WorldWideScience

Sample records for testing mitochondrial sequences

  1. A functional test of Neandertal and modern human mitochondrial targeting sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gralle, Matthias, E-mail: gralle@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, 21941-590 Rio de Janeiro (Brazil); Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany); Schaefer, Ingo; Seibel, Peter [Department of Molecular Cell Therapy, Leipzig University, Deutscher Platz 5, 04103 Leipzig (Germany); Paeaebo, Svante [Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany)

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  2. A functional test of Neandertal and modern human mitochondrial targeting sequences

    International Nuclear Information System (INIS)

    Gralle, Matthias; Schaefer, Ingo; Seibel, Peter; Paeaebo, Svante

    2010-01-01

    Research highlights: → Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. → The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. → In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  3. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  4. Mitochondrial DNA sequence evolution in shorebird populations

    NARCIS (Netherlands)

    Wenink, P.W.

    1994-01-01

    This thesis describes the global molecular population structure of two shorebird species, in particular of the dunlin, Calidris alpina, by means of comparative sequence analysis of the most variable part of the mitochondrial DNA (mtDNA) genome. There are several reasons

  5. Sequencing and comparing whole mitochondrial genomes ofanimals

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  6. Mitochondrial DNA sequence-based phylogenetic relationship ...

    Indian Academy of Sciences (India)

    cophaga ranges from 0.037–0.106 and 0.049–0.207 for COI and ND5 genes, respectively (tables 2 and 3). Analysis of genetic distance on the basis of sequence difference for both the mitochondrial genes shows very little genetic difference. The discrepancy in the phylogenetic trees based on individ- ual genes may be due ...

  7. Mitochondrial transcription factor A (Tfam) gene sequencing and mitochondrial evaluation in inherited retinal dysplasia in miniature schnauzer dogs.

    Science.gov (United States)

    Bauer, Bianca S; Forsyth, George W; Sandmeyer, Lynne S; Grahn, Bruce H

    2011-04-01

    Mitochondrial transcription factor A (Tfam) has been implicated in the pathogenesis of retinal dysplasia in miniature schnauzer dogs and it has been proposed that affected dogs have altered mitochondrial numbers, size, and morphology. To test these hypotheses the Tfam gene of affected and normal miniature schnauzer dogs with retinal dysplasia was sequenced and lymphocyte mitochondria were quantified, measured, and the morphology was compared in normal and affected dogs using transmission electron microscopy. For Tfam sequencing, retina, retinal pigment epithelium (RPE), and whole blood samples were collected. Total RNA was isolated from the retina and RPE and reverse transcribed to make cDNA. Genomic DNA was extracted from white blood cell pellets obtained from the whole blood samples. The Tfam coding sequence, 5' promoter region, intron1 and the 3' non-coding sequence of normal and affected dogs were amplified using polymerase chain reaction (PCR), cloned and sequenced. For electron microscopy, lymphocytes from affected and normal dogs were photographed and the mitochondria within each cross-section were identified, quantified, and the mitochondrial area (μm²) per lymphocyte cross-section was calculated. Lastly, using a masked technique, mitochondrial morphology was compared between the 2 groups. Sequencing of the miniature schnauzer Tfam gene revealed no functional sequence variation between affected and normal dogs. Lymphocyte and mitochondrial area, mitochondrial quantification, and morphology assessment also revealed no significant difference between the 2 groups. Further investigation into other candidate genes or factors causing retinal dysplasia in the miniature schnauzer is warranted.

  8. Testing mitochondrial sequences and anonymous nuclear markers for phylogeny reconstruction in a rapidly radiating group: molecular systematics of the Delphininae (Cetacea: Odontoceti: Delphinidae

    Directory of Open Access Journals (Sweden)

    Kingston Sarah E

    2009-10-01

    Full Text Available Abstract Background Many molecular phylogenetic analyses rely on DNA sequence data obtained from single or multiple loci, particularly mitochondrial DNA loci. However, phylogenies for taxa that have undergone recent, rapid radiation events often remain unresolved. Alternative methodologies for discerning evolutionary relationships under these conditions are desirable. The dolphin subfamily Delphininae is a group that has likely resulted from a recent and rapid radiation. Despite several efforts, the evolutionary relationships among the species in the subfamily remain unclear. Results Here, we compare a phylogeny estimated using mitochondrial DNA (mtDNA control region sequences to a multi-locus phylogeny inferred from 418 polymorphic genomic markers obtained from amplified fragment length polymorphism (AFLP analysis. The two sets of phylogenies are largely incongruent, primarily because the mtDNA tree provides very poor resolving power; very few species' nodes in the tree are supported by bootstrap resampling. The AFLP phylogeny is considerably better resolved and more congruent with relationships inferred from morphological data. Both phylogenies support paraphyly for the genera Stenella and Tursiops. The AFLP data indicate a close relationship between the two spotted dolphin species and recent ancestry between Stenella clymene and S. longirostris. The placement of the Lagenodelphis hosei lineage is ambiguous: phenetic analysis of the AFLP data is consistent with morphological expectations but the phylogenetic analysis is not. Conclusion For closely related, recently diverged taxa, a multi-locus genome-wide survey is likely the most comprehensive approach currently available for phylogenetic inference.

  9. Complete sequence of the mitochondrial genome of ...

    Indian Academy of Sciences (India)

    products were purified using the DNA Gel Extraction Kit. (Tiangen, Shanghai, China). The purified products obtained ..... Base composition of O. rubicundus mitochondrial genome. .... the help of fish sampled and identified by morphology.

  10. [Diagnosis of mitochondrial disorders in children with next generation sequencing].

    Science.gov (United States)

    Liu, Zhimei; Fang, Fang; Ding, Changhong; Zhang, Weihua; Li, Jiuwei; Yang, Xinying; Wang, Xiaohui; Wu, Yun; Wang, Hongmei; Liu, Liying; Han, Tongli; Wang, Xu; Chen, Chunhong; Lyu, Junlan; Wu, Husheng

    2015-10-01

    To explore the application value of next generation sequencing (NGS) in the diagnosis of mitochondrial disorders. According to mitochondrial disease criteria, genomic DNA was extracted using standard procedure from peripheral venous blood of patients with suspected mitochondrial disease collected from neurological department of Beijing Children's Hospital Affiliated to Capital Medical University between October 2012 and February 2014. Targeted NGS to capture and sequence the entire mtDNA and exons of the 1 000 nuclear genes related to mitochondrial structure and function. Clinical data were collected from patients diagnosed at a molecular level, then clinical features and the relationship between genotype and phenotype were analyzed. Mutation was detected in 21 of 70 patients with suspected mitochondrial disease, in whom 10 harbored mtDNA mutation, while 11 nuclear DNA (nDNA) mutation. In 21 patients, 1 was diagnosed congenital myasthenic syndrome with episodic apnea due to CHAT gene p.I187T homozygous mutation, and 20 were diagnosed mitochondrial disease, in which 10 were Leigh syndrome, 4 were mitochondrial encephalomyopathy with lactic acidosis and stroke like episodes syndrome, 3 were Leber hereditary optic neuropathy (LHON) and LHON plus, 2 were mitochondrial DNA depletion syndrome and 1 was unknown. All the mtDNA mutations were point mutations, which contained A3243G, G3460A, G11778A, T14484C, T14502C and T14487C. Ten mitochondrial disease patients harbored homozygous or compound heterozygous mutations in 5 genes previously shown to cause disease: SURF1, PDHA1, NDUFV1, SUCLA2 and SUCLG1, which had 14 mutations, and 7 of the 14 mutations have not been reported. NGS has a certain application value in the diagnosis of mitochondrial diseases, especially in Leigh syndrome atypical mitochondrial syndrome and rare mitochondrial disorders.

  11. Accurate quantification of mouse mitochondrial DNA without co-amplification of nuclear mitochondrial insertion sequences.

    Science.gov (United States)

    Malik, Afshan N; Czajka, Anna; Cunningham, Phil

    2016-07-01

    Mitochondria contain an extra-nuclear genome in the form of mitochondrial DNA (MtDNA), damage to which can lead to inflammation and bioenergetic deficit. Changes in MtDNA levels are increasingly used as a biomarker of mitochondrial dysfunction. We previously reported that in humans, fragments in the nuclear genome known as nuclear mitochondrial insertion sequences (NumtS) affect accurate quantification of MtDNA. In the current paper our aim was to determine whether mouse NumtS affect the quantification of MtDNA and to establish a method designed to avoid this. The existence of NumtS in the mouse genome was confirmed using blast N, unique MtDNA regions were identified using FASTA, and MtDNA primers which do not co-amplify NumtS were designed and tested. MtDNA copy numbers were determined in a range of mouse tissues as the ratio of the mitochondrial and nuclear genome using real time qPCR and absolute quantification. Approximately 95% of mouse MtDNA was duplicated in the nuclear genome as NumtS which were located in 15 out of 21 chromosomes. A unique region was identified and primers flanking this region were used. MtDNA levels differed significantly in mouse tissues being the highest in the heart, with levels in descending order (highest to lowest) in kidney, liver, blood, brain, islets and lung. The presence of NumtS in the nuclear genome of mouse could lead to erroneous data when studying MtDNA content or mutation. The unique primers described here will allow accurate quantification of MtDNA content in mouse models without co-amplification of NumtS. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  12. Mitochondrial genome sequence of the Tibetan wild ass (Equus kiang).

    Science.gov (United States)

    Luo, Yongjun; Chen, Yu; Liu, Fuyu; Jiang, Chunhua; Gao, Yuqi

    2011-02-01

    The Tibetan wild ass, or kiang (Equus kiang) is endemic to the cold and hypoxic (4000-7000 m above sea level) climates of the montane and alpine grasslands of the Tibetan Plateau. We report here the complete nucleotide sequence of the E. kiang mitochondrial genome. Our results show that E. kiang mitochondrial DNA is 16,634 bp long, and predicted to encode all the 37 genes that are typical for vertebrates.

  13. Mitochondrial genome sequencing helps show the evolutionary mechanism of mitochondrial genome formation in Brassica

    Science.gov (United States)

    2011-01-01

    Background Angiosperm mitochondrial genomes are more complex than those of other organisms. Analyses of the mitochondrial genome sequences of at least 11 angiosperm species have showed several common properties; these cannot easily explain, however, how the diverse mitotypes evolved within each genus or species. We analyzed the evolutionary relationships of Brassica mitotypes by sequencing. Results We sequenced the mitotypes of cam (Brassica rapa), ole (B. oleracea), jun (B. juncea), and car (B. carinata) and analyzed them together with two previously sequenced mitotypes of B. napus (pol and nap). The sizes of whole single circular genomes of cam, jun, ole, and car are 219,747 bp, 219,766 bp, 360,271 bp, and 232,241 bp, respectively. The mitochondrial genome of ole is largest as a resulting of the duplication of a 141.8 kb segment. The jun mitotype is the result of an inherited cam mitotype, and pol is also derived from the cam mitotype with evolutionary modifications. Genes with known functions are conserved in all mitotypes, but clear variation in open reading frames (ORFs) with unknown functions among the six mitotypes was observed. Sequence relationship analysis showed that there has been genome compaction and inheritance in the course of Brassica mitotype evolution. Conclusions We have sequenced four Brassica mitotypes, compared six Brassica mitotypes and suggested a mechanism for mitochondrial genome formation in Brassica, including evolutionary events such as inheritance, duplication, rearrangement, genome compaction, and mutation. PMID:21988783

  14. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    DEFF Research Database (Denmark)

    Miller, Webb; Drautz, Daniela I; Janecka, Jan E

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the ......We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support...... for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%-15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating...... at a very low genetic diversity shortly before extinction. Despite the samples' heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine...

  15. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Science.gov (United States)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  16. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii)

    DEFF Research Database (Denmark)

    Xu, Shu Qing; Yang, Ying Zhong; Zhou, Jun

    2005-01-01

    To investigate genetic mechanisms of high altitude adaptations of native mammals on the Tibetan Plateau, we compared mitochondrial sequences of the endangered Pantholops hodgsonii with its lowland distant relatives Ovis aries and Capra hircus, as well as other mammals. The complete mitochondrial...... genome of P. hodgsonii (16,498 bp) revealed a similar gene order as of other mammals. Because of tandem duplications, the control region of P. hodgsonii mitochondrial genome is shorter than those of O. aries and C. hircus, but longer than those of Bos species. Phylogenetic analysis based on alignments...... of the entire cytochrome b genes suggested that P. hodgsonii is more closely related to O. aries and C. hircus, rather than to species of the Antilopinae subfamily. The estimated divergence time between P. hodgsonii and O. aries is about 2.25 million years ago. Further analysis on natural selection indicated...

  17. Mitochondrial DNA sequence evolution in the Arctoidea.

    OpenAIRE

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that t...

  18. Mitochondrial D-loop sequence variation among Italian horse breeds

    Directory of Open Access Journals (Sweden)

    Zanotti Marta

    2004-11-01

    Full Text Available Abstract The genetic variability of the mitochondrial D-loop DNA sequence in seven horse breeds bred in Italy (Giara, Haflinger, Italian trotter, Lipizzan, Maremmano, Thoroughbred and Sarcidano was analysed. Five unrelated horses were chosen in each breed and twenty-two haplotypes were identified. The sequences obtained were aligned and compared with a reference sequence and with 27 mtDNA D-loop sequences selected in the GenBank database, representing Spanish, Portuguese, North African, wild horses and an Equus asinus sequence as the outgroup. Kimura two-parameter distances were calculated and a cluster analysis using the Neighbour-joining method was performed to obtain phylogenetic trees among breeds bred in Italy and among Italian and foreign breeds. The cluster analysis indicates that all the breeds but Giara are divided in the two trees, and no clear relationships were revealed between Italian populations and the other breeds. These results could be interpreted as showing the mixed origin of breeds bred in Italy and probably indicate the presence of many ancient maternal lineages with high diversity in mtDNA sequences.

  19. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences

    Science.gov (United States)

    Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira

    2009-01-01

    The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346

  20. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    Science.gov (United States)

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  1. Phylogeny of the Serrasalmidae (Characiformes based on mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Guillermo Ortí

    2008-01-01

    Full Text Available Previous studies based on DNA sequences of mitochondrial (mt rRNA genes showed three main groups within the subfamily Serrasalminae: (1 a "pacu" clade of herbivores (Colossoma, Mylossoma, Piaractus; (2 the "Myleus" clade (Myleus, Mylesinus, Tometes, Ossubtus; and (3 the "piranha" clade (Serrasalmus, Pygocentrus, Pygopristis, Pristobrycon, Catoprion, Metynnis. The genus Acnodon was placed as the sister taxon of clade (2+3. However, poor resolution within each clade was obtained due to low levels of variation among rRNA gene sequences. Complete sequences of the hypervariable mtDNA control region for a total of 45 taxa, and additional sequences of 12S and 16S rRNA from a total of 74 taxa representing all genera in the family are now presented to address intragroup relationships. Control region sequences of several serrasalmid species exhibit tandem repeats of short motifs (12 to 33 bp in the 3' end of this region, accounting for substantial length variation. Bayesian inference and maximum parsimony analyses of these sequences identify the same groupings as before and provide further evidence to support the following observations: (a Serrasalmus gouldingi and species of Pristobrycon (non-striolatus form a monophyletic group that is the sister group to other species of Serrasalmus and Pygocentrus; (b Catoprion, Pygopristis, and Pristobrycon striolatus form a well supported clade, sister to the group described above; (c some taxa assigned to the genus Myloplus (M. asterias, M tiete, M ternetzi, and M rubripinnis form a well supported group whereas other Myloplus species remain with uncertain affinities (d Mylesinus, Tometes and Myleus setiger form a monophyletic group.

  2. The complete mitochondrial genome sequence of Eimeria magna (Apicomplexa: Coccidia).

    Science.gov (United States)

    Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Liu, Guo-Hua; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-01-01

    In the present study, we determined the complete mitochondrial DNA (mtDNA) sequence of Eimeria magna from rabbits for the first time, and compared its gene contents and genome organizations with that of seven Eimeria spp. from domestic chickens. The size of the complete mt genome sequence of E. magna is 6249 bp, which consists of 3 protein-coding genes (cytb, cox1 and cox3), 12 gene fragments for the large subunit (LSU) rRNA, and 7 gene fragments for the small subunit (SSU) rRNA, without transfer RNA genes, in accordance with that of Eimeria spp. from chickens. The putative direction of translation for three genes (cytb, cox1 and cox3) was the same as those of Eimeria species from domestic chickens. The content of A + T is 65.16% for E. magna mt genome (29.73% A, 35.43% T, 17.09 G and 17.75% C). The E. magna mt genome sequence provides novel mtDNA markers for studying the molecular epidemiology and population genetics of Eimeria spp. and has implications for the molecular diagnosis and control of rabbit coccidiosis.

  3. A Molecular Phylogeny of Hemiptera Inferred from Mitochondrial Genome Sequences

    Science.gov (United States)

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses. PMID:23144967

  4. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha,Cicadomorpha,Heteroptera, and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  5. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    Science.gov (United States)

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  6. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    DEFF Research Database (Denmark)

    Nosek, J.; Novotna, M.; Hlavatovicova, Z.

    2004-01-01

    The complete sequence of the mitochondrial DNA of the opportunistic yeast pathogen Candida parapsilosis was determined. The mitochondrial genome is represented by linear DNA molecules terminating with tandem repeats of a 738-bp unit. The number of repeats varies, thus generating a population...

  7. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  8. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    Science.gov (United States)

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  9. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius).

    LENUS (Irish Health Repository)

    Edwards, Ceiridwen J

    2010-01-01

    BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius) has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs) from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+\\/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer). In total, 289.9 megabases (22.48%) of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously identified

  10. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    Science.gov (United States)

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. © The Author 2015. Published by Oxford University Press.

  11. Mitochondrial DNA D-loop sequence variation among 5 maternal lines of the Zemaitukai horse breed

    Directory of Open Access Journals (Sweden)

    E. Gus Cothran

    2005-12-01

    Full Text Available Genetic variation in Zemaitukai horses was investigated using mitochondrial DNA (mtDNA sequencing. The study was performed on 421 bp of the mitochondrial DNA control region, which is known to be more variable than other sections of the mitochondrial genome. Samples from each of the remaining maternal family lines of Zemaitukai horses and three random samples for other Lithuanian (Lithuanian Heavy Draught, Zemaitukai large type and ten European horse breeds were sequenced. Five distinct haplotypes were obtained for the five Zemaitukai maternal families supporting the pedigree data. The minimal difference between two different sequence haplotypes was 6 and the maximal 11 nucleotides in Zemaitukai horse breed. A total of 20 nucleotide differences compared to the reference sequence were found in Lithuanian horse breeds. Genetic cluster analysis did not shown any clear pattern of relationship among breeds of different type.

  12. Norgal: Extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data

    DEFF Research Database (Denmark)

    Al-Nakeeb, Kosai Ali Ahmed; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-01-01

    and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences...

  13. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    Aghomotsegin

    2015-07-01

    Jul 1, 2015 ... population genetics research, studies based on mitochondrial DNA (mtDNA) and Y-chromosome DNA are an excellent way of illustrating population structure .... avoid landing investigators into serious situations of medical genetic privacy and ethnics, especially for. mtDNA coding area whose mutation often ...

  14. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    Science.gov (United States)

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  15. Sequencing and analysis of the complete mitochondrial genome in Anopheles sinensis (Diptera: Culicidae).

    Science.gov (United States)

    Chen, Kai; Wang, Yan; Li, Xiang-Yu; Peng, Heng; Ma, Ya-Jun

    2017-10-02

    Anopheles sinensis (Diptera: Culicidae) is a primary vector of Plasmodium vivax and Brugia malayi in most regions of China. In addition, its phylogenetic relationship with the cryptic species of the Hyrcanus Group is complex and remains unresolved. Mitochondrial genome sequences are widely used as molecular markers for phylogenetic studies of mosquito species complexes, of which mitochondrial genome data of An. sinensis is not available. An. sinensis samples was collected from Shandong, China, and identified by molecular marker. Genomic DNA was extracted, followed by the Illumina sequencing. Two complete mitochondrial genomes were assembled and annotated using the mitochondrial genome of An. gambiae as reference. The mitochondrial genomes sequences of the 28 known Anopheles species were aligned and reconstructed phylogenetic tree by Maximum Likelihood (ML) method. The length of complete mitochondrial genomes of An. sinensis was 15,076 bp and 15,138 bp, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, and an AT-rich control region. As in other insects, most mitochondrial genes are encoded on the J strand, except for ND5, ND4, ND4L, ND1, two rRNA and eight tRNA genes, which are encoded on the N strand. The bootstrap value was set as 1000 in ML analyses. The topologies restored phylogenetic affinity within subfamily Anophelinae. The ML tree showed four major clades, corresponding to the subgenera Cellia, Anopheles, Nyssorhynchus and Kerteszia of the genus Anopheles. The complete mitochondrial genomes of An. sinensis were obtained. The number, order and transcription direction of An. sinensis mitochondrial genes were the same as in other species of family Culicidae.

  16. Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences.

    Science.gov (United States)

    Yan, Ning; Nie, Hua-Ming; Jiang, Zhong-Rong; Yang, Ai-Guo; Deng, Shi-Jin; Guo, Li; Yu, Hua; Yan, Yu-Bao; Tsering, Dawa; Kong, Wei-Shu; Wang, Ning; Wang, Jia-Hai; Xie, Yue; Fu, Yan; Yang, De-Ying; Wang, Shu-Xian; Gu, Xiao-Bin; Peng, Xue-Rong; Yang, Guang-You

    2013-09-01

    To analyse genetic variability and population structure, 84 isolates of Echinococcus granulosus (Cestoda: Taeniidae) collected from various host species at different sites of the Tibetan plateau in China were sequenced for the whole mitochondrial nad1 (894 bp) and atp6 (513 bp) genes. The vast majority were classified as G1 genotype (n=82), and two samples from human patients in Sichuan province were identified as G3 genotype. Based on the concatenated sequences of nad1+atp6, 28 different haplotypes (NA1-NA28) were identified. A parsimonious network of the concatenated sequence haplotypes showed star-like features in the overall population, with NA1 as the major haplotype in the population networks. By AMOVA it was shown that variation of E. granulosus within the overall population was the main pattern of the total genetic variability. Neutrality indexes of the concatenated sequence (nad1+atp6) were computed by Tajima's D and Fu's Fs tests and showed high negative values for E. granulosus, indicating significant deviations from neutrality. FST and Nm values suggested that the populations were not genetically differentiated. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Complete mitochondrial genome sequences from five Eimeria species (Apicomplexa; Coccidia; Eimeriidae) infecting domestic turkeys.

    Science.gov (United States)

    Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Barta, John R

    2014-07-17

    Clinical and subclinical coccidiosis is cosmopolitan and inflicts significant losses to the poultry industry globally. Seven named Eimeria species are responsible for coccidiosis in turkeys: Eimeria dispersa; Eimeria meleagrimitis; Eimeria gallopavonis; Eimeria meleagridis; Eimeria adenoeides; Eimeria innocua; and, Eimeria subrotunda. Although attempts have been made to characterize these parasites molecularly at the nuclear 18S rDNA and ITS loci, the maternally-derived and mitotically replicating mitochondrial genome may be more suited for species level molecular work; however, only limited sequence data are available for Eimeria spp. infecting turkeys. The purpose of this study was to sequence and annotate the complete mitochondrial genomes from 5 Eimeria species that commonly infect the domestic turkey (Meleagris gallopavo). Six single-oocyst derived cultures of five Eimeria species infecting turkeys were PCR-amplified and sequenced completely prior to detailed annotation. Resulting sequences were aligned and used in phylogenetic analyses (BI, ML, and MP) that included complete mitochondrial genomes from 16 Eimeria species or concatenated CDS sequences from each genome. Complete mitochondrial genome sequences were obtained for Eimeria adenoeides Guelph, 6211 bp; Eimeria dispersa Briston, 6238 bp; Eimeria meleagridis USAR97-01, 6212 bp; Eimeria meleagrimitis USMN08-01, 6165 bp; Eimeria gallopavonis Weybridge, 6215 bp; and Eimeria gallopavonis USKS06-01, 6215 bp). The order, orientation and CDS lengths of the three protein coding genes (COI, COIII and CytB) as well as rDNA fragments encoding ribosomal large and small subunit rRNA were conserved among all sequences. Pairwise sequence identities between species ranged from 88.1% to 98.2%; sequence variability was concentrated within CDS or between rDNA fragments (where indels were common). No phylogenetic reconstruction supported monophyly of Eimeria species infecting turkeys; Eimeria dispersa may have arisen

  18. Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts.

    Directory of Open Access Journals (Sweden)

    Jonci N Wolff

    Full Text Available Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA, we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1 led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error.

  19. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    Science.gov (United States)

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. © 2013 Elsevier B.V. All rights reserved.

  20. The complete mitochondrial genome sequence of the Tibetan red fox (Vulpes vulpes montana).

    Science.gov (United States)

    Zhang, Jin; Zhang, Honghai; Zhao, Chao; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2015-01-01

    In this study, the complete mitochondrial genome of the Tibetan red fox (Vulpes Vulpes montana) was sequenced for the first time using blood samples obtained from a wild female red fox captured from Lhasa in Tibet, China. Qinghai--Tibet Plateau is the highest plateau in the world with an average elevation above 3500 m. Sequence analysis showed it contains 12S rRNA gene, 16S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region (CR). The variable tandem repeats in CR is the main reason of the length variability of mitochondrial genome among canide animals.

  1. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    Energy Technology Data Exchange (ETDEWEB)

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  2. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  3. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    Energy Technology Data Exchange (ETDEWEB)

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  4. Sequence analysis of mitochondrial 16S ribosomal RNA gene ...

    Indian Academy of Sciences (India)

    Unknown

    For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. ... been widely used for phylogenetic studies and sequence differences in ... In order to fill up the internal gap, a new set.

  5. The partial mitochondrial sequence of the Old World stingless bee ...

    Indian Academy of Sciences (India)

    Sequences of primers used in PCR reactions of T. pagdeni mtDNA. mtDNA genes. Primer. Sequence. ATPase (6,8). ATPS6-F. 5 -AAG ATA TAT GGA AAT AAG CT-3. tRNA-ASP-R. 5 -ATA AAA TAA CGT CAA AAT GTC A-3. COI. COI-F. 5 - ATA ATT ATT GTT GCT GAT GTA-3. COI-R. 5 -CTA TTC ATA TAA CTG GAA TTT C-3.

  6. The complete mitochondrial genome sequence of the maned wolf (Chrysocyon brachyurus).

    Science.gov (United States)

    Zhao, Chao; Yang, Xiufeng; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the maned wolf (Chrysocyon brachyurus), the unique species in Chrysocyon, was sequenced and reported for the first time using blood samples obtained from a female individual in Shanghai Zoo, China. Sequence analysis showed that the genome structure was in accordance with other Canidae species and it contained 12 S rRNA gene, 16 S rRNA gene, 22 tRNA genes, 13 protein-coding genes and 1 control region.

  7. A complete mitochondrial genome sequence from a mesolithic wild aurochs (Bos primigenius.

    Directory of Open Access Journals (Sweden)

    Ceiridwen J Edwards

    Full Text Available BACKGROUND: The derivation of domestic cattle from the extinct wild aurochs (Bos primigenius has been well-documented by archaeological and genetic studies. Genetic studies point towards the Neolithic Near East as the centre of origin for Bos taurus, with some lines of evidence suggesting possible, albeit rare, genetic contributions from locally domesticated wild aurochsen across Eurasia. Inferences from these investigations have been based largely on the analysis of partial mitochondrial DNA sequences generated from modern animals, with limited sequence data from ancient aurochsen samples. Recent developments in DNA sequencing technologies, however, are affording new opportunities for the examination of genetic material retrieved from extinct species, providing new insight into their evolutionary history. Here we present DNA sequence analysis of the first complete mitochondrial genome (16,338 base pairs from an archaeologically-verified and exceptionally-well preserved aurochs bone sample. METHODOLOGY: DNA extracts were generated from an aurochs humerus bone sample recovered from a cave site located in Derbyshire, England and radiocarbon-dated to 6,738+/-68 calibrated years before present. These extracts were prepared for both Sanger and next generation DNA sequencing technologies (Illumina Genome Analyzer. In total, 289.9 megabases (22.48% of the post-filtered DNA sequences generated using the Illumina Genome Analyzer from this sample mapped with confidence to the bovine genome. A consensus B. primigenius mitochondrial genome sequence was constructed and was analysed alongside all available complete bovine mitochondrial genome sequences. CONCLUSIONS: For all nucleotide positions where both Sanger and Illumina Genome Analyzer sequencing methods gave high-confidence calls, no discrepancies were observed. Sequence analysis reveals evidence of heteroplasmy in this sample and places this mitochondrial genome sequence securely within a previously

  8. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  9. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    Science.gov (United States)

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  10. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny

    Science.gov (United States)

    Marr, Henry S.; Tarigo, Jaime L.; Cohn, Leah A.; Bird, David M.; Scholl, Elizabeth H.; Levy, Michael G.; Wiegmann, Brian M.; Birkenheuer, Adam J.

    2016-01-01

    The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon) are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi) with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis) and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae) while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward understanding the

  11. Mitochondrial Genome Sequences and Structures Aid in the Resolution of Piroplasmida phylogeny.

    Directory of Open Access Journals (Sweden)

    Megan E Schreeg

    Full Text Available The taxonomy of the order Piroplasmida, which includes a number of clinically and economically relevant organisms, is a hotly debated topic amongst parasitologists. Three genera (Babesia, Theileria, and Cytauxzoon are recognized based on parasite life cycle characteristics, but molecular phylogenetic analyses of 18S sequences have suggested the presence of five or more distinct Piroplasmida lineages. Despite these important advancements, a few studies have been unable to define the taxonomic relationships of some organisms (e.g. C. felis and T. equi with respect to other Piroplasmida. Additional evidence from mitochondrial genome sequences and synteny should aid in the inference of Piroplasmida phylogeny and resolution of taxonomic uncertainties. In this study, we have amplified, sequenced, and annotated seven previously uncharacterized mitochondrial genomes (Babesia canis, Babesia vogeli, Babesia rossi, Babesia sp. Coco, Babesia conradae, Babesia microti-like sp., and Cytauxzoon felis and identified additional ribosomal fragments in ten previously characterized mitochondrial genomes. Phylogenetic analysis of concatenated mitochondrial and 18S sequences as well as cox1 amino acid sequence identified five distinct Piroplasmida groups, each of which possesses a unique mitochondrial genome structure. Specifically, our results confirm the existence of four previously identified clades (B. microti group, Babesia sensu stricto, Theileria equi, and a Babesia sensu latu group that includes B. conradae while supporting the integration of Theileria and Cytauxzoon species into a single fifth taxon. Although known biological characteristics of Piroplasmida corroborate the proposed phylogeny, more investigation into parasite life cycles is warranted to further understand the evolution of the Piroplasmida. Our results provide an evolutionary framework for comparative biology of these important animal and human pathogens and help focus renewed efforts toward

  12. Mitochondrial DNA sequence variation in the Anatolian Peninsula ...

    Indian Academy of Sciences (India)

    Unknown

    necting the Middle East, Europe and Central Asia, and, thus, has been subject to major population movements. The ... from different parts of Anatolia by direct sequencing. Analysis of the two ... the country, samples were obtained from individuals com- ing from ..... Arlequin: a software environment for the analysis of popula-.

  13. Sequence analysis of mitochondrial 16S ribosomal RNA gene

    Indian Academy of Sciences (India)

    Mosquitoes are vectors for the transmission of many human pathogens that include viruses, nematodes and protozoa. For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. Recently, molecular taxonomic techniques have been utilized for this purpose. Sequence ...

  14. Phylogenetic relationships of Palaearctic Formica species (Hymenoptera, Formicidae based on mitochondrial cytochrome B sequences.

    Directory of Open Access Journals (Sweden)

    Anna V Goropashnaya

    Full Text Available Ants of genus Formica demonstrate variation in social organization and represent model species for ecological, behavioral, evolutionary studies and testing theoretical implications of the kin selection theory. Subgeneric division of the Formica ants based on morphology has been questioned and remained unclear after an allozyme study on genetic differentiation between 13 species representing all subgenera was conducted. In the present study, the phylogenetic relationships within the genus were examined using mitochondrial DNA sequences of the cytochrome b and a part of the NADH dehydrogenase subunit 6. All 23 Formica species sampled in the Palaearctic clustered according to the subgeneric affiliation except F. uralensis that formed a separate phylogenetic group. Unlike Coptoformica and Formica s. str., the subgenus Serviformica did not form a tight cluster but more likely consisted of a few small clades. The genetic distances between the subgenera were around 10%, implying approximate divergence time of 5 Myr if we used the conventional insect divergence rate of 2% per Myr. Within-subgenus divergence estimates were 6.69% in Serviformica, 3.61% in Coptoformica, 1.18% in Formica s. str., which supported our previous results on relatively rapid speciation in the latter subgenus. The phylogeny inferred from DNA sequences provides a necessary framework against which the evolution of social traits can be compared. We discuss implications of inferred phylogeny for the evolution of social traits.

  15. Complete mitochondrial genome sequence of black mustard (Brassica nigra; BB) and comparison with Brassica oleracea (CC) and Brassica carinata (BBCC).

    Science.gov (United States)

    Yamagishi, Hiroshi; Tanaka, Yoshiyuki; Terachi, Toru

    2014-11-01

    Crop species of Brassica (Brassicaceae) consist of three monogenomic species and three amphidiploid species resulting from interspecific hybridizations among them. Until now, mitochondrial genome sequences were available for only five of these species. We sequenced the mitochondrial genome of the sixth species, Brassica nigra (nuclear genome constitution BB), and compared it with those of Brassica oleracea (CC) and Brassica carinata (BBCC). The genome was assembled into a 232 145 bp circular sequence that is slightly larger than that of B. oleracea (219 952 bp). The genome of B. nigra contained 33 protein-coding genes, 3 rRNA genes, and 17 tRNA genes. The cox2-2 gene present in B. oleracea was absent in B. nigra. Although the nucleotide sequences of 52 genes were identical between B. nigra and B. carinata, the second exon of rps3 showed differences including an insertion/deletion (indel) and nucleotide substitutions. A PCR test to detect the indel revealed intraspecific variation in rps3, and in one line of B. nigra it amplified a DNA fragment of the size expected for B. carinata. In addition, the B. carinata lines tested here produced DNA fragments of the size expected for B. nigra. The results indicate that at least two mitotypes of B. nigra were present in the maternal parents of B. carinata.

  16. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  17. Complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri Jordan & Richardson, 1908 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Wang, Bo; Zhang, Yanhong; Zhang, Huixian; Lin, Qiang

    2015-01-01

    The complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri was first determined in this paper. The total length of H. barbouri mitogenome is 16,526 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. barbouri mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. barbouri is 32.68% A, 29.75% T, 22.91% C and 14.66% G, with an AT content of 62.43%.

  18. Complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus Perry, 1810 (Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Zhang, Yanhong; Zhang, Huixian; Lin, Qiang; Huang, Liangmin

    2015-01-01

    The complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus was first determined in this article. The total length of H. erectus mitogenome is 16,529 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. erectus mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. erectus is 31.8% A, 28.6% T, 24.3% C and 15.3% G, with a slight A + T rich feature (60.4%).

  19. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W. (Harvard Univ., Cambridge, MA (United States)); Brown, W.M. (Univ. of Michigan, Ann Arbor (United States)); Honeycutt, R.L. (Texas A and M Univ., College Station (United States))

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.

  20. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    International Nuclear Information System (INIS)

    Ruvolo, M.; Disotell, T.R.; Allard, M.W.; Brown, W.M.; Honeycutt, R.L.

    1991-01-01

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time

  1. Sequence variation of bovine mitochondrial ND-5 between haplotypes of composite and Hereford Breeds of beef cattle

    Directory of Open Access Journals (Sweden)

    SUTARNO

    2002-07-01

    Full Text Available The aims of the study were to: Investigate polymorphisms in the ND-5 region of bovine mitochondrial DNA in the composite and purebred Hereford herds from the Wokalup selection experiment, sequencing and compare the sequences between haplotypes and published sequence from Genebank. A total of 194 Hereford and 235 composite breed cattle from Wokalup Research Station were used in this study. The mitochondrial DNA was extracted using Wizard genomic DNA purification system from Promega. ND-5 fragment of mitochondrial DNA was amplified using PCR and continued with RFLP. Each haplotypes were sequenced. PCR products of each haplotype were cloned into pCR II, transformed, colonies selection, plasmid DNA extraction continued with cycle sequencing. Polymorphisms were found in both breeds of cattle in ND-5 region of mitochondrial DNA by PCR-RFLP analysis. Sequencing analysis confirmed the RFLPs data.

  2. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    Science.gov (United States)

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    Science.gov (United States)

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics.

  4. Phylogenetic relationships among the species of the genus testudo (Testudines : Testudinidae) inferred from mitochondrial 12S rRNA gene sequences

    NARCIS (Netherlands)

    van der Kuyl, Antoinette C.; Ph Ballasina, Donato L.; Dekker, John T.; Maas, Jolanda; Willemsen, Ronald E.; Goudsmit, Jaap

    2002-01-01

    To test phylogenetic relationships within the genus Testudo (Testudines: Testudinidae), we have sequenced a fragment of the mitochondrial (mt) 12S rRNA gene of 98 tortoise specimens belonging to the genera Testudo, Indotestudo, and Geochelone. Maximum likelihood and neighbor-joining methods identify

  5. Plastome Sequencing of Ten Nonmodel Crop Species Uncovers a Large Insertion of Mitochondrial DNA in Cashew.

    Science.gov (United States)

    Rabah, Samar O; Lee, Chaehee; Hajrah, Nahid H; Makki, Rania M; Alharby, Hesham F; Alhebshi, Alawiah M; Sabir, Jamal S M; Jansen, Robert K; Ruhlman, Tracey A

    2017-11-01

    In plant evolution, intracellular gene transfer (IGT) is a prevalent, ongoing process. While nuclear and mitochondrial genomes are known to integrate foreign DNA via IGT and horizontal gene transfer (HGT), plastid genomes (plastomes) have resisted foreign DNA incorporation and only recently has IGT been uncovered in the plastomes of a few land plants. In this study, we completed plastome sequences for l0 crop species and describe a number of structural features including variation in gene and intron content, inversions, and expansion and contraction of the inverted repeat (IR). We identified a putative in cinnamon ( J. Presl) and other sequenced Lauraceae and an apparent functional transfer of to the nucleus of quinoa ( Willd.). In the orchard tree cashew ( L.), we report the insertion of an ∼6.7-kb fragment of mitochondrial DNA into the plastome IR. BLASTn analyses returned high identity hits to mitogenome sequences including an intact open reading frame. Using three plastome markers for five species of , we generated a phylogeny to investigate the distribution and timing of the insertion. Four species share the insertion, suggesting that this event occurred <20 million yr ago in a single clade in the genus. Our study extends the observation of mitochondrial to plastome IGT to include long-lived tree species. While previous studies have suggested possible mechanisms facilitating IGT to the plastome, more examples of this phenomenon, along with more complete mitogenome sequences, will be required before a common, or variable, mechanism can be elucidated. Copyright © 2017 Crop Science Society of America.

  6. Mitochondrial DNA sequencing of cat hair: an informative forensic tool.

    Science.gov (United States)

    Tarditi, Christy R; Grahn, Robert A; Evans, Jeffrey J; Kurushima, Jennifer D; Lyons, Leslie A

    2011-01-01

    Approximately 81.7 million cats are in 37.5 million U.S. households. Shed fur can be criminal evidence because of transfer to victims, suspects, and/or their belongings. To improve cat hairs as forensic evidence, the mtDNA control region from single hairs, with and without root tags, was sequenced. A dataset of a 402-bp control region segment from 174 random-bred cats representing four U.S. geographic areas was generated to determine the informativeness of the mtDNA region. Thirty-two mtDNA mitotypes were observed ranging in frequencies from 0.6-27%. Four common types occurred in all populations. Low heteroplasmy, 1.7%, was determined. Unique mitotypes were found in 18 individuals, 10.3% of the population studied. The calculated discrimination power implied that 8.3 of 10 randomly selected individuals can be excluded by this region. The genetic characteristics of the region and the generated dataset support the use of this cat mtDNA region in forensic applications. 2010 American Academy of Forensic Sciences. Published 2010. This article is a U.S. Government work and is in the public domain in the U.S.A.

