Available BACKGROUND: Mitochondrial encephalomyopathies are a heterogeneous group of clinical disorders generally caused due to mutations in either mitochondrial DNA (mtDNA or nuclear genes encoding oxidative phosphorylation (OXPHOS. We analyzed the mtDNA sequences from a group of 23 pediatric patients with clinical and morphological features of mitochondrial encephalopathies and tried to establish a relationship of identified variants with the disease. METHODOLOGY/PRINCIPLE FINDINGS: Complete mitochondrial genomes were amplified by PCR and sequenced by automated DNA sequencing. Sequencing data was analyzed by SeqScape software and also confirmed by BLASTn program. Nucleotide sequences were compared with the revised Cambridge reference sequence (CRS and sequences present in mitochondrial databases. The data obtained shows that a number of known and novel mtDNA variants were associated with the disease. Most of the non-synonymous variants were heteroplasmic (A4136G, A9194G and T11916A suggesting their possibility of being pathogenic in nature. Some of the missense variants although homoplasmic were showing changes in highly conserved amino acids (T3394C, T3866C, and G9804A and were previously identified with diseased conditions. Similarly, two other variants found in tRNA genes (G5783A and C8309T could alter the secondary structure of Cys-tRNA and Lys-tRNA. Most of the variants occurred in single cases; however, a few occurred in more than one case (e.g. G5783A and A10149T. CONCLUSIONS AND SIGNIFICANCE: The mtDNA variants identified in this study could be the possible cause of mitochondrial encephalomyopathies with childhood onset in the patient group. Our study further strengthens the pathogenic score of known variants previously reported as provisionally pathogenic in mitochondrial diseases. The novel variants found in the present study can be potential candidates for further investigations to establish the relationship between their incidence and role

  3. Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae as a species complex

    Directory of Open Access Journals (Sweden)

    Albrecht Sylvia

    2006-06-01

    Full Text Available Abstract Background Polychaetes assigned as Scoloplos armiger (Orbiniidae show a cosmopolitan distribution and have been encountered in all zoogeographic regions. Sibling S. armiger-like species have been revealed by recent studies using RAPDs and AFLP genetic data. We sequenced a ~12 kb fragment of the Scoloplos cf. armiger mitochondrial genome and developed primers for variable regions including the 3' end of the cox3 gene, trnQ, and most of nad6. A phylogenetic analysis of this 528-nucleotide fragment was carried out for S. armiger-like individuals from the Eastern North Atlantic as well as Pacific regions. The aim of this study is to test the cosmopolitan status, as well as to clarify the systematics of this species complex in the Eastern North Atlantic, while using a few specimens from the Pacific Ocean for comparision. Results Phylogenetic analysis of the cox3-trnQ-nad6 data set recovered five different clades of Scoloplos cf. armiger. The fragment of the mitochondrial genome of Scoloplos cf. armiger is 12,042 bp long and contains 13 protein coding genes, 15 of the 22 expected tRNAs, and the large ribosomal subunit (rrnl. Conclusion The sequenced cox3-trnQ-nad6 fragment proved to be very useful in phylogenetic analyses of Scoloplos cf. armiger. Due to its larger sampling scale this study goes beyond previous analyses which used RAPD and AFLP markers. The results of this study clearly supports that Scoloplos armiger represents a species complex and not a cosmopolitan species. We find at least two S. armiger-like species within the Pacific region and three different S. armiger-like species in the North Atlantic. Implications for the taxonomy and the impact on ecological studies are discussed.

  4. Complete sequence of heterogenous-composition mitochondrial genome (Brassica napus and its exogenous source

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2012-11-01

    Full Text Available Abstract Background Unlike maternal inheritance of mitochondria in sexual reproduction, somatic hybrids follow no obvious pattern. The introgressed segment orf138 from the mitochondrial genome of radish (Raphanus sativus to its counterpart in rapeseed (Brassica napus demonstrates that this inheritance mode derives from the cytoplasm of both parents. Sequencing of the complete mitochondrial genome of five species from Brassica family allowed the prediction of other extraneous sources of the cybrids from the radish parent, and the determination of their mitochondrial rearrangement. Results We obtained the complete mitochondrial genome of Ogura-cms-cybrid (oguC rapeseed. To date, this is the first time that a heterogeneously composed mitochondrial genome was sequenced. The 258,473 bp master circle constituted of 33 protein-coding genes, 3 rRNA sequences, and 23 tRNA sequences. This mitotype noticeably holds two copies of atp9 and is devoid of cox2-2. Relative to nap mitochondrial genome, 40 point mutations were scattered in the 23 protein-coding genes. atp6 even has an abnormal start locus whereas tatC has an abnormal end locus. The rearrangement of the 22 syntenic regions that comprised 80.11% of the genome was influenced by short repeats. A pair of large repeats (9731 bp was responsible for the multipartite structure. Nine unique regions were detected when compared with other published Brassica mitochondrial genome sequences. We also found six homologous chloroplast segments (Brassica napus. Conclusions The mitochondrial genome of oguC is quite divergent from nap and pol, which are more similar with each other. We analyzed the unique regions of every genome of the Brassica family, and found that very few segments were specific for these six mitotypes, especially cam, jun, and ole, which have no specific segments at all. Therefore, we conclude that the most specific regions of oguC possibly came from radish. Compared with the chloroplast genome

  5. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  6. Complete mitochondrial genome sequence of Prochilodus lineatus (Characiformes, Prochilodontidae).

    Science.gov (United States)

    do Carmo, Anderson Oliveira; Brandão Dias, Pedro Ferreira Pinto; Martins, Ana Paula Vimieiro; Bedore, Alessandra Gomes; Kalapothakis, Evanguedes

    2016-05-01

    Prochilodus lineatus (curimba) is an important Brazilian freshwater migratory fish with substantial economic importance in fishing. The complete mitochondrial genome of P. lineatus is 16,699 bp and contains 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes and one control region (D-loop). The mtDNA of P. lineatus is the first mitogenome of the Prochilodontidae family to be fully characterized. All of the PCGs in the mtDNA use the standard ATG start codon, with the exception of Cox1 that utilizes the GTG start codon. Six of the 13 PCGs contain TAA stop codons, two contain the incomplete stop codon TA- (Atp6 and Nd6), and five contain the incomplete stop codon T- - (Nd2, Cox2, Nd3, Nd4 and Cytb).

  7. The mitochondrial genome of Anopheles quadrimaculatus species A: complete nucleotide sequence and gene organization.

    Science.gov (United States)

    Mitchell, S E; Cockburn, A F; Seawright, J A

    1993-12-01

    The complete sequence (15,455 bp) of the mitochondrial DNA of the mosquito Anopheles quadrimaculatus species A is reported. This genome is compact and very A+T rich (77.4% A+T). It contains genes for 2 ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and 13 subunits of the mitochondrial inner membrane respiratory complexes. The gene arrangement is the same as in Drosophila yakuba, except that the positions of two contiguous tRNAs are reversed and a third tRNA is transcribed from the complementary strand. Protein-coding genes, rRNAs, and most tRNAs were similar to D. yakuba. Two tRNAs had nonstandard secondary structures comparable with those of nematode mitochondrial tRNAs. The very small putative control region (625 bp) contains no sequence motifs similar to those used in vertebrates and other insects for initiation of transcription and replication.

  8. Mitochondrial cytochrome b sequence data are not an improvement for species identification in scleractinian corals

    Directory of Open Access Journals (Sweden)

    John P. Wares

    2014-09-01

    Full Text Available There are well-known difficulties in using the cytochrome oxidase I (COI mitochondrial gene region for population genetics and DNA barcoding in corals. A recent study of species divergence in the endemic Caribbean genus Agaricia reinforced such knowledge. However, the growing availability of whole mitochondrial genomes may help indicate more promising gene regions for species delineation. I assembled the whole mitochondrial genome for Agaricia fragilis from Illumina single-end 250 bp reads and compared this sequence to that of the congener A. humilis. Although these data suggest that the cytochrome b (CYB gene region is more promising, comparison of available CYB sequence data from scleractinian and other reef-building corals indicates that multilocus approaches are still probably necessary for phylogenetic and population genetic analysis of recently-diverged coral taxa.

  9. Analysis of mitochondrial DNA sequences in patients with isolated or combined oxidative phosphorylation system deficiency.

    NARCIS (Netherlands)

    Hinttala, R.; Smeets, R.; Moilanen, J.S.; Ugalde, C.; Uusimaa, J.; Smeitink, J.A.M.; Majamaa, K.

    2006-01-01

    BACKGROUND: Enzyme deficiencies of the oxidative phosphorylation (OXPHOS) system may be caused by mutations in the mitochondrial DNA (mtDNA) or in the nuclear DNA. OBJECTIVE: To analyse the sequences of the mtDNA coding region in 25 patients with OXPHOS system deficiency to identify the underlying

  10. Whole mitochondrial genome sequence and mutations of the hypertension model inbred rat strain (Muridae; Rattus).

    Science.gov (United States)

    Song, Wei; Gao, Lin-lin; Zhen, Lin-lin

    2016-01-01

    We reported the complete mitochondrial genome sequencing of a important hypertension model inbred rat strain for the first time. The total length of the mitogenome was 16,310 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The mutation events contained in this strain were also reported.

  11. Sequence analysis of three mitochondrial DNA molecules reveals interesting differences among Saccharomyces yeasts

    DEFF Research Database (Denmark)

    Langkjær, Rikke Breinhold; Casaregola, S.; Ussery, David

    2003-01-01

    The complete sequences of mitochondrial DNA ( mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Sac...

  12. Pervasive Mitochondrial Sequence Heteroplasmy in Natural Populations of Wild Carrot, Daucus carota spp. carota L.

    Directory of Open Access Journals (Sweden)

    Jennifer R Mandel

    Full Text Available Exceptions to the generally accepted rules that plant mitochondrial genomes are strictly maternally inherited and that within-individual sequence diversity in those genomes, i.e., heteroplasmy, should be minimal are becoming increasingly apparent especially with regard to sequence-level heteroplasmy. These findings raise questions about the potential significance of such heteroplasmy for plant mitochondrial genome evolution. Still studies quantifying the amount and consequences of sequence heteroplasmy in natural populations are rare. In this study, we report pervasive sequence heteroplasmy in natural populations of wild carrot, a close relative of the cultivated crop. In order to assay directly for this heteroplasmy, we implemented a quantitative PCR assay that can detect and quantify intra-individual SNP variation in two mitochondrial genes (Cox1 and Atp9. We found heteroplasmy in > 60% of all wild carrot populations surveyed and in > 30% of the 140 component individuals that were genotyped. Heteroplasmy ranged from a very small proportion of the total genotype (e.g., 0.995:0.005 to near even mixtures (e.g., 0.590:0.410 in some individuals. These results have important implications for the role of intra-genomic recombination in the generation of plant mitochondrial genome genotypic novelty. The consequences of such recombination are evident in the results of this study through analysis of the degree of linkage disequilibrium (LD between the SNP sites at the two genes studied.

  13. Sequencing strategy of mitochondrial HV1 and HV2 DNA with length heteroplasmy

    DEFF Research Database (Denmark)

    Rasmussen, Erik Michael; Sørensen, E; Eriksen, Birthe

    2002-01-01

    We describe a method to obtain reliable mitochondrial DNA (mtDNA) sequences downstream of the homopolymeric stretches with length heteroplasmy in the sequencing direction. The method is based on the use of junction primers that bind to a part of the homopolymeric stretch and the first 2-4 bases...... downstream of the homopolymeric region. This junction primer method gave clear and unambiguous results using samples from 21 individuals with length heteroplasmy in the hypervariable regions HV1, HV2 or both. The method is of special value for forensic casework, because sequencing of both strands of an mtDNA...... region is preferable in order to reduce ambiguities in sequence determination....

  14. The complete mitochondrial genome sequence of the Tibetan wolf (Canis lupus laniger).

    Science.gov (United States)

    Zhao, Chao; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Yang, Xiufeng; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the Tibetan wolf (Canis lupus laniger) was sequenced using blood samples obtained from a wild female Tibetan wolf captured from Lhasa in Tibet, China. Qinghai-Tibet Plateau, with an average elevation above 3500 m, is the highest plateau in the world. Sequence analysis showed that its structure is in accordance with other Canidae species, but GTG is used as the start codon in ND4L gene which is different from many canide animals.

  15. A Complete Mitochondrial Genome Sequence from a Mesolithic Wild Aurochs (Bos primigenius)

    Science.gov (United States)

    McGettigan, Paul A.; Lohan, Amanda J.; Murphy, Alison; Finlay, Emma K.; Shapiro, Beth; Chamberlain, Andrew T.; Richards, Martin B.; Bradley, Daniel G.; Loftus, Brendan J.; MacHugh, David E.

    2010-01-01

    Background The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. Methodology DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738±68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. Conclusions For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified aurochsen

  16. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  17. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    Science.gov (United States)

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

  18. OrgConv: detection of gene conversion using consensus sequences and its application in plant mitochondrial and chloroplast homologs

    Directory of Open Access Journals (Sweden)

    Hao Weilong

    2010-03-01

    Full Text Available Abstract Background The ancestry of mitochondria and chloroplasts traces back to separate endosymbioses of once free-living bacteria. The highly reduced genomes of these two organelles therefore contain very distant homologs that only recently have been shown to recombine inside the mitochondrial genome. Detection of gene conversion between mitochondrial and chloroplast homologs was previously impossible due to the lack of suitable computer programs. Recently, I developed a novel method and have, for the first time, discovered recurrent gene conversion between chloroplast mitochondrial genes. The method will further our understanding of plant organellar genome evolution and help identify and remove gene regions with incongruent phylogenetic signals for several genes widely used in plant systematics. Here, I implement such a method that is available in a user friendly web interface. Results OrgConv (Organellar Conversion is a computer package developed for detection of gene conversion between mitochondrial and chloroplast homologous genes. OrgConv is available in two forms; source code can be installed and run on a Linux platform and a web interface is available on multiple operating systems. The input files of the feature program are two multiple sequence alignments from different organellar compartments in FASTA format. The program compares every examined sequence against the consensus sequence of each sequence alignment rather than exhaustively examining every possible combination. Making use of consensus sequences significantly reduces the number of comparisons and therefore reduces overall computational time, which allows for analysis of very large datasets. Most importantly, with the significantly reduced number of comparisons, the statistical power remains high in the face of correction for multiple tests. Conclusions Both the source code and the web interface of OrgConv are available for free from the OrgConv website http

  19. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  20. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  1. Phylogenetic relationships of Palaearctic Formica species (Hymenoptera, Formicidae based on mitochondrial cytochrome B sequences.

    Directory of Open Access Journals (Sweden)

    Anna V Goropashnaya

    Full Text Available Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.

  2. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  3. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Unknown

    restriction fragment length polymorphism; RAPD, random amplified polymorphic DNA; An. step, Anopheles stephensi; An. quad,. Anopheles ... interesting feature of the sequences was a stretch of Ts that distinguished between Aedes and Culex on the one hand, and ... genome structure and complexity of mosquito species.

  4. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Mosquitoes are vectors for the transmission of many human pathogens that include viruses, nematodes and protozoa. For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. Recently, molecular taxonomic techniques have been utilized for this purpose. Sequence ...

  5. The complete mitochondrial DNA sequence of Crotalus horridus (timber rattlesnake).

    Science.gov (United States)

    Hall, Jacob B; Cobb, Vincent A; Cahoon, A Bruce

    2013-04-01

    The complete mitogenome of the timber rattlesnake (Crotalus horridus) was completed using Sanger sequencing. It is 17,260 bp with 13 protein-coding genes, 21 tRNAs, two rRNAs and two control regions. Gene synteny is consistent with other snakes with the exception of a missing redundant tRNA (Ser) . This mitogenome should prove to be a useful addition of a well-known member of the Viperidae snake family.

  6. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W. (Harvard Univ., Cambridge, MA (United States)); Brown, W.M. (Univ. of Michigan, Ann Arbor (United States)); Honeycutt, R.L. (Texas A and M Univ., College Station (United States))

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.

  7. Complete sequence and gene organization of the mitochondrial genome for Hubbard's sportive lemur (Lepilemur hubbardorum).

    Science.gov (United States)

    Lei, Runhua; Shore, Gary D; Brenneman, Rick A; Engberg, Shannon E; Sitzmann, Brandon D; Bailey, Carolyn A; Kimmel, Lisa M; Randriamampionona, Richard; Ranaivoarisoa, Jean Freddy; Louis, Edward E

    2010-09-15

    The complete mitochondrial DNA (mtDNA) genome of Hubbard's or Zombitse sportive lemur (Lepilemur hubbardorum) was generated by polymerase chain reaction (PCR) amplification, primer-walking sequencing and fragment cloning. Comparative analyses of Hubbard's sportive lemur were conducted with available complete mitochondrial genome sequences from eight other lemur species. The mitochondrial genome of Hubbard's sportive lemur is 16,854 base pairs (bp) and contains 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes and one control region. Three rare start codons were found, in which GTG is the start codon for the ATPase 6 subunit gene (ATP), ATC for the NADH dehydrogenase (ND) 2 subunit gene, and ATT for the ND5 subunit gene. In the control region, sequence analysis found one repetitive unit between conserved sequence blocks (CSB)-1 and CSB-2 for L. hubbardorum. Comparative analysis of eight other lemur species showed different repetitive units between and outside of these two blocks. According to the phylogenetic analysis of the 12 heavy-strand encoded protein-coding genes, all nine lemur species representative of four lemuriformes families were monophyletic. This template and the newly designed primers described in this study will allow scientists to generate comparative sequences for all sportive lemurs to validate phylogenetic discrepancies in the genus Lepilemur and to evaluate evolutionary and biogeographic models. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Changes in mitochondrial stability during the progression of the Barrett's esophagus disease sequence.

    Science.gov (United States)

    O'Farrell, N J; Feighery, R; Picardo, S L; Lynam-Lennon, N; Biniecka, M; McGarrigle, S A; Phelan, J J; MacCarthy, F; O'Toole, D; Fox, E J; Ravi, N; Reynolds, J V; O'Sullivan, J

    2016-07-19

    Barrett's esophagus follows the classic step-wise progression of metaplasia-dysplasia-adenocarcinoma. While Barrett's esophagus is a leading known risk factor for esophageal adenocarcinoma, the pathogenesis of this disease sequence is poorly understood. Mitochondria are highly susceptible to mutations due to high levels of reactive oxygen species (ROS) coupled with low levels of DNA repair. The timing and levels of mitochondria instability and dysfunction across the Barrett's disease progression is under studied. Using an in-vitro model representing the Barrett's esophagus disease sequence of normal squamous epithelium (HET1A), metaplasia (QH), dysplasia (Go), and esophageal adenocarcinoma (OE33), random mitochondrial mutations, deletions and surrogate markers of mitochondrial function were assessed. In-vivo and ex-vivo tissues were also assessed for instability profiles. Barrett's metaplastic cells demonstrated increased levels of ROS (p disease sequence in-vitro. Using patient in-vivo samples, Barrett's metaplasia tissue demonstrated significantly increased levels of random mitochondrial deletions (p = 0.043) compared with esophageal adenocarcinoma tissue, along with increased expression of cytoglobin (CYGB) (p disease sequence. Using ex-vivo Barrett's metaplastic and matched normal patient tissue explants, higher levels of cytochrome c (p = 0.003), SMAC/Diablo (p = 0.008) and four inflammatory cytokines (all p values disease sequence.

  9. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation.

    Science.gov (United States)

    Zhang, Hangxiao; Luo, Qibin; Sun, Jing; Liu, Fei; Wu, Gang; Yu, Jun; Wang, Weiwei

    2013-05-01

    Brine shrimps, Artemia (Crustacea, Anostraca), inhabit hypersaline environments and have a broad geographical distribution from sea level to high plateaus. Artemia therefore possess significant genetic diversity, which gives them their outstanding adaptability. To understand this remarkable plasticity, we sequenced the mitochondrial genomes of two Artemia tibetiana isolates from the Tibetan Plateau in China and one Artemia urmiana isolate from Lake Urmia in Iran and compared them with the genome of a low-altitude Artemia, A. franciscana. We compared the ratio of the rate of nonsynonymous (Ka) and synonymous (Ks) substitutions (Ka/Ks ratio) in the mitochondrial protein-coding gene sequences and found that atp8 had the highest Ka/Ks ratios in comparisons of A. franciscana with either A. tibetiana or A. urmiana and that atp6 had the highest Ka/Ks ratio between A. tibetiana and A. urmiana. Atp6 may have experienced strong selective pressure for high-altitude adaptation because although A. tibetiana and A. urmiana are closely related they live at different altitudes. We identified two extended termination-associated sequences and three conserved sequence blocks in the D-loop region of the mitochondrial genomes. We propose that sequence variations in the D-loop region and in the subunits of the respiratory chain complexes independently or collectively contribute to the adaptation of Artemia to different altitudes.

  10. Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron.

    Science.gov (United States)

    Kudla, J; Albertazzi, F J; Blazević, D; Hermann, M; Bock, R

    2002-04-01

    The intron content of plant organellar genes is a useful marker in molecular systematics and evolution. We have tested representatives of a wide range of monocotyledonous plant families for the presence of an intron (cox2 intron 1) in one of the most conservative mitochondrial genes, the cox2 locus. Almost all species analyzed were found to harbor a group II intron at a phylogenetically conserved position. The only exceptions were members of a single monocot family, the Ruscaceae: representatives of all genera in this family were found to lack cox2 intron 1, but instead harbor an intron in the 3' portion of the cox2 coding region (cox2 intron 2). The presence of cox2 intron 1 in families of monocotyledonous plants that are closely related to the Ruscaceae suggests that loss of the intron is specific to this family and may have accompanied the evolutionary appearance of the Ruscaceae. Interestingly, sequences that are highly homologous to cox2 intron 2 are found in a nuclear intron in a lineage of monocotyledonous plants, suggesting that the originally mitochondrial group II intron sequence was transferred to the nuclear genome and reused there to build a spliceosomal intron.

  11. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics.

  12. The complete mitochondrial genome sequence of Neovison vison (Carnivora: Mustelidae).

    Science.gov (United States)

    Sun, Wei-Li; Wang, Shao-Jing; Wang, Zhuo; Liu, Han-Lu; Zhong, Wei; Yang, Ya-Han; Li, Guang-Yu

    2016-05-01

    The phylogenetic and taxonomic position of the American mink Neovison vison have long been unclear. In this paper, the complete mitogenome of N. vison was sequenced and characterized. The total length was 16,594 bp and typically consists of 37 genes, including 13 protein-coding genes, 2 rRNAs, 22 tRNA, a large control region (CR) and a light-strand replication origin (OL). Gene contents, locations, and arrangements were identical to those of typical vertebrate. The overall base composition is 33.6%, 25.4%, 27.8% and 13.3% for A, C, T and G, respectively, with a moderate bias on AT content (61.4%). This result is expected to provide useful molecular data and contribute to further taxonomic and phylogenetic studies of Mustelidae and Carnivora.

  13. Molecular Phylogenetics of the Genus Trichosporon Inferred from Mitochondrial Cytochrome b Gene Sequences

    Science.gov (United States)

    Biswas, Swarajit Kumar; Wang, Li; Yokoyama, Koji; Nishimura, Kazuko

    2005-01-01

    Mitochondrial cytochrome b (cyt b) genes of 42 strains representing 23 species of the genus Trichosporon were partially sequenced to determine their molecular phylogenetic relationships. Almost half of the 22 strains investigated (from 11 different species) contained introns in their sequences. Analysis of a 396-bp coding sequence from each strain of Trichosporon under investigation showed a total of 141 (35.6%) variable nucleotide sites. A phylogenetic tree based on the cyt b gene sequences revealed that all species of Trichosporon except Trichosporon domesticum and Trichosporon montevideense had species-specific cyt b genes. Trichosporon sp. strain CBS 5581 was identified as Trichosporon pullulans, and one clinical isolate, IFM 48794, was identified as Trichosporon faecale. Analysis of 132-bp deduced amino acid sequences showed a total of 34 (25.75%) variable amino acid sites. T. domesticum and T. montevideense, Trichosporon asahii and Trichosporon asteroides, and Trichosporon gracile and Trichosporon guehoae had identical amino acid sequences. A phylogenetic tree constructed with the ascomycetes Saccharomyces douglasii and Candida glabrata taken as outgroup species and including representative species from closely related genera species of Trichosporon clustered with other basidiomycetous yeasts that contain xylose in their cell wall compositions. These results indicate the effectiveness of mitochondrial cyt b gene sequences for both species identification and the phylogenetic analysis of Trichosporon species. PMID:16207980

  14. Using mitochondrial and ribosomal DNA sequences to test the taxonomic validity of Clinostomum complanatum Rudolphi, 1814 in fish-eating birds and freshwater fishes in Mexico, with the description of a new species.

    Science.gov (United States)

    Sereno-Uribe, Ana L; Pinacho-Pinacho, Carlos D; García-Varela, Martín; de León, Gerardo Pérez-Ponce

    2013-08-01

    The taxonomic history and species composition of the genus Clinostomum has been unstable. Two species, Clinostomum complanatum Rudolphi, 1814 and Clinostomum marginatum Rudolphi, 1819, have been particularly problematic and its validity has been disputed for nearly 200 years. In this paper, we have made use of an integrative taxonomy approach, and we used, in first instance, DNA sequences of two genes (cox1 and ITS) to test the validity of C. complanatum, a species apparently widely distributed in Mexico and to link the metacercariae and adult forms of the recognized species of Clinostomum. Combining molecular data with morphology, host association, and geographical distribution, we searched for the potential existence of undescribed species. A new species of Clinostomum is described based on adults found in the mouthy cavity of three species of fish-eating birds as well as in metacercariae found in freshwater and estuarine fishes. A few morphological characteristics distinguish the new species from other congeners even though reciprocal monophyly in a phylogenetic tree based on maximum-likelihood and Bayesian analysis, genetic divergence, and a multivariate analysis of variance and a principal component analysis of 18 morphometric traits for adults and metacercariae demonstrates the validity of the new species. Based on our results, it seems that C. complanatum is not currently distributed in Mexico, although this requires further verification with a more thoroughful sampling in other areas of the country, but it is plausible to support the hypothesis that C. marginatum is the American form, as previously suggested by other authors.

  15. Mitochondrial targeting sequence variants of the CHCHD2 gene are a risk for Lewy body disorders.

    Science.gov (United States)

    Ogaki, Kotaro; Koga, Shunsuke; Heckman, Michael G; Fiesel, Fabienne C; Ando, Maya; Labbé, Catherine; Lorenzo-Betancor, Oswaldo; Moussaud-Lamodière, Elisabeth L; Soto-Ortolaza, Alexandra I; Walton, Ronald L; Strongosky, Audrey J; Uitti, Ryan J; McCarthy, Allan; Lynch, Timothy; Siuda, Joanna; Opala, Grzegorz; Rudzinska, Monika; Krygowska-Wajs, Anna; Barcikowska, Maria; Czyzewski, Krzysztof; Puschmann, Andreas; Nishioka, Kenya; Funayama, Manabu; Hattori, Nobutaka; Parisi, Joseph E; Petersen, Ronald C; Graff-Radford, Neill R; Boeve, Bradley F; Springer, Wolfdieter; Wszolek, Zbigniew K; Dickson, Dennis W; Ross, Owen A

    2015-12-08

    To assess the role of CHCHD2 variants in patients with Parkinson disease (PD) and Lewy body disease (LBD) in Caucasian populations. All exons of the CHCHD2 gene were sequenced in a US Caucasian patient-control series (878 PD, 610 LBD, and 717 controls). Subsequently, exons 1 and 2 were sequenced in an Irish series (355 PD and 365 controls) and a Polish series (394 PD and 350 controls). Immunohistochemistry and immunofluorescence studies were performed on pathologic LBD cases with rare CHCHD2 variants. We identified 9 rare exonic variants of unknown significance. These variants were more frequent in the combined group of PD and LBD patients compared to controls (0.6% vs 0.1%, p = 0.013). In addition, the presence of any rare variant was more common in patients with LBD (2.5% vs 1.0%, p = 0.050) compared to controls. Eight of these 9 variants were located within the gene's mitochondrial targeting sequence. Although the role of variants of the CHCHD2 gene in PD and LBD remains to be further elucidated, the rare variants in the mitochondrial targeting sequence may be a risk factor for Lewy body disorders, which may link CHCHD2 to other genetic forms of parkinsonism with mitochondrial dysfunction. © 2015 American Academy of Neurology.

  16. Isolation of a species-specific mitochondrial DNA sequence for identification of Tilletia indica, the Karnal bunt of wheat fungus.

    OpenAIRE

    Ferreira, M.A.; Tooley, P W; Hatziloukas, E; Castro, C.; Schaad, N. W.

    1996-01-01

    Mitochondrial DNA (mtDNA) from five isolates of Tilletia indica was isolated and digested with several restriction enzymes. A 2.3-kb EcoRI fragment was chosen, cloned, and shown to hybridize with total DNA restricted with EcoRI from T. indica and not from a morphologically similar smut fungus, Tilletia barclayana. The clone was partially sequenced, and primers were designed and tested under high-stringency conditions in PCR assays. The primer pair Ti1/Ti4 amplified a 2.3-kb fragment from tota...

  17. Complete mitochondrial genome sequence of the Eastern gorilla (Gorilla beringei) and implications for african ape biogeography.

    Science.gov (United States)

    Das, Ranajit; Hergenrother, Scott D; Soto-Calderón, Iván D; Dew, J Larry; Anthony, Nicola M; Jensen-Seaman, Michael I

    2014-01-01

    The Western and Eastern species of gorillas (Gorilla gorilla and Gorilla beringei) began diverging in the mid-Pleistocene, but in a complex pattern with ongoing gene flow following their initial split. We sequenced the complete mitochondrial genomes of 1 Eastern and 1 Western gorilla to provide the most accurate date for their mitochondrial divergence, and to analyze patterns of nucleotide substitutions. The most recent common ancestor of these genomes existed about 1.9 million years ago, slightly more recent than that of chimpanzee and bonobo. We in turn use this date as a calibration to reanalyze sequences from the Eastern lowland and mountain gorilla subspecies to estimate their mitochondrial divergence at approximately 380000 years ago. These dates help frame a hypothesis whereby populations became isolated nearly 2 million years ago with restricted maternal gene flow, followed by ongoing male migration until the recent past. This process of divergence with prolonged hybridization occurred against the backdrop of the African Pleistocene, characterized by intense fluctuations in temperature and aridity, while at the same time experiencing tectonic uplifting and consequent shifts in the drainage of major river systems. Interestingly, this same pattern of introgression following divergence and discrepancies between mitochondrial and nuclear loci is seen in fossil hominins from Eurasia, suggesting that such processes may be common in hominids and that living gorillas may provide a useful model for understanding isolation and migration in our extinct relatives. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Mitochondrial DNA sequencing of cat hair: an informative forensic tool.

    Science.gov (United States)

    Tarditi, Christy R; Grahn, Robert A; Evans, Jeffrey J; Kurushima, Jennifer D; Lyons, Leslie A

    2011-01-01

    Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Polymorphic sequence in the ND3 region of Java endemic Ploceidae birds mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    R. SUSANTI

    2011-04-01

    Full Text Available Susanti R (2011 Polymorphic sequence in the ND3 region of Java endemic Ploceidae birds mitochondrial DNA. Biodiversitas 12: 70-75. As part of biodiversity, Ploceidae bird family must be kept away from extinction and degradation of gene-diversity. This research was aimed to analyze ND3 gene from mitochondrial DNA of Java Island endemic of Ploceidae bird. Each species of Ploceidae birds family was identified based on their morphological character, then the blood sample was taken from the birds nail vein. DNA was isolated from blood using Dixit method. Fragment of ND3 gene was amplified using PCR method with specific primer pairs and sequenced using dideoxy termination method with ABI automatic sequencer. Multiple alignment of ND3 nucleotide sequences were analyzed using ClustalW of MEGA-3.1 program. Estimation of genetic distance and phylogenetic tree construction were analyzed with Neighbor-Joining method and calculation of distance matrix with Kimura 2 –parameter. The result of Java Island endemic of Ploceidae bird family exploration showed that Erythrura hyperythra and Lonchura ferruginosa can not be found anymore in nature, but the Lonchura malacca that are not actually Java island endemic was also found. Nucleotide sequence of mitochondrial ND3 gene of Ploceidae bird family showed a quite high polymorphism, with 122 substitutions from 334 nucleotides analyzed. Phylogenetic tree of nucleotide sequence of Ploceidae bird family formed 2 clusters. One cluster consisted of the Ploceus hypoxanthus, Ploceus philippinus, Ploceus manyar and Passer montanus, and the others species were included in the second cluster. ND3 gene sequence data from this Ploceidae family need to be analyzed further to see possible relationship with a particular phenotype.

  20. The mitochondrial genome sequence of the scorpion Centruroides limpidus (Karsch 1879) (Chelicerata; Arachnida).

    Science.gov (United States)

    Dávila, Sonia; Piñero, Daniel; Bustos, Patricia; Cevallos, Miguel A; Dávila, Guillermo

    2005-11-07

    The mitochondrial genome of the scorpion Centruroides limpidus (Chelicerata; Arachnida) has been completely sequenced and is 14519 bp long. The genome contains 13 protein-encoding genes, two ribosomal RNA genes, 21 transfer RNA genes and a large non-coding region related to the control region. The overall A+T composition is the lowest among the complete mitochondrial sequences published within the Chelicerata subphylum. Gene order and gene content differ slightly from that of Limulus polyphemus (Chelicerata: Xiphosura): i.e., the lack of the trnD gene, and the translocation-inversion of the trnI gene. Preliminary phylogenetic analysis of some Chelicerata shows that scorpions (C. limpidus and Mesobuthus gibbosus) make a tight cluster with the spiders (Arachnida; Araneae). Our analysis does not support that Scorpiones order is the sister group to all Arachnida Class, since it is closer to Araneae than to Acari orders.

  1. Phylogenetic relationships of the family Agamidae (Reptilia : Iguania) inferred from mitochondrial DNA sequences

    OpenAIRE

    Honda, Masanao; Ota, Hidetoshi; Kobayashi, Mari; Nabhitabhata, Jarujin Mari; Yong, Hoi-Sen; Sengoku, Showichi; Hikida, Tsutomu

    2000-01-01

    Phylogenetic relationships of the family Agamidae were inferred from 860 base positions of a mitochondrial DNA sequence of 12S and 16S rRNA genes. Results confirmed the monophyly of this family including Leiolepis and Uromastyx (Leiolepidinae), and indicated the sister relationship between Agamidae and Chamaeleonidae. Our results also indicated the presence of two major clades in Agamidae. In one of these major clades, "Leiolepidinae" was first diverged, followed by the Lophognathus and Hypsi...

  2. Whole mitochondrial genome sequence and mutations of the cervical carcinoma model inbred rat strain (Muridae; Rattus).

    Science.gov (United States)

    Wan, Xiao-Hui; Mei, Long; Abudureyimu, Zainuer

    2016-01-01

    We reported the complete mitochondrial genome sequencing of an important cervical carcinoma model inbred rat strain for the first time. The total length of the mitogenome was 16,314 bp. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region. The mutation events contained in this strain were also reported.

  3. The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula.

    OpenAIRE

    Delarbre, C; Spruyt, N; Delmarre, C; Gallut, C.; Barriel, V; Janvier, P.; Laudet, V; Gachelin, G

    1998-01-01

    We have determined the complete nucleotide sequence of the mitochondrial DNA (mtDNA) of the dogfish, Scyliorhinus canicula. The 16,697-bp-long mtDNA possesses a gene organization identical to that of the Osteichthyes, but different from that of the sea lamprey Petromyzon marinus. The main features of the mtDNA of osteichthyans were thus established in the common ancestor to chondrichthyans and osteichthyans. The phylogenetic analysis confirms that the Chondrichthyes are the sister group of th...

  4. Phylogenetic analyses of complete mitochondrial genome sequences suggest a basal divergence of the enigmatic rodent Anomalurus

    Directory of Open Access Journals (Sweden)

    Gissi Carmela

    2007-02-01

    Full Text Available Abstract Background Phylogenetic relationships between Lagomorpha, Rodentia and Primates and their allies (Euarchontoglires have long been debated. While it is now generally agreed that Rodentia constitutes a monophyletic sister-group of Lagomorpha and that this clade (Glires is sister to Primates and Dermoptera, higher-level relationships within Rodentia remain contentious. Results We have sequenced and performed extensive evolutionary analyses on the mitochondrial genome of the scaly-tailed flying squirrel Anomalurus sp., an enigmatic rodent whose phylogenetic affinities have been obscure and extensively debated. Our phylogenetic analyses of the coding regions of available complete mitochondrial genome sequences from Euarchontoglires suggest that Anomalurus is a sister taxon to the Hystricognathi, and that this clade represents the most basal divergence among sampled Rodentia. Bayesian dating methods incorporating a relaxed molecular clock provide divergence-time estimates which are consistently in agreement with the fossil record and which indicate a rapid radiation within Glires around 60 million years ago. Conclusion Taken together, the data presented provide a working hypothesis as to the phylogenetic placement of Anomalurus, underline the utility of mitochondrial sequences in the resolution of even relatively deep divergences and go some way to explaining the difficulty of conclusively resolving higher-level relationships within Glires with available data and methodologies.

  5. Sequencing and analysis of the complete mitochondrial genome of Gloydius saxatilis (Squamata: Viperidae: Crotalinae).

    Science.gov (United States)

    Xu, Chunzhu; Xie, Fei; Liu, Yichen; Zhao, Shuai; Wang, Yongsheng; Ma, Teng; Zhao, Tianqing

    2016-07-01

    The mitochondrial genome sequence of Gloydius saxatilis is analyzed and presented for the public for the first time. The genome was 17,218 bp in length and contained 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 2 control regions. The overall base composition was A (32.3%), C (28.9%), T (25.8%), and G (13.0%). The base compositions presented clearly the A-C skew, which was most obviously in the protein-coding genes. The extended termination-associated sequence domain, the central conserved domain and the conserved sequence block domain are defined in the mitochondrial genome control region of G. saxatilis. Mitochondrial genomes analyses based on MP, ML, NJ and Bayesian analyses yielded identical phylogenetic trees, indicating a close phylogenetic affinity of the thirteen Crotalinae species. It appeared that no less than two major phyletic lineages were present in Crotalinae. The main clades within the Crotalinae supported are: A clade including the Protobothrops. A clade (G. brevicaudus, G. ussuriensis, G. intermedius, G. saxatilis) with the Ovophis as the sister taxon to Protobothrops and was supported by bootstrap values of 88%. The four Gloydius species formed a paraphyletic group with the high bootstrap value (100%) in all examinations.

  6. Seventeen new complete mtDNA sequences reveal extensive mitochondrial genome evolution within the Demospongiae.

    Directory of Open Access Journals (Sweden)

    Xiujuan Wang

    Full Text Available Two major transitions in animal evolution--the origins of multicellularity and bilaterality--correlate with major changes in mitochondrial DNA (mtDNA organization. Demosponges, the largest class in the phylum Porifera, underwent only the first of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13-15 protein genes, 2 rRNA genes, and 2-27 tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and Verticillitida. Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements

  7. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    Directory of Open Access Journals (Sweden)

    Aranda Miguel A

    2011-08-01

    Full Text Available Abstract Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb, which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp included 132 genes, with 98 single-copy genes dispersed between the small (SSC and large (LSC single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb. A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb, Cucurbita pepo (983 kb and Cucumis melo (2,740 kb share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes

  8. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin.

    Science.gov (United States)

    Rodríguez-Moreno, Luis; González, Víctor M; Benjak, Andrej; Martí, M Carmen; Puigdomènech, Pere; Aranda, Miguel A; Garcia-Mas, Jordi

    2011-08-20

    The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non-conserved structure both in gene number

  9. The mitochondrial genome sequence of Enterobius vermicularis (Nematoda: Oxyurida)--an idiosyncratic gene order and phylogenetic information for chromadorean nematodes.

    Science.gov (United States)

    Kang, Seokha; Sultana, Tahera; Eom, Keeseon S; Park, Yung Chul; Soonthornpong, Nathan; Nadler, Steven A; Park, Joong-Ki

    2009-01-15

    The complete mitochondrial genome sequence was determined for the human pinworm Enterobius vermicularis (Oxyurida: Nematoda) and used to infer its phylogenetic relationship to other major groups of chromadorean nematodes. The E. vermicularis genome is a 14,010-bp circular DNA molecule that encodes 36 genes (12 proteins, 22 tRNAs, and 2 rRNAs). This mtDNA genome lacks atp8, as reported for almost all other nematode species investigated. Phylogenetic analyses (maximum parsimony, maximum likelihood, neighbor joining, and Bayesian inference) of nucleotide sequences for the 12 protein-coding genes of 25 nematode species placed E. vermicularis, a representative of the order Oxyurida, as sister to the main Ascaridida+Rhabditida group. Tree topology comparisons using statistical tests rejected an alternative hypothesis favoring a closer relationship among Ascaridida, Spirurida, and Oxyurida, which has been supported from most studies based on nuclear ribosomal DNA sequences. Unlike the relatively conserved gene arrangement found for most chromadorean taxa, E. vermicularis mtDNA gene order is very unique, not sharing similarity to any other nematode species reported to date. This lack of gene order similarity may represent idiosyncratic gene rearrangements unique to this specific lineage of the oxyurids. To more fully understand the extent of gene rearrangement and its evolutionary significance within the nematode phylogenetic framework, additional mitochondrial genomes representing a greater evolutionary diversity of species must be characterized.

  10. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine

    NARCIS (Netherlands)

    L.C. Chaitanya (Lakshmi); A. Ralf (Arwin); M. van Oven (Mannis); T. Kupiec (Tomasz); J. Chang (Joseph); R. Lagace; M.H. Kayser (Manfred)

    2015-01-01

    textabstractWhole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however,

  11. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Science.gov (United States)

    Mitochondrial signature sequences have frequently been used to study the demographics of many different populations around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individu...

  12. A new database of mitochondrial DNA hypervariable regions I and II sequences from 162 Japanese individuals.

    Science.gov (United States)

    Imaizumi, K; Parsons, T J; Yoshino, M; Holland, M M

    2002-04-01

    A database of mitochondrial DNA (mtDNA) hypervariable region 1 (HV1) and region 2 (HV2) sequences of the mtDNA control region was established from 162 unrelated Japanese individuals. The random match probability and the genetic diversity for this database were 0.96% and 0.997, respectively. Length heteroplasmy in the C-stretch regions located around position 16189 in HVI and 310 in HV2 was observed in 37% and 38% of the samples, respectively. A strategy using internal sequencing primers was devised to obtain confirmed sequences in these length heteroplasmic individuals. This database, combined with other mtDNA sequence databases from the Japanese population, will permit the significance of mtDNA match results to be properly reported in mtDNA typing casework in Japan.

  13. [Study on molecular phylogeny of Schistosoma bovis based on mitochondrial DNA sequence and gene order].

    Science.gov (United States)

    Xiao, Jing-ying; Cai, Lian-shun; Mitsuru, Nagataki; Shinji, Tokuhiro; Jarilla Blanca, R; Masaaki, Shimada; Blair, David; Takeshi, Agatsuma

    2010-08-01

    To determine the nucleotide sequence of the partial mitochondrial (mt) genome and the order of the mitochondrial protein-coding genes for Schistosoma bovis for analysis of possible phylogenetic position of this species in the genus Schistosoma. The genomic DNA of adult worms were extracted by the GNT-K method. The target regions were amplified by PCR using a degenerated primer and specific primer. The PCR products were purified before ligating into the pGEM1 T-vector system. Recombinant plasmids were amplified in Escherichia coli, extracted and purified using routine methods. The nucleotide sequences were determined with an ABI PRISM 3100-Avant DNA sequencer using a BigDye Terminators v3.1 Cycle Sequencing Kit (Applied Bio-systems, CA, U.S.A.) with two T-vector specific primers (T7 and SP6). Positive colonies were sequenced with two internal specific primers to obtain the full sequence of each fragment on both strands by means of primer walking. Sequences of related schistosomes were retrieved from GenBank and aligned with our data. Gene trees were constructed using neighbor joining methods. The nucleotide sequence was determined and the gene order of this region in S. bovis was found as follows: NADHdehydrogenase4 (nad4)-trnQ (Gln)-trnK(Lys)-NADH dehydrogenase 3(nad3)-trnD (Asp)-NADH dehydrogenase 1(nad1). The gene order covering such region of S. bovis was similar to that of the African Schistosoma species, but strikingly different from the Asian species. Phylogenetic trees inferred from the alignment including partial nad4, nad3, partial nad1 and partial nad4+nad3+nad1 sequence for other 8 Schistosoma spp., respectively, revealed that S. bovis is placed proximally to S. haematobium in the African sub-group, which is identical with those placed by gene order in the African clade. The mtDNA analysis based on mitochondrial DNA sequence and the gene order strongly support the hypothesis that S. bovis belongs to the African schistosome clade rather than the Asian

  14. Automated Testing with Targeted Event Sequence Generation

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning; Prasad, Mukul R.; Møller, Anders

    2013-01-01

    Automated software testing aims to detect errors by producing test inputs that cover as much of the application source code as possible. Applications for mobile devices are typically event-driven, which raises the challenge of automatically producing event sequences that result in high coverage....... Some existing approaches use random or model-based testing that largely treats the application as a black box. Other approaches use symbolic execution, either starting from the entry points of the applications or on specific event sequences. A common limitation of the existing approaches...... is that they often fail to reach the parts of the application code that require more complex event sequences. We propose a two-phase technique for automatically finding event sequences that reach a given target line in the application code. The first phase performs concolic execution to build summaries...

  15. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    Science.gov (United States)

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints.