  7. Mitochondrial genome sequence of Egyptian swift Rock Pigeon (Columba livia breed Egyptian swift).

    Science.gov (United States)

    Li, Chun-Hong; Shi, Wei; Shi, Wan-Yu

    2015-06-01

    The Egyptian swift Rock Pigeon is a breed of fancy pigeon developed over many years of selective breeding. In this work, we report the complete mitochondrial genome sequence of Egyptian swift Rock Pigeon. The total length of the mitogenome was 17,239 bp and its overall base composition was estimated to be 30.2% for A, 24.0% for T, 31.9% for C and 13.9% for G, indicating an A-T (54.2%)-rich feature in the mitogenome. It contained the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a non-coding control region (D-loop region). The complete mitochondrial genome sequence of Egyptian swift Rock Pigeon would serve as an important data set of the germplasm resources for further study.

  8. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    Science.gov (United States)

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  9. Population diversity of Diaphorina citri (Hemiptera: Liviidae) in China based on whole mitochondrial genome sequences.

    Science.gov (United States)

    Wu, Fengnian; Jiang, Hongyan; Beattie, G Andrew C; Holford, Paul; Chen, Jianchi; Wallis, Christopher M; Zheng, Zheng; Deng, Xiaoling; Cen, Yijing

    2018-04-24

    Diaphorina citri (Asian citrus psyllid; ACP) transmits 'Candidatus Liberibacter asiaticus' associated with citrus Huanglongbing (HLB). ACP has been reported in 11 provinces/regions in China, yet its population diversity remains unclear. In this study, we evaluated ACP population diversity in China using representative whole mitochondrial genome (mitogenome) sequences. Additional mitogenome sequences outside China were also acquired and evaluated. The sizes of the 27 ACP mitogenome sequences ranged from 14 986 to 15 030 bp. Along with three previously published mitogenome sequences, the 30 sequences formed three major mitochondrial groups (MGs): MG1, present in southwestern China and occurring at elevations above 1000 m; MG2, present in southeastern China and Southeast Asia (Cambodia, Indonesia, Malaysia, and Vietnam) and occurring at elevations below 180 m; and MG3, present in the USA and Pakistan. Single nucleotide polymorphisms in five genes (cox2, atp8, nad3, nad1 and rrnL) contributed mostly in the ACP diversity. Among these genes, rrnL had the most variation. Mitogenome sequences analyses revealed two major phylogenetic groups of ACP present in China as well as a possible unique group present currently in Pakistan and the USA. The information could have significant implications for current ACP control and HLB management. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Complete mitochondrial genome sequence of Melipona scutellaris, a Brazilian stingless bee.

    Science.gov (United States)

    Pereira, Ulisses de Padua; Bonetti, Ana Maria; Goulart, Luiz Ricardo; Santos, Anderson Rodrigues Dos; Oliveira, Guilherme Correa de; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos

    2016-09-01

    Melipona scutellaris is a Brazilian stingless bee species and a highly important native pollinator besides its use in rational rearing for honey production. In this study, we present the whole mitochondrial DNA sequence of M. scutellaris from a haploid male. The mitogenome has a size of 14,862 bp and harbors 13 protein-coding genes (PCGs), 2 rRNA genes and 21 tRNA genes.

  11. Complete mitochondrial DNA sequence of the Eastern keelback mullet Liza affinis.

    Science.gov (United States)

    Gong, Xiaoling; Zhu, Wenjia; Bao, Baolong

    2016-05-01

    Eastern keelback mullet (Liza affinis) inhabits inlet waters and estuaries of rivers. In this paper, we initially determined the complete mitochondrial genome of Liza affinis. The entire mtDNA sequence is 16,831 bp in length, including 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes and 1 putative control region. Its order and numbers of genes are similar to most bony fishes.

  12. Using mitochondrial and ribosomal DNA sequences to test the taxonomic validity of Clinostomum complanatum Rudolphi, 1814 in fish-eating birds and freshwater fishes in Mexico, with the description of a new species.

    Science.gov (United States)

    Sereno-Uribe, Ana L; Pinacho-Pinacho, Carlos D; García-Varela, Martín; de León, Gerardo Pérez-Ponce

    2013-08-01

    The taxonomic history and species composition of the genus Clinostomum has been unstable. Two species, Clinostomum complanatum Rudolphi, 1814 and Clinostomum marginatum Rudolphi, 1819, have been particularly problematic and its validity has been disputed for nearly 200 years. In this paper, we have made use of an integrative taxonomy approach, and we used, in first instance, DNA sequences of two genes (cox1 and ITS) to test the validity of C. complanatum, a species apparently widely distributed in Mexico and to link the metacercariae and adult forms of the recognized species of Clinostomum. Combining molecular data with morphology, host association, and geographical distribution, we searched for the potential existence of undescribed species. A new species of Clinostomum is described based on adults found in the mouthy cavity of three species of fish-eating birds as well as in metacercariae found in freshwater and estuarine fishes. A few morphological characteristics distinguish the new species from other congeners even though reciprocal monophyly in a phylogenetic tree based on maximum-likelihood and Bayesian analysis, genetic divergence, and a multivariate analysis of variance and a principal component analysis of 18 morphometric traits for adults and metacercariae demonstrates the validity of the new species. Based on our results, it seems that C. complanatum is not currently distributed in Mexico, although this requires further verification with a more thoroughful sampling in other areas of the country, but it is plausible to support the hypothesis that C. marginatum is the American form, as previously suggested by other authors.

  13. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Science.gov (United States)

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman W; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K; Craigen, William J; Schmitt, Eric S; Wong, Lee-Jun C

    2010-12-20

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and more severe disease with multisystem involvement.

  14. Complete mitochondrial genome sequence of the common bean anthracnose pathogen Colletotrichum lindemuthianum.

    Science.gov (United States)

    Gutiérrez, Pablo; Alzate, Juan; Yepes, Mauricio Salazar; Marín, Mauricio

    2016-01-01

    Colletotrichum lindemuthianum is the causal agent of anthracnose in common bean (Phaseolus vulgaris), one of the most limiting factors for this crop in South and Central America. In this work, the mitochondrial sequence of a Colombian isolate of C. lindemuthianum obtained from a common bean plant (var. Cargamanto) with anthracnose symptoms is presented. The mtDNA codes for 13 proteins of the respiratory chain, 1 ribosomal protein, 2 homing endonucleases, 2 ribosomal RNAs and 28 tRNAs. This is the first report of a complete mtDNA genome sequence from C. lindemuthianum.

  15. Analysis of human mitochondrial DNA sequences from fecally polluted environmental waters as a tool to study population diversity

    Science.gov (United States)

    Mitochondrial signature sequences have frequently been used to study the demographics of many different populations around the world. Traditionally, this requires obtaining samples directly from individuals which is cumbersome, time consuming and limited to the number of individu...

  16. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    Science.gov (United States)

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints.

  17. Molecular phylogeny of Systellognatha (Plecoptera: Arctoperlaria) inferred from mitochondrial genome sequences.

    Science.gov (United States)

    Chen, Zhi-Teng; Zhao, Meng-Yuan; Xu, Cheng; Du, Yu-Zhou

    2018-05-01

    The infraorder Systellognatha is the most species-rich clade in the insect order Plecoptera and includes six families in two superfamilies: Pteronarcyoidea (Pteronarcyidae, Peltoperlidae, and Styloperlidae) and Perloidea (Perlidae, Perlodidae, and Chloroperlidae). To resolve the debatable phylogeny of Systellognatha, we carried out the first mitochondrial phylogenetic analysis covering all the six families, including three newly sequenced mitogenomes from two families (Perlodidae and Peltoperlidae) and 15 published mitogenomes. The three newly reported mitogenomes share conserved mitogenomic features with other sequenced stoneflies. For phylogenetic analyses, we assembled five datasets with two inference methods to assess their influence on topology and nodal support within Systellognatha. The results indicated that inclusion of the third codon positions of PCGs, exclusion of rRNA genes, the use of nucleotide datasets and Bayesian inference could improve the phylogenetic reconstruction of Systellognatha. The monophyly of Perloidea was supported in the mitochondrial phylogeny, but Pteronarcyoidea was recovered as paraphyletic and remained controversial. In this mitochondrial phylogenetic study, the relationships within Systellognatha were recovered as (((Perlidae + (Perlodidae + Chloroperlidae)) + (Pteronarcyidae + Styloperlidae)) + Peltoperlidae). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    OpenAIRE

    Giovanni Pagano; Annarita Aiello Talamanca; Giuseppe Castello; Mario D. Cordero; Marco d'Ischia; Maria Nicola Gadaleta; Federico V. Pallardó; Sandra Petrović; Luca Tiano; Adriana Zatterale

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluat...

  19. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  20. The complete mitochondrial genome sequence of Eimeria innocua (Eimeriidae, Coccidia, Apicomplexa).

    Science.gov (United States)

    Hafeez, Mian Abdul; Vrba, Vladimir; Barta, John Robert

    2016-07-01

    The complete mitochondrial genome of Eimeria innocua KR strain (Eimeriidae, Coccidia, Apicomplexa) was sequenced. This coccidium infects turkeys (Meleagris gallopavo), Bobwhite quails (Colinus virginianus), and Grey partridges (Perdix perdix). Genome organization and gene contents were comparable with other Eimeria spp. infecting galliform birds. The circular-mapping mt genome of E. innocua is 6247 bp in length with three protein-coding genes (cox1, cox3, and cytb), 19 gene fragments encoding large subunit (LSU) rRNA and 14 gene fragments encoding small subunit (SSU) rRNA. Like other Apicomplexa, no tRNA was encoded. The mitochondrial genome of E. innocua confirms its close phylogenetic affinities to Eimeria dispersa.

  1. A mitochondrial genome sequence of a hominin from Sima de los Huesos.

    Science.gov (United States)

    Meyer, Matthias; Fu, Qiaomei; Aximu-Petri, Ayinuer; Glocke, Isabelle; Nickel, Birgit; Arsuaga, Juan-Luis; Martínez, Ignacio; Gracia, Ana; de Castro, José María Bermúdez; Carbonell, Eudald; Pääbo, Svante

    2014-01-16

    Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.

  2. Phylogeny and evolution of the auks (subfamily Alcinae) based on mitochondrial DNA sequences

    Science.gov (United States)

    Moum, Truls; Johansen, Steinar; Erikstad, Kjell Einar; Piatt, John F.

    1994-01-01

    The genetic divergence and phylogeny of the auks was assessed by mitochondrial DNA sequence comparisons in a study using 19 of the 22 auk species and two outgroup representatives. We compared more than 500 nucleotides from each of two mitochondrial genes encoding 12S rRNA and the NADH dehydrogenase subunit 6. Divergence times were estimated from transversional substitutions. The dovekie (Alle alle) is related to the razorbill (Alca torda) and the murres (Uria spp). Furthermore, the Xantus's murrelet (Synthliboramphus hypoleucus) and the ancient (Synthliboramphus antiquus) and Japanese murrelets (Synthliboramphus wumizusume) are genetically distinct members of the same main lineage, whereas brachyramphine and synthliboramphine murrelets are not closely related. An early adaptive radiation of six main species groups of auks seems to trace back to Middle Miocene. Later speciation probably involved ecological differentiations and geographical isolations.

  3. The mitochondrial genome sequence of the ciliate Paramecium caudatum reveals a shift in nucleotide composition and codon usage within the genus Paramecium

    Directory of Open Access Journals (Sweden)

    Berendonk Thomas U

    2011-05-01

    Full Text Available Abstract Background Despite the fact that the organization of the ciliate mitochondrial genome is exceptional, only few ciliate mitochondrial genomes have been sequenced until today. All ciliate mitochondrial genomes are linear. They are 40 kb to 47 kb long and contain some 50 tightly packed genes without introns. Earlier studies documented that the mitochondrial guanine + cytosine contents are very different between Paramecium tetraurelia and all studied Tetrahymena species. This raises the question of whether the high mitochondrial G+C content observed in P. tetraurelia is a characteristic property of Paramecium mtDNA, or whether it is an exception of the ciliate mitochondrial genomes known so far. To test this question, we determined the mitochondrial genome sequence of Paramecium caudatum and compared the gene content and sequence properties to the closely related P. tetraurelia. Results The guanine + cytosine content of the P. caudatum mitochondrial genome was significantly lower than that of P. tetraurelia (22.4% vs. 41.2%. This difference in the mitochondrial nucleotide composition was accompanied by significantly different codon usage patterns in both species, i.e. within P. caudatum clearly A/T ending codons dominated, whereas for P. tetraurelia the synonymous codons were more balanced with a higher number of G/C ending codons. Further analyses indicated that the nucleotide composition of most members of the genus Paramecium resembles that of P. caudatum and that the shift observed in P. tetraurelia is restricted to the P. aurelia species complex. Conclusions Surprisingly, the codon usage bias in the P. caudatum mitochondrial genome, exemplified by the effective number of codons, is more similar to the distantly related T. pyriformis and other single-celled eukaryotes such as Chlamydomonas, than to the closely related P. tetraurelia. These differences in base composition and codon usage bias were, however, not reflected in the amino

  4. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    Directory of Open Access Journals (Sweden)

    Lippold Sebastian

    2011-11-01

    Full Text Available Abstract Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73% already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the

  5. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements.

    Science.gov (United States)

    Kumazawa, Yoshinori; Endo, Hideki

    2004-04-30

    The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region.

  6. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference.

    Science.gov (United States)

    Krishnan, Neeraja M; Seligmann, Hervé; Stewart, Caro-Beth; De Koning, A P Jason; Pollock, David D

    2004-10-01

    Reconstruction of ancestral DNA and amino acid sequences is an important means of inferring information about past evolutionary events. Such reconstructions suggest changes in molecular function and evolutionary processes over the course of evolution and are used to infer adaptation and convergence. Maximum likelihood (ML) is generally thought to provide relatively accurate reconstructed sequences compared to parsimony, but both methods lead to the inference of multiple directional changes in nucleotide frequencies in primate mitochondrial DNA (mtDNA). To better understand this surprising result, as well as to better understand how parsimony and ML differ, we constructed a series of computationally simple "conditional pathway" methods that differed in the number of substitutions allowed per site along each branch, and we also evaluated the entire Bayesian posterior frequency distribution of reconstructed ancestral states. We analyzed primate mitochondrial cytochrome b (Cyt-b) and cytochrome oxidase subunit I (COI) genes and found that ML reconstructs ancestral frequencies that are often more different from tip sequences than are parsimony reconstructions. In contrast, frequency reconstructions based on the posterior ensemble more closely resemble extant nucleotide frequencies. Simulations indicate that these differences in ancestral sequence inference are probably due to deterministic bias caused by high uncertainty in the optimization-based ancestral reconstruction methods (parsimony, ML, Bayesian maximum a posteriori). In contrast, ancestral nucleotide frequencies based on an average of the Bayesian set of credible ancestral sequences are much less biased. The methods involving simpler conditional pathway calculations have slightly reduced likelihood values compared to full likelihood calculations, but they can provide fairly unbiased nucleotide reconstructions and may be useful in more complex phylogenetic analyses than considered here due to their speed and

  7. Next generation sequencing yields the complete mitochondrial genome of the largescale mullet, Liza macrolepis (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Tsai, Shiou-Yi; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-11-01

    In this study, the complete mitogenome sequence of largescale mullet (Teleostei: Mugilidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome, consisting of 16,832 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, two ribosomal RNAs genes, and a non-coding control region of D-loop. D-loop which has a length of 1094 bp is located between tRNA-Pro and tRNA-Phe. The overall base composition of largescale mullet is 27.8% for A, 30.1% for C, 16.2% for G, and 25.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Mugilidae.

  8. Next generation sequencing yields the complete mitochondrial genome of the Hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of hornlip mullet Plicomugil labiosus (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,829 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop contains 1057 bp length is located between tRNA-Pro and tRNA-Phe. The overall base composition of P. labiosus is 28.0% for A, 29.3% for C, 15.5% for G and 27.2% for T. The complete mitogenome may provide essential and important DNA molecular data for further population, phylogenetic and evolutionary analysis for Mugilidae.

  9. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    Science.gov (United States)

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  10. Mitochondrial genome sequences reveal deep divergences among Anopheles punctulatus sibling species in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Logue Kyle

    2013-02-01

    Full Text Available Abstract Background Members of the Anopheles punctulatus group (AP group are the primary vectors of human malaria in Papua New Guinea. The AP group includes 13 sibling species, most of them morphologically indistinguishable. Understanding why only certain species are able to transmit malaria requires a better comprehension of their evolutionary history. In particular, understanding relationships and divergence times among Anopheles species may enable assessing how malaria-related traits (e.g. blood feeding behaviours, vector competence have evolved. Methods DNA sequences of 14 mitochondrial (mt genomes from five AP sibling species and two species of the Anopheles dirus complex of Southeast Asia were sequenced. DNA sequences from all concatenated protein coding genes (10,770 bp were then analysed using a Bayesian approach to reconstruct phylogenetic relationships and date the divergence of the AP sibling species. Results Phylogenetic reconstruction using the concatenated DNA sequence of all mitochondrial protein coding genes indicates that the ancestors of the AP group arrived in Papua New Guinea 25 to 54 million years ago and rapidly diverged to form the current sibling species. Conclusion Through evaluation of newly described mt genome sequences, this study has revealed a divergence among members of the AP group in Papua New Guinea that would significantly predate the arrival of humans in this region, 50 thousand years ago. The divergence observed among the mtDNA sequences studied here may have resulted from reproductive isolation during historical changes in sea-level through glacial minima and maxima. This leads to a hypothesis that the AP sibling species have evolved independently for potentially thousands of generations. This suggests that the evolution of many phenotypes, such as insecticide resistance will arise independently in each of the AP sibling species studied here.

  11. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters

    Directory of Open Access Journals (Sweden)

    Strassmann Joan E

    2004-03-01

    Full Text Available Abstract Background Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera using 69 species. Results Our phylogeny is largely concordant with previous phylogenies at higher levels, and is more resolved at the species level. Our results support the monophyly of the New World subgenera of Polistini, while the Old World subgenera are a paraphyletic group. All genera for which we had more than one exemplar were supported as monophyletic except Polybia which is not resolved, and may be paraphyletic. Conclusion The combination of DNA sequences from flanks of microsatellite repeats with mtCOI sequences and morphological characters proved to be useful characters establishing relationships among the different subgenera and species of the Polistini. This is the first detailed hypothesis for the species of this important group.

  12. The origins of African Plasmodium vivax; insights from mitochondrial genome sequencing.

    Directory of Open Access Journals (Sweden)

    Richard Culleton

    Full Text Available Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa.

  13. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O; Alawad, Abdullah O; Al-Sadi, Abdullah M; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants.

  14. Mitochondrial and nuclear sequence polymorphisms reveal geographic structuring in Amazonian populations of Echinococcus vogeli (Cestoda: Taeniidae).

    Science.gov (United States)

    Santos, Guilherme B; Soares, Manoel do C P; de F Brito, Elisabete M; Rodrigues, André L; Siqueira, Nilton G; Gomes-Gouvêa, Michele S; Alves, Max M; Carneiro, Liliane A; Malheiros, Andreza P; Póvoa, Marinete M; Zaha, Arnaldo; Haag, Karen L

    2012-12-01

    To date, nothing is known about the genetic diversity of the Echinococcus neotropical species, Echinococcus vogeli and Echinococcus oligarthrus. Here we used mitochondrial and nuclear DNA sequence polymorphisms to uncover the genetic structure, transmission and history of E. vogeli in the Brazilian Amazon, based on a sample of 38 isolates obtained from human and wild animal hosts. We confirm that the parasite is partially synanthropic and show that its populations are diverse. Furthermore, significant geographical structuring is found, with western and eastern populations being genetically divergent. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  15. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta

    2018-02-24

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  16. The complete mitochondrial genome of Porites harrisoni (Cnidaria: Scleractinia) obtained using next-generation sequencing

    KAUST Repository

    Terraneo, Tullia Isotta; Arrigoni, Roberto; Benzoni, Francesca; Forsman, Zac H.; Berumen, Michael L.

    2018-01-01

    In this study, we sequenced the complete mitochondrial genome of Porites harrisoni using ezRAD and Illumina technology. Genome length consisted of 18,630 bp, with a base composition of 25.92% A, 13.28% T, 23.06% G, and 37.73% C. Consistent with other hard corals, P. harrisoni mitogenome was arranged in 13 protein-coding genes, 2 rRNA, and 2 tRNA genes. nad5 and cox1 contained embedded Group I Introns of 11,133 bp and 965 bp, respectively.

  17. Complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi (Ginsburg, 1933; Gasterosteiformes: Syngnathidae).

    Science.gov (United States)

    Wang, Xin; Zhang, Yanhong; Zhang, Huixian; Meng, Tan; Lin, Qiang

    2016-01-01

    The complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi was fisrt determined in this article. The total length of H. reidi mitogenome is 16,529 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. reidi were similar to those of most other vertebrates. The overall base composition of H. reidi is 32.47% A, 29.41% T, 14.75% G and 23.37% C, with a slight A + T rich feature (61.88%).

  18. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile)

    OpenAIRE

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-01-01

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PC...

  19. The Complete Mitochondrial DNA Sequence of Scenedesmus obliquus Reflects an Intermediate Stage in the Evolution of the Green Algal Mitochondrial Genome

    Science.gov (United States)

    Nedelcu, Aurora M.; Lee, Robert W.; Lemieux, Claude; Gray, Michael W.; Burger, Gertraud

    2000-01-01

    Two distinct mitochondrial genome types have been described among the green algal lineages investigated to date: a reduced–derived, Chlamydomonas-like type and an ancestral, Prototheca-like type. To determine if this unexpected dichotomy is real or is due to insufficient or biased sampling and to define trends in the evolution of the green algal mitochondrial genome, we sequenced and analyzed the mitochondrial DNA (mtDNA) of Scenedesmus obliquus. This genome is 42,919 bp in size and encodes 42 conserved genes (i.e., large and small subunit rRNA genes, 27 tRNA and 13 respiratory protein-coding genes), four additional free-standing open reading frames with no known homologs, and an intronic reading frame with endonuclease/maturase similarity. No 5S rRNA or ribosomal protein-coding genes have been identified in Scenedesmus mtDNA. The standard protein-coding genes feature a deviant genetic code characterized by the use of UAG (normally a stop codon) to specify leucine, and the unprecedented use of UCA (normally a serine codon) as a signal for termination of translation. The mitochondrial genome of Scenedesmus combines features of both green algal mitochondrial genome types: the presence of a more complex set of protein-coding and tRNA genes is shared with the ancestral type, whereas the lack of 5S rRNA and ribosomal protein-coding genes as well as the presence of fragmented and scrambled rRNA genes are shared with the reduced–derived type of mitochondrial genome organization. Furthermore, the gene content and the fragmentation pattern of the rRNA genes suggest that this genome represents an intermediate stage in the evolutionary process of mitochondrial genome streamlining in green algae. [The sequence data described in this paper have been submitted to the GenBank data library under accession no. AF204057.] PMID:10854413

  20. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  1. Exome sequencing and genetic testing for MODY.

    Directory of Open Access Journals (Sweden)

    Stefan Johansson

    Full Text Available Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive.The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results.We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism.On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes.Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  2. Phylogenetic analysis of Thai oyster (Ostreidae) based on partial sequences of the mitochondrial 16S rDNA gene

    DEFF Research Database (Denmark)

    Bussarawit, Somchai; Gravlund, Peter; Glenner, Henrik

    2006-01-01

    Ten oyster species of the family Ostreidae (Subfamilies Crassostreinae and Lophinae) from Thailand were studied using morphological data and mitochondrial 16S rDNA gene sequences. Additional sequence data from five specimens of Ostreidae and one specimen of Tridacna gigas were downloaded from Gen...

  3. Complete Sequence and Analysis of the Mitochondrial Genome of Hemiselmis andersenii CCMP644 (Cryptophyceae

    Directory of Open Access Journals (Sweden)

    Bowman Sharen

    2008-05-01

    Full Text Available Abstract Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu gene and possesses a trnS-derived 'trnK(uuu', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher

  4. Automated Testing with Targeted Event Sequence Generation

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning; Prasad, Mukul R.; Møller, Anders

    2013-01-01

    Automated software testing aims to detect errors by producing test inputs that cover as much of the application source code as possible. Applications for mobile devices are typically event-driven, which raises the challenge of automatically producing event sequences that result in high coverage...

  5. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences.

    Science.gov (United States)

    Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L

    2004-10-01

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.

  6. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing.

    Directory of Open Access Journals (Sweden)

    Eun Hyun Ahn

    Full Text Available Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS methods have high error rates. We have established a new method termed Duplex Sequencing (DS, which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles.

  7. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    Energy Technology Data Exchange (ETDEWEB)

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  8. Use of a mitochondrial COI sequence to identify species of the subtribe Aphidina (Hemiptera, Aphididae

    Directory of Open Access Journals (Sweden)

    Jianfeng WANG

    2011-08-01

    Full Text Available Aphids of the subtribe Aphidina are found mainly in the North Temperate Zone. The relative lack of diagnostic morphological characteristics has obscured the identification of species in this group. However, DNA-based taxonomic methods can clarify species relationships within this group. Sequence variation in a partial segment of the mitochondrial COI gene was highly effective for resolving species relationships within Aphidina. Forty-five species were correctly identified in a neighbor-joining tree. Mean intraspecific sequence divergence was 0.17%, with a range of 0.00% to 1.54%. Mean interspecific divergence within previously recognized genera or morphologically similar species groups was 4.54%, with variation mainly in the range of 3.50% to 8.00%. Possible reasons for anomalous levels of mean nucleotide divergence within or between some taxa are discussed.

  9. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    Science.gov (United States)

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  10. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    Science.gov (United States)

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  11. Molecular phylogeny of Toxoplasmatinae: comparison between inferences based on mitochondrial and apicoplast genetic sequences

    Directory of Open Access Journals (Sweden)

    Michelle Klein Sercundes

    2016-03-01

    Full Text Available Abstract Phylogenies within Toxoplasmatinae have been widely investigated with different molecular markers. Here, we studied molecular phylogenies of the Toxoplasmatinae subfamily based on apicoplast and mitochondrial genes. Partial sequences of apicoplast genes coding for caseinolytic protease (clpC and beta subunit of RNA polymerase (rpoB, and mitochondrial gene coding for cytochrome B (cytB were analyzed. Laboratory-adapted strains of the closely related parasites Sarcocystis falcatula and Sarcocystis neurona were investigated, along with Neospora caninum, Neospora hughesi, Toxoplasma gondii (strains RH, CTG and PTG, Besnoitia akodoni, Hammondia hammondiand two genetically divergent lineages of Hammondia heydorni. The molecular analysis based on organellar genes did not clearly differentiate between N. caninum and N. hughesi, but the two lineages of H. heydorni were confirmed. Slight differences between the strains of S. falcatula and S. neurona were encountered in all markers. In conclusion, congruent phylogenies were inferred from the three different genes and they might be used for screening undescribed sarcocystid parasites in order to ascertain their phylogenetic relationships with organisms of the family Sarcocystidae. The evolutionary studies based on organelar genes confirm that the genusHammondia is paraphyletic. The primers used for amplification of clpC and rpoB were able to amplify genetic sequences of organisms of the genus Sarcocystisand organisms of the subfamily Toxoplasmatinae as well.

  12. Identification of a Degradation Signal Sequence within Substrates of the Mitochondrial i-AAA Protease.

    Science.gov (United States)

    Rampello, Anthony J; Glynn, Steven E

    2017-03-24

    The i-AAA protease is a component of the mitochondrial quality control machinery that regulates respiration, mitochondrial dynamics, and protein import. The protease is required to select specific substrates for degradation from among the diverse complement of proteins present in mitochondria, yet the rules that govern this selection are unclear. Here, we reconstruct the yeast i-AAA protease, Yme1p, to examine the in vitro degradation of two intermembrane space chaperone subunits, Tim9 and Tim10. Yme1p degrades Tim10 more rapidly than Tim9 despite high sequence and structural similarity, and loss of Tim10 is accelerated by the disruption of conserved disulfide bonds within the substrate. An unstructured N-terminal region of Tim10 is necessary and sufficient to target the substrate to the protease through recognition of a short phenylalanine-rich motif, and the presence of similar motifs in other small Tim proteins predicts robust degradation by the protease. Together, these results identify the first specific degron sequence within a native i-AAA protease substrate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. ACCELERATED EVOLUTION OF LAND SNAILS MANDARINA IN THE OCEANIC BONIN ISLANDS: EVIDENCE FROM MITOCHONDRIAL DNA SEQUENCES.

    Science.gov (United States)

    Chiba, Satoshi

    1999-04-01

    An endemic land snail genus Mandarina of the oceanic Bonin (Ogasawara) Islands shows exceptionally rapid evolution not only of morphological and ecological traits, but of DNA sequence. A phylogenetic relationship based on mitochondrial DNA (mtDNA) sequences suggests that morphological differences equivalent to the differences between families were produced between Mandarina and its ancestor during the Pleistocene. The inferred phylogeny shows that species with similar morphologies and life habitats appeared repeatedly and independently in different lineages and islands at different times. Sequential adaptive radiations occurred in different islands of the Bonin Islands and species occupying arboreal, semiarboreal, and terrestrial habitat arose independently in each island. Because of a close relationship between shell morphology and life habitat, independent evolution of the same life habitat in different islands created species possesing the same shell morphology in different islands and lineages. This rapid evolution produced some incongruences between phylogenetic relationship and species taxonomy. Levels of sequence divergence of mtDNA among the species of Mandarina is extremely high. The maximum level of sequence divergence at 16S and 12S ribosomal RNA sequence within Mandarina are 18.7% and 17.7%, respectively, and this suggests that evolution of mtDNA of Mandarina is extremely rapid, more than 20 times faster than the standard rate in other animals. The present examination reveals that evolution of morphological and ecological traits occurs at extremely high rates in the time of adaptive radiation, especially in fragmented environments. © 1999 The Society for the Study of Evolution.

  14. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    Science.gov (United States)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  15. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  16. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini.

  17. The complete mitochondrial genome sequence of the spider habronattus oregonensis reveals rearranged and extremely truncated tRNAs

    International Nuclear Information System (INIS)

    Masta, Susan E.; Boore, Jeffrey L.

    2004-01-01

    We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs appear to be lacking, because fully paired acceptor stems are not possible and because the downstream sequences instead encode adjacent genes. Hence, these appear to be among the smallest known tRNA genes. We postulate that an RNA editing mechanism must exist to restore the 3' aminoacyl acceptor stems in order to allow the tRNAs to function. At least seven tRN As are rearranged with respect to the chelicerate Limulus polyphemus, although the arrangement of the protein-coding genes is identical. Most mitochondrial protein-coding genes of H. oregonensis have ATN as initiation codons, as commonly found in arthropod mtDNAs, but cytochrome oxidase subunit 2 and 3 genes apparently use UUG as an initiation codon. Finally, many of the gene sequences overlap one another and are truncated. This 14,381 bp genome, the first mitochondrial genome of a spider yet sequenced, is one of the smallest arthropod mitochondrial genomes known. We suggest that post transcriptional RNA editing can likely maintain function of the tRNAs while permitting the accumulation of mutations that would otherwise be deleterious. Such mechanisms may have allowed for the minimization of the spider mitochondrial genome

  18. Extensive structural variations between mitochondrial genomes of CMS and normal peppers (Capsicum annuum L.) revealed by complete nucleotide sequencing.

    Science.gov (United States)

    Jo, Yeong Deuk; Choi, Yoomi; Kim, Dong-Hwan; Kim, Byung-Dong; Kang, Byoung-Cheorl

    2014-07-04

    Cytoplasmic male sterility (CMS) is an inability to produce functional pollen that is caused by mutation of the mitochondrial genome. Comparative analyses of mitochondrial genomes of lines with and without CMS in several species have revealed structural differences between genomes, including extensive rearrangements caused by recombination. However, the mitochondrial genome structure and the DNA rearrangements that may be related to CMS have not been characterized in Capsicum spp. We obtained the complete mitochondrial genome sequences of the pepper CMS line FS4401 (507,452 bp) and the fertile line Jeju (511,530 bp). Comparative analysis between mitochondrial genomes of peppers and tobacco that are included in Solanaceae revealed extensive DNA rearrangements and poor conservation in non-coding DNA. In comparison between pepper lines, FS4401 and Jeju mitochondrial DNAs contained the same complement of protein coding genes except for one additional copy of an atp6 gene (ψatp6-2) in FS4401. In terms of genome structure, we found eighteen syntenic blocks in the two mitochondrial genomes, which have been rearranged in each genome. By contrast, sequences between syntenic blocks, which were specific to each line, accounted for 30,380 and 17,847 bp in FS4401 and Jeju, respectively. The previously-reported CMS candidate genes, orf507 and ψatp6-2, were located on the edges of the largest sequence segments that were specific to FS4401. In this region, large number of small sequence segments which were absent or found on different locations in Jeju mitochondrial genome were combined together. The incorporation of repeats and overlapping of connected sequence segments by a few nucleotides implied that extensive rearrangements by homologous recombination might be involved in evolution of this region. Further analysis using mtDNA pairs from other plant species revealed common features of DNA regions around CMS-associated genes. Although large portion of sequence context was

  19. Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease.

    Science.gov (United States)

    Lieber, Daniel S; Vafai, Scott B; Horton, Laura C; Slate, Nancy G; Liu, Shangtao; Borowsky, Mark L; Calvo, Sarah E; Schmahmann, Jeremy D; Mootha, Vamsi K

    2012-01-06

    Mitochondrial diseases comprise a diverse set of clinical disorders that affect multiple organ systems with varying severity and age of onset. Due to their clinical and genetic heterogeneity, these diseases are difficult to diagnose. We have developed a targeted exome sequencing approach to improve our ability to properly diagnose mitochondrial diseases and apply it here to an individual patient. Our method targets mitochondrial DNA (mtDNA) and the exons of 1,600 nuclear genes involved in mitochondrial biology or Mendelian disorders with multi-system phenotypes, thereby allowing for simultaneous evaluation of multiple disease loci. Targeted exome sequencing was performed on a patient initially suspected to have a mitochondrial disorder. The patient presented with diabetes mellitus, diffuse brain atrophy, autonomic neuropathy, optic nerve atrophy, and a severe amnestic syndrome. Further work-up revealed multiple heteroplasmic mtDNA deletions as well as profound thiamine deficiency without a clear nutritional cause. Targeted exome sequencing revealed a homozygous c.1672C > T (p.R558C) missense mutation in exon 8 of WFS1 that has previously been reported in a patient with Wolfram syndrome. This case demonstrates how clinical application of next-generation sequencing technology can enhance the diagnosis of patients suspected to have rare genetic disorders. Furthermore, the finding of unexplained thiamine deficiency in a patient with Wolfram syndrome suggests a potential link between WFS1 biology and thiamine metabolism that has implications for the clinical management of Wolfram syndrome patients.

  20. Atypical case of Wolfram syndrome revealed through targeted exome sequencing in a patient with suspected mitochondrial disease

    Directory of Open Access Journals (Sweden)

    Lieber Daniel S

    2012-01-01

    Full Text Available Abstract Background Mitochondrial diseases comprise a diverse set of clinical disorders that affect multiple organ systems with varying severity and age of onset. Due to their clinical and genetic heterogeneity, these diseases are difficult to diagnose. We have developed a targeted exome sequencing approach to improve our ability to properly diagnose mitochondrial diseases and apply it here to an individual patient. Our method targets mitochondrial DNA (mtDNA and the exons of 1,600 nuclear genes involved in mitochondrial biology or Mendelian disorders with multi-system phenotypes, thereby allowing for simultaneous evaluation of multiple disease loci. Case Presentation Targeted exome sequencing was performed on a patient initially suspected to have a mitochondrial disorder. The patient presented with diabetes mellitus, diffuse brain atrophy, autonomic neuropathy, optic nerve atrophy, and a severe amnestic syndrome. Further work-up revealed multiple heteroplasmic mtDNA deletions as well as profound thiamine deficiency without a clear nutritional cause. Targeted exome sequencing revealed a homozygous c.1672C > T (p.R558C missense mutation in exon 8 of WFS1 that has previously been reported in a patient with Wolfram syndrome. Conclusion This case demonstrates how clinical application of next-generation sequencing technology can enhance the diagnosis of patients suspected to have rare genetic disorders. Furthermore, the finding of unexplained thiamine deficiency in a patient with Wolfram syndrome suggests a potential link between WFS1 biology and thiamine metabolism that has implications for the clinical management of Wolfram syndrome patients.

  1. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  2. Bird evolution: testing the Metaves clade with six new mitochondrial genomes

    Directory of Open Access Journals (Sweden)

    Phillips Matthew J

    2008-01-01

    Full Text Available Abstract Background Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade. Results Our mitochondrial trees did not return the Metaves clade that had been proposed based on one nuclear intron sequence. We suggest that the high number of indels within the seventh intron of the β-fibrinogen gene at this phylogenetic level, which left a dataset with not a single site across the alignment shared by all taxa, resulted in artifacts during analysis. With respect to the overall avian tree, we find the flamingo and grebe are sister taxa and basal to the shorebirds (Charadriiformes. Using a novel site-stripping technique for noise-reduction we found this relationship to be stable. The hummingbird/swift clade is outside the large and very diverse group of raptors, shore and sea birds. Unexpectedly the kagu is not closely related to the rail in our analysis, but because neither the kagu nor the rail have close affinity to any taxa within this dataset of 41 birds, their placement is not yet resolved. Conclusion Our phylogenetic hypothesis based on 41 avian mitochondrial genomes (13,229 bp rejects monophyly of seven Metaves species and we therefore conclude that the members of Metaves do not share a common evolutionary history within the Neoaves.

  3. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments.

    Science.gov (United States)

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-09-24

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp.

  4. Mitochondrial genome sequence of the potato powdery scab pathogen Spongospora subterranea.

    Science.gov (United States)

    Gutiérrez, Pablo; Bulman, Simon; Alzate, Juan; Ortíz, Mary Carmen; Marín, Mauricio

    2016-01-01

    Spongospora subterranea is a soil-borne obligate parasite responsible for potato powdery scab disease. S. subterranea is a member of the order Plasmodiophorida, a protist taxa that is related to Cercozoa and Foraminifera but the fine details of these relationships remain unresolved. Currently there is only one available complete mtDNA sequence of a cercozoan, Bigelowiella natans. In this work, the mitochondrial sequence of a S. subterranea isolate infecting an Andean variety of S. tuberosum ssp. andigena (Diacol-Capiro) is presented. The mtDNA codes for 16 proteins of the respiratory chain, 11 ribosomal proteins, 3 ribosomal RNAs, 24 tRNAs, a RNA processing RNaseP, a RNA-directed polymerase, and two proteins of unknown function. This is the first report of a mtDNA genome sequence from a plasmodiophorid and will be useful in clarifying the phylogenetic relationship of this group to other members in the supergroup Rhizaria once more mtDNA sequences are available.

  5. The novel primers for mammal species identification-based mitochondrial cytochrome b sequence: implication for reserved wild animals in Thailand and endangered mammal species in Southeast Asia.