  16. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Directory of Open Access Journals (Sweden)

    Vikram Kapoor

    2017-05-01

    Full Text Available Mitochondrial signature sequences have frequently been used to study human population diversity around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individuals that participated in these types of surveys. Here, we used environmental DNA extracts to determine the presence and sequence variability of human mitochondrial sequences as a means to study the diversity of populations inhabiting in areas nearby a tropical watershed impacted with human fecal pollution. We used high-throughput sequencing (Illumina and barcoding to obtain thousands of sequences from the mitochondrial hypervariable region 2 (HVR2 and determined the different haplotypes present in 10 different water samples. Sequence analyses indicated a total of 19 distinct variants with frequency greater than 5%. The HVR2 sequences were associated with haplogroups of West Eurasian (57.6%, Sub-Saharan African (23.9%, and American Indian (11% ancestry. This was in relative accordance with population census data from the watershed sites. The results from this study demonstrates the potential value of mitochondrial sequence data retrieved from fecally impacted environmental waters to study the population diversity of local municipalities. This environmental DNA approach may also have other public health implications such as tracking background levels of human mitochondrial genes associated with diseases. It may be possible to expand this approach to other animal species inhabiting or using natural water systems.

  17. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences.

    Science.gov (United States)

    McFadden, Catherine S; France, Scott C; Sánchez, Juan A; Alderslade, Phil

    2006-12-01

    Despite their abundance and ecological importance in a wide variety of shallow and deep water marine communities, octocorals (soft corals, sea fans, and sea pens) are a group whose taxonomy and phylogenetic relationships remain poorly known and little studied. The group is currently divided into three orders (O: Alcyonacea, Pennatulacea, and Helioporacea); the large O. Alcyonacea (soft corals and sea fans) is further subdivided into six sub-ordinal groups on the basis of skeletal composition and colony growth form. We used 1429bp of two mitochondrial protein-coding genes, ND2 and msh1, to construct a phylogeny for 103 octocoral genera representing 28 families. In agreement with a previous 18S rDNA phylogeny, our results support a division of Octocorallia into two major clades plus a third, minor clade. We found one large clade (Holaxonia-Alcyoniina) comprising the sea fan sub-order Holaxonia and the majority of soft corals, and a second clade (Calcaxonia-Pennatulacea) comprising sea pens (O. Pennatulacea) and the sea fan sub-order Calcaxonia. Taxa belonging to the sea fan group Scleraxonia and the soft coral family Alcyoniidae were divided among the Holaxonia-Alcyoniina clade and a third, small clade (Anthomastus-Corallium) whose relationship to the two major clades was unresolved. In contrast to the previous studies, we found sea pens to be monophyletic but nested within Calcaxonia; our analyses support the sea fan family Ellisellidae as the sister taxon to the sea pens. We are unable to reject the hypothesis that the calcaxonian and holaxonian skeletal axes each arose once and suggest that the skeletal axis of sea pens is derived from that of Calcaxonia. Topology tests rejected the monophyly of sub-ordinal groups Alcyoniina, Scleraxonia, and Stolonifera, as well as 9 of 14 families for which we sampled multiple genera. The much broader taxon sampling and better phylogenetic resolution afforded by our study relative to the previous efforts greatly clarify the

  18. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    Science.gov (United States)

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  19. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  20. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus.

    Science.gov (United States)

    Soini, Heidi K; Moilanen, Jukka S; Finnila, Saara; Majamaa, Kari

    2012-07-10

    The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA). Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  1. Complete sequence and gene organization of the mitochondrial genome of Asio flammeus (Strigiformes, strigidae).

    Science.gov (United States)

    Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei

    2016-07-01

    The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group.

  2. A mitochondrial genome sequence of a hominin from Sima de los Huesos.

    Science.gov (United States)

    Meyer, Matthias; Fu, Qiaomei; Aximu-Petri, Ayinuer; Glocke, Isabelle; Nickel, Birgit; Arsuaga, Juan-Luis; Martínez, Ignacio; Gracia, Ana; de Castro, José María Bermúdez; Carbonell, Eudald; Pääbo, Svante

    2014-01-16

    Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.

  3. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Directory of Open Access Journals (Sweden)

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  4. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium.

    Science.gov (United States)

    Barth, Dana; Berendonk, Thomas U

    2011-05-31

    Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%). This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino acid composition. Most probably, the observed picture is best

  5. Preliminary study on mitochondrial 16S rRNA gene sequences and phylogeny of flatfishes (Pleuronectiformes)

    Science.gov (United States)

    You, Feng; Liu, Jing; Zhang, Peijun; Xiang, Jianhai

    2005-09-01

    A 605 bp section of mitochondrial 16S rRNA gene from Paralichthys olivaceus, Pseudorhombus cinnamomeus, Psetta maxima and Kareius bicoloratus, which represent 3 families of Order Pleuronectiformes was amplified by PCR and sequenced to show the molecular systematics of Pleuronectiformes for comparison with related gene sequences of other 6 flatfish downloaded from GenBank. Phylogenetic analysis based on genetic distance from related gene sequences of 10 flatfish showed that this method was ideal to explore the relationship between species, genera and families. Phylogenetic trees set-up is based on neighbor-joining, maximum parsimony and maximum likelihood methods that accords to the general rule of Pleuronectiformes evolution. But they also resulted in some confusion. Unlike data from morphological characters, P. olivaceus clustered with K. bicoloratus, but P. cinnamomeus did not cluster with P. olivaceus, which is worth further studying.

  6. Genetic diversity of Lombok chickens based on D-loop mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    M. Syamsul Arifin Zein

    2008-12-01

    Full Text Available Mitochondrial DNA (mtDNA displacement (D-loop sequences were used to study the genetic diversity and relationship of Lombok chickens. A total of 45 individuals were sampled. The D-loop segment was PCR amplified and subsequently sequenced. The sequences of the 785 nucleotides were used for analysis. Twelve haplotypes were identified from 25 polymorphic sites with polymorphism between nucleotides 200 and 400 contributing to 80% of the variation. Fu’s Fs value was - 8.768 (all samples, P = 0, indicating high genetic diversity and population expansion, a conclusion supported by a neighbor– joining analysis of the haplotypes. Nucleotides diversity of the Lombok chicken were 0.00221 and haplotype diversity were 0.654 + 0.08. The dominant haplotype found among the Lombok chickens was haplotype B (62% and genetic distances value ranged from 0.001 to 0.017.

  7. Sequence and organization of the complete mitochondrial genome of the marsh tit Poecile palustris (Aves: Paridae).

    Science.gov (United States)

    Day, John C; Broughton, Richard K; Hinsley, Shelley A

    2016-09-01

    The complete mitochondrial genome of the marsh tit Poecile palustris (Linnaeus, 1758) was sequenced using a combined Illumina and Sanger sequencing approach. Using the known sequence of Poecile atricapillus Linnaeus, 1766 (Paridae) homologous NGS reads were identified and assembled. The genome is 16,824 bp in length and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region. Gene order resembles that of the standard avian gene order. The base composition of the genome is A (29.15%), T (22.50%), C (33.61%) and G (14.73%). The control region between tRNA(Glu) and tRNA(Phe) is composed of 1240 bp with no obvious repetitive motifs.

  8. Sequence polymorphism of mitochondrial DNA in Japanese individuals from Gifu Prefecture.

    Science.gov (United States)

    Nagai, Atsushi; Nakamura, Isao; Shiraki, Futoru; Bunai, Yasuo; Ohya, Isao

    2003-03-01

    Sequence polymorphisms of the hypervariable region HV1 in mitochondrial DNA (mtDNA) were analyzed in a sample of 137 unrelated Japanese individuals living in Gifu Prefecture (central region of Japan) using polymerase chain reaction amplification and direct sequencing. Eighty-two different haplotypes resulting from 81 variable sites were found in the mtDNA HV1 region between positions 16061 and 16450. The most frequent haplotype (16223T, 16362C) was shared by ten individuals. The genetic diversity and the genetic identity were 0.985 and 0.022, respectively. The C-stretch region located around position 16189 was observed in 23.4% of this population sample. Sequence heteroplasmy at the position 16103 (A/G) was found in one individual.

  9. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  10. Molecular Characterization of Indonesian Indigenous Chickens based on Mitochondrial DNA Displacement (D-loop Sequences

    Directory of Open Access Journals (Sweden)

    SRI SULANDARI

    2008-12-01

    Full Text Available The Mitochondrial DNA (mtDNA displacement (D-loop sequences were used to study the genetic diversity and relationship of Indonesian indigenous chickens. A total of 483 individuals belonging to 15 population breeds and 43 individuals belonging to 6 populations of jungle fowl (2 populations of Gallus gallus and 4 populations of Gallus varius were sampled. The hypervariable I (HVI segment of the D-loop was PCR amplified and subsequently sequenced. The sequences of the first 397 nucleotides were used for analysis. Sixty nine haplotypes were identified from 54 polymorphic sites with polymorphism between nucleotides 167 and 397 contributing to 94.5% of the sequence variation. Phylogenetic analysis indicates that Indonesian indigenous chickens can be grouped into five distinct clades (clade I, II, IIIc, IIId, and IV of the previously identified seven clades (clade I, II, IIIa, IIIb, IIIc, IIId, and IV in Asian indigenous chickens. Fifty haplotypes belong to clade II, seven haplotypes are in clade IV, six are in clade IIId, three are in clade I and one haploype is in clade IIIc. There was no breed-specific clade. Analysis of Molecular Variance (AMOVA based on partial D-loop sequences of Indonesian chicken indicates that 67.85% of the total sequence variation between haplotypes was present within the population and 32.15% between populations. One of the haplotypes (represented by PLC4 was shared by all populations, suggesting that these populations may share the same maternal ancestor. These results show a high mitochondrial D-loop diversity and indicate multiple maternal origins for Indonesian indigenous chickens.

  11. [Leber hereditary optic neuropathy: Usefulness of next generation sequencing to study mitochondrial mutations on apparent homoplasmy].

    Science.gov (United States)

    Carrasco Salas, Pilar; Palma Milla, Carmen; López Montiel, Javier; Benito, Carmen; Franco Freire, Sara; López Siles, Juan

    2016-02-19

    Leber hereditary optic neuropathy is characterized by acute and subacute visual loss, produced by mitochondrial DNA mutations. The molecular study of a family with only one affected member is presented. In the index case and in her mother, the mitochondrial mutation m.11778G>A in the MT-ND4 was detected in the heteroplasmic state. The index case's sister, without ocular manifestations, asked for genetic counseling. The study of the mentioned mutation by Sanger sequencing identified it in an apparent homoplasmic state. However, by means of next-generation sequencing (NGS), the mutation was actually in a heteroplasmic state. Regarding genetic counseling, verifying a mutation in homoplasmic state is really important. We have observed that NGS allows us to discriminate between high levels of heteroplasmy and homoplasmy, meaning that it is a useful technique for the analysis of apparent homoplasmic results obtained with less sensitive technique, as Sanger sequencing. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.

  12. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-24

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  13. Phylogenetic re-evaluation of Trametes consors based on mitochondrial small subunit ribosomal DNA sequences.

    Science.gov (United States)

    Ko, K S; Jung, H S

    1999-01-01

    Mitochondrial small subunit ribosomal DNAs of Cerrena unicolor and Trametes consors were sequenced and compared with those of known mushroom taxa. Trametes consors is a species recently transferred from Irpex, and Cerrena is a genus closely related to Trametes. The present phylogenetic tree showed that Cerrena unicolor and Trametes consors clustered together and made an independent lineage from the Trametes group. A new combination, Cerrena consors (Berk.) Ko and Jung, comb nov., is proposed here by transferring Trametes consors into Cerrena based on molecular data along with taxonomic evidence.

  14. The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula.

    Science.gov (United States)

    Delarbre, C; Spruyt, N; Delmarre, C; Gallut, C; Barriel, V; Janvier, P; Laudet, V; Gachelin, G

    1998-09-01

    We have determined the complete nucleotide sequence of the mitochondrial DNA (mtDNA) of the dogfish, Scyliorhinus canicula. The 16,697-bp-long mtDNA possesses a gene organization identical to that of the Osteichthyes, but different from that of the sea lamprey Petromyzon marinus. The main features of the mtDNA of osteichthyans were thus established in the common ancestor to chondrichthyans and osteichthyans. The phylogenetic analysis confirms that the Chondrichthyes are the sister group of the Osteichthyes.

  15. Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region.

    Science.gov (United States)

    Sindičić, Magda; Gomerčić, Tomislav; Galov, Ana; Polanc, Primož; Huber, Duro; Slavica, Alen

    2012-06-01

    Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1-RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5' end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3' end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.

  16. The complete mitochondrial genome sequence of the indigenous I pig ( in Vietnam

    Directory of Open Access Journals (Sweden)

    Hieu Duc Nguyen

    2017-07-01

    Full Text Available Objective The I pig is a long nurtured longstanding breed in Vietnam, and contains excellent indigenous genetic resources. However, after 1970s, I pig breeds have become a small population because of decreasing farming areas and increasing pressure from foreign breeds with a high growth rate. Thus, there is now the risk of the disappearance of the I pigs breed. The aim of this study was to focus on classifying and identifying the I pig genetic origin and supplying molecular makers for conservation activities. Methods This study sequenced the complete mitochondrial genome and used the sequencing result to analyze the phylogenetic relationship of I pig with Asian and European domestic pigs and wild boars. The full sequence was annotated and predicted the secondary tRNA. Results The total length of I pig mitochondrial genome (accession number KX094894 was 16,731 base pairs, comprised two rRNA (12S and 16S, 22 tRNA and 13 mRNA genes. The annotation structures were not different from other pig breeds. Some component indexes as AT content, GC, and AT skew were counted, in which AT content (60.09% was smaller than other pigs. We built the phylogenetic trees from full sequence and D loop sequence using Bayesian method. The result showed that I pig, Banna mini, wild boar (WB Vietnam and WB Hainan or WB Korea, WB Japan were a cluster. They were a group within the Asian clade distinct from Chinese pigs and other Asian breeds in both phylogenetic trees (0.0004 and 0.0057, respectively. Conclusion These results were similar to previous phylogenic study in Vietnamese pig and showed the genetic distinctness of I pig with other Asian domestic pigs.

  17. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    Full Text Available Abstract Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu gene and possesses a trnS-derived 'trnK(uuu', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher

  18. The mitochondrial C16069T polymorphism, not mitochondrial D310 (D-loop) mononucleotide sequence variations, is associated with bladder cancer.

    Science.gov (United States)

    Shakhssalim, Nasser; Houshmand, Massoud; Kamalidehghan, Behnam; Faraji, Abolfazl; Sarhangnejad, Reza; Dadgar, Sepideh; Mobaraki, Maryam; Rosli, Rozita; Sanati, Mohammad Hossein

    2013-12-05

    Bladder cancer is a relatively common and potentially life-threatening neoplasm that ranks ninth in terms of worldwide cancer incidence. The aim of this study was to determine deletions and sequence variations in the mitochondrial displacement loop (D-loop) region from the blood specimens and tumoral tissues of patients with bladder cancer, compared to adjacent non-tumoral tissues. The DNA from blood, tumoral tissues and adjacent non-tumoral tissues of twenty-six patients with bladder cancer and DNA from blood of 504 healthy controls from different ethnicities were investigated to determine sequence variation in the mitochondrial D-loop region using multiplex polymerase chain reaction (PCR), DNA sequencing and southern blotting analysis. From a total of 110 variations, 48 were reported as new mutations. No deletions were detected in tumoral tissues, adjacent non-tumoral tissues and blood samples from patients. Although the polymorphisms at loci 16189, 16261 and 16311 were not significantly correlated with bladder cancer, the C16069T variation was significantly present in patient samples compared to control samples (p  0.05) of C variations, including C7TC6, C8TC6, C9TC6 and C10TC6, in D310 mitochondrial DNA between patients and control samples. Our study suggests that 16069 mitochondrial DNA D-Loop mutations may play a significant role in the etiology of bladder cancer and facilitate the definition of carcinogenesis-related mutations in human cancer.

  19. The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2006-07-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although complete mitochondrial genome sequences have been reported for more than 600 animals, the taxonomic sampling is highly biased toward vertebrates and arthropods, leaving much of the diversity yet uncharacterized. Results The mitochondrial genome of the bellybutton nautilus, Nautilus macromphalus, a cephalopod mollusk, is 16,258 nts in length and 59.5% A+T, both values that are typical of animal mitochondrial genomes. It contains the 37 genes that are almost universally found in animal mtDNAs, with 15 on one DNA strand and 22 on the other. The arrangement of these genes can be derived from that of the distantly related Katharina tunicata (Mollusca: Polyplacophora by a switch in position of two large blocks of genes and transpositions of four tRNA genes. There is strong skew in the distribution of nucleotides between the two strands, and analysis of this yields insight into modes of transcription and replication. There is an unusual number of non-coding regions and their function, if any, is not known; however, several of these demark abrupt shifts in nucleotide skew, and there are several identical sequence elements at these junctions, suggesting that they may play roles in transcription and/or replication. One of the non-coding regions contains multiple repeats of a tRNA-like sequence. Some of the tRNA genes appear to overlap on the same strand, but this could be resolved if the polycistron were cleaved at the beginning of the downstream gene, followed by polyadenylation of the product of the upstream gene to form a fully paired structure. Conclusion Nautilus macromphalus mtDNA contains an expected gene content that has experienced few rearrangements since the evolutionary split between cephalopods and polyplacophorans. It contains an

  20. The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalopoda)

    Science.gov (United States)

    Boore, Jeffrey L

    2006-01-01

    Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although complete mitochondrial genome sequences have been reported for more than 600 animals, the taxonomic sampling is highly biased toward vertebrates and arthropods, leaving much of the diversity yet uncharacterized. Results The mitochondrial genome of the bellybutton nautilus, Nautilus macromphalus, a cephalopod mollusk, is 16,258 nts in length and 59.5% A+T, both values that are typical of animal mitochondrial genomes. It contains the 37 genes that are almost universally found in animal mtDNAs, with 15 on one DNA strand and 22 on the other. The arrangement of these genes can be derived from that of the distantly related Katharina tunicata (Mollusca: Polyplacophora) by a switch in position of two large blocks of genes and transpositions of four tRNA genes. There is strong skew in the distribution of nucleotides between the two strands, and analysis of this yields insight into modes of transcription and replication. There is an unusual number of non-coding regions and their function, if any, is not known; however, several of these demark abrupt shifts in nucleotide skew, and there are several identical sequence elements at these junctions, suggesting that they may play roles in transcription and/or replication. One of the non-coding regions contains multiple repeats of a tRNA-like sequence. Some of the tRNA genes appear to overlap on the same strand, but this could be resolved if the polycistron were cleaved at the beginning of the downstream gene, followed by polyadenylation of the product of the upstream gene to form a fully paired structure. Conclusion Nautilus macromphalus mtDNA contains an expected gene content that has experienced few rearrangements since the evolutionary split between cephalopods and polyplacophorans. It contains an unusual number of non

  1. The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalopoda).

    Science.gov (United States)

    Boore, Jeffrey L

    2006-07-19

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although complete mitochondrial genome sequences have been reported for more than 600 animals, the taxonomic sampling is highly biased toward vertebrates and arthropods, leaving much of the diversity yet uncharacterized. The mitochondrial genome of the bellybutton nautilus, Nautilus macromphalus, a cephalopod mollusk, is 16,258 nts in length and 59.5% A+T, both values that are typical of animal mitochondrial genomes. It contains the 37 genes that are almost universally found in animal mtDNAs, with 15 on one DNA strand and 22 on the other. The arrangement of these genes can be derived from that of the distantly related Katharina tunicata (Mollusca: Polyplacophora) by a switch in position of two large blocks of genes and transpositions of four tRNA genes. There is strong skew in the distribution of nucleotides between the two strands, and analysis of this yields insight into modes of transcription and replication. There is an unusual number of non-coding regions and their function, if any, is not known; however, several of these demark abrupt shifts in nucleotide skew, and there are several identical sequence elements at these junctions, suggesting that they may play roles in transcription and/or replication. One of the non-coding regions contains multiple repeats of a tRNA-like sequence. Some of the tRNA genes appear to overlap on the same strand, but this could be resolved if the polycistron were cleaved at the beginning of the downstream gene, followed by polyadenylation of the product of the upstream gene to form a fully paired structure. Nautilus macromphalus mtDNA contains an expected gene content that has experienced few rearrangements since the evolutionary split between cephalopods and polyplacophorans. It contains an unusual number of non-coding regions, especially considering

  2. Polymorphic duplicate genes and persistent non-coding sequences reveal heterogeneous patterns of mitochondrial DNA loss in salamanders

    OpenAIRE

    Chong, Rebecca A.; Mueller, Rachel Lockridge

    2017-01-01

    Background Mitochondria are the site of the citric acid cycle and oxidative phosphorylation (OXPHOS). In metazoans, the mitochondrial genome is a small, circular molecule averaging 16.5 kb in length. Despite evolutionarily conserved gene content, metazoan mitochondrial genomes show a diversity of gene orders most commonly explained by the duplication-random loss (DRL) model. In the DRL model, (1) a sequence of genes is duplicated in tandem, (2) one paralog sustains a loss-of-function mutation...

  3. Genetic differentiation in pointing dog breeds inferred from microsatellites and mitochondrial DNA sequence.

    Science.gov (United States)

    Parra, D; Méndez, S; Cañón, J; Dunner, S

    2008-02-01

    Recent studies presenting genetic analysis of dog breeds do not focus specifically on genetic relationships among pointing dog breeds, although hunting was among the first traits of interest when dogs were domesticated. This report compares histories with genetic relationships among five modern breeds of pointing dogs (English Setter, English Pointer, Epagneul Breton, Deutsch Drahthaar and German Shorthaired Pointer) collected in Spain using mitochondrial, autosomal and Y-chromosome information. We identified 236 alleles in autosomal microsatellites, four Y-chromosome haplotypes and 18 mitochondrial haplotypes. Average F(ST) values were 11.2, 14.4 and 13.1 for autosomal, Y-chromosome microsatellite markers and mtDNA sequence respectively, reflecting relatively high genetic differentiation among breeds. The high gene diversity observed in the pointing breeds (61.7-68.2) suggests contributions from genetically different individuals, but that these individuals originated from the same ancestors. The modern English Setter, thought to have arisen from the Old Spanish Pointer, was the first breed to cluster independently when using autosomal markers and seems to share a common maternal origin with the English Pointer and German Shorthaired Pointer, either via common domestic breed females in the British Isles or through the Old Spanish Pointer females taken to the British Isles in the 14th and 16th centuries. Analysis of mitochondrial DNA sequence indicates the isolation of the Epagneul Breton, which has been formally documented, and shows Deutsch Drahthaar as the result of crossing the German Shorthaired Pointer with other breeds. Our molecular data are consistent with historical documents.

  4. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  5. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  6. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing

    Science.gov (United States)

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F.; Fox, Edward J.; Chang, Chia-Cheng; Loeb, Lawrence A.

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles. PMID:26305705

  7. Bird evolution: testing the Metaves clade with six new mitochondrial genomes.

    Science.gov (United States)

    Morgan-Richards, Mary; Trewick, Steve A; Bartosch-Härlid, Anna; Kardailsky, Olga; Phillips, Matthew J; McLenachan, Patricia A; Penny, David

    2008-01-23

    Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the beta-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.

  8. Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Phillips Matthew J

    2008-01-01

    Full Text Available Abstract Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes. Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.

  9. Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Science.gov (United States)

    2008-01-01

    Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes). Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp) rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves. PMID:18215323

  10. Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Jianfeng WANG

    2011-08-01

    Full Text Available Aphids of the subtribe Aphidina are found mainly in the North Temperate Zone. The relative lack of diagnostic morphological characteristics has obscured the identification of species in this group. However, DNA-based taxonomic methods can clarify species relationships within this group. Sequence variation in a partial segment of the mitochondrial COI gene was highly effective for resolving species relationships within Aphidina. Forty-five species were correctly identified in a neighbor-joining tree. Mean intraspecific sequence divergence was 0.17%, with a range of 0.00% to 1.54%. Mean interspecific divergence within previously recognized genera or morphologically similar species groups was 4.54%, with variation mainly in the range of 3.50% to 8.00%. Possible reasons for anomalous levels of mean nucleotide divergence within or between some taxa are discussed.

  11. A Case of Diphyllobothrium nihonkaiense Infection as Confirmed by Mitochondrial COX1 Gene Sequence Analysis

    Science.gov (United States)

    Park, Sang Hyun; Eom, Keeseon S.; Park, Min Sun; Kwon, Oh Kyoung; Kim, Hyo Sun

    2013-01-01

    Diphyllobothrium nihonkaiense has been reported in Korea as Diphyllobothrium latum because of their close morphologic resemblance. We have identified a human case of D. nihonkaiense infection using the mitochondrial cytochrome c oxidase subunit I (cox1) gene sequence analysis. On 18 February 2012, a patient who had consumed raw fish a month earlier visited our outpatient clinic with a long tapeworm parasite excreted in the feces. The body of the segmented worm was 2 m long and divided into the scolex (head) and proglottids. It was morphologically close to D. nihonkaiense and D. latum. The cox1 gene analysis showed 99.4% (340/342 bp) homology with D. nihonkaiense but only 91.8% (314/342 bp) homology with D. latum. The present study suggested that the Diphyllobothrium spp. infection in Korea should be analyzed with specific DNA sequence for an accurate species identification. PMID:24039292

  12. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  13. Diagnosis by whole exome sequencing of atypical infantile onset Alexander disease masquerading as a mitochondrial disorder.

    Science.gov (United States)

    Nishri, Daniella; Edvardson, Simon; Lev, Dorit; Leshinsky-Silver, Esther; Ben-Sira, Liat; Henneke, Marco; Lerman-Sagie, Tally; Blumkin, Lubov

    2014-07-01

    There are many similarities, both clinical and radiological, between mitochondrial leukoencephalopathies and Alexander disease, an astrogliopathy. Clinically, both can manifest with a myriad of symptoms and signs, arising from the neonatal period to adulthood. Radiologically, both can demonstrate white matter changes, signal abnormalities of basal ganglia or thalami, brainstem abnormalities and contrast enhancement of white matter structures. Magnetic resonance spectroscopy may reveal elevation of lactate in the abnormal white matter in Alexander disease making the distinction even more challenging. We present a child who was considered to have an infantile onset mitochondrial disorder due to a combination of neurological symptoms and signs (developmental regression, failure to thrive, episodic deterioration, abnormal eye movements, pyramidal and cerebellar signs), urinary excretion of 3-methyl-glutaconic acid and imaging findings (extensive white matter changes and cerebellar atrophy) with a normal head circumference. Whole exome sequence analysis was performed. The child was found to harbor the R416W mutation, one of the most prevalent mutations in the glial fibrillary acidic protein (GFAP) gene that causes Alexander disease. Alexander disease should be considered in the differential diagnosis of infantile leukoencephalopathy, even when no macrocephaly is present. Next generation sequencing is a useful aid in unraveling the molecular etiology of leukoencephalopathies. Copyright © 2014 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  14. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  15. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman.

    Science.gov (United States)

    Coia, V; Cipollini, G; Anagnostou, P; Maixner, F; Battaggia, C; Brisighelli, F; Gómez-Carballa, A; Destro Bisol, G; Salas, A; Zink, A

    2016-01-14

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp.

  16. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  17. Characterization of the Complete Mitochondrial Genome Sequence of Spirometra erinaceieuropaei (Cestoda: Diphyllobothriidae) from China

    Science.gov (United States)

    Liu, Guo-Hua; Li, Chun; Li, Jia-Yuan; Zhou, Dong-Hui; Xiong, Rong-Chuan; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan

    2012-01-01

    Sparganosis, caused by the plerocercoid larvae of members of the genus Spirometra, can cause significant public health problem and considerable economic losses. In the present study, the complete mitochondrial DNA (mtDNA) sequence of Spirometra erinaceieuropaei from China was determined, characterized and compared with that of S. erinaceieuropaei from Japan. The gene arrangement in the mt genome sequences of S. erinaceieuropaei from China and Japan is identical. The identity of the mt genomes was 99.1% between S. erinaceieuropaei from China and Japan, and the complete mtDNA sequence of S. erinaceieuropaei from China is slightly shorter (2 bp) than that from Japan. Phylogenetic analysis of S. erinaceieuropaei with other representative cestodes using two different computational algorithms [Bayesian inference (BI) and maximum likelihood (ML)] based on concatenated amino acid sequences of 12 protein-coding genes, revealed that S. erinaceieuropaei is closely related to Diphyllobothrium spp., supporting classification based on morphological features. The present study determined the complete mtDNA sequences of S. erinaceieuropaei from China that provides novel genetic markers for studying the population genetics and molecular epidemiology of S. erinaceieuropaei in humans and animals. PMID:22553464

  18. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Science.gov (United States)

    Song, Nan; Zhang, Hao; Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  19. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  20. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

    Directory of Open Access Journals (Sweden)

    Bartolomaeus Thomas

    2009-01-01

    Full Text Available Abstract Background Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.

  1. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida.

    Science.gov (United States)

    Mwinyi, Adina; Meyer, Achim; Bleidorn, Christoph; Lieb, Bernhard; Bartolomaeus, Thomas; Podsiadlowski, Lars

    2009-01-16

    Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula.

  2. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

    Science.gov (United States)

    Mwinyi, Adina; Meyer, Achim; Bleidorn, Christoph; Lieb, Bernhard; Bartolomaeus, Thomas; Podsiadlowski, Lars

    2009-01-01

    Background Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula. PMID:19149868

  3. The complete mitochondrial genome sequence of the spider habronattus oregonensis reveals rearranged and extremely truncated tRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Masta, Susan E.; Boore, Jeffrey L.

    2004-01-31

    We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs appear to be lacking, because fully paired acceptor stems are not possible and because the downstream sequences instead encode adjacent genes. Hence, these appear to be among the smallest known tRNA genes. We postulate that an RNA editing mechanism must exist to restore the 3' aminoacyl acceptor stems in order to allow the tRNAs to function. At least seven tRN As are rearranged with respect to the chelicerate Limulus polyphemus, although the arrangement of the protein-coding genes is identical. Most mitochondrial protein-coding genes of H. oregonensis have ATN as initiation codons, as commonly found in arthropod mtDNAs, but cytochrome oxidase subunit 2 and 3 genes apparently use UUG as an initiation codon. Finally, many of the gene sequences overlap one another and are truncated. This 14,381 bp genome, the first mitochondrial genome of a spider yet sequenced, is one of the smallest arthropod mitochondrial genomes known. We suggest that post transcriptional RNA editing can likely maintain function of the tRNAs while permitting the accumulation of mutations that would otherwise be deleterious. Such mechanisms may have allowed for the minimization of the spider mitochondrial genome.

  4. Apocytochrome b and other mitochondrial DNA sequences are differentially expressed during the life cycle of Trypanosoma brucei.

    OpenAIRE

    Feagin, J E; Jasmer, D P; Stuart, K

    1985-01-01

    Cytochromes and Krebs cycle enzymes are not detected in bloodstream forms of Trypanosoma brucei but are present in procyclic forms. We have analyzed transcription of mitochondrial sequences which contain the apocytochrome b gene and several other open reading frames (ORFs). Multiple transcripts map to individual DNA sequences located on both DNA strands. Larger low abundance transcripts map to multiple ORFs and may be precursor RNAs. Small abundant transcripts map to G + C rich sequences that...

  5. Clinical characterization and mitochondrial DNA sequence variations in Leber hereditary optic neuropathy

    Science.gov (United States)

    Kumar, Manoj; Kaur, Punit; Kumar, Manoj; Saxena, Rohit; Sharma, Pradeep

    2012-01-01

    Purpose Leber hereditary optic neuropathy (LHON), a maternally inherited disorder, results from point mutations in mitochondrial DNA (mtDNA). MtDNA is highly polymorphic in nature with very high mutation rate, 10–17 fold higher as compared to nuclear genome. Identification of new mtDNA sequence variations is necessary to establish a clean link with human disease. Thus this study was aimed to assess or evaluate LHON patients for novel mtDNA sequence variations. Materials and Methods Twenty LHON patients were selected from the neuro-ophthalmology clinic of the All India Institute of Medical Sciences, New Delhi, India. DNA was isolated from whole blood samples. The entire coding region of the mitochondrial genome was amplified by PCR in 20 patients and 20 controls. For structural analysis (molecular modeling and simulation) the MODELER 9.2 program in Discovery Studio (DS 2.0) was used. Results MtDNA sequencing revealed a total of 47 nucleotide variations in the 20 LHON patients and 29 variations in 20 controls. Of 47 changes in patients 21.2% (10/47) were nonsynonymous and the remaining 78.72% (37/47) were synonymous. Five nonsynonymous changes, including primary LHON mutations (NADH dehydrogenase subunit 1 [ND1]:p.A52T, NADH dehydrogenase subunit 6 [ND6]:p.M64V, adenosine triphosphate [ATP] synthase subunit a (F-ATPase protein 6) [ATPase6]:p.M181T, NADH dehydrogenase subunit 4 [ND4]:p.R340H, and cytochrome B [CYB]:p.F181L), were found to be pathogenic. A greater number of changes were present in complex I (53.19%; 25/47), followed by complex III (19.14%; 9/47), then complex IV (19.14%; 9/47), then complex V (8.5%; 4/47). Nonsynonymous variations may impair respiratory chain and oxidative phosphorylation (OXPHOS) pathways, which results in low ATP production and elevated reactive oxygen species (ROS) levels. Oxidative stress is the underlying etiology in various diseases and also plays a crucial role in LHON. Conclusions This study describes the role of mt

  6. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2.

    Directory of Open Access Journals (Sweden)

    Sophie Blein

    Full Text Available Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio < 1.5 and 4.0, respectively have been identified, suggesting that the remaining heritability is likely to be explained by the cumulative effect of such alleles and/or by rare high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.

  7. Targeted Sequencing of the Mitochondrial Genome of Women at High Risk of Breast Cancer without Detectable Mutations in BRCA1/2.

    Science.gov (United States)

    Blein, Sophie; Barjhoux, Laure; Damiola, Francesca; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Marcou, Morgane; Caron, Olivier; Lortholary, Alain; Buecher, Bruno; Vennin, Philippe; Berthet, Pascaline; Noguès, Catherine; Lasset, Christine; Gauthier-Villars, Marion; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Thomas, Gilles; Sinilnikova, Olga M; Cox, David G

    2015-01-01

    Breast Cancer is a complex multifactorial disease for which high-penetrance mutations have been identified. Approaches used to date have identified genomic features explaining about 50% of breast cancer heritability. A number of low- to medium penetrance alleles (per-allele odds ratio high-penetrance alleles. Relatively few studies have specifically explored the mitochondrial genome for variants potentially implicated in breast cancer risk. For these reasons, we propose an exploration of the variability of the mitochondrial genome in individuals diagnosed with breast cancer, having a positive breast cancer family history but testing negative for BRCA1/2 pathogenic mutations. We sequenced the mitochondrial genome of 436 index breast cancer cases from the GENESIS study. As expected, no pathogenic genomic pattern common to the 436 women included in our study was observed. The mitochondrial genes MT-ATP6 and MT-CYB were observed to carry the highest number of variants in the study. The proteins encoded by these genes are involved in the structure of the mitochondrial respiration chain, and variants in these genes may impact reactive oxygen species production contributing to carcinogenesis. More functional and epidemiological studies are needed to further investigate to what extent variants identified may influence familial breast cancer risk.

  8. Next-generation sequencing of mixed genomic DNA allows efficient assembly of rearranged mitochondrial genomes in Amolops chunganensis and Quasipaa boulengeri

    Directory of Open Access Journals (Sweden)

    Siqi Yuan

    2016-12-01

    Full Text Available Recent improvements in next-generation sequencing (NGS technologies can facilitate the obtainment of mitochondrial genomes. However, it is not clear whether NGS could be effectively used to reconstruct the mitogenome with high gene rearrangement. These high rearrangements would cause amplification failure, and/or assembly and alignment errors. Here, we choose two frogs with rearranged gene order, Amolops chunganensis and Quasipaa boulengeri, to test whether gene rearrangements affect the mitogenome assembly and alignment by using NGS. The mitogenomes with gene rearrangements are sequenced through Illumina MiSeq genomic sequencing and assembled effectively by Trinity v2.1.0 and SOAPdenovo2. Gene order and contents in the mitogenome of A. chunganensis and Q. boulengeri are typical neobatrachian pattern except for rearrangements at the position of “WANCY” tRNA genes cluster. Further, the mitogenome of Q. boulengeri is characterized with a tandem duplication of trnM. Moreover, we utilize 13 protein-coding genes of A. chunganensis, Q. boulengeri and other neobatrachians to reconstruct the phylogenetic tree for evaluating mitochondrial sequence authenticity of A. chunganensis and Q. boulengeri. In this work, we provide nearly complete mitochondrial genomes of A. chunganensis and Q. boulengeri.

  9. A Mitochondrial Autonomously Replicating Sequence from Pichia pastoris for Uniform High Level Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Karl Friehs

    2017-05-01

    Full Text Available Pichia pastoris is a non-conventional methylotrophic yeast that is widely used for recombinant protein production, typically by stably integrating the target gene into the genome as part of an expression cassette. However, the comparatively high clonal variability associated with this approach usually necessitates a time intense screening step in order to find strains with the desired productivity. Some of the factors causing this clonal variability can be overcome using episomal vectors containing an autonomously replicating sequence (ARS. Here, we report on the discovery, characterization, and application of a fragment of mitochondrial DNA from P. pastoris for use as an ARS. First encountered as an off-target event in an experiment aiming for genomic integration, the newly created circular plasmid named “pMito” consists of the expression cassette and a fragment of mitochondrial DNA. Multiple matches to known ARS consensus sequence motifs, but no exact match to known chromosomal ARS from P. pastoris were detected on the fragment, indicating the presence of a novel ARS element. Different variants of pMito were successfully used for transformation and their productivity characteristics were assayed. All analyzed clones displayed a highly uniform expression level, exceeding by up to fourfold that of a reference with a single copy integrated in its genome. Expressed GFP could be localized exclusively to the cytoplasm via super-resolution fluorescence microscopy, indicating that pMito is present in the nucleus. While expression levels were homogenous among pMito clones, an apparent upper limit of expression was visible that could not be explained based on the gene dosage. Further investigation is necessary to fully understand the bottle-neck hindering this and other ARS vectors in P. pastoris from reaching their full capability. Lastly, we could demonstrate that the mitochondrial ARS from P. pastoris is also suitable for episomal vector

  10. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    Science.gov (United States)

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  11. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  12. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  13. Population subdivision in Europe's great bustard inferred from mitochondrial and nuclear DNA sequence variation.

    Science.gov (United States)

    Pitra, C; Lieckfeldt, D; Alonso, J C

    2000-08-01

    A continent-wide survey of sequence variation in mitochondrial (mt) and nuclear (n) DNA of the endangered great bustard (Otis tarda) was conducted to assess the extent of phylogeographic structure in a morphologically monotypic bird. DNA sequence variation in a combined 809 bp segment of the mtDNA genome from 66 individuals from the last six breeding regions showed relatively low levels of intraspecific sequence diversity (n = 0.32%) but significant differences in the regional distribution of 11 haplotypes (phiST = 0.49). Despite their exceptional potential for dispersal, a complete and long-term historical separation between the populations from the Iberian Peninsula (Spain) and mainland Europe (Hungary, Slovakia, Germany, and Russia) was demonstrated. Divergence between populations based on a 3-bp insertion-deletion polymorphism within the intron region of the nuclear CHD-Z gene was geographically concordant with the primary subdivision identified within the mtDNA sequences. Inferred aspects of phylogeography were used to formulate conservation recommendations for this endangered species.

  14. The reference human nuclear mitochondrial sequences compilation validated and implemented on the UCSC genome browser

    Directory of Open Access Journals (Sweden)

    Gasparre Giuseppe

    2011-10-01

    Full Text Available Abstract Background Eukaryotic nuclear genomes contain fragments of mitochondrial DNA called NumtS (Nuclear mitochondrial Sequences, whose mode and time of insertion, as well as their functional/structural role within the genome are debated issues. Insertion sites match with chromosomal breaks, revealing that micro-deletions usually occurring at non-homologous end joining loci become reduced in presence of NumtS. Some NumtS are involved in recombination events leading to fragment duplication. Moreover, NumtS are polymorphic, a feature that renders them candidates as population markers. Finally, they are a cause of contamination during human mtDNA sequencing, leading to the generation of false heteroplasmies. Results Here we present RHNumtS.2, the most exhaustive human NumtSome catalogue annotating 585 NumtS, 97% of which were here validated in a European individual and in HapMap samples. The NumtS complete dataset and related features have been made available at the UCSC Genome Browser. The produced sequences have been submitted to INSDC databases. The implementation of the RHNumtS.2 tracks within the UCSC Genome Browser has been carried out with the aim to facilitate browsing of the NumtS tracks to be exploited in a wide range of research applications. Conclusions We aimed at providing the scientific community with the most exhaustive overview on the human NumtSome, a resource whose aim is to support several research applications, such as studies concerning human structural variation, diversity, and disease, as well as the detection of false heteroplasmic mtDNA variants. Upon implementation of the NumtS tracks, the application of the BLAT program on the UCSC Genome Browser has now become an additional tool to check for heteroplasmic artefacts, supported by data available through the NumtS tracks.

  15. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    Directory of Open Access Journals (Sweden)

    Giovanni Pagano

    2014-11-01

    Full Text Available An extensive number of pathologies are associated with mitochondrial dysfunction (MDF and oxidative stress (OS. Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN, such as α-lipoic acid (ALA, Coenzyme Q10 (CoQ10, and l-carnitine (CARN (or its derivatives have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a treated diseases; (b dosages, number of enrolled patients and duration of treatment; (c trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.

  16. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  17. Simultaneous Whole Mitochondrial Genome Sequencing with Short Overlapping Amplicons Suitable for Degraded DNA Using the Ion Torrent Personal Genome Machine.

    Science.gov (United States)

    Chaitanya, Lakshmi; Ralf, Arwin; van Oven, Mannis; Kupiec, Tomasz; Chang, Joseph; Lagacé, Robert; Kayser, Manfred

    2015-12-01

    Whole mitochondrial (mt) genome analysis enables a considerable increase in analysis throughput, and improves the discriminatory power to the maximum possible phylogenetic resolution. Most established protocols on the different massively parallel sequencing (MPS) platforms, however, invariably involve the PCR amplification of large fragments, typically several kilobases in size, which may fail due to mtDNA fragmentation in the available degraded materials. We introduce a MPS tiling approach for simultaneous whole human mt genome sequencing using 161 short overlapping amplicons (average 200 bp) with the Ion Torrent Personal Genome Machine. We illustrate the performance of this new method by sequencing 20 DNA samples belonging to different worldwide mtDNA haplogroups. Additional quality control, particularly regarding the potential detection of nuclear insertions of mtDNA (NUMTs), was performed by comparative MPS analysis using the conventional long-range amplification method. Preliminary sensitivity testing revealed that detailed haplogroup inference was feasible with 100 pg genomic input DNA. Complete mt genome coverage was achieved from DNA samples experimentally degraded down to genomic fragment sizes of about 220 bp, and up to 90% coverage from naturally degraded samples. Overall, we introduce a new approach for whole mt genome MPS analysis from degraded and nondegraded materials relevant to resolve and infer maternal genetic ancestry at complete resolution in anthropological, evolutionary, medical, and forensic applications. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  18. The first complete mitochondrial genome sequences of Amblypygi (Chelicerata: Arachnida) reveal conservation of the ancestral arthropod gene order.

    Science.gov (United States)

    Fahrein, Kathrin; Masta, Susan E; Podsiadlowski, Lars

    2009-05-01

    Amblypygi (whip spiders) are terrestrial chelicerates inhabiting the subtropics and tropics. In morphological and rRNA-based phylogenetic analyses, Amblypygi cluster with Uropygi (whip scorpions) and Araneae (spiders) to form the taxon Tetrapulmonata, but there is controversy regarding the interrelationship of these three taxa. Mitochondrial genomes provide an additional large data set of phylogenetic information (sequences, gene order, RNA secondary structure), but in arachnids, mitochondrial genome data are missing for some of the major orders. In the course of an ongoing project concerning arachnid mitochondrial genomics, we present the first two complete mitochondrial genomes from Amblypygi. Both genomes were found to be typical circular duplex DNA molecules with all 37 genes usually present in bilaterian mitochondrial genomes. In both species, gene order is identical to that of Limulus polyphemus (Xiphosura), which is assumed to reflect the putative arthropod ground pattern. All tRNA gene sequences have the potential to fold into structures that are typical of metazoan mitochondrial tRNAs, except for tRNA-Ala, which lacks the D arm in both amblypygids, suggesting the loss of this feature early in amblypygid evolution. Phylogenetic analysis resulted in weak support for Uropygi being the sister group of Amblypygi.

  19. [Sequencing and analysis of the complete mitochondrial genome of Podoces hendersoni (Ave, Corvidae)].

    Science.gov (United States)

    Ke, Yang; Huang, Yuan; Lei, Fu-Min

    2010-09-01

    The complete mitochondrial genome of a China endemic bird, Podoces hendersoni, was sequenced using La-PCR and conserved primer walking approaches. The mtDNA seqnence is 16 867 bp in length and deposited in GenBank with accession number GU592504. The mitochondrial genomic organization of P. hendersoni is the same with that in chicken, which contains 13 protein coding genes (PCGs), 22 tRNA, 2 rRNA, and a control region. Except for COI gene, which uses GTG as the initiation codon, all other 12 PCGs of the P. hendersoni mtDNA start with the typical ATG codon. Codons TAA, AGG, and AGA were used in 11 PCGs as usual termination codons; however, the COIII and ND4 had incomplete termination codon T. The secondary structures of 20 tRNAs formed typical cloverleaf, except for tRNASer (AGY) that had an absence of the DHU arm and tRNALeu (CUN) in which anticodon-loop consisted of 9 bases, rather than the standard 7 bases. The secondary structures of rRNA were predicted. There are 4 domains, 43 helices structures in 12S rRNA, and 6 domains, 55 helices structures in 16S rRNA. Besides, F-box, D-box, C-box, B-box, Bird similarity-box and CSB1-box, which were found in the control region of other birds, also existed in the P. hendersoni.

  20. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  1. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Science.gov (United States)

    Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E

    2013-01-01

    Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect

  2. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Directory of Open Access Journals (Sweden)

    Michael S Brewer

    Full Text Available BACKGROUND: Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. RESULTS: The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly. As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. CONCLUSIONS: The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic

  3. Sequencing and analysis of the complete mitochondrial genome of Elaphe anomala (Squamata Colubridae).

    Science.gov (United States)

    Liu, Peng; Zhao, Wen-Ge

    2016-07-01

    In this study, the complete mitogenome sequence of Elaphe anomala (Squamata: Colubridae) is first determined using long PCR. It is a circular molecule of 17,164 bp in length and contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes and 2 control regions (CRI and CRII). The gene order and nucleotide composition of E. anomala are very similar with E. schrenckii. Mitochondrial genomes analyses based on the NJ method yield phylogenetic tree of 17 species snakes of Colubridae. Species E. anomala, E. schrenckii, E. bimaculata and E. davidi seemed to have formed a monophyletic group with the high bootstrap value (100%) except E. poryphyracea. Oligodon ningshaanensis and Thermophis zhaoermii are special species. The molecular data presented here provide a useful tool for setting the stage for further studies.

  4. The complete mitochondrial genome sequence of Wenxian Knobby Newt Tylototriton wenxianensis (Amphibia: Caudata).

    Science.gov (United States)

    Han, Fuyao; Jiang, Ye; Zhang, Mingwang

    2016-07-01

    We newly sequenced the mitochondrial genome of Tylototriton wenxianensis. The total length of the T. wenxianensis mitogenome is 16 265 bp, with GenBank accession number KR733683. It consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and one control region (CR). Most of the genes are encoded on the H-strand, except for eight tRNA and ND6, which are encoded on the L-strand. Our mitogenomic phylogenetic tree showed that the relationships among the genera Tylototriton, Echinotriton, and Pleurodeles were well supported, and which is consistent with the previous molecular phylogeny.

  5. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  6. Mitochondrial Cytochrome c Oxidase Subunit 1 Sequence Variation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Takara A. Scott

    2012-01-01

    Full Text Available Purpose. Mitochondrial DNA (mtDNA mutations have been described in every adult neoplasm including prostate cancer. There are marked racial differences in mutations within the cytochrome c oxidase subunit 1 (COI gene in individuals with prostate cancer (PCa. The purpose of this study was to identify the variation in COI gene sequence in African and Caucasian Americans with prostate cancer. Methods. We sequenced the COI gene from peripheral blood in 482 prostate cancer patients and 189 controls. All bases that differed from the revised Cambridge Reference Sequence (rCRS were classified as either silent or missense and the compiled alterations were then compared between races and published reports. Results and Conclusions. We found inherited mtDNA COI missense variants in 8.8% of Caucasian prostate cancer patients (vs. 0.0% controls and 72.8% of African-American prostate cancer patients (vs. 64.3% controls A total of 144 COI variants were identified, of which 30 were missense mutations. Of 482 PCa patients, 116 (24.1% had one or more missense mutations. Further evaluation of this gene and these mutations may allow for the identification of genetically at-risk populations. The high rate of COI mutations in African-Americans may account for some of the racial disparity observed in prostate cancer.

  7. Mitochondrial DNA sequence analysis of four Alzheimer`s and Parkinson`s disease patients

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.D.; Shoffner, J.M.; Wallace, D.C. [Emory Univ. School of Medicine, Atlanta, GA (United States)] [and others

    1996-01-22

    The mitochondrial DNA (mtDNA) sequence was determined on 3 patients with Alzheimer`s disease (AD) exhibiting AD plus Parkinson`s disease (PD) neuropathologic changes and one patient with PD. Patient mtDNA sequences were compared to the standard Cambridge sequence to identify base changes. In the first AD + PD patient, 2 of the 15 nucleotide substitutions may contribute to the neuropathology, a nucleotide pair (np) 4336 transition in the tRNA{sup Gln} gene found 7.4 times more frequently in patients than in controls, and a unique np 721 transition in the 12S rRNA gene which was not found in 70 other patients or 905 controls. In the second AD + PD patient, 27 nucleotide substitutions were detected, including an np 3397 transition in the ND1 gene which converts a conserved methionine to a valine. In the third AD + PD patient, 2 polymorphic base substitutions frequently found at increased frequency in Leber`s hereditary optic neuropathy patients were observed, an np 4216 transition in ND1 and an np 13708 transition in the ND5 gene. For the PD patient, 2 novel variants were observed among 25 base substitutions, an np 1709 substitution in the 16S rRNA gene and an np 15851 missense mutation in the cytb gene. Further studies will be required to demonstrate a casual role for these base substitutions in neurodegenerative disease. 68 refs., 2 tabs.

  8. Genetic variability of Echinococcus granulosus complex in various geographical populations of Iran inferred by mitochondrial DNA sequences.

    Science.gov (United States)

    Spotin, Adel; Mahami-Oskouei, Mahmoud; Harandi, Majid Fasihi; Baratchian, Mehdi; Bordbar, Ali; Ahmadpour, Ehsan; Ebrahimi, Sahar

    2017-01-01

    To investigate the genetic variability and population structure of Echinococcus granulosus complex, 79 isolates were sequenced from different host species covering human, dog, camel, goat, sheep and cattle as of various geographical sub-populations of Iran (Northwestern, Northern, and Southeastern). In addition, 36 sequences of other geographical populations (Western, Southeastern and Central Iran), were directly retrieved from GenBank database for the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The confirmed isolates were grouped as G1 genotype (n=92), G6 genotype (n=14), G3 genotype (n=8) and G2 genotype (n=1). 50 unique haplotypes were identified based on the analyzed sequences of cox1. A parsimonious network of the sequence haplotypes displayed star-like features in the overall population containing IR23 (22: 19.1%) as the most common haplotype. According to the analysis of molecular variance (AMOVA) test, the high value of haplotype diversity of E. granulosus complex was shown the total genetic variability within populations while nucleotide diversity was low in all populations. Neutrality indices of the cox1 (Tajima's D and Fu's Fs tests) were shown negative values in Western-Northwestern, Northern and Southeastern populations which indicating significant divergence from neutrality and positive but not significant in Central isolates. A pairwise fixation index (Fst) as a degree of gene flow was generally low value for all populations (0.00647-0.15198). The statistically Fst values indicate that Echinococcus sensu stricto (genotype G1-G3) populations are not genetically well differentiated in various geographical regions of Iran. To appraise the hypothetical evolutionary scenario, further study is needed to analyze concatenated mitogenomes and as well a panel of single locus nuclear markers should be considered in wider areas of Iran and neighboring countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  10. Molecular phylogeny of the Bactrian camel based on mitochondrial Cytochrome b gene sequences.

    Science.gov (United States)

    Ming, L; Yi, L; Guo, F C; Siriguleng, S; Jirimutu, J

    2016-09-19

    The Bactrian camel is an important domesticated animal providing milk, meat, and other products in desert countries. In this study, 111 individuals representing 11 domestic Bactrian camel breeds from China, Mongolia, Russia, and one wild Bactrian camel group from Mongolia were selected for the preparation of mitochondrial DNA. The 1140-bp fragments of the cytochrome b gene (Cytb) were amplified by polymerase chain reaction and sequenced directly. Sequences of the 92 domestic and 19 wild Bactrian camel samples were analyzed with DNASTAR, and a phylogenic tree was constructed using MEGA. The analysis revealed sixteen haplotypes among the samples that were divided into two haplogroups: a domestic haplogroup (H1-H13, H15, and H16) and a wild haplogroup (H14). Haplotype diversity values were from 0.356 in the HosZogdort, to 0.889 in the Sunit Bactrian camel breed. The Sunit breed displayed the highest nucleotide diversity value (0.00115), and the HosZogdort breed had the lowest value (0.00031). All domestic Bactrian camels formed a single monophyletic lineage that is the sister group to wild Bactrian camels, a finding consistent with a single domestication event and independent maternal inheritance since domestication. In addition, the most common mitochondrial haplotypes (H1, H3, and H4) were shared between Chinese, Mongolian, and Russian domestic Bactrian camels, which indicated that there was no distinguishing geographic structure among the domestic breeds from these three regions. These findings provide important insights into patterns of relatedness among Bactrian camels from the Chinese, Mongolian, and Russian regions.

  11. Identifications of captive and wild tilapia species existing in Hawaii by mitochondrial DNA control region sequence.

    Directory of Open Access Journals (Sweden)

    Liang Wu

    Full Text Available BACKGROUND: The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed 382 samples collected from 13 farm (captive and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR and cytochrome c oxidase I (COI gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. CONCLUSIONS/SIGNIFICANCE: This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for

  12. Comparative analysis of complete mitochondrial genome sequences confirms independent origins of plant-parasitic nematodes

    Directory of Open Access Journals (Sweden)

    Sultana Tahera

    2013-01-01

    Full Text Available Abstract Background The nematode infraorder Tylenchomorpha (Class Chromadorea includes plant parasites that are of agricultural and economic importance, as well as insect-associates and fungal feeding species. Among tylenchomorph plant parasites, members of the superfamily Tylenchoidea, such as root-knot nematodes, have great impact on agriculture. Of the five superfamilies within Tylenchomorpha, one (Aphelenchoidea includes mainly fungal-feeding species, but also some damaging plant pathogens, including certain Bursaphelenchus spp. The evolutionary relationships of tylenchoid and aphelenchoid nematodes have been disputed based on classical morphological features and molecular data. For example, similarities in the structure of the stomatostylet suggested a common evolutionary origin. In contrast, phylogenetic hypotheses based on nuclear SSU ribosomal DNA sequences have revealed paraphyly of Aphelenchoidea, with, for example, fungal-feeding Aphelenchus spp. within Tylenchomorpha, but Bursaphelenchus and Aphelenchoides spp. more closely related to infraorder Panagrolaimomorpha. We investigated phylogenetic relationships of plant-parasitic tylenchoid and aphelenchoid species in the context of other chromadorean nematodes based on comparative analysis of complete mitochondrial genome data, including two newly sequenced genomes from Bursaphelenchus xylophilus (Aphelenchoidea and Pratylenchus vulnus (Tylenchoidea. Results The complete mitochondrial genomes of B. xylophilus and P. vulnus are 14,778 bp and 21,656 bp, respectively, and identical to all other chromadorean nematode mtDNAs in that they contain 36 genes (lacking atp8 encoded in the same direction. Their mitochondrial protein-coding genes are biased toward use of amino acids encoded by T-rich codons, resulting in high A+T richness. Phylogenetic analyses of both nucleotide and amino acid sequence datasets using maximum likelihood and Bayesian methods did not support B. xylophilus as most

  13. Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles.

    Science.gov (United States)

    Kumazawa, Y; Nishida, M

    1999-06-01

    Turtles have highly specialized morphological characteristics, and their phylogenetic position has been under intensive debate. Previous molecular studies have not established a consistent and statistically well supported conclusion on this issue. In order to address this, complete mitochondrial DNA sequences were determined for the green turtle and the blue-tailed mole skink. These genomes possess an organization of genes which is typical of most other vertebrates, such as placental mammals, a frog, and bony fishes, but distinct from organizations of alligators and snakes. Molecular evolutionary rates of mitochondrial protein sequences appear to vary considerably among major reptilian lineages, with relatively rapid rates for snake and crocodilian lineages but slow rates for turtle and lizard lineages. In spite of this rate heterogeneity, phylogenetic analyses using amino acid sequences of 12 mitochondrial proteins reliably established the Archosauria (birds and crocodilians) and Lepidosauria (lizards and snakes) clades postulated from previous morphological studies. The phylogenetic analyses further suggested that turtles are a sister group of the archosaurs, and this untraditional relationship was provided with strong statistical evidence by both the bootstrap and the Kishino-Hasegawa tests. This is the first statistically significant molecular phylogeny on the placement of turtles relative to the archosaurs and lepidosaurs. It is therefore likely that turtles originated from a Permian-Triassic archosauromorph ancestor with two pairs of temporal fenestrae behind the skull orbit that were subsequently lost. The traditional classification of turtles in the Anapsida may thus need to be reconsidered.

  14. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus

    Directory of Open Access Journals (Sweden)

    Saba Masaki

    2006-01-01

    Full Text Available Abstract Background The crown-of-thorns starfish, Acanthaster planci (L., has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed. Results The complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%. The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6% and lowest in ND2 gene (84.2% among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%, and ATP8 apparently evolves faster any of the other protein

  15. The phylogeny of Mediterranean tortoises and their close relativesbased on complete mitochondrial genome sequences from museumspecimens

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.; Feldman, Chris R.; Turkozan, Oguz; Polymeni, Rosa; Boore, Jeffrey

    2005-04-29

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the

  16. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae)

    Science.gov (United States)

    Mitochondrial DNA provides useful tools for inferring population genetic structure within a species and phylogenetic relationships between species. The complete mitogenome sequences were assembled from strains of the cowpea aphids, Aphis craccivora, from the old (15,308 bp) and new world (15,305 bp...

  17. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci

    DEFF Research Database (Denmark)

    Nyakaana, S; Arctander, P; Siegismund, H R

    2002-01-01

    Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in eastern...

  18. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    Science.gov (United States)

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  19. Irreducible Tests for Space Mission Sequencing Software

    Science.gov (United States)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  20. Characterization of NIST human mitochondrial DNA SRM-2392 and SRM-2392-I standard reference materials by next generation sequencing.

    Science.gov (United States)

    Riman, Sarah; Kiesler, Kevin M; Borsuk, Lisa A; Vallone, Peter M

    2017-07-01

    Standard Reference Materials SRM 2392 and 2392-I are intended to provide quality control when amplifying and sequencing human mitochondrial genome sequences. The National Institute of Standards and Technology (NIST) offers these SRMs to laboratories performing DNA-based forensic human identification, molecular diagnosis of mitochondrial diseases, mutation detection, evolutionary anthropology, and genetic genealogy. The entire mtGenome (∼16569bp) of SRM 2392 and 2392-I have previously been characterized at NIST by Sanger sequencing. Herein, we used the sensitivity, specificity, and accuracy offered by next generation sequencing (NGS) to: (1) re-sequence the certified values of the SRM 2392 and 2392-I; (2) confirm Sanger data with a high coverage new sequencing technology; (3) detect lower level heteroplasmies (sequencing communities in the adoption of NGS methods. To obtain a consensus sequence for the SRMs as well as identify and control any bias, sequencing was performed using two NGS platforms and data was analyzed using different bioinformatics pipelines. Our results confirm five low level heteroplasmy sites that were not previously observed with Sanger sequencing: three sites in the GM09947A template in SRM 2392 and two sites in the HL-60 template in SRM 2392-I. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Sequence robust association test for familial data.

    Science.gov (United States)

    Dai, Wei; Yang, Ming; Wang, Chaolong; Cai, Tianxi

    2017-09-01

    Genome-wide association studies (GWAS) and next generation sequencing studies (NGSS) are often performed in family studies to improve power in identifying genetic variants that are associated with clinical phenotypes. Efficient analysis of genome-wide studies with familial data is challenging due to the difficulty in modeling shared but unmeasured genetic and/or environmental factors that cause dependencies among family members. Existing genetic association testing procedures for family studies largely rely on generalized estimating equations (GEE) or linear mixed-effects (LME) models. These procedures may fail to properly control for type I errors when the imposed model assumptions fail. In this article, we propose the Sequence Robust Association Test (SRAT), a fully rank-based, flexible approach that tests for association between a set of genetic variants and an outcome, while accounting for within-family correlation and adjusting for covariates. Comparing to existing methods, SRAT has the advantages of allowing for unknown correlation structures and weaker assumptions about the outcome distribution. We provide theoretical justifications for SRAT and show that SRAT includes the well-known Wilcoxon rank sum test as a special case. Extensive simulation studies suggest that SRAT provides better protection against type I error rate inflation, and could be much more powerful for settings with skewed outcome distribution than existing methods. For illustration, we also apply SRAT to the familial data from the Framingham Heart Study and Offspring Study to examine the association between an inflammatory marker and a few sets of genetic variants. © 2017, The International Biometric Society.

  2. Isolation of a species-specific mitochondrial DNA sequence for identification of Tilletia indica, the Karnal bunt of wheat fungus.

    Science.gov (United States)

    Ferreira, M A; Tooley, P W; Hatziloukas, E; Castro, C; Schaad, N W

    1996-01-01

    Mitochondrial DNA (mtDNA) from five isolates of Tilletia indica was isolated and digested with several restriction enzymes. A 2.3-kb EcoRI fragment was chosen, cloned, and shown to hybridize with total DNA restricted with EcoRI from T. indica and not from a morphologically similar smut fungus, Tilletia barclayana. The clone was partially sequenced, and primers were designed and tested under high-stringency conditions in PCR assays. The primer pair Ti1/Ti4 amplified a 2.3-kb fragment from total DNA of 17 T. indica isolates from India, Pakistan, and Mexico. DNA from 25 isolates of other smut fungi (T. barclayana, Tilletia foetida, Tilletia caries, Tilletia fusca, and Tilletia controversa) did not produce any bands, as detected by ethidium bromide-stained agarose gels and Southern hybridizations. The sensitivity of the assay was determined and increased by using a single nested primer in a second round of amplification, so that 1 pg of total mycelial DNA could be detected. The results indicated that the primers which originated from a cloned mtDNA sequence can be used to differentiate T. indica from other Tilletia species and have the potential to identify teliospores contaminating wheat seeds.

  3. Mitochondrial DNA sequence variants in epithelial ovarian tumor subtypes and stages

    Directory of Open Access Journals (Sweden)

    Aikhionbare Felix O

    2007-01-01

    Full Text Available Abstract Background A majority of primary ovarian neoplasms arise from cell surface epithelium of the ovaries. Although old age and a positive family history are associated risk factors, the etiology of the epithelial ovarian tumors is not completely understood. Additionally, knowledge of factors involved in the histogenesis of the various subtypes of this tumor as well as those factors that promote progression to advanced stages of ovarian malignancy are largely unknown. Current evidence suggests that mitochondrial alterations involved in cellular signaling pathways may be associated with tumorigenesis. Methods In this study, we determined the presence of polymorphisms and other sequence variants of mitochondrial DNA (mtDNA in 102 epithelial ovarian tumors including 10 matched normal tissues that paired with some of the tumors. High-resolution restriction endonucleases and PCR-based sequencing were used to assess the mtDNA variants spanning 3.3 kb fragment that comprised the D-Loop and 12S rRNA-tRNAphe, tRNAval, tRNAser, tRNAasp, tRNAlys, ATPase 6, ATPase 8, cytochrome oxidase I and II genes. Results Three hundred and fifty-two (352 mtDNA sequence variants were identified, of which 238 of 352 (68% have not been previously reported. There were relatively high frequencies of three mutations in the 12S rRNA gene at np 772, 773, and 780 in stage IIIC endometrioid tumors, two of which are novel (773delT and 780delC, and occurred with a frequency of 100% (7/7. Furthermore, two mutations were observed in serous tumors only at np 1657 in stage IV (10/10, and at np 8221delA in benign cystadenomas (3/3 and borderline tumors (4/4. A high frequency, 81% (13/16 of TC insertion at np 310 was found only in early stages of serous subtype (benign cystadenomas, 3/3; borderline tumors, 4/4; stage I tumors, 2/5 and matched normal tissues 4/4. Conclusion Our findings indicate that certain mtDNA mutations can reliably distinguish the different histologic subtypes of

  4. Insect mitochondrial genomics 3: the complete mitochondrial genome sequences of representatives from two neuropteroid orders: a dobsonfly (order Megaloptera) and a giant lacewing and an owlfly (order Neuroptera).

    Science.gov (United States)

    Beckenbach, Andrew T; Stewart, James Bruce

    2009-01-01

    We describe the complete mitochondrial genomes from representatives of two orders of the Neuropterida: a dobsonfly, Corydalus cornutus (Megaloptera: Corydalidae, GenBank Accession No. FJ171323), a giant lacewing Polystoechotes punctatus (Neuroptera: Polystoechotidae, FJ171325), and an owlfly, Ascaloptynx appendiculatus (Neuroptera: Ascalaphidae, FJ171324). The dobsonfly sequence is 15,687 base pairs with a major noncoding (A+T rich) region of approximately 967 bp. The gene content and organization of the dobsonfly is identical to that of most insects. The giant lacewing sequence is 16 036 bp with a major noncoding region of about 1123 bp, while the owlfly sequence is 15,877 bp with a major noncoding region of about 1066 bp. The two Neuroptera sequences include a transposition of two tRNA genes, tRNATrp and tRNACys. These tRNA genes are coded on opposite strands and overlap by seven residues in the standard insect mitochondrial gene arrangement. Thus, the transposition required a duplication of at least the region of overlap. It is likely that the transposition occurred by a duplication of both genes followed by deletion of one copy of each gene. Examination of this region in two other neuropteroid species, a snakefly, Agulla sp. (Raphidioptera: Raphidiidae), and an antlion, Myrmeleon immaculatus (Neuroptera: Myrmeleontidae), shows that the rearrangement is widespread in the order Neuroptera but not present in either of the other two orders of Neuropterida.

  5. Morphology of mitochondrial nucleoids in respiratory-deficient yeast cells varies depending on the unit length of the mitochondrial DNA sequence.

    Science.gov (United States)

    Okamoto, Satoshi; Inai, Tomomi; Miyakawa, Isamu

    2016-08-01

    We investigated the morphology of mitochondrial nucleoids (mt-nucleoids) and mitochondria in Saccharomyces cerevisiae rho(+) and rho(-) cells with DAPI staining and mitochondria-targeted GFP. Whereas the mt-nucleoids appeared as strings of beads in wild-type rho(+) cells at log phase, the mt-nucleoids in hypersuppressive rho(-) cells (HS40 rho(-) cells) appeared as distinct punctate structures. In order to elucidate whether the punctate mt-nucleoids are common to other rho(-) cells, we observed the mt-nucleoids in rho(-) strains that retain different unit lengths of the mitochondrial DNA (mtDNA) sequence. As a result, rho(-) cells that have long mtDNA sequences, of more than 30 kb, had mt-nucleoids with a strings-of-beads appearance in tubular mitochondria. In contrast, rho(-) cells that have short mtDNA sequences, of <1 kb, had punctate mt-nucleoids in tubular mitochondria. This indicates that the morphology of mt-nucleoids in rho(-) cells significantly varies depending on the unit length of their mtDNA sequence. Analyses of mt-nucleoids suggest that the punctate mt-nucleoids in HS40 rho(-) cells consist of concatemeric mtDNAs and oligomeric circular mtDNAs associated with Abf2p and other nucleoid proteins. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Classification of Pelteobagrus fish in Poyang Lake based on mitochondrial COI gene sequence.

    Science.gov (United States)

    Zhong, Bin; Chen, Ting-Ting; Gong, Rui-Yue; Zhao, Zhe-Xia; Wang, Binhua; Fang, Chunlin; Mao, Hui-Ling

    2016-11-01

    We use DNA molecular marker technology to correct the deficiency of traditional morphological taxonomy. Totality 770 Pelteobagrus fish from Poyang Lake were collected. After preliminary morphological classification, random selected eight samples in each species for DNA extraction. Mitochondrial COI gene sequence was cloned with universal primers and sequenced. The results showed that there are four species of Pelteobagrus living in Poyang Lake. The average of intraspecific genetic distance value was 0.003, while the average interspecific genetic distance was 0.128. The interspecific genetic distance is far more than intraspecific genetic distance. Besides, phylogenetic tree analysis revealed that molecular systematics was in accord with morphological classification. It indicated that COI gene is an effective DNA molecular marker in Pelteobagrus classification. Surprisingly, the intraspecific difference of some individuals (P. e6, P. n6, P. e5, and P. v4) from their original named exceeded species threshold (2%), which should be renewedly classified into Pelteobagrus fulvidraco. However, another individual P. v3 was very different, because its genetic distance was over 8.4% difference from original named Pelteobagrus vachelli. Its taxonomic status remained to be further studied.

  7. Complete DNA sequence of the mitochondrial genome of the treehopper Leptobelus gazella (Membracoidea: Hemiptera).

    Science.gov (United States)

    Zhao, Xing; Liang, Ai-Ping

    2016-09-01

    The first complete DNA sequence of the mitochondrial genome (mitogenome) of Leptobelus gazelle (Membracoidea: Hemiptera) is determined in this study. The circular molecule is 16,007 bp in its full length, which encodes a set of 37 genes, including 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs, and contains an A + T-rich region (CR). The gene numbers, content, and organization of L. gazelle are similar to other typical metazoan mitogenomes. Twelve of the 13 PCGs are initiated with ATR methionine or ATT isoleucine codons, except the atp8 gene that uses the ATC isoleucine as start signal. Ten of the 13 PCGs have complete termination codons, either TAA (nine genes) or TAG (cytb). The remaining 3 PCGs (cox1, cox2 and nad5) have incomplete termination codons T (AA). All of the 22 tRNAs can be folded in the form of a typical clover-leaf structure. The complete mitogenome sequence data of L. gazelle is useful for the phylogenetic and biogeographic studies of the Membracoidea and Hemiptera.

  8. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    Science.gov (United States)

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  9. Genetic identification and phylogenetic relationships of Indian clariids based on mitochondrial COI sequences.

    Science.gov (United States)

    Devassy, Aneesha; Kumar, Raj; Shajitha, P P; John, Reshma; Padmakumar, K G; Basheer, V S; Gopalakrishnan, A; Mathew, Linu

    2016-09-01

    Mitochondrial cytochrome C Oxidase I (COI) sequence variation among the clariid fishes of India (Clarias magur, C. dussumieri and C. gariepinus) and their relationship with other representative clariids was studied in this work. Three species were sampled and together with 23 COI sequences from GenBank were used to reconstruct phylogenetic relationships in the family Clariidae. The study revealed two clades: one consisting of the African species with C. dussumieri, and the other of Asian species suggesting the prevalence of intra-continental diversification of catfishes. This study further revealed that the genus Clarias is monophyletic. For the COI gene, the interspecies genetic divergence ranged from 0.056 to 0.182. The mean genetic difference between C. dussumieri and other selected African species in this study is 12.1%. It was also observed that the morphological similarity of C. dussumieri and C. magur was not replicated in the genetic level. Clarias dussumieri was more close to African catfish C. gariepinus thus indicating the utility of COI phylogeny to identify the well-known African-Asian relationships within catfishes. The results also showed that C. magur and C. batrachus are genetically distinct from each other.

  10. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  11. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  12. Sequence Analysis of Mitochondrial Genome ofToxascaris leoninafrom a South China Tiger.

    Science.gov (United States)

    Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing

    2016-12-01

    Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

  13. Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae and the blunthead cichlid (Tropheus moorii and patterns of mitochondrial genome evolution in cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Christoph Fischer

    Full Text Available The cichlid fishes of the East African Great Lakes represent a model especially suited to study adaptive radiation and speciation. With several African cichlid genome projects being in progress, a promising set of closely related genomes is emerging, which is expected to serve as a valuable data base to solve questions on genotype-phenotype relations. The mitochondrial (mt genomes presented here are the first results of the assembly and annotation process for two closely related but eco-morphologically highly distinct Lake Tanganyika cichlids, Petrochromis trewavasae and Tropheus moorii. The genomic sequences comprise 16,588 bp (P. trewavasae and 16,590 bp (T. moorii, and exhibit the typical mitochondrial structure, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region. Analyses confirmed that the two species are very closely related with an overall sequence similarity of 96%. We analyzed the newly generated sequences in the phylogenetic context of 21 published labroid fish mitochondrial genomes. Consistent with other vertebrates, the D-loop region was found to evolve faster than protein-coding genes, which in turn are followed by the rRNAs; the tRNAs vary greatly in the rate of sequence evolution, but on average evolve the slowest. Within the group of coding genes, ND6 evolves most rapidly. Codon usage is similar among examined cichlid tribes and labroid families; although a slight shift in usage patterns down the gene tree could be observed. Despite having a clearly different nucleotide composition, ND6 showed a similar codon usage. C-terminal ends of Cox1 exhibit variations, where the varying number of amino acids is related to the structure of the obtained phylogenetic tree. This variation may be of functional relevance for Cox1 synthesis.

  14. Phylogenetic position of a whale-fall lancelet (Cephalochordata inferred from whole mitochondrial genome sequences

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-07-01

    Full Text Available Abstract Background The lancelet Asymmetron inferum (subphylum Cephalochordata was recently discovered on the ocean floor off the southwest coast of Japan at a depth of 229 m, in an anaerobic and sulfide-rich environment caused by decomposing bodies of the sperm whale Physeter macrocephalus. This deep sulfide-rich habitat of A. inferum is unique among the lancelets. The distinguishing adaptation of this species to such an extraordinary habitat can be considered in a phylogenetic framework. As the first step of reconstruction of the evolutionary processes in this species, we investigated its phylogenetic position based on 11 whole mitochondrial genome sequences including the newly determined ones of the whale-fall lancelet A. inferum and two coral-reef congeners. Results Our phylogenetic analyses showed that extant lancelets are clustered into two major clades, the Asymmetron clade and the Epigonichthys + Branchiostoma clade. A. inferum was in the former and placed in the sister group to A. lucayanum complex. The divergence time between A. inferum and A. lucayanum complex was estimated to be 115 Mya using the penalized likelihood (PL method or 97 Mya using the nonparametric rate smoothing (NPRS method (the middle Cretaceous. These are far older than the first appearance of large whales (the middle Eocene, 40 Mya. We also discovered that A. inferum mitogenome (mitochondrial genome has been subjected to large-scale gene rearrangements, one feature of rearrangements being unique among the lancelets and two features shared with A. lucayanum complex. Conclusion Our study supports the monophyly of genus Asymmetron assumed on the basis of the morphological characters. Furthermore, the features of the A. inferum mitogenome expand our knowledge of variation within cephalochordate mitogenomes, adding a new case of transposition and inversion of the trnQ gene. Our divergence time estimation suggests that A. inferum remained a member of the Mesozoic and the

  15. Phylogeographical studies of Ascaris spp. based on ribosomal and mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Serena Cavallero

    Full Text Available The taxonomic distinctiveness of Ascaris lumbricoides and A. suum, two of the world's most significant nematodes, still represents a much-debated scientific issue. Previous studies have described two different scenarios in transmission patterns, explained by two hypotheses: (1 separated host-specific transmission cycles in highly endemic regions, (2 a single pool of infection shared by humans and pigs in non-endemic regions. Recently, A. suum has been suggested as an important cause of human ascariasis in endemic areas such as China, where cross-infections and hybridization have also been reported. The main aims of the present study were to investigate the molecular epidemiology of human and pig Ascaris from non-endemic regions and, with reference to existing data, to infer the phylogenetic and phylogeographic relationships among the samples.151 Ascaris worms from pigs and humans were characterized using PCR-RFLP on nuclear ITS rDNA. Representative geographical sub-samples were also analysed by sequencing a portion of the mitochondrial cox1 gene, to infer the extent of variability at population level. Sequence data were compared to GenBank sequences from endemic and non-endemic regions.No fixed differences between human and pig Ascaris were evident, with the exception of the Slovak population, which displays significant genetic differentiation. The RFLP analysis confirmed pig as a source of human infection in non-endemic regions and as a corridor for the promulgation of hybrid genotypes. Epidemiology and host-affiliation seem not to be relevant in shaping molecular variance. Phylogenetic and phylogeographical analyses described a complex scenario, involving multiple hosts, sporadic contact between forms and an ancestral taxon referable to A. suum.These results suggest the existence of homogenizing gene flow between the two taxa, which appear to be variants of a single polytypic species. This conclusion has implications on the systematics

  16. Phylogeographical Studies of Ascaris spp. Based on Ribosomal and Mitochondrial DNA Sequences

    Science.gov (United States)

    Cavallero, Serena; Snabel, Viliam; Pacella, Francesca; Perrone, Vitantonio; D'Amelio, Stefano

    2013-01-01

    Background The taxonomic distinctiveness of Ascaris lumbricoides and A. suum, two of the world's most significant nematodes, still represents a much-debated scientific issue. Previous studies have described two different scenarios in transmission patterns, explained by two hypotheses: (1) separated host-specific transmission cycles in highly endemic regions, (2) a single pool of infection shared by humans and pigs in non-endemic regions. Recently, A. suum has been suggested as an important cause of human ascariasis in endemic areas such as China, where cross-infections and hybridization have also been reported. The main aims of the present study were to investigate the molecular epidemiology of human and pig Ascaris from non-endemic regions and, with reference to existing data, to infer the phylogenetic and phylogeographic relationships among the samples. Methodology 151 Ascaris worms from pigs and humans were characterized using PCR-RFLP on nuclear ITS rDNA. Representative geographical sub-samples were also analysed by sequencing a portion of the mitochondrial cox1 gene, to infer the extent of variability at population level. Sequence data were compared to GenBank sequences from endemic and non-endemic regions. Principal Findings No fixed differences between human and pig Ascaris were evident, with the exception of the Slovak population, which displays significant genetic differentiation. The RFLP analysis confirmed pig as a source of human infection in non-endemic regions and as a corridor for the promulgation of hybrid genotypes. Epidemiology and host-affiliation seem not to be relevant in shaping molecular variance. Phylogenetic and phylogeographical analyses described a complex scenario, involving multiple hosts, sporadic contact between forms and an ancestral taxon referable to A. suum. Conclusions/Significance These results suggest the existence of homogenizing gene flow between the two taxa, which appear to be variants of a single polytypic species. This

  17. Massive parallel sequencing of human whole mitochondrial genomes with Ion Torrent technology: an optimized workflow for Anthropological and Population Genetics studies.

    Science.gov (United States)

    De Fanti, Sara; Vianello, Dario; Giuliani, Cristina; Quagliariello, Andrea; Cherubini, Anna; Sevini, Federica; Iaquilano, Nicoletta; Franceschi, Claudio; Sazzini, Marco; Luiselli, Donata

    2017-11-01

    Investigation of human mitochondrial DNA variation patterns and phylogeny has been extensively used in Anthropological and Population Genetics studies and sequencing the whole mitochondrial genome is progressively becoming the gold standard. Among the currently available massive parallel sequencing technologies, Ion Torrent™ semiconductor sequencing represents a promising approach for such studies. Nevertheless, an experimental protocol conceived to enable the achievement of both as high as possible yield and of the most homogeneous sequence coverage through the whole mitochondrial genome is still not available. The present work was thus aimed at improving the overall performance of whole mitochondrial genomes Ion Torrent™ sequencing, with special focus on the capability to obtain robust coverage and highly reliable variants calling. For this purpose, a series of cost-effective modifications in standard laboratory workflows was fine-tuned to optimize them for medium- and large-scale population studies. A total of 54 human samples were thus subjected to sequencing of the whole mitochondrial genome with the Ion Personal Genome Machine™ System in four distinct experiments and using Ion 314 chips. Seven of the selected samples were also characterized by means of conventional Sanger sequencing for the sake of comparison. Obtained results demonstrated that the implemented optimizations had definitely improved sequencing outputs in terms of both variants calling efficiency and coverage uniformity, enabling to setup an effective and accurate protocol for whole mitochondrial genome sequencing and a considerable reduction in experimental time consumption and sequencing costs.

  18. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids

    Directory of Open Access Journals (Sweden)

    Dilcher David L

    2007-11-01

    Full Text Available Abstract Background Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders. However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial matR gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of matR in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including matR, two plastid genes (rbcL, atpB, and one nuclear gene (18S rDNA. Results Comparison of mitochondrial matR and two plastid genes (rbcL and atpB showed that the synonymous substitution rate in matR was approximately four times slower than those of rbcL and atpB; however, the nonsynonymous substitution rate in matR was relatively high, close to its synonymous substitution rate, indicating that the matR has experienced a relaxed evolutionary history. Analyses of our matR sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae was sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were successively sister to other rosids, and that Crossosomatales were sister to malvids. Conclusion Compared to plastid genes such as rbcL and atpB, slowly evolving matR produced less homoplasious but not less informative substitutions. Thus, matR appears useful in higher-level angiosperm phylogenetics. Analysis of matR alone identified a novel deep relationship within

  19. Long-PCR based next generation sequencing of the whole mitochondrial genome of the peacock skate Pavoraja nitida (Elasmobranchii: Arhynchobatidae).

    Science.gov (United States)

    Yang, Lei; Naylor, Gavin J P

    2016-01-01

    We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.

  20. Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia)

    Science.gov (United States)

    Fukami, Hironobu; Knowlton, Nancy

    2005-11-01

    Complete mitochondrial nucleotide sequences of two individuals each of Montastraea annularis, Montastraea faveolata, and Montastraea franksi were determined. Gene composition and order differed substantially from the sea anemone Metridium senile, but were identical to that of the phylogenetically distant coral genus Acropora. However, characteristics of the non-coding regions differed between the two scleractinian genera. Among members of the M. annularis complex, only 25 of 16,134 base pair positions were variable. Sixteen of these occurred in one colony of M. franksi, which (together with additional data) indicates the existence of multiple divergent mitochondrial lineages in this species. Overall, rates of evolution for these mitochondrial genomes were extremely slow (0.03 0.04% per million years based on the fossil record of the M. annularis complex). At higher taxonomic levels, patterns of genetic divergence and synonymous/nonsynonymous substitutions suggest non-neutral and unequal rates of evolution between the two lineages to which Montastraea and Acropora belong.

  1. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing.

    Science.gov (United States)

    Besnard, Guillaume; Jühling, Frank; Chapuis, Élodie; Zedane, Loubab; Lhuillier, Émeline; Mateille, Thierry; Bellafiore, Stéphane

    2014-05-01

    Little is known about the variations of nematode mitogenomes (mtDNA). Sequencing a complete mtDNA using a PCR approach remains a challenge due to frequent genome reorganizations and low sequence similarities between divergent nematode lineages. Here, a genome skimming approach based on HiSeq sequencing (shotgun) was used to assemble de novo the first complete mtDNA sequence of a root-knot nematode (Meloidogyne graminicola). An AT-rich genome (84.3%) of 20,030 bp was obtained with a mean sequencing depth superior to 300. Thirty-six genes were identified with a semi-automated approach. A comparison with a gene map of the M. javanica mitochondrial genome indicates that the gene order is conserved within this nematode lineage. However, deep genome rearrangements were observed when comparing with other species of the superfamily Hoplolaimoidea. Repeat elements of 111 bp and 94 bp were found in a long non-coding region of 7.5 kb, as similarly reported in M. javanica and M. hapla. This study points out the power of next generation sequencing to produce complete mitochondrial genomes, even without a reference sequence, and possibly opening new avenues for species/race identification, phylogenetics and population genetics of nematodes. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  2. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta.

    Science.gov (United States)

    Shen, Xin; Ma, Xiaoyin; Ren, Jianfeng; Zhao, Fangqing

    2009-03-28

    There are many advantages to the application of complete mitochondrial (mt) genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms) is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. The mitochondrial genome of P.esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248). It contains thirteen protein-coding genes (PCGs) with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%). All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans) form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid clade (including echiurans and pogonophorans). Hence

  3. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta

    Science.gov (United States)

    Shen, Xin; Ma, Xiaoyin; Ren, Jianfeng; Zhao, Fangqing

    2009-01-01

    Background There are many advantages to the application of complete mitochondrial (mt) genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms) is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. Results The mitochondrial genome of P.esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248). It contains thirteen protein-coding genes (PCGs) with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%). All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans) form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. Conclusion This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid clade (including

  4. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta

    Directory of Open Access Journals (Sweden)

    Ren Jianfeng

    2009-03-01

    Full Text Available Abstract Background There are many advantages to the application of complete mitochondrial (mt genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. Results The mitochondrial genome of P.esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248. It contains thirteen protein-coding genes (PCGs with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%. All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. Conclusion This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid

  5. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae.

    Science.gov (United States)

    Turmel, M; Lemieux, C; Burger, G; Lang, B F; Otis, C; Plante, I; Gray, M W

    1999-09-01

    Green plants appear to comprise two sister lineages, Chlorophyta (classes Chlorophyceae, Ulvophyceae, Trebouxiophyceae, and Prasinophyceae) and Streptophyta (Charophyceae and Embryophyta, or land plants). To gain insight into the nature of the ancestral green plant mitochondrial genome, we have sequenced the mitochondrial DNAs (mtDNAs) of Nephroselmis olivacea and Pedinomonas minor. These two green algae are presumptive members of the Prasinophyceae. This class is thought to include descendants of the earliest diverging green algae. We find that Nephroselmis and Pedinomonas mtDNAs differ markedly in size, gene content, and gene organization. Of the green algal mtDNAs sequenced so far, that of Nephroselmis (45,223 bp) is the most ancestral (minimally diverged) and occupies the phylogenetically most basal position within the Chlorophyta. Its repertoire of 69 genes closely resembles that in the mtDNA of Prototheca wickerhamii, a later diverging trebouxiophycean green alga. Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants. In contrast, the 25,137-bp Pedinomonas mtDNA contains only 22 genes and retains few recognizably ancestral features. In several respects, including gene content and rate of sequence divergence, Pedinomonas mtDNA resembles the reduced mtDNAs of chlamydomonad algae, with which it is robustly affiliated in phylogenetic analyses. Our results confirm the existence of two radically different patterns of mitochondrial genome evolution within the green algae.

  6. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families.

    Science.gov (United States)

    Borriello, Roberto; Bianciotto, Valeria; Orgiazzi, Alberto; Lumini, Erica; Bergero, Roberta

    2014-06-01

    Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Mitochondrial DNA sequence phylogeny of 4 populations of the widely distributed cynomolgus macaque (Macaca fascicularis fascicularis).

    Science.gov (United States)

    Blancher, Antoine; Bonhomme, Maxime; Crouau-Roy, Brigitte; Terao, Keiji; Kitano, Takashi; Saitou, Naruya

    2008-01-01

    We studied the mitochondrial DNA (mtDNA) polymorphism of 304 Macaca fascicularis fascicularis (M. f. fascicularis) individuals, representative of 4 cynomolgus macaque populations (Indochina, Indonesia, Philippines, and Mauritius). By sequencing a 590-bp fragment in the hypervariable II region of the D-loop region, we defined 70 haplotypes. The homologous region was also characterized in 22 Chinese Macaca mulatta and 2 Macaca sylvanus. The phylogenetic analysis confirms the monophyly of M. f. fascicularis and defines 2 haplotype groups inside the M. f. fascicularis clade: one "insular," encompassing 6 Philippines, 2 Mauritius, and 31 Indonesian haplotypes, the other "continental" that contains all Indochinese and 6 Indonesian haplotypes. Continental and insular group divergence time was estimated to be approximately 10(6) years before present (BP). Among Indonesian haplotypes, some have a continental origin. This suggests either direct migration from mainland to Indonesia or that remnant lineages from an ancient population genetically close to the mainland (i.e., in the Sunda Shelf, Indonesia. The low nucleotide diversity in the Philippines population suggests a bottleneck following colonization by Indonesian individuals, around 110 000 years BP. mtDNA and further observations of nuclear genetic data corroborate the mixed origin (Indonesian/continental) hypothesis of Mauritius individuals and a population bottleneck.

  8. Phylogenetic relationships among the family Ommastrephidae (Mollusca: Cephalopoda) inferred from two mitochondrial DNA gene sequences.

    Science.gov (United States)

    Wakabayashi, T; Suzuki, N; Sakai, M; Ichii, T; Chow, S

    2012-09-01

    Squids of the family Ommastrephidae are distributed worldwide, and the family includes many species of commercial importance. To investigate phylogenetic relationships among squid species of the family Ommastrephidae, partial nucleotide sequences of two mitochondrial gene loci (cytochrome c oxidase subunit I [1277bp] and 16S rRNA [443bp]) of 15 ommastrephid species and two outgroup species from the families Loliginidae and Enoploteuthidae were determined and used to construct parsimony and distance based phylogenetic trees. The molecular data provided several new phylogenetic inferences. The monophyletic status of three subfamilies (Illicinae, Todarodinae and Ommastrephinae) was well supported, although phylogenetic relationships between the subfamilies were not resolved. Inclusion of a problematic species, Ornithoteuthis volatilis, to Todarodinae was indicated. Within Todarodinae, the Japanese common squid Todarodes pacificus was observed to have much closer relationship to the species of the genus Nototodarus than to its congener (Todarodes filippovae). These results indicate that re-evaluation of several morphological key characters for ommastrephid taxonomy may be necessary. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Phylogenetic relationships among bufonoid frogs (Anura:Neobatrachia) inferred from mitochondrial DNA sequences.

    Science.gov (United States)

    Ruvinsky, I; Maxson, L R

    1996-06-01

    Nucleotide sequences of portions of the mitochondrial 12S and 16S ribosomal RNA genes were used to extend a recent study of anuran phylogeny (Hay et al., Mol. Biol. Evol. 12: 928-937, 1995) and to further evaluate phylogenetic relationships within the Neobatrachia. An analysis of almost 900 nucleotides from each of 8 new representatives of the Dendrobatidae, Hylidae, Leptodactyolidae, and Myobatrachidae, plus 14 available members of the Neobatrachia provides support for 2 major lineages (Bufonoidea and Ranoidea) within this anuran suborder. The neotropical Bufonoidea and their derivatives are monophyletic. There is an interesting association of the 2 Australian myobatrachids with the South African Heleophrynidae, and the Sooglossidae is one of the basal bufonoid lineages. Within the New World bufonoid frogs, a monophyletic Dendrobatidae is strongly supported. An Australian hylid (Pelodryadinae) shows close affinity with the South American hylid Phyllomedusinae. A group composed of Hylinae (Hyla and Smilisca), Centrolenidae, Bufonidae, and the hylid Hemiphractinae, with the latter two clustered, was supported significantly. The addition of new taxa has more clearly defined some relationships within the suborder Neobatrachia and has indicated that the families Hylidae, Leptodactylidae, and Myobatrachidae may not be monophyletic.