    Science.gov (United States)

    Muangkram, Yuttamol; Wajjwalku, Worawidh; Amano, Akira; Sukmak, Manakorn

    2018-01-01

    We presented the powerful techniques for species identification using the short amplicon of mitochondrial cytochrome b gene sequence. Two faecal samples and one single hair sample of the Asian tapir were tested using the new cytochrome b primers. The results showed a high sequence similarity with the mainland Asian tapir group. The comparative sequence analysis of the reserved wild mammals in Thailand and the other endangered mammal species from Southeast Asia comprehensibly verified the potential of our novel primers. The forward and reverse primers were 94.2 and 93.2%, respectively, by the average value of the sequence identity among 77 species sequences, and the overall mean distance was 35.9%. This development technique could provide rapid, simple, and reliable tools for species confirmation. Especially, it could recognize the problematic biological specimens contained less DNA material from illegal products and assist with wildlife crime investigation of threatened species and related forensic casework.

  6. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  7. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  8. Deep sequencing of the mitochondrial genome reveals common heteroplasmic sites in NADH dehydrogenase genes.

    Science.gov (United States)

    Liu, Chunyu; Fetterman, Jessica L; Liu, Poching; Luo, Yan; Larson, Martin G; Vasan, Ramachandran S; Zhu, Jun; Levy, Daniel

    2018-03-01

    Increasing evidence implicates mitochondrial dysfunction in aging and age-related conditions. But little is known about the molecular basis for this connection. A possible cause may be mutations in the mitochondrial DNA (mtDNA), which are often heteroplasmic-the joint presence of different alleles at a single locus in the same individual. However, the involvement of mtDNA heteroplasmy in aging and age-related conditions has not been investigated thoroughly. We deep-sequenced the complete mtDNA genomes of 356 Framingham Heart Study participants (52% women, mean age 43, mean coverage 4570-fold), identified 2880 unique mutations and comprehensively annotated them by MITOMAP and PolyPhen-2. We discovered 11 heteroplasmic "hot" spots [NADH dehydrogenase (ND) subunit 1, 4, 5 and 6 genes, n = 7; cytochrome c oxidase I (COI), n = 2; 16S rRNA, n = 1; D-loop, n = 1] for which the alternative-to-reference allele ratios significantly increased with advancing age (Bonferroni correction p < 0.001). Four of these heteroplasmic mutations in ND and COI genes were predicted to be deleterious nonsynonymous mutations which may have direct impact on ATP production. We confirmed previous findings that healthy individuals carry many low-frequency heteroplasmy mutations with potentially deleterious effects. We hypothesize that the effect of a single deleterious heteroplasmy may be minimal due to a low mutant-to-wildtype allele ratio, whereas the aggregate effects of many deleterious mutations may cause changes in mitochondrial function and contribute to age-related diseases. The identification of age-related mtDNA mutations is an important step to understand the genetic architecture of age-related diseases and may uncover novel therapeutic targets for such diseases.

  9. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    Science.gov (United States)

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries. Copyright © 2011 Elsevier Inc. All

  10. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    Science.gov (United States)

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  11. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    Science.gov (United States)

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  12. Fidelity and Mutational Spectrum of Pfu DNA Polymerase on a Human Mitochondrial DNA Sequence

    Science.gov (United States)

    André, Paulo; Kim, Andrea; Khrapko, Konstantin; Thilly, William G.

    1997-01-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10−6 must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or “PCR noise”. Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 × 10−7, and five of its more frequent mutations (hot spots) consisted of three transversions (GC → TA, AT → TA, and AT → CG), one transition (AT → GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be

  13. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    Science.gov (United States)

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  14. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda) mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Science.gov (United States)

    Brewer, Michael S; Swafford, Lynn; Spruill, Chad L; Bond, Jason E

    2013-01-01

    Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the resulting tree topologies as suspect

  15. Arthropod phylogenetics in light of three novel millipede (myriapoda: diplopoda mitochondrial genomes with comments on the appropriateness of mitochondrial genome sequence data for inferring deep level relationships.

    Directory of Open Access Journals (Sweden)

    Michael S Brewer

    Full Text Available BACKGROUND: Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. RESULTS: The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly. As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. CONCLUSIONS: The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic

  16. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    Science.gov (United States)

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  17. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    Science.gov (United States)

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  18. Identifications of Captive and Wild Tilapia Species Existing in Hawaii by Mitochondrial DNA Control Region Sequence

    Science.gov (United States)

    Wu, Liang; Yang, Jinzeng

    2012-01-01

    Background The tilapia family of the Cichlidae includes many fish species, which live in freshwater and saltwater environments. Several species, such as O. niloticus, O. aureus, and O. mossambicus, are excellent for aquaculture because these fish are easily reproduced and readily adapt to diverse environments. Historically, tilapia species, including O. mossambicus, S. melanotheron, and O. aureus, were introduced to Hawaii many decades ago, and the state of Hawaii uses the import permit policy to prevent O. niloticus from coming into the islands. However, hybrids produced from O. niloticus may already be present in the freshwater and marine environments of the islands. The purpose of this study was to identify tilapia species that exist in Hawaii using mitochondrial DNA analysis. Methodology/Principal Findings In this study, we analyzed 382 samples collected from 13 farm (captive) and wild tilapia populations in Oahu and the Hawaii Islands. Comparison of intraspecies variation between the mitochondrial DNA control region (mtDNA CR) and cytochrome c oxidase I (COI) gene from five populations indicated that mtDNA CR had higher nucleotide diversity than COI. A phylogenetic tree of all sampled tilapia was generated using mtDNA CR sequences. The neighbor-joining tree analysis identified seven distinctive tilapia species: O. aureus, O. mossambicus, O. niloticus, S. melanotheron, O. urolepies, T. redalli, and a hybrid of O. massambicus and O. niloticus. Of all the populations examined, 10 populations consisting of O. aureus, O. mossambicus, O. urolepis, and O. niloticus from the farmed sites were relatively pure, whereas three wild populations showed some degree of introgression and hybridization. Conclusions/Significance This DNA-based tilapia species identification is the first report that confirmed tilapia species identities in the wild and captive populations in Hawaii. The DNA sequence comparisons of mtDNA CR appear to be a valid method for tilapia species

  19. Eukaryote-wide sequence analysis of mitochondrial β-barrel outer membrane proteins

    Directory of Open Access Journals (Sweden)

    Fujita Naoya

    2011-01-01

    Full Text Available Abstract Background The outer membranes of mitochondria are thought to be homologous to the outer membranes of Gram negative bacteria, which contain 100's of distinct families of β-barrel membrane proteins (BOMPs often forming channels for transport of nutrients or drugs. However, only four families of mitochondrial BOMPs (MBOMPs have been confirmed to date. Although estimates as high as 100 have been made in the past, the number of yet undiscovered MBOMPs is an open question. Fortunately, the recent discovery of a membrane integration signal (the β-signal for MBOMPs gave us an opportunity to look for undiscovered MBOMPs. Results We present the results of a comprehensive survey of eukaryotic protein sequences intended to identify new MBOMPs. Our search employs recent results on β-signals as well as structural information and a novel BOMP predictor trained on both bacterial and mitochondrial BOMPs. Our principal finding is circumstantial evidence suggesting that few MBOMPs remain to be discovered, if one assumes that, like known MBOMPs, novel MBOMPs will be monomeric and β-signal dependent. In addition to this, our analysis of MBOMP homologs reveals some exceptions to the current model of the β-signal, but confirms its consistent presence in the C-terminal region of MBOMP proteins. We also report a β-signal independent search for MBOMPs against the yeast and Arabidopsis proteomes. We find no good candidates MBOMPs in yeast but the Arabidopsis results are less conclusive. Conclusions Our results suggest there are no remaining MBOMPs left to discover in yeast; and if one assumes all MBOMPs are β-signal dependent, few MBOMP families remain undiscovered in any sequenced organism.

  20. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    Directory of Open Access Journals (Sweden)

    Fengnian Wu

    Full Text Available Potato psyllid (Bactericera cockerelli is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq. The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs, 2 ribosomal RNA genes (rRNAs, 22 transfer RNA genes (tRNAs, and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli.

  1. Genetic variability of Echinococcus granulosus complex in various geographical populations of Iran inferred by mitochondrial DNA sequences.

    Science.gov (United States)

    Spotin, Adel; Mahami-Oskouei, Mahmoud; Harandi, Majid Fasihi; Baratchian, Mehdi; Bordbar, Ali; Ahmadpour, Ehsan; Ebrahimi, Sahar

    2017-01-01

    To investigate the genetic variability and population structure of Echinococcus granulosus complex, 79 isolates were sequenced from different host species covering human, dog, camel, goat, sheep and cattle as of various geographical sub-populations of Iran (Northwestern, Northern, and Southeastern). In addition, 36 sequences of other geographical populations (Western, Southeastern and Central Iran), were directly retrieved from GenBank database for the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The confirmed isolates were grouped as G1 genotype (n=92), G6 genotype (n=14), G3 genotype (n=8) and G2 genotype (n=1). 50 unique haplotypes were identified based on the analyzed sequences of cox1. A parsimonious network of the sequence haplotypes displayed star-like features in the overall population containing IR23 (22: 19.1%) as the most common haplotype. According to the analysis of molecular variance (AMOVA) test, the high value of haplotype diversity of E. granulosus complex was shown the total genetic variability within populations while nucleotide diversity was low in all populations. Neutrality indices of the cox1 (Tajima's D and Fu's Fs tests) were shown negative values in Western-Northwestern, Northern and Southeastern populations which indicating significant divergence from neutrality and positive but not significant in Central isolates. A pairwise fixation index (Fst) as a degree of gene flow was generally low value for all populations (0.00647-0.15198). The statistically Fst values indicate that Echinococcus sensu stricto (genotype G1-G3) populations are not genetically well differentiated in various geographical regions of Iran. To appraise the hypothetical evolutionary scenario, further study is needed to analyze concatenated mitogenomes and as well a panel of single locus nuclear markers should be considered in wider areas of Iran and neighboring countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    Directory of Open Access Journals (Sweden)

    Giovanni Pagano

    2014-11-01

    Full Text Available An extensive number of pathologies are associated with mitochondrial dysfunction (MDF and oxidative stress (OS. Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN, such as α-lipoic acid (ALA, Coenzyme Q10 (CoQ10, and l-carnitine (CARN (or its derivatives have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a treated diseases; (b dosages, number of enrolled patients and duration of treatment; (c trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed.

  3. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    Science.gov (United States)

    Pagano, Giovanni; Aiello Talamanca, Annarita; Castello, Giuseppe; Cordero, Mario D.; d’Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed. PMID:25380523

  4. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  5. The phylogeny of Mediterranean tortoises and their close relativesbased on complete mitochondrial genome sequences from museumspecimens

    Energy Technology Data Exchange (ETDEWEB)

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.; Feldman, Chris R.; Turkozan, Oguz; Polymeni, Rosa; Boore, Jeffrey

    2005-04-29

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the

  6. Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci

    DEFF Research Database (Denmark)

    Nyakaana, S; Arctander, P; Siegismund, H R

    2002-01-01

    Two hundred and thirty-six mitochondrial DNA nucleotide sequences were used in combination with polymorphism at four nuclear microsatellite loci to assess the amount and distribution of genetic variation within and between African savannah elephants. They were sampled from 11 localities in easter...

  7. Comparison of complete mitochondrial DNA sequences between old and new world strains of the cowpea aphid, Aphis craccivora (Hemiptera: Aphididae)

    Science.gov (United States)

    Mitochondrial DNA provides useful tools for inferring population genetic structure within a species and phylogenetic relationships between species. The complete mitogenome sequences were assembled from strains of the cowpea aphids, Aphis craccivora, from the old (15,308 bp) and new world (15,305 bp...

  8. Full Mitochondrial Genome Sequence of the Sugar Beet Wireworm Limonius californicus (Coleoptera: Elateridae), a Common Agricultural Pest.

    Science.gov (United States)

    Gerritsen, Alida T; New, Daniel D; Robison, Barrie D; Rashed, Arash; Hohenlohe, Paul; Forney, Larry; Rashidi, Mahnaz; Wilson, Cathy M; Settles, Matthew L

    2016-01-21

    We report here the full mitochondrial genome sequence of Limonius californicus, a species of click beetle that is an agricultural pest in its larval form. The circular genome is 16.5 kb and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. Copyright © 2016 Gerritsen et al.

  9. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    Science.gov (United States)

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  10. A test of the transcription model for biased inheritance of yeast mitochondrial DNA.

    Science.gov (United States)

    Lorimer, H E; Brewer, B J; Fangman, W L

    1995-09-01

    Two strand-specific origins of replication appear to be required for mammalian mitochondrial DNA (mtDNA) replication. Structural equivalents of these origins are found in the rep sequences of Saccharomyces cerevisiae mtDNA. These striking similarities have contributed to a universal model for the initiation of mtDNA replication in which a primer is created by cleavage of an origin region transcript. Consistent with this model are the properties of deletion mutants of yeast mtDNA ([rho-]) with a high density of reps (HS [rho-]). These mutant mtDNAs are preferentially inherited by the progeny resulting from the mating of HS [rho-] cells with cells containing wild-type mtDNA ([rho+]). This bias is presumed to result from a replication advantage conferred on HS [rho-] mtDNA by the high density of rep sequences acting as origins. To test whether transcription is indeed required for the preferential inheritance of HS [rho-] mtDNA, we deleted the nuclear gene (RPO41) for the mitochondrial RNA polymerase, reducing transcripts by at least 1000-fold. Since [rho-] genomes, but not [rho+] genomes, are stable when RPO41 is deleted, we examined matings between HS [rho-] and neutral [rho-] cells. Neutral [rho-] mtDNAs lack rep sequences and are not preferentially inherited in [rho-] x [rho+] crosses. In HS [rho-] x neutral [rho-] matings, the HS [rho-] mtDNA was preferentially inherited whether both parents were wild type or both were deleted for RPO41. Thus, transcription from the rep promoter does not appear to be necessary for biased inheritance. Our results, and analysis of the literature, suggest that priming by transcription is not a universal mechanism for mtDNA replication initiation.

  11. Maternal phylogenetic relationships and genetic variation among Arabian horse populations using whole mitochondrial DNA D-loop sequencing.

    Science.gov (United States)

    Khanshour, Anas M; Cothran, Ernest Gus

    2013-09-13

    Maternal inheritance is an essential point in Arabian horse population genetics and strains classification. The mitochondrial DNA (mtDNA) sequencing is a highly informative tool to investigate maternal lineages. We sequenced the whole mtDNA D-loop of 251 Arabian horses to study the genetic diversity and phylogenetic relationships of Arabian populations and to examine the traditional strain classification system that depends on maternal family lines using native Arabian horses from the Middle East. The variability in the upstream region of the D-loop revealed additional differences among the haplotypes that had identical sequences in the hypervariable region 1 (HVR1). While the American-Arabians showed relatively low diversity, the Syrian population was the most variable and contained a very rare and old haplogroup. The Middle Eastern horses had major genetic contributions to the Western horses and there was no clear pattern of differentiation among all tested populations. Our results also showed that several individuals from different strains shared a single haplotype, and individuals from a single strain were represented in clearly separated haplogroups. The whole mtDNA D-loop sequence was more powerful for analysis of the maternal genetic diversity in the Arabian horses than using just the HVR1. Native populations from the Middle East, such as Syrians, could be suggested as a hot spot of genetic diversity and may help in understanding the evolution history of the Arabian horse breed. Most importantly, there was no evidence that the Arabian horse breed has clear subdivisions depending on the traditional maternal based strain classification system.

  12. Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger.

    Science.gov (United States)

    Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing

    2016-12-01

    Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.

  13. Complete DNA sequence of the mitochondrial genome of the treehopper Leptobelus gazella (Membracoidea: Hemiptera).

    Science.gov (United States)

    Zhao, Xing; Liang, Ai-Ping

    2016-09-01

    The first complete DNA sequence of the mitochondrial genome (mitogenome) of Leptobelus gazelle (Membracoidea: Hemiptera) is determined in this study. The circular molecule is 16,007 bp in its full length, which encodes a set of 37 genes, including 13 proteins, 2 ribosomal RNAs, 22 transfer RNAs, and contains an A + T-rich region (CR). The gene numbers, content, and organization of L. gazelle are similar to other typical metazoan mitogenomes. Twelve of the 13 PCGs are initiated with ATR methionine or ATT isoleucine codons, except the atp8 gene that uses the ATC isoleucine as start signal. Ten of the 13 PCGs have complete termination codons, either TAA (nine genes) or TAG (cytb). The remaining 3 PCGs (cox1, cox2 and nad5) have incomplete termination codons T (AA). All of the 22 tRNAs can be folded in the form of a typical clover-leaf structure. The complete mitogenome sequence data of L. gazelle is useful for the phylogenetic and biogeographic studies of the Membracoidea and Hemiptera.

  14. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2004-09-01

    Full Text Available Abstract Background Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. Results This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Conclusions Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  15. Complete mitochondrial genome sequence of Urechis caupo, a representative of the phylum Echiura.

    Science.gov (United States)

    Boore, Jeffrey L

    2004-09-15

    Mitochondria contain small genomes that are physically separate from those of nuclei. Their comparison serves as a model system for understanding the processes of genome evolution. Although hundreds of these genome sequences have been reported, the taxonomic sampling is highly biased toward vertebrates and arthropods, with many whole phyla remaining unstudied. This is the first description of a complete mitochondrial genome sequence of a representative of the phylum Echiura, that of the fat innkeeper worm, Urechis caupo. This mtDNA is 15,113 nts in length and 62% A+T. It contains the 37 genes that are typical for animal mtDNAs in an arrangement somewhat similar to that of annelid worms. All genes are encoded by the same DNA strand which is rich in A and C relative to the opposite strand. Codons ending with the dinucleotide GG are more frequent than would be expected from apparent mutational biases. The largest non-coding region is only 282 nts long, is 71% A+T, and has potential for secondary structures. Urechis caupo mtDNA shares many features with those of the few studied annelids, including the common usage of ATG start codons, unusual among animal mtDNAs, as well as gene arrangements, tRNA structures, and codon usage biases.

  16. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    Science.gov (United States)

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  17. Assembly and comparative analysis of complete mitochondrial genome sequence of an economic plant Salix suchowensis

    Directory of Open Access Journals (Sweden)

    Ning Ye

    2017-03-01

    Full Text Available Willow is a widely used dioecious woody plant of Salicaceae family in China. Due to their high biomass yields, willows are promising sources for bioenergy crops. In this study, we assembled the complete mitochondrial (mt genome sequence of S. suchowensis with the length of 644,437 bp using Roche-454 GS FLX Titanium sequencing technologies. Base composition of the S. suchowensis mt genome is A (27.43%, T (27.59%, C (22.34%, and G (22.64%, which shows a prevalent GC content with that of other angiosperms. This long circular mt genome encodes 58 unique genes (32 protein-coding genes, 23 tRNA genes and 3 rRNA genes, and 9 of the 32 protein-coding genes contain 17 introns. Through the phylogenetic analysis of 35 species based on 23 protein-coding genes, it is supported that Salix as a sister to Populus. With the detailed phylogenetic information and the identification of phylogenetic position, some ribosomal protein genes and succinate dehydrogenase genes are found usually lost during evolution. As a native shrub willow species, this worthwhile research of S. suchowensis mt genome will provide more desirable information for better understanding the genomic breeding and missing pieces of sex determination evolution in the future.

  18. Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences

    Science.gov (United States)

    Tanaka, Keiko; Tomita, Taketeru; Suzuki, Shingo; Hosomichi, Kazuyoshi; Sano, Kazumi; Doi, Hiroyuki; Kono, Azumi; Inoko, Hidetoshi; Kulski, Jerzy K.; Tanaka, Sho

    2013-01-01

    Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks. PMID:24089661

  19. Molecular characterization of Taenia multiceps isolates from Gansu Province, China by sequencing of mitochondrial cytochrome C oxidase subunit 1.

    Science.gov (United States)

    Li, Wen Hui; Jia, Wan Zhong; Qu, Zi Gang; Xie, Zhi Zhou; Luo, Jian Xun; Yin, Hong; Sun, Xiao Lin; Blaga, Radu; Fu, Bao Quan

    2013-04-01

    A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.

  20. Complete mitochondrial DNA sequences of the threadfin cichlid (Petrochromis trewavasae and the blunthead cichlid (Tropheus moorii and patterns of mitochondrial genome evolution in cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Christoph Fischer

    Full Text Available The cichlid fishes of the East African Great Lakes represent a model especially suited to study adaptive radiation and speciation. With several African cichlid genome projects being in progress, a promising set of closely related genomes is emerging, which is expected to serve as a valuable data base to solve questions on genotype-phenotype relations. The mitochondrial (mt genomes presented here are the first results of the assembly and annotation process for two closely related but eco-morphologically highly distinct Lake Tanganyika cichlids, Petrochromis trewavasae and Tropheus moorii. The genomic sequences comprise 16,588 bp (P. trewavasae and 16,590 bp (T. moorii, and exhibit the typical mitochondrial structure, with 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes, and a non-coding control region. Analyses confirmed that the two species are very closely related with an overall sequence similarity of 96%. We analyzed the newly generated sequences in the phylogenetic context of 21 published labroid fish mitochondrial genomes. Consistent with other vertebrates, the D-loop region was found to evolve faster than protein-coding genes, which in turn are followed by the rRNAs; the tRNAs vary greatly in the rate of sequence evolution, but on average evolve the slowest. Within the group of coding genes, ND6 evolves most rapidly. Codon usage is similar among examined cichlid tribes and labroid families; although a slight shift in usage patterns down the gene tree could be observed. Despite having a clearly different nucleotide composition, ND6 showed a similar codon usage. C-terminal ends of Cox1 exhibit variations, where the varying number of amino acids is related to the structure of the obtained phylogenetic tree. This variation may be of functional relevance for Cox1 synthesis.

  1. Sequence analysis of the canine mitochondrial DNA control region from shed hair samples in criminal investigations.

    Science.gov (United States)

    Berger, C; Berger, B; Parson, W

    2012-01-01

    In recent years, evidence from domestic dogs has increasingly been analyzed by forensic DNA testing. Especially, canine hairs have proved most suitable and practical due to the high rate of hair transfer occurring between dogs and humans. Starting with the description of a contamination-free sample handling procedure, we give a detailed workflow for sequencing hypervariable segments (HVS) of the mtDNA control region from canine evidence. After the hair material is lysed and the DNA extracted by Phenol/Chloroform, the amplification and sequencing strategy comprises the HVS I and II of the canine control region and is optimized for DNA of medium-to-low quality and quantity. The sequencing procedure is based on the Sanger Big-dye deoxy-terminator method and the separation of the sequencing reaction products is performed on a conventional multicolor fluorescence detection capillary electrophoresis platform. Finally, software-aided base calling and sequence interpretation are addressed exemplarily.

  2. MitoBamAnnotator: A web-based tool for detecting and annotating heteroplasmy in human mitochondrial DNA sequences.

    Science.gov (United States)

    Zhidkov, Ilia; Nagar, Tal; Mishmar, Dan; Rubin, Eitan

    2011-11-01

    The use of Next-Generation Sequencing of mitochondrial DNA is becoming widespread in biological and clinical research. This, in turn, creates a need for a convenient tool that detects and analyzes heteroplasmy. Here we present MitoBamAnnotator, a user friendly web-based tool that allows maximum flexibility and control in heteroplasmy research. MitoBamAnnotator provides the user with a comprehensively annotated overview of mitochondrial genetic variation, allowing for an in-depth analysis with no prior knowledge in programming. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved. All rights reserved.

  3. ADDRESS SEQUENCES FOR MULTI RUN RAM TESTING

    Directory of Open Access Journals (Sweden)

    V. N. Yarmolik

    2014-01-01

    Full Text Available A universal approach for generation of address sequences with specified properties is proposed and analyzed. A modified version of the Antonov and Saleev algorithm for Sobol sequences genera-tion is chosen as a mathematical description of the proposed method. Within the framework of the proposed universal approach, the Sobol sequences form a subset of the address sequences. Other sub-sets are also formed, which are Gray sequences, anti-Gray sequences, counter sequences and sequenc-es with specified properties.

  4. Long-PCR based next generation sequencing of the whole mitochondrial genome of the peacock skate Pavoraja nitida (Elasmobranchii: Arhynchobatidae).

    Science.gov (United States)

    Yang, Lei; Naylor, Gavin J P

    2016-01-01

    We determined the complete mitochondrial genome sequence (16,760 bp) of the peacock skate Pavoraja nitida using a long-PCR based next generation sequencing method. It has 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region in the typical vertebrate arrangement. Primers, protocols, and procedures used to obtain this mitogenome are provided. We anticipate that this approach will facilitate rapid collection of mitogenome sequences for studies on phylogenetic relationships, population genetics, and conservation of cartilaginous fishes.

  5. Irreducible Tests for Space Mission Sequencing Software

    Science.gov (United States)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  6. [Sequence polymorphisms of the mitochondrial DNA HVR I and HVR II regions in the Deng populations from Tibet in China].

    Science.gov (United States)

    Kang, Longli; Zhang, Xiaofeng; Liu, Kai; Zhao, Jianmin

    2009-12-01

    To analyze the sequence polymorphisms of the mitochondrial DNA hypervariable regions I (HVR I) and HVR II in the Deng population in Linzhi area of Tibet. mtDNAs obtained from 119 unrelated individuals were amplified and directly sequenced. One hundred and ten variable sites were identified, including nucleotide transitions, transversions, and insertions. In the HVR I region (nt16024-nt16365), 68 polymorphic sites and 119 haplotypes were observed, the genetic diversity was 0.9916. In the HVR II (nt73-nt340) region, 42 polymorphic sites and 113 haplotypes were observed, and the genetic diversity was 0.9907. The random match probability of the HVR I and HVR II regions were 0.0084 and 0.0093, respectively. When combining the HVR I and HVR II regions, 119 different haplotypes were found. The combined match probability of two unrelated persons having the same sequence was 0.0084. There are some unique polymorphic loci in the Deng population. There are different genetic structures between Chinese and other Asian populations in the mitochondrial DNA D-loop region. Sequence polymorphism of mitochondrial DNA HVR I and HVR II can be used as a genetic marker for forensic individual identification and genetic analysis.

  7. Sequence robust association test for familial data.

    Science.gov (United States)

    Dai, Wei; Yang, Ming; Wang, Chaolong; Cai, Tianxi

    2017-09-01

    Genome-wide association studies (GWAS) and next generation sequencing studies (NGSS) are often performed in family studies to improve power in identifying genetic variants that are associated with clinical phenotypes. Efficient analysis of genome-wide studies with familial data is challenging due to the difficulty in modeling shared but unmeasured genetic and/or environmental factors that cause dependencies among family members. Existing genetic association testing procedures for family studies largely rely on generalized estimating equations (GEE) or linear mixed-effects (LME) models. These procedures may fail to properly control for type I errors when the imposed model assumptions fail. In this article, we propose the Sequence Robust Association Test (SRAT), a fully rank-based, flexible approach that tests for association between a set of genetic variants and an outcome, while accounting for within-family correlation and adjusting for covariates. Comparing to existing methods, SRAT has the advantages of allowing for unknown correlation structures and weaker assumptions about the outcome distribution. We provide theoretical justifications for SRAT and show that SRAT includes the well-known Wilcoxon rank sum test as a special case. Extensive simulation studies suggest that SRAT provides better protection against type I error rate inflation, and could be much more powerful for settings with skewed outcome distribution than existing methods. For illustration, we also apply SRAT to the familial data from the Framingham Heart Study and Offspring Study to examine the association between an inflammatory marker and a few sets of genetic variants. © 2017, The International Biometric Society.

  8. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    Science.gov (United States)

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

  9. Whole-loop mitochondrial DNA D-loop sequence variability in Egyptian Arabian equine matrilines

    Science.gov (United States)

    Hudson, William

    2017-01-01

    Background Egyptian Arabian horses have been maintained in a state of genetic isolation for over a hundred years. There is only limited genetic proof that the studbook records of female lines of Egyptian Arabian pedigrees are reliable. This study characterized the mitochondrial DNA (mtDNA) signatures of 126 horses representing 14 matrilines in the Egyptian Agricultural Organization (EAO) horse-breeding program. Findings Analysis of the whole D-loop sequence yielded additional information compared to hypervariable region-1 (HVR1) analysis alone, with 42 polymorphic sites representing ten haplotypes compared to 16 polymorphic sites representing nine haplotypes, respectively. Most EAO haplotypes belonged to ancient haplogroups, suggesting origin from a wide geographical area over many thousands of years, although one haplotype was novel. Conclusions Historical families share haplotypes and some individuals from different strains belonged to the same haplogroup: the classical EAO strain designation is not equivalent to modern monophyletic matrilineal groups. Phylogenetic inference showed that the foundation mares of the historical haplotypes were highly likely to have the same haplotypes as the animals studied (p > 0.998 in all cases), confirming the reliability of EAO studbook records and providing the opportunity for breeders to confirm the ancestry of their horses. PMID:28859174

  10. Mitochondrial DNA sequence-based phylogenetic relationship of Trichiurus lepturus (Perciformes: Trichiuridae) from the Persian Gulf

    Science.gov (United States)

    Tamadoni Jahromi, S.; Mohd Noor, S. A.; Pirian, K.; Dehghani, R.; Nazemi, M.; Khazaali, A.

    2016-01-01

    In this study, mitochondrial DNA analysis using 16S ribosomal DNA (rDNA) was performed to investigate the phylogeny relationship of Trichiurus lepturus in the Persian Gulf compared to the other investigated area. The amplification of 16S rDNA resulted in a product of 600 bp in all samples. The results showed that the isolated strain belongs to T. lepturus showing 42 divergence sites among the same reported partial sequences of 16S rRNA gene from the other area (West Atlantic and Indo-Pacific area). Phylogeny results showed that all 18 haplotypes of the species clustered into five clades with reasonably high bootstrap support of values (>64%). Overall, the tree topology for both phylogenetic and phenetic trees for 16S rDNA was similar. Both trees exposed two major clusters, one wholly containing the haplotypes of the T. lepturus species belonging to Indo-Pacific area with two major sister groups including Persian Gulf specimen and the other cleared the Western Atlantic and Japan individuals clustered in another distinct clade supporting the differentiation between the two areas. Phylogenic relationship observed between the Persian Gulf and the other Indo-Pacific Individuals suggested homogeneity between two mentioned areas. PMID:27822250

  11. Phylogeny and evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from mitochondrial ND5 gene sequences.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Okamoto, Munehiro; Kim, Choong-Gon; Zhou, Hong-Zhang; Paik, Jong-Cheol; Osawa, Syozo

    2004-01-01

    Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 87 specimens consisting of 32 species which have been believed to belong to the division Digitulati (one of the lineages of the subtribe Carabina) of the world. There have been recognized six lineages, which are well separated from each other. Each lineage contains the following genus: (1) the lineage A: Ohomopterus from Japan; (2) the lineage B: Isiocarabus from eastern Eurasian Continent; (3) the lineage C: Carabus from China which are further subdivided into three sublineages; (4) the lineage D: Carabus from USA; (5) the lineage E: Carabus from the Eurasian Continent, Japan and North America; and (6) the lineage F: Eucarabus from the Eurasian Continent. Additionally, the genus Acrocarabus which had been treated as a constituent of the division Archicarabomorphi has been recognized to be the 7th lineage of the division Digitulati from the ND5 genealogical analysis as well as morphology. These lineages are assumed to have radiated within a short period and are largely linked to their geographic distribution.

  12. Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences.

    Science.gov (United States)

    Kochzius, Marc; Söller, Rainer; Khalaf, Maroof A; Blohm, Dietmar

    2003-09-01

    This study investigates the molecular phylogeny of seven lionfishes of the genera Dendrochirus and Pterois. MP, ML, and NJ phylogenetic analysis based on 964 bp of partial mitochondrial DNA sequences (cytochrome b and 16S rDNA) revealed two main clades: (1) "Pterois" clade (Pterois miles and Pterois volitans), and (2) "Pteropterus-Dendrochirus" clade (remainder of the sampled species). The position of Dendrochirus brachypterus either basal to the main clades or in the "Pteropterus-Dendrochirus" clade cannot be resolved. However, the molecular phylogeny did not support the current separation of the genera Pterois and Dendrochirus. The siblings P. miles and P. volitans are clearly separated and our results support the proposed allopatric or parapatric distribution in the Indian and Pacific Ocean. However, the present analysis cannot reveal if P. miles and P. volitans are separate species or two populations of a single species, because the observed separation in different clades can be either explained by speciation or lineage sorting. Molecular clock estimates for the siblings P. miles and P. volitans suggest a divergence time of 2.4-8.3 mya, which coincide with geological events that created vicariance between populations of the Indian and Pacific Ocean.

  13. Sequencing and characterization of the complete mitochondrial genome of Japanese Swellshark (Cephalloscyllium umbratile).

    Science.gov (United States)

    Zhu, Ke-Cheng; Liang, Yin-Yin; Wu, Na; Guo, Hua-Yang; Zhang, Nan; Jiang, Shi-Gui; Zhang, Dian-Chang

    2017-11-10

    To further comprehend the genome features of Cephalloscyllium umbratile (Carcharhiniformes), an endangered species, the complete mitochondrial DNA (mtDNA) was firstly sequenced and annotated. The full-length mtDNA of C. umbratile was 16,697 bp and contained ribosomal RNA (rRNA) genes, 13 protein-coding genes (PCGs), 23 transfer RNA (tRNA) genes, and a major non-coding control region. Each PCG was initiated by an authoritative ATN codon, except for COX1 initiated by a GTG codon. Seven of 13 PCGs had a typical TAA termination codon, while others terminated with a single T or TA. Moreover, the relative synonymous codon usage of the 13 PCGs was consistent with that of other published Carcharhiniformes. All tRNA genes had typical clover-leaf secondary structures, except for tRNA-Ser (GCT), which lacked the dihydrouridine 'DHU' arm. Furthermore, the analysis of the average Ka/Ks in the 13 PCGs of three Carcharhiniformes species indicated a strong purifying selection within this group. In addition, phylogenetic analysis revealed that C. umbratile was closely related to Glyphis glyphis and Glyphis garricki. Our data supply a useful resource for further studies on genetic diversity and population structure of C. umbratile.

  14. A new hypothesis of squamate evolutionary relationships from nuclear and mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Townsend, Ted M.; Larson, Allan; Louis, Edward; Macey, J. Robert

    2004-05-19

    Squamate reptiles serve as model systems for evolutionary studies of a variety of morphological and behavioral traits, and phylogeny is crucial to many generalizations derived from such studies. Specifically, the traditional dichotomy between Iguania and Scleroglossa has been correlated with major evolutionary shifts within Squamata. We present a molecular phylogenetic study of squamates using DNA sequence data from the nuclear genes RAG-1 and c-mos and the mitochondrial ND2 region, sampling all major clades and most major subclades. Monophyly of Iguania, Anguimorpha, and almost all currently recognized squamate families is strongly supported. However, monophyly is rejected for Scleroglossa, Varanoidea, and several other higher taxa, and Iguania is highly nested within Squamata. Limblessness evolved independently in snakes, dibamids, and amphisbaenians, suggesting widespread morphological convergence or parallelism in limbless, burrowing forms. Amphisbaenians are the sister group of lacertids, and snakes are grouped with iguanians and anguimorphs. Dibamids diverged early in squamate evolutionary history. Xantusiidae is the sister taxon of Cordylidae. Studies of functional tongue morphology and feeding mode have found significant differences between Scleroglossa and Iguania, and our finding of a nonmonophyletic Scleroglossa and a highly nested Iguania suggest that similar states evolved separately in Sphenodon and Iguania, and that jaw prehension is the ancestral feeding mode in squamates.

  15. Sequence polymorphism data of the hypervariable regions of mitochondrial DNA in the Yadav population of Haryana.

    Science.gov (United States)

    Verma, Kapil; Sharma, Sapna; Sharma, Arun; Dalal, Jyoti; Bhardwaj, Tapeshwar

    2018-06-01

    Genetic variations among humans occur both within and among populations and range from single nucleotide changes to multiple-nucleotide variants. These multiple-nucleotide variants are useful for studying the relationships among individuals or various population groups. The study of human genetic variations can help scientists understand how different population groups are biologically related to one another. Sequence analysis of hypervariable regions of human mitochondrial DNA (mtDNA) has been successfully used for the genetic characterization of different population groups for forensic purposes. It is well established that different ethnic or population groups differ significantly in their mtDNA distributions. In the last decade, very little research has been conducted on mtDNA variations in the Indian population, although such data would be useful for elucidating the history of human population expansion across the world. Moreover, forensic studies on mtDNA variations in the Indian subcontinent are also scarce, particularly in the northern part of India. In this report, variations in the hypervariable regions of mtDNA were analyzed in the Yadav population of Haryana. Different molecular diversity indices were computed. Further, the obtained haplotypes were classified into different haplogroups and the phylogenetic relationship between different haplogroups was inferred.

  16. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination.

    Science.gov (United States)

    Sammler, Svenja; Bleidorn, Christoph; Tiedemann, Ralph

    2011-01-14

    Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA) may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes) is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni) and 22,737 bp (P. panini), they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB), which has been described from the chicken mitochondrial genome. As this RFB

  17. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae provide evidence for pervasive mitochondrial DNA recombination

    Directory of Open Access Journals (Sweden)

    Bleidorn Christoph

    2011-01-01

    Full Text Available Abstract Background Although nowaday it is broadly accepted that mitochondrial DNA (mtDNA may undergo recombination, the frequency of such recombination remains controversial. Its estimation is not straightforward, as recombination under homoplasmy (i.e., among identical mt genomes is likely to be overlooked. In species with tandem duplications of large mtDNA fragments the detection of recombination can be facilitated, as it can lead to gene conversion among duplicates. Although the mechanisms for concerted evolution in mtDNA are not fully understood yet, recombination rates have been estimated from "one per speciation event" down to 850 years or even "during every replication cycle". Results Here we present the first complete mt genome of the avian family Bucerotidae, i.e., that of two Philippine hornbills, Aceros waldeni and Penelopides panini. The mt genomes are characterized by a tandemly duplicated region encompassing part of cytochrome b, 3 tRNAs, NADH6, and the control region. The duplicated fragments are identical to each other except for a short section in domain I and for the length of repeat motifs in domain III of the control region. Due to the heteroplasmy with regard to the number of these repeat motifs, there is some size variation in both genomes; with around 21,657 bp (A. waldeni and 22,737 bp (P. panini, they significantly exceed the hitherto longest known avian mt genomes, that of the albatrosses. We discovered concerted evolution between the duplicated fragments within individuals. The existence of differences between individuals in coding genes as well as in the control region, which are maintained between duplicates, indicates that recombination apparently occurs frequently, i.e., in every generation. Conclusions The homogenised duplicates are interspersed by a short fragment which shows no sign of recombination. We hypothesize that this region corresponds to the so-called Replication Fork Barrier (RFB, which has been

  18. Complete mitochondrial genome sequence of Indian medium carp, Labeo gonius (Hamilton, 1822) and its comparison with other related carp species.

    Science.gov (United States)

    Behera, Bijay Kumar; Kumari, Kavita; Baisvar, Vishwamitra Singh; Rout, Ajaya Kumar; Pakrashi, Sudip; Paria, Prasenjet; Jena, J K

    2017-01-01

    In the present study, the complete mitochondrial genome sequence of Labeo gonius is reported using PGM sequencer (Ion Torrent). The complete mitogenome of L. gonius is obtained by the de novo sequences assembly of genomic reads using the Torrent Mapping Alignment Program (TMAP) which is 16 614 bp in length. The mitogenome of L. gonius comprised of 13 protein-coding genes, 22 tRNAs, 2 rRNA genes, and D-loop as control region along with gene order and organization, being similar to most of other fish mitogenomes of NCBI databases. The mitogenome in the present study has 99% similarity to the complete mitogenome sequence of Labeo fimbriatus, as reported earlier. The phylogenetic analysis of Cypriniformes depicted that their mitogenomes are closely related to each other. The complete mitogenome sequence of L. gonius would be helpful in understanding the population genetics, phylogenetics, and evolution of Indian Carps.

  19. The de novo assembly of mitochondrial genomes of the extinct passenger pigeon (Ectopistes migratorius with next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Chih-Ming Hung

    Full Text Available The information from ancient DNA (aDNA provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome of two extinct passenger pigeons (Ectopistes migratorius using de novo assembly of massive short (90 bp, paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species.

  20. The De Novo Assembly of Mitochondrial Genomes of the Extinct Passenger Pigeon (Ectopistes migratorius) with Next Generation Sequencing

    Science.gov (United States)

    Hung, Chih-Ming; Lin, Rong-Chien; Chu, Jui-Hua; Yeh, Chia-Fen; Yao, Chiou-Ju; Li, Shou-Hsien

    2013-01-01

    The information from ancient DNA (aDNA) provides an unparalleled opportunity to infer phylogenetic relationships and population history of extinct species and to investigate genetic evolution directly. However, the degraded and fragmented nature of aDNA has posed technical challenges for studies based on conventional PCR amplification. In this study, we present an approach based on next generation sequencing to efficiently sequence the complete mitochondrial genome (mitogenome) of two extinct passenger pigeons (Ectopistes migratorius) using de novo assembly of massive short (90 bp), paired-end or single-end reads. Although varying levels of human contamination and low levels of postmortem nucleotide lesion were observed, they did not impact sequencing accuracy. Our results demonstrated that the de novo assembly of shotgun sequence reads could be a potent approach to sequence mitogenomes, and offered an efficient way to infer evolutionary history of extinct species. PMID:23437111

  1. Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran.

    Science.gov (United States)

    Mikaeili, F; Mirhendi, H; Mohebali, M; Hosseini, M; Sharbatkhori, M; Zarei, Z; Kia, E B

    2015-07-01

    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3%, 0-1.3% and 0-1.0% for pcox1 and 0-2.0%, 0-1.7% and 0-2.6% for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6% for pcox1 and 11.9-26.7% for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes.

  2. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Science.gov (United States)

    Brian J. Knaus; Richard Cronn; Aaron Liston; Kristine Pilgrim; Michael K. Schwartz

    2011-01-01

    Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the...

  3. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii) in China from Mitochondrial Control Region and Nuclear Intron Sequences

    Science.gov (United States)

    Li, Yanhe; Guo, Xianwu; Chen, Liping; Bai, Xiaohui; Wei, Xinlan; Zhou, Xiaoyun; Huang, Songqian; Wang, Weimin

    2015-01-01

    Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC) in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA) were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China. PMID:26132567

  4. Inferring Invasion History of Red Swamp Crayfish (Procambarus clarkii in China from Mitochondrial Control Region and Nuclear Intron Sequences

    Directory of Open Access Journals (Sweden)

    Yanhe Li

    2015-06-01

    Full Text Available Identifying the dispersal pathways of an invasive species is useful for adopting the appropriate strategies to prevent and control its spread. However, these processes are exceedingly complex. So, it is necessary to apply new technology and collect representative samples for analysis. This study used Approximate Bayesian Computation (ABC in combination with traditional genetic tools to examine extensive sample data and historical records to infer the invasion history of the red swamp crayfish, Procambarus clarkii, in China. The sequences of the mitochondrial control region and the proPOx intron in the nuclear genome of samples from 37 sites (35 in China and one each in Japan and the USA were analyzed. The results of combined scenarios testing and historical records revealed a much more complex invasion history in China than previously believed. P. clarkii was most likely originally introduced into China from Japan from an unsampled source, and the species then expanded its range primarily into the middle and lower reaches and, to a lesser extent, into the upper reaches of the Changjiang River in China. No transfer was observed from the upper reaches to the middle and lower reaches of the Changjiang River. Human-mediated jump dispersal was an important dispersal pathway for P. clarkii. The results provide a better understanding of the evolutionary scenarios involved in the rapid invasion of P. clarkii in China.

  5. Genetic relationships among some subspecies of the Peregrine Falcon (Falco peregrinus L.), inferred from mitochondrial DNA control-region sequences

    Science.gov (United States)

    White, Clayton M.; Sonsthagen, Sarah A.; Sage, George K.; Anderson, Clifford; Talbot, Sandra L.

    2013-01-01

    The ability to successfully colonize and persist in diverse environments likely requires broad morphological and behavioral plasticity and adaptability, and this may partly explain why the Peregrine Falcon (Falco peregrinus) exhibits a large range of morphological characteristics across their global distribution. Regional and local differences within Peregrine Falcons were sufficiently variable that ∼75 subspecies have been described; many were subsumed, and currently 19 are generally recognized. We used sequence information from the control region of the mitochondrial genome to test for concordance between genetic structure and representatives of 12 current subspecies and from two areas where subspecies distributions overlap. Haplotypes were broadly shared among subspecies, and all geographic locales shared a widely distributed common haplotype (FalconCR2). Haplotypes were distributed in a star-like phylogeny, consistent with rapid expansion of a recently derived species, with observed genetic patterns congruent with incomplete lineage sorting and/or differential rates of evolution on morphology and neutral genetic characters. Hierarchical analyses of molecular variance did not uncover genetic partitioning at the continental level, despite strong population-level structure (FST = 0.228). Similar analyses found weak partitioning, albeit significant, among subspecies (FCT = 0.138). All reconstructions placed the hierofalcons' (Gyrfalcon [F. rusticolus] and Saker Falcon [F. cherrug]) haplotypes in a well-supported clade either basal or unresolved with respect to the Peregrine Falcon. In addition, haplotypes representing Taita Falcon (F. fasciinucha) were placed within the Peregrine Falcon clade.

  6. The Complete Chloroplast and Mitochondrial Genome Sequences of Boea hygrometrica: Insights into the Evolution of Plant Organellar Genomes

    Science.gov (United States)

    Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun

    2012-01-01

    The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979

  7. A bumpy ride on the diagnostic bench of massive parallel sequencing, the case of the mitochondrial genome.

    Directory of Open Access Journals (Sweden)

    Kim Vancampenhout

    Full Text Available The advent of massive parallel sequencing (MPS has revolutionized the field of human molecular genetics, including the diagnostic study of mitochondrial (mt DNA dysfunction. The analysis of the complete mitochondrial genome using MPS platforms is now common and will soon outrun conventional sequencing. However, the development of a robust and reliable protocol is rather challenging. A previous pilot study for the re-sequencing of human mtDNA revealed an uneven coverage, affecting predominantly part of the plus strand. In an attempt to address this problem, we undertook a comparative study of standard and modified protocols for the Ion Torrent PGM system. We could not improve strand representation by altering the recommended shearing methodology of the standard workflow or omitting the DNA polymerase amplification step from the library construction process. However, we were able to associate coverage bias of the plus strand with a specific sequence motif. Additionally, we compared coverage and variant calling across technologies. The same samples were also sequenced on a MiSeq device which showed that coverage and heteroplasmic variant calling were much improved.

  8. Repetitive transpositions of mitochondrial DNA sequences to the nucleus during the radiation of horseshoe bats (Rhinolophus, Chiroptera).

    Science.gov (United States)

    Shi, Huizhen; Dong, Ji; Irwin, David M; Zhang, Shuyi; Mao, Xiuguang

    2016-05-01

    Transposition of mitochondrial DNA into the nucleus, which gives rise to nuclear mitochondrial DNAs (NUMTs), has been well documented in eukaryotes. However, very few studies have assessed the frequency of these transpositions during the evolutionary history of a specific taxonomic group. Here we used the horseshoe bats (Rhinolophus) as a case study to determine the frequency and relative timing of nuclear transfers of mitochondrial control region sequences. For this, phylogenetic and coalescent analyzes were performed on NUMTs and authentic mtDNA sequences generated from eight horseshoe bat species. Our results suggest at least three independent transpositions, including two ancient and one more recent, during the evolutionary history of Rhinolophus. The two ancient transpositions are represented by the NUMT-1 and -2 clades, with each clade consisting of NUMTs from almost all studied species but originating from different portions of the mtDNA genome. Furthermore, estimates of the most recent common ancestor for each clade corresponded to the time of the initial diversification of this genus. The recent transposition is represented by NUMT-3, which was discovered only in a specific subgroup of Rhinolophus and exhibited a close relationship to its mitochondrial counterpart. Our similarity searches of mtDNA in the R. ferrumequinum genome confirmed the presence of NUMT-1 and NUMT-2 clade sequences and, for the first time, assessed the extent of NUMTs in a bat genome. To our knowledge, this is the first study to report on the frequency of transpositions of mtDNA occurring before the common ancestry of a genus. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    Science.gov (United States)

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  10. Congruent Deep Relationships in the Grape Family (Vitaceae Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    Full Text Available Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera. The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  11. AQME: A forensic mitochondrial DNA analysis tool for next-generation sequencing data.

    Science.gov (United States)

    Sturk-Andreaggi, Kimberly; Peck, Michelle A; Boysen, Cecilie; Dekker, Patrick; McMahon, Timothy P; Marshall, Charla K

    2017-11-01

    The feasibility of generating mitochondrial DNA (mtDNA) data has expanded considerably with the advent of next-generation sequencing (NGS), specifically in the generation of entire mtDNA genome (mitogenome) sequences. However, the analysis of these data has emerged as the greatest challenge to implementation in forensics. To address this need, a custom toolkit for use in the CLC Genomics Workbench (QIAGEN, Hilden, Germany) was developed through a collaborative effort between the Armed Forces Medical Examiner System - Armed Forces DNA Identification Laboratory (AFMES-AFDIL) and QIAGEN Bioinformatics. The AFDIL-QIAGEN mtDNA Expert, or AQME, generates an editable mtDNA profile that employs forensic conventions and includes the interpretation range required for mtDNA data reporting. AQME also integrates an mtDNA haplogroup estimate into the analysis workflow, which provides the analyst with phylogenetic nomenclature guidance and a profile quality check without the use of an external tool. Supplemental AQME outputs such as nucleotide-per-position metrics, configurable export files, and an audit trail are produced to assist the analyst during review. AQME is applied to standard CLC outputs and thus can be incorporated into any mtDNA bioinformatics pipeline within CLC regardless of sample type, library preparation or NGS platform. An evaluation of AQME was performed to demonstrate its functionality and reliability for the analysis of mitogenome NGS data. The study analyzed Illumina mitogenome data from 21 samples (including associated controls) of varying quality and sample preparations with the AQME toolkit. A total of 211 tool edits were automatically applied to 130 of the 698 total variants reported in an effort to adhere to forensic nomenclature. Although additional manual edits were required for three samples, supplemental tools such as mtDNA haplogroup estimation assisted in identifying and guiding these necessary modifications to the AQME-generated profile. Along

  12. Phylogenetic relationships in three species of canine Demodex mite based on partial sequences of mitochondrial 16S rDNA.

    Science.gov (United States)

    Sastre, Natalia; Ravera, Ivan; Villanueva, Sergio; Altet, Laura; Bardagí, Mar; Sánchez, Armand; Francino, Olga; Ferrer, Lluís

    2012-12-01

    The historical classification of Demodex mites has been based on their hosts and morphological features. Genome sequencing has proved to be a very effective taxonomic tool in phylogenetic studies and has been applied in the classification of Demodex. Mitochondrial 16S rDNA has been demonstrated to be an especially useful marker to establish phylogenetic relationships. To amplify and sequence a segment of the mitochondrial 16S rDNA from Demodex canis and Demodex injai, as well as from the short-bodied mite called, unofficially, D. cornei and to determine their genetic proximity. Demodex mites were examined microscopically and classified as Demodex folliculorum (one sample), D. canis (four samples), D. injai (two samples) or the short-bodied species D. cornei (three samples). DNA was extracted, and a 338 bp fragment of the 16S rDNA was amplified and sequenced. The sequences of the four D. canis mites were identical and shared 99.6 and 97.3% identity with two D. canis sequences available at GenBank. The sequences of the D. cornei isolates were identical and showed 97.8, 98.2 and 99.6% identity with the D. canis isolates. The sequences of the two D. injai isolates were also identical and showed 76.6% identity with the D. canis sequence. Demodex canis and D. injai are two different species, with a genetic distance of 23.3%. It would seem that the short-bodied Demodex mite D. cornei is a morphological variant of D. canis. © 2012 The Authors. Veterinary Dermatology © 2012 ESVD and ACVD.

  13. Complete Sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: Gene arrangements indicate that platyhelminths are eutrochozoans

    Energy Technology Data Exchange (ETDEWEB)

    von Nickisch-Rosenegk, Markus; Brown, Wesley M.; Boore, Jeffrey L.

    2001-01-01

    Using ''long-PCR'' we have amplified in overlapping fragments the complete mitochondrial genome of the tapeworm Hymenolepis diminuta (Platyhelminthes: Cestoda) and determined its 13,900 nucleotide sequence. The gene content is the same as that typically found for animal mitochondrial DNA (mtDNA) except that atp8 appears to be lacking, a condition found previously for several other animals. Despite the small size of this mtDNA, there are two large non-coding regions, one of which contains 13 repeats of a 31 nucleotide sequence and a potential stem-loop structure of 25 base pairs with an 11-member loop. Large potential secondary structures are identified also for the non-coding regions of two other cestode mtDNAs. Comparison of the mitochondrial gene arrangement of H. diminuta with those previously published supports a phylogenetic position of flatworms as members of the Eutrochozoa, rather than being basal to either a clade of protostomes or a clade of coelomates.

  14. Genetic differences among Haplorchis taichui populations in Indochina revealed by mitochondrial COX1 sequences.

    Science.gov (United States)

    Thaenkham, U; Phuphisut, O; Nuamtanong, S; Yoonuan, T; Sa-Nguankiat, S; Vonghachack, Y; Belizario, V Y; Dung, D T; Dekumyoy, P; Waikagul, J

    2017-09-01

    Haplorchis taichui is an intestinal heterophyid fluke that is pathogenic to humans. It is widely distributed in Asia, with a particularly high prevalence in Indochina. Previous work revealed that the lack of gene flow between three distinct populations of Vietnamese H. taichui can be attributed to their geographic isolation with no interconnected river basins. To test the hypothesis that interconnected river basins allow gene flow between otherwise isolated populations of H. taichui, as previously demonstrated for another trematode, Opisthorchis viverrini, we compared the genetic structures of seven populations of H. taichui from various localities in the lower Mekong Basin, in Thailand and Laos, with those in Vietnam, using the mitochondrial cytochrome c oxidase subunit 1 (COX1) gene. To determine the gene flow between these H. taichui populations, we calculated their phylogenetic relationships, genetic distances and haplotype diversity. Each population showed very low nucleotide diversity at this locus. However, high levels of genetic differentiation between the populations indicated very little gene flow. A phylogenetic analysis divided the populations into four clusters that correlated with the country of origin. The negligible gene flow between the Thai and Laos populations, despite sharing the Mekong Basin, caused us to reject our hypothesis. Our data suggest that the distribution of H. taichui populations was incidentally associated with national borders.

  15. Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    Full Text Available The complete mitochondrial DNA (mtDNA of Gracilariopsis lemaneiformis was sequenced (25883 bp and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142. There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds ("981" and "07-2" were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.

  16. Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta).

    Science.gov (United States)

    Zhang, Lei; Wang, Xumin; Qian, Hao; Chi, Shan; Liu, Cui; Liu, Tao

    2012-01-01

    The complete mitochondrial DNA (mtDNA) of Gracilariopsis lemaneiformis was sequenced (25883 bp) and mapped to a circular model. The A+T composition was 72.5%. Forty six genes and two potentially functional open reading frames were identified. They include 24 protein-coding genes, 2 rRNA genes, 20 tRNA genes and 2 ORFs (orf60, orf142). There is considerable sequence synteny across the five red algal mtDNAs falling into Florideophyceae including Gr. lemaneiformis in this study and previously sequenced species. A long stem-loop and a hairpin structure were identified in intergenic regions of mt genome of Gr. lemaneiformis, which are believed to be involved with transcription and replication. In addition, the mtDNAs of two mutagenic cultivated breeds ("981" and "07-2") were also sequenced. Compared with the mtDNA of wild Gr. lemaneiformis, the genome size and gene length and order of three strains were completely identical except nine base mutations including eight in the protein-coding genes and one in the tRNA gene. None of the base mutations caused frameshift or a premature stop codon in the mtDNA genes. Phylogenetic analyses based on mitochondrial protein-coding genes and rRNA genes demonstrated Gracilariopsis andersonii had closer phylogenetic relationship with its parasite Gracilariophila oryzoides than Gracilariopsis lemaneiformis which was from the same genus of Gracilariopsis.

  17. High coverage of the complete mitochondrial genome of the rare Gray's beaked whale (Mesoplodon grayi) using Illumina next generation sequencing.

    Science.gov (United States)

    Thompson, Kirsten F; Patel, Selina; Williams, Liam; Tsai, Peter; Constantine, Rochelle; Baker, C Scott; Millar, Craig D

    2016-01-01

    Using an Illumina platform, we shot-gun sequenced the complete mitochondrial genome of Gray's beaked whale (Mesoplodon grayi) to an average coverage of 152X. We performed a de novo assembly using SOAPdenovo2 and determined the total mitogenome length to be 16,347 bp. The nucleotide composition was asymmetric (33.3% A, 24.6% C, 12.6% G, 29.5% T) with an overall GC content of 37.2%. The gene organization was similar to that of other cetaceans with 13 protein-coding genes, 2 rRNAs (12S and 16S), 22 predicted tRNAs and 1 control region or D-loop. We found no evidence of heteroplasmy or nuclear copies of mitochondrial DNA in this individual. Beaked whales within the genus Mesoplodon are rarely seen at sea and their basic biology is poorly understood. These data will contribute to resolving the phylogeography and population ecology of this speciose group.

  18. A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Tanaka Yoshiyuki

    2012-07-01

    Full Text Available Abstract Background Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura- and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results Ogura- and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%. It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size that are non-syntenic to normal-type genome, and the gene orf138

  19. Comparison of base composition analysis and Sanger sequencing of mitochondrial DNA for four U.S. population groups.

    Science.gov (United States)

    Kiesler, Kevin M; Coble, Michael D; Hall, Thomas A; Vallone, Peter M

    2014-01-01

    A set of 711 samples from four U.S. population groups was analyzed using a novel mass spectrometry based method for mitochondrial DNA (mtDNA) base composition profiling. Comparison of the mass spectrometry results with Sanger sequencing derived data yielded a concordance rate of 99.97%. Length heteroplasmy was identified in 46% of samples and point heteroplasmy was observed in 6.6% of samples in the combined mass spectral and Sanger data set. Using discrimination capacity as a metric, Sanger sequencing of the full control region had the highest discriminatory power, followed by the mass spectrometry base composition method, which was more discriminating than Sanger sequencing of just the hypervariable regions. This trend is in agreement with the number of nucleotides covered by each of the three assays. Published by Elsevier Ireland Ltd.

  20. Next generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species NWP2 (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  1. Clinical evaluation and mitochondrial DNA sequence analysis in three Chinese families with Leber's hereditary optic neuropathy

    International Nuclear Information System (INIS)

    Qian Yaping; Zhou Xiangtian; Hu Yongwu; Tong Yi; Li Ronghua; Lu Fan; Yang Huanming; Mo Junqin; Qu Jia; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of three Chinese families (WZ4, WZ5, and WZ6) with Leber's hereditary optic neuropathy (LHON). Clinical and genetic evaluations revealed the variable severity and age-of-onset in visual impairment in these families. Penetrances of visual impairment in these Chinese families were 33.3%, 35.7%, and 35.5%, respectively, with an average 34.8%. Furthermore, the average age-at-onset in those Chinese families was 17, 20, and 18 years. In addition, the ratios between affected male and female matrilineal relatives in these Chinese families were 3:0, 1:1, and 1.2:1, respectively. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G11778A mutation associated with LHON in many families. The fact that mtDNA of those pedigrees belonged to different haplogroups F1, D4, and M10 suggested that the G11778A mutation occurred sporadically and multiplied through evolution of the mtDNA in China. However, there was the absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in these Chinese families. The I187T mutation in the ND1, the S99A mutation in the A6, the V254I in CO3, and I58V in ND6 mutation, showing high evolutional conservation, may contribute to the phenotypic expression of the G11778A mutation in the WZ6 pedigree. By contrast, none of mtDNA variants are evolutionarily conserved and implicated to have significantly functional consequence in WZ4 and WZ5 pedigrees. Apparently, these variants do not have a potential modifying role in the development of visual impairment associated with G11778A mutation in those two families. Thus, nuclear modifier gene(s) or environmental factor(s) seem to account for the penetrance and expressivity of LHON in these three Chinese families carrying the G11778A mutation

  2. A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus: an evolutionary history of camelidae

    Directory of Open Access Journals (Sweden)

    Meng He

    2007-07-01

    Full Text Available Abstract Background The family Camelidae that evolved in North America during the Eocene survived with two distinct tribes, Camelini and Lamini. To investigate the evolutionary relationship between them and to further understand the evolutionary history of this family, we determined the complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus, the only wild survivor of the Old World camel. Results The mitochondrial genome sequence (16,680 bp from C. bactrianus ferus contains 13 protein-coding, two rRNA, and 22 tRNA genes as well as a typical control region; this basic structure is shared by all metazoan mitochondrial genomes. Its protein-coding region exhibits codon usage common to all mammals and possesses the three cryptic stop codons shared by all vertebrates. C. bactrianus ferus together with the rest of mammalian species do not share a triplet nucleotide insertion (GCC that encodes a proline residue found only in the nd1 gene of the New World camelid Lama pacos. This lineage-specific insertion in the L. pacos mtDNA occurred after the split between the Old and New World camelids suggests that it may have functional implication since a proline insertion in a protein backbone usually alters protein conformation significantly, and nd1 gene has not been seen as polymorphic as the rest of ND family genes among camelids. Our phylogenetic study based on complete mitochondrial genomes excluding the control region suggested that the divergence of the two tribes may occur in the early Miocene; it is much earlier than what was deduced from the fossil record (11 million years. An evolutionary history reconstructed for the family Camelidae based on cytb sequences suggested that the split of bactrian camel and dromedary may have occurred in North America before the tribe Camelini migrated from North America to Asia. Conclusion Molecular clock analysis of complete mitochondrial genomes from C. bactrianus ferus and L

  3. Genetic variability among Trichuris ovis isolates from different hosts in Guangdong Province, China revealed by sequences of three mitochondrial genes.

    Science.gov (United States)

    Wang, Yan; Liu, Guo-Hua; Li, Jia-Yuan; Xu, Min-Jun; Ye, Yong-Gang; Zhou, Dong-Hui; Song, Hui-Qun; Lin, Rui-Qing; Zhu, Xing-Quan

    2013-02-01

    This study examined sequence variation in three mitochondrial DNA (mtDNA) regions, namely cytochrome c oxidase subunit 1 (cox1), NADH dehydrogenase subunit 5 (nad5) and cytochrome b (cytb), among Trichuris ovis isolates from different hosts in Guangdong Province, China. A portion of the cox1 (pcox1), nad5 (pnad5) and cytb (pcytb) genes was amplified separately from individual whipworms by PCR, and was subjected to sequencing from both directions. The size of the sequences of pcox1, pnad5 and pcytb was 618, 240 and 464 bp, respectively. Although the intra-specific sequence variations within T. ovis were 0-0.8% for pcox1, 0-0.8% for pnad5 and 0-1.9% for pcytb, the inter-specific sequence differences among members of the genus Trichuris were significantly higher, being 24.3-26.5% for pcox1, 33.7-56.4% for pnad5 and 24.8-26.1% for pcytb, respectively. Phylogenetic analyses using combined sequences of pcox1, pnad5 and pcytb, with three different computational algorithms (maximum likelihood, maximum parsimony and Bayesian inference), indicated that all of the T. ovis isolates grouped together with high statistical support. These findings demonstrated the existence of intra-specific variation in mtDNA sequences among T. ovis isolates from different hosts, and have implications for studying molecular epidemiology and population genetics of T. ovis.

  4. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  5. Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi, and advances phylogenetic hypotheses for the Ixodidae.

    Science.gov (United States)

    Liu, Zhi-Qiang; Liu, Yan-Feng; Kuermanali, Nuer; Wang, Deng-Feng; Chen, Shi-Jun; Guo, Hui-Ling; Zhao, Li; Wang, Jun-Wei; Han, Tao; Wang, Yuan-Zhi; Wang, Jie; Shen, Chen-Feng; Zhang, Zhuang-Zhi; Chen, Chuang-Fu

    2018-01-01

    Phylogeny of hard ticks (Ixodidae) remains unresolved. Mitochondrial genomes (mitogenomes) are increasingly used to resolve phylogenetic controversies, but remain unavailable for the entire large Hyalomma genus. Hyalomma asiaticum is a parasitic tick distributed throughout the Asia. As a result of great morphological variability, two subspecies have been recognised historically; until a morphological data-based synonymization was proposed. However, this hypothesis was never tested using molecular data. Therefore, objectives of this study were to: 1. sequence the first Hyalomma mitogenome; 2. scrutinise the proposed synonymization using molecular data, i.e. complete mitogenomes of both subspecies: H. a. asiaticum and kozlovi; 3. conduct phylogenomic and comparative analyses of all available Ixodidae mitogenomes. Results corroborate the proposed synonymization: the two mitogenomes are almost identical (99.6%). Genomic features of both mitogenomes are standard for Metastriata; which includes the presence of two control regions and all three "Tick-Box" motifs. Gene order and strand distribution are perfectly conserved for the entire Metastriata group. Suspecting compositional biases, we conducted phylogenetic analyses (29 almost complete mitogenomes) using homogeneous and heterogeneous (CAT) models of substitution. The results were congruent, apart from the deep-level topology of prostriate ticks (Ixodes): the homogeneous model produced a monophyletic Ixodes, but the CAT model produced a paraphyletic Ixodes (and thereby Prostriata), divided into Australasian and non-Australasian clades. This topology implies that all metastriate ticks have evolved from the ancestor of the non-Australian branch of prostriate ticks. Metastriata was divided into three clades: 1. Amblyomminae and Rhipicephalinae (Rhipicephalus, Hyalomma, Dermacentor); 2. Haemaphysalinae and Bothriocrotoninae, plus Amblyomma sphenodonti; 3. Amblyomma elaphense, basal to all Metastriata. We conclude that

  6. Analysis of complete mitochondrial genome sequences increases phylogenetic resolution of bears (Ursidae, a mammalian family that experienced rapid speciation

    Directory of Open Access Journals (Sweden)

    Ryder Oliver A

    2007-10-01

    Full Text Available Abstract Background Despite the small number of ursid species, bear phylogeny has long been a focus of study due to their conservation value, as all bear genera have been classified as endangered at either the species or subspecies level. The Ursidae family represents a typical example of rapid evolutionary radiation. Previous analyses with a single mitochondrial (mt gene or a small number of mt genes either provide weak support or a large unresolved polytomy for ursids. We revisit the contentious relationships within Ursidae by analyzing complete mt genome sequences and evaluating the performance of both entire mt genomes and constituent mtDNA genes in recovering a phylogeny of extremely recent speciation events. Results This mitochondrial genome-based phylogeny provides strong evidence that the spectacled bear diverged first, while within the genus Ursus, the sloth bear is the sister taxon of all the other five ursines. The latter group is divided into the brown bear/polar bear and the two black bears/sun bear assemblages. These findings resolve the previous conflicts between trees using partial mt genes. The ability of different categories of mt protein coding genes to recover the correct phylogeny is concordant with previous analyses for taxa with deep divergence times. This study provides a robust Ursidae phylogenetic framework for future validation by additional independent evidence, and also has significant implications for assisting in the resolution of other similarly difficult phylogenetic investigations. Conclusion Identification of base composition bias and utilization of the combined data of whole mitochondrial genome sequences has allowed recovery of a strongly supported phylogeny that is upheld when using multiple alternative outgroups for the Ursidae, a mammalian family that underwent a rapid radiation since the mid- to late Pliocene. It remains to be seen if the reliability of mt genome analysis will hold up in studies of other

  7. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Scholtz, O.; Dumbrell, A. J.; Russell, S.; Segar, Simon Tristram; Eggleton, P.

    2015-01-01

    Roč. 10, č. 4 (2015), e0122533 E-ISSN 1932-6203 R&D Projects: GA ČR GA14-32302S Grant - others:European Social Fund(CZ) CZ1.07/2.3.00/20.0064; European Social Fund(CZ) CZ.1.07/2.3.00/30.0006 Institutional support: RVO:60077344 Keywords : mitochondrial COII DNA sequences Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122533

  8. Monitoring of Fasciola Species Contamination in Water Dropwort by cox1 Mitochondrial and ITS-2 rDNA Sequencing Analysis.

    Science.gov (United States)

    Choi, In-Wook; Kim, Hwang-Yong; Quan, Juan-Hua; Ryu, Jae-Gee; Sun, Rubing; Lee, Young-Ha

    2015-10-01

    Fascioliasis, a food-borne trematode zoonosis, is a disease primarily in cattle and sheep and occasionally in humans. Water dropwort (Oenanthe javanica), an aquatic perennial herb, is a common second intermediate host of Fasciola, and the fresh stems and leaves are widely used as a seasoning in the Korean diet. However, no information regarding Fasciola species contamination in water dropwort is available. Here, we collected 500 samples of water dropwort in 3 areas in Korea during February and March 2015, and the water dropwort contamination of Fasciola species was monitored by DNA sequencing analysis of the Fasciola hepatica and Fasciola gigantica specific mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear ribosomal internal transcribed spacer 2 (ITS-2). Among the 500 samples assessed, the presence of F. hepatica cox1 and 1TS-2 markers were detected in 2 samples, and F. hepatica contamination was confirmed by sequencing analysis. The nucleotide sequences of cox1 PCR products from the 2 F. hepatica-contaminated samples were 96.5% identical to the F. hepatica cox1 sequences in GenBank, whereas F. gigantica cox1 sequences were 46.8% similar with the sequence detected from the cox1 positive samples. However, F. gigantica cox1 and ITS-2 markers were not detected by PCR in the 500 samples of water dropwort. Collectively, in this survey of the water dropwort contamination with Fasciola species, very low prevalence of F. hepatica contamination was detected in the samples.

  9. DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae

    NARCIS (Netherlands)

    Bakker, F.T.; Breman, F.; Merckx, V.

    2006-01-01

    Previously, nucleotide substitution rates in mitochondrial DNA of Geraniaceae and Plantaginaceae have been shown to be exceptionally high compared with other angiosperm mtDNA lineages. It has also been shown that mtDNA introns were lost in Geraniaceae and Plantaginaceae. In this study we compile 127

  10. Phylogenetic Analysis of Phytophthora Species Based on Mitochondrial and Nuclear DNA Sequences

    NARCIS (Netherlands)

    Kroon, L.P.N.M.; Bakker, F.T.; Bosch, van den G.B.M.; Bonants, P.J.M.; Flier, W.G.

    2004-01-01

    A molecular phylogenetic analysis of the genus Phytophthora was performed, 113 isolates from 48 Phytophthora species were included in this analysis. Phylogenetic analyses were performed on regions of mitochondrial (cytochrome c oxidase subunit 1; NADH dehydrogenase subunit 1) and nuclear gene

  11. Next-generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis.

    Science.gov (United States)

    Webb, Kristen M; Rosenthal, Benjamin M

    2011-01-01

    The mitochondrial genome's non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been defined for 12 species and genotypes of parasites in the genus Trichinella, but its adequacy in representing the mitochondrial genome as a whole remains unclear, as the complete coding sequence has been characterized only for Trichinella spiralis. Here, we sought to comprehensively describe the extent and nature of divergence between the mitochondrial genomes of T. spiralis (which poses the most appreciable zoonotic risk owing to its capacity to establish persistent infections in domestic pigs) and Trichinella murrelli (which is the most prevalent species in North American wildlife hosts, but which poses relatively little risk to the safety of pork). Next generation sequencing methodologies and scaffold and de novo assembly strategies were employed. The entire protein-coding region was sequenced (13,917 bp), along with a portion of the highly repetitive non-coding region (1524 bp) of the mitochondrial genome of T. murrelli with a combined average read depth of 250 reads. The accuracy of base calling, estimated from coding region sequence was found to exceed 99.3%. Genome content and gene order was not found to be significantly different from that of T. spiralis. An overall inter-species sequence divergence of 9.5% was estimated. Significant variation was identified when the amount of variation between species at each gene is compared to the average amount of variation between species across the coding region. Next generation sequencing is a highly effective means to obtain previously unknown mitochondrial genome sequence. Particular to parasites, the extremely deep coverage achieved through this method allows for the detection of sequence heterogeneity between the multiple

  12. Origin and diversification of hindwingless Damaster ground beetles within the Japanese islands as deduced from mitochondrial ND5 gene sequences (Coleoptera, Carabidae).

    Science.gov (United States)

    Su, Z H; Tominaga, O; Okamoto, M; Osawa, S

    1998-08-01

    Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 78 Damaster (s. str.) specimens from all over the Japanese Islands. Eight lineages (called races in this paper) have been recognized. The races are tightly linked to geography with sharp distribution boundaries between them. The races and their distribution ranges do not coincide with those of classical morphology. Based on the observed distribution of the mitochondrial DNA haplotypes and the geohistorical data, we propose a diversification scenario of Damaster.

  13. A Comparison and Integration of MiSeq and MinION Platforms for Sequencing Single Source and Mixed Mitochondrial Genomes.

    Directory of Open Access Journals (Sweden)

    Michael R Lindberg

    Full Text Available Single source and multiple donor (mixed samples of human mitochondrial DNA were analyzed and compared using the MinION and the MiSeq platforms. A generalized variant detection strategy was employed to provide a cursory framework for evaluating the reliability and accuracy of mitochondrial sequences produced by the MinION. The feasibility of long-read phasing was investigated to establish its efficacy in quantitatively distinguishing and deconvolving individuals in a mixture. Finally, a proof-of-concept was demonstrated by integrating both platforms in a hybrid assembly that leverages solely mixture data to accurately reconstruct full mitochondrial genomes.

  14. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  15. The historical biogeography of Pteroglossus aracaris (Aves, Piciformes, Ramphastidae based on Bayesian analysis of mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    Sérgio L. Pereira

    2008-01-01

    Full Text Available Most Neotropical birds, including Pteroglossus aracaris, do not have an adequate fossil record to be used as time constraints in molecular dating. Hence, the evolutionary timeframe of the avian biota can only be inferred using alternative time constraints. We applied a Bayesian relaxed clock approach to propose an alternative interpretation for the historical biogeography of Pteroglossus based on mitochondrial DNA sequences, using different combinations of outgroups and time constraints obtained from outgroup fossils, vicariant barriers and molecular time estimates. The results indicated that outgroup choice has little effect on the Bayesian posterior distribution of divergence times within Pteroglossus , that geological and molecular time constraints seem equally suitable to estimate the Bayesian posterior distribution of divergence times for Pteroglossus , and that the fossil record alone overestimates divergence times within the fossil-lacking ingroup. The Bayesian estimates of divergence times suggest that the radiation of Pteroglossus occurred from the Late Miocene to the Pliocene (three times older than estimated by the “standard” mitochondrial rate of 2% sequence divergence per million years, likely triggered by Andean uplift, multiple episodes of marine transgressions in South America, and formation of present-day river basins. The time estimates are in agreement with other Neotropical taxa with similar geographic distributions.

  16. Complete sequences of the highly rearranged molluscan mitochondrial genomes of the scaphopod graptacme eborea and the bivalve mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Boore, Jeffrey L.; Medina, Monica; Rosenberg, Lewis A.

    2004-01-31

    We have determined the complete sequence of the mitochondrial genome of the scaphopod mollusk Graptacme eborea (Conrad, 1846) (14,492 nts) and completed the sequence of the mitochondrial genome of the bivalve mollusk Mytilus edulis Linnaeus, 1758 (16,740 nts). (The name Graptacme eborea is a revision of the species formerly known as Dentalium eboreum.) G. eborea mtDNA contains the 37 genes that are typically found and has the genes divided about evenly between the two strands, but M. edulis contains an extra trnM and is missing atp8, and has all genes on the same strand. Each has a highly rearranged gene order relative to each other and to all other studied mtDNAs. G. eborea mtDNA has almost no strand skew, but the coding strand of M. edulis mtDNA is very rich in G and T. This is reflected in differential codon usage patterns and even in amino acid compositions. G. eborea mtDNA has fewer non-coding nucleotides than any other mtDNA studied to date, with the largest non-coding region being only 24 nt long. Phylogenetic analysis using 2,420 aligned amino acid positions of concatenated proteins weakly supports an association of the scaphopod with gastropods to the exclusion of Bivalvia, Cephalopoda, and Polyplacophora, but is generally unable to convincingly resolve the relationships among major groups of the Lophotrochozoa, in contrast to the good resolution seen for several other major metazoan groups.

  17. Phylogenetic relationships in Demodex mites (Acari: Demodicidae) based on mitochondrial 16S rDNA partial sequences.

    Science.gov (United States)

    Zhao, Ya-E; Wu, Li-Ping

    2012-09-01

    To confirm phylogenetic relationships in Demodex mites based on mitochondrial 16S rDNA partial sequences, mtDNA 16S partial sequences of ten isolates of three Demodex species from China were amplified, recombined, and sequenced and then analyzed with two Demodex folliculorum isolates from Spain. Lastly, genetic distance was computed, and phylogenetic tree was reconstructed. MEGA 4.0 analysis showed high sequence identity among 16S rDNA partial sequences of three Demodex species, which were 95.85 % in D. folliculorum, 98.53 % in Demodex canis, and 99.71 % in Demodex brevis. The divergence, genetic distance, and transition/transversions of the three Demodex species reached interspecies level, whereas there was no significant difference of the divergence (1.1 %), genetic distance (0.011), and transition/transversions (3/1) of the two geographic D. folliculorum isolates (Spain and China). Phylogenetic trees reveal that the three Demodex species formed three separate branches of one clade, where D. folliculorum and D. canis gathered first, and then gathered with D. brevis. The two Spain and five China D. folliculorum isolates did not form sister clades. In conclusion, 16S mtDNA are suitable for phylogenetic relationship analysis in low taxa (genus or species), but not for intraspecies determination of Demodex. The differentiation among the three Demodex species has reached interspecies level.

  18. Genetic characterization of the Pacific sheath-tailed bat (Emballonura semicaudata rotensis) using mitochondrial DNA sequence data

    Science.gov (United States)

    Oyler-McCance, Sara J.; Valdez, Ernest W.; O'Shea, Thomas J.; Fike, Jennifer A.

    2013-01-01

    Emballonura semicaudata occurs in the southwestern Pacific and populations on many islands have declined or disappeared. One subspecies (E. semicaudata rotensis) occurs in the Northern Mariana Islands, where it has been extirpated from all but 1 island (Aguiguan). We assessed genetic similarity between the last population of E. s. rotensis and 2 other subspecies, and examined genetic diversity on Aguiguan. We sampled 12 E. s. rotensis, sequenced them at 3 mitochondrial loci, and compared them with published sequences from 2 other subspecies. All 12 E. s. rotensis had identical sequences in each of the 3 regions. Using cytochrome-b (Cytb) data E. s. rotensis was sister to E. s. palauensis in a clade separate from E. s. semicaudata. 12S ribosomal RNA (12S) sequences grouped all E. s. semicaudata in 1 clade with E. s. rotensis in a clade by itself. Genetic distances among the 3 subspecies at Cytb were smallest between E. s. palauensis and E. s. rotensis. Distance between E. s. semicaudata and the other 2 subspecies was not different from the distance between E. s. semicaudata and the full species E. raffrayana. A similar relationship was found using the 12S data. These distances are larger than those typically reported for mammalian subspecies using Cytb sequence and within the range of sister species.

  19. Lead time reduction by optimal test sequencing

    NARCIS (Netherlands)

    Boumen, R.; Jong, de I.S.M.

    2005-01-01

    Het testen van machines neemt in het huidige ontwerp en productie fases binnen ASML ongeveer 30-50% van de totale doorlooptijd in. Om deze tijd te verkorten, worden er test strategieën gemaakt. Een van de belangrijke onderdelen van zo een test strategie is de test volgorde, oftewel de volgorde

  20. Inferring contemporary levels of gene flow and demographic history in a local population of the leaf beetle Gonioctena olivacea from mitochondrial DNA sequence variation.