  10. A new hypothesis of squamate evolutionary relationships from nuclear and mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Ted M.; Larson, Allan; Louis, Edward; Macey, J. Robert

    2004-05-19

    Squamate reptiles serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania and Scleroglossa has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of squamates using DNA sequence data from the nuclear genes RAG-1 and c-mos and the mitochondrial ND2 region, sampling all major clades and most major subclades. Monophyly of Iguania, Anguimorpha, and almost all currently recognized squamate families is strongly supported. However, monophyly is rejected for Scleroglossa, Varanoidea, and several other higher taxa, and Iguania is highly nested within Squamata. Limblessness evolved independently in snakes, dibamids, and amphisbaenians, suggesting widespread morphological convergence or parallelism in limbless, burrowing forms. Amphisbaenians are the sister group of lacertids, and snakes are grouped with iguanians and anguimorphs. Dibamids diverged early in squamate evolutionary history. Xantusiidae is the sister taxon of Cordylidae. Studies of functional tongue morphology and feeding mode have found significant differences between Scleroglossa and Iguania, and our finding of a nonmonophyletic Scleroglossa and a highly nested Iguania suggest that similar states evolved separately in Sphenodon and Iguania, and that jaw prehension is the ancestral feeding mode in squamates.

  11. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae).

    Science.gov (United States)

    Zhang, Bin; Nardi, Francesco; Hull-Sanders, Helen; Wan, Xuanwu; Liu, Yinghong

    2014-01-01

    The complete 16,043 bp mitochondrial genome (mitogenome) of Bactrocera minax (Diptera: Tephritidae) has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%). Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs). Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD), the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites) and amino acid sequence distance (ASD) were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD) and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T) stretch at the 5' end of the CR followed by a [TA(A)]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front of the

  12. The complete nucleotide sequence of the mitochondrial genome of Bactrocera minax (Diptera: Tephritidae.

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    Full Text Available The complete 16,043 bp mitochondrial genome (mitogenome of Bactrocera minax (Diptera: Tephritidae has been sequenced. The genome encodes 37 genes usually found in insect mitogenomes. The mitogenome information for B. minax was compared to the homologous sequences of Bactrocera oleae, Bactrocera tryoni, Bactrocera philippinensis, Bactrocera carambolae, Bactrocera papayae, Bactrocera dorsalis, Bactrocera correcta, Bactrocera cucurbitae and Ceratitis capitata. The analysis indicated the structure and organization are typical of, and similar to, the nine closely related species mentioned above, although it contains the lowest genome-wide A+T content (67.3%. Four short intergenic spacers with a high degree of conservation among the nine tephritid species mentioned above and B. minax were observed, which also have clear counterparts in the control regions (CRs. Correlation analysis among these ten tephritid species revealed close positive correlation between the A+T content of zero-fold degenerate sites (P0FD, the ratio of nucleotide substitution frequency at P0FD sites to all degenerate sites (zero-fold degenerate sites, two-fold degenerate sites and four-fold degenerate sites and amino acid sequence distance (ASD were found. Further, significant positive correlation was observed between the A+T content of four-fold degenerate sites (P4FD and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites; however, we found significant negative correlation between ASD and the A+T content of P4FD, and the ratio of nucleotide substitution frequency at P4FD sites to all degenerate sites. A higher nucleotide substitution frequency at non-synonymous sites compared to synonymous sites was observed in nad4, the first time that has been observed in an insect mitogenome. A poly(T stretch at the 5' end of the CR followed by a [TA(A]n-like stretch was also found. In addition, a highly conserved G+A-rich sequence block was observed in front

  13. Strategies for complete mitochondrial genome sequencing on Ion Torrent PGM™ platform in forensic sciences.

    Science.gov (United States)

    Zhou, Yishu; Guo, Fei; Yu, Jiao; Liu, Feng; Zhao, Jinling; Shen, Hongying; Zhao, Bin; Jia, Fei; Sun, Zhu; Song, He; Jiang, Xianhua

    2016-05-01

    Next generation sequencing (NGS) is a time saving and cost-efficient method to detect the complete mitochondrial genome (mtGenome) compared to Sanger sequencing. In this study we focused on developing strategies for mtGenome sequencing on the Ion Torrent PGM™ platform and NGS data analysis. With our experience, 4, 15 and 30 samples could be loaded onto Ion 314™, Ion 316™ and Ion 318™ chips respectively at a pooling concentration of 26pM, achieving to sufficient average coverage of ≥1500 × and well strand balance of 1.05. Data processing software is essential to NGS mega data analysis. The in-house Perl scripts were developed for primary data analysis to screen out uncertain positions and samples from variant call format (VCF) reports and for pedigree study to perform pairwise comparisons. The Integrative Genomic Viewer (IGV) and the NextGENe software were introduced to secondary data analysis. The mthap and EMMA were employed for haplogroup assignment. The dataset was reviewed and approved by the EMPOP as the final version, which showed 2.66% error rate generated from the Torrent Variant Caller (TVC). Across the mtGenome, 4022 variants were found at 725 nucleotide positions, where ratio of transitions to transversions was estimated at 20.89:1 and 22.18% of variants was concentrated at hypervariable segments I and II (HVS-I and HVS-II). Totally, 107 complete mtGenome haplotypes were observed from 107 Northern Chinese Han and assigned to 88 haplogroups. The random match probability (RMP) of complete mtGenome was calculated as 0.009345794, decreasing 26.19% by comparison to that of HVS-I only, and the haplotype diversity (HD) was evaluated as 1, increasing 0.33% by comparison to that of HVS-I only. Principal component analysis (PCA) showed that our population was clustered to East and Southeast Asians. The strategies in this study are suitable for complete mtGenome sequencing on Ion Torrent PGM™ platform and Northern Chinese Han (EMP00670) is the first

  14. A Comprehensive Phylogenetic Analysis of the Scleractinia (Cnidaria, Anthozoa) Based on Mitochondrial CO1 Sequence Data

    Science.gov (United States)

    Kitahara, Marcelo V.; Cairns, Stephen D.; Stolarski, Jarosław; Blair, David; Miller, David J.

    2010-01-01

    Background Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Methodology Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. Principal Findings/Conclusions There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic “noise” contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep

  15. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa based on mitochondrial CO1 sequence data.

    Directory of Open Access Journals (Sweden)

    Marcelo V Kitahara

    Full Text Available BACKGROUND: Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. METHODOLOGY: Partial (595 bp sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1 gene were determined for 65 deep-sea (azooxanthellate scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. PRINCIPAL FINDINGS/CONCLUSIONS: There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies, most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic "noise" contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary

  16. A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data.

    Science.gov (United States)

    Kitahara, Marcelo V; Cairns, Stephen D; Stolarski, Jarosław; Blair, David; Miller, David J

    2010-07-08

    Classical morphological taxonomy places the approximately 1400 recognized species of Scleractinia (hard corals) into 27 families, but many aspects of coral evolution remain unclear despite the application of molecular phylogenetic methods. In part, this may be a consequence of such studies focusing on the reef-building (shallow water and zooxanthellate) Scleractinia, and largely ignoring the large number of deep-sea species. To better understand broad patterns of coral evolution, we generated molecular data for a broad and representative range of deep sea scleractinians collected off New Caledonia and Australia during the last decade, and conducted the most comprehensive molecular phylogenetic analysis to date of the order Scleractinia. Partial (595 bp) sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene were determined for 65 deep-sea (azooxanthellate) scleractinians and 11 shallow-water species. These new data were aligned with 158 published sequences, generating a 234 taxon dataset representing 25 of the 27 currently recognized scleractinian families. There was a striking discrepancy between the taxonomic validity of coral families consisting predominantly of deep-sea or shallow-water species. Most families composed predominantly of deep-sea azooxanthellate species were monophyletic in both maximum likelihood and Bayesian analyses but, by contrast (and consistent with previous studies), most families composed predominantly of shallow-water zooxanthellate taxa were polyphyletic, although Acroporidae, Poritidae, Pocilloporidae, and Fungiidae were exceptions to this general pattern. One factor contributing to this inconsistency may be the greater environmental stability of deep-sea environments, effectively removing taxonomic "noise" contributed by phenotypic plasticity. Our phylogenetic analyses imply that the most basal extant scleractinians are azooxanthellate solitary corals from deep-water, their divergence predating that of the robust and

  17. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius with next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chih-Ming Hung

    Full Text Available The information from ancient DNA (aDNA provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome of two extinct passenger pigeons (Ectopistes migratorius using de novo assembly of massive short (90 bp, paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.

  18. Sequence and comparison of mitochondrial genomes in the genus Nerita (Gastropoda: Neritimorpha: Neritidae) and phylogenetic considerations among gastropods.

    Science.gov (United States)

    Arquez, Moises; Colgan, Donald; Castro, Lyda R

    2014-06-01

    In the present study, we determined the mitochondrial DNA (mtDNA) sequence of three Neritas, Nerita versicolor, Nerita tessellata, and Nerita fulgurans. We present an analysis of the features of their gene content and genome organization and compare these within the genus Nerita, and among the main gastropod groups. The new sequences were used in a phylogenetic analysis including all available gastropod mitochondrial genomes. Genomic lengths were quite conserved, being 15,866bp for N. versicolor, 15,741bp for N. tessellata and 15,343bp for N. fulgurans. Intergenic regions were generally short; genes are transcribed from both strands and have a nucleotide composition high in A and T. The high similarity in nucleotide content of the different sequences, gene composition, as well as an identical genomic organization among the Nerita species compared in this study, indicates a high degree of conservation within this diverse genus. Values ​​of Ka/Ks of the 13 protein coding genes (PCGs) of Nerita species ranged from 0 to 0.18, and suggested different selection pressures in gene sequences. Bayesian phylogenetic analyses using concatenated DNA sequences of the 13 PCGs and the two rRNAs, and of amino acid sequences strongly supported Neritimorpha and Vetigastropoda as sister groups. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Science.gov (United States)

    Brian J. Knaus; Richard Cronn; Aaron Liston; Kristine Pilgrim; Michael K. Schwartz

    2011-01-01

    Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the...

  20. Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata).

    Science.gov (United States)

    Min, Gi-Sik; Park, Joong-Ki

    2009-11-17

    The Syndermata (Rotifera+Acanthocephala) is one of the best model systems for studying the evolutionary origins and persistence of different life styles because it contains a series of lineage-specific life histories: Monogononta (cyclic parthenogenetic and free-living), Bdelloidea (entirely parthenogenetic and mostly benthic dweller), Seisonidea (exclusively bisexual and epizoic or ectoparasitic), and Acanthocephala (sexual and obligatory endoparasitic). Providing phylogenetic resolution to the question of Eurotatoria (Monogononta and Bdelloidea) monophyly versus paraphyly is a key factor for better understanding the evolution of different life styles, yet this matter is not clearly resolved. In this study, we revisited this issue based on comparative analysis of complete mitochondrial genome information for major groups of the Syndermata. We determined the first complete mitochondrial genome sequences (15,319 bp) of a bdelloid rotifer, Rotaria rotatoria. In order to examine the validity of Eurotatoria (Monogononta and Bdelloidea) monophyly/paraphyly, we performed phylogenetic analysis of amino acid sequences for eleven protein-coding genes sampled from a wide variety of bilaterian representatives. The resulting mitochondrial genome trees, inferred using different algorithms, consistently failed to recover Monogononta and Bdelloidea as monophyletic, but instead identified them as a paraphyletic assemblage. Bdelloidea (as represented by R. rotatoria) shares most common ancestry with Acanthocephala (as represented by L. thecatus) rather than with monogonont B. plicatilis, the other representative of Eurotatoria. Comparisons of inferred amino acid sequence and gene arrangement patterns with those of other metazoan mtDNAs (including those of acanthocephalan L. thecatus and monogonont B. plicatilis) support the hypothesis that Bdelloidea shares most common ancestry with Acanthocephala rather than with Monogononta. From this finding, we suggest that the obligatory

  1. Eurotatorian paraphyly: Revisiting phylogenetic relationships based on the complete mitochondrial genome sequence of Rotaria rotatoria (Bdelloidea: Rotifera: Syndermata

    Directory of Open Access Journals (Sweden)

    Park Joong-Ki

    2009-11-01

    Full Text Available Abstract Background The Syndermata (Rotifera+Acanthocephala is one of the best model systems for studying the evolutionary origins and persistence of different life styles because it contains a series of lineage-specific life histories: Monogononta (cyclic parthenogenetic and free-living, Bdelloidea (entirely parthenogenetic and mostly benthic dweller, Seisonidea (exclusively bisexual and epizoic or ectoparasitic, and Acanthocephala (sexual and obligatory endoparasitic. Providing phylogenetic resolution to the question of Eurotatoria (Monogononta and Bdelloidea monophyly versus paraphyly is a key factor for better understanding the evolution of different life styles, yet this matter is not clearly resolved. In this study, we revisited this issue based on comparative analysis of complete mitochondrial genome information for major groups of the Syndermata. Results We determined the first complete mitochondrial genome sequences (15,319 bp of a bdelloid rotifer, Rotaria rotatoria. In order to examine the validity of Eurotatoria (Monogononta and Bdelloidea monophyly/paraphyly, we performed phylogenetic analysis of amino acid sequences for eleven protein-coding genes sampled from a wide variety of bilaterian representatives. The resulting mitochondrial genome trees, inferred using different algorithms, consistently failed to recover Monogononta and Bdelloidea as monophyletic, but instead identified them as a paraphyletic assemblage. Bdelloidea (as represented by R. rotatoria shares most common ancestry with Acanthocephala (as represented by L. thecatus rather than with monogonont B. plicatilis, the other representative of Eurotatoria. Conclusion Comparisons of inferred amino acid sequence and gene arrangement patterns with those of other metazoan mtDNAs (including those of acanthocephalan L. thecatus and monogonont B. plicatilis support the hypothesis that Bdelloidea shares most common ancestry with Acanthocephala rather than with Monogononta. From

  2. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii in China from Mitochondrial Control Region and Nuclear Intron Sequences

    Directory of Open Access Journals (Sweden)

    Yanhe Li

    2015-06-01

    Full Text Available Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China.

  3. Genetic diversity and population history of the red panda (Ailurus fulgens) as inferred from mitochondrial DNA sequence variations.

    Science.gov (United States)

    Su, B; Fu, Y; Wang, Y; Jin, L; Chakraborty, R

    2001-06-01

    The red panda (Ailurus fulgens) is one of the flagship species in worldwide conservation and is of special interest in evolutionary studies due to its taxonomic uniqueness. We sequenced a 236-bp fragment of the mitochondrial D-loop region in a sample of 53 red pandas from two populations in southwestern China. Seventeen polymorphic sites were found, together with a total of 25 haplotypes, indicating a high level of genetic diversity in the red panda. However, no obvious genetic divergence was detected between the Sichuan and Yunnan populations. The consensus phylogenetic tree of the 25 haplotypes was starlike. The pairwise mismatch distribution fitted into a pattern of populations undergoing expansion. Furthermore, Fu's F(S) test of neutrality was significant for the total population (F(S) = -7.573), which also suggests a recent population expansion. Interestingly, the effective population size in the Sichuan population was both larger and more stable than that in the Yunnan population, implying a southward expansion from Sichuan to Yunnan.

  4. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    Science.gov (United States)

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  5. Mitochondrial haplogroups

    DEFF Research Database (Denmark)

    Benn, Marianne; Schwartz, Marianne; Nordestgaard, Børge G

    2008-01-01

    Rare mutations in the mitochondrial genome may cause disease. Mitochondrial haplogroups defined by common polymorphisms have been associated with risk of disease and longevity. We tested the hypothesis that common haplogroups predict risk of ischemic cardiovascular disease, morbidity from other...

  6. The complete mitochondrial genome sequence of Whitmania pigra (Annelida, Hirudinea): the first representative from the class Hirudinea.

    Science.gov (United States)

    Shen, Xin; Wu, Zhigang; Sun, Ming'an; Ren, Jianfeng; Liu, Bin

    2011-06-01

    The mitochondrial genome is a significant tool for investigating the evolutionary history of metazoan animals. The currently available mitochondrial genome data in GenBank is limited to understand the detail evolutionary relationship among the metazoan animals, especially in the phylum Annelida. Here we present the mitochondrial gene organization, gene order and codon usage of the leech Whitmania pigra (Annelida), which is the first representative from the class Hirudinea. It is a circular molecule of 14,426bp, and encodes 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. All 37 genes of W. pigra mitochondrial genome are transcribed from the same strand, which is identical to studied annelids, two echiurans, two sipunculans and many other lophotrochozoans. Five conserved gene clusters can be found in mitochondrial genomes of nine studied annelids, including (1) cox1-N-cox2; (2) cox3-Q-nad6-cob-W-atp6; (3) H-nad5-F-E-P-T-nad4L-nad4; (4) srRNA-V-lrRNA; and (5) nad3-S(1)-nad2. Compared with that of other studied annelids, translocations of transfer RNAs were found in the gene arrangement of W. pigra mitochondrial genome. Phylogenetic analysis strongly support that the species from Hirudinina and Oligochaeta form a monophyletic group Clitellata (BPM=100, BPP=100), which is consistent with previous research based on morphological and other molecular data. Both gene order data and amino acid sequences reveal that echiurans are derived annelids and sipunculans should be clustered with annelids and echiurans. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. [Phylogenetic relationship among some groups of orthopteran based on complete sequences of the mitochondrial COI gene].

    Science.gov (United States)

    Lv, Hong-Juan; Huang, Yuan

    2012-06-01

    Complete sequences of the COI gene were used to reconstruct the phylogenetic relationship among 56 species from Orthoptera. We also analyzed the reliability of Orthoptera phylogenetic relationship using translated amino acid sequences of the COI genes. The COI sequences were divided into three data sets on the basis of different codon positions to calculate the Partitioned Bremer support (PBS), and to test the phylogenetic signal in different codon positions of protein-coding genes. The result supports the monophyly of Caelifera and Ensifera; but the monophyly of Acrididae, Catantopidae, Oedipodidae, Arcypteridae and Gomphoceridae are not supported. The P-distances among families vary from 0.107 to 0.153, which are smaller than those of other families, being consist with the classification that these 5 families should be merged into one family (Acrididae). Chrotogonidae and Pyrgomorphidae belong to the superfamily Pyrgomorphoidea. Pamphagidae should be a family alone consistent with Otte's taxonomic system. According to the PBS values, the 3rd and 1st codon positions contribution more for the Phylogenetic tree branches than the 2nd, and longer sequences contain more informative sites. We further demonstrated that it is feasible for phylogenetic studies at family level to use the genetic distances among COI sequences from different species of Orthopera.

  8. Phylogenetic analysis of Thai oyster (Ostreidae) based on partial sequences of the mitochondrial 16S rDNA gene

    DEFF Research Database (Denmark)

    Bussarawit, Somchai; Gravlund, Peter; Glenner, Henrik

    2006-01-01

    Ten oyster species of the family Ostreidae (Subfamilies Crassostreinae and Lophinae) from Thailand were studied using morphological data and mitochondrial 16S rDNA gene sequences. Additional sequence data from five specimens of Ostreidae and one specimen of Tridacna gigas were downloaded from Gen......Bank (T. gigas was used as outgroup). Some specimens were found to be genetically identical despite obvious morphological differences (e.g. four specimens of Crassostrea iredalei from east and west sides of the Malaysian peninsula and Saccostrea forskali and S. cf. malabonensis, both from Thai waters...

  9. Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences.

    Science.gov (United States)

    Pérez-Losada, Marcos; Ricoy, Maigualida; Marshall, Jonathon C; Domínguez, Jorge

    2009-08-01

    The Aporrectodea caliginosa species complex includes the most abundant earthworms in grasslands and agricultural ecosystems of the Paleartic region. Historically this complex consisted of the following taxa: A. caliginosa s.s.Savigny, 1826, A. trapezoides Dugés (1828), A. tuberculata (Eisen, 1874), and A. nocturna Evans (1946). These four taxa are morphologically very similar and difficult to differentiate because of their morphological variability. Consequently, their taxonomic status and their phylogenetic relationships have been a matter of discussion for more than a century. To study these questions, we sequenced the COII (686 bp), 12S (362 bp), 16S (1200 bp), ND1 (917 bp), and tRNAs(Asn-Asp-Val-Leu-Ala-Ser-Leu) (402 bp) mitochondrial and 28S (809 bp) nuclear gene regions for 85 European earthworms from 27 different localities belonging to the A. caliginosa species complex and four outgroup taxa. DNA sequences were analyzed using maximum parsimony, maximum likelihood, and Bayesian approaches of phylogenetic inference. The resulting trees were combined with morphological, ecological, and genomic evidence to test species boundaries (i.e., integrative approach). Our molecular analyses showed that A. caliginosa s.s. and A. tuberculata form a sister clade to A. trapezoides, A. longa, and A. nocturna, which indicates that A. longa is part of the A. caliginosa species complex. We confirm the species status of all these taxa and identify two hitherto unrecognized Aporrectodea species in Corsica (France). Moreover our analyses also showed the presence of highly divergent lineages within A. caliginosa, A. trapezoides, and A. longa, suggesting the existence of cryptic diversity within these taxa.

  10. A bumpy ride on the diagnostic bench of massive parallel sequencing, the case of the mitochondrial genome.

    Directory of Open Access Journals (Sweden)

    Kim Vancampenhout

    Full Text Available The advent of massive parallel sequencing (MPS has revolutionized the field of human molecular genetics, including the diagnostic study of mitochondrial (mt DNA dysfunction. The analysis of the complete mitochondrial genome using MPS platforms is now common and will soon outrun conventional sequencing. However, the development of a robust and reliable protocol is rather challenging. A previous pilot study for the re-sequencing of human mtDNA revealed an uneven coverage, affecting predominantly part of the plus strand. In an attempt to address this problem, we undertook a comparative study of standard and modified protocols for the Ion Torrent PGM system. We could not improve strand representation by altering the recommended shearing methodology of the standard workflow or omitting the DNA polymerase amplification step from the library construction process. However, we were able to associate coverage bias of the plus strand with a specific sequence motif. Additionally, we compared coverage and variant calling across technologies. The same samples were also sequenced on a MiSeq device which showed that coverage and heteroplasmic variant calling were much improved.

  11. The complete mitochondrial genome sequence of Geisha distinctissima (Hemiptera: Flatidae) and comparison with other hemipteran insects.

    Science.gov (United States)

    Song, Nan; Liang, Aiping

    2009-03-01

    The complete nucleotide sequence of the mitochondrial genome (mitogenome) of Geisha distinctissima (Hemiptera: Flatidae) has been determined in this study. The genome is a circular molecule of 15,971 bp with a total A+T content of 75.1%. The gene content, order, and structure are consistent with the Drosophila yakuba genome structure and the hypothesized ancestral arthropod genome arrangement. All 13 protein-coding genes are observed to have a putative, inframe ATR methionine or ATT isoleucine codons as start signals. Canonical TAA and TAG termination codons are found in nine protein-coding genes, and the remaining four (cox1, atp6, cox3, and nad4) have incomplete termination codons. The anticodons of all transfer RNA (tRNAs) are identical to those observed in D. yakuba and Philaenus spumarius, and can be folded in the form of a typical clover-leaf structure except for tRNA(Ser(AGN)). The major non-coding region (the A+T-rich region or putative control region) between the small ribosomal subunit and the tRNA(Ile) gene includes two sets of repeat regions. The first repeat region consists of a direct 152-bp repetitive unit located near the srRNA gene end, and the second repeat region is composed of a direct repeat unit of 19 bp located toward tRNA(Ile) gene. Comparisons of gene variability across the order suggest that the gene content and arrangement of G. distinctissima mitogenome are similar to other hemipteran insects.

  12. Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing.

    Science.gov (United States)

    Peccoud, Jean; Chebbi, Mohamed Amine; Cormier, Alexandre; Moumen, Bouziane; Gilbert, Clément; Marcadé, Isabelle; Chandler, Christopher; Cordaux, Richard

    2017-09-01

    The highly compact mitochondrial (mt) genome of terrestrial isopods (Oniscidae) presents two unusual features. First, several loci can individually encode two tRNAs, thanks to single nucleotide polymorphisms at anticodon sites. Within-individual variation (heteroplasmy) at these loci is thought to have been maintained for millions of years because individuals that do not carry all tRNA genes die, resulting in strong balancing selection. Second, the oniscid mtDNA genome comes in two conformations: a ∼14 kb linear monomer and a ∼28 kb circular dimer comprising two monomer units fused in palindrome. We hypothesized that heteroplasmy actually results from two genome units of the same dimeric molecule carrying different tRNA genes at mirrored loci. This hypothesis, however, contradicts the earlier proposition that dimeric molecules result from the replication of linear monomers-a process that should yield totally identical genome units within a dimer. To solve this contradiction, we used the SMRT (PacBio) technology to sequence mirrored tRNA loci in single dimeric molecules. We show that dimers do present different tRNA genes at mirrored loci; thus covalent linkage, rather than balancing selection, maintains vital variation at anticodons. We also leveraged unique features of the SMRT technology to detect linear monomers closed by hairpins and carrying noncomplementary bases at anticodons. These molecules contain the necessary information to encode two tRNAs at the same locus, and suggest new mechanisms of transition between linear and circular mtDNA. Overall, our analyses clarify the evolution of an atypical mt genome where dimerization counterintuitively enabled further mtDNA compaction. Copyright © 2017 by the Genetics Society of America.

  13. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along

  15. Multiple mitochondrial introgression events and heteroplasmy in trypanosoma cruzi revealed by maxicircle MLST and next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Louisa A Messenger

    Full Text Available Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20-50 maxicircles (∼20 kb and thousands of minicircles (0.5-10 kb. T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs. The majority of infected humans are asymptomatic for life while 30-35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs.To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell in T. cruzi.mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial phylogenetic incongruence indicate that genetic recombination

  16. Multiple Mitochondrial Introgression Events and Heteroplasmy in Trypanosoma cruzi Revealed by Maxicircle MLST and Next Generation Sequencing

    Science.gov (United States)

    Messenger, Louisa A.; Llewellyn, Martin S.; Bhattacharyya, Tapan; Franzén, Oscar; Lewis, Michael D.; Ramírez, Juan David; Carrasco, Hernan J.; Andersson, Björn; Miles, Michael A.

    2012-01-01

    Background Mitochondrial DNA is a valuable taxonomic marker due to its relatively fast rate of evolution. In Trypanosoma cruzi, the causative agent of Chagas disease, the mitochondrial genome has a unique structural organization consisting of 20–50 maxicircles (∼20 kb) and thousands of minicircles (0.5–10 kb). T. cruzi is an early diverging protist displaying remarkable genetic heterogeneity and is recognized as a complex of six discrete typing units (DTUs). The majority of infected humans are asymptomatic for life while 30–35% develop potentially fatal cardiac and/or digestive syndromes. However, the relationship between specific clinical outcomes and T. cruzi genotype remains elusive. The availability of whole genome sequences has driven advances in high resolution genotyping techniques and re-invigorated interest in exploring the diversity present within the various DTUs. Methodology/Principal Findings To describe intra-DTU diversity, we developed a highly resolutive maxicircle multilocus sequence typing (mtMLST) scheme based on ten gene fragments. A panel of 32 TcI isolates was genotyped using the mtMLST scheme, GPI, mini-exon and 25 microsatellite loci. Comparison of nuclear and mitochondrial data revealed clearly incongruent phylogenetic histories among different geographical populations as well as major DTUs. In parallel, we exploited read depth data, generated by Illumina sequencing of the maxicircle genome from the TcI reference strain Sylvio X10/1, to provide the first evidence of mitochondrial heteroplasmy (heterogeneous mitochondrial genomes in an individual cell) in T. cruzi. Conclusions/Significance mtMLST provides a powerful approach to genotyping at the sub-DTU level. This strategy will facilitate attempts to resolve phenotypic variation in T. cruzi and to address epidemiologically important hypotheses in conjunction with intensive spatio-temporal sampling. The observations of both general and specific incidences of nuclear-mitochondrial

  17. De novo assembly of the carrot mitochondrial genome using next generation sequencing of whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Directory of Open Access Journals (Sweden)

    Iorizzo Massimo

    2012-05-01

    Full Text Available Abstract Background Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Results Sequencing data from a carrot 454 whole genome library were used to develop a de novo assembly of the mitochondrial genome. Development of a new bioinformatic tool allowed visualizing contig connections and elucidation of the de novo assembly. Southern hybridization demonstrated recombination across two large repeats. Genome annotation allowed identification of 44 protein coding genes, three rRNA and 17 tRNA. Identification of the plastid genome sequence allowed organelle genome comparison. Mitochondrial intergenic sequence analysis allowed detection of a fragment of DNA specific to the carrot plastid genome. PCR amplification and sequence analysis across different Apiaceae species revealed consistent conservation of this fragment in the mitochondrial genomes and an insertion in Daucus plastid genomes, giving evidence of a mitochondrial to plastid transfer of DNA. Sequence similarity with a retrotransposon element suggests a possibility that a transposon-like event transferred this sequence into the plastid genome. Conclusions This study confirmed that whole genome sequencing is a practical approach for de novo assembly of higher plant mitochondrial genomes. In addition, a new aspect of intercompartmental genome interaction was reported providing the first evidence for DNA transfer into an angiosperm plastid genome. The approach used here could be used more broadly to sequence and assemble mitochondrial genomes of diverse species. This information will allow us to better understand intercompartmental interactions and cell evolution.

  18. 16 CFR 1610.7 - Test sequence and classification criteria.

    Science.gov (United States)

    2010-01-01

    ... test specimens, the test is inconclusive. The fabric cannot be classified. (2) Step 2, Plain Surface... REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES The Standard § 1610.7 Test sequence and...

  19. Efficient cross-species capture hybridization and next-generation sequencing of mitochondrial genomes from noninvasively sampled museum specimens

    Science.gov (United States)

    Mason, Victor C.; Li, Gang; Helgen, Kristofer M.; Murphy, William J.

    2011-01-01

    The ability to uncover the phylogenetic history of recently extinct species and other species known only from archived museum material has rapidly improved due to the reduced cost and increased sequence capacity of next-generation sequencing technologies. One limitation of these approaches is the difficulty of isolating and sequencing large, orthologous DNA regions across multiple divergent species, which is exacerbated for museum specimens, where DNA quality varies greatly between samples and contamination levels are often high. Here we describe the use of cross-species DNA capture hybridization techniques and next-generation sequencing to selectively isolate and sequence partial to full-length mitochondrial DNA genomes from the degraded DNA of museum specimens, using probes generated from the DNA of a single extant species. We demonstrate our approach on specimens from an enigmatic gliding mammal, the Sunda colugo, which is widely distributed throughout Southeast Asia. We isolated DNA from 13 colugo specimens collected 47–170 years ago, and successfully captured and sequenced mitochondrial DNA from every specimen, frequently recovering fragments with 10%–13% sequence divergence from the capture probe sequence. Phylogenetic results reveal deep genetic divergence among colugos, both within and between the islands of Borneo and Java, as well as between the Malay Peninsula and different Sundaic islands. Our method is based on noninvasive sampling of minute amounts of soft tissue material from museum specimens, leaving the original specimen essentially undamaged. This approach represents a paradigm shift away from standard PCR-based approaches for accessing population genetic and phylogenomic information from poorly known and difficult-to-study species. PMID:21880778

  20. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA.

    Science.gov (United States)

    Sastre, Natalia; Ravera, Ivan; Villanueva, Sergio; Altet, Laura; Bardagí, Mar; Sánchez, Armand; Francino, Olga; Ferrer, Lluís

    2012-12-01

    The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.

  1. Sequence and expression variations in 23 genes involved in mitochondrial and non-mitochondrial apoptotic pathways and risk of oral leukoplakia and cancer.

    Science.gov (United States)

    Datta, Sayantan; Ray, Anindita; Singh, Richa; Mondal, Pinaki; Basu, Analabha; De Sarkar, Navonil; Majumder, Mousumi; Maiti, Guruparasad; Baral, Aradhita; Jha, Ganga Nath; Mukhopadhyay, Indranil; Panda, Chinmay; Chowdhury, Shantanu; Ghosh, Saurabh; Roychoudhury, Susanta; Roy, Bidyut

    2015-11-01

    Oral cancer is usually preceded by pre-cancerous lesion and related to tobacco abuse. Tobacco carcinogens damage DNA and cells harboring such damaged DNA normally undergo apoptotic death, but cancer cells are exceptionally resistant to apoptosis. Here we studied association between sequence and expression variations in apoptotic pathway genes and risk of oral cancer and precancer. Ninety nine tag SNPs in 23 genes, involved in mitochondrial and non-mitochondrial apoptotic pathways, were genotyped in 525 cancer and 253 leukoplakia patients and 538 healthy controls using Illumina Golden Gate assay. Six SNPs (rs1473418 at BCL2; rs1950252 at BCL2L2; rs8190315 at BID; rs511044 at CASP1; rs2227310 at CASP7 and rs13010627 at CASP10) significantly modified risk of oral cancer but SNPs only at BCL2, CASP1and CASP10 modulated risk of leukoplakia. Combination of SNPs showed a steep increase in risk of cancer with increase in "effective" number of risk alleles. In silico analysis of published data set and our unpublished RNAseq data suggest that change in expression of BID and CASP7 may have affected risk of cancer. In conclusion, three SNPs, rs1473418 in BCL2, rs1950252 in BCL2L2 and rs511044 in CASP1, are being implicated for the first time in oral cancer. Since SNPs at BCL2, CASP1 and CASP10 modulated risk of both leukoplakia and cancer, so, they should be studied in more details for possible biomarkers in transition of leukoplakia to cancer. This study also implies importance of mitochondrial apoptotic pathway gene (such as BCL2) in progression of leukoplakia to oral cancer. Copyright © 2015 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  2. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    Energy Technology Data Exchange (ETDEWEB)

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also for the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.

  3. Complete sequence of the Tibetan Mastiff mitochondrial genome and its phylogenetic relationship with other Canids ( Canis, Canidae).

    Science.gov (United States)

    Li, Yinxia; Li, Qifa; Zhao, Xingbo; Xie, Zhuang; Xu, Yinxue

    2011-01-01

    In this study, the complete sequence of the Tibetan Mastiff mitochondrial genome (mtDNA) was determined, and the phylogenetic relationships between the Tibetan Mastiff and other species of Canidae were analyzed using the coyote (Canis latrans) as an outgroup. The complete nucleotide sequence of the Tibetan Mastiff mtDNA was 16 710 bp, and included 22 tRNA genes, 2S rRNA gene, 13 protein-coding genes and one non-coding region (D-loop region), which is similar to other mammalian mitochondrial genomes. The characteristics of the protein-coding genes, non-coding region, tRNA and rRNA genes among Canidae were analyzed in detail. Neighbor-joining and maximum-parsimony trees of Canids constructed using 12 mitochondrial protein-coding genes showed that as the coyotes and Tibetan wolves clustered together, so too did the gray wolves and domestic dogs, suggesting that the Tibetan Mastiff originated from the gray wolf as did other domestic dogs. Domestic dogs clustered into four clades, implying at least four maternal origins (A to D). The Tibetan Mastiff, which belongs to clade A, appears to be closely related to the Saint Bernard and the Old English Sheepdog.

  4. Model dependence of the phylogenetic inference: relationship among carnivores, Perissodactyls and cetartiodactyls as inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Cao, Y; Kim, K S; Ha, J H; Hasegawa, M

    1999-10-01

    Some previous analysis of mitochondrial proteins strongly support the Carnivora/Perissodactyla grouping excluding Cetartiodactyla (Artiodactyla + Cetacea) as an outgroup, but the support of the hypothesis remains equivocal from the analysis of several nuclear-encoded proteins. In order to evaluate the strength of the support by mitochondrial proteins, phylogenetic relationship among Carnivora, Perissodactyla, and Cetartiodactyla was estimated with the ML method by using the updated data set of the 12 mitochondrial proteins with several alternative models. The analyses demonstrate that the phylogenetic inference depends on the model used in the ML analysis; i.e., whether the site-heterogeneity is taken into account and whether the rate parameters are estimated for each individual proteins or for the concatenated sequences. Although the analysis of concatenated sequences strongly supports the Carnivora/Perissodactyla grouping, the total evaluation of the separate analyses of individual proteins, which approximates the data better than the concatenated analysis, gives only ambiguous results, and therefore it is concluded that more data are needed to resolve this trichotomy.

  5. 40 CFR 1065.530 - Emission test sequence.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission test sequence. 1065.530 Section 1065.530 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Emission test sequence. (a) Time the start of testing as follows: (1) Perform one of the following if you...

  6. Mitochondrial DNA sequence and gene order of the Sri Lankan Schistosoma nasale is affiliated to the African/Indian group.

    Science.gov (United States)

    Sato, Yukita; Le, Thanh Hoa; Hiraike, Reina; Yukawa, Masayoshi; Sakai, Takeo; Rajapakse, R P V Jayanthe; Agatsuma, Takeshi

    2008-12-01

    A 1.9 kb nucleotide sequence of part of the mitochondrial (mt) genome covering the cox1-trnT-rrnL-trnC-rrnS region, and the order of the remaining mitochondrial protein-coding genes for S. nasale of Sri Lankan origin, has been determined for analysis of the possible placement of this species in the genus Schistosoma. The gene order of this species is similar to that of the African and Indian Schistosoma species, but strikingly different from the East Asian species. Analysis of an alignment of the 1.9 kb sequence with available sequences from other schistosomes indicated affinities with S. spindale (found in Sri Lanka) and African species (in particular S. intercalatum and S. haematobium). Phylogenetic trees inferred from the alignment including 1 kb of RNA (transfer RNA and ribosomal RNA) sequence for 8 other Schistosoma spp. and Fasciola hepatica as an out-group revealed that S. nasale is placed proximally to S. spindale, S. intercalatum, S. haematobium and S. mansoni in the African sub-group while the East Asian species are more distant. S. incognitum lies basal to the combined African/Indian clade. The mtDNA analysis strongly supports the hypothesis that S. nasale is closely affiliated with the African/Indian schistosome group rather than the East Asian Schistosoma species.

  7. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    Science.gov (United States)

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  8. Characterization of the complete mitochondrial genome sequence of Homalogaster paloniae (Gastrodiscidae, Trematoda) and comparative analyses with selected digeneans.

    Science.gov (United States)

    Yang, Xin; Wang, Lixia; Feng, Hanli; Qi, Mingwei; Zhang, Zongze; Gao, Chong; Wang, Chunqun; Hu, Min; Fang, Rui; Li, Chengye

    2016-10-01

    Gastrodiscidae species are neglected but significant paramphistomes in small ruminants, which can lead to considerable economic losses to the breeding industry of livestock. However, knowledge about molecular ecology, population genetics, and phylogenetic analysis is still limited. In the present study, we firstly sequenced and analyzed the full mitochondrial (mt) genome of Homalogaster paloniae (14,490 bp). The gene contents and organization of the H. paloniae mt genome is the same as that of other digeneans, such as Fasciola hepatica and Paramphistomum cervi. It is interesting that unlike other paramphistomes, H. paloniae is flat in shape which is similar with Fasciola, such as F. hepatica. Phylogenetic analysis of H. paloniae and other 17 selected digeneans using concatenated amino acid sequences of the 12 protein-coding genes showed that Gastrodiscidae is closely related to Paramphistomidae and Gastrothylacidae. The availability of the mt genome sequence of H. paloniae should provide an important foundation for further molecular study of Gastrodiscidae and other digeneans.

  9. Genetic identification of prey species from teeth in faeces from the Endangered leopard cat Prionailurus bengalensis using mitochondrial cytochrome b gene sequence.

    Science.gov (United States)

    Kim, Tae-Wook; Lee, Hwa-Jin; Kim, Yoo-Kyung; Oh, Hong-Shik; Han, Sang-Hyun

    2018-03-01

    To understand the dietary ecology of the leopard cat (Prionailurus bengalensis), DNA analysis was performed to identify prey species using DNA isolated from teeth harvested from the faeces of this feline species. From 70 DNA samples, a total of 52 mitochondrial DNA (mtDNA) cytochrome b (cytb) gene sequences of mammals were identified. The results of a sequence identity test indicated that those sequences were derived from four rodent species (Apodemus agrarius, Apodemus peninsulae, Eothenomys regulus and Tamias sibiricus) and two shrew species (Crocidura lasiura and Crocidura shantungensis). The sequences contained nine unique cytb sequences from site 1 and 13 from site 2. These results indicate that the leopard cat hunts rodents and shrews, and at least nine animals at site 1 and 13 animals at site 2 were eaten. These findings suggest that the animal molecular signatures that remain undigested in the faeces may provide useful ecological information about food items and may contribute to a better understanding of the leopard cat's feeding ecology.

  10. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  11. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.).

    Science.gov (United States)

    Tanaka, Yoshiyuki; Tsuda, Mizue; Yasumoto, Keita; Yamagishi, Hiroshi; Terachi, Toru

    2012-07-31

    Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the

  12. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshiyuki

    2012-07-01

    Full Text Available Abstract Background Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%. It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size that are non-syntenic to normal-type genome, and the gene orf138

  13. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  14. A molecular phylogeny of nuclear and mitochondrial sequences in Hymenolepis nana (Cestoda) supports the existence of a cryptic species.

    Science.gov (United States)

    Macnish, M G; Morgan-Ryan, U M; Monis, P T; Behnke, J M; Thompson, R C A

    2002-12-01

    Since isolates of Hymenolepis nana infecting humans and rodents are morphologically indistinguishable, the only way they can be reliably identified is by comparing the parasite in each host using molecular tools. In the current study, isolates of H. nana from rodent and human hosts from a broad geographical range were sequenced at the ribosomal first internal transcribed spacer (ITS1), the mitochondrial cytochrome c oxidase subunit 1 (C01) gene and the nuclear paramyosin gene loci. Twenty-three isolates of H. nana were sequenced at the ITS1 locus and this confirmed the existence of spacers which, although similar in length (approximately 646 bp), differed in their primary sequences which led to the separation of the isolates into 2 clusters when analysed phylogenetically. This sequence variation was not, however, related to the host of origin of the isolate, thus was not a marker of genetic distinction between H. nana from rodents and humans. Sequencing of a 444 bp fragment of the mitochondrial cytochrome c oxidase 1 gene (C01) in 9 isolates of H. nana from rodents and 6 from humans identified a phylogenetically supported genetic divergence of approximately 5% between some mouse and human isolates. This suggests that H. nana is a species complex, or 'cryptic' species (=morphologically identical yet genetically distinct). A small segment of the nuclear gene, paramyosin, (625 bp or 840 bp) was sequenced in 4 mouse and 3 human isolates of H. nana. However, this gene did not provide the level of heterogeneity required to distinguish between isolates from rodent and human hosts. From the results obtained from faster evolving genes, and the epidemiological evidence, we believe that the life-cycle of H. nana that exists in the north-west of Western Australia is likely to involve mainly 'human to human' transmission.

  15. A novel mitochondrial DNA-like sequence insertion polymorphism in Intron I of the FOXO1A gene.

    Science.gov (United States)

    Giampieri, Claudia; Centurelli, Matteo; Bonafè, Massimiliano; Olivieri, Fabiola; Cardelli, Maurizio; Marchegiani, Francesca; Cavallone, Luca; Giovagnetti, Simona; Mugianesi, Elena; Carrieri, Giuseppina; Lisa, Rosamaria; Cenerelli, Stefano; Testa, Roberto; Boemi, Massimo; Petropoulou, Chariklia; Gonos, Efstathios S; Franceschi, Claudio

    2004-03-03

    The human forkhead box O1A (FOXO1A) gene belongs to the human forkhead gene family and acts downstream of the human insulin signalling pathway. In this study, polymorphisms of the Intron I of FOXO1A gene were studied in Italian healthy people and insulin resistant subjects. No significant association between the germ-line variability in the Intron I of FOXO1A and insulin resistance was observed. Interestingly, during the study, a new 39-bp sequence insertion polymorphism in Intron I of FOXO1A gene was described. The polymorphism was found to co-segregate in a co-dominant Mendelian fashion and to be present in an ethnically distinct population (Greeks). A BLAST search showed that the sequence shares 100% identity with a mtDNA (mitochondrial DNA) sequence coding for the ATP synthase 8 (ATPase8) and ATP synthase 6 (ATPase6) genes. Hence, FOXO1A Intron I is a polymorphic nuclear region involved in the exchange of DNA material between mitochondrial and genomic DNA, which is a well-established mechanism of evolutionary change in eukaryotes.

  16. First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution.

    Science.gov (United States)

    Smith, David Roy; Kayal, Ehsan; Yanagihara, Angel A; Collins, Allen G; Pirro, Stacy; Keeling, Patrick J

    2012-01-01

    Animal mitochondrial DNAs (mtDNAs) are typically single circular chromosomes, with the exception of those from medusozoan cnidarians (jellyfish and hydroids), which are linear and sometimes fragmented. Most medusozoans have linear monomeric or linear bipartite mitochondrial genomes, but preliminary data have suggested that box jellyfish (cubozoans) have mtDNAs that consist of many linear chromosomes. Here, we present the complete mtDNA sequence from the winged box jellyfish Alatina moseri (the first from a cubozoan). This genome contains unprecedented levels of fragmentation: 18 unique genes distributed over eight 2.9- to 4.6-kb linear chromosomes. The telomeres are identical within and between chromosomes, and recombination between subtelomeric sequences has led to many genes initiating or terminating with sequences from other genes (the most extreme case being 150 nt of a ribosomal RNA containing the 5' end of nad2), providing evidence for a gene conversion-based model of telomere evolution. The silent-site nucleotide variation within the A. moseri mtDNA is among the highest observed from a eukaryotic genome and may be associated with elevated rates of recombination.

  17. Limited gene flow and partial isolation phylogeography of Himalayan snowcock Tetraogallus himalayensis based on part mitochondrial D-loop sequences

    Directory of Open Access Journals (Sweden)

    Xiaoli WANG, Jiangyong QU, Naifa LIU, Xinkang BAO, Sen SONG

    2011-12-01

    Full Text Available Himalayan snowcock Tetraogallus himalayensis are distributed in alpine and subalpine areas in China. We used mitochondrial DNA control-region data to investigate the origin and past demographic change in sixty-seven Himalayan snowcock T. himalayensis. The fragments of 1155 nucleotides from the control region of mitochondrial DNA were sequenced, and 57 polymorphic positions defined 37 haplotypes. A high level of genetic diversity was detected in all populations sampled and may be associated isolation of the mountains and habitat fragmentation and deterioration from Quaternary glaciations. In the phylogenetic tree, all haplotypes grouped into four groups: clade A (Kunlun Mountains clade, clade B (Northern Qinghai-Tibetan Plateau clade, clade C (Tianshan Mountains clade and clade D (Kalakunlun Mountains clade. We found a low level of gene flow and significant genetic differentiation among all populations. Based on divergence time we suggest that the divergence of Himalayan snowcock occurred in the middle Pleistocene inter-glaciation, and expansion occurred in the glaciation. Analysis of mtDNA D-loop sequences confirmed demographic population expansion, as did our non-significant mismatch distribution analysis. In conclusion, limited gene flow and a pattern of partial isolation phylogeographic was found in geographic populations of T. himalayansis based on the analysis on mtDNA D-loop sequences [Current Zoology 57 (6: 758–767, 2011].

  18. Mitochondrial Genome Sequence of the Scabies Mite Provides Insight into the Genetic Diversity of Individual Scabies Infections.

    Directory of Open Access Journals (Sweden)

    Ehtesham Mofiz

    2016-02-01

    Full Text Available The scabies mite, Sarcoptes scabiei, is an obligate parasite of the skin that infects humans and other animal species, causing scabies, a contagious disease characterized by extreme itching. Scabies infections are a major health problem, particularly in remote Indigenous communities in Australia, where co-infection of epidermal scabies lesions by Group A Streptococci or Staphylococcus aureus is thought to be responsible for the high rate of rheumatic heart disease and chronic kidney disease. We collected and separately sequenced mite DNA from several pools of thousands of whole mites from a porcine model of scabies (S. scabiei var. suis and two human patients (S. scabiei var. hominis living in different regions of northern Australia. Our sequencing samples the mite and its metagenome, including the mite gut flora and the wound micro-environment. Here, we describe the mitochondrial genome of the scabies mite. We developed a new de novo assembly pipeline based on a bait-and-reassemble strategy, which produced a 14 kilobase mitochondrial genome sequence assembly. We also annotated 35 genes and have compared these to other Acari mites. We identified single nucleotide polymorphisms (SNPs and used these to infer the presence of six haplogroups in our samples, Remarkably, these fall into two closely-related clades with one clade including both human and pig varieties. This supports earlier findings that only limited genetic differences may separate some human and animal varieties, and raises the possibility of cross-host infections. Finally, we used these mitochondrial haplotypes to show that the genetic diversity of individual infections is typically small with 1-3 distinct haplotypes per infestation.

  19. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  20. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    Science.gov (United States)

    Matthews, Gideon D; Gur, Noa; Koopman, Werner J H; Pines, Ophry; Vardimon, Lily

    2010-02-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS gene, it is not clear how tissue-specific subcellular localization is achieved. Here we show that in chicken, which utilizes the uricotelic system, the GS transcripts of liver and brain cells are identical and, consistently, there is no difference in the amino acid sequence of the protein. The N-terminus of GS, which constitutes a 'weak' mitochondrial targeting signal (MTS), is sufficient to direct a chimeric protein to the mitochondria in hepatocytes and to the cytoplasm in astrocytes. Considering that a weak MTS is dependent on a highly negative mitochondrial membrane potential (DeltaPsi) for import, we examined the magnitude of DeltaPsi in hepatocytes and astrocytes. Our results unexpectedly revealed that DeltaPsi in hepatocytes is considerably more negative than that of astrocytes and that converting the targeting signal into 'strong' MTS abolished the capability to confer tissue-specific subcellular localization. We suggest that evolutional selection of weak MTS provided a tool for differential targeting of an identical protein by taking advantage of tissue-specific differences in DeltaPsi.

  1. The complete mitochondrial genome sequence of the Sichuan Digging Frog, Kaloula rugifera (Anura: Microhylidae) and its phylogenetic implications.

    Science.gov (United States)

    Jiang, Lichun; Zhao, Li; Cheng, Dongmei; Zhu, Lilan; Zhang, Min; Ruan, Qiping; Chen, Wei

    2017-08-30

    The Sichuan Digging Frog (Kaloula rugifera) belongs to the family Dicroglossidae, which is endemic to northeastern Sichuan and southernmost Gansu provinces, in southwestern China. In this study, the complete mitochondrial genome of K. rugifera was sequenced. The mitogenome was 17,074bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a non-coding control region. As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes which are encoded on the light strand. The overall base composition of the K. rugifera is 30.32% A, 25.76% C, 29.72% T, and 14.20% G, which is consistent with the lowest frequency for G content in typical amphibian animals' mitochondrial genomes. The alignment of the Kaloula species control regions exhibited high genetic variability and rich A+T content. Besides, 3 types of tandem repeat units were also identified in the control region. Phylogenetic tree demonstrated that K. rugifera was clustered together with K. borealis and K. verrucosa and they had a close relationship with each other. The complete mitogenome of K. rugifera can provide an important data for the studies on phylogenetic relationship to further explore the taxonomic status of Kaloula species. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    Science.gov (United States)

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.

  3. Single genetic stock of kawakawa Euthynnus affinis (Cantor, 1849) along the Indian coast inferred from sequence analyses of mitochondrial DNA D-loop region

    Digital Repository Service at National Institute of Oceanography (India)

    GirishKumar; Kunal, S.P.; Menezes, M.R.; Meena, R.

    , genetic variation was assessed using sequence analyses of Mitochondrial DNA (mtDNA) D-loop region. A 500 bp segment of D-loop region was sequenced in 400 samples collected from eight localities (Veraval (VE), Ratnagiri (RA), Kochi (KO), Kavaratti (KA...

  4. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    Science.gov (United States)

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple

  5. The mitochondrial DNA sequence specificity of the anti-tumour drug bleomycin using end-labeled DNA and capillary electrophoresis and a comparison with genome-wide DNA sequencing.

    Science.gov (United States)

    Chung, Long H; Murray, Vincent

    2016-01-01

    The DNA sequence specificity of the cancer chemotherapeutic agent, bleomycin, was investigated in two human mitochondrial DNA sequences. Bleomycin was found to cleave preferentially at 5'-TGT*A-3' DNA sequences (where * is the cleavage site). The bleomycin analysis using capillary electrophoresis with laser-induced fluorescence was determined on both DNA strands and each strand was independently fluorescently labelled at the 3'- and 5'-ends. There was a high level of correlation between the intensity of bleomycin cleavage sites analysed by 3'- and 5'-end labelling. This is the first occasion that a comprehensive comparison has been made between these two end-labelling procedures to quantify cleavage by a DNA damaging agent and to investigate end-label bias. A comparison was also made between the bleomycin DNA sequence specificity obtained from genome-wide next-generation sequencing with that obtained from purified plasmid DNA sequences. This was accomplished by cloning sections of human mitochondrial DNA and comparing these identical mitochondrial DNA in the human mitochondrial genome. At individual sites, there was a very low level of correlation between bleomycin cleavage in plasmid sequencing and genome-wide sequencing. However, the overall bleomycin DNA sequence specificity was very similar in the two environments, namely 5'-TGT*A-3'. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Association between Chloroplast and Mitochondrial DNA sequences in Chinese Prunus genotypes (Prunus persica, Prunus domestica, and Prunus avium).

    Science.gov (United States)

    Pervaiz, Tariq; Sun, Xin; Zhang, Yanyi; Tao, Ran; Zhang, Junhuan; Fang, Jinggui

    2015-01-16

    The nuclear DNA is conventionally used to assess the diversity and relatedness among different species, but variations at the DNA genome level has also been used to study the relationship among different organisms. In most species, mitochondrial and chloroplast genomes are inherited maternally; therefore it is anticipated that organelle DNA remains completely associated. Many research studies were conducted simultaneously on organelle genome. The objectives of this study was to analyze the genetic relationship between chloroplast and mitochondrial DNA in three Chinese Prunus genotypes viz., Prunus persica, Prunus domestica, and Prunus avium. We investigated the genetic diversity of Prunus genotypes using simple sequence repeat (SSR) markers relevant to the chloroplast and mitochondria. Most of the genotypes were genetically similar as revealed by phylogenetic analysis. The Y2 Wu Xing (Cherry) and L2 Hong Xin Li (Plum) genotypes have a high similarity index (0.89), followed by Zi Ye Li (0.85), whereas; L1 Tai Yang Li (plum) has the lowest genetic similarity (0.35). In case of cpSSR, Hong Tao (Peach) and L1 Tai Yang Li (Plum) genotypes demonstrated similarity index of 0.85 and Huang Tao has the lowest similarity index of 0.50. The mtSSR nucleotide sequence analysis revealed that each genotype has similar amplicon length (509 bp) except M5Y1 i.e., 505 bp with CCB256 primer; while in case of NAD6 primer, all genotypes showed different sizes. The MEHO (Peach), MEY1 (Cherry), MEL2 (Plum) and MEL1 (Plum) have 586 bps; while MEY2 (Cherry), MEZI (Plum) and MEHU (Peach) have 585, 584 and 566 bp, respectively. The CCB256 primer showed highly conserved sequences and minute single polymorphic nucleotides with no deletion or mutation. The cpSSR (ARCP511) microsatellites showed the harmonious amplicon length. The CZI (Plum), CHO (Peach) and CL1 (Plum) showed 182 bp; whileCHU (Peach), CY2 (Cherry), CL2 (Plum) and CY1 (Cherry) showed 181 bp amplicon lengths. These results

  7. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing

    NARCIS (Netherlands)

    Tamminga, Saskia; van Maarle, Merel; Henneman, Lidewij; Oudejans, Cees B. M.; Cornel, Martina C.; Sistermans, Erik A.

    2016-01-01

    Cell-free DNA (cf DNA) testing has recently become indispensable in diagnostic testing and screening. In the prenatal setting, this type of testing is often called noninvasive prenatal testing (NIPT). With a number of techniques, using either next-generation sequencing or single nucleotide

  8. 40 CFR 86.130-96 - Test sequence; general requirements.

    Science.gov (United States)

    2010-07-01

    ... and the running loss test are not required. (b) The vehicle test for fuel spitback during fuel... to prevent abnormal fuel distribution. (e) If tests are invalidated after collection of emission data... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Test sequence; general requirements...

  9. Adult-onset Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke (MELAS)-like Encephalopathy Diagnosed Based on the Complete Sequencing of Mitochondrial DNA Extracted from Biopsied Muscle without any Myopathic Changes.

    Science.gov (United States)

    Mukai, Masako; Nagata, Eiichiro; Mizuma, Atsushi; Yamano, Mitsuhiko; Sugaya, Keizo; Nishino, Ichizo; Goto, Yu-Ichi; Takizawa, Shunya

    The clinical features of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) are not uniform. We herein report a male patient with unusual MELAS-like encephalopathy who had been experiencing isolated recurrent stroke-like episodes since he was 33 years old without any particular family history. Despite an extensive investigation, he had no other signs suggestive of MELAS. Although the muscle pathology showed a normal appearance, a mitochondrial genome sequence analysis of the biopsied muscle revealed a heteroplasmic m.10158T>C mutation in the mitochondrial complex I subunit gene, MT-ND3. To prevented further deterioration of the higher brain function, the early diagnosis and treatment of mitochondrial stroke-like episodes is important.

  10. The complete mitochondrial genome sequence of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) contains triplicate putative control regions.

    Science.gov (United States)

    Yan, Dankan; Tang, Yunxia; Xue, Xiaofeng; Wang, Minghua; Liu, Fengquan; Fan, Jiaqin

    2012-09-10

    To investigate the features of the control region (CR) and the gene rearrangement in the mitochondrial (mt) genome of Thysanoptera insects, we sequenced the whole mt genome of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae). The mt genome is a circular molecule with 14,889 nucleotides and an A+T content of 76.6%, and it has triplicate putative CRs. We propose that tandem duplication and deletion account for the evolution of the CR and the gene translocations. Intramitochondrial recombination is a plausible model for the gene inversions. We discuss the excessive duplicate CR sequences and the transcription of the rRNA genes, which are distant from one another and from the CR. Finally, we address the significance of the complicated mt genomes in Thysanoptera for the evolution of the CR and the gene arrangement of the mt genome. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  11. Ion torrent next-generation sequencing reveals the complete mitochondrial genome of endangered mahseer Tor khudree (Sykes, 1839).

    Science.gov (United States)

    Raman, Sudhanshu; Pavan-Kumar, A; Koringa, Prakash G; Patel, Namrata; Shah, Tejas; Singh, Rajeev K; Krishna, Gopal; Joshi, C G; Gireesh-Babu, P; Chaudhari, Aparna; Lakra, W S

    2016-07-01

    The complete mitochondrial genome of an endangered mahseer (Deccan mahseer), Tor khudree was sequenced using Ion torrent platform for the first time. The genome sequence was 16 573 bp in size, and consists of 13 protein coding genes, 22 tRNAs, 2 rRNA genes and 1 control region. The gene organization and its order were similar to other vertebrates. The overall base composition was A: 31.9%, G: 15.6%, C: 27.68%, T: 24.76%, A + T content 56.6% and the G + C content 43.32%. The phylogenetic tree constructed using a maximum likelihood model showed sister relationship between T. khudree and Tor tambroides.

  12. Complete mitochondrial genome sequence and identification of a candidate gene responsible for cytoplasmic male sterility in radish (Raphanus sativus L.) containing DCGMS cytoplasm.

    Science.gov (United States)

    Park, Jee Young; Lee, Young-Pyo; Lee, Jonghoon; Choi, Beom-Soon; Kim, Sunggil; Yang, Tae-Jin

    2013-07-01

    A novel cytoplasmic male sterility (CMS) conferred by Dongbu cytoplasmic and genic male-sterility (DCGMS) cytoplasm and its restorer-of-fertility gene (Rfd1) was previously reported in radish (Raphanus sativus L.). Its inheritance of fertility restoration and profiles of mitochondrial DNA (mtDNA)-based molecular markers were reported to be different from those of Ogura CMS, the first reported CMS in radish. The complete mitochondrial genome sequence (239,186 bp; GenBank accession No. KC193578) of DCGMS mitotype is reported in this study. Thirty-four protein-coding genes and three ribosomal RNA genes were identified. Comparative analysis of a mitochondrial genome sequence of DCGMS and previously reported complete sequences of normal and Ogura CMS mitotypes revealed various recombined structures of seventeen syntenic sequence blocks. Short-repeat sequences were identified in almost all junctions between syntenic sequence blocks. Phylogenetic analysis of three radish mitotypes showed that DCGMS was more closely related to the normal mitotype than to the Ogura mitotype. A single 1,551-bp unique region was identified in DCGMS mtDNA sequences and a novel chimeric gene, designated orf463, consisting of 128-bp partial sequences of cox1 gene and 1,261-bp unidentified sequences were found in the unique region. No other genes with a chimeric structure, a major feature of most characterized CMS-associated genes in other plant species, were found in rearranged junctions of syntenic sequence blocks. Like other known CMS-associated mitochondrial genes, the predicted gene product of orf463 contained 12 transmembrane domains. Thus, this gene product might be integrated into the mitochondrial membrane. In total, the results indicate that orf463 is likely to be a casual factor for CMS induction in radish containing the DCGMS cytoplasm.

  13. Large sequence divergence of mitochondrial DNA genotypes of the control region within populations of the African antelope, kob (Kobus kob)

    DEFF Research Database (Denmark)

    Birungi, J.; Arctander, Peter

    2000-01-01

    conservation genetics, control region, Kobus kob, mitochondrial DNA, population expansion, population structure......conservation genetics, control region, Kobus kob, mitochondrial DNA, population expansion, population structure...

  14. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.

  15. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  16. The historical biogeography of Pteroglossus aracaris (Aves, Piciformes, Ramphastidae based on Bayesian analysis of mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Sérgio L. Pereira

    2008-01-01

    Full Text Available Most Neotropical birds, including Pteroglossus aracaris, do not have an adequate fossil record to be used as time constraints in molecular dating. Hence, the evolutionary timeframe of the avian biota can only be inferred using alternative time constraints. We applied a Bayesian relaxed clock approach to propose an alternative interpretation for the historical biogeography of Pteroglossus based on mitochondrial DNA sequences, using different combinations of outgroups and time constraints obtained from outgroup fossils, vicariant barriers and molecular time estimates. The results indicated that outgroup choice has little effect on the Bayesian posterior distribution of divergence times within Pteroglossus , that geological and molecular time constraints seem equally suitable to estimate the Bayesian posterior distribution of divergence times for Pteroglossus , and that the fossil record alone overestimates divergence times within the fossil-lacking ingroup. The Bayesian estimates of divergence times suggest that the radiation of Pteroglossus occurred from the Late Miocene to the Pliocene (three times older than estimated by the “standard” mitochondrial rate of 2% sequence divergence per million years, likely triggered by Andean uplift, multiple episodes of marine transgressions in South America, and formation of present-day river basins. The time estimates are in agreement with other Neotropical taxa with similar geographic distributions.

  17. Genetic characterization of the Pacific sheath-tailed bat (Emballonura semicaudata rotensis) using mitochondrial DNA sequence data

    Science.gov (United States)

    Oyler-McCance, Sara J.; Valdez, Ernest W.; O'Shea, Thomas J.; Fike, Jennifer A.

    2013-01-01

    Emballonura semicaudata occurs in the southwestern Pacific and populations on many islands have declined or disappeared. One subspecies (E. semicaudata rotensis) occurs in the Northern Mariana Islands, where it has been extirpated from all but 1 island (Aguiguan). We assessed genetic similarity between the last population of E. s. rotensis and 2 other subspecies, and examined genetic diversity on Aguiguan. We sampled 12 E. s. rotensis, sequenced them at 3 mitochondrial loci, and compared them with published sequences from 2 other subspecies. All 12 E. s. rotensis had identical sequences in each of the 3 regions. Using cytochrome-b (Cytb) data E. s. rotensis was sister to E. s. palauensis in a clade separate from E. s. semicaudata. 12S ribosomal RNA (12S) sequences grouped all E. s. semicaudata in 1 clade with E. s. rotensis in a clade by itself. Genetic distances among the 3 subspecies at Cytb were smallest between E. s. palauensis and E. s. rotensis. Distance between E. s. semicaudata and the other 2 subspecies was not different from the distance between E. s. semicaudata and the full species E. raffrayana. A similar relationship was found using the 12S data. These distances are larger than those typically reported for mammalian subspecies using Cytb sequence and within the range of sister species.

  18. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  19. Genetic variability among Hymenolepis nana isolates from different geographical regions in China revealed by sequence analysis of three mitochondrial genes.

    Science.gov (United States)

    Cheng, Tian; Gao, De-Zhen; Zhu, Wei-Ning; Fang, Su-Fang; Chen, Ning; Zhu, Xing-Quan; Liu, Guo-Hua; Lin, Rui-Qing

    2016-11-01

    Hymenolepis nana is a common tapeworm that parasitizes in the small intestine of rodent animals and humans. The present study examined the sequence diversity of three mitochondrial (mt) genes namely NADH dehydrogenase subunits 5 (nad5), small subunit ribosomal RNA (rrnS), and ATPase subunit 6 (atp6) of H. nana from mice in different geographical regions of China. A part of the nad5 (pnad5), complete rrnS and atp6 genes were amplified separately from individual H. nana isolates using polymerase chain reaction (PCR) and then sequenced. The sequences of pnad5, rrnS, and atp6 were 710 bp, 704-711 bp, and 516 bp in length, respectively. The A + T contents of the sequences were 70.1-73.5% (pnad5), 70.1-71.7% (rrnS), and 76.6-77.9% (atp6). Sequence variation within H. nana was 0-1.4% for atp6, 0-1.7% for rrnS, and 0-0.7% for pnad5. The inter-specific sequence differences between H. nana and Hymenolepis diminuta were significantly higher, which was 31.6-31.7% (pnad5), 16.1-17.6% (rrnS), and 26.5-27.1% (atp6). Phylogenetic analysis based on the combined three sequences using the maximum parsimony (MP) method supported that H. nana is a species complex or "cryptic" species. These findings demonstrated clearly the usefulness of the three mtDNA sequences for population genetics and systematic studies of H. nana of human and animal health significance.

  20. Inferring contemporary levels of gene flow and demographic history in a local population of the leaf beetle Gonioctena olivacea from mitochondrial DNA sequence variation.

    Science.gov (United States)

    Mardulyn, Patrick; Milinkovitch, Michel C

    2005-05-01

    We have studied mitochondrial DNA variation in a local population of the leaf beetle species Gonioctena olivacea, to check whether its apparent low dispersal behaviour affects its pattern of genetic variation at a small geographical scale. We have sampled 10 populations of G. olivacea within a rectangle of 5 x 2 km in the Belgian Ardennes, as well as five populations located approximately along a straight line of 30 km and separated by distances of 3-12 km. For each sampled individual (8-19 per population), a fragment of the mtDNA control region was polymerase chain reaction-amplified and sequenced. Sequence data were analysed to test whether significant genetic differentiation could be detected among populations separated by such relatively short distances. The reconstructed genealogy of the mitochondrial haplotypes was also used to investigate the demographic history of these populations. Computer simulations of the evolution of populations were conducted to assess the minimum amount of gene flow that is necessary to explain the observed pattern of variation in the samples. Results show that migration among populations included in the rectangle of 5 x 2 km is substantial, and probably involves the occurrence of dispersal flights. This appears difficult to reconcile with the results of a previous ecological field study that concluded that most of this species dispersal occurs by walking. While sufficient migration to homogenize genetic diversity occurs among populations separated by distances of a few hundred metres to a few kilometres, distances greater than 5 km results in contrast in strong differentiation among populations, suggesting that migration is drastically reduced on such distances. Finally, the results of coalescent simulations suggest that the star-like genealogy inferred from the mtDNA sequence data is fully compatible with a past demographic expansion. However, a metapopulation structure alone (without the need to invoke a population expansion

  1. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  2. Genetic variability among Schistosoma japonicum isolates from the Philippines, Japan and China revealed by sequence analysis of three mitochondrial genes.

    Science.gov (United States)

    Chen, Fen; Li, Juan; Sugiyama, Hiromu; Zhou, Dong-Hui; Song, Hui-Qun; Zhao, Guang-Hui; Zhu, Xing-Quan

    2015-02-01

    The present study examined sequence variability in the mitochondrial (mt) protein-coding genes cytochrome b (cytb), NADH dehydrogenase subunits 2 and 6 (nad2 and nad6) among 24 isolates of Schistosoma japonicum from different endemic regions in the Philippines, Japan and China. The complete cytb, nad2 and nad6 genes were amplified and sequenced separately from individual schistosome. Sequence variations for isolates from the Philippines were 0-0.5% for cytb, 0-0.6% for nad2, and 0-0.9% for nad6. Variation was 0-0.5%, 0.1-0.8%, 0-0.7% for corresponding genes for schistosome samples from mainland China. For worms in Japan, genetic variations were 0-0.2%, 0.1-0.2% and 0 for the three genes, respectively. Sequence variations were 0-1.0%, 0-1.8% and 0-1.1% for cytb, nad2 and nad6, respectively, among schistosome isolates from different geographical strains in the Philippines, Japan and China. Of the three countries, lowest sequence variations were found between isolates from mainland China and the Philippines and highest were detected between Japan and the Philippines in three mtDNA genes. Phylogenetic analyses based on the combined sequences of cytb, nad2 and nad6 revealed that all isolates in the Philippines clustered together sistered to samples from Yunnan and Zhejiang provinces in China, while isolates from Yamanashi in Japan were in a solitary clade. These results demonstrated the usefulness of the combined three mtDNA sequences for studying genetic diversity and population structure among S. japonicum isolates from the Philippines, China and Japan.

  3. Sequence of specific mitochondrial 16S rRNA gene fragment from Egyptian buffalo is used as a pattern for discrimination between river buffaloes, cattle, sheep and goats.

    Science.gov (United States)

    Ramadan, Hassan A I

    2011-08-01

    Characterization of molecular markers and the development of better assays for precise and rapid detection of domestic species are always in demand. This is particularly due to recent food scares and the crisis of biodiversity resulting from the huge ongoing illegal traffic of endangered species. The aim of this study was to develop a new and easy method for domestic species identification (river buffalo, cattle, sheep and goat) based on the analysis of a specific mitochondrial nucleotide sequence. For this reason, a specific fragment of Egyptian buffalo mitochondrial 16S rRNA gene (422 bp) was amplified by PCR using two universal primers. The sequence of this specific fragment is completely conserved between all tested Egyptian buffaloes and other river buffaloes in different places in the world. Also, the lengths of the homologous fragments were less by one nucleotide (421 bp) in case of goats and two nucleotides (420 bp) in case of both cattle and sheep. The detection of specific variable sites between investigated species within this fragment was sufficient to identify the biological origin of the samples. This was achieved by alignment between the unknown homologous sequence and the reference sequences deposited in GenBank database (accession numbers, FJ748599-FJ748607). Considering multiple alignment results between 16S rRNA homologous sequences obtained from GenBank database with the reference sequence, it was shown that definite nucleotides are specific for each of the four studied species of the family Bovidae. In addition, other nucleotides are detected which can allow discrimination between two groups of animals belonging to two subfamilies of family Bovidae, Group one (closely related species like cattle and buffalo, Subfamily Bovinae) and Group two (closely related species like sheep and goat, Subfamily Caprinae). This 16S DNA barcode character-based approach could be used to complement cytochrome c oxidase I (COI) in DNA barcoding. Also, it is a

  4. Novel primers for complete mitochondrial cytochrome b gene sequencing in mammals.

    Science.gov (United States)

    Naidu, Ashwin; Fitak, Robert R; Munguia-Vega, Adrian; Culver, Melanie

    2012-03-01

    Sequence-based species identification relies on the extent and integrity of sequence data available in online databases such as GenBank. When identifying species from a sample of unknown origin, partial DNA sequences obtained from the sample are aligned against existing sequences in databases. When the sequence from the matching species is not present in the database, high-scoring alignments with closely related sequences might produce unreliable results on species identity. For species identification in mammals, the cytochrome b (cyt b) gene has been identified to be highly informative; thus, large amounts of reference sequence data from the cyt b gene are much needed. To enhance availability of cyt b gene sequence data on a large number of mammalian species in GenBank and other such publicly accessible online databases, we identified a primer pair for complete cyt b gene sequencing in mammals. Using this primer pair, we successfully PCR amplified and sequenced the complete cyt b gene from 40 of 44 mammalian species representing 10 orders of mammals. We submitted 40 complete, correctly annotated, cyt b protein coding sequences to GenBank. To our knowledge, this is the first single primer pair to amplify the complete cyt b gene in a broad range of mammalian species. This primer pair can be used for the addition of new cyt b gene sequences and to enhance data available on species represented in GenBank. The availability of novel and complete gene sequences as high-quality reference data can improve the reliability of sequence-based species identification. © 2011 Blackwell Publishing Ltd.

  5. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    Science.gov (United States)

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology.

  6. Sequence Characterization of Mitochondrial 12S rRNA Gene in Mouse Deer (Moschiola indica for PCR-RFLP Based Species Identification

    Directory of Open Access Journals (Sweden)

    Chandra Mohan Siddappa

    2013-01-01

    Full Text Available Mitochondrial 12S rRNA has proven to be a useful molecular marker for better conservation and management of the endangered species. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP of the mitochondrial 12S rRNA gene has proven to be a reliable and efficient tool for the identification of different Indian deer species of family cervidae. In the present study, mitochondrial 12S rRNA gene sequence of mouse deer (Moschiola indica belonging to the family Tragulidae was characterized and analysed in silico for its use in species identification. Genomic DNA was isolated from the hair follicles and mitochondrial 12S rRNA gene was amplified using universal primers. PCR product was cloned and sequenced for the first time. The sequence of mouse deer showed 90.04, 90.08, 90.04, 91.2, 90.04, and 90.08% identities with sika deer, sambar, hog deer, musk deer, chital, and barking deer, respectively. Restriction mapping in Lasergene (DNAstar Inc., Madison, WI, USA revealed that mouse deer mitochondrial 12S rRNA gene sequence can be differentiated from the other deer species in PCR-RFLP using RsaI, DdeI, BsrI, and BstSFI. With the help of predicted pattern, mouse deer can be identified using genomic DNA from a variety of biomaterials, thereby providing molecular aid in wildlife forensics and conservation of the species.

  7. A Novel Class of Tests for the Detection of Mitochondrial DNA–Mutation Involvement in Diseases

    OpenAIRE

    Sun, Fengzhu; Cui, Jing; Gavras, Haralambos; Schwartz, Faina

    2003-01-01

    We develop a novel class of tests to detect mitochondrial DNA (mtDNA)–mutation involvement in complex diseases by the study of affected pedigree members. For a pedigree, affected individuals are first considered and are then connected through their relatives. We construct a reduced pedigree from an original pedigree. Each configuration of a reduced pedigree is given a score, with high scores given to configurations that are consistent with mtDNA-mutation involvement and low scores given to co...

  8. Phylogenetic relationships between Dicrocoelium chinensis populations in Japan and China based on mitochondrial nad1 gene sequences.

    Science.gov (United States)

    Hayashi, Kei; Tang, WenQiang; Ohari, Yuma; Ohtori, Maiko; Mohanta, Uday Kumar; Matsuo, Kayoko; Sato, Hiroshi; Itagaki, Tadashi

    2017-07-22

    We carried out phylogenetic analyses of the relationships between Dicrocoelium chinensis populations in Japan and China using molecular markers. One hundred nine lancet flukes collected from Japan and China were identified as D. chinensis based on their testis orientation and the nucleotide sequences of their ribosomal ITS2. These flukes were analyzed phylogenetically using mitochondrial nad1 gene sequences. An analysis of molecular variance found that the percentage of variation between the countries was extremely high, indicating that the D. chinensis populations in Japan and China are differentiated genetically. D. chinensis mainly parasitizes wild sika deer, which is thought to originate in northeast Asia and to have colonized into Japan from the Eurasia continent in the Pleistocene glaciations. In addition, phylogenic analyses indicated that Japanese sika deer is genetically differentiated from Chinese population; therefore, we hypothesize that D. chinensis might have been introduced into Japan along with the migration of infected wild ruminants in the Pleistocene, and then the population became differentiated from the Chinese population. This study provides the nucleotide sequences of the nad1 gene of D. chinensis in Japan for the first time and shows that these sequences are useful for elucidating the phylogenetic relationships of the Dicrocoelium species prevalent in Asia.

  9. The complete nucleotide sequence and gene organization of the mitochondrial genome of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae).

    Science.gov (United States)

    Kim, Iksoo; Cha, So Young; Yoon, Myung Hee; Hwang, Jae Sam; Lee, Sang Mong; Sohn, Hung Dae; Jin, Byung Rae

    2005-07-04

    The complete nucleotide sequences of the mitochondrial genome (mitogenome) of the oriental mole cricket, Gryllotalpa orientalis (Orthoptera: Gryllotalpidae), were determined. The 15,521-bp-long G. orientalis mitogenome contains typical gene complement, base composition, and codon usage found in metazoan mitogenomes. The G. orientalis mitogenome contains the third lowest A+T content (70.5%) among the complete insects mt genome sequences. The initiation codon for the G. orientalis COI gene appears to be ATG, instead of the tetranucleotides, which have been postulated to act as initiation codon for Locusta migratoria and some lepidopteran COI genes. The initiation codon for ND2 appears to be GTG, which is rare, but has been designated as an initiator of Tricholepidion gertschi ND2. All anticodons of G. orientalis tRNAs were identical to Drosophila yakuba and L. migratoria. The tRNA(Ser)(AGN) could not form a stable stem loop structure in the DHU arm as shown in many other insect tRNA(Ser)(AGN). Phylogenetic analysis of nucleotide sequence information from all mt genes supported a monophyletic Diptera, a monophyletic Lepidoptera, a monophyletic Coleoptera, a monophyletic Mecopterida (Diptera+Lepidoptera), and a monophyletic Endopterygota (Diptera+Lepidoptera+Coleoptera), suggesting that the complete insect mitogenome sequence has a resolving power to the diversification events within Endopterygota. However, the relationships of ancient insect orders were unstable, indicating the limited use of mitogenome information at deeper phylogenetic depth.

  10. Systematic Analysis of Small RNAs Associated with Human Mitochondria by Deep Sequencing: Detailed Analysis of Mitochondrial Associated miRNA

    Science.gov (United States)

    Sripada, Lakshmi; Tomar, Dhanendra; Prajapati, Paresh; Singh, Rochika; Singh, Arun Kumar; Singh, Rajesh

    2012-01-01

    Mitochondria are one of the central regulators of many cellular processes beyond its well established role in energy metabolism. The inter-organellar crosstalk is critical for the optimal function of mitochondria. Many nuclear encoded proteins and RNA are imported to mitochondria. The translocation of small RNA (sRNA) including miRNA to mitochondria and other sub-cellular organelle is still not clear. We characterized here sRNA including miRNA associated with human mitochondria by cellular fractionation and deep sequencing approach. Mitochondria were purified from HEK293 and HeLa cells for RNA isolation. The sRNA library was generated and sequenced using Illumina system. The analysis showed the presence of unique population of sRNA associated with mitochondria including miRNA. Putative novel miRNAs were characterized from unannotated sRNA sequences. The study showed the association of 428 known, 196 putative novel miRNAs to mitochondria of HEK293 and 327 known, 13 putative novel miRNAs to mitochondria of HeLa cells. The alignment of sRNA to mitochondrial genome was also studied. The targets were analyzed using DAVID to classify them in unique networks using GO and KEGG tools. Analysis of identified targets showed that miRNA associated with mitochondria regulates critical cellular processes like RNA turnover, apoptosis, cell cycle and nucleotide metabolism. The six miRNAs (counts >1000) associated with mitochondria of both HEK293 and HeLa were validated by RT-qPCR. To our knowledge, this is the first systematic study demonstrating the associations of sRNA including miRNA with mitochondria that may regulate site-specific turnover of target mRNA important for mitochondrial related functions. PMID:22984580

  11. Phylogeny of all major groups of cetaceans based on DNA sequences from three mitochondrial genes.

    Science.gov (United States)

    Milinkovitch, M C; Meyer, A; Powell, J R

    1994-11-01

    Traditionally, living cetaceans (order Cetacea) are classified into two highly distinct suborders: the echolocating toothed whales, Odontoceti, and the filter-feeding baleen whales, Mysticeti. A molecular phylogeny based on 1,352 base pairs of two mitochondrial ribosomal gene segments and the mitochondrial cytochrome b gene for all major groups of cetaceans contradicts this long-accepted taxonomic subdivision. One group of toothed whales, the sperm whales, is more closely related to the morphologically highly divergent baleen whales than to other odontocetes. This finding suggests that the suborder Odontoceti constitutes an unnatural grouping and challenges the conventional scenario of a long, independent evolutionary history of odontocetes and mysticetes. The superfamily Delphinoidea (dolphins, porpoises, and white whales) appears to be monophyletic; the Amazon River dolphin, Inia geoffrensis, is its sister species. This river dolphin is genetically more divergent from the morphologically similar marine dolphins than the sperm whales are from the morphologically dissimilar baleen whales. The phylogenetic relationships among the three families of Delphinoidea remain uncertain, and we suggest that the two cladogenetic events that generated these three clades occurred within a very short period of time. Among the baleen whales, the bowhead is basal, and the gray whale is the sister species to the rorquals (family Balaenopteridae). The phylogenetic position of beaked whales (Ziphioidea) remains weakly supported by molecular data. Based on molecular clock assumptions, the mitochondrial-DNA data suggest a more recent origin of baleen whales (approximately 25 mya) than has been previously assumed (> 40 mya). This revised phylogeny has important implications for the rate and mode of evolution of morphological and physiological innovations in cetaceans.

  12. The 6-min mastication test: a unique test to assess endurance of continuous chewing, normal values, reliability, reproducibility and usability in patients with mitochondrial disease

    NARCIS (Netherlands)

    Engel-Hoek, L. van den; Knuijt, S.; Gerven, M.H.J.C van; Lagarde, M.L.J.; Groothuis, J.T.; Groot, I.J.M. de; Janssen, M.C.

    2017-01-01

    In patients with mitochondrial disease, fatigue and muscle problems are the most common complaints. They also experience these complaints during mastication. To measure endurance of continuous mastication in patients with mitochondrial diseases, the 6-min mastication test (6MMT) was developed. This

  13. Clinical DNA Sequencer for Ultra-Low Cost Testing

    Science.gov (United States)

    Church, George; Olejnik, Jerzy; Werner, Martina; Guggenheim, Evan; DiMeo, James; Marma, Mong Sano; Visalakshi, Visa; Hagerott, Thomas; Golaski, Edmund; Veatch, Philip; Stoops, David; Gordon, Steven

    2012-01-01

    We present a new sequencing instrument, the MINI, for sequencing DNA in the clinic or core research laboratory. Unlike all other DNA sequencing systems, which run only one or two samples at a time, the MINI can simultaneously run any number of flow cells between one and twenty. Each flow cell is designed to be disposable, low-cost and use very little reagent; thus, DNA from a single patient or specimen may be cost effectively sequenced without the need for indexing multiple samples in a single flow cell. This is an important feature for the clinic, as in addition to simplifying the sample preparation process, different sample may be kept physically separate (meters) from one another, thereby significantly reducing the chance of contamination or false diagnosis. Low cost (about $100 per sequencing test) is achieved through a unique sequencing by synthesis chemistry and low reagent consumption. Parallel flow cell processing and fluidics design results in high throughput (tens of tests per day). In addition to sequence-based clinical testing, the system supports targeted resequencing up to an exome per flow cell. Read lengths are driven by application requirements and are between 35-100 bp.

  14. Complete mitochondrial genome of Bactrocera arecae (Insecta: Tephritidae) by next-generation sequencing and molecular phylogeny of Dacini tribe.

    Science.gov (United States)

    Yong, Hoi-Sen; Song, Sze-Looi; Lim, Phaik-Eem; Chan, Kok-Gan; Chow, Wan-Loo; Eamsobhana, Praphathip

    2015-10-16

    The whole mitochondrial genome of the pest fruit fly Bactrocera arecae was obtained from next-generation sequencing of genomic DNA. It had a total length of 15,900 bp, consisting of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a non-coding region (A + T-rich control region). The control region (952 bp) was flanked by rrnS and trnI genes. The start codons included 6 ATG, 3 ATT and 1 each of ATA, ATC, GTG and TCG. Eight TAA, two TAG, one incomplete TA and two incomplete T stop codons were represented in the protein-coding genes. The cloverleaf structure for trnS1 lacked the D-loop, and that of trnN and trnF lacked the TΨC-loop. Molecular phylogeny based on 13 protein-coding genes was concordant with 37 mitochondrial genes, with B. arecae having closest genetic affinity to B. tryoni. The subgenus Bactrocera of Dacini tribe and the Dacinae subfamily (Dacini and Ceratitidini tribes) were monophyletic. The whole mitogenome of B. arecae will serve as a useful dataset for studying the genetics, systematics and phylogenetic relationships of the many species of Bactrocera genus in particular, and tephritid fruit flies in general.

  15. Sequence motifs associated with paternal transmission of mitochondrial DNA in the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae).

    Science.gov (United States)

    Robicheau, Brent M; Breton, Sophie; Stewart, Donald T

    2017-03-20

    In the majority of metazoans paternal mitochondria represent evolutionary dead-ends. In many bivalves, however, this paradigm does not hold true; both maternal and paternal mitochondria are inherited. Herein, we characterize maternal and paternal mitochondrial control regions of the horse mussel, Modiolus modiolus (Bivalvia: Mytilidae). The maternal control region is 808bp long, while the paternal control region is longer at 2.3kb. We hypothesize that the size difference is due to a combination of repeated duplications within the control region of the paternal mtDNA genome, as well as an evolutionarily ancient recombination event between two sex-associated mtDNA genomes that led to the insertion of a second control region sequence in the genome that is now transmitted via males. In a comparison to other mytilid male control regions, we identified two evolutionarily Conserved Motifs, CMA and CMB, associated with paternal transmission of mitochondrial DNA. CMA is characterized by a conserved purine/pyrimidine pattern, while CMB exhibits a specific 13bp nucleotide string within a stem and loop structure. The identification of motifs CMA and CMB in M. modiolus extends our understanding of Sperm Transmission Elements (STEs) that have recently been identified as being associated with the paternal transmission of mitochondria in marine bivalves. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  17. DNA Quality and Integrity of Nuclear and Mitochondrial Sequences from Beef Meat as Affected by Different Cooking Methods

    Directory of Open Access Journals (Sweden)

    Mauro Musto

    2011-01-01

    Full Text Available The extraction of high quality DNA from processed meat can often represent the crucial step in an authentication process by PCR-based methods. In this study, the effect of three different domestic cooking methods (roasting, boiling, and microwave on DNA isolated from two beef muscles has been investigated. The quality of extracted DNA was evaluated by amplifying target sequences from mitochondrial and nuclear genes, as well as by monitoring the yield, purity, and degradation of the extracted DNA. Large PCR fragments (length >900 bp were successfully amplified from both genes in all samples. The cooking methods caused significant differences in terms of quality and quantity of DNA recovered from meat.

  18. First molecular evidence of Mus musculus bactrianus in Nepal inferred from the mitochondrial DNA cytochrome B gene sequences.

    Science.gov (United States)

    Adhikari, Pradeep; Han, Sang-Hyun; Kim, Yoo-Kyung; Kim, Tae-Wook; Thapa, Tej Bahadur; Subedi, Naresh; Adhikari, Prabhat; Oh, Hong-Shik

    2017-05-19

    To identify the house mice collected in Pokhara and Lumbini of Nepal at the subspecies level, morphological and molecular analyses were carried out. Morphologically, two populations collected in Pokhara and Lumbini were distinguished by fur colour, but there was no significant difference in external measurements (p > .05). The phylogenetic analysis results revealed that the haplotypes sequences of mitochondrial DNA (mtDNA) Cytochrome B (CytB) gene distinguished into two distinct clades on a phylogenetic tree representing two subspecies, Mus musculus bactrianus and M. m. castaneus in Pokhara and Lumbini, respectively. In Nepal, the subspecies M. m. bactrianus was not reported before this study. These findings concluded that at least two subspecies, M. m. bactrianus and M. m. castaneus currently exist in Nepal. We estimated that these two subspecies could have introduced together with human migration, while further study is required to understand their evolutionary history and current distribution.

  19. Phylogenetic position of the cryopelagic codfish genus Arctogadus Drjagin, 1932 based on partial mitochondrial cytochrome b sequences

    DEFF Research Database (Denmark)

    Moller, PR; Jordan, AD; Gravlund, P

    2002-01-01

    ), Gadiculus argenteus Guichenot, Micromesistius poutassou (Risso), Pollachius pollachius (L.), Pollachius virens (L.)] and from 4 gadiform outgroup species. With additional data from GenBank, a dataset of all 12 gadine genera (19 species) was analysed using parsimony and neighbour-joining. Arctogadus appeared......In order to elucidate the phylogenetic position of the cryopelagic cod genus Arctogadus, gadine phylogenetic relationships were examined using the mitochondrial DNA cytochrome b gene. A segment of 401 base pairs was sequenced from 6 gadine species [Arctogadus borisovi Drjagin, A. glacialis (Peters...... in a terminal clade as sistergenus to Boreogadus and closely related to Gadus and Theragra. The relatively small genetic difference between these four genera indicates a need for taxonomic revision, and possibly that Arctogadus should be synonymised with Boreogadus or Gadus. A difference of only 0-2 base pairs...

  20. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    sequencing (NGS) featured with high throughput and low cost of sequencing capacity develops fast, especially with the improvement of its read length, read accuracy and the immergence of small-sized machines, making it a powerful genetic testing tool. In this study, we applied NGS to develop novel genetic...... developed a targeted sequencing based preimplantation genetic diagnosis (PGD) method for monogenic diseases and tested it in a family suffering from β-thalassaemia major undergoing PGD. Moreover, we developed a method which can achieve detection of point mutation and copy number variation simultaneously......The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation...

  1. Determining geographical variations in Ascaris suum isolated from different regions in northwest China through sequences of three mitochondrial genes.

    Science.gov (United States)

    Zou, Yong; Wu, Fei; Guo, Ya-Xu; Wang, Hui-Bao; Fang, Yan-Qin; Kang, Ming; Lin, Qing

    2017-05-01

    The sequence diversities in three mitochondrial DNA (mtDNA) regions, namely portions of NADH dehydrogenase subunit 1 (pnad1), cytochrome c oxidase subunit 1 (pcox1), and NADH dehydrogenase subunit 4 (pnad4), were investigated in all Ascaris suum samples isolated from four regions in northwestern China. Those genes were amplified by PCR method and the lengths of pnad1, pcox1, and pnad4 were 419 bp, 711 bp, and 723 bp, respectively. The intraspecific sequence variations within A. suum samples were 0-2.9% for pnad1, 0-2.1% for pcox1, and 0-3.1% for pnad4. Phylogenetic analysis combined with three sequences of mtDNA fragments showed that all A. suum samples were monophyletic groups, but samples from the same geographical origin did not always cluster together. The results suggested that the three mtDNA fragments could not be used as molecular markers to identify the A. suum isolates from four regions, and have important implications for studying molecular epidemiology and population genetics of A. suum.

  2. Allele-specific polymerase chain reaction typing and sequencing of mitochondrial D-loop region in broiler chickens in Japan.