    Science.gov (United States)

    Mardulyn, Patrick; Milinkovitch, Michel C

    2005-05-01

    We have studied mitochondrial DNA variation in a local population of the leaf beetle species Gonioctena olivacea, to check whether its apparent low dispersal behaviour affects its pattern of genetic variation at a small geographical scale. We have sampled 10 populations of G. olivacea within a rectangle of 5 x 2 km in the Belgian Ardennes, as well as five populations located approximately along a straight line of 30 km and separated by distances of 3-12 km. For each sampled individual (8-19 per population), a fragment of the mtDNA control region was polymerase chain reaction-amplified and sequenced. Sequence data were analysed to test whether significant genetic differentiation could be detected among populations separated by such relatively short distances. The reconstructed genealogy of the mitochondrial haplotypes was also used to investigate the demographic history of these populations. Computer simulations of the evolution of populations were conducted to assess the minimum amount of gene flow that is necessary to explain the observed pattern of variation in the samples. Results show that migration among populations included in the rectangle of 5 x 2 km is substantial, and probably involves the occurrence of dispersal flights. This appears difficult to reconcile with the results of a previous ecological field study that concluded that most of this species dispersal occurs by walking. While sufficient migration to homogenize genetic diversity occurs among populations separated by distances of a few hundred metres to a few kilometres, distances greater than 5 km results in contrast in strong differentiation among populations, suggesting that migration is drastically reduced on such distances. Finally, the results of coalescent simulations suggest that the star-like genealogy inferred from the mtDNA sequence data is fully compatible with a past demographic expansion. However, a metapopulation structure alone (without the need to invoke a population expansion

  1. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  2. Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis

    Czech Academy of Sciences Publication Activity Database

    Nosek, J.; Novotná, Marcela; Hlavaticová, Z.; Ussery, D. W.; Fajkus, Jiří; Tomáška, L.

    2004-01-01

    Roč. 272, č. 2 (2004), s. 173-180 ISSN 1617-4615 Grant - others:Howard Hughes Medical Institute(US) 55000327; VEGA MŠ SR(SK) 1/9153/02; VEGA MŠ SR(SK) 1/0006/03; APVT(SK) 20-003902; Fogarty International NIH(US) 1-R03-TW05654-01 Institutional research plan: CEZ:AV0Z5004920 Keywords : Candida parapsilosis * linear mitochondrial DNA * telomeric circles (t-circles) Subject RIV: BO - Biophysics Impact factor: 2.371, year: 2004

  3. HEURISTIC METHODS FOR TEST SEQUENCING IN TELECOMMUNICATION SATELLITES

    OpenAIRE

    Boche-Sauvan , Ludivine; Cabon , Bertrand; Huguet , Marie-José; Hébrard , Emmanuel

    2014-01-01

    Colloque avec actes et comité de lecture. internationale.; International audience; The increasing complexity in telecommunication satellite payload design demands new test sequencing approaches to face the induced increase of validation complexity. In such a sequencing problem, each test requires specific payload equipment states at a dedicated temperature range. The industrial objectives are both to reduce the total time of tests and to keep the thermal stability of the payload. For solving ...

  4. [Sequencing of mitochondrial DNA cytochrome oxidase subunit I gene in sarcosaphagous flies from 14 provinces in China].

    Science.gov (United States)

    Yang, Li; Cai, Jifeng; Wen, Jifang; Guo, Yadong

    2010-08-01

    To detect the 278 bp region of gene of the cytochrome oxidase subunit I (COI) in mitochondral DNA (mtDNA) of sarcosaphagous flies, identify the species of sarcosaphagous flies, and provide reference for forensic application. Samples were collected in Baotou and Chifeng of Inner Mongolia, Tianjin, Nanning, Fuzhou, Linyi of Shandong, Shijiazhuang, Yinchuan, Lanzhou, Huairou of Beijing, Xinxiang and Nanyang of Henan, Datong of Shanxi, Wuhu of Anhui, Quzhou of Zhejiang, Changsha, Zhuzhou and Yongzhou of Hunan. A total of 38 flies were randomly collected from rabbits, dogs and pigs which were set outdoors, then the flies' mitochondrial DNA (mtDNA) were extracted by the improved small insects DNA homogenate method. Amplification was conducted by Perkin-Elmer 9600 thermal cycler, then vertical non-denaturing 7% polyacrylamide gelectrophoresis. PCR products were purified using the nucleic acid purification kit. Sequences of both strands were obtained by direct sequence of the double-stranded PCR product using one of the PCR primers and the ABI PRISM big dye terminator cycle sequencing dit. Sequence reactions were electrophorsed on ABI Model 3730 DNA Sequencers. A UPGMA tree was contrasted using the maximum composite likelihood method in MEGA4. The 38 sarcosaphagous flies belonged to 3 families(Muscidae, Calliphoridae, and Sarcophagidae), 10 genuses (Musca Linnaeus, Hydrotaea Robineau-Desvoidy, Aldrichina Townsend, Hemipyrellia Townsend, Achoetandrus Bezzi, Protophormia Townsend, Chrysomya Robineau-Desvoidy, Lucilia Robineau-Desvoidy, Helicophagella Enderlein, and Boettcherisca Rohdendorf), and 12 species [Musca domestica (Linnaeus), Hydrotaea (Ophyra) capensis (Wiedemann), Lucilia caesar (Linnaeus), Lucilia illustris (Meigen), Aldrichina graham (Aldrich), Hemipyrellia ligurriens, Achoetandrus (Chrysomya) rufifacies (Macquary), Protophormia terraenovae (Robineau-Desvoidy), Chrysomya megacephala (Fabricius), Lucilia sericata (Meigen), Helicophagella melanura (Meigen), and

  5. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Science.gov (United States)

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  6. Geographic patterns of genetic variation in a broadly distributed marine vertebrate: new insights into loggerhead turtle stock structure from expanded mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Brian M Shamblin

    Full Text Available Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for

  7. Mitochondrial sequencing reveals five separate origins of 'black' Apis mellifera (Hymenoptera: Apidae) in eastern Australian commercial colonies.

    Science.gov (United States)

    Oxley, P R; Oldroyd, B P

    2009-04-01

    Establishment of a closed population honey bee, Apis mellifera L. (Hymenoptera: Apidae), breeding program based on 'black' strains has been proposed for eastern Australia. Long-term success of such a program requires a high level of genetic variance. To determine the likely extent of genetic variation available, 50 colonies from 11 different commercial apiaries were sequenced in the mitochondrial cytochrome oxidase I and II intergenic region. Five distinct and novel mitotypes were identified. No colonies were found with the A. mellifera mellifera mitotype, which is often associated with undesirable feral strains. One group of mitotypes was consistent with a caucasica origin, two with carnica, and two with ligustica. The results suggest that there is sufficient genetic diversity to support a breeding program provided all these five sources were pooled.

  8. Genetic diversity of Taenia hydatigena in the northern part of the West Bank, Palestine as determined by mitochondrial DNA sequences.

    Science.gov (United States)

    Adwan, Kamel; Jayousi, Alaa; Abuseir, Sameh; Abbasi, Ibrahim; Adwan, Ghaleb; Jarrar, Naser

    2018-06-26

    Cysticercus tenuicollis is the metacestode of canine tapeworm Taenia hydatigena, which has been reported in domestic and wild ruminants and is causing veterinary and economic losses in the meat industry. This study was conducted to determine the sequence variation in the mitochondrial cytochrome c oxidase subunit 1 (coxl) gene in 20 isolates of T. hydatigena metacestodes (cysticercus tenuicollis) collected from northern West Bank in Palestine. Nine haplotypes were detected, with one prevailing (55%). The total haplotype diversity (0.705) and the total nucleotide diversity (0.0045) displayed low genetic diversity among our isolates. Haplotype analysis showed a star-shaped network with a centrally positioned common haplotype. The Tajima's D, and Fu and Li's statistics in cysticercus tenuicollis population of this region showed a negative value, indicating deviations from neutrality and both suggested recent population expansion for the population. The findings of this study would greatly help to implement control and preventive measures for T. hydatigena larvae infection in Palestine.

  9. Insights into N-calls of mitochondrial DNA sequencing using MitoChip v2.0

    Directory of Open Access Journals (Sweden)

    Blakely Emma L

    2011-10-01

    Full Text Available Abstract Background Developments in DNA resequencing microarrays include mitochondrial DNA (mtDNA sequencing and mutation detection. Failure by the microarray to identify a base, compared to the reference sequence, is designated an 'N-call.' This study re-examined the N-call distribution of mtDNA samples sequenced by the Affymetrix MitoChip v.2.0, based on the hypothesis that N-calls may represent insertions or deletions (indels in mtDNA. Findings We analysed 16 patient mtDNA samples using MitoChip. N-calls by the proprietary GSEQ software were significantly reduced when either of the freeware on-line algorithms ResqMi or sPROFILER was utilized. With sPROFILER, this decrease in N-calls had no effect on the homoplasmic or heteroplasmic mutation levels compared to GSEQ software, but ResqMi produced a significant change in mutation load, as well as producing longer N-cell stretches. For these reasons, further analysis using ResqMi was not attempted. Conventional DNA sequencing of the longer N-calls stretches from sPROFILER revealed 7 insertions and 12 point mutations. Moreover, analysis of single-base N-calls of one mtDNA sample found 3 other point mutations. Conclusions Our study is the first to analyse N-calls produced from GSEQ software for the MitoChipv2.0. By narrowing the focus to longer stretches of N-calls revealed by sPROFILER, conventional sequencing was able to identify unique insertions and point mutations. Shorter N-calls also harboured point mutations, but the absence of deletions among N-calls suggests that probe confirmation affects binding and thus N-calling. This study supports the contention that the GSEQ is more capable of assigning bases when used in conjunction with sPROFILER.

  10. Phylogeny of the sea hares in the aplysia clade based on mitochondrial DNA sequence data

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Monica; Collins, Timothy; Walsh, Patrick J.

    2004-02-20

    Sea hare species within the Aplysia clade are distributed worldwide. Their phylogenetic and biogeographic relationships are, however, still poorly known. New molecular evidence is presented from a portion of the mitochondrial cytochrome oxidase c subunit 1 gene (cox1) that improves our understanding of the phylogeny of the group. Based on these data a preliminary discussion of the present distribution of sea hares in a biogeographic context is put forward. Our findings are consistent with only some aspects of the current taxonomy and nomenclatural changes are proposed. The first, is the use of a rank free classification for the different Aplysia clades and subclades as opposed to previously used genus and subgenus affiliations. The second, is the suggestion that Aplysia brasiliana (Rang, 1828) is a junior synonym of Aplysia fasciata (Poiret, 1789). The third, is the elimination of Neaplysia since its only member is confirmed to be part of the large Varria clade.

  11. Sequencing, description and phylogenetic analysis of the mitochondrial genome of Sarcocheilichthys sinensis sinensis (Cypriniformes: Cyprinidae).

    Science.gov (United States)

    Li, Chen; He, Liping; Chen, Chong; Cai, Lingchao; Chen, Pingping; Yang, Shoubao

    2016-01-01

    Sarcocheilichthys sinensis sinensis (Bleeker, 1871), is a small benthopelagic freshwater species with high nutritional and ornamental value. In this study, the complete mitochondrial genome of S. sinensis sinensis was determined; the phylogenetic analysis with another individual and closely related species of Sarcocheilichthys fishes was carried out. The complete mitogenome of S. sinensis sinensis was 16683 bp in length, consist of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 2 non-coding regions: (D-loop and OL). It indicated that D-loop, ND2, and CytB may be appropriate molecular markers for studying population genetics and conservation biology of Sarcocheilichthys fishes.

  12. Identification of mitochondrial DNA sequence variation and development of single nucleotide polymorphic markers for CMS-D8 in cotton.

    Science.gov (United States)

    Suzuki, Hideaki; Yu, Jiwen; Wang, Fei; Zhang, Jinfa

    2013-06-01

    Cytoplasmic male sterility (CMS), which is a maternally inherited trait and controlled by novel chimeric genes in the mitochondrial genome, plays a pivotal role in the production of hybrid seed. In cotton, no PCR-based marker has been developed to discriminate CMS-D8 (from Gossypium trilobum) from its normal Upland cotton (AD1, Gossypium hirsutum) cytoplasm. The objective of the current study was to develop PCR-based single nucleotide polymorphic (SNP) markers from mitochondrial genes for the CMS-D8 cytoplasm. DNA sequence variation in mitochondrial genes involved in the oxidative phosphorylation chain including ATP synthase subunit 1, 4, 6, 8 and 9, and cytochrome c oxidase 1, 2 and 3 subunits were identified by comparing CMS-D8, its isogenic maintainer and restorer lines on the same nuclear genetic background. An allelic specific PCR (AS-PCR) was utilized for SNP typing by incorporating artificial mismatched nucleotides into the third or fourth base from the 3' terminus in both the specific and nonspecific primers. The result indicated that the method modifying allele-specific primers was successful in obtaining eight SNP markers out of eight SNPs using eight primer pairs to discriminate two alleles between AD1 and CMS-D8 cytoplasms. Two of the SNPs for atp1 and cox1 could also be used in combination to discriminate between CMS-D8 and CMS-D2 cytoplasms. Additionally, a PCR-based marker from a nine nucleotide insertion-deletion (InDel) sequence (AATTGTTTT) at the 59-67 bp positions from the start codon of atp6, which is present in the CMS and restorer lines with the D8 cytoplasm but absent in the maintainer line with the AD1 cytoplasm, was also developed. A SNP marker for two nucleotide substitutions (AA in AD1 cytoplasm to CT in CMS-D8 cytoplasm) in the intron (1,506 bp) of cox2 gene was also developed. These PCR-based SNP markers should be useful in discriminating CMS-D8 and AD1 cytoplasms, or those with CMS-D2 cytoplasm as a rapid, simple, inexpensive, and

  13. PCR-Free Enrichment of Mitochondrial DNA from Human Blood and Cell Lines for High Quality Next-Generation DNA Sequencing.

    Directory of Open Access Journals (Sweden)

    Meetha P Gould

    Full Text Available Recent advances in sequencing technology allow for accurate detection of mitochondrial sequence variants, even those in low abundance at heteroplasmic sites. Considerable sequencing cost savings can be achieved by enriching samples for mitochondrial (relative to nuclear DNA. Reduction in nuclear DNA (nDNA content can also help to avoid false positive variants resulting from nuclear mitochondrial sequences (numts. We isolate intact mitochondrial organelles from both human cell lines and blood components using two separate methods: a magnetic bead binding protocol and differential centrifugation. DNA is extracted and further enriched for mitochondrial DNA (mtDNA by an enzyme digest. Only 1 ng of the purified DNA is necessary for library preparation and next generation sequence (NGS analysis. Enrichment methods are assessed and compared using mtDNA (versus nDNA content as a metric, measured by using real-time quantitative PCR and NGS read analysis. Among the various strategies examined, the optimal is differential centrifugation isolation followed by exonuclease digest. This strategy yields >35% mtDNA reads in blood and cell lines, which corresponds to hundreds-fold enrichment over baseline. The strategy also avoids false variant calls that, as we show, can be induced by the long-range PCR approaches that are the current standard in enrichment procedures. This optimization procedure allows mtDNA enrichment for efficient and accurate massively parallel sequencing, enabling NGS from samples with small amounts of starting material. This will decrease costs by increasing the number of samples that may be multiplexed, ultimately facilitating efforts to better understand mitochondria-related diseases.

  14. Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea).

    Science.gov (United States)

    Zheng, Bo-Ying; Cao, Li-Jun; Tang, Pu; van Achterberg, Kees; Hoffmann, Ary A; Chen, Hua-Yan; Chen, Xue-Xin; Wei, Shu-Jun

    2018-07-01

    The Apoidea represent a large and common superfamily of the Hymenoptera including the bees and sphecid wasps. A robust phylogenetic tree is essential to understanding the diversity, taxonomy and evolution of the Apoidea. In this study, features of apoid mitochondrial genomes were used to reconstruct phylogenetic relationships. Twelve apoid mitochondrial genomes were newly sequenced, representing six families and nine subfamilies. Gene rearrangement events have occurred in all apoid mitochondrial genomes sequenced to date. Sphecid wasps have both tRNA and protein-coding gene rearrangements in 5 of 8 species. In bees, the only rearranged genes are tRNAs; long-tongued bees (Apidae + Megachilidae) are characterized by movement of trnA to the trnI-trnQ-trnM tRNA cluster. Phylogenetic analyses of mitochondrial gene sequences support the known paraphyly of sphecid wasps, with bees nested within this clade. The Ampulicidae is sister to the remaining Apoidea. Crabronidae is paraphyletic, split into Crabronidae s.s. and Philanthidae, with the latter group a sister clade to bees. The monophyletic bees are either classified into two clades, long-tongued bees (Apidae + Megachilidae) and short-tongued bees (Andrenidae + Halictidae + Colletidae + Melitidae), or three groups with the Melitidae sister to the other bees. Our study showed that both gene sequences and arrangements provide information on the phylogeny of apoid families. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Phylogenetic analysis of Demodex caprae based on mitochondrial 16S rDNA sequence.

    Science.gov (United States)

    Zhao, Ya-E; Hu, Li; Ma, Jun-Xian

    2013-11-01

    Demodex caprae infests the hair follicles and sebaceous glands of goats worldwide, which not only seriously impairs goat farming, but also causes a big economic loss. However, there are few reports on the DNA level of D. caprae. To reveal the taxonomic position of D. caprae within the genus Demodex, the present study conducted phylogenetic analysis of D. caprae based on mt16S rDNA sequence data. D. caprae adults and eggs were obtained from a skin nodule of the goat suffering demodicidosis. The mt16S rDNA sequences of individual mite were amplified using specific primers, and then cloned, sequenced, and aligned. The sequence divergence, genetic distance, and transition/transversion rate were computed, and the phylogenetic trees in Demodex were reconstructed. Results revealed the 339-bp partial sequences of six D. caprae isolates were obtained, and the sequence identity was 100% among isolates. The pairwise divergences between D. caprae and Demodex canis or Demodex folliculorum or Demodex brevis were 22.2-24.0%, 24.0-24.9%, and 22.9-23.2%, respectively. The corresponding average genetic distances were 2.840, 2.926, and 2.665, and the average transition/transversion rates were 0.70, 0.55, and 0.54, respectively. The divergences, genetic distances, and transition/transversion rates of D. caprae versus the other three species all reached interspecies level. The five phylogenetic trees all presented that D. caprae clustered with D. brevis first, and then with D. canis, D. folliculorum, and Demodex injai in sequence. In conclusion, D. caprae is an independent species, and it is closer to D. brevis than to D. canis, D. folliculorum, or D. injai.

  16. The 6-min mastication test: a unique test to assess endurance of continuous chewing, normal values, reliability, reproducibility and usability in patients with mitochondrial disease

    NARCIS (Netherlands)

    Engel-Hoek, L. van den; Knuijt, S.; Gerven, M.H.J.C van; Lagarde, M.L.J.; Groothuis, J.T.; Groot, I.J.M. de; Janssen, M.C.

    2017-01-01

    In patients with mitochondrial disease, fatigue and muscle problems are the most common complaints. They also experience these complaints during mastication. To measure endurance of continuous mastication in patients with mitochondrial diseases, the 6-min mastication test (6MMT) was developed. This

  17. Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae employing mitochondrial COI gene sequence data

    Directory of Open Access Journals (Sweden)

    Monte Tainá CC

    2012-11-01

    Full Text Available Abstract Background The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode’s main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI gene sequences. Methods The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. Results The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8 from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. Conclusion The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions.

  18. Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae) employing mitochondrial COI gene sequence data

    Science.gov (United States)

    2012-01-01

    Background The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode’s main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Methods The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. Results The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8) from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. Conclusion The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions. PMID:23130987

  19. Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae) employing mitochondrial COI gene sequence data.

    Science.gov (United States)

    Monte, Tainá C C; Simões, Raquel O; Oliveira, Ana Paula M; Novaes, Clodoaldo F; Thiengo, Silvana C; Silva, Alexandre J; Estrela, Pedro C; Maldonado, Arnaldo

    2012-11-06

    The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode's main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8) from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions.

  20. High Sequence Variations in Mitochondrial DNA Control Region among Worldwide Populations of Flathead Mullet Mugil cephalus

    Directory of Open Access Journals (Sweden)

    Brian Wade Jamandre

    2014-01-01

    Full Text Available The sequence and structure of the complete mtDNA control region (CR of M. cephalus from African, Pacific, and Atlantic populations are presented in this study to assess its usefulness in phylogeographic studies of this species. The mtDNA CR sequence variations among M. cephalus populations largely exceeded intraspecific polymorphisms that are generally observed in other vertebrates. The length of CR sequence varied among M. cephalus populations due to the presence of indels and variable number of tandem repeats at the 3′ hypervariable domain. The high evolutionary rate of the CR in this species probably originated from these mutations. However, no excessive homoplasic mutations were noticed. Finally, the star shaped tree inferred from the CR polymorphism stresses a rapid radiation worldwide, in this species. The CR still appears as a good marker for phylogeographic investigations and additional worldwide samples are warranted to further investigate the genetic structure and evolution in M. cephalus.

  1. Whole Mitochondrial Genome Sequencing and Re-Examination of a Cytoplasmic Male Sterility-Associated Gene in Boro-Taichung-Type Cytoplasmic Male Sterile Rice.

    Science.gov (United States)

    Kazama, Tomohiko; Toriyama, Kinya

    2016-01-01

    Nuclear genome substitutions between subspecies can lead to cytoplasmic male sterility (CMS) through incompatibility between nuclear and mitochondrial genomes. Boro-Taichung (BT)-type CMS rice was obtained by substituting the nuclear genome of Oryza sativa subsp. indica cultivar Chinsurah Boro II with that of Oryza sativa subsp. japonica cultivar Taichung 65. In BT-type CMS rice, the mitochondrial gene orf79 is associated with male sterility. A complete sequence of the Boro-type mitochondrial genome responsible for BT-type CMS has not been determined to date. Here, we used pyrosequencing to construct the Boro-type mitochondrial genome. The contiguous sequences were assembled into five circular DNA molecules, four of which could be connected into a single circle. The two resulting subgenomic circles were unable to form a reliable master circle, as recombination between them was scarcely detected. We also found an unequal abundance of DNA molecules for the two loci of atp6. These results indicate the presence of multi-partite DNA molecules in the Boro-type mitochondrial genome. Expression patterns were investigated for Boro-type mitochondria-specific orfs, which were not found in the mitochondria from the standard japonica cultivar Nipponbare. Restorer of fertility 1 (RF1)-dependent RNA processing has been observed in orf79-containing RNA but was not detected in other Boro-type mitochondria-specific orfs, supporting the conclusion that orf79 is a unique CMS-associated gene in Boro-type mitochondria.

  2. Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences

    Directory of Open Access Journals (Sweden)

    Hongying Ma

    2018-06-01

    Full Text Available Objectives There are large populations of indigenous horse (Equus caballus in China and some other parts of East Asia. However, their matrilineal genetic diversity and origin remained poorly understood. Using a combination of mitochondrial DNA (mtDNA and hypervariable region (HVR-1 sequences, we aim to investigate the origin of matrilineal inheritance in these domestic horses. Methods To investigate patterns of matrilineal inheritance in domestic horses, we conducted a phylogenetic study using 31 de novo mtDNA genomes together with 317 others from the GenBank. In terms of the updated phylogeny, a total of 5,180 horse mitochondrial HVR-1 sequences were analyzed. Results Eightteen haplogroups (Aw-Rw were uncovered from the analysis of the whole mitochondrial genomes. Most of which have a divergence time before the earliest domestication of wild horses (about 5,800 years ago and during the Upper Paleolithic (35–10 KYA. The distribution of some haplogroups shows geographic patterns. The Lw haplogroup contained a significantly higher proportion of European horses than the horses from other regions, while haplogroups Jw, Rw, and some maternal lineages of Cw, have a higher frequency in the horses from East Asia. The 5,180 sequences of horse mitochondrial HVR-1 form nine major haplogroups (A-I. We revealed a corresponding relationship between the haplotypes of HVR-1 and those of whole mitochondrial DNA sequences. The data of the HVR-1 sequences also suggests that Jw, Rw, and some haplotypes of Cw may have originated in East Asia while Lw probably formed in Europe. Conclusions Our study supports the hypothesis of the multiple origins of the maternal lineage of domestic horses and some maternal lineages of domestic horses may have originated from East Asia.

  3. The mitochondrial genome of the stingless bee Melipona bicolor (Hymenoptera, Apidae, Meliponini: sequence, gene organization and a unique tRNA translocation event conserved across the tribe Meliponini

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2008-01-01

    Full Text Available At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini. The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced. We also report the genome organization (gene content and order, gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

  4. [Approach to Spodoptera (Lepidoptera: Noctuidae) phylogeny based on the sequence of the cytocrhome oxydase I (COI) mitochondrial gene].

    Science.gov (United States)

    Saldamando, Clara Inés; Marquez, Edna Judith

    2012-09-01

    The genus Spodoptera includes 30 species of moths considered important pests worldwide, with a great representation in the Western Hemisphere. In general, Noctuidae species have morphological similarities that have caused some difficulties for assertive species identification by conventional methods. The purpose of this work was to generate an approach to the genus phylogeny from several species of the genus Spodoptera and the species Bombyx mori as an out group, with the use of molecular tools. For this, a total of 102 S. frugiperda larvae were obtained at random in corn, cotton, rice, grass and sorghum, during late 2006 and early 2009, from Colombia. We took ADN samples from the larval posterior part and we analyzed a fragment of 451 base pairs of the mitochondrial gene cytochrome oxydase I (COI), to produce a maximum likelihood (ML) tree by using 62 sequences (29 Colombian haplotypes were used). Our results showed a great genetic differentiation (K2 distances) amongst S. frugiperda haplotypes from Colombia and the United States, condition supported by the estimators obtained for haplotype diversity and polymorphism. The obtained ML tree clustered most of the species with bootstrapping values from 73-99% in the interior branches; with low values also observed in some of the branches. In addition, this tree clustered two species of the Eastern hemisphere (S littoralis and S. litura) and eight species of the Western hemisphere (S. androgea, S. dolichos, S. eridania, S. exigua, S. frugiperda, S. latifascia, S. ornithogalli and S. pulchella). In Colombia, S. frugiperda, S. ornithogalli and S. albula represent a group of species referred as "the Spodoptera complex" of cotton crops, and our work demonstrated that sequencing a fragment of the COI gene, allows researchers to differentiate the first two species, and thus it can be used as an alternative method to taxonomic keys based on morphology. Finally, the ML tree did not cluster S. frugiperda with S. ornithogalli

  5. Molecular phylogeny of Japanese Rhinolophidae based on variations in the complete sequence of the mitochondrial cytochrome b gene.

    Science.gov (United States)

    Sakai, Takahiro; Kikkawa, Yoshiaki; Tsuchiya, Kimiyuki; Harada, Masashi; Kanoe, Masamitsu; Yoshiyuki, Mizuko; Yonekawa, Hiromichi

    2003-04-01

    Microchiroptera have diversified into many species whose size and the shapes of the complicated ear and nose have been adapted to their echolocation abilities. Their speciation processes, and intra- and interspecies relationships are still under discussion. Here we report on the geographical variation of Japanese Rhinolophus ferrumequinum and R. cornutus using the complete sequence of the mitochondrial cytochrome b gene to clarify the phylogenetic positions of the 2 species as well as that of Rhinolophidae within the Microchiroptera. We have found that sequence divergence values within each of the 2 species are unexpectedly low (0.07%-0.94%). We have also found that there is no local specificity of their mtCytb alleles. On the other hand, the divergence values for Japanese Microchiroptera (12.7%-16.6%) are much higher than those for other mammalian genera. Similarly, the values among five genera of Vespertilionidae were 20.5%-27.3%. Phylogenetic analysis shows that the 2 species of family Rhinolophidae in the suborder Microchiroptera belong to the Megachiroptera cluster in the constructed maximum parsimony tree. These results suggest that the speciation of Rhinolophidae involved its divergence as an independent lineage from other Microchiroptera, and other microbats might be paraphyletic. In addition, the tree also shows that the order Chiroptera is monophylitic, and the closest group to Chiroptera is the ungulates.

  6. Molecular phylogeography of the brown bear (Ursus arctos) in Northeastern Asia based on analyses of complete mitochondrial DNA sequences.

    Science.gov (United States)

    Hirata, Daisuke; Mano, Tsutomu; Abramov, Alexei V; Baryshnikov, Gennady F; Kosintsev, Pavel A; Vorobiev, Alexandr A; Raichev, Evgeny G; Tsunoda, Hiroshi; Kaneko, Yayoi; Murata, Koichi; Fukui, Daisuke; Masuda, Ryuichi

    2013-07-01

    To further elucidate the migration history of the brown bears (Ursus arctos) on Hokkaido Island, Japan, we analyzed the complete mitochondrial DNA (mtDNA) sequences of 35 brown bears from Hokkaido, the southern Kuril Islands (Etorofu and Kunashiri), Sakhalin Island, and the Eurasian Continent (continental Russia, Bulgaria, and Tibet), and those of four polar bears. Based on these sequences, we reconstructed the maternal phylogeny of the brown bear and estimated divergence times to investigate the timing of brown bear migrations, especially in northeastern Eurasia. Our gene tree showed the mtDNA haplotypes of all 73 brown and polar bears to be divided into eight divergent lineages. The brown bear on Hokkaido was divided into three lineages (central, eastern, and southern). The Sakhalin brown bear grouped with eastern European and western Alaskan brown bears. Etorofu and Kunashiri brown bears were closely related to eastern Hokkaido brown bears and could have diverged from the eastern Hokkaido lineage after formation of the channel between Hokkaido and the southern Kuril Islands. Tibetan brown bears diverged early in the eastern lineage. Southern Hokkaido brown bears were closely related to North American brown bears.

  7. Complete Mitochondrial Genome Sequencing of a Burial from a Romano–Christian Cemetery in the Dakhleh Oasis, Egypt: Preliminary Indications

    Directory of Open Access Journals (Sweden)

    J. Eldon Molto

    2017-10-01

    Full Text Available The curse of ancient Egyptian DNA was lifted by a recent study which sequenced the mitochondrial genomes (mtGenome of 90 ancient Egyptians from the archaeological site of Abusir el-Meleq. Surprisingly, these ancient inhabitants were more closely related to those from the Near East than to contemporary Egyptians. It has been accepted that the timeless highway of the Nile River seeded Egypt with African genetic influence, well before pre-Dynastic times. Here we report on the successful recovery and analysis of the complete mtGenome from a burial recovered from a remote Romano–Christian cemetery, Kellis 2 (K2. K2 serviced the ancient municipality of Kellis, a village located in the Dakhleh Oasis in the southwest desert in Egypt. The data were obtained by high throughput sequencing (HTS performed independently at two ancient DNA facilities (Armed Forces DNA Identification Laboratory, Dover, DE, USA and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA. These efforts produced concordant haplotypes representing a U1a1a haplogroup lineage. This result indicates that Near Eastern maternal influence previously identified at Abusir el-Meleq was also present further south, in ancient Kellis during the Romano–Christian period.

  8. Analysis of the Complete Mitochondrial Genome Sequence of the Diploid Cotton Gossypium raimondii by Comparative Genomics Approaches

    Directory of Open Access Journals (Sweden)

    Changwei Bi

    2016-01-01

    Full Text Available Cotton is one of the most important economic crops and the primary source of natural fiber and is an important protein source for animal feed. The complete nuclear and chloroplast (cp genome sequences of G. raimondii are already available but not mitochondria. Here, we assembled the complete mitochondrial (mt DNA sequence of G. raimondii into a circular genome of length of 676,078 bp and performed comparative analyses with other higher plants. The genome contains 39 protein-coding genes, 6 rRNA genes, and 25 tRNA genes. We also identified four larger repeats (63.9 kb, 10.6 kb, 9.1 kb, and 2.5 kb in this mt genome, which may be active in intramolecular recombination in the evolution of cotton. Strikingly, nearly all of the G. raimondii mt genome has been transferred to nucleus on Chr1, and the transfer event must be very recent. Phylogenetic analysis reveals that G. raimondii, as a member of Malvaceae, is much closer to another cotton (G. barbadense than other rosids, and the clade formed by two Gossypium species is sister to Brassicales. The G. raimondii mt genome may provide a crucial foundation for evolutionary analysis, molecular biology, and cytoplasmic male sterility in cotton and other higher plants.

  9. Phylogeny of Gracilariaceae (Rhodophyta): evidence from plastid and mitochondrial nucleotide sequences.

    Science.gov (United States)

    Lyra, Goia de M; Costa, Emmanuelle da S; de Jesus, Priscila B; de Matos, João Carlos G; Caires, Taiara A; Oliveira, Mariana C; Oliveira, Eurico C; Xi, Zhenxiang; Nunes, José Marcos de C; Davis, Charles C

    2015-04-01

    Gracilariaceae are mostly pantropical red algae and include ~230 species in seven genera. Infrafamilial classification of the group has long been based on reproductive characters, but previous phylogenies have shown that traditionally circumscribed groups are not monophyletic. We performed phylogenetic analyses using two plastid (universal plastid amplicon and rbcL) and one mitochondrial (cox1) loci from a greatly expanded number of taxa to better assess generic relationships and understand patterns of character distributions. Our analyses produce the most well-supported phylogeny of the family to date, and indicate that key characteristics of spermatangia and cystocarp type do not delineate genera as commonly suggested. Our results further indicate that Hydropuntia is not monophyletic. Given their morphological overlap with closely related members of Gracilaria, we propose that Hydropuntia be synonymized with the former. Our results additionally expand the known ranges of several Gracilariaceae species to include Brazil. Lastly, we demonstrate that the recently described Gracilaria yoneshigueana should be synonymized as G. domingensis based on morphological and molecular characters. These results demonstrate the utility of DNA barcoding for understanding poorly known and fragmentary materials of cryptic red algae. © 2015 Phycological Society of America.

  10. A preliminary molecular phylogeny of planthoppers (Hemiptera: Fulgoroidea based on nuclear and mitochondrial DNA sequences.

    Directory of Open Access Journals (Sweden)

    Nan Song

    Full Text Available The planthopper superfamily Fulgoroidea (Insecta: Hemiptera is one of the most dominant groups of phytophagous insects. It comprises about 20 families, containing a total of 9000 species worldwide. Despite several recent studies, the phylogeny of Fulgoroidea is not yet satisfactorily resolved and the phylogenetic positions of several key families, especially Cixiidae, Delphacidae, Tettigometridae, Nogodinidae, Acanaloniidae and Issidae, are contentious. Here, we expand upon recent phylogenetic work using additional nuclear (18S and 28S and novel mitochondrial (16S and cytb markers. Maximum likelihood and Bayesian analyses yielded robust phylogenetic trees. In these topologies, a group containing Cixiidae and Delphacidae is recovered as the sister group to the remaining taxa. Tettigometridae is placed in a more nested position and is grouped with Caliscelidae. Sister relationships are found between Flatidae and Ricaniidae, and between Dictyopharidae and Fulgoridae. Nogodinidae and Issidae are confirmed to be non-monophyletic families. For major nodes of interest, divergence date estimates are generally older than those from the fossil record.

  11. Mitochondrial D-loop sequences reveal a mixture of endemism and immigration in Egyptian goat populations.

    Science.gov (United States)

    Ahmed, Sahar; Grobler, Paul; Madisha, Thabang; Kotze, Antionette

    2017-09-01

    The mitochondrial D-loop region was used to investigate genetic diversity within and between populations of Egyptian goats, to elucidate processes that explain present patterns of diversity and differentiation and to characterize Egyptian goats relative to international breeds. A total of 120 animals from six populations were sampled. Results confirm the main trend from previous studies of mtDNA diversity in goats, with high levels of diversity within populations, but with a comparative lack of genetic structure supporting geographic distribution. Haplotype diversity varied in a narrow range whereas nucleotide diversity values were more informative in showing differences between populations. The majority of goats analyzed (93.2%) displayed haplotypes that group with Haplogroup A, the most common type found in global goat populations. The remaining animals grouped with the less common Haplogroup G. Population differentiation analysis showed some uniqueness in the Aswan and Sharkawi populations from the South and East of Egypt. Overall, the structure of the Egyptian goat population is characterized by a high degree of homogeneity among populations from the north-western coastal region, the Nile Delta and the upper and middle regions of the Nile valley, but with possible introgression of rarer haplotypes into populations at the southern and eastern extremities of the country.

  12. Phylogeography and population diversity of Simulium hirtipupa Lutz (Diptera: Simuliidae based on mitochondrial COI sequences.

    Directory of Open Access Journals (Sweden)

    Vanderly Andrade-Souza

    Full Text Available High morphological homogeneity and cryptic speciation may cause the diversity within Simuliidae to be underestimated. Recent molecular studies on population genetics and phylogeography have contributed to reveal which factors influenced the diversity within this group. This study aimed at examining the genetic diversity of Simulium hirtipupa Lutz, 1910 in populations from the biomes Caatinga, Cerrado, and Atlantic Forest. In this study, we carried out phylogeographic and population genetic analyses using a fragment of the mitochondrial gene COI. The 19 populations studied were clustered into seven groups, most of which are associated with geography indicating certain genetic structure. The northern region of the state of Minas Gerais is most likely the center of origin of this species. The average intergroup genetic distance was 3.7%, indicating the presence of cryptic species. The species tree as well as the haplotype network recovered all groups forming two major groups: the first comprises groups Gr-Bahia (in which the São Francisco river has not acted as geographical barrier, Gr-Pernambuco, and Gr-Mato Grosso do Sul. The second included groups comprising populations of the states of Goiás, Tocantins, Minas Gerais, Bahia, São Paulo, and Espírito Santo. The mismatch distribution for groups was consistent with the model of demographic expansion, except for the Gr-Central-East_1 group. The diversification in this group occurred about 1.19 Mya during the Pleistocene, influenced by paleoclimatic oscillations during the Quaternary glacial cycles.

  13. Complete sequences of organelle genomes from the medicinal plant Rhazya stricta (Apocynaceae) and contrasting patterns of mitochondrial genome evolution across asterids.

    Science.gov (United States)

    Park, Seongjun; Ruhlman, Tracey A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; Baeshen, Mohammed N; Sabir, Meshaal J; Baeshen, Nabih A; Jansen, Robert K

    2014-05-28

    Rhazya stricta is native to arid regions in South Asia and the Middle East and is used extensively in folk medicine to treat a wide range of diseases. In addition to generating genomic resources for this medicinally important plant, analyses of the complete plastid and mitochondrial genomes and a nuclear transcriptome from Rhazya provide insights into inter-compartmental transfers between genomes and the patterns of evolution among eight asterid mitochondrial genomes. The 154,841 bp plastid genome is highly conserved with gene content and order identical to the ancestral organization of angiosperms. The 548,608 bp mitochondrial genome exhibits a number of phenomena including the presence of recombinogenic repeats that generate a multipartite organization, transferred DNA from the plastid and nuclear genomes, and bidirectional DNA transfers between the mitochondrion and the nucleus. The mitochondrial genes sdh3 and rps14 have been transferred to the nucleus and have acquired targeting presequences. In the case of rps14, two copies are present in the nucleus; only one has a mitochondrial targeting presequence and may be functional. Phylogenetic analyses of both nuclear and mitochondrial copies of rps14 across angiosperms suggests Rhazya has experienced a single transfer of this gene to the nucleus, followed by a duplication event. Furthermore, the phylogenetic distribution of gene losses and the high level of sequence divergence in targeting presequences suggest multiple, independent transfers of both sdh3 and rps14 across asterids. Comparative analyses of mitochondrial genomes of eight sequenced asterids indicates a complicated evolutionary history in this large angiosperm clade with considerable diversity in genome organization and size, repeat, gene and intron content, and amount of foreign DNA from the plastid and nuclear genomes. Organelle genomes of Rhazya stricta provide valuable information for improving the understanding of mitochondrial genome evolution

  14. Subspecies identification of Chimpanzees Pan troglodytes (Primates: Hominidae from the National Zoo of the Metropolitan Park of Santiago, Chile, using mitochondrial DNA sequences

    Directory of Open Access Journals (Sweden)

    J.A. Vega

    2014-05-01

    Full Text Available Natural populations of Chimpanzees Pan troglodytes are declining because of hunting and illegal live animal trafficking. Four subspecies of Chimpanzee have been reported: Pan troglodytes troglodytes, P.t. schweinfurthii, P.t. verus and P.t. ellioti, which have remained geographically separated by natural barriers such as the rivers Niger, Sanaga and Ubangi in central Africa. Sequence analysis of mitochondrial DNA (mtDNA has been used for the determination of these subspecies, which indirectly can also suggest their geographic origin. It was decided to identify the subspecies and the geographic origin of three captive chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile, by analyzing their mitochondrial DNA. DNA was extracted from the saliva of three adult chimpanzees (two males and one female. After the analysis of sequences of the mitochondrial hypervariable region (HVI, a phylogenetic tree was constructed using mitochondrial sequences of known Pan troglodytes subspecies. Molecular phylogeny analysis revealed that the chimpanzees are likely to belong to three different subspecies: P.t. schweinfurthii, P.t. verus and P.t. troglodytes. Identification of subspecies of the three chimpanzees of the National Zoo of the Metropolitan Park of Santiago (Chile was possible due to mtDNA analysis. Future identification of chimpanzees will allow the development of a studbook for the chimpanzee subspecies in other Latin American zoos.