    Science.gov (United States)

    Harumi, Takashi; Kobayashi, Eiji; Naito, Mitsuru

    2015-09-01

    This study aimed to comprehend a feature of single nucleotide polymorphism (SNP) in mitochondrial DNA (mtDNA) mainly of general broiler chickens in Japan. We typed two SNP sites (199C/T and 792A/G) of the D-loop region in mtDNA by allele-specific PCR (AS-PCR) in 359 broiler (182 chunky and 177 cobb) and 506 layer (233 White Leghorn, 140 Barred Plymouth Rock and 133 Rhode Island Red) chickens. The SNP of 199C or 792A by AS-PCR was observed in the chunky and cobb chickens, and not in the layers. The haplotype 199T/792G was observed in a part of cobb and all layers. By the result of AS-PCR haplotyping and the broiler brands, the D-loop region was sequenced in 44 broiler chickens (20 chunky and 24 cobb) and compared with the layers' sequence data. Among the broiler and layer chickens, 21 SNP sites (including one insertion) and 11 sequence haplotypes were observed. Haplotype variation or correspondence was observed in and between the broiler brands. This study provides important information to establish a chicken meat traceability system by SNP haplotyping of mtDNA in Japan. © 2015 Japanese Society of Animal Science.

  3. Genetic differentiation of geographical populations of Liriomyza sativae (Diptera: Agromyzidae) in China based on mitochondrial COI gene sequences.

    Science.gov (United States)

    Du, Yu-Zhou; Tang, Xiao-Tian; Wang, Li-Ping; Shen, Yuan; Chang, Ya-Wen

    2016-11-01

    In this study, partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene of four Liriomyza sativae (Blanchard) geographic populations in China were sequenced. As for the 784 bp mtDNA-COI gene obtained, six variable sites were found which were all transitions and no base composition was insertions or deletions. Six haplotypes were identified in all the sequences, with five showing polymorphism and one was exclusive. Nucleotide diversity (π) and haplotype diversity (h) ranged from 0.00068 to 0.00300 and 0.53571 to 0.82857, respectively. The phylogenetic trees suggested that six haplotypes constructed two clades. Molecular variance analysis (AMOVA) demonstrated that the genetic variation was not obvious and mainly occurred within geographic populations (94.8%). Most molecular variance within the species was due to the difference of haplotypes among different geographic populations. The genetic characters of the four populations were analyzed by FST value and gene flow (Nm), and the FST and Nm values were 0.174-0.464 and 0.577-2.367, respectively. All results showed that not only the gene flow presented among the four populations but also the genetic differences did. The main reason causing the genetic differences among the four populations was supposed to be related to geographic isolation and host plants aggravated the differences.

  4. Pictorial Sequences As the Basis for Tests of Reasoning.

    Science.gov (United States)

    Donlon, Thomas F.; Widiger, Thomas A.

    The historical development and recent applications are described of the picture sequencing format (PSF), a testing device which requires the subject to designate a complete and correct order for a set of related pictures. The earliest use was by Decroly in 1914 and perhaps the best known use is in the Wechsler intelligence tests. Special…

  5. Analysis of mitochondrial control region nucleotide sequences from Baffin Bay beluga, (Delphinapterus leucas: detecting pods or sub-populations?

    Directory of Open Access Journals (Sweden)

    Per Jakob Palsbøll

    2002-07-01

    Full Text Available We report the results of an analysis of the variation in the nucleotide sequence of the mitochondrial control region obtained in 218 samples collected from belugas, Delphinapterus leucas, around the Baffin Bay. We detected multiple instances of significant heterogeneity in the distribution of genetic variation among the analyzed mitochondrial control region sequences on a spatial as well as temporal scale indicating a high degree of maternal population structure. The detection of significant levels of heterogeneity between samples collected in different years but within the same area and season was unexpected. Re-examination of earlier results presented by Brown Gladden and coworkers also revealed temporal genetic heterogeneity within the one area where sufficient (n>15 samples were collected in multiple years. These findings suggest that non-random breeding and maternally directed site-fidelity are not the sole causes of genetic heterogeneity among belugas but that a matrilineal pod structure might cause significant levels of genetic heterogeneity as well, even within the same area. We propose that a maternal pod structure, which has been shown to be the cause of significant genetic heterogeneity in other odontocetes, may add to the overall level of heterogeneity in the maternally inherited DNA and hence that much of the spatial heterogeneity observed in this and previous studies might be attributed to pod rather than population structure. Our findings suggest that it is important to estimate the contribution of pod structure to overall heterogeneity before defining populations or management units in order to avoid interpreting heterogeneity due to sampling of different pods as different populations/management units.

  6. A revised molecular phylogeny of the globally distributed hawkmoth genus Hyles (Lepidoptera: Sphingidae), based on mitochondrial and nuclear DNA sequences.

    Science.gov (United States)

    Hundsdoerfer, Anna K; Rubinoff, Daniel; Attié, Marc; Wink, Michael; Kitching, Ian J

    2009-09-01

    The hawkmoth genus Hyles comprises some 29 species with a global distribution. In this study, we augment the previous taxon sampling with more species and add sequences from a nuclear gene to produce a refined phylogenetic hypothesis. A total evidence reconstruction based on Bayesian analysis of the combined mitochondrial (COI, t-RNA-Leu, COII; 2284 bp) and nuclear (EF1alpha; 773 bp) sequences is discussed and compared with the results from separate analyses of the two genes. The total evidence phylogeny corroborates many of the phylogenetic relationships previously postulated within the genus. In addition, the hitherto unsampled enigmatic species Hyles biguttata from Madagascar appears as sister group to Hyles livornicoides from Australia, although support for the relationship is relatively weak. The high level of differentiation of Hyles perkinsi from H. calida (both Hawaii), and the status of these two as sister species, is corroborated by both sources of sequence data. However, their phylogenetic position when mt DNA sequences alone are considered differs markedly from that under total evidence. The previously postulated relationships within the Hyles euphorbiae complex (HEC) s.s. are largely corroborated, but H. dahlii is now more closely related and the HEC s.l. is redefined to include H. zygophylli and H. stroehlei (two species that had not been studied previously using molecular data) and to exclude H. siehei and H. hippophaes. The nuclear sequences alone are insufficiently variable to fully resolve all lineages and the phylogeny suggests that nuclear gene swapping and incomplete lineage sorting have occurred implying recent divergence. The results from the total evidence analysis provide a phylogenetic hypothesis that both corroborates and complements the previous biogeographic scenario, and provides new insights into the origins of several of the included taxa.

  7. Insights into N-calls of mitochondrial DNA sequencing using MitoChip v2.0

    Directory of Open Access Journals (Sweden)

    Blakely Emma L

    2011-10-01

    Full Text Available Abstract Background Developments in DNA resequencing microarrays include mitochondrial DNA (mtDNA sequencing and mutation detection. Failure by the microarray to identify a base, compared to the reference sequence, is designated an 'N-call.' This study re-examined the N-call distribution of mtDNA samples sequenced by the Affymetrix MitoChip v.2.0, based on the hypothesis that N-calls may represent insertions or deletions (indels in mtDNA. Findings We analysed 16 patient mtDNA samples using MitoChip. N-calls by the proprietary GSEQ software were significantly reduced when either of the freeware on-line algorithms ResqMi or sPROFILER was utilized. With sPROFILER, this decrease in N-calls had no effect on the homoplasmic or heteroplasmic mutation levels compared to GSEQ software, but ResqMi produced a significant change in mutation load, as well as producing longer N-cell stretches. For these reasons, further analysis using ResqMi was not attempted. Conventional DNA sequencing of the longer N-calls stretches from sPROFILER revealed 7 insertions and 12 point mutations. Moreover, analysis of single-base N-calls of one mtDNA sample found 3 other point mutations. Conclusions Our study is the first to analyse N-calls produced from GSEQ software for the MitoChipv2.0. By narrowing the focus to longer stretches of N-calls revealed by sPROFILER, conventional sequencing was able to identify unique insertions and point mutations. Shorter N-calls also harboured point mutations, but the absence of deletions among N-calls suggests that probe confirmation affects binding and thus N-calling. This study supports the contention that the GSEQ is more capable of assigning bases when used in conjunction with sPROFILER.

  8. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  9. Mitochondrial genome sequencing in Mesolithic North East Europe Unearths a new sub-clade within the broadly distributed human haplogroup C1.

    Directory of Open Access Journals (Sweden)

    Clio Der Sarkissian

    Full Text Available The human mitochondrial haplogroup C1 has a broad global distribution but is extremely rare in Europe today. Recent ancient DNA evidence has demonstrated its presence in European Mesolithic individuals. Three individuals from the 7,500 year old Mesolithic site of Yuzhnyy Oleni Ostrov, Western Russia, could be assigned to haplogroup C1 based on mitochondrial hypervariable region I sequences. However, hypervariable region I data alone could not provide enough resolution to establish the phylogenetic relationship of these Mesolithic haplotypes with haplogroup C1 mitochondrial DNA sequences found today in populations of Europe, Asia and the Americas. In order to obtain high-resolution data and shed light on the origin of this European Mesolithic C1 haplotype, we target-enriched and sequenced the complete mitochondrial genome of one Yuzhnyy Oleni Ostrov C1 individual. The updated phylogeny of C1 haplogroups indicated that the Yuzhnyy Oleni Ostrov haplotype represents a new distinct clade, provisionally coined "C1f". We show that all three C1 carriers of Yuzhnyy Oleni Ostrov belong to this clade. No haplotype closely related to the C1f sequence could be found in the large current database of ancient and present-day mitochondrial genomes. Hence, we have discovered past human mitochondrial diversity that has not been observed in modern-day populations so far. The lack of positive matches in modern populations may be explained by under-sampling of rare modern C1 carriers or by demographic processes, population extinction or replacement, that may have impacted on populations of Northeast Europe since prehistoric times.

  10. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    Science.gov (United States)

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  11. Hypothesis testing in students: Sequences, stages, and instructional strategies

    Science.gov (United States)

    Moshman, David; Thompson, Pat A.

    Six sequences in the development of hypothesis-testing conceptions are proposed, involving (a) interpretation of the hypothesis; (b) the distinction between using theories and testing theories; (c) the consideration of multiple possibilities; (d) the relation of theory and data; (e) the nature of verification and falsification; and (f) the relation of truth and falsity. An alternative account is then provided involving three global stages: concrete operations, formal operations, and a postformal metaconstructivestage. Relative advantages and difficulties of the stage and sequence conceptualizations are discussed. Finally, three families of teaching strategy are distinguished, which emphasize, respectively: (a) social transmission of knowledge; (b) carefully sequenced empirical experience by the student; and (c) self-regulated cognitive activity of the student. It is argued on the basis of Piaget's theory that the last of these plays a crucial role in the construction of such logical reasoning strategies as those involved in testing hypotheses.

  12. Noninvasive prenatal paternity testing (NIPAT) through maternal plasma DNA sequencing

    DEFF Research Database (Denmark)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao

    2016-01-01

    Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we...... developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels...... paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future....

  13. High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach.

    Science.gov (United States)

    Linares, Marjorie C; Soto-Calderón, Iván D; Lees, David C; Anthony, Nicola M

    2009-03-01

    The standardized use of mitochondrial cytochrome c oxidase subunit I (COI) gene sequences as DNA barcodes has been widely promoted as a high-throughput method for species identification and discovery. Species delimitation has been based on the following criteria: (1) monophyletic association and less frequently (2) a minimum 10x greater divergence between than within species. Divergence estimates, however, can be inflated if sister species pairs are not included and the geographic extent of variation within any given taxon is not sampled comprehensively. This paper addresses both potential biases in DNA divergence estimation by sampling range-wide variation in several morphologically distinct, endemic butterfly species in the genus Heteropsis, some of which are sister taxa. We also explored the extent to which mitochondrial DNA from the barcode region can be used to assess the effects of historical rainforest fragmentation by comparing genetic variation across Heteropsis populations with an unrelated forest-associated taxon Saribia tepahi. Unexpectedly, generalized primers led to the inadvertent amplification of the endosymbiont Wolbachia, undermining the use of universal primers and necessitating the design of genus-specific COI primers alongside a Wolbachia-specific PCR assay. Regardless of the high intra-specific genetic variation observed, most species satisfy DNA barcoding criteria and can be differentiated in the nuclear phylogeny. Nevertheless, two morphologically distinguishable candidate species fail to satisfy the barcoding 10x genetic distance criterion, underlining the difficulties of applying a standard distance threshold to species delimitation. Phylogeographic analysis of COI data suggests that forest fragmentation may have played an important role in the recent evolutionary diversification of these butterflies. Further work on other Malagasy taxa using both mitochondrial and nuclear data will provide better insight into the role of historical

  14. Phylogeny of the tribe Athetini (Coleoptera: Staphylinidae) inferred from mitochondrial and nuclear sequence data.

    Science.gov (United States)

    Elven, Hallvard; Bachmann, Lutz; Gusarov, Vladimir I

    2010-10-01

    The Athetini are the largest and taxonomically most challenging tribe in the subfamily Aleocharinae. We present the first molecular phylogeny of Athetini. Nucleotide sequences were obtained from three genome regions for 58 athetine and 23 non-athetine species. The sequenced genes are cytochrome oxidase subunits 1 and 2 (2030bp), tRNA-Leucine 1 and 2 (154bp), 16S (628bp, partial sequence), NADH dehydrogenase subunit 1 (54bp, partial sequence), and the nuclear 18S gene (999bp, partial sequence). The Athetini were recovered as paraphyletic with respect to Lomechusini and Ecitocharini. Lomechusini were recovered as polyphyletic, with Myrmedonota grouping separately from Pella and Drusilla. The basal topology of Athetini remained largely unresolved but many apical clades were well supported, e.g. Geostiba+Earota, Pontomalota+Tarphiota, Mocyta+Atheta (Oxypodera)+Atheta (Mycetota), Liogluta+Atheta (Thinobaena)+Atheta (Oreostiba), and Lyprocorrhe+Atheta (Datomicra). The monophyly of Atheta was refuted, as several species of Atheta formed well supported clades with members of other genera. Additionally, the following groups were rejected: Strigotina (=Acrotonina) and Dimetrotina sensu Newton et al. (2000), Acrotona sensu Brundin (1952), Liogluta series (Yosii and Sawada, 1976), Atheta (Dimetrota) and Atheta (Alaobia) sensu Smetana (2004). New tribal placements are proposed for four genera: Halobrecta is removed from Athetini and provisionally placed in Oxypodini; Thendelecrotona is removed from Athetini and treated as Aleocharinae incertae sedis; Meronera and Thamiaraea are included in the Athetini. Copyright 2010 Elsevier Inc. All rights reserved.

  15. [A molecular phylogeny of Shennongjia white bear based on mitochondrial cytochrome b gene sequence].

    Science.gov (United States)

    Wang, Hui-Juan; Zhang, Zhi-Min; Liu, Zhong-Lai; Xiong, Guo-Mei

    2006-10-01

    The phylogenetic relationship of Shennongjia white bear has been an open question. Total DNA was extracted and sequenced from hair and feces of Shennongjia white bear. Based on the partial Cyt b gene sequence obtained from the samples, the authors aligned them using the Clustal W software program. The MEGA software was used to analyze the divergences and base substitutions of the partial Cyt b gene among the 11 species: Shennongjia white bear, Selenarctos thibetanus, Euarctos americanus, Helarctos malayanus, Ursus arctos, Thalarctos maritimus, Melursus ursinus, Procyon lotor, Ailuropoda melanoleuca, Ailurus fulgens and Tremarctos ornatus. The phylogenetic trees constructed by multiple methods (NJ and MP) supported nearly the same topology. Our molecular results show that the sequence divergence between Shennongjia white bear and Asiatic black bear (Selenarctos thibetanus) is lower than that between other species.

  16. High Sequence Variations in Mitochondrial DNA Control Region among Worldwide Populations of Flathead Mullet Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Brian Wade Jamandre

    2014-01-01

    Full Text Available The sequence and structure of the complete mtDNA control region (CR of M. cephalus from African, Pacific, and Atlantic populations are presented in this study to assess its usefulness in phylogeographic studies of this species. The mtDNA CR sequence variations among M. cephalus populations largely exceeded intraspecific polymorphisms that are generally observed in other vertebrates. The length of CR sequence varied among M. cephalus populations due to the presence of indels and variable number of tandem repeats at the 3′ hypervariable domain. The high evolutionary rate of the CR in this species probably originated from these mutations. However, no excessive homoplasic mutations were noticed. Finally, the star shaped tree inferred from the CR polymorphism stresses a rapid radiation worldwide, in this species. The CR still appears as a good marker for phylogeographic investigations and additional worldwide samples are warranted to further investigate the genetic structure and evolution in M. cephalus.

  17. Mitochondrial genome sequence analysis: a custom bioinformatics pipeline substantially improves Affymetrix MitoChip v2.0 call rate and accuracy.

    Science.gov (United States)

    Xie, Hongbo M; Perin, Juan C; Schurr, Theodore G; Dulik, Matthew C; Zhadanov, Sergey I; Baur, Joseph A; King, Michael P; Place, Emily; Clarke, Colleen; Grauer, Michael; Schug, Jonathan; Santani, Avni; Albano, Anthony; Kim, Cecilia; Procaccio, Vincent; Hakonarson, Hakon; Gai, Xiaowu; Falk, Marni J

    2011-10-19

    Mitochondrial genome sequence analysis is critical to the diagnostic evaluation of mitochondrial disease. Existing methodologies differ widely in throughput, complexity, cost efficiency, and sensitivity of heteroplasmy detection. Affymetrix MitoChip v2.0, which uses a sequencing-by-genotyping technology, allows potentially accurate and high-throughput sequencing of the entire human mitochondrial genome to be completed in a cost-effective fashion. However, the relatively low call rate achieved using existing software tools has limited the wide adoption of this platform for either clinical or research applications. Here, we report the design and development of a custom bioinformatics software pipeline that achieves a much improved call rate and accuracy for the Affymetrix MitoChip v2.0 platform. We used this custom pipeline to analyze MitoChip v2.0 data from 24 DNA samples representing a broad range of tissue types (18 whole blood, 3 skeletal muscle, 3 cell lines), mutations (a 5.8 kilobase pair deletion and 6 known heteroplasmic mutations), and haplogroup origins. All results were compared to those obtained by at least one other mitochondrial DNA sequence analysis method, including Sanger sequencing, denaturing HPLC-based heteroduplex analysis, and/or the Illumina Genome Analyzer II next generation sequencing platform. An average call rate of 99.75% was achieved across all samples with our custom pipeline. Comparison of calls for 15 samples characterized previously by Sanger sequencing revealed a total of 29 discordant calls, which translates to an estimated 0.012% for the base call error rate. We successfully identified 4 known heteroplasmic mutations and 24 other potential heteroplasmic mutations across 20 samples that passed quality control. Affymetrix MitoChip v2.0 analysis using our optimized MitoChip Filtering Protocol (MFP) bioinformatics pipeline now offers the high sensitivity and accuracy needed for reliable, high-throughput and cost-efficient whole

  18. Mitochondrial genome sequence analysis: A custom bioinformatics pipeline substantially improves Affymetrix MitoChip v2.0 call rate and accuracy

    Directory of Open Access Journals (Sweden)

    Xie Hongbo M

    2011-10-01

    Full Text Available Abstract Background Mitochondrial genome sequence analysis is critical to the diagnostic evaluation of mitochondrial disease. Existing methodologies differ widely in throughput, complexity, cost efficiency, and sensitivity of heteroplasmy detection. Affymetrix MitoChip v2.0, which uses a sequencing-by-genotyping technology, allows potentially accurate and high-throughput sequencing of the entire human mitochondrial genome to be completed in a cost-effective fashion. However, the relatively low call rate achieved using existing software tools has limited the wide adoption of this platform for either clinical or research applications. Here, we report the design and development of a custom bioinformatics software pipeline that achieves a much improved call rate and accuracy for the Affymetrix MitoChip v2.0 platform. We used this custom pipeline to analyze MitoChip v2.0 data from 24 DNA samples representing a broad range of tissue types (18 whole blood, 3 skeletal muscle, 3 cell lines, mutations (a 5.8 kilobase pair deletion and 6 known heteroplasmic mutations, and haplogroup origins. All results were compared to those obtained by at least one other mitochondrial DNA sequence analysis method, including Sanger sequencing, denaturing HPLC-based heteroduplex analysis, and/or the Illumina Genome Analyzer II next generation sequencing platform. Results An average call rate of 99.75% was achieved across all samples with our custom pipeline. Comparison of calls for 15 samples characterized previously by Sanger sequencing revealed a total of 29 discordant calls, which translates to an estimated 0.012% for the base call error rate. We successfully identified 4 known heteroplasmic mutations and 24 other potential heteroplasmic mutations across 20 samples that passed quality control. Conclusions Affymetrix MitoChip v2.0 analysis using our optimized MitoChip Filtering Protocol (MFP bioinformatics pipeline now offers the high sensitivity and accuracy needed for

  19. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences*

    Science.gov (United States)

    Zhao, Ya-e; Ma, Jun-xian; Hu, Li; Wu, Li-ping; De Rojas, Manuel

    2013-01-01

    For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids. PMID:24009203

  20. Discrimination between Demodex folliculorum (Acari: Demodicidae) isolates from China and Spain based on mitochondrial cox1 sequences.

    Science.gov (United States)

    Zhao, Ya-e; Ma, Jun-xian; Hu, Li; Wu, Li-ping; De Rojas, Manuel

    2013-09-01

    For a long time, classification of Demodex mites has been based mainly on their hosts and phenotypic characteristics. A new subspecies of Demodex folliculorum has been proposed, but not confirmed. Here, cox1 partial sequences of nine isolates of three Demodex species from two geographical sources (China and Spain) were studied to conduct molecular identification of D. folliculorum. Sequencing showed that the mitochondrial cox1 fragments of five D. folliculorum isolates from the facial skin of Chinese individuals were 429 bp long and that their sequence identity was 97.4%. The average sequence divergence was 1.24% among the five Chinese isolates, 0.94% between the two geographical isolate groups (China (5) and Spain (1)), and 2.15% between the two facial tissue sources (facial skin (6) and eyelids (1)). The genetic distance and rate of third-position nucleotide transition/transversion were 0.0125, 2.7 (3/1) among the five Chinese isolates, 0.0094, 3.1 (3/1) between the two geographical isolate groups, and 0.0217, 4.4 (3/1) between the two facial tissue sources. Phylogenetic trees showed that D. folliculorum from the two geographical isolate groups did not form sister clades, while those from different facial tissue sources did. According to the molecular characteristics, it appears that subspecies differentiation might not have occurred and that D. folliculorum isolates from the two geographical sources are of the same population. However, population differentiation might be occurring between isolates from facial skin and eyelids.

  1. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential.

    Science.gov (United States)

    Ferré, Cécile A; Davezac, Noélie; Thouard, Anne; Peyrin, Jean-Michel; Belenguer, Pascale; Miquel, Marie-Christine; Gonzalez-Dunia, Daniel; Szelechowski, Marion

    2016-04-01

    To favor their replication, viruses express proteins that target diverse mammalian cellular pathways. Due to the limited size of many viral genomes, such proteins are endowed with multiple functions, which require targeting to different subcellular compartments. One salient example is the X protein of Borna disease virus, which is expressed both at the mitochondria and in the nucleus. Moreover, we recently demonstrated that mitochondrial X protein is neuroprotective. In this study, we sought to examine the mechanisms whereby the X protein transits between subcellular compartments and to define its localization signals, to enhance its mitochondrial accumulation and thus, potentially, its neuroprotective activity. We transfected plasmids expressing fusion proteins bearing different domains of X fused to enhanced green fluorescent protein (eGFP) and compared their subcellular localization to that of eGFP. We observed that the 5-16 domain of X was responsible for both nuclear export and mitochondrial targeting and identified critical residues for mitochondrial localization. We next took advantage of these findings and constructed mutant X proteins that were targeted only to the mitochondria. Such mutants exhibited enhanced neuroprotective properties in compartmented cultures of neurons grown in microfluidic chambers, thereby confirming the parallel between mitochondrial accumulation of the X protein and its neuroprotective potential.-Ferré C. A., Davezac, N., Thouard, A., Peyrin, J. M., Belenguer, P., Miquel, M.-C., Gonzalez-Dunia, D., Szelechowski, M. Manipulation of the N-terminal sequence of the Borna disease virus X protein improves its mitochondrial targeting and neuroprotective potential. © FASEB.

  2. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    Directory of Open Access Journals (Sweden)

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  3. Phylogeography and population diversity of Simulium hirtipupa Lutz (Diptera: Simuliidae based on mitochondrial COI sequences.

    Directory of Open Access Journals (Sweden)

    Vanderly Andrade-Souza

    Full Text Available High morphological homogeneity and cryptic speciation may cause the diversity within Simuliidae to be underestimated. Recent molecular studies on population genetics and phylogeography have contributed to reveal which factors influenced the diversity within this group. This study aimed at examining the genetic diversity of Simulium hirtipupa Lutz, 1910 in populations from the biomes Caatinga, Cerrado, and Atlantic Forest. In this study, we carried out phylogeographic and population genetic analyses using a fragment of the mitochondrial gene COI. The 19 populations studied were clustered into seven groups, most of which are associated with geography indicating certain genetic structure. The northern region of the state of Minas Gerais is most likely the center of origin of this species. The average intergroup genetic distance was 3.7%, indicating the presence of cryptic species. The species tree as well as the haplotype network recovered all groups forming two major groups: the first comprises groups Gr-Bahia (in which the São Francisco river has not acted as geographical barrier, Gr-Pernambuco, and Gr-Mato Grosso do Sul. The second included groups comprising populations of the states of Goiás, Tocantins, Minas Gerais, Bahia, São Paulo, and Espírito Santo. The mismatch distribution for groups was consistent with the model of demographic expansion, except for the Gr-Central-East_1 group. The diversification in this group occurred about 1.19 Mya during the Pleistocene, influenced by paleoclimatic oscillations during the Quaternary glacial cycles.

  4. A Preliminary Molecular Phylogeny of Planthoppers (Hemiptera: Fulgoroidea) Based on Nuclear and Mitochondrial DNA Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping

    2013-01-01

    The planthopper superfamily Fulgoroidea (Insecta: Hemiptera) is one of the most dominant groups of phytophagous insects. It comprises about 20 families, containing a total of 9000 species worldwide. Despite several recent studies, the phylogeny of Fulgoroidea is not yet satisfactorily resolved and the phylogenetic positions of several key families, especially Cixiidae, Delphacidae, Tettigometridae, Nogodinidae, Acanaloniidae and Issidae, are contentious. Here, we expand upon recent phylogenetic work using additional nuclear (18S and 28S) and novel mitochondrial (16S and cytb) markers. Maximum likelihood and Bayesian analyses yielded robust phylogenetic trees. In these topologies, a group containing Cixiidae and Delphacidae is recovered as the sister group to the remaining taxa. Tettigometridae is placed in a more nested position and is grouped with Caliscelidae. Sister relationships are found between Flatidae and Ricaniidae, and between Dictyopharidae and Fulgoridae. Nogodinidae and Issidae are confirmed to be non-monophyletic families. For major nodes of interest, divergence date estimates are generally older than those from the fossil record. PMID:23516472

  5. A molecular phylogeny of the Percidae (Teleostei, Perciformes) based on mitochondrial DNA sequence.

    Science.gov (United States)

    Sloss, Brian L; Billington, Neil; Burr, Brooks M

    2004-08-01

    The family Percidae is among the most speciose families of northern hemisphere fishes with > 178 178 North American species and 14 Eurasian species. Previous phylogenetic studies have been hampered by a lack of informative characters, inadequate taxonomic sampling, and conflicting data. We estimated phylogenetic relationships among 54 percid species (9 of 10 genera and all but one subgenus of darters) and four outgroup taxa using mitochondrial DNA data from the 12S rRNA and cytochrome b genes. Four primary evolutionary lineages were consistently recovered: Etheostomatinae (Ammocrypta, Crystallaria, Etheostoma, and Percina), Perca, Luciopercinae (Romanichthys, Sander, and Zingel), and Gymnocephalus. Except Etheostoma and Zingel, all polytypic genera were monophyletic. The Etheostoma subgenus Nothonotus failed to resolve with other members of the genus resulting in a paraphyletic Etheostoma. The subfamily Percinae (Gymnocephalus and Perca) was not recovered in phylogenetic analyses with Gymnocephalus sister to Luciopercinae. Etheostomatinae and Romanichthyini were never resolved as sister groups supporting convergent evolution as the cause of small, benthic, stream-inhabiting percids in North American and Eurasian waters.

  6. [DNA barcoding application of mitochondrial COI gene sequence in medicinal fish of Culter (Pisces: Cyprinidae)].

    Science.gov (United States)

    Xie, Jia-Yan; Li, Jun-De; Huang, Yu-Song

    2013-04-01

    The sequence variation of medicinal fish of Culter (Pisces: Cyprinidae) was analyzed by using cytochrome c oxidase subunit I (COI) sequencing collected from different regions of the Yangtze River basin, and we examine whether barcoding of COI can be used to discriminate medicinal fish of Culter. The AT content in the COI region of medicinal fish of Culter was higher than that of GC, which was similar with other species of Cypriniformes. Ninty-six percent of nucleotide changes were observed at the 3rd codon position of COI sequence, but the amino acid compositions translated by COI sequences of all Culter fish stayed the same. It is suggested that most synonymous mutations might occur at the 3rd position. The average Kimura-2-parameter (K2P) distance within-species was lower than 1%, and the K2P distance of pairwise-species was 10 times as much as that of within-species. The phylogenetic tree estimated by Neighbour-joining method indicated that species within genera invariably clustered, and generally so did individuals within species. Individuals from operational taxonomic units designated as different Culter species, supporting morphological evidence for each of these being separate species. It is suggested that the COI barcoding can be used to identify medicinal fish species of Culter.

  7. GENETIC DIVERSITY OF KEJOBONG GOAT BASED ON MITOCHONDRIAL DNA D-LOOP SEQUENCE

    Directory of Open Access Journals (Sweden)

    M. F. Harlistyo

    2015-09-01

    Full Text Available This study was aimed to find out the diversity of mtDNA D-loop at Kejobong goat. The completemtDNA D-loop sequence of 12 goat blood samples were analyzed from 4 different location inPurbalingga Regency, Central Java province, sub-districts Kejobong, Pangadegan, Bukateja, andKaligondang. The mtDNA D-loop was extracted from blood sample. DNA obtained were amplified byPCR (Polymerase Chain Reaction method using primers (5’-tcactatcagcacccaaagc-3’ as forward and(5’-ggcattttcagtgccttgct-3’ as reverse and subsequently sequenced. After nucleotide sequencing analysisconducted, 548 bp along was obtained. Nucleotides were then aligned with Capra hircus (GenBankAccess No.: KF952601.1 and apparently there were 11 different sites on the segment of mtDNA Dloop.Five sites could be used as a specific marker to distinguish between the Capra hircus andKejobong goat, namely at the site of 317 (A-G, 403 (T-C, 434 (T-C, 537 (C-T, and 553 (A-G.Nucleotide sequence analysis also contained seven different haplotypes. It was concluded that thedistribution of the different sites showed different haplotype patterns in Kejobong goat.

  8. The Phylogeographical Pattern and Conservation of the Chinese Cobra (Naja atra) across Its Range Based on Mitochondrial Control Region Sequences

    Science.gov (United States)

    Lin, Long-Hui; Hua, Lei; Qu, Yan-Fu; Gao, Jian-Fang; Ji, Xiang

    2014-01-01

    The vulnerable Chinese cobra (Naja atra) ranges from southeastern China south of the Yangtze River to northern Vietnam and Laos. Large mountain ranges and water bodies may influence the pattern of genetic diversity of this species. We sequenced the mitochondrial DNA control region (1029 bp) using 285 individuals collected from 23 localities across the species' range and obtained 18 sequences unique to Taiwan from GenBank for phylogenetic and population analysis. Two distinct clades were identified, one including haplotypes from the two westernmost localities (Hekou and Miyi) and the other including haplotypes from all sampling sites except Miyi. A strong population structure was found (Φst = 0.76, P<0.0001) with high haplotype diversity (h = 1.00) and low nucleotide diversity (π = 0.0049). The Luoxiao and Nanling Mountains act as historical geographical barriers limiting gene exchange. In the haplotype network there were two “star” clusters. Haplotypes from populations east of the Luoxiao Mountains were represented within one cluster and haplotypes from populations west of the mountain range within the other, with haplotypes from populations south of the Nanling Mountains in between. Lineage sorting between mainland and island populations is incomplete. It remains unknown as to how much adaptive differentiation there is between population groups or within each group. We caution against long-distance transfers within any group, especially when environmental differences are apparent. PMID:25184236

  9. The phylogeographical pattern and conservation of the Chinese cobra (Naja atra) across its range based on mitochondrial control region sequences.

    Science.gov (United States)

    Lin, Long-Hui; Hua, Lei; Qu, Yan-Fu; Gao, Jian-Fang; Ji, Xiang

    2014-01-01

    The vulnerable Chinese cobra (Naja atra) ranges from southeastern China south of the Yangtze River to northern Vietnam and Laos. Large mountain ranges and water bodies may influence the pattern of genetic diversity of this species. We sequenced the mitochondrial DNA control region (1029 bp) using 285 individuals collected from 23 localities across the species' range and obtained 18 sequences unique to Taiwan from GenBank for phylogenetic and population analysis. Two distinct clades were identified, one including haplotypes from the two westernmost localities (Hekou and Miyi) and the other including haplotypes from all sampling sites except Miyi. A strong population structure was found (Φst = 0.76, P<0.0001) with high haplotype diversity (h = 1.00) and low nucleotide diversity (π = 0.0049). The Luoxiao and Nanling Mountains act as historical geographical barriers limiting gene exchange. In the haplotype network there were two "star" clusters. Haplotypes from populations east of the Luoxiao Mountains were represented within one cluster and haplotypes from populations west of the mountain range within the other, with haplotypes from populations south of the Nanling Mountains in between. Lineage sorting between mainland and island populations is incomplete. It remains unknown as to how much adaptive differentiation there is between population groups or within each group. We caution against long-distance transfers within any group, especially when environmental differences are apparent.

  10. Phylogenetic analysis of the order Pleuronectiformes (Teleostei based on sequences of 12S and 16S mitochondrial genes

    Directory of Open Access Journals (Sweden)

    Marisa F.C. Azevedo

    2008-01-01

    Full Text Available The fish order Pleuronectiformes, composed of 14 families, has two suborders: Psettodoidei (with one family and Pleuronectoidei (with thirteen families. The relationships among families of Pleuronectoidei and among the genera of their families have extensively been debated and a consensus has not yet been reached. In the present study, partial sequences of the 12S and 16S mitochondrial rRNA genes were obtained from 19 species belonging to the families Achiridae, Bothidae, Cynoglossidae, Paralichthyidae, Pleuronectidae, Scophthalmidae, and Soleidae. Additional sequences of 42 pleuronectiform species were obtained from GenBank. Phylogenetic analyses were conducted by the methods of maximum-parsimony, maximum-likelihood and Bayesian inference. Our results corroborate the monophyletic status of all families, excluding Paralichthyidae. In the family Achiridae, the genus Catathyridium (freshwater was the sister group of Trinectes (saltwater, and Hypoclinemus (freshwater was the sister group of Achirus (saltwater. Assuming that the putative ancestor of achirids lived in saltwater, it is suggested that the freshwater habitats in South America were colonized independently by different achirid lineages.

  11. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene.

    Science.gov (United States)

    Sakai, Takahiro; Kikkawa, Yoshiaki; Tsuchiya, Kimiyuki; Harada, Masashi; Kanoe, Masamitsu; Yoshiyuki, Mizuko; Yonekawa, Hiromichi

    2003-04-01

    Microchiroptera have diversified into many species whose size and the shapes of the complicated ear and nose have been adapted to their echolocation abilities. Their speciation processes, and intra- and interspecies relationships are still under discussion. Here we report on the geographical variation of Japanese Rhinolophus ferrumequinum and R. cornutus using the complete sequence of the mitochondrial cytochrome b gene to clarify the phylogenetic positions of the 2 species as well as that of Rhinolophidae within the Microchiroptera. We have found that sequence divergence values within each of the 2 species are unexpectedly low (0.07%-0.94%). We have also found that there is no local specificity of their mtCytb alleles. On the other hand, the divergence values for Japanese Microchiroptera (12.7%-16.6%) are much higher than those for other mammalian genera. Similarly, the values among five genera of Vespertilionidae were 20.5%-27.3%. Phylogenetic analysis shows that the 2 species of family Rhinolophidae in the suborder Microchiroptera belong to the Megachiroptera cluster in the constructed maximum parsimony tree. These results suggest that the speciation of Rhinolophidae involved its divergence as an independent lineage from other Microchiroptera, and other microbats might be paraphyletic. In addition, the tree also shows that the order Chiroptera is monophylitic, and the closest group to Chiroptera is the ungulates.

  12. mtDNA-Server: next-generation sequencing data analysis of human mitochondrial DNA in the cloud.

    Science.gov (United States)

    Weissensteiner, Hansi; Forer, Lukas; Fuchsberger, Christian; Schöpf, Bernd; Kloss-Brandstätter, Anita; Specht, Günther; Kronenberg, Florian; Schönherr, Sebastian

    2016-07-08

    Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    Science.gov (United States)

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  14. Complete Mitochondrial Genome Sequencing of a Burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications

    Science.gov (United States)

    Molto, J. Eldon; Loreille, Odile; Malhi, Ripan S.; Fast, Spence; Daniels-Higginbotham, Jennifer; Marshall, Charla; Parr, Ryan

    2017-01-01

    The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome) of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2). K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS) performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA). These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period. PMID:28984839

  15. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  16. Complete Mitochondrial Genome Sequencing of a Burial from a Romano-Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications.

    Science.gov (United States)

    Molto, J Eldon; Loreille, Odile; Mallott, Elizabeth K; Malhi, Ripan S; Fast, Spence; Daniels-Higginbotham, Jennifer; Marshall, Charla; Parr, Ryan

    2017-10-06

    The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome) of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano-Christian cemetery, Kellis 2 (K2). K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS) performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA). These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano-Christian period.

  17. Complete Mitochondrial Genome Sequencing of a Burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications

    Directory of Open Access Journals (Sweden)

    J. Eldon Molto

    2017-10-01

    Full Text Available The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2. K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA. These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period.

  18. Multilocus sequence typing using mitochondrial genes (mtMLST) reveals geographic population structure of Ixodes ricinus ticks.

    Science.gov (United States)

    Dinnis, Ruth E; Seelig, Frederik; Bormane, Antra; Donaghy, Michael; Vollmer, Stephanie A; Feil, Edward J; Kurtenbach, Klaus; Margos, Gabriele

    2014-03-01

    The hard tick Ixodes ricinus is the principal vector of Lyme borreliosis (LB) group spirochaetes in Europe, but it also transmits a large number of other microbial pathogens that are of importance to animal and human health. Here, we characterise geographically distinct populations of this important ectoparasite based on multilocus sequence typing (MLST) of multiple mitochondrial (mt) genes (mtMLST). Internal fragments of approximately 500 bp were amplified and sequenced for 6 protein-encoding and ribosomal genes (atp6, coi, coii, coiii, cytB, and 12s). The samples analysed consisted of 506 questing nymphs collected in Britain and Latvia in 2006-2008 and in Latvia in 2002. Although little genetic structure has previously been observed in I. ricinus ticks among Europe, our data could clearly differentiate these 2 populations. Here, we argue that this novel scheme provides additional phylogenetic resolution which is important for understanding the genetic and geographic structure of I. ricinus populations. This in turn will benefit monitoring and management of tick-borne diseases. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  20. 40 CFR 86.1773-99 - Test sequence; general requirements.

    Science.gov (United States)

    2010-07-01

    ... category (e.g., TLEV, LEV, ULEV); (v) Fuel type (e.g., gasoline, methanol, etc.). (4) The same engine... vehicle shall be approximately level during all phases of the test sequence to prevent abnormal fuel...) which are representative of the array of technologies available in that model year. Only TLEVs, LEVs...

  1. An uncommon clinical presentation of relapsing dilated cardiomyopathy with identification of sequence variations in MYNPC3, KCNH2 and mitochondrial tRNA cysteine

    Directory of Open Access Journals (Sweden)

    Maria J. Guillen Sacoto

    2015-06-01

    Full Text Available We describe a young girl with dilated cardiomyopathy, long QT syndrome, and possible energy deficiency. Two major sequence changes were identified by whole exome sequencing (WES and mitochondrial DNA analysis that were interpreted as potentially causative. Changes were identified in the KCNH2 gene and mitochondrial tRNA for cysteine. A variation was also seen in MYPBC3. Since the launch of WES as a clinically available technology in 2010, there has been concern regarding the identification of variants unrelated to the patient's phenotype. However, in cases where targeted sequencing fails to explain the clinical presentation, the underlying etiology could be more complex than anticipated. In this situation, the extensive reach of this tool helped explain both her phenotype and family history.

  2. Ion Torrent next-generation sequencing reveals the complete mitochondrial genome of black and reddish morphs of the Coral Trout Plectropomus leopardus.

    Science.gov (United States)

    Xie, Zhenzhen; Yu, Cuiping; Guo, Liang; Li, Mingming; Yong, Zhang; Liu, Xiaochun; Meng, Zining; Lin, Haoran

    2016-01-01

    Using Ion Torrent next-generation sequencing (NGS) technology, we sequenced the complete mitochondrial genome (mitogenome) of black and reddish morphs of the coral trout Plectropomus leopardus. High-throughput sequencing generated a total of 958,614 sequence reads covering 164.80 Mb of two mitogenomes with a coverage of 4800X. Thirty-seven mitochondrial genes and gene order of P. leopardus was quite similar to that of other teleostean fishes. Most genes were either abutted or overlapped, and all the protein-coding genes began with an ATG start codon except for COX1 and ATP6. The number of stop codon was different for the black and reddish P. leopardus. Comparisons between the mitochondrial sequences of the two morphs revealed a total of 74 variable sites and one indel. Nucleotide diversity across protein-coding gene varied from 0.0006 (16s rRNA) to 0.0070 (Cytochrome b). As expected, the highest level of nucleotide diversity (0.0291) was detected in the control region. Our results demonstrate the NGS technology based on Ion torrent platform can be used to assemble the mitogenome of fish species.

  3. Identification of a distinct lineage of Cacopsylla chinensis (Hemiptera: Psyllidae) in Japan on the basis of two mitochondrial DNA sequences.

    Science.gov (United States)

    Katoh, H; Inoue, H; Kuchiki, F; Ide, Y; Uechi, N; Iwanami, T

    2013-04-01

    Psyllids are a menacing pests of pears (Pyrus spp.) grown in temperate and subtropical regions of the world, including Taiwan and China. Pear psyllids belong to the large genus Cacopsylla (Psyllidae: Psyllinae). Among the 28 psyllid species that infest pear trees, Cacopsylla chinensis (Yang and Li, 1981) is considered the most harmful. Two psyllid outbreaks involving exotic species affected Japanese pear (Pyrus pyrifolia variety culta) orchards in the Saga Prefecture in July and November 2011. The psyllids were morphologically identical to the summer and winter forms of C. chinensis. In this study, we performed DNA sequence analysis of the mitochondrial cytochrome oxidase I-leucine tRNA-cytochrome oxidase II (COI-tRNA(Leu)-COII) and 16S rDNA regions to elucidate the phylogenetic relationships among 82 summer-form psyllids, five winter-form psyllids from several orchards in Japan, and those reported from Taiwan and China. The sequences of the COI-tRNA(LEU)-COII and 16S rDNA regions were identical among all 87 psyllids from Japan, regardless of summer/winter forms or orchards in Saga, Japan. Comparison of nucleotide sequences and phylogenetic analysis differentiated Japanese psyllids from the Taiwanese and Chinese C. chinensis isolates, with approximately 8 and 7% nucleotide difference in the COI-tRNA(LEU)-COII and 16S rDNA regions, respectively. The results suggest that C. chinensis possess a high level of genetic variability and that the psyllids responsible for the outbreak in Saga, Japan belong to a distinct lineage of C. chinensis.

  4. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI gene sequence

    Directory of Open Access Journals (Sweden)

    Ana Carolina Falla

    2015-12-01

    Full Text Available Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA cytochrome c oxidase I (COI sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species.

  5. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  6. High-level phylogeny of the Coleoptera inferred with mitochondrial genome sequences.

    Science.gov (United States)

    Yuan, Ming-Long; Zhang, Qi-Lin; Zhang, Li; Guo, Zhong-Long; Liu, Yong-Jian; Shen, Yu-Ying; Shao, Renfu

    2016-11-01

    The Coleoptera (beetles) exhibits tremendous morphological, ecological, and behavioral diversity. To better understand the phylogenetics and evolution of beetles, we sequenced three complete mitogenomes from two families (Cleridae and Meloidae), which share conserved mitogenomic features with other completely sequenced beetles. We assessed the influence of six datasets and three inference methods on topology and nodal support within the Coleoptera. We found that both Bayesian inference and maximum likelihood with homogeneous-site models were greatly affected by nucleotide compositional heterogeneity, while the heterogeneous-site mixture model in PhyloBayes could provide better phylogenetic signals for the Coleoptera. The amino acid dataset generated more reliable tree topology at the higher taxonomic levels (i.e. suborders and series), where the inclusion of rRNA genes and the third positions of protein-coding genes improved phylogenetic inference at the superfamily level, especially under a heterogeneous-site model. We recovered the suborder relationships as (Archostemata+Adephaga)+(Myxophaga+Polyphaga). The series relationships within Polyphaga were recovered as (Scirtiformia+(Elateriformia+((Bostrichiformia+Scarabaeiformia+Staphyliniformia)+Cucujiformia))). All superfamilies within Cucujiformia were recovered as monophyletic. We obtained a cucujiform phylogeny of (Cleroidea+(Coccinelloidea+((Lymexyloidea+Tenebrionoidea)+(Cucujoidea+(Chrysomeloidea+Curculionoidea))))). This study showed that although tree topologies were sensitive to data types and inference methods, mitogenomic data could provide useful information for resolving the Coleoptera phylogeny at various taxonomic levels by using suitable datasets and heterogeneous-site models. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Identification of tuna species in commercial cans by minor groove binder probe real-time polymerase chain reaction analysis of mitochondrial DNA sequences.