  15. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    Science.gov (United States)

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  16. Sequencing of mitochondrial genomes of nine Aspergillus and Penicillium species identifies mobile introns and accessory genes as main sources of genome size variability.

    Science.gov (United States)

    Joardar, Vinita; Abrams, Natalie F; Hostetler, Jessica; Paukstelis, Paul J; Pakala, Suchitra; Pakala, Suman B; Zafar, Nikhat; Abolude, Olukemi O; Payne, Gary; Andrianopoulos, Alex; Denning, David W; Nierman, William C

    2012-12-12

    The genera Aspergillus and Penicillium include some of the most beneficial as well as the most harmful fungal species such as the penicillin-producer Penicillium chrysogenum and the human pathogen Aspergillus fumigatus, respectively. Their mitochondrial genomic sequences may hold vital clues into the mechanisms of their evolution, population genetics, and biology, yet only a handful of these genomes have been fully sequenced and annotated. Here we report the complete sequence and annotation of the mitochondrial genomes of six Aspergillus and three Penicillium species: A. fumigatus, A. clavatus, A. oryzae, A. flavus, Neosartorya fischeri (A. fischerianus), A. terreus, P. chrysogenum, P. marneffei, and Talaromyces stipitatus (P. stipitatum). The accompanying comparative analysis of these and related publicly available mitochondrial genomes reveals wide variation in size (25-36 Kb) among these closely related fungi. The sources of genome expansion include group I introns and accessory genes encoding putative homing endonucleases, DNA and RNA polymerases (presumed to be of plasmid origin) and hypothetical proteins. The two smallest sequenced genomes (A. terreus and P. chrysogenum) do not contain introns in protein-coding genes, whereas the largest genome (T. stipitatus), contains a total of eleven introns. All of the sequenced genomes have a group I intron in the large ribosomal subunit RNA gene, suggesting that this intron is fixed in these species. Subsequent analysis of several A. fumigatus strains showed low intraspecies variation. This study also includes a phylogenetic analysis based on 14 concatenated core mitochondrial proteins. The phylogenetic tree has a different topology from published multilocus trees, highlighting the challenges still facing the Aspergillus systematics. The study expands the genomic resources available to fungal biologists by providing mitochondrial genomes with consistent annotations for future genetic, evolutionary and population

  17. Noninvasive prenatal paternity testing (NIPAT) through maternal plasma DNA sequencing

    DEFF Research Database (Denmark)

    Jiang, Haojun; Xie, Yifan; Li, Xuchao

    2016-01-01

    developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DNA sequencing. We evaluated the influence factors (minor allele frequency (MAF), the number of total SNP, fetal fraction and effective sequencing depth) and designed three different selective SNP panels......Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we...... paternity test using STR multiplex system. Our study here proved that the maternal plasma DNA sequencing-based technology is feasible and accurate in determining paternity, which may provide an alternative in forensic application in the future....

  18. Hypothesis testing in students: Sequences, stages, and instructional strategies

    Science.gov (United States)

    Moshman, David; Thompson, Pat A.

    Six sequences in the development of hypothesis-testing conceptions are proposed, involving (a) interpretation of the hypothesis; (b) the distinction between using theories and testing theories; (c) the consideration of multiple possibilities; (d) the relation of theory and data; (e) the nature of verification and falsification; and (f) the relation of truth and falsity. An alternative account is then provided involving three global stages: concrete operations, formal operations, and a postformal metaconstructivestage. Relative advantages and difficulties of the stage and sequence conceptualizations are discussed. Finally, three families of teaching strategy are distinguished, which emphasize, respectively: (a) social transmission of knowledge; (b) carefully sequenced empirical experience by the student; and (c) self-regulated cognitive activity of the student. It is argued on the basis of Piaget's theory that the last of these plays a crucial role in the construction of such logical reasoning strategies as those involved in testing hypotheses.

  19. Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species.

    Science.gov (United States)

    Nishibori, M; Tsudzuki, M; Hayashi, T; Yamamoto, Y; Yasue, H

    2002-01-01

    Coturnix chinensis (blue-breasted quail) has been classically grouped in Galliformes Phasianidae Coturnix, based on morphologic features and biochemical evidence. Since the blue-breasted quail has the smallest body size among the species of Galliformes, in addition to a short generation time and an excellent reproductive performance, it is a possible model fowl for breeding and physiological studies of the Coturnix japonica (Japanese quail) and Gallus gallus domesticus (chicken), which are classified in the same family as blue-breasted quail. However, since its phylogenetic position in the family Phasianidae has not been determined conclusively, the sequence of the entire blue-breasted quail mitochondria (mt) genome was obtained to provide genetic information for phylogenetic analysis in the present study. The blue-breasted quail mtDNA was found to be a circular DNA of 16,687 base pairs (bp) with the same genomic structure as the mtDNAs of Japanese quail and chicken, though it is smaller than Japanese quail and chicken mtDNAs by 10 bp and 88 bp, respectively. The sequence identity of all mitochondrial genes, including those for 12S and 16S ribosomal RNAs, between blue-breasted quail and Japanese quail ranged from 84.5% to 93.5%; between blue-breasted quail and chicken, sequence identity ranged from 78.0% to 89.6%. In order to obtain information on the phylogenetic position of blue-breasted quail in Galliformes Phasianidae, the 2,184 bp sequence comprising NADH dehydrogenase subunit 2 and cytochrome b genes available for eight species in Galliformes [Japanese quail, chicken, Gallus varius (green junglefowl), Bambusicola thoracica (Chinese bamboo partridge), Pavo cristatus (Indian peafowl), Perdix perdix (gray partridge), Phasianus colchicus (ring-neck pheasant), and Tympanchus phasianellus (sharp-tailed grouse)] together with that of Aythya americana (redhead) were examined using a maximum likelihood (ML) method. The ML analyses on the first/second codon positions

  20. Ultra-deep sequencing of mouse mitochondrial DNA: mutational patterns and their origins.

    Directory of Open Access Journals (Sweden)

    Adam Ameur

    2011-03-01

    Full Text Available Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.

  1. Mitochondrial D-loop sequence of domesticated waterfowl in Central Java: goose and muscovy duck

    Science.gov (United States)

    Susanti, R.; Iswari, R. S.

    2018-03-01

    This study aims to determine the genetic characterization of domesticated waterfowl (goose and Muscovy duck) in Central Java based on a D-loop mtDNA gene. The D-loop gene was amplified using PCR technique by specific primer and sequenced using dideoxy termination method. Multiple alignments of D-loop gene obtained were 710 nucleotides at position 74 to 783 at the 5’ end (for goose) and 712 nucleotides at position 48 to 759 at the 5’ end (for Muscovy duck). The results of the polymorphism analysis on D-loop sequences of muscovy duck produced 3 haplotypes. In the D-loop gene of goose does not show polymorphism, with substitution at G117A. Phylogenetic trees reconstructions of goose and Muscovy duck, which was collected during this research compared with another species from Anser, Chairina and Anas was generated 2 forms of clusters. The first group consists of all kind of Muscovy duck together with Chairina moschata and Anas, while the second group consists of all geese and Anser cygnoides the other. The determination of Muscovy duck and geese identity can be distinguished from the genetic marker information. Based on the phylogenetic analysis, it can be concluded that the Muscovy duck is closely related to Chairina moschata, while geese is closely related to Anser cygnoides.

  2. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    Directory of Open Access Journals (Sweden)

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  3. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill).

    Science.gov (United States)

    Chaudhary, Sakshi; Mishra, Bharat Kumar; Vivek, Thiruvettai; Magadum, Santoshkumar; Yasin, Jeshima Khan

    2016-01-01

    Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic makeup of its germplasm resources. A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details are available in the database. PineElm_SSRdb is an open source database available for non-commercial academic purpose at http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.

  4. A study of the peopling of Greenland using next generation sequencing of complete mitochondrial genomes

    DEFF Research Database (Denmark)

    Lopopolo, Maria; Børsting, Claus; Pereira, Vania

    2016-01-01

    the migration patterns in the Greenlandic population from a female inheritance demographic perspective. Methods We investigated the maternal genetic variation in the Greenlandic population by sequencing the whole mtDNA genome in 127 Greenlandic individuals using the Illumina MiSeq® platform. Results All......Objectives The Greenlandic population history is characterized by a number of migrations of people of various ethnicities. In this work, the analysis of the complete mtDNA genome aimed to contribute to the ongoing debate on the origin of current Greenlanders and, at the same time, to address...... Greenlandic individuals belonged to the Inuit mtDNA lineages A2a, A2b1, and D4b1a2a1. No European haplogroup was found. Discussion The mtDNA lineages seem to support the hypothesis that the Inuit in Greenland are descendants from the Thule migration. The results also reinforce the importance of isolation...

  5. Genetic analysis of the Hungarian draft horse population using partial mitochondrial DNA D-loop sequencing

    Science.gov (United States)

    2018-01-01

    Background The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. Methods To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. Results One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values (Hd = 0.954 ± 0.004; π = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations (Hd = 0.972 ± 0.002; π = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Discussion Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from ‘ancestrally’ different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while. PMID:29404201

  6. Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleocene .

    Science.gov (United States)

    Pereira, Sergio L; Johnson, Kevin P; Clayton, Dale H; Baker, Allan J

    2007-08-01

    Phylogenetic relationships among genera of pigeons and doves (Aves, Columbiformes) have not been fully resolved because of limited sampling of taxa and characters in previous studies. We therefore sequenced multiple nuclear and mitochondrial DNA genes totaling over 9000 bp from 33 of 41 genera plus 8 outgroup taxa, and, together with sequences from 5 other pigeon genera retrieved from GenBank, recovered a strong phylogenetic hypothesis for the Columbiformes. Three major clades were recovered with the combined data set, comprising the basally branching New World pigeons and allies (clade A) that are sister to Neotropical ground doves (clade B), and the Afro-Eurasian and Australasian taxa (clade C). None of these clades supports the monophyly of current families and subfamilies. The extinct, flightless dodo and solitaires (Raphidae) were embedded within pigeons and doves (Columbidae) in clade C, and monophyly of the subfamily Columbinae was refuted because the remaining subfamilies were nested within it. Divergence times estimated using a Bayesian framework suggest that Columbiformes diverged from outgroups such as Apodiformes and Caprimulgiformes in the Cretaceous before the mass extinction that marks the end of this period. Bayesian and maximum likelihood inferences of ancestral areas, accounting for phylogenetic uncertainty and divergence times, respectively, favor an ancient origin of Columbiformes in the Neotropical portion of what was then Gondwana. The radiation of modern genera of Columbiformes started in the Early Eocene to the Middle Miocene, as previously estimated for other avian groups such as ratites, tinamous, galliform birds, penguins, shorebirds, parrots, passerine birds, and toucans. Multiple dispersals of more derived Columbiformes between Australasian and Afro-Eurasian regions are required to explain current distributions.

  7. Analysis of genetic variation and phylogeny of the predatory bug, Pilophorus typicus, in Japan using mitochondrial gene sequences.

    Science.gov (United States)

    Ito, Katsura; Nishikawa, Hiroshi; Shimada, Takuji; Ogawa, Kohei; Minamiya, Yukio; Tomoda, Masafumi; Nakahira, Kengo; Kodama, Rika; Fukuda, Tatsuya; Arakawa, Ryo

    2011-01-01

    Pilophorus typicus (Distant) (Heteroptera: Miridae) is a predatory bug occurring in East, Southeast, and South Asia. Because the active stages of P. typicus prey on various agricultural pest insects and mites, this species is a candidate insect as an indigenous natural enemy for use in biological control programs. However, the mass releasing of introduced natural enemies into agricultural fields may incur the risk of affecting the genetic integrity of species through hybridization with a local population. To clarify the genetic characteristics of the Japanese populations of P. typicus two portions of the mitochondrial DNA, the cytochrome oxidase subunit I (COI) (534 bp) and the cytochrome B (cytB) (217 bp) genes, were sequenced for 64 individuals collected from 55 localities in a wide range of Japan. Totals of 18 and 10 haplotypes were identified for the COI and cytB sequences, respectively (25 haplotypes over regions). Phylogenetic analysis using the maximum likelihood method revealed the existence of two genetically distinct groups in P. typicus in Japan. These groups were distributed in different geographic ranges: one occurred mainly from the Pacific coastal areas of the Kii Peninsula, the Shikoku Island, and the Ryukyu Islands; whereas the other occurred from the northern Kyushu district to the Kanto and Hokuriku districts of mainland Japan. However, both haplotypes were found in a single locality of the southern coast of the Shikoku Island. COI phylogeny incorporating other Pilophorus species revealed that these groups were only recently differentiated. Therefore, use of a certain population of P. typicus across its distribution range should be done with caution because genetic hybridization may occur.

  8. Genetic distance of Malaysian mousedeer based on mitochondrial DNA cytochrome oxidase I (COI) and D-loop region sequences

    Science.gov (United States)

    Bakar, Mohamad-Azam Akmal Abu; Rovie-Ryan, Jeffrine Japning; Ampeng, Ahmad; Yaakop, Salmah; Nor, Shukor Md; Md-Zain, Badrul Munir

    2018-04-01

    Mousedeer is one of the primitive mammals that can be found mainly in Southeast-Asia region. There are two species of mousedeer in Malaysia which are Tragulus kanchil and Tragulus napu. Both species can be distinguish by size, coat coloration, and throat pattern but clear diagnosis still cannot be found. The objective of the study is to show the genetic distance relationship between T. kanchil and T. napu and their population based on mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and D-loop region. There are 42 sample of mousedeer were used in this study collected by PERHILITAN from different locality. Another 29 D-loop sequence were retrieved from Genbank for comparative analysis. All sample were amplified using universal primer and species-specific primer for COI and D-loop genes via PCR process. The amplified sequences were analyzed to determine genetic distance of T. kanchil and T. napu. From the analysis, the average genetic distance between T. kanchil and T. napu based on locus COI and D-loop were 0.145 and 0.128 respectively. The genetic distance between populations of T. kanchil based on locus COI was between 0.003-0.013. For locus D-loop, genetic distance analysis showed distance in relationship between west-coast populations to east-coast population of T. kanchil. COI and D-loop mtDNA region provided a clear picture on the relationship within the mousedeer species. Last but not least, conservation effort toward protecting this species can be done by study the molecular genetics and prevent the extinction of this species.

  9. Complete mitochondrial genome sequences of Korean native horse from Jeju Island: uncovering the spatio-temporal dynamics.

    Science.gov (United States)

    Yoon, Sook Hee; Kim, Jaemin; Shin, Donghyun; Cho, Seoae; Kwak, Woori; Lee, Hak-Kyo; Park, Kyoung-Do; Kim, Heebal

    2017-04-01

    The Korean native horse (Jeju horse) is one of the most important animals in Korean historical, cultural, and economical viewpoints. In the early 1980s, the Jeju horse was close to extinction. The aim of this study is to explore the phylogenomics of Korean native horse focusing on spatio-temporal dynamics. We determined complete mitochondrial genome sequences for the first Korean native (n = 6) and additional Mongolian (n = 2) horses. Those sequences were analyzed together with 143 published ones using Bayesian coalescent approach as well as three different phylogenetic analysis methods, Bayesian inference, maximum likelihood, and neighbor-joining methods. The phylogenomic trees revealed that the Korean native horses had multiple origins and clustered together with some horses from four European and one Middle Eastern breeds. Our phylogenomic analyses also supported that there was no apparent association between breed or geographic location and the evolution of global horses. Time of the most recent common ancestor of the Korean native horse was approximately 13,200-63,200 years, which was much younger than 0.696 My of modern horses. Additionally, our results showed that all global horse lineages including Korean native horse existed prior to their domestication events occurred in about 6000-10,000 years ago. This is the first study on phylogenomics of the Korean native horse focusing on spatio-temporal dynamics. Our findings increase our understanding of the domestication history of the Korean native horses, and could provide useful information for horse conservation projects as well as for horse genomics, emergence, and the geographical distribution.

  10. Complete mitochondrial genome sequences of Brassica rapa (Chinese cabbage and mizuna), and intraspecific differentiation of cytoplasm in B. rapa and Brassica juncea.

    Science.gov (United States)

    Hatono, Saki; Nishimura, Kaori; Murakami, Yoko; Tsujimura, Mai; Yamagishi, Hiroshi

    2017-09-01

    The complete sequence of the mitochondrial genome was determined for two cultivars of Brassica rapa . After determining the sequence of a Chinese cabbage variety, 'Oushou hakusai', the sequence of a mizuna variety, 'Chusei shiroguki sensuji kyomizuna', was mapped against the sequence of Chinese cabbage. The precise sequences where the two varieties demonstrated variation were ascertained by direct sequencing. It was found that the mitochondrial genomes of the two varieties are identical over 219,775 bp, with a single nucleotide polymorphism (SNP) between the genomes. Because B. rapa is the maternal species of an amphidiploid crop species, Brassica juncea , the distribution of the SNP was observed both in B. rapa and B. juncea . While the mizuna type SNP was restricted mainly to cultivars of mizuna (japonica group) in B. rapa , the mizuna type was widely distributed in B. juncea . The finding that the two Brassica species have these SNP types in common suggests that the nucleotide substitution occurred in wild B. rapa before both mitotypes were domesticated. It was further inferred that the interspecific hybridization between B. rapa and B. nigra took place twice and resulted in the two mitotypes of cultivated B. juncea .

  11. Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes

    Directory of Open Access Journals (Sweden)

    Yamada Mari

    2010-03-01

    Full Text Available Abstract Background Plant mitochondrial genomes are known for their complexity, and there is abundant evidence demonstrating that this organelle is important for plant sexual reproduction. Cytoplasmic male sterility (CMS is a phenomenon caused by incompatibility between the nucleus and mitochondria that has been discovered in various plant species. As the exact sequence of steps leading to CMS has not yet been revealed, efforts should be made to elucidate the factors underlying the mechanism of this important trait for crop breeding. Results Two CMS mitochondrial genomes, LD-CMS, derived from Oryza sativa L. ssp. indica (434,735 bp, and CW-CMS, derived from Oryza rufipogon Griff. (559,045 bp, were newly sequenced in this study. Compared to the previously sequenced Nipponbare (Oryza sativa L. ssp. japonica mitochondrial genome, the presence of 54 out of 56 protein-encoding genes (including pseudo-genes, 22 tRNA genes (including pseudo-tRNAs, and three rRNA genes was conserved. Two other genes were not present in the CW-CMS mitochondrial genome, and one of them was present as part of the newly identified chimeric ORF, CW-orf307. At least 12 genomic recombination events were predicted between the LD-CMS mitochondrial genome and Nipponbare, and 15 between the CW-CMS genome and Nipponbare, and novel genetic structures were formed by these genomic rearrangements in the two CMS lines. At least one of the genomic rearrangements was completely unique to each CMS line and not present in 69 rice cultivars or 9 accessions of O. rufipogon. Conclusion Our results demonstrate novel mitochondrial genomic rearrangements that are unique in CMS cytoplasm, and one of the genes that is unique in the CW mitochondrial genome, CW-orf307, appeared to be the candidate most likely responsible for the CW-CMS event. Genomic rearrangements were dynamic in the CMS lines in comparison with those of rice cultivars, suggesting that 'death' and possible 'birth' processes of the

  12. Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D-loop region

    Digital Repository Service at National Institute of Oceanography (India)

    Menezes, M.R.; Kumar, G.; Kunal, S.P.

    Biology (2012) 80, 2198–2212 doi:10.1111/j.1095-8649.2012.03270.x, available online at wileyonlinelibrary.com Population genetic structure of skipjack tuna Katsuwonus pelamis from the Indian coast using sequence analysis of the mitochondrial DNA D...-loop region M. R. Menezes*, G. Kumar and S. P. Kunal Biological Oceanography Division, National Institute of Oceanography (CSIR), Dona Paula, Goa 403 004, India (Received 26 May 2011, Accepted 14 February 2012) Genetic structure of skipjack tuna Katsuwonus...

  13. Three genetic stocks of frigate tuna Auxis thazard thazard (Lacepede, 1800) along the Indian coast revealed from sequence analyses of mitochondrial DNA D-loop region

    Digital Repository Service at National Institute of Oceanography (India)

    GirishKumar; Kunal, S.P.; Menezes, M.R.; Meena, R.M.

    revealed from sequence analyses of mitochondrial DNA D-loop region Name of authors: 1. Girish Kumar* Biological Oceanography Division (BOD) National Institute of Oceanography (NIO) Dona Paula, Goa 403004, India. Email: girishkumar....nio@gmail.com Tel: +919766548060 2. Swaraj Priyaranjan Kunal Biological Oceanography Division (BOD) National Institute of Oceanography (NIO) Dona Paula, Goa 403004, India. Email: swar.mbt@gmail.com 3. Maria Rosalia Menezes Biological Oceanography...

  14. Polymerase chain reaction assay for verifying the labeling of meat and commercial meat products from game birds targeting specific sequences from the mitochondrial D-loop region.

    Science.gov (United States)

    Rojas, M; González, I; Pavón, M A; Pegels, N; Hernández, P E; García, T; Martín, R

    2010-05-01

    A PCR assay was developed for the identification of meats and commercial meat products from quail (Coturnix coturnix), pheasant (Phasianus colchicus), partridge (Alectoris spp.), guinea fowl (Numida meleagris), pigeon (Columba spp.), Eurasian woodcock (Scolopax rusticola), and song thrush (Turdus philomelos) based on oligonucleotide primers targeting specific sequences from the mitochondrial D-loop region. The primers designed generated specific fragments of 96, 100, 104, 106, 147, 127, and 154 bp in length for quail, pheasant, partridge, guinea fowl, pigeon, Eurasian woodcock, and song thrush tissues, respectively. The specificity of each primer pair was tested against DNA from various game and domestic species. In this work, satisfactory amplification was accomplished in the analysis of experimentally pasteurized (72 degrees C for 30 min) and sterilized (121 degrees C for 20 min) meats, as well as in commercial meat products from the target species. The technique was also applied to raw and sterilized muscular binary mixtures, with a detection limit of 0.1% (wt/wt) for each of the targeted species. The proposed PCR assay represents a rapid and straightforward method for the detection of possible mislabeling in game bird meat products.

  15. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    Science.gov (United States)

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  16. Genetic variation and differentiation of Gekko gecko from different populations based on mitochondrial cytochrome b gene sequences and karyotypes.

    Science.gov (United States)

    Qin, Xin-Min; Li, Hui-Min; Zeng, Zhen-Hua; Zeng, De-Long; Guan, Qing-Xin

    2012-06-01

    Black-spotted and red-spotted tokay geckos are distributed in different regions and have significant differences in morphological appearance, but have been regarded as the same species, Gekko gecko, in taxonomy. To determine whether black-spotted and red-spotted tokay geckos are genetically differentiated, we sequenced the entire mitochondrial cytochrome b gene (1147 bp) from 110 individuals of Gekko gecko collected in 11 areas including Guangxi China, Yunnan China, Vietnam, and Laos. In addition, we performed karyotypic analyses of black-spotted tokay geckos from Guangxi China and red-spotted tokay geckos from Laos. These phylogenetic analyses showed that black-spotted and red-spotted tokay geckos are divided into two branches in molecular phylogenetic trees. The average genetic distances are as follows: 0.12-0.47% among six haplotypes in the black-spotted tokay gecko group, 0.12-1.66% among five haplotypes in the red-spotted tokay gecko group, and 8.76-9.18% between the black-spotted and red-spotted tokay geckos, respectively. The karyotypic analyses showed that the karyotype formula is 2n = 38 = 8m + 2sm + 2st + 26t in red-spotted tokay geckos from Laos compared with 2n = 38 = 8m + 2sm + 28t in black-spotted tokay geckos from Guangxi China. The differences in these two kinds of karyotypes were detected on the 15th chromosome. The clear differences in genetic levels between black-spotted and red-spotted tokay geckos suggest a significant level of genetic differentiation between the two.

  17. Genetic diversity of the captive Asian tapir population in Thailand, based on mitochondrial control region sequence data and the comparison of its nucleotide structure with Brazilian tapir.

    Science.gov (United States)

    Muangkram, Yuttamol; Amano, Akira; Wajjwalku, Worawidh; Pinyopummintr, Tanu; Thongtip, Nikorn; Kaolim, Nongnid; Sukmak, Manakorn; Kamolnorranath, Sumate; Siriaroonrat, Boripat; Tipkantha, Wanlaya; Maikaew, Umaporn; Thomas, Warisara; Polsrila, Kanda; Dongsaard, Kwanreaun; Sanannu, Saowaphang; Wattananorrasate, Anuwat

    2017-07-01

    The Asian tapir (Tapirus indicus) has been classified as Endangered on the IUCN Red List of Threatened Species (2008). Genetic diversity data provide important information for the management of captive breeding and conservation of this species. We analyzed mitochondrial control region (CR) sequences from 37 captive Asian tapirs in Thailand. Multiple alignments of the full-length CR sequences sized 1268 bp comprised three domains as described in other mammal species. Analysis of 16 parsimony-informative variable sites revealed 11 haplotypes. Furthermore, the phylogenetic analysis using median-joining network clearly showed three clades correlated with our earlier cytochrome b gene study in this endangered species. The repetitive motif is located between first and second conserved sequence blocks, similar to the Brazilian tapir. The highest polymorphic site was located in the extended termination associated sequences domain. The results could be applied for future genetic management based in captivity and wild that shows stable populations.

  18. Biogeography of the Pistia clade (Araceae): based on chloroplast and mitochondrial DNA sequences and Bayesian divergence time inference.

    Science.gov (United States)

    Renner, Susanne S; Zhang, Li-Bing

    2004-06-01

    Pistia stratiotes (water lettuce) and Lemna (duckweeds) are the only free-floating aquatic Araceae. The geographic origin and phylogenetic placement of these unrelated aroids present long-standing problems because of their highly modified reproductive structures and wide geographical distributions. We sampled chloroplast (trnL-trnF and rpl20-rps12 spacers, trnL intron) and mitochondrial sequences (nad1 b/c intron) for all genera implicated as close relatives of Pistia by morphological, restriction site, and sequencing data, and present a hypothesis about its geographic origin based on the consensus of trees obtained from the combined data, using Bayesian, maximum likelihood, parsimony, and distance analyses. Of the 14 genera closest to Pistia, only Alocasia, Arisaema, and Typhonium are species-rich, and the latter two were studied previously, facilitating the choice of representatives that span the roots of these genera. Results indicate that Pistia and the Seychelles endemic Protarum sechellarum are the basalmost branches in a grade comprising the tribes Colocasieae (Ariopsis, Steudnera, Remusatia, Alocasia, Colocasia), Arisaemateae (Arisaema, Pinellia), and Areae (Arum, Biarum, Dracunculus, Eminium, Helicodiceros, Theriophonum, Typhonium). Unexpectedly, all Areae genera are embedded in Typhonium, which throws new light on the geographic history of Areae. A Bayesian analysis of divergence times that explores the effects of multiple fossil and geological calibration points indicates that the Pistia lineage is 90 to 76 million years (my) old. The oldest fossils of the Pistia clade, though not Pistia itself, are 45-my-old leaves from Germany; the closest outgroup, Peltandreae (comprising a few species in Florida, the Mediterranean, and Madagascar), is known from 60-my-old leaves from Europe, Kazakhstan, North Dakota, and Tennessee. Based on the geographic ranges of close relatives, Pistia likely originated in the Tethys region, with Protarum then surviving on the

  19. Next-generation sequencing and phylogenetic signal of complete mitochondrial genomes for resolving the evolutionary history of leaf-nosed bats (Phyllostomidae).

    Science.gov (United States)

    Botero-Castro, Fidel; Tilak, Marie-ka; Justy, Fabienne; Catzeflis, François; Delsuc, Frédéric; Douzery, Emmanuel J P

    2013-12-01

    Leaf-nosed bats (Phyllostomidae) are one of the most studied groups within the order Chiroptera mainly because of their outstanding species richness and diversity in morphological and ecological traits. Rapid diversification and multiple homoplasies have made the phylogeny of the family difficult to solve using morphological characters. Molecular data have contributed to shed light on the evolutionary history of phyllostomid bats, yet several relationships remain unresolved at the intra-familial level. Complete mitochondrial genomes have proven useful to deal with this kind of situation in other groups of mammals by providing access to a large number of molecular characters. At present, there are only two mitogenomes available for phyllostomid bats hinting at the need for further exploration of the mitogenomic approach in this group. We used both standard Sanger sequencing of PCR products and next-generation sequencing (NGS) of shotgun genomic DNA to obtain new complete mitochondrial genomes from 10 species of phyllostomid bats, including representatives of major subfamilies, plus one outgroup belonging to the closely-related mormoopids. We then evaluated the contribution of mitogenomics to the resolution of the phylogeny of leaf-nosed bats and compared the results to those based on mitochondrial genes and the RAG2 and VWF nuclear makers. Our results demonstrate the advantages of the Illumina NGS approach to efficiently obtain mitogenomes of phyllostomid bats. The phylogenetic signal provided by entire mitogenomes is highly comparable to the one of a concatenation of individual mitochondrial and nuclear markers, and allows increasing both resolution and statistical support for several clades. This enhanced phylogenetic signal is the result of combining markers with heterogeneous evolutionary rates representing a large number of nucleotide sites. Our results illustrate the potential of the NGS mitogenomic approach for resolving the evolutionary history of

  20. Next-generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species in East Australia (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-09-01

    In this study, the complete mitogenome sequence of a cryptic species from East Australia (Mugil sp. H) belonging to the worldwide Mugil cephalus species complex (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,845 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop consists of 1067 bp length, and is located between tRNA-Pro and tRNA-Phe. The overall base composition of East Australia M. cephalus is 28.4% for A, 29.3% for C, 15.4% for G and 26.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  1. Exact association test for small size sequencing data.

    Science.gov (United States)

    Lee, Joowon; Lee, Seungyeoun; Jang, Jin-Young; Park, Taesung

    2018-04-20

    Recent statistical methods for next generation sequencing (NGS) data have been successfully applied to identifying rare genetic variants associated with certain diseases. However, most commonly used methods (e.g., burden tests and variance-component tests) rely on large sample sizes. Notwithstanding, due to its-still high cost, NGS data is generally restricted to small sample sizes, that cannot be analyzed by most existing methods. In this work, we propose a new exact association test for sequencing data that does not require a large sample approximation, which is applicable to both common and rare variants. Our method, based on the Generalized Cochran-Mantel-Haenszel (GCMH) statistic, was applied to NGS datasets from intraductal papillary mucinous neoplasm (IPMN) patients. IPMN is a unique pancreatic cancer subtype that can turn into an invasive and hard-to-treat metastatic disease. Application of our method to IPMN data successfully identified susceptible genes associated with progression of IPMN to pancreatic cancer. Our method is expected to identify disease-associated genetic variants more successfully, and corresponding signal pathways, improving our understanding of specific disease's etiology and prognosis.

  2. iDNA at Sea: Recovery of Whale Shark (Rhincodon typus Mitochondrial DNA Sequences from the Whale Shark Copepod (Pandarus rhincodonicus Confirms Global Population Structure

    Directory of Open Access Journals (Sweden)

    Mark Meekan

    2017-12-01

    Full Text Available The whale shark (Rhincodon typus is an iconic and endangered species with a broad distribution spanning warm-temperate and tropical oceans. Effective conservation management of the species requires an understanding of the degree of genetic connectivity among populations, which is hampered by the need for sampling that involves invasive techniques. Here, the feasibility of minimally-invasive sampling was explored by isolating and sequencing whale shark DNA from a commensal or possibly parasitic copepod, Pandarus rhincodonicus that occurs on the skin of the host. We successfully recovered mitochondrial control region DNA sequences (~1,000 bp of the host via DNA extraction and polymerase chain reaction from whole copepod specimens. DNA sequences obtained from multiple copepods collected from the same shark exhibited 100% sequence similarity, suggesting a persistent association of copepods with individual hosts. Newly-generated mitochondrial haplotypes of whale shark hosts derived from the copepods were included in an analysis of the genetic structure of the global population of whale sharks (644 sequences; 136 haplotypes. Our results supported those of previous studies and suggested limited genetic structuring across most of the species range, but the presence of a genetically unique and potentially isolated population in the Atlantic Ocean. Furthermore, we recovered the mitogenome and nuclear ribosomal genes of a whale shark using a shotgun sequencing approach on copepod tissue. The recovered mitogenome is the third mitogenome reported for the species and the first from the Mozambique population. Our invertebrate DNA (iDNA approach could be used to better understand the population structure of whale sharks, particularly in the Atlantic Ocean, and also for genetic analyses of other elasmobranchs parasitized by pandarid copepods.

  3. Mitochondrial cytochrome b sequence variations and population structure of Siberian chipmunk (Tamias sibiricus) in Northeastern Asia and population substructure in South Korea.

    Science.gov (United States)

    Lee, Mu-Yeong; Lissovsky, Andrey A; Park, Sun-Kyung; Obolenskaya, Ekaterina V; Dokuchaev, Nikolay E; Zhang, Ya-Ping; Yu, Li; Kim, Young-Jun; Voloshina, Inna; Myslenkov, Alexander; Choi, Tae-Young; Min, Mi-Sook; Lee, Hang

    2008-12-31

    Twenty-five chipmunk species occur in the world, of which only the Siberian chipmunk, Tamias sibiricus, inhabits Asia. To investigate mitochondrial cytochrome b sequence variations and population structure of the Siberian chipmunk in northeastern Asia, we examined mitochondrial cytochrome b sequences (1140 bp) from 3 countries. Analyses of 41 individuals from South Korea and 33 individuals from Russia and northeast China resulted in 37 haplotypes and 27 haplotypes, respectively. There were no shared haplotypes between South Korea and Russia--northeast China. Phylogenetic trees and network analysis showed 2 major maternal lineages for haplotypes, referred to as the S and R lineages. Haplotype grouping in each cluster was nearly coincident with its geographic affinity. In particular, 3 distinct groups were found that mostly clustered in the northern, central and southern parts of South Korea. Nucleotide diversity of the S lineage was twice that of lineage R. The divergence between S and R lineages was estimated to be 2.98-0.98 Myr. During the ice age, there may have been at least 2 refuges in South Korea and Russia--northeast China. The sequence variation between the S and R lineages was 11.3% (K2P), which is indicative of specific recognition in rodents. These results suggest that T. sibiricus from South Korea could be considered a separate species. However, additional information, such as details of distribution, nuclear genes data or morphology, is required to strengthen this hypothesis.

  4. Characterisation of peacock (Pavo cristatus) mitochondrial 12S rRNA sequence and its use in differentiation from closely related poultry species.

    Science.gov (United States)

    Saini, M; Das, D K; Dhara, A; Swarup, D; Yadav, M P; Gupta, P K

    2007-04-01

    1. Poaching of peacocks, the national bird of India, is illegal. People kill this beautiful pheasant bird for tail feathers and mix the meat with chicken or turkey. Differentiation of the meat of these species is essential in order to address the ambiguity about the origin of the sample. 2. The present study was carried out to investigate the use of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene for identification of these species. 3. Peacock mitochondrial 12S rRNA partial gene was amplified using universal primers, cloned and characterised. It was found to be 446 nucleotides long. 4. Sequence analysis revealed 86.8 and 84.1% similarity with reported turkey and chicken sequences, respectively. Sequence and phylogenetic analysis showed that the peacock is much closer to the turkey than the chicken. 5. PCR-RFLP of 446 bp amplicon using commonly available restriction enzymes AluI and Sau3AI produced a differential pattern for identifying these poultry species unambiguously.

  5. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  6. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  7. Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm.

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO

  8. The phylogenetic relationships of insectivores with special reference to the lesser hedgehog tenrec as inferred from the complete sequence of their mitochondrial genome.

    Science.gov (United States)

    Nikaido, Masato; Cao, Ying; Okada, Norihiro; Hasegawa, Masami

    2003-02-01

    The complete mitochondrial genome of a lesser hedgehog tenrec Echinops telfairi was determined in this study. It is an endemic African insectivore that is found specifically in Madagascar. The tenrec's back is covered with hedgehog-like spines. Unlike other spiny mammals, such as spiny mice, spiny rats, spiny dormice and porcupines, lesser hedgehog tenrecs look amazingly like true hedgehogs (Erinaceidae). However, they are distinguished morphologically from hedgehogs by the absence of a jugal bone. We determined the complete sequence of the mitochondrial genome of a lesser hedgehog tenrec and analyzed the results phylogenetically to determine the relationships between the tenrec and other insectivores (moles, shrews and hedgehogs), as well as the relationships between the tenrec and endemic African mammals, classified as Afrotheria, that have recently been shown by molecular analysis to be close relatives of the tenrec. Our data confirmed the afrotherian status of the tenrec, and no direct relation was recovered between the tenrec and the hedgehog. Comparing our data with those of others, we found that within-species variations in the mitochondrial DNA of lesser hedgehog tenrecs appear to be the largest recognized to date among mammals, apart from orangutans, which might be interesting from the view point of evolutionary history of tenrecs on Madagascar.

  9. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Science.gov (United States)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  10. A multilocus assessment of nuclear and mitochondrial sequence data elucidates phylogenetic relationships among European spirlins (Alburnoides, Cyprinidae)

    Czech Academy of Sciences Publication Activity Database

    Stierandová, Soňa; Vukic, J.; Vasil'eva, E. D.; Zogaris, S.; Shumka, S.; Halačka, Karel; Vetešník, Lukáš; Švátora, M.; Nowak, M.; Stefanov, T.; Koščo, J.; Mendel, Jan

    2016-01-01

    Roč. 94, January (2016), s. 479-491 ISSN 1055-7903 Grant - others:GA AV ČR(CZ) M200930901 Institutional support: RVO:68081766 Keywords : Alburnoides * Taxonomy * Phylogeography * Mitochondrial and nuclear markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.419, year: 2016

  11. Testing the Predictive Power of Coulomb Stress on Aftershock Sequences

    Science.gov (United States)

    Woessner, J.; Lombardi, A.; Werner, M. J.; Marzocchi, W.

    2009-12-01

    Empirical and statistical models of clustered seismicity are usually strongly stochastic and perceived to be uninformative in their forecasts, since only marginal distributions are used, such as the Omori-Utsu and Gutenberg-Richter laws. In contrast, so-called physics-based aftershock models, based on seismic rate changes calculated from Coulomb stress changes and rate-and-state friction, make more specific predictions: anisotropic stress shadows and multiplicative rate changes. We test the predictive power of models based on Coulomb stress changes against statistical models, including the popular Short Term Earthquake Probabilities and Epidemic-Type Aftershock Sequences models: We score and compare retrospective forecasts on the aftershock sequences of the 1992 Landers, USA, the 1997 Colfiorito, Italy, and the 2008 Selfoss, Iceland, earthquakes. To quantify predictability, we use likelihood-based metrics that test the consistency of the forecasts with the data, including modified and existing tests used in prospective forecast experiments within the Collaboratory for the Study of Earthquake Predictability (CSEP). Our results indicate that a statistical model performs best. Moreover, two Coulomb model classes seem unable to compete: Models based on deterministic Coulomb stress changes calculated from a given fault-slip model, and those based on fixed receiver faults. One model of Coulomb stress changes does perform well and sometimes outperforms the statistical models, but its predictive information is diluted, because of uncertainties included in the fault-slip model. Our results suggest that models based on Coulomb stress changes need to incorporate stochastic features that represent model and data uncertainty.

  12. The complete mitochondrial sequence of the"living fossil" Tricholepidion gertschi: structure, phylogenetic implications, and the description of a novel A/T asymmetrical bias

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, F.; Frati, F.; Carapelli, A.; Dallai, R.; Boore, J.

    2002-06-23

    mitochondrial genome sequences to study the evolution and differentiation of the most basal hexapod groups, including Tricholepidion. Mitochondrial genomics, that is analysis of various features of the mitochondrial genome such as gene order and the analysis of the concatenated sequence of its genes, has proved to be a very powerful tool for the study of ancient phylogenetic relationships (Boore, 2000; Boore and Brown, 1995; Boore and Brown, 1998; Garcia-Machado et al., 1999; Hwang et al., 2001; Nardi et al., 2001), and its application seems to be appropriate for the problem under study ((Nardi et al., 2001), this study). In addition, complete mitochondrial sequences, with the advent of automatic sequencing tools, are accumulating rapidly, but there is a strong bias towards the better known or economically important groups, while only two sequences have been produced for the more basal, and evolutionarily more intriguing, hexapod orders. The complete sequence of the mitochondrial genome of Tricholepidion gertschi is the second among apterygotans, following the collembolan T.bielanensis (Nardi et al., 2001).

  13. Electrocardiography as an early cardiac screening test in children with mitochondrial disease

    Directory of Open Access Journals (Sweden)

    Ran Baik

    2010-05-01

    Full Text Available Purpose : To evaluate myocardial conductivity to understand cardiac involvement in patients with mitochondrial disease. Methods : We performed retrospective study on fifty-seven nonspecific mitochondrial encephalopathy patients with no clinical cardiac manifestations. The patients were diagnosed with mitochondrial respiratory chain complex defects through biochemical enzyme assays of muscle tissue. We performed standard 12-lead electrocardiography (ECG on all patients. Results : ECG abnormalities were observed in 30 patients (52.6%. Prolongation of the QTc interval (&gt;440 ms was seen in 19 patients (33.3%, widening of the corrected QRS interval in 15 (26.3%, and bundle branch block in four (7.0%. Atrioventricular block, premature atrial contraction and premature ventricular contraction were seen in two patients each (3.5% and Wolff-Parkinson-White syndrome in one patient (1.8%. Conclusion : Given this finding, we recommend active screening with ECG in patients with mitochondrial disease even in patients without obvious cardiac manifestation.

  14. Mitochondrial Stress Tests Using Seahorse Respirometry on Intact Dictyostelium discoideum Cells.

    Science.gov (United States)

    Lay, Sui; Sanislav, Oana; Annesley, Sarah J; Fisher, Paul R

    2016-01-01

    Mitochondria not only play a critical and central role in providing metabolic energy to the cell but are also integral to the other cellular processes such as modulation of various signaling pathways. These pathways affect many aspects of cell physiology, including cell movement, growth, division, differentiation, and death. Mitochondrial dysfunction which affects mitochondrial bioenergetics and causes oxidative phosphorylation defects can thus lead to altered cellular physiology and manifest in disease. The assessment of the mitochondrial bioenergetics can thus provide valuable insights into the physiological state, and the alterations to the state of the cells. Here, we describe a method to successfully use the Seahorse XF(e)24 Extracellular Flux Analyzer to assess the mitochondrial respirometry of the cellular slime mold Dictyostelium discoideum.

  15. Pattern of phylogenetic diversification of the Cychrini ground beetles in the world as deduced mainly from sequence comparisons of the mitochondrial genes.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Okamoto, Munehiro; Osawa, Syozo

    2004-02-04

    The phylogenetic position of the tribe Cychrini within the subfamily Carabinae (the family Carabidae) was estimated by comparing the nucleotide sequences of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene and the nuclear 28S ribosomal DNA (rDNA). The phylogenetic trees suggest that the Cychrini would most probably be the oldest line within the Carabinae. Phylogenetic trees were constructed by comparing the mitochondrial cytochrome C oxidase subunit I (COI) gene sequences from 33 species of the Cychrini from various localities that include the whole distribution ranges of the representative species within all the known genera in the world. The trees suggest that the Cychrini members radiated into a number of phylogenetic lineages within a short period, starting about 44 million years ago (MYA). Most of the phylogenetic lineages or sublineages are geographically linked, each consisting of a single or only a few species without scarce morphological differentiation in spite of their long evolutionary histories (silent or near-silent evolution [see Adv. Biophys. 36 (1999) 65; J. Mol. Evol. 53 (2001) 517]). The fact suggests that the geographic isolation per se did not bring about conspicuous morphological differentiation. The phylogenetic lineages of the Cychrini well correspond to the taxonomically defined genera and the subgenera.

  16. Complete mitochondrial DNA sequences of the Victoria tilapia (Oreochromis variabilis) and Redbelly Tilapia (Tilapia zilli): genome characterization and phylogeny analysis.

    Science.gov (United States)

    Kinaro, Zachary Omambia; Xue, Liangyi; Volatiana, Josies Ancella

    2016-07-01

    The Cichlid fishes have played an important role in evolutionary biology, population studies and aquaculture industry with East African species representing a model suited for studying adaptive radiation and speciation for cichlid genome projects in which closely related genomes are fast emerging presenting questions on phenotype-genotype relations. The complete mitochondrial genomes presented here are for two closely related but eco-morphologically distinct Lake Victoria basin cichlids, Oreochromis variabilis, an endangered native species and Tilapia zilli, an invasive species, both of which are important economic fishes in local areas. The complete mitochondrial genomes determined for O. variabilis and T. zilli are 16 626 and 16,619 bp, respectively. Both the mitogenomes contain 13 protein-coding genes, 22 tRNAs, 2 rRNAs and a non-coding control region, which are typical of vertebrate mitogenomes. Phylogenetic analyses of the two species revealed that though both lie within family Cichlidae, they are remotely related.

  17. Analysis of host preference and geographical distribution of Anastrepha suspensa (Diptera: Tephritidae) using phylogenetic analyses of mitochondrial cytochrome oxidase I DNA sequence data.

    Science.gov (United States)

    Boykin, L M; Shatters, R G; Hall, D G; Burns, R E; Franqui, R A

    2006-10-01

    Anastrepha suspensa (Loew) is an economically important pest, restricted to the Greater Antilles and southern Florida. It infests a wide variety of hosts and is of quarantine importance in citrus, a multi-million dollar industry in Florida. The observed recent increase in citrus infested with A. suspensa in Florida has raised questions regarding host-specificity of certain populations and genetic diversity of the pest throughout its geographical distribution. Cytochrome oxidase I (COI) DNA sequence data was used to characterize the genetic diversity of A. suspensa from Florida and Caribbean populations reared from different host plants. Maximum likelihood and Bayesian phylogenetic methods were used to analyse COI data. Sequence variation among mitochondrial COI genes from 107 A. suspensa samples collected throughout Florida and the Caribbean ranged between 0 and 10% and placed all A. suspensa as a monophyletic group that united all A. suspensa in a clade sister to a Central American group of the A. fraterculus paraphyletic species complex. The most likely tree of the COI locus indicated that COI sequence variation was too low to provide resolution at the subspecies level, therefore monophyletic groups based on host-plant use, geography (Florida, Jamaica, Cayman Islands, Puerto Rico or Dominican Republic) or population sampled are not supported. This result indicates that either no population segregation has occurred based on these biological or geographical distinctions and that this is a generalist, polyphagous invasive genotype. Alternatively, if populations are distinct, the segregation event was more recent than can be distinguished based on COI sequence variation.

  18. The complete mitochondrial genome sequence of the world's largest fish, the whale shark (Rhincodon typus), and its comparison with those of related shark species.

    Science.gov (United States)

    Alam, Md Tauqeer; Petit, Robert A; Read, Timothy D; Dove, Alistair D M

    2014-04-10

    The whale shark (Rhincodon typus) is the largest extant species of fish, belonging to the order Orectolobiformes. It is listed as a "vulnerable" species on the International Union for Conservation of Nature (IUCN)'s Red List of Threatened Species, which makes it an important species for conservation efforts. We report here the first complete sequence of the mitochondrial genome (mitogenome) of the whale shark obtained by next-generation sequencing methods. The assembled mitogenome is a 16,875 bp circle, comprising of 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region. We also performed comparative analysis of the whale shark mitogenome to the available mitogenome sequences of 17 other shark species, four from the order Orectolobiformes, five from Lamniformes and eight from Carcharhiniformes. The nucleotide composition, number and arrangement of the genes in whale shark mitogenome are the same as found in the mitogenomes of the other members of the order Orectolobiformes and its closest orders Lamniformes and Carcharhiniformes, although the whale shark mitogenome had a slightly longer control region. The availability of mitogenome sequence of whale shark will aid studies of molecular systematics, biogeography, genetic differentiation, and conservation genetics in this species. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mitochondrial import of human and yeast fumarase in live mammalian cells: Retrograde translocation of the yeast enzyme is mainly caused by its poor targeting sequence

    International Nuclear Information System (INIS)

    Singh, Bhag; Gupta, Radhey S.

    2006-01-01

    Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase

  20. Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA sequences.

    Science.gov (United States)

    Schiffer, Michele; Kennington, W J; Hoffmann, A A; Blacket, M J

    2007-04-01

    Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that

  1. Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases.

    Directory of Open Access Journals (Sweden)

    Tyler Mark Pierson

    2011-10-01

    Full Text Available We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7. Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28, a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2(Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2(Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other "mitochondrial" features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias.

  2. Clinical evaluation and mitochondrial DNA sequence analysis in two Chinese families with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Zhao Lidong; Wang Qiuju; Qian Yaping; Li Ronghua; Cao Juayng; Hart, Laura Christine; Zhai Suoqiang; Han Dongyi; Young Wieyen; Guan Minxin

    2005-01-01

    We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families

  3. Experience of targeted Usher exome sequencing as a clinical test

    Science.gov (United States)

    Besnard, Thomas; García-García, Gema; Baux, David; Vaché, Christel; Faugère, Valérie; Larrieu, Lise; Léonard, Susana; Millan, Jose M; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2014-01-01

    We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service. PMID:24498627

  4. Data from complete mtDNA sequencing of Tunisian centenarians: testing haplogroup association and the "golden mean" to longevity.

    Science.gov (United States)

    Costa, Marta D; Cherni, Lotfi; Fernandes, Verónica; Freitas, Fernando; Ammar El Gaaied, Amel Ben; Pereira, Luísa

    2009-04-01

    Since the mitochondrial theory of ageing was proposed, mitochondrial DNA (mtDNA) diversity has been largely studied in old people, however complete genomes are still rare, being limited to Japanese and UK/US samples. In this work, we evaluated possible longevity associated polymorphisms/haplogroups in an African population, from Tunisia, by performing complete mtDNA sequencing. This population has a mixed Eurasian/sub-Saharan mtDNA gene pool, which could potentially facilitate the evaluation of association for sub-Saharan lineages. Sub-Saharan haplogroups were shown to be significantly less represented in centenarians (9.5%) than in controls (54.5%), but it is not possible to rule out an influence of population structure, which is high in these populations. No recurrent polymorphism were more frequent in centenarians than in controls, and although the Tunisian centenarians presented less synonymous and replacement polymorphisms than controls, this difference was not statistically significant. So far, it does not seem that centenarians have significantly less mildly deleterious substitutions, not only in Tunisia but also in Japanese and UK/US samples, as tested here, not favouring a "golden mean" to longevity.

  5. Evolutionary history of Calosomina ground beetles (Coleoptera, Carabidae, Carabinae) of the world as deduced from sequence comparisons of the mitochondrial ND 5 gene.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Osawa, Syozo

    2005-11-07

    We deduced the phylogenetic relationships of 54 individuals representing 27 species of the Calosomina (Coleoptera, Carabidae) from various regions of the world from the mitochondrial NADH dehydrogenase subunit 5 (ND 5) gene sequences. The results suggest that these Calosomina radiated into 17 lineages within a short time about 30 million years ago (Mya). Most of the lineages are composed of a single genus containing only one or a few species. In some cases, several species classified into the same genus (e.g., Calosoma maximowiczi, Calos. inquisitor and Calos. frigidum) appear separately in independent lineages, while in others a series of species classified into different genera fall into one lineage (e.g., Chrysostigma calidum, Blaptosoma chihuahua, Microcallisthenes wilkesi and Callisthenes spp.). Based on this molecular phylogeny and morphological data, the probable evolutionary history and mode of morphological differentiation of the Calosomina are discussed.

  6. Ancient DNA sequences point to a large loss of mitochondrial genetic diversity in the saiga antelope (Saiga tatarica) since the Pleistocene

    DEFF Research Database (Denmark)

    Campos, Paula; Kristensen, Tommy; Orlando, Ludovic Antoine Alexandre

    2010-01-01

    of the Soviet Union, after which its populations were reduced by over 95%. We have analysed the mitochondrial control region sequence variation of 27 ancient and 38 modern specimens, to assay how the species' genetic diversity has changed since the Pleistocene. Phylogenetic analyses reveal the existence of two...... well-supported, and clearly distinct, clades of saiga. The first, spanning a time range from >49,500 (14) C ybp to the present, comprises all the modern specimens and ancient samples from the Northern Urals, Middle Urals and Northeast Yakutia. The second clade is exclusive to the Northern Urals...... and includes samples dating from between 40,400 to 10,250 (14) C ybp. Current genetic diversity is much lower than that present during the Pleistocene, an observation that data modelling using serial coalescent indicates cannot be explained by genetic drift in a population of constant size. Approximate...

  7. Identification of sequence polymorphisms in the D-Loop region of mitochondrial DNA as a risk factor for colon cancer.

    Science.gov (United States)

    Guo, Zhanjun; Zhao, Shengnan; Fan, Haiyan; Du, Yanming; Zhao, Yufei; Wang, Guiying

    2016-11-01

    The accumulation of single nucleotide polymorphisms (SNPs) in the displacement loop (D-Loop) of mitochondrial DNA (mtDNA) has been identified for their association with cancer risk in a number of cancers. We investigated the colon cancer risk profile of D-Loop SNPs in a case-control study. The frequent alleles of nucleotides 73G/A, 146T/C, 195T/C, 324C/G, 16261C/T, and 16304T/C as well as the minor allele of 309C/C insert were significantly associated with an increased risk for colon cancer. In conclusion, SNPs in the mtDNA D-Loop were found to be valuable markers for colon cancer risk evaluation.

  8. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  9. Interspecies hybridization on DNA resequencing microarrays: efficiency of sequence recovery and accuracy of SNP detection in human, ape, and codfish mitochondrial DNA genomes sequenced on a human-specific MitoChip

    Directory of Open Access Journals (Sweden)

    Carr Steven M

    2007-09-01

    Full Text Available Abstract Background Iterative DNA "resequencing" on oligonucleotide microarrays offers a high-throughput method to measure intraspecific biodiversity, one that is especially suited to SNP-dense gene regions such as vertebrate mitochondrial (mtDNA genomes. However, costs of single-species design and microarray fabrication are prohibitive. A cost-effective, multi-species strategy is to hybridize experimental DNAs from diverse species to a common microarray that is tiled with oligonucleotide sets from multiple, homologous reference genomes. Such a strategy requires that cross-hybridization between the experimental DNAs and reference oligos from the different species not interfere with the accurate recovery of species-specific data. To determine the pattern and limits of such interspecific hybridization, we compared the efficiency of sequence recovery and accuracy of SNP identification by a 15,452-base human-specific microarray challenged with human, chimpanzee, gorilla, and codfish mtDNA genomes. Results In the human genome, 99.67% of the sequence was recovered with 100.0% accuracy. Accuracy of SNP identification declines log-linearly with sequence divergence from the reference, from 0.067 to 0.247 errors per SNP in the chimpanzee and gorilla genomes, respectively. Efficiency of sequence recovery declines with the increase of the number of interspecific SNPs in the 25b interval tiled by the reference oligonucleotides. In the gorilla genome, which differs from the human reference by 10%, and in which 46% of these 25b regions contain 3 or more SNP differences from the reference, only 88% of the sequence is recoverable. In the codfish genome, which differs from the reference by > 30%, less than 4% of the sequence is recoverable, in short islands ≥ 12b that are conserved between primates and fish. Conclusion Experimental DNAs bind inefficiently to homologous reference oligonucleotide sets on a re-sequencing microarray when their sequences differ by

  10. Quality Control Test for Sequence-Phenotype Assignments

    Science.gov (United States)

    Ortiz, Maria Teresa Lara; Rosario, Pablo Benjamín Leon; Luna-Nevarez, Pablo; Gamez, Alba Savin; Martínez-del Campo, Ana; Del Rio, Gabriel

    2015-01-01

    Relating a gene mutation to a phenotype is a common task in different disciplines such as protein biochemistry. In this endeavour, it is common to find false relationships arising from mutations introduced by cells that may be depurated using a phenotypic assay; yet, such phenotypic assays may introduce additional false relationships arising from experimental errors. Here we introduce the use of high-throughput DNA sequencers and statistical analysis aimed to identify incorrect DNA sequence-phenotype assignments and observed that 10–20% of these false assignments are expected in large screenings aimed to identify critical residues for protein function. We further show that this level of incorrect DNA sequence-phenotype assignments may significantly alter our understanding about the structure-function relationship of proteins. We have made available an implementation of our method at http://bis.ifc.unam.mx/en/software/chispas. PMID:25700273

  11. Genetic diversity and relatedness of Fasciola spp. isolates from different hosts and geographic regions revealed by analysis of mitochondrial DNA sequences.

    Science.gov (United States)

    Ai, L; Weng, Y B; Elsheikha, H M; Zhao, G H; Alasaad, S; Chen, J X; Li, J; Li, H L; Wang, C R; Chen, M X; Lin, R Q; Zhu, X Q

    2011-09-27

    The present study examined sequence variability in a portion of the mitochondrial cytochrome c oxidase subunit 1 (pcox1) and NADH dehydrogenase subunits 4 and 5 (pnad4 and pnad5) among 39 isolates of Fasciola spp., from different hosts from China, Niger, France, the United States of America, and Spain; and their phylogenetic relationships were re-constructed. Intra-species sequence variations were 0.0-1.1% for pcox1, 0.0-2.7% for pnad4, and 0.0-3.3% for pnad5 for Fasciola hepatica; 0.0-1.8% for pcox1, 0.0-2.5% for pnad4, and 0.0-4.2% for pnad5 for Fasciola gigantica, and 0.0-0.9% for pcox1, 0.0-0.2% for pnad4, and 0.0-1.1% for pnad5 for the intermediate Fasciola form. Whereas, nucleotide differences were 2.1-2.7% for pcox1, 3.1-3.3% for pnad4, and 4.2-4.8% for pnad5 between F. hepatica and F. gigantica; were 1.3-1.5% for pcox1, 2.1-2.9% for pnad4, 3.1-3.4% for pnad5 between F. hepatica and the intermediate form; and were 0.9-1.1% for pcox1, 1.4-1.8% for pnad4, 2.2-2.4% for pnad5 between F. gigantica and the intermediate form. Phylogenetic analysis based on the combined sequences of pcox1, pnad4 and pnad5 revealed distinct groupings of isolates of F. hepatica, F. gigantica, or the intermediate Fasciola form irrespective of their origin, demonstrating the usefulness of the mtDNA sequences for the delineation of Fasciola species, and reinforcing the genetic evidence for the existence of the intermediate Fasciola form. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Molecular characterization and phylogenetic analysis of Explanatum explanatum in India based on nucleotide sequences of ribosomal ITS2 and the mitochondrial gene nad1.

    Science.gov (United States)

    Hayashi, Kei; Mohanta, Uday K; Ohari, Yuma; Neeraja, Tambireddy; Singh, T Shantikumar; Sugiyama, Hiromu; Itagaki, Tadashi

    2016-12-01

    The aim of this study was to analyze the phylogenetic relationship between Explanatum explanatum populations in India and other countries of the Indian subcontinent. Seventy liver amphistomes collected from four localities in India were identified as E. explanatum based on the nucleotide sequences of ribosomal ITS2. The flukes were then analyzed phylogenetically based on the nucleotide sequence of the mitochondrial gene nad1 in comparison with flukes from Bangladesh and Nepal. In the resulting phylogenetic tree, the nad1 haplotypes from India were divided into four clades, and the flukes showing the haplotypes of clades A and C were predominant in India. The haplotypes of the clades A and C have also been detected in Bangladesh and Nepal, and therefore, it seems they occur commonly throughout the Indian subcontinent. The results of AMOVA suggested that gene flow was likely to occur between E. explanatum populations in these countries. These countries are geographically close and have been historically and culturally connected to each other, and therefore, the movements of host ruminants among these countries might have been involved in the migration of the flukes and their gene flow.

  13. Identification of two invasive Cacopsylla chinensis (Hemiptera: Psyllidae) lineages based on two mitochondrial sequences and restriction fragment length polymorphism of cytochrome oxidase I amplicon.

    Science.gov (United States)

    Lee, Hsien-Chung; Yang, Man-Miao; Yeh, Wen-Bin

    2008-08-01

    The occurrence of pear decline, a disease found in some pear (Pyrus spp.) orchards of Taiwan in recent years, is accompanied by an outbreak of Cacopsylla chinensis (Yang & Li). Two major morphological forms (summer and winter forms) with a variety of intermediate body color and two phylogenetic lineages of this psyllid have been described. The work herein used sequences of mitochondrial cytochrome oxidase I (COI) and 16S rDNA regions to delineate the genetic differentiation of this color-variable insect and to elucidate their relationship. Sequence divergence and phylogenetic analysis have shown that C. chinensis individuals could be divided into two lineages with 3.3 and 2.3% divergence of COI and 16S rDNA, respectively. All specimens from China were found to belong to lineage I. Restriction fragment length polymorphism analysis of COI with restriction enzymes AcuI, AseI, BccI, and FokI on 263 specimens of six populations from Taiwan produced two digestion patterns, which are in agreement with the two lineages described above. Both patterns could be found in each population, with most individuals belonging to lineage I and 5-21% of the individuals belonging to lineage II. Because these two lineages included summer as well as winter morphological forms, the lineage differentiation is apparently not related to morphological characters of this psyllid. Because the invasive records are not in favor of a sympatric differentiation, this psyllid is more likely introduced as different populations from countries in temperate regions.

  14. Morphological and molecular identification of marine copepod Dioithona rigida Giesbrecht, 1896 (Crustacea:Cyclopoida) based on mitochondrial COI gene sequences, from Lakshadweep sea, India.

    Science.gov (United States)

    Radhika, R; Bijoy Nandan, S; Harikrishnan, M

    2017-11-01

    Morphological identification of the marine cyclopoid copepod Dioithona rigida in combination with sequencing a 645 bp fragment of mitochondrial cytochrome oxidase c subunit I (mtCOI) gene, collected from offshore waters of Kavarathi Island, Lakshadweep Sea, is presented in this study. Kiefer in 1935 classified Dioithona as a separate genus from Oithona. The main distinguishing characters observed in the collected samples, such as the presence of well-developed P5 with 2 setae, 5 segmented urosome, 12 segmented antennule, compact dagger-like setae on the inner margin of proximal segment of exopod ramus in P1-P4 and engorged portion of P1-bearing a spine, confirmed their morphology to D. rigida. A comparison of setal formulae of the exopod and endopod of D. rigida with those recorded previously by various authors are also presented here. Maximum likelihood Tree analysis exhibited the clustering of D. rigida sequences into a single clade (accession numbers KP972540.1-KR528588.1), which in contrast was 37-42% divergent from other Oithona species. Further intra-specific divergence values of 0-2% also confirmed the genetic identity of D. rigida species. Paracyclopina nana was selected as an out group displayed a diverged array. The present results distinctly differentiated D. rigida from other Oithona species.

  15. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    Science.gov (United States)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, PTests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  16. Whole-Exome Sequencing Identifies Homozygous AFG3L2 Mutations in a Spastic Ataxia-Neuropathy Syndrome Linked to Mitochondrial m-AAA Proteases

    Science.gov (United States)

    Martinelli, Paola; Cherukuri, Praveen F.; Teer, Jamie K.; Hansen, Nancy F.; Cruz, Pedro; Mullikin for the NISC Comparative Sequencing Program, James C.; Blakesley, Robert W.; Golas, Gretchen; Kwan, Justin; Sandler, Anthony; Fuentes Fajardo, Karin; Markello, Thomas; Tifft, Cynthia; Blackstone, Craig; Rugarli, Elena I.; Langer, Thomas; Gahl, William A.; Toro, Camilo

    2011-01-01

    We report an early onset spastic ataxia-neuropathy syndrome in two brothers of a consanguineous family characterized clinically by lower extremity spasticity, peripheral neuropathy, ptosis, oculomotor apraxia, dystonia, cerebellar atrophy, and progressive myoclonic epilepsy. Whole-exome sequencing identified a homozygous missense mutation (c.1847G>A; p.Y616C) in AFG3L2, encoding a subunit of an m-AAA protease. m-AAA proteases reside in the mitochondrial inner membrane and are responsible for removal of damaged or misfolded proteins and proteolytic activation of essential mitochondrial proteins. AFG3L2 forms either a homo-oligomeric isoenzyme or a hetero-oligomeric complex with paraplegin, a homologous protein mutated in hereditary spastic paraplegia type 7 (SPG7). Heterozygous loss-of-function mutations in AFG3L2 cause autosomal-dominant spinocerebellar ataxia type 28 (SCA28), a disorder whose phenotype is strikingly different from that of our patients. As defined in yeast complementation assays, the AFG3L2Y616C gene product is a hypomorphic variant that exhibited oligomerization defects in yeast as well as in patient fibroblasts. Specifically, the formation of AFG3L2Y616C complexes was impaired, both with itself and to a greater extent with paraplegin. This produced an early-onset clinical syndrome that combines the severe phenotypes of SPG7 and SCA28, in additional to other “mitochondrial” features such as oculomotor apraxia, extrapyramidal dysfunction, and myoclonic epilepsy. These findings expand the phenotype associated with AFG3L2 mutations and suggest that AFG3L2-related disease should be considered in the differential diagnosis of spastic ataxias. PMID:22022284

  17. A comprehensive analysis of three Asiatic black bear mitochondrial genomes (subspecies ussuricus, formosanus and mupinensis), with emphasis on the complete mtDNA sequence of Ursus thibetanus ussuricus (Ursidae).

    Science.gov (United States)

    Hwang, Dae-Sik; Ki, Jang-Seu; Jeong, Dong-Hyuk; Kim, Bo-Hyun; Lee, Bae-Keun; Han, Sang-Hoon; Lee, Jae-Seong

    2008-08-01

    In the present paper, we describe the mitochondrial genome sequence of the Asiatic black bear (Ursus thibetanus ussuricus) with particular emphasis on the control region (CR), and compared with mitochondrial genomes on molecular relationships among the bears. The mitochondrial genome sequence of U. thibetanus ussuricus was 16,700 bp in size with mostly conserved structures (e.g. 13 protein-coding, two rRNA genes, 22 tRNA genes). The CR consisted of several typical conserved domains such as F, E, D, and C boxes, and a conserved sequence block. Nucleotide sequences and the repeated motifs in the CR were different among the bear species, and their copy numbers were also variable according to populations, even within F1 generations of U. thibetanus ussuricus. Comparative analyses showed that the CR D1 region was highly informative for the discrimination of the bear family. These findings suggest that nucleotide sequences of both repeated motifs and CR D1 in the bear family are good markers for species discriminations.

  18. Biogeography of speciation of two sister species of neotropical amazona (Aves, Psittaciformes based on mitochondrial sequence data.

    Directory of Open Access Journals (Sweden)

    Amanda V Rocha

    Full Text Available Coalescent theory provides powerful models for population genetic inference and is now increasingly important in estimates of divergence times and speciation research. We use molecular data and methods based on coalescent theory to investigate whether genetic evidence supports the hypothesis of A. pretrei and A. tucumana as separate species and whether genetic data allow us to assess which allopatric model seems to better explain the diversification process in these taxa. We sampled 13 A. tucumana from two provinces in northern Argentina and 28 A. pretrei from nine localities of Rio Grande do Sul, Brazil. A 491 bp segment of the mitochondrial gene cytochrome c oxidase I was evaluated using the haplotype network and phylogenetic methods. The divergence time and other demographic quantities were estimated using the isolation and migration model based on coalescent theory. The network and phylogenetic reconstructions showed similar results, supporting reciprocal monophyly for these two taxa. The divergence time of lineage separation was estimated to be approximately 1.3 million years ago, which corresponds to the lower Pleistocene. Our results enforce the current taxonomic status for these two Amazon species. They also support that A. pretrei and A. tucumana diverged with little or no gene flow approximately 1.3 million years ago, most likely after the establishment of a small population in the Southern Yungas forest by dispersion of a few founders from the A. pretrei ancestral population. This process may have been favored by habitat corridors formed in hot and humid periods of the Quaternary. Considering that these two species are considered threatened, the results were evaluated for their implications for the conservation of these two species.

  19. Characterization of the Complete Mitochondrial Genome Sequence of the Globose Head Whiptail Cetonurus globiceps (Gadiformes: Macrouridae and Its Phylogenetic Analysis.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Shi

    Full Text Available The particular environmental characteristics of deep water such as its immense scale and high pressure systems, presents technological problems that have prevented research to broaden our knowledge of deep-sea fish. Here, we described the mitogenome sequence of a deep-sea fish, Cetonurus globiceps. The genome is 17,137 bp in length, with a standard set of 22 transfer RNA genes (tRNAs, two ribosomal RNA genes, 13 protein-coding genes, and two typical non-coding control regions. Additionally, a 70 bp tRNA(Thr-tRNA(Pro intergenic spacer is present. The C. globiceps mitogenome exhibited strand-specific asymmetry in nucleotide composition. The AT-skew and GC-skew values in the whole genome of C. globiceps were 0 and -0.2877, respectively, revealing that the H-strand had equal amounts of A and T and that the overall nucleotide composition was C skewed. All of the tRNA genes could be folded into cloverleaf secondary structures, while the secondary structure of tRNA(Ser(AGY lacked a discernible dihydrouridine stem. By comparing this genome sequence with the recognition sites in teleost species, several conserved sequence blocks were identified in the control region. However, the GTGGG-box, the typical characteristic of conserved sequence block E (CSB-E, was absent. Notably, tandem repeats were identified in the 3' portion of the control region. No similar repetitive motifs are present in most of other gadiform species. Phylogenetic analysis based on 12 protein coding genes provided strong support that C. globiceps was the most derived in the clade. Some relationships however, are in contrast with those presented in previous studies. This study enriches our knowledge of mitogenomes of the genus Cetonurus and provides valuable information on the evolution of Macrouridae mtDNA and deep-sea fish.

  20. Insights into Korean red fox (Vulpes vulpes) based on mitochondrial cytochrome b sequence variation in East Asia.

    Science.gov (United States)

    Yu, Jeong-Nam; Han, Sang-Hoon; Kim, Bang-Hwan; Kryukov, Alexey P; Kim, Soonok; Lee, Byoung-Yoon; Kwak, Myounghai

    2012-11-01

    The red fox (Vulpes vulpes) is the most widely distributed terrestrial carnivore in the world, occurring throughout most of North America, Europe, Asia, and North Africa. In South Korea, however, this species has been drastically reduced due to habitat loss and poaching. Consequently, it is classified as an endangered species in Korea. As a first step of a planned red fox restoration project, preserved red fox museum specimens were used to determine the genetic status of red foxes that had previously inhabited South Korea against red foxes from neighboring countries. Total eighty three mtDNA cytochrome b sequences, including 22 newly obtained East Asian red fox sequences and worldwide red fox sequences from NCBI, were clustered into three clades (i.e., I, II, and III) based on haplotype network and neighbor-joining trees. The mean genetic distance between clades was 2.0%. Clade III contained South Korean and other East Asian samples in addition to Eurasian and North Pacific individuals. In clade III, South Korean individuals were separated into two lineages of Eurasian and North Pacific groups, showing unclear phylogeographic structuring and admixture. This suggests that South Korean red fox populations may have been composed of individuals from these two different genetic lineages.

  1. 40 CFR 86.230-11 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... compartment cooling. (1) Fixed speed air cooling of the engine compartment with the compartment cover open... fuel economy testing, alternative engine compartment cooling fans or systems, including those which... test. Additionally, the Administrator may conduct certification, fuel economy and in-use testing using...

  2. 40 CFR 92.124 - Test sequence; general requirements.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92...) For the testing of locomotives and engines, the atmospheric pressure shall be between 31.0 inches Hg... test conditions. (c) No control of humidity is required for ambient air, engine intake air or dilution...

  3. The 6-min mastication test: a unique test to assess endurance of continuous chewing, normal values, reliability, reproducibility and usability in patients with mitochondrial disease.

    Science.gov (United States)

    van den Engel-Hoek, L; Knuijt, S; van Gerven, M H J C; Lagarde, M L J; Groothuis, J T; de Groot, I J M; Janssen, M C H

    2017-03-01

    In patients with mitochondrial disease, fatigue and muscle problems are the most common complaints. They also experience these complaints during mastication. To measure endurance of continuous mastication in patients with mitochondrial diseases, the 6-min mastication test (6MMT) was developed. This study included the collection of normal data for the 6MMT in a healthy population (children and adults). During 6 min of continuous mastication on a chew tube chewing cycles per minute, total amount of chewing cycles and the difference between minute 1 (M 1 ) and minute 6 (M 2 ) were collected in 271 healthy participants (5-80 years old). These results were compared with those of nine paediatric and 25 adult patients with a mitochondrial disease. Visual analogue scale (VAS) scores were collected directly after the test and after 5 min. A qualitative rating was made on masticatory movements. The reproducibility of the 6MMT in the healthy population with an interval of approximately 2 weeks was good. The inter-rater reliability for the observations was excellent. The patient group demonstrated lower total amount of chewing cycles or had greater differences between M 1 and M 6 . The 6MMT is a reliable and objective test to assess endurance of continuous chewing. It demonstrates the ability of healthy children and adults to chew during 6 min with a highly stable frequency of mastication movements. The test may give an explanation for the masticatory problems in patient groups, who are complaining of pain and fatigue during mastication. © 2017 John Wiley & Sons Ltd.

  4. 40 CFR 86.230-94 - Test sequence: general requirements.

    Science.gov (United States)

    2010-07-01

    ... compartment cooling. (1) Fixed speed air cooling of the engine compartment with the compartment cover open... fuel economy testing, alternative engine compartment cooling fans or systems, including those which... Administrator may conduct certification, fuel economy and in-use testing using the additional cooling set-up...

  5. Application of Next Generation Sequencing on Genetic Testing

    DEFF Research Database (Denmark)

    Li, Jian

    The discovery of genetic factors behind increasing number of human diseases and the growth of education of genetic knowledge to the public make demands for genetic testing increase rapidly. However, traditional genetic testing methods cannot meet all kinds of the requirements. Next generation seq...

  6. A Window Into Clinical Next-Generation Sequencing-Based Oncology Testing Practices.

    Science.gov (United States)

    Nagarajan, Rakesh; Bartley, Angela N; Bridge, Julia A; Jennings, Lawrence J; Kamel-Reid, Suzanne; Kim, Annette; Lazar, Alexander J; Lindeman, Neal I; Moncur, Joel; Rai, Alex J; Routbort, Mark J; Vasalos, Patricia; Merker, Jason D

    2017-12-01

    - Detection of acquired variants in cancer is a paradigm of precision medicine, yet little has been reported about clinical laboratory practices across a broad range of laboratories. - To use College of American Pathologists proficiency testing survey results to report on the results from surveys on next-generation sequencing-based oncology testing practices. - College of American Pathologists proficiency testing survey results from more than 250 laboratories currently performing molecular oncology testing were used to determine laboratory trends in next-generation sequencing-based oncology testing. - These presented data provide key information about the number of laboratories that currently offer or are planning to offer next-generation sequencing-based oncology testing. Furthermore, we present data from 60 laboratories performing next-generation sequencing-based oncology testing regarding specimen requirements and assay characteristics. The findings indicate that most laboratories are performing tumor-only targeted sequencing to detect single-nucleotide variants and small insertions and deletions, using desktop sequencers and predesigned commercial kits. Despite these trends, a diversity of approaches to testing exists. - This information should be useful to further inform a variety of topics, including national discussions involving clinical laboratory quality systems, regulation and oversight of next-generation sequencing-based oncology testing, and precision oncology efforts in a data-driven manner.

  7. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1.

    Science.gov (United States)

    Esser, Karlheinz; Tursun, Baris; Ingenhoven, Martin; Michaelis, Georg; Pratje, Elke

    2002-11-08

    The yeast protein cytochrome c peroxidase (Ccp1) is nuclearly encoded and imported into the mitochondrial intermembrane space, where it is involved in degradation of reactive oxygen species. It is known, that Ccp1 is synthesised as a precursor with a N-terminal pre-sequence, that is proteolytically removed during transport of the protein. Here we present evidence for a new processing pathway, involving novel signal peptidase activities. The mAAA protease subunits Yta10 (Afg3) and Yta12 (Rca1) were identified both to be essential for the first processing step. In addition, the Pcp1 (Ygr101w) gene product was found to be required for the second processing step, yielding the mature Ccp1 protein. The newly identified Pcp1 protein belongs to the rhomboid-GlpG superfamily of putative intramembrane peptidases. Inactivation of the protease motifs in mAAA and Pcp1 blocks the respective steps of proteolysis. A model of coupled Ccp1 transport and N-terminal processing by the mAAA complex and Pcp1 is discussed. Similar processing mechanisms may exist, because the mAAA subunits and the newly identified Pcp1 protein belong to ubiquitous protein families.

  8. Molecular phylogeny of mitochondrial cytochrome b and 12S rRNA sequences in the Felidae: ocelot and domestic cat lineages.

    Science.gov (United States)

    Masuda, R; Lopez, J V; Slattery, J P; Yuhki, N; O'Brien, S J

    1996-12-01

    Molecular phylogeny of the cat family Felidae is derived using two mitochondrial genes, cytochrome b and 12S rRNA. Phylogenetic methods of weighted maximum parsimony and minimum evolution estimated by neighbor-joining are employed to reconstruct topologies among 20 extant felid species. Sequence analyses of 363 bp of cytochrome b and 376 bp of the 12S rRNA genes yielded average pair-wise similarity values between felids ranging from 94 to 99% and from 85 to 99%, respectively. Phylogenetic reconstruction supports more recent, intralineage associations but fails to completely resolve interlineage relationships. Both genes produce a monophyletic group of Felis species but vary in the placement of the pallas cat. The ocelot lineage represents an early divergence within the Felidae, with strong associations between ocelot and margay, Geoffroy's cat and kodkod, and pampas cat and tigrina. Implications of the relative recency of felid evolution, presence of ancestral polymorphisms, and influence of outgroups in placement of the topological root are discussed.

  9. ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly

    Directory of Open Access Journals (Sweden)

    Spang Rainer

    2009-12-01

    Full Text Available Abstract Background The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis. Results We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/. Conclusions ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.

  10. Mode of morphological differentiation in the Latitarsi-ground beetles (Coleoptera, Carabidae) of the world inferred from a phylogenetic tree of mitochondrial ND5 gene sequences.