    Science.gov (United States)

    Terio, Valentina; Di Pinto, Pietro; Decaro, Nicola; Parisi, Antonio; Desario, Costantina; Martella, Vito; Buonavoglia, Canio; Tantillo, Marilia Giuseppina

    2010-12-01

    Three different minor groove binder (MGB) probe assays have been developed for rapid and accurate identification of the species commonly used for production of canned tuna, i.e. yellowfin (Thunnus albacares), bluefin (Thunnus thynnus) and albacore (Thunnus alalunga) tunas. The assays targeting the mitochondrial cytochrome b gene were able to discriminate efficiently between the three species contained in fresh or canned tunas and did not react with other Scombroidei that were tested. A correct species prediction was obtained even from artificial mixtures prepared with different amounts of the reference tuna species and subjected to the sterilisation treatment. Testing of 27 commercial canned tunas by PCR-RFLP, MGB probe assays and sequence analysis showed a concordance of 100% between the last two techniques, whereas by using PCR-RFLP several samples were uncharacterised or mischaracterised. These results make the established MGB probe assays an attractive tool for direct and rapid species identification in canned tuna. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Characterization of the Polish Primitive Horse (Konik) maternal lines using mitochondrial D-loop sequence variation.

    Science.gov (United States)

    Cieslak, Jakub; Wodas, Lukasz; Borowska, Alicja; Cothran, Ernest G; Khanshour, Anas M; Mackowski, Mariusz

    2017-01-01

    The Polish Primitive Horse (PPH, Konik) is a Polish native horse breed managed through a conservation program mainly due to its characteristic phenotype of a primitive horse. One of the most important goals of PPH breeding strategy is the preservation and equal development of all existing maternal lines. However, until now there was no investigation into the real genetic diversity of 16 recognized PPH dam lines using mtDNA sequence variation. Herein, we describe the phylogenetic relationships between the PPH maternal lines based upon partial mtDNA D-loop sequencing of 173 individuals. Altogether, 19 mtDNA haplotypes were detected in the PPH population. Five haplotypes were putatively novel while the remaining 14 showed the 100% homology with sequences deposited in the GenBank database, represented by both modern and primitive horse breeds. Generally, comparisons found the haplotypes conformed to 10 different recognized mtDNA haplogroups (A, B, E, G, J, M, N, P, Q and R). A multi-breed analysis has indicated the phylogenetic similarity of PPH and other indigenous horse breeds derived from various geographical regions (e.g., Iberian Peninsula, Eastern Europe and Siberia) which may support the hypothesis that within the PPH breed numerous ancestral haplotypes (found all over the world) are still present. Only in the case of five maternal lines (Bona, Dzina I, Geneza, Popielica and Zaza) was the segregation of one specific mtDNA haplotype observed. The 11 remaining lines showed a higher degree of mtDNA haplotype variability (2-5 haplotypes segregating in each line). This study has revealed relatively high maternal genetic diversity in the small, indigenous PPH breed (19 haplotypes, overall HapD = 0.92). However, only some traditionally distinguished maternal lines can be treated as genetically pure. The rest show evidence of numerous mistakes recorded in the official PPH pedigrees. This study has proved the importance of maternal genetic diversity monitoring based upon

  9. Characterization of the Polish Primitive Horse (Konik maternal lines using mitochondrial D-loop sequence variation

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    2017-08-01

    Full Text Available The Polish Primitive Horse (PPH, Konik is a Polish native horse breed managed through a conservation program mainly due to its characteristic phenotype of a primitive horse. One of the most important goals of PPH breeding strategy is the preservation and equal development of all existing maternal lines. However, until now there was no investigation into the real genetic diversity of 16 recognized PPH dam lines using mtDNA sequence variation. Herein, we describe the phylogenetic relationships between the PPH maternal lines based upon partial mtDNA D-loop sequencing of 173 individuals. Altogether, 19 mtDNA haplotypes were detected in the PPH population. Five haplotypes were putatively novel while the remaining 14 showed the 100% homology with sequences deposited in the GenBank database, represented by both modern and primitive horse breeds. Generally, comparisons found the haplotypes conformed to 10 different recognized mtDNA haplogroups (A, B, E, G, J, M, N, P, Q and R. A multi-breed analysis has indicated the phylogenetic similarity of PPH and other indigenous horse breeds derived from various geographical regions (e.g., Iberian Peninsula, Eastern Europe and Siberia which may support the hypothesis that within the PPH breed numerous ancestral haplotypes (found all over the world are still present. Only in the case of five maternal lines (Bona, Dzina I, Geneza, Popielica and Zaza was the segregation of one specific mtDNA haplotype observed. The 11 remaining lines showed a higher degree of mtDNA haplotype variability (2–5 haplotypes segregating in each line. This study has revealed relatively high maternal genetic diversity in the small, indigenous PPH breed (19 haplotypes, overall HapD = 0.92. However, only some traditionally distinguished maternal lines can be treated as genetically pure. The rest show evidence of numerous mistakes recorded in the official PPH pedigrees. This study has proved the importance of maternal genetic diversity

  10. Complete mitochondrial genome sequence of red-tailed knobby newt (Tylototriton kweichowensis).

    Science.gov (United States)

    Li, Xue; Jiang, Ye; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Zhang, Mingwang

    2016-11-01

    The entire mitogenome of Tylototriton kweichowensis is 16 727 bp in length. It consists of 13 protein-coding genes (PCGS), 2 ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and 1 control region (CR). Except for ND6 subunit and 8 tRNA genes are distributed on the L-strand, all the other PCGs and tRNA genes are located on the H-strand. "ATG" and "GTG" are the start codons of the PCGs, "TAA", "AGA", "TA-" and "T--" are the stop codons. Most of the tRNA genes can be folded into typical clover-leaf secondary structure. The genome of T. kweichowensis has two repeat sequences in the cob-noncoding region. Mitogenomic phylogenetic analysis (NJ tree) robustly resolved the genus-level relationship among the three genera Tylototriton, Echinotriton, and Pleurodeles, and which is congruent with the previous molecular phylogeny results.

  11. Phylogeny of Cyttaria inferred from nuclear and mitochondrial sequence and morphological data.

    Science.gov (United States)

    Peterson, Kristin R; Pfister, Donald H

    2010-01-01

    Cyttaria species (Leotiomycetes, Cyttariales) are obligate, biotrophic associates of Nothofagus (Hamamelididae, Nothofagaceae), the southern beech. As such Cyttaria species are restricted to the southern hemisphere, inhabiting southern South America (Argentina and Chile) and southeastern Australasia (southeastern Australia including Tasmania, and New Zealand). The relationship of Cyttaria to other Leotiomycetes and the relationships among species of Cyttaria were investigated with newly generated sequences of partial nucSSU, nucLSU and mitSSU rRNA, as well as TEF1 sequence data and morphological data. Results found Cyttaria to be defined as a strongly supported clade. There is evidence for a close relationship between Cyttaria and these members of the Helotiales: Cordierites, certain Encoelia spp., Ionomidotis and to a lesser extent Chlorociboria. Order Cyttariales is supported by molecular data, as well as by the unique endostromatic apothecia, lack of chitin and highly specific habit of Cyttaria species. Twelve Cyttaria species are hypothesized, including all 11 currently accepted species plus an undescribed species that accommodates specimens known in New Zealand by the misapplied name C. gunnii, as revealed by molecular data. Thus the name C. gunnii sensu stricto is reserved for specimens occurring on N. cunninghamii in Australia, including Tasmania. Morphological data now support the continued recognition of C. septentrionalis as a species separate from C. gunnii. Three major clades are identified within Cyttaria: one in South America hosted by subgenus Nothofagus, another in South America hosted by subgenera Nothofagus and Lophozonia, and a third in South America and Australasia hosted by subgenus Lophozonia, thus producing a non-monophyletic grade of South American species and a monophyletic clade of Australasian species, including monophyletic Australian and New Zealand clades. Cyttaria species do not sort into clades according to their associations with

  12. Phylogenetic relationships of Ansonia from Southeast Asia inferred from mitochondrial DNA sequences: systematic and biogeographic implications (Anura: Bufonidae).

    Science.gov (United States)

    Matsui, Masafumi; Tominaga, Atsushi; Liu, Wanzhao; Khonsue, Wichase; Grismer, Lee L; Diesmos, Arvin C; Das, Indraneil; Sudin, Ahmad; Yambun, Paul; Yong, Hoisen; Sukumaran, Jeet; Brown, Rafe M

    2010-02-01

    We investigated the phylogenetic relationships and estimated the history of species diversification and biogeography in the bufonid genus Ansonia from Southeast Asia, a unique organism with tadpoles adapted to life in strong currents chiefly in montane regions and also in lowland rainforests. We estimated phylogenetic relationships among 32 named and unnamed taxa using 2461bp sequences of the mitochondrial 12S rRNA, tRNA(val), and 16S rRNA genes with equally-weighted parsimony, maximum likelihood, and Bayesian methods of inference. Monophyletic clades of Southeast Asian members of the genus Ansonia are well-supported, allowing for the interpretation of general biogeographic conclusions. The genus is divided into two major clades. One of these contains two reciprocally monophyletic subclades, one from the Malay Peninsula and Thailand and the other from Borneo. The other major clade primarily consists of Bornean taxa but also includes a monophyletic group of two Philippine species and a single peninsular Malaysian species. We estimated absolute divergence times using Bayesian methods with external calibration points to reconstruct the relative timing of faunal exchange between the major landmasses of Southeast Asia. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  13. Analysis of the complete mitochondrial genome sequences of the soybean rust pathogens phakopsora pachyrhizi and p. meibomiae.

    Science.gov (United States)

    Stone, Christine L; Buitrago, Martha Lucia Posada; Boore, Jeffrey L; Frederick, Reid D

    2010-01-01

    The mitochondrial (mt) genomes of two soybean rust pathogens, Phakopsora pachyrhizi and P. meibomiae, have been sequenced. The mt genome of P. pachyrhizi is a circular 31 825-bp molecule with a mean GC content of 34.6%, while P. meibomiae possesses a 32 520-bp circular molecule with a mean GC content of 34.9%. Both mt genomes contain the genes encoding ATP synthase subunits 6, 8 and 9 (atp6, atp8 and atp9), cytochrome oxidase subunits I, II and III (cox1, cox2 and cox3), apocytochrome b (cob), reduced nicotinamide adenine dinucleotide ubiquinone oxidoreductase subunits (nad1, nad2, nad3, nad4, nad4L, nad5 and nad6), the large and small mt ribosomal RNA genes, one ORF coding for a ribosomal protein (rps3), and a set of 24 tRNA genes that recognize codons for all amino acids. The order of the protein-coding genes and tRNA is identical in the two Phakopsora species, and all genes are transcribed from the same DNA strand clockwise. Introns were identified in the cox1, cob and mnl genes of both species, with three of the introns having ORFs with motifs similar to the LAGLIDADG endonucleases of other fungi. Phylogenetic analysis of the 14 shared protein-coding genes agrees with commonly accepted fungal taxonomy.

  14. Tubulin tail sequences and post-translational modifications regulate closure of mitochondrial voltage-dependent anion channel (VDAC).

    Science.gov (United States)

    Sheldon, Kely L; Gurnev, Philip A; Bezrukov, Sergey M; Sackett, Dan L

    2015-10-30

    It was previously shown that tubulin dimer interaction with the mitochondrial outer membrane protein voltage-dependent anion channel (VDAC) blocks traffic through the channel and reduces oxidative metabolism and that this requires the unstructured anionic C-terminal tail peptides found on both α- and β-tubulin subunits. It was unclear whether the α- and β-tubulin tails contribute equally to VDAC blockade and what effects might be due to sequence variations in these tail peptides or to tubulin post-translational modifications, which mostly occur on the tails. The nature of the contribution of the tubulin body beyond acting as an anchor for the tails had not been clarified either. Here we present peptide-protein chimeras to address these questions. These constructs allow us to easily combine a tail peptide with different proteins or combine different tail peptides with a particular protein. The results show that a single tail grafted to an inert protein is sufficient to produce channel closure similar to that observed with tubulin. We show that the β-tail is more than an order of magnitude more potent than the α-tail and that the lower α-tail activity is largely due to the presence of a terminal tyrosine. Detyrosination activates the α-tail, and activation is reversed by the removal of the glutamic acid penultimate to the tyrosine. Nitration of tyrosine reverses the tyrosine inhibition of binding and even induces prolonged VDAC closures. Our results demonstrate that small changes in sequence or post-translational modification of the unstructured tails of tubulin result in substantial changes in VDAC closure. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Origin and genetic diversity of Egyptian native chickens based on complete sequence of mitochondrial DNA D-loop region.

    Science.gov (United States)

    Osman, Sayed A-M; Yonezawa, Takahiro; Nishibori, Masahide

    2016-06-01

    Domestic chickens (Gallus gallus) play a significant role, ranging from food and entertainment to religion and ornamentation. However, the details on their domestication process are still controversial, especially the origin and evolution of African chickens. Egypt is thought to be important place for this event because of its geographic location as well as its long history of civilization. However, the genetic component and structure of Egyptian native chicken (ENC) have not been studied so far. The aim of this study is to clarify the origin and evolution of African chickens through assessing the genetic diversities and structure of five ENC breeds using the mitochondrial D-loop sequences. Our results suggest there is genetic differentiation between the pure native breeds and the improved native breeds. The latter breeds were established by the hybridization of the pure native and the exotic breeds. The pure native breeds were estimated to be established about 800 years ago. Subsequently, we extensively analyzed the D-loop sequences from the ENC as well as the globally collected chickens (2,010 individuals in total). Our phylogenetic tree among the regional populations shows African chickens can be separated to two distinct clades. The first clade consists of North African (Egypt), Central African (Sudan and Cameroon), European, and West (and Central) Asian chickens. The second clade consists of East African (Kenya, Malawi, and Zimbabwe) and Pacific chickens. It suggests the dual origins of African native chickens. The first group was probably originated from South Asia, and then migrated to West Asia, and finally arrived to Africa thorough Egypt. The second group migrated from Pacific to East Africa via Indian Ocean probably by Austronesian people. This dual origin hypothesis as well as estimated divergence times in this study is harmonious with the archaeological and historical evidences. Our migration analysis suggests there is limited gene flow within African

  16. The complete mitochondrial genome sequence of Red knobby newt Tylototriton shanjing (Amphibia: Caudata).

    Science.gov (United States)

    Jiang, Ye; Yang, Mingxian; Han, Fuyao; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    The complete mitogenome of Tylototriton shanjing is 16,661 bp in length with GenBank accession number KR154461, which contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 1 control region (CR). The overall base composition of this mitogenome is biased toward AT content at 59.45%. Most of the PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codons, while "TAA", "TAG", "AGA", and "T-" are used as stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The T. shanjing genome had two tandem repeat sequences in the cob-noncoding region. The mitogenomic phylogenetic analyses shows that the genera Echinotriton and Tylototriton were clustered into a strong supported monophyletic clade, which is a sister clade to the genus Pleurodeles, this confirms the previous phylogenetic results.

  17. Mitochondrial genomes and divergence times of crocodile newts : Inter-islands distribution of Echinotriton andersoni and the origin of a unique repetitive sequence found in Tylototriton mt genomes

    OpenAIRE

    Kurabayashi, Atsushi; Nishitani, Takuma; Katsuren, Seiki; Oumi, Shohei; Sumida, Masayuki

    2012-01-01

    Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variabl...

  18. Phylogenetic relationships and the evolution of mimicry in the Chauliognathus yellow-black species complex (Coleoptera: Cantharidae inferred from mitochondrial COI sequences

    Directory of Open Access Journals (Sweden)

    Vilmar Machado

    2004-01-01

    Full Text Available The phylogenetic relationships of twelve species of Chauliognathus were investigated by studying the mitochondrial cytochrome oxidase I gene. A 678 bp fragment of the COI gene was sequenced to test the hypothesis that the Müllerian mimicry species of the "yellow-black" complex make up a monophyletic clade, separated from species with other colour patterns. The data set was analysed by neighbour-joining, maximum parsimony and maximum likelihood procedures. The results support a single origin of the yellow-black colour pattern during the evolution of the genus, with one main clade formed by Chauliognathus lineatus, C. tetrapunctatus, C. riograndensis, C. flavipes, C. octomaculatus, C. fallax, and another one formed by two species, C. expansus and C sp 1, plus an orange-black-coloured species. The nucleotide divergences found between C. sp 3 (black and the other species studied fall within the level expected for species from different genera. The similarity of colour patterns of the yellow-black species has been considered an example of Müllerian mimicry by conservation of the ancestral state with some minor modifications.

  19. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    Science.gov (United States)

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  20. Mitochondrial DNA sequence variation and haplogroup distribution in Chinese patients with LHON and m.14484T>C.

    Science.gov (United States)

    Yu, Dandan; Jia, Xiaoyun; Zhang, A-Mei; Li, Shiqiang; Zou, Yang; Zhang, Qingjiong; Yao, Yong-Gang

    2010-10-18

    Leber hereditary optic neuropathy (LHON, MIM 535000) is one of the most common mitochondrial genetic disorders caused by three primary mtDNA mutations (m.3460G>A, m.11778G>A and m. 14484T>C). The clinical expression of LHON is affected by many additional factors, e.g. mtDNA background, nuclear genes, and environmental factors. Hitherto, there is no comprehensive study of Chinese LHON patients with m.14484T>C. In this study, we analyzed the mtDNA sequence variations and haplogroup distribution pattern of the largest number of Chinese LHON patients with m.14484T>C to date. We first determined the complete mtDNA sequences in eleven LHON probands with m.14484T>C, to discern the potentially pathogenic mutations that co-segregate with m.14484T>C. We then dissected the matrilineal structure of 52 patients with m.14484T>C (including 14 from unrelated families and 38 sporadic cases) and compared it with the reported Han Chinese from general populations. Complete mtDNA sequencing showed that the eleven matrilines belonged to nine haplogroups including Y2, C4a, M8a, M10a1a, G1a1, G2a1, G2b2, D5a2a1, and D5c. We did not identify putatively pathogenic mutation that was co-segregated with m.14484T>C in these lineages based on the evolutionary analysis. Compared with the reported Han Chinese from general populations, the LHON patients with m.14484T>C had significantly higher frequency of haplogroups C, G, M10, and Y, but a lower frequency of haplogroup F. Intriguingly, we also observed a lower prevalence of F lineages in LHON subjects with m.11778G>A in our previous study, suggesting that this haplogroup may enact similar role during the onset of LHON in the presence of m.14484T>C or m.11778G>A. Our current study provided a comprehensive profile regarding the mtDNA variation and background of Chinese patients with LHON and m.14484T>C. Matrilineal background might affect the expression of LHON in Chinese patients with m.14484T>C.

  1. Mitochondrial DNA sequence variation and haplogroup distribution in Chinese patients with LHON and m.14484T>C.

    Directory of Open Access Journals (Sweden)

    Dandan Yu

    Full Text Available BACKGROUND: Leber hereditary optic neuropathy (LHON, MIM 535000 is one of the most common mitochondrial genetic disorders caused by three primary mtDNA mutations (m.3460G>A, m.11778G>A and m. 14484T>C. The clinical expression of LHON is affected by many additional factors, e.g. mtDNA background, nuclear genes, and environmental factors. Hitherto, there is no comprehensive study of Chinese LHON patients with m.14484T>C. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we analyzed the mtDNA sequence variations and haplogroup distribution pattern of the largest number of Chinese LHON patients with m.14484T>C to date. We first determined the complete mtDNA sequences in eleven LHON probands with m.14484T>C, to discern the potentially pathogenic mutations that co-segregate with m.14484T>C. We then dissected the matrilineal structure of 52 patients with m.14484T>C (including 14 from unrelated families and 38 sporadic cases and compared it with the reported Han Chinese from general populations. Complete mtDNA sequencing showed that the eleven matrilines belonged to nine haplogroups including Y2, C4a, M8a, M10a1a, G1a1, G2a1, G2b2, D5a2a1, and D5c. We did not identify putatively pathogenic mutation that was co-segregated with m.14484T>C in these lineages based on the evolutionary analysis. Compared with the reported Han Chinese from general populations, the LHON patients with m.14484T>C had significantly higher frequency of haplogroups C, G, M10, and Y, but a lower frequency of haplogroup F. Intriguingly, we also observed a lower prevalence of F lineages in LHON subjects with m.11778G>A in our previous study, suggesting that this haplogroup may enact similar role during the onset of LHON in the presence of m.14484T>C or m.11778G>A. CONCLUSIONS/SIGNIFICANCE: Our current study provided a comprehensive profile regarding the mtDNA variation and background of Chinese patients with LHON and m.14484T>C. Matrilineal background might affect the expression of LHON

  2. A retrospective comparative forecast test on the 1992 Landers sequence

    Science.gov (United States)

    Woessner, J.; Hainzl, S.; Marzocchi, W.; Werner, M. J.; Lombardi, A. M.; Catalli, F.; Enescu, B.; Cocco, M.; Gerstenberger, M. C.; Wiemer, S.

    2011-05-01

    We perform a retrospective forecast experiment on the 1992 Landers sequence comparing the predictive power of commonly used model frameworks for short-term earthquake forecasting. We compare a modified short-term earthquake probability (STEP) model, six realizations of the epidemic-type aftershock sequence (ETAS) model, and four models that combine Coulomb stress changes calculations and rate-and-state theory to generate seismicity rates (CRS models). We perform the experiment under the premise of a controlled environment with predefined conditions for the testing region and data for all modelers. We evaluate the forecasts with likelihood tests to analyze spatial consistency and the total amount of forecasted events versus observed data. We find that (1) 9 of the 11 models perform superior compared to a simple reference model, (2) ETAS models forecast the spatial evolution of seismicity best and perform best in the entire test suite, (3) the modified STEP model matches best the total number of events, (4) CRS models can only compete with empirical statistical models by introducing stochasticity in these models considering uncertainties in the finite-fault source model, and (5) resolving Coulomb stress changes on 3-D optimally oriented planes is more adequate for forecasting purposes than using the specified receiver fault concept. We conclude that statistical models perform generally better than the tested physics-based models and parameter value updates using the occurrence of aftershocks generally improve the predictive power in particular for the purely statistical models in space and time.

  3. Complete Mitochondrial Genome Sequences of Chinese Indigenous Sheep with Different Tail Types and an Analysis of Phylogenetic Evolution in Domestic Sheep.

    Science.gov (United States)

    Fan, Hongying; Zhao, Fuping; Zhu, Caiye; Li, Fadi; Liu, Jidong; Zhang, Li; Wei, Caihong; Du, Lixin

    2016-05-01

    China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries.

  4. Genetic variation and differentiation of Gekko gecko from different populations based on mitochondrial cytochrome b gene sequences and karyotypes.

    Science.gov (United States)

    Qin, Xin-Min; Li, Hui-Min; Zeng, Zhen-Hua; Zeng, De-Long; Guan, Qing-Xin

    2012-06-01

    Black-spotted and red-spotted tokay geckos are distributed in different regions and have significant differences in morphological appearance, but have been regarded as the same species, Gekko gecko, in taxonomy. To determine whether black-spotted and red-spotted tokay geckos are genetically differentiated, we sequenced the entire mitochondrial cytochrome b gene (1147 bp) from 110 individuals of Gekko gecko collected in 11 areas including Guangxi China, Yunnan China, Vietnam, and Laos. In addition, we performed karyotypic analyses of black-spotted tokay geckos from Guangxi China and red-spotted tokay geckos from Laos. These phylogenetic analyses showed that black-spotted and red-spotted tokay geckos are divided into two branches in molecular phylogenetic trees. The average genetic distances are as follows: 0.12-0.47% among six haplotypes in the black-spotted tokay gecko group, 0.12-1.66% among five haplotypes in the red-spotted tokay gecko group, and 8.76-9.18% between the black-spotted and red-spotted tokay geckos, respectively. The karyotypic analyses showed that the karyotype formula is 2n = 38 = 8m + 2sm + 2st + 26t in red-spotted tokay geckos from Laos compared with 2n = 38 = 8m + 2sm + 28t in black-spotted tokay geckos from Guangxi China. The differences in these two kinds of karyotypes were detected on the 15th chromosome. The clear differences in genetic levels between black-spotted and red-spotted tokay geckos suggest a significant level of genetic differentiation between the two.

  5. Results of Mitochondrial DNA Sequence Analysis in Patients with Clinically Diagnosed Leber’s Hereditary Optic Neuropathy

    Directory of Open Access Journals (Sweden)

    Haluk Esgin

    2012-09-01

    Full Text Available Objective: To investigate possible mitochondrial DNA (mtDNA mutations in patients with Leber’s hereditary optic neuropathy (LHON in order to provide a precise diagnosis and genetic counseling.Material and Methods: Between 1982 and 2007, ten patients were clinically diagnosed with LHON and six of these patients agreed to be involved in this study. Six healthy individuals were also included as a control group. mtDNA was isolated from peripheral blood samples and polymerase chain reaction and mtDNA sequence analysis were performed. Results: In one of the six patients, a homoplasmic mutant m.11778G>A mutation was detected. All of the clinically diagnosed LHON patients and the control groups had the m.14212C>T and m.14580G>A single nucleotide polymorphisms (SNPs. The m.11719A>G SNP was detected in three of six patients and four of the controls. Two of the six patients had the m.3197T>C SNP and, in addition, the m.14258G>A SNP was found in one of these two patients, while neither of these mutations were present in the control group.Conclusion: The clinical diagnosis of LHON could be supported by molecular genetics only in one patient by the detection of one mutation. The m.3197T>C and m.14258G>A SNPs should be considered as potential mtDNA mutations due to the fact that they were detected in the patient group. These mutations should be investigated further in large case groups for suspected gene loci that could lead to optic neuropathy.

  6. De novo assembly and characterization of the carrot mitochondrial genome using next generation sequencing data from whole genomic DNA provides first evidence of DNA transfer into an angiosperm plastid genome

    Science.gov (United States)

    Sequence analysis of organelle genomes has revealed important aspects of plant cell evolution. The scope of this study was to develop an approach for de novo assembly of the carrot mitochondrial genome using next generation sequence data from total genomic DNA. Sequencing data from a carrot 454 whol...

  7. Genetic analysis of Rhipicephalus sanguineus sensu lato ticks parasites of dogs in Africa north of the Sahara based on mitochondrial DNA sequences.

    Science.gov (United States)

    Chitimia-Dobler, Lidia; Langguth, Johanna; Pfeffer, Martin; Kattner, Simone; Küpper, Thomas; Friese, Daniela; Dobler, Gerhard; Guglielmone, Alberto A; Nava, Santiago

    2017-05-30

    The aim of this work was to determine the evolutionary relationship among tick populations of Rhipicephalus sanguineus sensu lato distributed in Africa north of the Sahara and different lineages of R. sanguineus s.l. distributed in different regions of Sub-Saharan Africa, America and Europe through the analysis of DNA sequences of two mitochondrial genes. One hundred and thirty six 16S rRNA gene sequences and twenty-seven 12S rRNA gene sequences of R. sanguineus s.l. were analyzed. Phylogenetic analyses were performed including different lineages of R. sanguineus s.l. from America, Europe and Africa, and species belonging to the R. sanguineus group as Rhipicephalus camicasi, Rhipicephalus guilhoni, Rhipicephalus sulcatus, Rhipicephalus rossicus, Rhipicephalus pusillus, Rhipicephalus turanicus and Rhipicephalus leporis. At least two different lineages of R. sanguineus s.l. are living in sympatry in Africa north of the Sahara. One of these mitochondrial lineages belongs to the same evolutionary entity that R. sanguineus s.l. from tropical areas of America, R. sanguineus s.l. from Sub-Saharan Africa, R. camicasi and R. guilhoni. The other mitochondrial lineage of R. sanguineus s.l. present in Africa north of the Sahara is phylogenetically associated to R. sanguineus s.l. ticks from southeastern Europe (Romania, Turkey and Greece). Both evolutionary entities are clearly different to the evolutionary entity formed by R. sanguineus s.l. from western Europe and temperate areas of America. Thus, the name R. sanguineus s.s. cannot be assigned to any of the two evolutionary entities present in Africa north of the Sahara. The taxonomic status of these taxa will remain unresolved until new lines of evidence become available to complement the current results based on mitochondrial DNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Applicability of Next Generation Sequencing Technology in Microsatellite Instability Testing

    Directory of Open Access Journals (Sweden)

    Chun Gan

    2015-02-01

    Full Text Available Microsatellite instability (MSI is a useful marker for risk assessment, prediction of chemotherapy responsiveness and prognosis in patients with colorectal cancer. Here, we describe a next generation sequencing approach for MSI testing using the MiSeq platform. Different from other MSI capturing strategies that are based on targeted gene capture, we utilize “deep resequencing”, where we focus the sequencing on only the microsatellite regions of interest. We sequenced a series of 44 colorectal tumours with normal controls for five MSI loci (BAT25, BAT26, BAT34c4, D18S55, D5S346 and a second series of six colorectal tumours (no control with two mononucleotide loci (BAT25, BAT26. In the first series, we were able to determine 17 MSI-High, 1 MSI-Low and 26 microsatellite stable (MSS tumours. In the second series, there were three MSI-High and three MSS tumours. Although there was some variation within individual markers, this NGS method produced the same overall MSI status for each tumour, as obtained with the traditional multiplex PCR-based method.

  9. Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Viviparidae family (Caenogastropoda.

    Directory of Open Access Journals (Sweden)

    Ju-Guang Wang

    Full Text Available Phylogenetic relationships among snails (Caenogastropoda are still unresolved, and many taxonomic categories remain non-monophyletic. Paraphyly has been reported within a large family of freshwater snails, Viviparidae, where the taxonomic status of several species remains questionable. As many endemic Chinese viviparid species have become endangered during the last few decades, this presents a major obstacle for conservation efforts. Mitochondrial genomes (mitogenomes carry a large amount of data, so they can often provide a much higher resolution for phylogenetic analyses in comparison to the traditionally used molecular markers. To help resolve their phylogenetic relationships, the complete mitogenomes of eight Chinese viviparid snails, Viviparus chui, Cipangopaludina chinensis, C. ussuriensis, C. dianchiensis (endangered, Margarya melanioides (endangered, M. monodi (critically endangered, Bellamya quadrata and B. aeruginosa, were sequenced and compared to almost all of the available caenogastropod mitogenomes. Viviparidae possess the largest mitogenomes (16 392 to 18 544 bp, exhibit the highest A+T bias (72.5% on average, and some exhibit unique gene orders (a rearrangement of the standard MYCWQGE box, among the Caenogastropoda. Apart from the Vermetidae family and Cerithioidea superfamily, which possessed unique gene orders, the remaining studied caenogastropod mitogenomes exhibited highly conserved gene order, with minimal variations. Maximum likelihood and Bayesian inference analyses, used to reconstruct the phylogenetic relationships among 49 almost complete (all 37 genes caenogastropod mitogenomes, produced almost identical tree topologies. Viviparidae were divided into three clades: a Margarya and Cipangopaludina (except C. ussuriensis, b Bellamya and C. ussuriensis, c Viviparus chui. Our results present evidence that some Cipangopaludina species (dianchiensis and cathayensis should be renamed into the senior genus Margarya. The

  10. An integrated pipeline for next generation sequencing and annotation of the complete mitochondrial genome of the giant intestinal fluke, Fasciolopsis buski (Lankester, 1857 Looss, 1899

    Directory of Open Access Journals (Sweden)

    Devendra Kumar Biswal

    2013-11-01

    Full Text Available Helminths include both parasitic nematodes (roundworms and platyhelminths (trematode and cestode flatworms that are abundant, and are of clinical importance. The genetic characterization of parasitic flatworms using advanced molecular tools is central to the diagnosis and control of infections. Although the nuclear genome houses suitable genetic markers (e.g., in ribosomal (r DNA for species identification and molecular characterization, the mitochondrial (mt genome consistently provides a rich source of novel markers for informative systematics and epidemiological studies. In the last decade, there have been some important advances in mtDNA genomics of helminths, especially lung flukes, liver flukes and intestinal flukes. Fasciolopsis buski, often called the giant intestinal fluke, is one of the largest digenean trematodes infecting humans and found primarily in Asia, in particular the Indian subcontinent. Next-generation sequencing (NGS technologies now provide opportunities for high throughput sequencing, assembly and annotation within a short span of time. Herein, we describe a high-throughput sequencing and bioinformatics pipeline for mt genomics for F. buski that emphasizes the utility of short read NGS platforms such as Ion Torrent and Illumina in successfully sequencing and assembling the mt genome using innovative approaches for PCR primer design as well as assembly. We took advantage of our NGS whole genome sequence data (unpublished so far for F. buski and its comparison with available data for the Fasciola hepatica mtDNA as the reference genome for design of precise and specific primers for amplification of mt genome sequences from F. buski. A long-range PCR was carried out to create an NGS library enriched in mt DNA sequences. Two different NGS platforms were employed for complete sequencing, assembly and annotation of the F. buski mt genome. The complete mt genome sequences of the intestinal fluke comprise 14,118 bp and is thus the

  11. DNA capture and next-generation sequencing can recover whole mitochondrial genomes from highly degraded samples for human identification

    National Research Council Canada - National Science Library

    Templeton, Jennifer E L; Brotherton, Paul M; Llamas, Bastien; Soubrier, Julien; Haak, Wolfgang; Cooper, Alan; Austin, Jeremy J

    2013-01-01

    Mitochondrial DNA (mtDNA) typing can be a useful aid for identifying people from compromised samples when nuclear DNA is too damaged, degraded or below detection thresholds for routine short tandem repeat (STR)-based analysis...

  12. Specific identification of Western Atlantic Ocean scombrids using mitochondrial DNA cytochrome c oxidase subunit I (COI) gene region sequences

    National Research Council Canada - National Science Library

    Paine, Melissa A; McDowell, Jan R; Graves, John E

    2007-01-01

    .... The mitochondrial cytochrome c oxidase subunit I (COI) gene region was evaluated as a molecular marker for the specific identification of the 17 members of the family Scombridae common to the western Atlantic Ocean...

  13. Maternal Plasma DNA and RNA Sequencing for Prenatal Testing.

    Science.gov (United States)

    Tamminga, Saskia; van Maarle, Merel; Henneman, Lidewij; Oudejans, Cees B M; Cornel, Martina C; Sistermans, Erik A

    2016-01-01

    Cell-free DNA (cfDNA) testing has recently become indispensable in diagnostic testing and screening. In the prenatal setting, this type of testing is often called noninvasive prenatal testing (NIPT). With a number of techniques, using either next-generation sequencing or single nucleotide polymorphism-based approaches, fetal cfDNA in maternal plasma can be analyzed to screen for rhesus D genotype, common chromosomal aneuploidies, and increasingly for testing other conditions, including monogenic disorders. With regard to screening for common aneuploidies, challenges arise when implementing NIPT in current prenatal settings. Depending on the method used (targeted or nontargeted), chromosomal anomalies other than trisomy 21, 18, or 13 can be detected, either of fetal or maternal origin, also referred to as unsolicited or incidental findings. For various biological reasons, there is a small chance of having either a false-positive or false-negative NIPT result, or no result, also referred to as a "no-call." Both pre- and posttest counseling for NIPT should include discussing potential discrepancies. Since NIPT remains a screening test, a positive NIPT result should be confirmed by invasive diagnostic testing (either by chorionic villus biopsy or by amniocentesis). As the scope of NIPT is widening, professional guidelines need to discuss the ethics of what to offer and how to offer. In this review, we discuss the current biochemical, clinical, and ethical challenges of cfDNA testing in the prenatal setting and its future perspectives including novel applications that target RNA instead of DNA. © 2016 Elsevier Inc. All rights reserved.

  14. Boar spermatozoa successfully predict mitochondrial modes of toxicity: implications for drug toxicity testing and the 3R principles.

    Science.gov (United States)

    Vicente-Carrillo, A; Edebert, I; Garside, H; Cotgreave, I; Rigler, R; Loitto, V; Magnusson, K E; Rodríguez-Martínez, H

    2015-04-01

    Replacement of animal testing by in vitro methods (3-R principles) requires validation of suitable cell models, preferably obtained non-invasively, defying traditional use of explants. Ejaculated spermatozoa are highly dependent on mitochondrial production and consumption of ATP for their metabolism, including motility display, thus becoming a suitable model for capturing multiple modes of action of drugs and other chemicals acting via mitochondrial disturbance. In this study, a hypothesis was tested that the boar spermatozoon is a suitable cell type for toxicity assessment, providing a protocol for 3R-replacement of animals for research and drug-testing. Boar sperm kinetics was challenged with a wide variety of known frank mito-toxic chemicals with previously shown mitochondrial effects, using a semi-automated motility analyser allied with real-time fluorescent probing of mitochondrial potential (MitoTracker & JC-1). Output of this sperm assay (obtained after 30 min) was compared to cell viability (ATP-content, data obtained after 24-48 h) of a hepatome-cell line (HepG2). Results of compound effects significantly correlated (Pbreeding boars, are confirmed as suitable biosensors for preclinical toxicology screening and ranking of lead compounds in the drug development processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Complete mitochondrial genome sequences of the northern spotted owl (Strix occidentalis caurina and the barred owl (Strix varia; Aves: Strigiformes: Strigidae confirm the presence of a duplicated control region

    Directory of Open Access Journals (Sweden)

    Zachary R. Hanna

    2017-10-01

    Full Text Available We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina and the barred owl (S. varia. We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt to 9,600 nt and read lengths from 100–375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts. The Numts ranged from 226–19,522 nt in length and included copies of all mitochondrial genes except tRNAPro, ND6, and tRNAGlu. Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance divergence across the non-tRNA mitochondrial genes.

  16. Complete mitochondrial genome sequences of the northern spotted owl (Strix occidentalis caurina) and the barred owl (Strix varia; Aves: Strigiformes: Strigidae) confirm the presence of a duplicated control region.

    Science.gov (United States)

    Hanna, Zachary R; Henderson, James B; Sellas, Anna B; Fuchs, Jérôme; Bowie, Rauri C K; Dumbacher, John P

    2017-01-01

    We report here the successful assembly of the complete mitochondrial genomes of the northern spotted owl (Strix occidentalis caurina) and the barred owl (S. varia). We utilized sequence data from two sequencing methodologies, Illumina paired-end sequence data with insert lengths ranging from approximately 250 nucleotides (nt) to 9,600 nt and read lengths from 100-375 nt and Sanger-derived sequences. We employed multiple assemblers and alignment methods to generate the final assemblies. The circular genomes of S. o. caurina and S. varia are comprised of 19,948 nt and 18,975 nt, respectively. Both code for two rRNAs, twenty-two tRNAs, and thirteen polypeptides. They both have duplicated control region sequences with complex repeat structures. We were not able to assemble the control regions solely using Illumina paired-end sequence data. By fully spanning the control regions, Sanger-derived sequences enabled accurate and complete assembly of these mitochondrial genomes. These are the first complete mitochondrial genome sequences of owls (Aves: Strigiformes) possessing duplicated control regions. We searched the nuclear genome of S. o. caurina for copies of mitochondrial genes and found at least nine separate stretches of nuclear copies of gene sequences originating in the mitochondrial genome (Numts). The Numts ranged from 226-19,522 nt in length and included copies of all mitochondrial genes except tRNA(Pro) , ND6, and tRNA(Glu) . Strix occidentalis caurina and S. varia exhibited an average of 10.74% (8.68% uncorrected p-distance) divergence across the non-tRNA mitochondrial genes.

  17. When does the test-study-test sequence optimize learning and retention?

    Science.gov (United States)

    McDaniel, Mark A; Bugg, Julie M; Liu, Yiyi; Brick, Jessye

    2015-12-01

    In educational learning contexts, unlike typical contemporary laboratory paradigms, students have repeated opportunities to study and learn target material, thereby potentially allowing different sequences of testing and studying. We investigated learning and retention after several plausible sequences that were patterned on a classic memory paradigm. After initially reading a research methods text, 2 days later in 1 condition participants repeatedly restudied the material 3 times (SSS), in another condition they engaged in a test-restudy-test sequence (TST), and in a third condition participants repeatedly tested on the studied material (3 times: TTT). Participants received a final test 5 days later. In Experiment 1, both TST and TTT produced better final performance than did SSS; however, TST was not better than TTT. In Experiment 2 the TST condition was altered so that after the first test, correct/incorrect feedback was provided and the test and feedback were available during the study phase. With this protocol, TST produced better learning and retention than did TTT or SSS. These findings suggest possible critical aspects regarding test feedback and the availability of previous tests for helping students to optimize their restudy efforts after low- or no-stakes quizzes. (c) 2015 APA, all rights reserved).

  18. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase

    NARCIS (Netherlands)

    Bharti, S.K.; Sommers, J.A.; Zhou, J.; Kaplan, D.L.; Spelbrink, J.N.; Mergny, J.L.; Brosh, R.M., Jr.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective

  19. Interordinal mammalian relationships: evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences.

    Science.gov (United States)

    Lavergne, A; Douzery, E; Stichler, T; Catzeflis, F M; Springer, M S

    1996-10-01

    The complete mitochondrial 12S rRNA sequences of 5 placental mammals belonging to the 3 orders Sirenia, Proboscidea, and Hyracoidea are reported together with phylogenetic analyses (distance and parsimony) of a total of 51 mammalian orthologues. This 12S rRNA database now includes the 2 extant proboscideans (the African and Asiatic elephants Loxodonta africana and Elephas maximus), 2 of the 3 extant sirenian genera (the sea cow Dugong dugon and the West Indian manatee Trichechus manatus), and 2 of the 3 extant hyracoid genera (the rock and tree hyraxes Procavia capensis and Dendrohyrax dorsalis). The monophyly of the 3 orders Sirenia, Proboscidea, and Hyracoidea is supported by all kinds of analysis. There are 23 and 3 diagnostic subsitutions shared by the 2 proboscideans and the 2 hyracoids, respectively, but none by the 2 sirenians. The 2 proboscideans exhibit the fastest rates of 12S rRNA evolution among the 11 placental orders studied. Based on various taxonomic sampling methods among eutherian orders and marsupial outgroups, the most strongly supported clade in our comparisons clusters together the 3 orders Sirenia, Proboscidea, and Hyracoidea in the superorder Paenungulata. Within paenungulates, the grouping of sirenians and proboscideans within the mirorder Tethytheria is observed. This branching pattern is supported by all analyses by high bootstrap percentages (BPs) and decay indices. When only one species is selected per order or suborder, the taxonomic sampling leads to a relative variation in bootstrap support of 53% for Tethytheria (BPs ranging from 44 to 93%) and 7% for Paernungulata (92-99%). When each order or suborder is represented by two species, this relative variation decreased to 10% for Tethytheria (78-87%) and 3% for Paenungulata (96-99%). Two nearly exclusive synapomorphies for paenungulates are identified in the form of one transitional compensatory change, but none were detected for tethytherians. Such a robust and reliable resolution of

  20. The complete mitochondrial genome sequence of Euphausia pacifica (Malacostraca: Euphausiacea) reveals a novel gene order and unusual tandem repeats.

    Science.gov (United States)

    Shen, Xin; Wang, Haiqing; Wang, Minxiao; Liu, Bin

    2011-11-01

    Euphausiid krill are dominant organisms in the zooplankton population and play a central role in marine ecosystems. Euphausia pacifica (Malacostraca: Euphausiacea) is one of the most important and dominant crustaceans in the North Pacific Ocean. In this paper, we described the gene content, organization, and codon usage of the E. pacifica mitochondrial genome. The mitochondrial genome of E. pacifica is 16 898 bp in length and contains a standard set of 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Translocation of three transfer RNAs (trnL(1), trnL(2), and trnW) was found in the E. pacifica mitochondrial genome when comparing with the pancrustacean ground pattern. The rate of K(a)/K(s) in 13 protein-coding genes among three krill is much less than 1, which indicates a strong purifying selection within this group. The largest noncoding region in the E. pacifica mitochondrial genome contains one section with tandem repeats (4.7 x 154 bp), which are the largest tandem repeats found in malacostracan mitochondrial genomes so far. All analyses based on nucleotide and amino acid data strongly support the monophyly of Stomatopoda, Penaeidae, Caridea, Brachyura, and Euphausiacea. The Bayesian analysis of nucleotide and amino acid datasets strongly supports the close relationship between Euphausiacea and Decapoda, which confirms traditional findings. The maximum likelihood analysis based on amino acid data strongly supports the close relationship between Euphausiacea and Penaeidae, which destroys the monophyly of Decapoda.

  1. The mitochondrial genome of a Texas outbreak strain of the cattle tick, Rhipicephalus (Boophilus) microplus, derived from whole genome sequencing Pacific Biosciences and Illumina reads.

    Science.gov (United States)

    McCooke, John K; Guerrero, Felix D; Barrero, Roberto A; Black, Michael; Hunter, Adam; Bell, Callum; Schilkey, Faye; Miller, Robert J; Bellgard, Matthew I

    2015-10-15

    The cattle fever tick, Rhipicephalus (Boophilus) microplus is one of the most significant medical veterinary pests in the world, vectoring several serious livestock diseases negatively impacting agricultural economies of tropical and subtropical countries around the world. In our study, we assembled the complete R. microplus mitochondrial genome from Illumina and Pac Bio sequencing reads obtained from the ongoing R. microplus (Deutsch strain from Texas, USA) genome sequencing project. We compared the Deutsch strain mitogenome to the mitogenome from a Brazilian R. microplus and from an Australian cattle tick that has recently been taxonomically designated as Rhipicephalus australis after previously being considered R. microplus. The sequence divergence of the Texas and Australia ticks is much higher than the divergence between the Texas and Brazil ticks. This is consistent with the idea that the Australian ticks are distinct from the R. microplus of the Americas. Published by Elsevier B.V.

  2. Molecular characterization of Hysterothylacium fabri (Nematoda: Anisakidae) from Zeus faber (Pisces: Zeidae) caught off the Mediterranean coasts of Turkey based on nuclear ribosomal and mitochondrial DNA sequences.

    Science.gov (United States)

    Pekmezci, Gokmen Zafer; Yardimci, Banu; Onuk, Ertan Emek; Umur, Sinasi

    2014-02-01

    In the present study, Hysterothylacium fabri was found in the coasts of the Mediterranean Sea, Turkey and characterized by sequencing of nuclear (internal transcribed spacer, ITS) and mitochondrial (cytochrome c oxidase subunit 2, cox2) markers. Pairwise comparison between the entire ITS fragment including ITS-1, 5.8S, ITS-2 sequences of the H. fabri isolates from the Mediterranean Sea (Turkey, KC852206) and other H. fabri isolates from the South China Sea (JQ520158), the South Korea waters (JX974558) showed differences ranged from 0.1 and 1.1%. With the present study, H. fabri from the Mediterranean Sea was characterized for the first time by sequencing of the cox2 gene. © 2013.

  3. The case for the continuing use of the revised Cambridge Reference Sequence (rCRS) and the standardization of notation in human mitochondrial DNA studies.

    Science.gov (United States)

    Bandelt, Hans-Jürgen; Kloss-Brandstätter, Anita; Richards, Martin B; Yao, Yong-Gang; Logan, Ian

    2014-02-01

    Since the determination in 1981 of the sequence of the human mitochondrial DNA (mtDNA) genome, the Cambridge Reference Sequence (CRS), has been used as the reference sequence to annotate mtDNA in molecular anthropology, forensic science and medical genetics. The CRS was eventually upgraded to the revised version (rCRS) in 1999. This reference sequence is a convenient device for recording mtDNA variation, although it has often been misunderstood as a wild-type (WT) or consensus sequence by medical geneticists. Recently, there has been a proposal to replace the rCRS with the so-called Reconstructed Sapiens Reference Sequence (RSRS). Even if it had been estimated accurately, the RSRS would be a cumbersome substitute for the rCRS, as the new proposal fuses--and thus confuses--the two distinct concepts of ancestral lineage and reference point for human mtDNA. Instead, we prefer to maintain the rCRS and to report mtDNA profiles by employing the hitherto predominant circumfix style. Tree diagrams could display mutations by using either the profile notation (in conventional short forms where appropriate) or in a root-upwards way with two suffixes indicating ancestral and derived nucleotides. This would guard against misunderstandings about reporting mtDNA variation. It is therefore neither necessary nor sensible to change the present reference sequence, the rCRS, in any way. The proposed switch to RSRS would inevitably lead to notational chaos, mistakes and misinterpretations.

  4. Complete mitochondrial genome sequence of the yellow-spotted long-horned beetle Psacothea hilaris (Coleoptera: Cerambycidae) and phylogenetic analysis among coleopteran insects.

    Science.gov (United States)

    Kim, Ki-Gyoung; Hong, Mee Yeon; Kim, Min Jee; Im, Hyun Hwak; Kim, Man Il; Bae, Chang Hwan; Seo, Sook Jae; Lee, Sang Hyun; Kim, Iksoo

    2009-04-30

    We have determined the complete mitochondrial genome of the yellow-spotted long horned beetle, Psacothea hilaris (Coleoptera: Cerambycidae), an endangered insect species in Korea. The 15,856-bp long P. hilaris mitogenome harbors gene content typical of the animal mitogenome and a gene arrangement identical to the most common type found in insect mitogenomes. As with all other sequenced coleopteran species, the 5-bp long TAGTA motif was also detected in the intergenic space sequence located between tRNA(Ser)(UCN) and ND1 of P. hilaris. The 1,190-bp long non-coding A+T-rich region harbors an unusual series of seven identical repeat sequences of 57-bp in length and several stretches of sequences with the potential to form stem-and-loop structures. Furthermore, it contains one tRNA(Arg)-like sequence and one tRNA(Lys)-like sequence. Phylogenetic analysis among available coleopteran mitogenomes using the concatenated amino acid sequences of PCGs appear to support the sister group relationship of the suborder Polyphaga to all remaining suborders, including Adephaga, Myxophaga, and Archostemata. Among the two available infraorders in Polyphaga, a monophyletic Cucujiformia was confirmed, with the placement of Cleroidea as the basal lineage for Cucujiformia. On the other hand, the infraorder Elateriformia was not identified as monophyletic, thereby indicating that Scirtoidea and Buprestoidea are the basal lineages for Cucujiformia and the remaining Elateriformia.

  5. Mitochondrial fusion, fission, and mitochondrial toxicity.

    Science.gov (United States)

    Meyer, Joel N; Leuthner, Tess C; Luz, Anthony L

    2017-08-05

    Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. iDNA at Sea: Recovery of Whale Shark (Rhincodon typus Mitochondrial DNA Sequences from the Whale Shark Copepod (Pandarus rhincodonicus Confirms Global Population Structure

    Directory of Open Access Journals (Sweden)

    Mark Meekan

    2017-12-01

    Full Text Available The whale shark (Rhincodon typus is an iconic and endangered species with a broad distribution spanning warm-temperate and tropical oceans. Effective conservation management of the species requires an understanding of the degree of genetic connectivity among populations, which is hampered by the need for sampling that involves invasive techniques. Here, the feasibility of minimally-invasive sampling was explored by isolating and sequencing whale shark DNA from a commensal or possibly parasitic copepod, Pandarus rhincodonicus that occurs on the skin of the host. We successfully recovered mitochondrial control region DNA sequences (~1,000 bp of the host via DNA extraction and polymerase chain reaction from whole copepod specimens. DNA sequences obtained from multiple copepods collected from the same shark exhibited 100% sequence similarity, suggesting a persistent association of copepods with individual hosts. Newly-generated mitochondrial haplotypes of whale shark hosts derived from the copepods were included in an analysis of the genetic structure of the global population of whale sharks (644 sequences; 136 haplotypes. Our results supported those of previous studies and suggested limited genetic structuring across most of the species range, but the presence of a genetically unique and potentially isolated population in the Atlantic Ocean. Furthermore, we recovered the mitogenome and nuclear ribosomal genes of a whale shark using a shotgun sequencing approach on copepod tissue. The recovered mitogenome is the third mitogenome reported for the species and the first from the Mozambique population. Our invertebrate DNA (iDNA approach could be used to better understand the population structure of whale sharks, particularly in the Atlantic Ocean, and also for genetic analyses of other elasmobranchs parasitized by pandarid copepods.

  7. Development of Nuclear Microsatellite Loci and Mitochondrial Single Nucleotide Polymorphisms for the Natterjack Toad, Bufo (Epidalea) calamita (Bufonidae), Using Next Generation Sequencing and Competitive Allele Specific PCR (KASPar).

    Science.gov (United States)

    Faucher, Leslie; Godé, Cécile; Arnaud, Jean-François

    2016-01-01

    Amphibians are undergoing a major decline worldwide and the steady increase in the number of threatened species in this particular taxa highlights the need for conservation genetics studies using high-quality molecular markers. The natterjack toad, Bufo (Epidalea) calamita, is a vulnerable pioneering species confined to specialized habitats in Western Europe. To provide efficient and cost-effective genetic resources for conservation biologists, we developed and characterized 22 new nuclear microsatellite markers using next-generation sequencing. We also used sequence data acquired from Sanger sequencing to develop the first mitochondrial markers for KASPar assay genotyping. Genetic polymorphism was then analyzed for 95 toads sampled from 5 populations in France. For polymorphic microsatellite loci, number of alleles and expected heterozygosity ranged from 2 to 14 and from 0.035 to 0.720, respectively. No significant departures from panmixia were observed (mean multilocus F IS = -0.015) and population differentiation was substantial (mean multilocus F ST = 0.222, P < 0.001). From a set of 18 mitochondrial SNPs located in the 16S and D-loop region, we further developed a fast and cost-effective SNP genotyping method based on competitive allele-specific PCR amplification (KASPar). The combination of allelic states for these mitochondrial DNA SNP markers yielded 10 different haplotypes, ranging from 2 to 5 within populations. Populations were highly differentiated (G ST = 0.407, P < 0.001). These new genetic resources will facilitate future parentage, population genetics and phylogeographical studies and will be useful for both evolutionary and conservation concerns, especially for the set-up of management strategies and the definition of distinct evolutionary significant units. © The American Genetic Association 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Complete mitochondrial genome sequence of Tridentiger bifasciatus and Tridentiger barbatus (Perciformes, Gobiidae): a mitogenomic perspective on the phylogenetic relationships of Gobiidae.

    Science.gov (United States)

    Jin, Xiaoxiao; Wang, Rixin; Wei, Tao; Tang, Da; Xu, Tianjun

    2015-01-01

    The fishes of suborder Gobioidei is the largest group of those in present living Perciformes, which contains about 2,200 species belonging to 270 genera of 9 families in the world. The monophyly and phylogenetic relationships of gobies have been controversial and disputable for a long time. In the present study, the complete mitochondrial genome of the shimofuri goby Tridentiger bifasciatus (T. bifasciatus) and shokihaze goby Tridentiger barbatus (T. barbatus) were firstly determined. The two mitochondrial genomes were both consisted of 2 ribosomal RNA (rRNA) genes, 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and one major control region (CR). They shared similar features with those of other gobies in terms of gene arrangement, base composition, and tRNA structures. The CR was absence of typical conserved blocks (CSB-E, and CSB-F) respectively for the T. bifasciatus and T. barbatus. Phylogenomic analyses, which based on 12 concatenated protein-coding genes and complete mitochondrial genome sequences, revealed that there were two groups within the Gobiidae. A large group consisted of the Amblyopinae, Gobionellinae, Oxudercinae and Sicydiinae, and Amblyopinae was nested in Oxudercinae and they were both paraphyletic to Sicydiinae. The other group was the Gobiinae. As a whole, our phylogenetic data was different from the traditionally classification of Gobiidae, but supported the new phylogenetic taxonomy view of Thacker (Copeia 2009:93-104, 2009).

  9. INTRASPECIFIC VARIATIONS OF 16S MITOCHONDRIAL GENE SEQUENCES OF YELLOW RICE STEM BORER,scirpopbaga incertulas (LEPIDOPTERA: CRAMBIDAE FROM WEST JAVA

    Directory of Open Access Journals (Sweden)

    RIKA RAFFIUDIN

    2011-01-01

    Full Text Available Yellow rice stem borer ( is one of the most important rice pest insectsin Asia, including Indonesia. However, there is a lack of genetic data for this importantagricultural insect. Therefore, this study was conducted to explore intraspecific differentiationof partial 16S mitochondrial gene from Bogor, Karawang, Indramayu and Cirebon(West Java, Indonesia. Here, we reported a total of 325 bp of 16S mitochondrial gene offrom the obtained samples. Among all DNA sequences, three haplotypes of 16Smitochondrial gene were observed and submitted to GenBank under Accession Number ofGU191881, GU191882, GU191883, respectively for haplotype 1, 2, and 3. The haplotype 1was found in all surveyed locations, except Bogor. Haplotype 2 and 3 werefound only in from Cirebon and Bogor samples. These haplotype variations can be applied asDNA markers for early larva detection method among other rice stem borers.Hence, further explorations of the mitochondrial variations of in Java and otherparts of Indonesia are neededmoth, haplotypes, genetic differentiations, molecular identification1* 1 2(1(2Department of Biology, Bogor Agricultural University (IPB, Darmaga,Bogor 16680, INDONESIAIndonesian Centre for Agricultural Biotechnology and Genetic ResourcesResearch and Development (ICABGRDScirpophaga incertulasS. incertulasS.incertulasS. incertulasS. incertulasS. incertulasABSTRACTINTRODUCTION

  10. Weak mitochondrial targeting sequence determines tissue-specific subcellular localization of glutamine synthetase in liver and brain cells.

    NARCIS (Netherlands)

    Matthews, G.D.; Gur, N.; Koopman, W.J.H.; Pines, O.; Vardimon, L.

    2010-01-01

    Evolution of the uricotelic system for ammonia detoxification required a mechanism for tissue-specific subcellular localization of glutamine synthetase (GS). In uricotelic vertebrates, GS is mitochondrial in liver cells and cytoplasmic in brain. Because these species contain a single copy of the GS

  11. Infantile mitochondrial disorder associated with subclinical hypothyroidism is caused by a rare mitochondrial DNA 8691A>G mutation: a case report.

    Science.gov (United States)

    Hao, Xiaosheng; Liu, Songyan; Wu, Xuemei; Hao, Yunpeng; Chen, Yinbo

    2015-07-08

    Mitochondrial diseases, ~15% of cases, are because of mitochondrial DNA mutations. This study reported a case of an 11-month-old male infant with mitochondrial disease characteristics and subclinical hypothyroidism (a high thyrotropin level). Laboratory tests were all normal and the enzymatic activities of mitochondrial respiratory chain enzyme complexes I-IV were normal. However, thyroid tests showed abnormal results, and complex V showed a deficiency activity of 52.8% of the low limit of healthy individuals (normal activity is >60.7%). The patient experienced convulsions, and the 24-h ambulatory electroencephalography results showed abnormalities, but the electromyography results were normal. Axial brain MRI showed abnormal dysplasia over the white matter myelination in the bilateral horn of the lateral ventricle. Furthermore, DNA sequencing data showed a novel mutation at 8691A>G of the mitochondrial ATPase 6 gene. This case adds to the growing literature of mitochondrial disorders caused by mitochondrial ATPase 6 mutations.

  12. Identification of sequence polymorphism in the D-Loop region of mitochondrial DNA as a risk factor for hepatocellular carcinoma with distinct etiology

    Directory of Open Access Journals (Sweden)

    Zhang Ruixing

    2010-09-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is frequently preceded by hepatitis virus infection or alcohol abuse. Genetic backgrounds may increase susceptibility to HCC from these exposures. Methods Mitochondrial DNA (mtDNA of peripheral blood, tumor, and/or adjacent non-tumor tissue from 49 hepatitis B virus-related and 11 alcohol-related HCC patients, and from 38 controls without HCC were examined for single nucleotide polymorphisms (SNPs and mutations in the D-Loop region. Results Single nucleotide polymorphisms (SNPs in the D-loop region of mt DNA were examined in HCC patients. Individual SNPs, namely the 16266C/T, 16293A/G, 16299A/G, 16303G/A, 242C/T, 368A/G, and 462C/T minor alleles, were associated with increased risk for alcohol- HCC, and the 523A/del was associated with increased risks of both HCC types. The mitochondrial haplotypes under the M haplogroup with a defining 489C polymorphism were detected in 27 (55.1% of HBV-HCCand 8 (72.7% of alcohol- HCC patients, and in 15 (39.5% of controls. Frequencies of the 489T/152T, 489T/523A, and 489T/525C haplotypes were significantly reduced in HBV-HCC patients compared with controls. In contrast, the haplotypes of 489C with 152T, 249A, 309C, 523Del, or 525Del associated significantly with increase of alcohol-HCC risk. Mutations in the D-Loop region were detected in 5 adjacent non-tumor tissues and increased in cancer stage (21 of 49 HBV-HCC and 4 of 11 alcohol- HCC, p Conclusions In sum, mitochondrial haplotypes may differentially predispose patients to HBV-HCC and alcohol-HCC. Mutations of the mitochondrial D-Loop sequence may relate to HCC development.

  13. The complete mitochondrial sequence of the"living fossil" Tricholepidion gertschi: structure, phylogenetic implications, and the description of a novel A/T asymmetrical bias

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, F.; Frati, F.; Carapelli, A.; Dallai, R.; Boore, J.

    2002-06-23

    mitochondrial genome sequences to study the evolution and differentiation of the most basal hexapod groups, including Tricholepidion. Mitochondrial genomics, that is analysis of various features of the mitochondrial genome such as gene order and the analysis of the concatenated sequence of its genes, has proved to be a very powerful tool for the study of ancient phylogenetic relationships (Boore, 2000; Boore and Brown, 1995; Boore and Brown, 1998; Garcia-Machado et al., 1999; Hwang et al., 2001; Nardi et al., 2001), and its application seems to be appropriate for the problem under study ((Nardi et al., 2001), this study). In addition, complete mitochondrial sequences, with the advent of automatic sequencing tools, are accumulating rapidly, but there is a strong bias towards the better known or economically important groups, while only two sequences have been produced for the more basal, and evolutionarily more intriguing, hexapod orders. The complete sequence of the mitochondrial genome of Tricholepidion gertschi is the second among apterygotans, following the collembolan T.bielanensis (Nardi et al., 2001).

  14. The systematic position of Leptorhynchoides (Kostylew, 1924) and Pseudoleptorhynchoides (Salgado-Maldonado, 1976), inferred from nuclear and mitochondrial DNA gene sequences.

    Science.gov (United States)

    García-Varela, Martín; González-Oliver, Angélica

    2008-08-01

    The systematic relationships of acanthocephalans, including Leptorhynchoides and Pseudoleptorhynchoides that occur in freshwater and marine fishes in Neartic and Neotropical regions, are enigmatic. Leptorhynchoides (3 species) and Pseudoleptorhynchoides (1 species) are presently classified in the Rhadinorhynchidae. However, recent molecular and morphological phylogenies have challenged the monophyly of this family. Sequences of nuclear ribosomal DNA (large subunit, small subunit regions) and the mitochondrial cytochrome c oxidase subunit I gene of Leptorhynchoides thecatus and Pseudoleptorhynchoides lamothei were used in phylogenetic analyses with available sequences of 26 other acanthocephalans. Maximum parsimony and maximum likelihood analyses were identical in placing both genera in the Illiosentidae. Bootstrap analyses also indicate that placement of these genera with members of Illiosentidae is reliably supported.

  15. The complete mitochondrial genome of the invasive Ponto-Caspian goby Ponticola kessleri obtained from high-throughput sequencing using the Ion Torrent Personal Genome Machine.

    Science.gov (United States)

    Kalchhauser, Irene; Kutschera, Verena E; Burkhardt-Holm, Patricia

    2016-05-01

    We report the first complete mitochondrial genome (mitogenome) of an invasive Ponto-Caspian goby, Ponticola kessleri (bighead goby, Günther 1891). Ion Torrent PGM sequencing of total DNA from two individuals yielded a contig of 16,971 bp, with overlapping ends located in the repetitive control region, which was validated using Sanger sequencing. The final mitogenome of Ponticola kessleri has a size of 16,890 bp and contains the expected gene configuration of 13 protein-coding genes, 2 rRNA genes and 22 tRNA genes. In a comparison with complete mitogenomes from other goby species, we identified a translocation of tRNA-Glu in the mitogenome of P. kessleri. Rearrangements are unique and rare events, and can thus provide phylogenetic information.

  16. Mitochondrial genomes and divergence times of crocodile newts: inter-islands distribution of Echinotriton andersoni and the origin of a unique repetitive sequence found in Tylototriton mt genomes.

    Science.gov (United States)

    Kurabayashi, Atsushi; Nishitani, Takuma; Katsuren, Seiki; Oumi, Shohei; Sumida, Masayuki

    2012-01-01

    Crocodile newts, which constitute the genera Echinotriton and Tylototriton, are known as living fossils, and these genera comprise many endangered species. To identify mitochondrial (mt) genes suitable for future population genetic analyses for endangered taxa, we determined the complete nucleotide sequences of the mt genomes of the Japanese crocodile newt Echinotriton andersoni and Himalayan crocodile newt Tylototriton verrucosus. Although the control region (CR) is known as the most variable mtDNA region in many animal taxa, the CRs of crocodile newts are highly conservative. Rather, the genes of NADH dehydrogenase subunits and ATPase subunit 6 were found to have high sequence divergences and to be usable for population genetics studies. To estimate the inter-population divergence ages of E. andersoni endemic to the Ryukyu Islands, we performed molecular dating analysis using whole and partial mt genomic data. The estimated divergence ages of the inter-island individuals are older than the paleogeographic segmentation ages of the islands, suggesting that the lineage splits of E. andersoni populations were not caused by vicariant events. Our phylogenetic analysis with partial mt sequence data also suggests the existence of at least two more undescribed species in the genus Tylototriton. We also found unusual repeat sequences containing the 3' region of cytochrome apoenzyme b gene, whole tRNA-Thr gene, and a noncoding region (the T-P noncoding region characteristic in caudate mtDNAs) from T. verrucosus mtDNA. Similar repeat sequences were found in two other Tylototriton species. The Tylototriton taxa with the repeats become a monophyletic group, indicating a single origin of the repeat sequences. The intra-and inter-specific comparisons of the repeat sequences suggest the occurrences of homologous recombination-based concerted evolution among the repeat sequences.

  17. Reactive Secondary Sequence Oxidative Pathology Polymer Model and Antioxidant Tests.

    Science.gov (United States)

    Petersen, Richard C

    To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-β-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0-7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E

  18. Deep RNA sequencing reveals the smallest known mitochondrial micro exon in animals: The placozoan cox1 single base pair exon.

    Science.gov (United States)

    Osigus, Hans-Jürgen; Eitel, Michael; Schierwater, Bernd

    2017-01-01

    The phylum Placozoa holds a key position for our understanding of the evolution of mitochondrial genomes in Metazoa. Placozoans possess large mitochondrial genomes which harbor several remarkable characteristics such as a fragmented cox1 gene and trans-splicing cox1 introns. A previous study also suggested the existence of cox1 mRNA editing in Trichoplax adhaerens, yet the only formally described species in the phylum Placozoa. We have analyzed RNA-seq data of the undescribed sister species, Placozoa sp. H2 ("Panama" clone), with special focus on the mitochondrial mRNA. While we did not find support for a previously postulated cox1 mRNA editing mechanism, we surprisingly found two independent transcripts representing intermediate cox1 mRNA splicing stages. Both transcripts consist of partial cox1 exon as well as overlapping intron fragments. The data suggest that the cox1 gene harbors a single base pair (cytosine) micro exon. Furthermore, conserved group I intron structures flank this unique micro exon also in other placozoans. We discuss the evolutionary origin of this micro exon in the context of a self-splicing intron gain in the cox1 gene of the last common ancestor of extant placozoans.

  19. The phylogeny of acorn weevils (genus Curculio) from mitochondrial and nuclear DNA sequences: the problem of incomplete data.

    Science.gov (United States)

    Hughes, Joseph; Vogler, Alfried P

    2004-08-01

    We considered the contribution of two mitochondrial and two nuclear data sets for the phylogenetic reconstruction of 22 species of seed beetles in the genus Curculio (Coleoptera: Cuculionidae). A phylogenetic tree from representatives found on various hosts was inferred from a combined data set of mitochondrial DNA cytochrome oxidase subunit I, mitochondrial cytochrome b, nuclear elongation factor 1alpha, and nuclear phosphoglycerate mutase, used for the first time as a molecular marker. Separate parsimony analyses of each data set showed that individual gene trees were mainly congruent and often complementary in the support of clades but the analysis was complicated by failure of PCR amplification of nuclear genes for many taxa and hence missing data entries. When the four gene partitions were combined in a simultaneous analysis despite the missing data, this increased the resolution and taxonomic coverage compared to the individual source trees. Alternative approaches of combining the information via supertree methodology produced a comparatively less resolved tree, and hence seem inferior to combining data matrices even in cases where numerous taxa are missing. The molecular data suggest a classification of the European species into two species groups that are in accordance with morphological characteristics but the data do no support any of the previously recognised American species groups.

  20. Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification.

    Science.gov (United States)

    Ghatani, Sudeep; Shylla, Jollin Andrea; Roy, Bishnupada; Tandon, Veena

    2014-09-15

    Amphistomiasis, a neglected trematode infectious disease of ruminants, is caused by numerous species of amphistomes belonging to six families under the Superfamily Paramphistomoidea. In the present study, four frequently used DNA markers, viz. nuclear ribosomal 28S (D1-D3 regions), 18S and ITS2 and mitochondrial COI genes, as well as sequence motifs from these genes were evaluated for their utility in species characterization of members of the amphistomes' Family Gastrothylacidae commonly prevailing in Northeast India. In sequence and phylogenetic analyses the COI gene turned out to be the most useful marker in identifying the gastrothylacid species, with the exception of Gastrothylax crumenifer, which showed a high degree of intraspecific variations among its isolates. The sequence analysis data also showed the ITS2 region to be effective for interspecies characterization, though the 28S and 18S genes were found unsuitable for the purpose. On the other hand, sequence motif analysis data revealed the motifs from the COI gene to be highly conserved and specific for their target species which allowed accurate in silico identification of the gastrothylacid species irrespective of their intraspecific differences. We propose the use of COI motifs generated in the study as a potential tool for identification of these species. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The nucleotide sequence of the variable region in Trypanosoma brucei completes the sequence analysis of the maxicircle component of mitochondrial kinetoplast DNA

    NARCIS (Netherlands)

    Sloof, P.; de Haan, A.; Eier, W.; van Iersel, M.; Boel, E.; van Steeg, H.; Benne, R.

    1992-01-01

    The nucleotide sequence of two non-contiguous DNA fragments of 4.0 and 2.2 kb, respectively, of the kinetoplast maxicircle of Trypanosoma brucei brucei EATRO strain 427 has been determined, completing the sequence analysis of the so-called variable region (see also de Vries et al., 1988, Mol.

  2. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  3. Clinical and pathological characteristics of mitochondrial myopathy and the screening value of simplified serum lactic acid exercise test

    Directory of Open Access Journals (Sweden)

    Xiao-fen ZHU

    2016-12-01

    Full Text Available Objective To analyze clinical and pathological characteristics of mitochondrial myopathy (MM in 15 patients, and to study the value of simplified serum lactic acid exercise test in the screening of mitochondrial myopathy.  Methods A total of 15 patients with mitochondrial myopathy diagnosed clinically and pathologically, 11  patients with other muscular diseases (OM, and 21 normal controls were collected. All subjects went up and down stairs for 5 min with medium effort. Blood samples for serum lactic acid detection were collected from all subjects before exercise, immediately after exercise and 10 min after exercise. Serum lactic acid levels were compared among 3 groups and among 3 time points. Results Patients with mitochondrial myopathy mainly presented as paroxysmally progressive muscular   soreness and weakness. Histopathological examination showed there were 8 cases with the proportion of ragged red fibers (RRF more than 5%. Serum lactic acid level before exercise, immediately after exercise and 10 min after exercise were (3.57 ± 1.88, (10.98 ± 4.84 and (7.87 ± 4.38 mmol/L in MM group, (1.89 ± 0.98, (6.05 ± 4.07 and (4.13 ± 3.14 mmol/L in OM group, (1.91 ± 0.53, (3.37 ± 1.22 and (2.52 ± 0.89 mmol/L in control group. Serum lactic acid level in MM group was significantly higher than that in control and OM groups before exercise (P = 0.000, 0.001, immediately after exercise (P = 0.000, 0.001, and 10 min after exercise (P = 0.000, 0.003. Serum lactic acid level in OM group was significantly higher than that in control group immediately after exercise (P = 0.042. Serum lactic acid level in 3 groups immediately after exercise (P = 0.000, 0.000, 0.003 and 10 min after exercise (P = 0.000, 0.000, 0.013 was significantly higher than that before exercise. Serum lactic acid level immediately after exercise was significantly higher than that 10 min after exercise in 3 groups (P = 0.000, 0.000, 0.003. Serum lactic acid level had most

  4. HP30-2, a mitochondrial PRAT protein for import of signal sequence-less precursor proteins in Arabidopsis thaliana.

    Science.gov (United States)

    Rossig, Claudia; Gray, John; Valdes, Oscar; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Reinbothe, Steffen

    2017-08-01

    Chloroplasts and mitochondria contain a family of putative preprotein and amino acid transporters designated PRAT. Here, we analyzed the role of two previously characterized PRAT protein family members, encoded by At3g49560 (HP30) and At5g24650 (HP30-2), in planta using a combination of genetic, cell biological and biochemical approaches. Expression studies and green fluorescent protein tagging identified HP30-2 both in chloroplasts and mitochondria, whereas HP30 was located exclusively in chloroplasts. Biochemical evidence was obtained for an association of mitochondrial HP30-2 with two distinct protein complexes, one containing the inner membrane translocase TIM22 and the other containing an alternative NAD(P)H dehydrogenase subunit (NDC1) implicated in a respiratory complex 1-like electron transport chain. Through its association with TIM22, HP30-2 is involved in the uptake of carrier proteins and other, hydrophobic membrane proteins lacking cleavable NH2 -terminal presequences, whereas HP30-2's interaction with NDC1 may permit controlling mitochondrial biogenesis and activity. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. Carposina sasakii (Lepidoptera: Carposinidae) in its Native Range Consists of Two Sympatric Cryptic Lineages as Revealed by Mitochondrial COI Gene Sequences.

    Science.gov (United States)

    Wang, J; Yu, Y; Li, L-L; Guo, D; Tao, Y-L; Chu, D

    2015-01-01

    The genetic differentiation and genetic structure of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was investigated in China, where the moth is native. The mitochondrial cytochrome c oxidase I (COI) gene of 180 individuals from 16 collections were sequenced and analyzed. The results showed that two sympatric and cryptic mtDNA lineages existed within C. sasakii in China. The genetic differentiation has significant correlation with the geographical distance, but has no evidence for host plant associations. Our results of haplotype distribution suggest that the C. sasakii individuals can naturally move between areas, while the movement of individuals between long-distance locations may be associated with human activities such as the transport of fruit. Finally, an mitochondrial COI gene PCR-RFLP method was developed to differentiate the two cryptic mtDNA lineages within C. sasakii, which provides rapid and reliable tool for the future research of the two lineages. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene

    DEFF Research Database (Denmark)

    Campos, Paula; Kristensen, Tommy; Orlando, Ludovic Antoine Alexandre

    2010-01-01

    of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species' genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two......Prior to the Holocene, the range of the saiga antelope (Saiga tatarica) spanned from France to the Northwest Territories of Canada. Although its distribution subsequently contracted to the steppes of Central Asia, historical records indicate that it remained extremely abundant until the end...... and includes samples dating from between 40,400 to 10,250 (14) C ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate...

  7. A new interstitial ostracod species of the genus Paracobanocythere from Vietnam, with mitochondrial CO1 sequence data of three Asian species

    Science.gov (United States)

    Tanaka, Hayato; Dung, Le Doan; Higashi, Ryouichi; Tsukagoshi, Akira

    2016-01-01

    Abstract This study is a first report of an interstitial ostracod from Southeast Asia. The ostracod species, Paracobanocythere vietnamensis sp. n., was found in the marine interstitial environment of Phu Quoc Island, Vietnam. Thus far, three species of this genus have been described. The morphology of the carapace as well as the appendages of this new species are quite similar to Paracobanocythere hawaiiensis and Paracobanocythere watanabei. However, we found that they could be easily distinguished according to the morphology of the male copulatory organ. Additionally, we estimated the evolutionary distances among these three species based on nucleotide and amino acid sequences of the mitochondrial CO1 gene. Similar morphologies of carapaces and appendages, and relatively small evolutionary distances according to CO1 between Paracobanocythere vietnamensis sp. n. and Paracobanocythere watanabei suggest that these two species are very closely related. PMID:27006603

  8. The Application of Next Generation Sequencing Technology on Noninvasive Prenatal Test

    DEFF Research Database (Denmark)

    Jiang, Hui

    generation sequencing, makes NIPT for rare diseases possible. In this study, we applied sequencing-based noninvasive prenatal testing for common aneuoploidy detection, such as trisomy 21, 18, and 13. The new approach using low-coverage whole genome sequencing for maternal plasma DNA could achieve...

  9. Analysis of genetic variability within Thelazia callipaeda (Nematoda: Thelazioidea) from Europe and Asia by sequencing and mutation scanning of the mitochondrial cytochrome c oxidase subunit 1 gene.

    Science.gov (United States)

    Otranto, D; Testini, G; De Luca, F; Hu, M; Shamsi, S; Gasser, R B

    2005-10-01

    This study investigated genetic variability within the 'eyeworm'Thelazia callipaeda (Nematoda: Thelazioidea) from Europe and Asia by polymerase chain reaction (PCR)-coupled sequencing and mutation scanning of the mitochondrial cytochrome c oxidase subunit 1 gene (cox 1). Eight different sequence variants of cox 1 (haplotypes) were determined for the 50 individual adult specimens of T. callipaeda (from dogs, foxes or cats from Italy, Germany and the Netherlands and from dogs from China and Korea). Nucleotide variation (0.3--2%) was detected at 23 of 649 positions in the cox 1. Six of these positions were invariable among all 37 individuals from Europe and among the 13 individuals from Asia (irrespective of host origin) but differed (five GA and one CT changes) between Europe and Asia. PCR-based single-strand conformation polymorphism (SSCP) analysis of the most variable portion (v-cox 1) of the cox 1 was validated (for a subset of samples) as a tool to rapidly screen for genetic (haplotypic) variability. The results for the SSCP analysis and sequencing were concordant, indicating that the mutation scanning approach provides a useful tool for investigating the population genetics and molecular ecology of T. callipaeda.

  10. Analysis of the genetic variation in mitochondrial DNA, Y-chromosome sequences, and MC1R sheds light on the ancestry of Nigerian indigenous pigs.

    Science.gov (United States)

    Adeola, Adeniyi C; Oluwole, Olufunke O; Oladele, Bukola M; Olorungbounmi, Temilola O; Boladuro, Bamidele; Olaogun, Sunday C; Nneji, Lotanna M; Sanke, Oscar J; Dawuda, Philip M; Omitogun, Ofelia G; Frantz, Laurent; Murphy, Robert W; Xie, Hai-Bing; Peng, Min-Sheng; Zhang, Ya-Ping

    2017-06-26

    The history of pig populations in Africa remains controversial due to insufficient evidence from archaeological and genetic data. Previously, a Western ancestry for West African pigs was reported based on loci that are involved in the determination of coat color. We investigated the genetic diversity of Nigerian indigenous pigs (NIP) by simultaneously analyzing variation in mitochondrial DNA (mtDNA), Y-chromosome sequence and the melanocortin receptor 1 (MC1R) gene. Median-joining network analysis of mtDNA D-loop sequences from 201 NIP and previously characterized loci clustered NIP with populations from the West (Europe/North Africa) and East/Southeast Asia. Analysis of partial sequences of the Y-chromosome in 57 Nigerian boars clustered NIP into lineage HY1. Finally, analysis of MC1R in 90 NIP resulted in seven haplotypes, among which the European wild boar haplotype was carried by one individual and the European dominant black by most of the other individuals (93%). The five remaining unique haplotypes differed by a single synonymous substitution from European wild type, European dominant black and Asian dominant black haplotypes. Our results demonstrate a European and East/Southeast Asian ancestry for NIP. Analyses of MC1R provide further evidence. Additional genetic analyses and archaeological studies may provide further insights into the history of African pig breeds. Our findings provide a valuable resource for future studies on whole-genome analyses of African pigs.

  11. Analysis of full-length mitochondrial DNA D-loop sequences from Macaca fascicularis of different geographical origin reveals novel haplotypes.

    Science.gov (United States)

    Badhan, Anjna; Eichstaedt, Christina A; Almond, Neil M; Knapp, Leslie A; Rose, Nicola J

    2015-06-01

    Cynomolgus macaques are indigenous to Asia occupying a range of geographical areas. A non-indigenous population established on Mauritius approximately 500 years ago. Mauritian cynomolgus macaques are recognised as having low genetic diversity compared to Indonesian macaques, from which they originated. As cynomolgus macaques are widely used as a biomedical model, there have been many studies of their genetic relationships. However, population diversity and relationships have only been assessed through analysis of either the hypervariable region I or II separately within the D-loop region of the mitochondrial genome in these macaques. Using sequencing, we defined haplotypes encompassing the full D-loop sequence for Mauritian and Indonesian cynomolgus macaques. We evaluated the haplotype relationships by constructing a median-joining network based on full-length D-loop sequences, which has not been reported previously. Our data allow a complete D-loop haplotype, including a hereto unreported polymorphic region, to be defined to aid the resolution of populations of cynomolgus macaques and which highlights the value in analysing both D-loop hypervariable regions in concert. © 2015 The Authors. Journal of Medical Primatology Published by John Wiley & Sons Ltd.

  12. A Method for Next-Generation Sequencing of Paired Diagnostic and Remission Samples to Detect Mitochondrial DNA Mutations Associated with Leukemia.

    Science.gov (United States)

    Pagani, Ilaria S; Kok, Chung H; Saunders, Verity A; Van der Hoek, Mark B; Heatley, Susan L; Schwarer, Anthony P; Hahn, Christopher N; Hughes, Timothy P; White, Deborah L; Ross, David M

    2017-09-01

    Somatic mitochondrial DNA (mtDNA) mutations have been identified in many human cancers, including leukemia. To identify somatic mutations, it is necessary to have a control tissue from the same individual for comparison. When patients with leukemia achieve remission, the remission peripheral blood may be a suitable and easily accessible control tissue, but this approach has not previously been applied to the study of mtDNA mutations. We have developed and validated a next-generation sequencing approach for the identification of leukemia-associated mtDNA mutations in 26 chronic myeloid leukemia patients at diagnosis using either nonhematopoietic or remission blood samples as the control. The entire mt genome was amplified by long-range PCR and sequenced using Illumina technology. Variant caller software was used to detect mtDNA somatic mutations, and an empirically determined threshold of 2% was applied to minimize false-positive results because of sequencing errors. Mutations were called against both nonhematopoietic and remission controls: the overall concordance between the two approaches was 81% (73/90 mutations). Some discordant results were because of the presence of somatic mutations in remission samples, because of either minimal residual disease or nonleukemic hematopoietic clones. This method could be applied to study somatic mtDNA mutations in leukemia patients who achieve minimal residual disease, and in patients with nonhematopoietic cancers who have a matched uninvolved tissue available. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Genome-wide mapping of nuclear mitochondrial DNA sequences links DNA replication origins to chromosomal double-strand break formation in Schizosaccharomyces pombe

    Science.gov (United States)

    Lenglez, Sandrine; Hermand, Damien; Decottignies, Anabelle

    2010-01-01

    Chromosomal double-strand breaks (DSBs) threaten genome integrity and repair of these lesions is often mutagenic. How and where DSBs are formed is a major question conveniently addressed in simple model organisms like yeast. NUMTs, nuclear DNA sequences of mitochondrial origin, are present in most eukaryotic genomes and probably result from the capture of mitochondrial DNA (mtDNA) fragments into chromosomal breaks. NUMT formation is ongoing and was reported to cause de novo human genetic diseases. Study of NUMTs is likely to contribute to the understanding of naturally occurring chromosomal breaks. We show that Schizosaccharomyces pombe NUMTs are exclusively located in noncoding regions with no preference for gene promoters and, when located into promoters, do not affect gene transcription level. Strikingly, most noncoding regions comprising NUMTs are also associated with a DNA replication origin (ORI). Chromatin immunoprecipitation experiments revealed that chromosomal NUMTs are probably not acting as ORI on their own but that mtDNA insertions occurred directly next to ORIs, suggesting that these loci may be prone to DSB formation. Accordingly, induction of excessive DNA replication origin firing, a phenomenon often associated with human tumor formation, resulted in frequent nucleotide deletion events within ORI3001 subtelomeric chromosomal locus, illustrating a novel aspect of DNA replication-driven genomic instability. How mtDNA is fragmented is another important issue that we addressed by sequencing experimentally induced NUMTs. This highlighted regions of S. pombe mtDNA prone to breaking. Together with an analysis of human NUMTs, we propose that these fragile sites in mtDNA may correspond to replication pause sites. PMID:20688779

  14. Mitochondrial sequence analysis of Salamandra taxa suggests old splits of major lineages and postglacial recolonizations of central Europe from distinct source populations of Salamandra salamandra.

    Science.gov (United States)

    Steinfartz, S; Veith, M; Tautz, D

    2000-04-01

    Representatives of the genus Salamandra occur in Europe, Northern Africa and the Near East. Many local variants are known but species and subspecies status of these is still a matter of dispute. We have analysed samples from locations covering the whole expansion range of Salamandra by sequence analysis of mitochondrial D-loop regions. In addition, we have calibrated the rate of divergence of the D-loop on the basis of geologically dated splits of the closely related genus Euproctus. Phylogenetic analysis of the sequences suggests that six major monophyletic groups exist (S. salamandra, S. algira, S. infraimmaculata, S. corsica, S. atra and S. lanzai) which have split between 5 and 13 million years ago (Ma). We find that each of the Salamandra species occupies a distinct geographical area, with the exception of S. salamandra. This species occurs all over Europe from Spain to Greece, suggesting that it was the only species that has recolonized Central Europe after the last glaciation. The occurrence of specific east and west European haplotypes, as well as allozyme alleles in the S. salamandra populations suggests that this recolonization has started from at least two source populations, possibly originating in the Iberian peninsula and the Balkans. Two subpopulations of S. salamandra were found that are genetically very distinct from the other populations. One lives in northern Spain (S. s. bernardezi) and one in southern Italy (S. s. gigliolii). Surprisingly, the mitochondrial lineages of these subpopulations group closer together than the remainder S. salamandra lineages. We suggest that these populations are remnants of a large homogeneous population that had colonized Central Europe in a previous interglacial period, approximately 500 000 years ago. Animals from these populations were apparently not successful in later recolonizations. Still, they have maintained their separate genetic identity in their areas, although they are not separated by geographical

  15. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  16. 31P-MRS of skeletal muscle is not a sensitive diagnostic test for mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina Dysgaard; Quistorff, Bjørn; Wibrand, Flemming

    2007-01-01

    investigated for the following: 1) (31)P-MRS of lower arm and leg muscles before and after exercise, 2) resting and peak-exercise induced increases of plasma lactate, 3) muscle morphology and -mitochondrial enzyme activity, 4) maximal oxygen uptake (VO(2max)), 5) venous oxygen desaturation during handgrip...... impaired citrate synthase-corrected complex I activity. Resting PCr/P(i) ratio and leg P(i) recovery were lower in MM patients vs. healthy subjects. PCr and ATP production after exercise were similar in patients and healthy subjects. Although the specificity for MM of some (31)P-MRS variables was as high...

  17. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria

    NARCIS (Netherlands)

    Ellington, M.J.; Ekelund, O.; Aarestrup, F.M.; Canton, R.; Doumith, M.; Giske, C.; Grundman, H.; Hasman, H.; Holden, M.T.G.; Hopkins, K.L.; Iredell, J.; Kahlmeter, G.; Köser, C.U.; MacGowan, A.; Mevius, D.; Mulvey, M.; Naas, T.; Peto, T.; Rolain, J.M.; Samuelsen,; Woodford, N.

    2017-01-01

    Whole genome sequencing (WGS) offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee on Antimicrobial Susceptibility Testing established a subcommittee to review the current development status of WGS for bacterial antimicrobial susceptibility testing

  18. The 6-min mastication test: a unique test to assess endurance of continuous chewing, normal values, reliability, reproducibility and usability in patients with mitochondrial disease.

    Science.gov (United States)

    van den Engel-Hoek, L; Knuijt, S; van Gerven, M H J C; Lagarde, M L J; Groothuis, J T; de Groot, I J M; Janssen, M C H

    2017-03-01

    In patients with mitochondrial disease, fatigue and muscle problems are the most common complaints. They also experience these complaints during mastication. To measure endurance of continuous mastication in patients with mitochondrial diseases, the 6-min mastication test (6MMT) was developed. This study included the collection of normal data for the 6MMT in a healthy population (children and adults). During 6 min of continuous mastication on a chew tube chewing cycles per minute, total amount of chewing cycles and the difference between minute 1 (M1 ) and minute 6 (M2 ) were collected in 271 healthy participants (5-80 years old). These results were compared with those of nine paediatric and 25 adult patients with a mitochondrial disease. Visual analogue scale (VAS) scores were collected directly after the test and after 5 min. A qualitative rating was made on masticatory movements. The reproducibility of the 6MMT in the healthy population with an interval of approximately 2 weeks was good. The inter-rater reliability for the observations was excellent. The patient group demonstrated lower total amount of chewing cycles or had greater differences between M1 and M6 . The 6MMT is a reliable and objective test to assess endurance of continuous chewing. It demonstrates the ability of healthy children and adults to chew during 6 min with a highly stable frequency of mastication movements. The test may give an explanation for the masticatory problems in patient groups, who are complaining of pain and fatigue during mastication. © 2017 John Wiley & Sons Ltd.

  19. Test on the structure of biological sequences via Chaos Game Representation.

    Science.gov (United States)

    Cénac, Peggy

    2005-01-01

    In this paper biological sequences are modelled by stationary ergodic sequences. A new family of statistical tests to characterize the randomness of the inputs is proposed and analyzed. Tests for independence and for the determination of the appropriate order of a Markov chain are constructed with the Chaos Game Representation (CGR), and applied to several genomes.

  20. Use of nuclear and mitochondrial DNA PCR and sequencing for molecular identification of Diphyllobothrium isolates potentially infective for humans

    Directory of Open Access Journals (Sweden)

    Yera H.

    2008-09-01

    Full Text Available Tapeworms of the genus Diphyllobothrium (Cobold, 1858 are widely distributed all around the world and some of them are agents of human diphyllobothriasis. Approximately 50 species have been described within the Diphyllobothrium genus but only 13 are human pathogens. Species identification by using morphological criteria is very difficult. We determined the value of 18S ribosomal RNA gene, internal transcribed spacer (ITS and cytochrome c oxidase subunit 1 gene (COI sequences to differentiate between Diphyllobothrium isolates. Sequences from 18 isolates (larvae or adults of D. latum, D. nihonkaiense, D. ditremum, D. dentriticum and D. stemmacephalum species were obtained. COI region sequences analysis was clearly more discriminative than those of the ITS1 and 18S rRNA and was a useful tool for identifying specimens.