    Science.gov (United States)

    Su, Zhi-Hui; Imura, Yûki; Zhou, Hong-Zhang; Okamoto, Munehiro; Osawa, Syozo

    2003-02-01

    The Latitarsi is one large division of the subtribe Carabina (subfamily Carabinae, family Carabidae), and has been considered as a discrete morphological group consisting of 17 genera. The phylogenetic relationships and evolutionary pattern of the Latitarsi ground beetles have been investigated by analyzing mitochondrial NADH dehydrogenase subunit 5 (ND5) gene sequences. The phylogenetic tree suggests that the Latitarsi members do not form a single cluster, i.e., not monophyletic and at least 16 lineages belonging to the so-called Latitarsi emerged at about the same time of the Carabina radiation together with the members of other divisions. This suggests that these lineages (A, B, C, H, L, N, O, P, Q, R, S, T, U, V, W and X in Fig. 2a) may be treated each as a phylogenetically distinct division equivalent to other divisions. The group with bootstrap value of more than 80 percent has been considered as a single lineage (division) with two exceptions, V and X. The independency of each lineage has been assumed by the traditional morphology as well as a single clustering on the trees constructed by independent methods, unchanged topology by replacement of outgroups, etc. Generally speaking, the members in a single lineage are geographically linked. Many phylogenetic lineages are composed of a single or only a few species without conspicuous morphological differentiation. In contrast to such a "silent morphological evolution", a remarkable morphological differentiation occasionally took place in several lineages.

  11. Pattern of morphological diversification in the Leptocarabus ground beetles (Coleoptera: Carabidae) as deduced from mitochondrial ND5 gene and nuclear 28S rDNA sequences.

    Science.gov (United States)

    Kim, C G; Zhou, H Z; Imura, Y; Tominaga, O; Su, Z H; Osawa, S

    2000-01-01

    Most of the mitochondrial NADH dehydrogenase subunit 5 (ND5) gene and a part of nuclear 28S ribosomal RNA gene were sequenced for 14 species of ground beetles belonging to the genus Leptocarabus. In both the ND5 and the 28S rDNA phylogenetic trees of Leptocarabus, three major lineages were recognized: (1) L. marcilhaci/L. yokoael/Leptocarabus sp. from China, (2) L. koreanus/L. truncaticollis/L. seishinensis/L. semiopacus/L. canaliculatus/L. kurilensis from the northern Eurasian continent including Korea and Hokkaido, Japan, and (3) all of the Japanese species except L. kurilensis. Clustering of the species in the trees is largely linked to their geographic distribution and does not correlate with morphological characters. The species belonging to different species groups are clustered in the same lineages, and those in the same species group are scattered among the different lineages. One of the possible interpretations of the present results would be that morphological transformations independently took place in the different lineages, sometimes with accompanying parallel morphological evolution, resulting in the occurrence of the morphological species belonging to the same species group (= type) in the different lineages.

  12. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae), forest malaria vectors, in northern Vietnam.

    Science.gov (United States)

    Takano, Kohei Takenaka; Nguyen, Ngoc Thi Hong; Nguyen, Binh Thi Huong; Sunahara, Toshihiko; Yasunami, Michio; Nguyen, Manh Duc; Takagi, Masahiro

    2010-04-30

    During the last decade, Southeast Asian countries have been very successful in reducing the burden of malaria. However, malaria remains endemic in these countries, especially in remote and forested areas. The Leucosphyrus group of the genus Anopheles harbors the most important malaria vectors in forested areas of Southeast Asia. In Vietnam, previous molecular studies have resulted in the identification of only Anopheles dirus sensu stricto (previously known as An. dirus species A) among the Leucosphyrus group members. However, Vietnamese entomologists have recognized that mosquitoes belonging to the Leucosphyrus group in northern Vietnam exhibit morphological characteristics similar to those of Anopheles takasagoensis, which has been reported only from Taiwan. Here, we aimed to confirm the genetic and morphological identities of the members of the Leucosphyrus group in Vietnam. In the molecular phylogenetic trees reconstructed using partial COI and ND6 mitochondrial gene sequences, samples collected from southern and central Vietnam clustered together with GenBank sequences of An. dirus that were obtained from Thailand. However, samples from northern Vietnam formed a distinct clade separated from both An. dirus and An. takasagoensis by other valid species. The results suggest the existence of a cryptic species in northern Vietnam that is morphologically similar to, but phylogenetically distant from both An. dirus and An. takasagoensis. We have tentatively designated this possible cryptic species as Anopheles aff. takasagoensis for convenience, until a valid name is assigned. However, it is difficult to distinguish the species solely on the basis of morphological characteristics. Further studies on such as karyotypes and polytene chromosome banding patterns are necessary to confirm whether An. aff. takasagoensis is a valid species. Moreover, studies on (1) the geographic distribution, which is potentially spreading along the Vietnam, China, Laos, and Myanmar borders

  13. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  14. Loss of genetic variability in a hatchery strain of Senegalese sole (Solea senegalensis revealed by sequence data of the mitochondrial DNA control region and microsatellite markers

    Directory of Open Access Journals (Sweden)

    Pablo Sánchez

    2012-06-01

    Full Text Available Comparisons of the levels of genetic variation within and between a hatchery F1 (FAR, n=116 of Senegalese sole, Solea senegalensis, and its wild donor population (ATL, n = 26, both native to the SW Atlantic coast of the Iberian peninsula, as well as between the wild donor population and a wild western Mediterranean sample (MED, n=18, were carried out by characterizing 412 base pairs of the nucleotide sequence of the mitochondrial DNA control region I, and six polymorphic microsatellite loci. FAR showed a substantial loss of genetic variability (haplotypic diversity, h=0.49±0.066; nucleotide diversity, π=0.006±0.004; private allelic richness, pAg=0.28 to its donor population ATL (h=0.69±0.114; π=0.009±0.006; pAg=1.21. Pairwise FST values of microsatellite data were highly significant (P < 0.0001 between FAR and ATL (0.053 and FAR and MED (0.055. The comparison of wild samples revealed higher values of genetic variability in MED than in ATL, but only with mtDNA CR-I sequence data (h=0.948±0.033; π=0.030±0.016. However, pairwise ΦST and FST values between ATL and MED were highly significant (P < 0.0001 with mtDNA CR-I (0.228 and with microsatellite data (0.095, respectively. While loss of genetic variability in FAR could be associated with the sampling error when the broodstock was established, the results of parental and sibship inference suggest that most of these losses can be attributed to a high variance in reproductive success among members of the broodstock, particularly among females.

  15. Testing optimization sequence for the beam port facility of PSBR

    International Nuclear Information System (INIS)

    Bekar, K.B.; Azmy, Y.Y.; Unlu, K.

    2005-01-01

    We present preliminary testing results of the modular code package prepared for the size and shape optimization of the beam tube device of the beam port facility at the Penn State Breazeale Reactor (PSBR). In the test cases, using the Min-max algorithm as an optimizer and multidimensional, neutral particle transport code TORT as a transport solver in the physics calculation, we optimize the shape of the D 2 O moderator of the beam tube device. We illustrate the modular nature of the optimization package, validation tests of the physics model, and preliminary optimization calculation via the whole code package. Results obtained so far indicate the drum-shaped D 2 O moderator tank is over-designed in size and does not possess the almost hemi-spherical optimal shape computed by our new package. (authors)

  16. Variation in ribosomal and mitochondrial DNA sequences demonstrates the existence of intraspecific groups in Paramecium multimicronucleatum (Ciliophora, Oligohymenophorea).

    Science.gov (United States)

    Tarcz, Sebastian; Potekhin, Alexey; Rautian, Maria; Przyboś, Ewa

    2012-05-01

    This is the first phylogenetic study of the intraspecific variability within Paramecium multimicronucleatum with the application of two-loci analysis (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA) carried out on numerous strains originated from different continents. The species has been shown to have a complex structure of several sibling species within taxonomic species. Our analysis revealed the existence of 10 haplotypes for the rDNA fragment and 15 haplotypes for the COI fragment in the studied material. The mean distance for all of the studied P. multimicronucleatum sequence pairs was p=0.025/0.082 (rDNA/COI). Despite the greater variation of the COI fragment, the COI-derived tree topology is similar to the tree topology constructed on the basis of the rDNA fragment. P. multimicronucleatum strains are divided into three main clades. The tree based on COI fragment analysis presents a greater resolution of the studied P. multimicronucleatum strains. Our results indicate that the strains of P. multimicronucleatum that appear in different clades on the trees could belong to different syngens. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Return of the mitochondrial DNA : Case study of mitochondrial genome evolution in the genus Fusarium

    NARCIS (Netherlands)

    Brankovics, Balázs

    2018-01-01

    Mitochondrial DNA played a prominent role in the fields of population genetics, systematics and evolutionary biology, due to its favorable characteristics, such as, uniparental inheritance, fast evolution and easy accessibility. However, the mitochondrial sequences have been mostly neglected in

  18. Using mitochondrial and nuclear sequence data for disentangling population structure in complex pest species: a case study with Dermanyssus gallinae.

    Directory of Open Access Journals (Sweden)

    Lise Roy

    Full Text Available Among global changes induced by human activities, association of breakdown of geographical barriers and impoverishered biodiversity of agroecosystems may have a strong evolutionary impact on pest species. As a consequence of trade networks' expansion, secondary contacts between incipient species, if hybrid incompatibility is not yet reached, may result in hybrid swarms, even more when empty niches are available as usual in crop fields and farms. By providing important sources of genetic novelty for organisms to adapt in changing environments, hybridization may be strongly involved in the emergence of invasive populations. Because national and international trade networks offered multiple hybridization opportunities during the previous and current centuries, population structure of many pest species is expected to be the most intricate and its inference often blurred when using fast-evolving markers. Here we show that mito-nuclear sequence datasets may be the most helpful in disentangling successive layers of admixture in the composition of pest populations. As a model we used D. gallinae s. l., a mesostigmatid mite complex of two species primarily parasitizing birds, namely D. gallinae L1 and D. gallinae s. str. The latter is a pest species, considered invading layer farms in Brazil. The structure of the pest as represented by isolates from both wild and domestic birds, from European (with a focus on France, Australian and Brazilian farms, revealed past hybridization events and very recent contact between deeply divergent lineages. The role of wild birds in the dissemination of mites appears to be null in European and Australian farms, but not in Brazilian ones. In French farms, some recent secondary contact is obviously consecutive to trade flows. Scenarios of populations' history were established, showing five different combinations of more or less dramatic bottlenecks and founder events, nearly interspecific hybridizations and recent

  19. Sequence and Secondary Structure of the Mitochondrial Small-Subunit rRNA V4, V6, and V9 Domains Reveal Highly Species-Specific Variations within the Genus Agrocybe

    OpenAIRE

    Gonzalez, Patrice; Labarère, Jacques

    1998-01-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same specie...

  20. Next Generation sequencing of the Trichinella murrelli mitochondrial genome allows comprehensive comparison of its divergence from the principal agent of human trichinellosis, Trichinella spiralis

    Science.gov (United States)

    The mitochondrial genome’s non-recombinant mode of inheritance and relatively rapid rate of evolution has promoted its use as a marker for studying the biogeographic history and evolutionary interrelationships among many metazoan species. A modest portion of the mitochondrial genome has been define...

  1. Seismically induced accident sequence analysis of the advanced test reactor

    International Nuclear Information System (INIS)

    Khericha, S.T.; Henry, D.M.; Ravindra, M.K.; Hashimoto, P.S.; Griffin, M.J.; Tong, W.H.; Nafday, A.M.

    1991-01-01

    A seismic probabilistic risk assessment (PRA) was performed for the Department of Energy (DOE) Advanced Test Reactor (ATR) as part of the external events analysis. The risk from seismic events to the fuel in the core and in the fuel storage canal was evaluated. The key elements of this paper are the integration of seismically induced internal flood and internal fire, and the modeling of human error rates as a function of the magnitude of earthquake. The systems analysis was performed by EG ampersand G Idaho, Inc. and the fragility analysis and quantification were performed by EQE International, Inc. (EQE)

  2. Mitochondrial mutations drive prostate cancer aggression

    DEFF Research Database (Denmark)

    Hopkins, Julia F.; Sabelnykova, Veronica Y.; Weischenfeldt, Joachim

    2017-01-01

    Nuclear mutations are well known to drive tumor incidence, aggression and response to therapy. By contrast, the frequency and roles of mutations in the maternally inherited mitochondrial genome are poorly understood. Here we sequence the mitochondrial genomes of 384 localized prostate cancer...... in prostate cancer, and suggest interplay between nuclear and mitochondrial mutational profiles in prostate cancer....

  3. Optimized Environmental Test Sequences to Ensure the Sustainability and Reliability of Marine Weapons

    Directory of Open Access Journals (Sweden)

    Jung Ho Yang

    2014-11-01

    Full Text Available In recent years, there has been an increase in the types of marine weapons used in response to diverse hostile threats. However, because marine weapons are only tested under a single set of environmental conditions, failures due to different environmental stresses have been difficult to detect. Hence, this study proposes an environmental test sequence for multi-environment testing. The environmental test sequences for electrical units described in the international standard IEC 60068-1, and for military supply described in the United States national standard MIL-STD-810G were investigated to propose guidelines for the appropriate test sequences. This study demonstrated the need for tests in multiple environments by investigating marine weapon accidents, and evaluated which environmental stresses and test items have the largest impacts on marine weapons using a two-phase quality function deployment (QFD analysis of operational scenarios, environmental stresses, and environmental test items. Integer programming was used to determine the most influential test items and the shortest environmental test time, allowing us to propose optimal test procedures. Based on our analysis, we developed optimal environmental test sequences that could be selected by a test designer.

  4. Mitochondrial genome sequencing and development of genetic markers for the detection of DNA of invasive bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix in environmental water samples from the United States.

    Directory of Open Access Journals (Sweden)

    Heather L Farrington

    Full Text Available Invasive Asian bighead and silver carp (Hypophthalmichthys nobilis and H. molitrix pose a substantial threat to North American aquatic ecosystems. Recently, environmental DNA (eDNA, genetic material shed by organisms into their environment that can be detected by non-invasive sampling strategies and genetic assays, has gained recognition as a tool for tracking the invasion front of these species toward the Great Lakes. The goal of this study was to develop new species-specific conventional PCR (cPCR and quantitative (qPCR markers for detection of these species in North American surface waters. We first generated complete mitochondrial genome sequences from 33 bighead and 29 silver carp individuals collected throughout their introduced range. These sequences were aligned with those from other common and closely related fish species from the Illinois River watershed to identify and design new species-specific markers for the detection of bighead and silver carp DNA in environmental water samples. We then tested these genetic markers in the laboratory for species-specificity and sensitivity. Newly developed markers performed well in field trials, did not have any false positive detections, and many markers had much higher detection rates and sensitivity compared to the markers currently used in eDNA surveillance programs. We also explored the use of multiple genetic markers to determine whether it would improve detection rates, results of which showed that using multiple highly sensitive markers should maximize detection rates in environmental samples. The new markers developed in this study greatly expand the number of species-specific genetic markers available to track the invasion front of bighead and silver carp and will improve the resolution of these assays. Additionally, the use of the qPCR markers developed in this study may reduce sample processing time and cost of eDNA monitoring for these species.

  5. Partial mitochondrial DNA sequences suggest the existence of a cryptic species within the Leucosphyrus group of the genus Anopheles (Diptera: Culicidae, forest malaria vectors, in northern Vietnam

    Directory of Open Access Journals (Sweden)

    Yasunami Michio

    2010-04-01

    Full Text Available Abstract Background During the last decade, Southeast Asian countries have been very successful in reducing the burden of malaria. However, malaria remains endemic in these countries, especially in remote and forested areas. The Leucosphyrus group of the genus Anopheles harbors the most important malaria vectors in forested areas of Southeast Asia. In Vietnam, previous molecular studies have resulted in the identification of only Anopheles dirus sensu stricto (previously known as An. dirus species A among the Leucosphyrus group members. However, Vietnamese entomologists have recognized that mosquitoes belonging to the Leucosphyrus group in northern Vietnam exhibit morphological characteristics similar to those of Anopheles takasagoensis, which has been reported only from Taiwan. Here, we aimed to confirm the genetic and morphological identities of the members of the Leucosphyrus group in Vietnam. Results In the molecular phylogenetic trees reconstructed using partial COI and ND6 mitochondrial gene sequences, samples collected from southern and central Vietnam clustered together with GenBank sequences of An. dirus that were obtained from Thailand. However, samples from northern Vietnam formed a distinct clade separated from both An. dirus and An. takasagoensis by other valid species. Conclusions The results suggest the existence of a cryptic species in northern Vietnam that is morphologically similar to, but phylogenetically distant from both An. dirus and An. takasagoensis. We have tentatively designated this possible cryptic species as Anopheles aff. takasagoensis for convenience, until a valid name is assigned. However, it is difficult to distinguish the species solely on the basis of morphological characteristics. Further studies on such as karyotypes and polytene chromosome banding patterns are necessary to confirm whether An. aff. takasagoensis is a valid species. Moreover, studies on (1 the geographic distribution, which is potentially

  6. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  7. Mitochondrial oxodicarboxylate carrier deficiency is associated with mitochondrial DNA depletion and spinal muscular atrophy-like disease.

    Science.gov (United States)

    Boczonadi, Veronika; King, Martin S; Smith, Anthony C; Olahova, Monika; Bansagi, Boglarka; Roos, Andreas; Eyassu, Filmon; Borchers, Christoph; Ramesh, Venkateswaran; Lochmüller, Hanns; Polvikoski, Tuomo; Whittaker, Roger G; Pyle, Angela; Griffin, Helen; Taylor, Robert W; Chinnery, Patrick F; Robinson, Alan J; Kunji, Edmund R S; Horvath, Rita

    2018-03-08

    PurposeTo understand the role of the mitochondrial oxodicarboxylate carrier (SLC25A21) in the development of spinal muscular atrophy-like disease.MethodsWe identified a novel pathogenic variant in a patient by whole-exome sequencing. The pathogenicity of the mutation was studied by transport assays, computer modeling, followed by targeted metabolic testing and in vitro studies in human fibroblasts and neurons.ResultsThe patient carries a homozygous pathogenic variant c.695A>G; p.(Lys232Arg) in the SLC25A21 gene, encoding the mitochondrial oxodicarboxylate carrier, and developed spinal muscular atrophy and mitochondrial myopathy. Transport assays show that the mutation renders SLC25A21 dysfunctional and 2-oxoadipate cannot be imported into the mitochondrial matrix. Computer models of central metabolism predicted that impaired transport of oxodicarboxylate disrupts the pathways of lysine and tryptophan degradation, and causes accumulation of 2-oxoadipate, pipecolic acid, and quinolinic acid, which was confirmed in the patient's urine by targeted metabolomics. Exposure to 2-oxoadipate and quinolinic acid decreased the level of mitochondrial complexes in neuronal cells (SH-SY5Y) and induced apoptosis.ConclusionMitochondrial oxodicarboxylate carrier deficiency leads to mitochondrial dysfunction and the accumulation of oxoadipate and quinolinic acid, which in turn cause toxicity in spinal motor neurons leading to spinal muscular atrophy-like disease.GENETICS in MEDICINE advance online publication, 8 March 2018; doi:10.1038/gim.2017.251.

  8. A likelihood ratio test for species membership based on DNA sequence data

    DEFF Research Database (Denmark)

    Matz, Mikhail V.; Nielsen, Rasmus

    2005-01-01

    DNA barcoding as an approach for species identification is rapidly increasing in popularity. However, it remains unclear which statistical procedures should accompany the technique to provide a measure of uncertainty. Here we describe a likelihood ratio test which can be used to test if a sampled...... sequence is a member of an a priori specified species. We investigate the performance of the test using coalescence simulations, as well as using the real data from butterflies and frogs representing two kinds of challenge for DNA barcoding: extremely low and extremely high levels of sequence variability....

  9. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  10. Problem-Based Test: Replication of Mitochondrial DNA during the Cell Cycle

    Science.gov (United States)

    Setalo, Gyorgy, Jr.

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids,…

  11. Keragaman Spesies Ikan Tuna di Pasar Ikan Kedonganan Bali dengan Analisis Sekuen Kontrol Daerah Mitokondria DNA (SPECIES DIVERSITY OF TUNA FISH USING MITOCHONDRIAL DNA CONTROL REGION SEQUENCE ANALYSIS AT KEDONGANAN FISH MARKET

    Directory of Open Access Journals (Sweden)

    Daud Steven Triyomi Hariyanto

    2015-10-01

    Full Text Available Tuna is an export commodity which has very high economic value. However, some tuna speciesare threatened with extinction. The purpose of this study was to identify the tuna species that aresold in Kedonganan Fish Market. The research method was polymerase chain reaction technique(PCR using the marker sequence mitochondrial DNA control region. Samples were obtained fromthe Fish Market tuna Kedonganan, Kuta, Badung, Bali. The total number of samples are 28specimens. Sequence from each sample was obtained through sequencing techniques. Sequencesobtained were run in BLAST (Basic Local Alignment Search Tool and subsequently analyzed withMEGA 5 for species confirmation. Three species of tuna that are identified in the Kedonganan FishMarket is: Thunnus albacares, T. obesus, and Katsuwonus pelamis. All three species have highgenetic variation HD = 1. This study needed to be continued with more number of samples todetermine the species of tuna sold in Kedonganan Fish Market.

  12. Parallel gigantism and complex colonization patterns in the Cape Verde scincid lizards Mabuya and Macroscincus (Reptilia: Scincidae) revealed by mitochondrial DNA sequences.

    Science.gov (United States)

    Carranza, S; Arnold, E N; Mateo, J A; López-Jurado, L F

    2001-08-07

    The scincid lizards of the Cape Verde islands comprise the extinct endemic giant Macroscincus coctei and at least five species of Mabuya, one of which, Mabuya vaillanti, also had populations with large body size. Phylogenetic analysis based on DNA sequences derived from the mitochondrial cytochrome b, cytochrome oxidase I and 12S rRNA genes (711, 498 and 378 base pairs (bp), respectively) corroborates morphological evidence that these species constitute a clade and that Macroscincus is unrelated to very large skinks in other areas. The relationships are ((M. vaillanti and Mabuya delalandii) (Mabuya spinalis and Macroscincus coctei (Mabuya fogoensis nicolauensis (Mabuya fogoensis antaoensis and Mabuya stangeri)))). The Cape Verde archipelago was colonized from West Africa, probably in the Late Miocene or Early Pliocene period. The north-eastern islands were probably occupied first, after which the ancestor of M. vaillanti and M. delalandii may have originated on Boavista, the ancestor of the latter species arriving on Santiago or Fogo later. The M. fogoensis--M. stangeri clade colonized the islands of Branco, Razo, Santa Luzia and São Vicente from São Nicolau and reached Santo Antão after this. Colonization of these northeastern islands was slow, perhaps because the recipient islands had not developed earlier or because colonization cut across the path of the Canary Current and the Northeast Trade Winds, the main dispersing agents in the region. Rapid extension of range into the southwestern islands occurred later in M. spinalis and then in M. vaillanti and M. delalandii. The long apparent delay between the origin of these species and their southwestern dispersal may have been because there were earlier colonizations of the southern islands which excluded later ones until the earlier inhabitants were exterminated by volcanic or climatic events. The evolution of large size in Macroscincus occurred in the northwestern islands and was paralleled in the eastern and

  13. In vivo assessment of the mitochondrial response to caloric restriction in obese women by the 2-keto[1-C]isocaproate breath test.

    Science.gov (United States)

    Parra, Dolores; González, Alvaro; Martínez, J Alfredo; Labayen, Idoia; Díez, Nieves

    2003-04-01

    The 2-keto[1-(13)C]isocaproate breath test has been proposed as a tool to detect mitochondrial dysfunction in alcoholic liver disease. The aim of this study was to evaluate if the 2-keto[1-(13)C]isocaproate breath test could detect in vivo dynamic changes on mitochondrial activity due to caloric restriction in obese women. Fifteen obese women (body mass index [BMI] > 30 kg/m(2)) participated in the study at baseline. Ten of these women agreed to participate on a diet program to induce body weight loss. Fifteen lean women (BMI keto[1-(13)C]isocaproate breath test and the plasma insulin (before diet: P =.863; after diet: P =.879), or leptin (before diet: P =.500; after diet: P =.637). In obese women before treatment, kilograms of fat free mass (P =.108), resting energy expenditure adjusted for body composition (P =.312), and the 2-keto[1-(13)C]isocaproate breath test (P =.205) were similar in comparison to lean women. However, 2-keto[1-(13)C]isocaproate oxidation tended to increase after dieting and was significantly higher than in controls (P =.015). These data suggest that the 2-keto[1-(13)C]isocaproate breath test reflected the adaptive modifications in mitochondrial oxidation in response to caloric restriction in obese women. Copyright 2003 Elsevier, Inc. All rights reserved.

  14. Sequence and secondary structure of the mitochondrial small-subunit rRNA V4, V6, and V9 domains reveal highly species-specific variations within the genus Agrocybe.

    Science.gov (United States)

    Gonzalez, P; Labarère, J

    1998-11-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same species were the same length and had the same sequence, while variations were found among the 10 species. Alignment of the sequences showed that nucleotide motifs encountered in the smallest sequence of each variable domain were also found in the largest sequence, indicating that the sequences evolved by insertion-deletion events. Determination of the secondary structure of each domain revealed that the insertion-deletion events commonly occurred in regions not directly involved in the secondary structure (i.e., the loops). Moreover, conserved sequences ranging from 4 to 25 nucleotides long were found at the beginning and end of each domain and could constitute genus-specific sequences. Comparisons of the V4, V6, and V9 secondary structures resulted in identification of the following four groups: (i) group I, which was characterized by the presence of additional P23-1 and P23-3 helices in the V4 domain and the lack of the P49-1 helix in V9 and included A. aegerita, A. chaxingu, and A. erebia; (ii) group II, which had the P23-3 helix in V4 and the P49-1 helix in V9 and included A. pediades; (iii) group III, which did not have additional helices in V4, had the P49-1 helix in V9 and included A. paludosa, A. firma, A. alnetorum, and A. praecox; and (iv) group IV, which lacked both the V4 additional helices and the P49-1 helix in V9 and included A. vervacti and A. dura. This grouping of species was supported by the structure of a consensus tree based on the variable domain sequences. The

  15. Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection.

    Science.gov (United States)

    Schlaberg, Robert; Chiu, Charles Y; Miller, Steve; Procop, Gary W; Weinstock, George

    2017-06-01

    - Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients. - To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided. - Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance. - Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.

  16. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  17. Recurrent plot analysis of discharge sequences in tracking test of polybutylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Du, B X; Gu, L; Dong, D S [Key Laboratory of Power System Simulation and Control of Ministry of Education, Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Zheng, X L [Henan Electric Power Survey and Design Institute, Henan 450007 (China)], E-mail: duboxue@tju.edu.cn

    2008-10-07

    Polymers are required to use in radiation environments as insulation materials. However, they often suffer from tracking failure. There is an increasing demand to evaluate radiation effects on dielectric performance. This paper presents a recurrence plot (RP) approach to analyse surface discharge sequences of gamma-ray irradiated polymer materials based on tracking test. Studying the non-linear characteristics of discharge sequences can assist in understanding the underlying mechanism of the discharge process. Discharge sequences of the test are extended to m-dimensional phase space by using the phase space reconstructed method. As test samples, polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) were irradiated to 100 kGy and then up to 1 MGy with a dosage rate of 10 kGy h{sup -1} by using a {sup 60}Co gamma source. The tracking tests were carried out according to the test method described in IEC60112. It is found that the RPs can give visual recurrent patterns of discharge sequences for identification of the effects of gamma-ray radiation dosage on the resistance to tracking of the polymers. The detection of recurrent patterns together with comparative tracking index value results indicate that with the increase in the radiation dosage, the resistance to tracking of PBT decreases, but increases for PBN.

  18. Sequence Design for a Test Tube of Interacting Nucleic Acid Strands.

    Science.gov (United States)

    Wolfe, Brian R; Pierce, Niles A

    2015-10-16

    We describe an algorithm for designing the equilibrium base-pairing properties of a test tube of interacting nucleic acid strands. A target test tube is specified as a set of desired "on-target" complexes, each with a target secondary structure and target concentration, and a set of undesired "off-target" complexes, each with vanishing target concentration. Sequence design is performed by optimizing the test tube ensemble defect, corresponding to the concentration of incorrectly paired nucleotides at equilibrium evaluated over the ensemble of the test tube. To reduce the computational cost of accepting or rejecting mutations to a random initial sequence, the structural ensemble of each on-target complex is hierarchically decomposed into a tree of conditional subensembles, yielding a forest of decomposition trees. Candidate sequences are evaluated efficiently at the leaf level of the decomposition forest by estimating the test tube ensemble defect from conditional physical properties calculated over the leaf subensembles. As optimized subsequences are merged toward the root level of the forest, any emergent defects are eliminated via ensemble redecomposition and sequence reoptimization. After successfully merging subsequences to the root level, the exact test tube ensemble defect is calculated for the first time, explicitly checking for the effect of the previously neglected off-target complexes. Any off-target complexes that form at appreciable concentration are hierarchically decomposed, added to the decomposition forest, and actively destabilized during subsequent forest reoptimization. For target test tubes representative of design challenges in the molecular programming and synthetic biology communities, our test tube design algorithm typically succeeds in achieving a normalized test tube ensemble defect ≤1% at a design cost within an order of magnitude of the cost of test tube analysis.

  19. A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae).

    Science.gov (United States)

    Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina

    2016-07-01

    Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology.

  20. 40 CFR Table C-2 to Subpart C of... - Sequence of Test Measurements

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Sequence of Test Measurements C Table C-2 to Subpart C of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Medium. 2 High High. 3 Medium Low. 4 High High. 5 Low Medium. 6 Medium Low. 7 Low Medium. 8 Medium Low. 9...

  1. Genetic counselors’ (GC) knowledge, awareness, and understanding of clinical next-generation sequencing (NGS) genomic testing

    Science.gov (United States)

    Boland, PM; Ruth, K; Matro, JM; Rainey, KL; Fang, CY; Wong, YN; Daly, MB; Hall, MJ

    2014-01-01

    Genomic tests are increasingly complex, less expensive, and more widely available with the advent of next-generation sequencing (NGS). We assessed knowledge and perceptions among genetic counselors pertaining to NGS genomic testing via an online survey. Associations between selected characteristics and perceptions were examined. Recent education on NGS testing was common, but practical experience limited. Perceived understanding of clinical NGS was modest, specifically concerning tumor testing. Greater perceived understanding of clinical NGS testing correlated with more time spent in cancer-related counseling, exposure to NGS testing, and NGS-focused education. Substantial disagreement about the role of counseling for tumor-based testing was seen. Finally, a majority of counselors agreed with the need for more education about clinical NGS testing, supporting this approach to optimizing implementation. PMID:25523111

  2. Genetic counselors' (GC) knowledge, awareness, understanding of clinical next-generation sequencing (NGS) genomic testing.

    Science.gov (United States)

    Boland, P M; Ruth, K; Matro, J M; Rainey, K L; Fang, C Y; Wong, Y N; Daly, M B; Hall, M J

    2015-12-01

    Genomic tests are increasingly complex, less expensive, and more widely available with the advent of next-generation sequencing (NGS). We assessed knowledge and perceptions among genetic counselors pertaining to NGS genomic testing via an online survey. Associations between selected characteristics and perceptions were examined. Recent education on NGS testing was common, but practical experience limited. Perceived understanding of clinical NGS was modest, specifically concerning tumor testing. Greater perceived understanding of clinical NGS testing correlated with more time spent in cancer-related counseling, exposure to NGS testing, and NGS-focused education. Substantial disagreement about the role of counseling for tumor-based testing was seen. Finally, a majority of counselors agreed with the need for more education about clinical NGS testing, supporting this approach to optimizing implementation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    Yu-Hoon Kim

    2014-01-01

    Full Text Available Identification of insect species is an important task in forensic entomology. For more convenient species identification, the nucleotide sequences of cytochrome c oxidase subunit I (COI gene have been widely utilized. We analyzed full-length COI nucleotide sequences of 10 Muscidae and 6 Sarcophagidae fly species collected in Korea. After DNA extraction from collected flies, PCR amplification and automatic sequencing of the whole COI sequence were performed. Obtained sequences were analyzed for a phylogenetic tree and a distance matrix. Our data showed very low intraspecific sequence distances and species-level monophylies. However, sequence comparison with previously reported sequences revealed a few inconsistencies or paraphylies requiring further investigation. To the best of our knowledge, this study is the first report of COI nucleotide sequences from Hydrotaea occulta, Muscina angustifrons, Muscina pascuorum, Ophyra leucostoma, Sarcophaga haemorrhoidalis, Sarcophaga harpax, and Phaonia aureola.

  4. Downregulation of DJ-1 Fails to Protect Mitochondrial Complex I Subunit NDUFS3 in the Testes and Contributes to the Asthenozoospermia

    Directory of Open Access Journals (Sweden)

    Yupeng Wang

    2018-01-01

    Full Text Available Asthenozoospermia (AS, an important cause of male infertility, is characterized by reduced sperm motility. Among the aetiologies of AS, inflammation seems to be the main cause. DJ-1, a conserved protein product of the PARK7 gene, is associated with male infertility and plays a role in oxidative stress and inflammation. Although our previous studies showed that a reduction in DJ-1 was accompanied by mitochondrial dysfunction in the sperm of patients with AS, the specific mechanism underlying this association remained unclear. In this study, we found that compared to the patients without AS, the expression of mitochondrial protein nicotinamide adenine dinucleotide dehydrogenase (ubiquinone Fe-S protein 3 (NDUFS3 was also significantly decreased in the sperm of patients with AS. Similarly, decreased expression of DJ-1 and NDUFS3 and reduced mitochondria complex I activity were evident in a rat model of AS. Moreover, we showed that the interaction between DJ-1 and NDUFS3 in rat testes was weakened by ORN treatment. These results suggest that the impaired mitochondrial activity could be due to the broken interaction between DJ-1 and NDUFS3 and that downregulation of DJ-1 in sperm and testes contributes to AS pathogenesis.

  5. Gene flow for Echinococcus granulosus metapopulations determined by mitochondrial sequences: A reliable approach for reflecting epidemiological drift of parasite among neighboring countries.

    Science.gov (United States)

    Mahami-Oskouei, Mahmoud; Kaseb-Yazdanparast, Azam; Spotin, Adel; Shahbazi, Abbas; Adibpour, Mohammad; Ahmadpour, Ehsan; Ghabouli-Mehrabani, Nader

    2016-12-01

    In genetic diversity and population structure of Echinococcus granulosus, the gene flow can illustrate how the Echinococcus isolates have epidemiologically drifted among endemic neighboring countries. 51 isolates of hydatid cysts were collected from human, dog, cattle and sheep in northwest Iran, where placed co-border with Turkey. DNA samples were extracted, amplified and subjected to sequence analysis of NADH dehydrogenase subunit 1 (nad1) and cytochrome oxidase subunit 1 (cox1) genes. As well, sequences of Echinococcus at east to the southeast regions of Turkey were retrieved from GenBank database for the cox1 gene. The confirmed isolates were grouped as G1 (n = 74) and G3 (n = 6) genotypes. 31 unique haplotypes were identified inferred by the analyzed sequences of cox1 among two distinct populations. A parsimonious network of the sequence haplotypes displayed star-like features in the overall population containing TUR1, IR15 and IR22 as the most common haplotypes. According to AMOVA test, the high value of haplotype diversity (0.94758-0.98901) of E. granulosus was reflected the total genetic variability within populations while nucleotide diversity was low (0.00727-0.01046) in Iranian and Turkish metapopulations. Neutrality indices of the cox1 were shown negative values (-15.078 to -10.057) in Echinococcus populations which indicating a significant divergence from neutrality. A pairwise fixation index (Fst) as a degree of gene flow was partially high value for all populations (0.151). The statistically Fst value indicates that E. granulosus sensu stricto (G1-G3) are genetically moderate differentiated among Iranian and Turkish isolates. The occurrence of TUR1 and IR15 elucidate that there is possibly the dawn of domestication due to transfer of alleles between populations through the diffusion of stock raising or anthropogenic movements. To evaluate the hypothetical evolutionary scenario, further exploration is necessitated to analyze isolates from

  6. Lack of Mitochondrial DNA Sequence Divergence between Two Subspecies of the Siberian Weasel from Korea: Mustela sibirica coreanus from the Korean Peninsula and M. s. quelpartis from Jeju Island

    Directory of Open Access Journals (Sweden)

    Hung Sun Koh

    2012-04-01

    Full Text Available The objective of this study was to determine the degree of mitochondrial DNA (mtDNA divergence between two subspecies of Mustela sibirica from Korea (M. s. coreanus on the Korean Peninsula and M. s. quelpartis on Jeju Island and to examine the taxonomic status of M. s. quelpartis. Thus, we obtained complete sequences of mtDNA cytochrome b gene (1,140 bp from the two subspecies, and these sequences were compared to a corresponding haplotype of M. s. coreanus, downloaded from GenBank. From this analysis, it was observed that the sequences from monogenic M. s. quelpartis on Jeju Island were identical to the sequences of four M. s. coreanus from four locations across the Korean Peninsula, and that the two subspecies formed a single clade; the average nucleotide distance between the two subspecies was 0.26% (range, 0.00 to 0.53%. We found that the subspecies quelpartis is not genetically distinct from the subspecies coreanus, and that this cytochrome b sequencing result does not support the current classification, distinguishing these two subspecies by pelage color. Further systematic analyses using morphometric characters and other DNA markers are necessary to confirm the taxonomic status of M. s. quelpartis.

  7. The non-invasive 13C-methionine breath test detects hepatic mitochondrial dysfunction as a marker of disease activity in non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Banasch M

    2012-06-01

    Full Text Available Abstract Introduction Mitochondrial dysfunction plays a central role in the general pathogenesis of non-alcoholic fatty liver disease (NAFLD, increasing the risk of developing steatosis and subsequent hepatocellular inflammation. We aimed to assess hepatic mitochondrial function by a non-invasive 13C-methionine breath test (MeBT in patients with histologically proven NAFLD. Methods 118 NAFLD-patients and 18 healthy controls were examined by MeBT. Liver biopsy specimens were evaluated according to the NASH scoring system. Results Higher grades of NASH activity and fibrosis were independently associated with a significant decrease in cumulative 13C-exhalation (expressed as cPDR(%. cPDR1.5h was markedly declined in patients with NASH and NASH cirrhosis compared to patients with simple steatosis or borderline diagnosis (cPDR1.5h: 3.24 ± 1.12% and 1.32 ± 0.94% vs. 6.36 ± 0.56% and 4.80 ± 0.88% respectively; p 13C-exhalation further declined in the presence of advanced fibrosis which was correlated with NASH activity (r = 0.36. The area under the ROC curve (AUROC for NASH diagnosis was estimated to be 0.87 in the total cohort and 0.83 in patients with no or mild fibrosis (F0-1. Conclusion The 13C-methionine breath test indicates mitochondrial dysfunction in non-alcoholic fatty liver disease and predicts higher stages of disease activity. It may, therefore, be a valuable diagnostic addition for longitudinal monitoring of hepatic (mitochondrial function in non-alcoholic fatty liver disease.

  8. Mitochondrial Myopathies

    Science.gov (United States)

    ... noting “soft signs” in unaffected relatives. These include deaf- ness, short stature, migraine headaches and PEO. Muscle ... mitochondrial defects and provide valuable information for family planning. Perhaps most important, knowing the genetic defects that ...

  9. Detection of mitochondrial insertions in the nucleus (NuMts of Pleistocene and modern muskoxen

    Directory of Open Access Journals (Sweden)

    MacPhee Ross DE

    2007-04-01

    Full Text Available Abstract Background Nuclear insertions of mitochondrial sequences (NuMts have been identified in a wide variety of organisms. Trafficking of genetic material from the mitochondria to the nucleus has occurred frequently during mammalian evolution and can lead to the production of a large pool of sequences with varying degrees of homology to organellar mitochondrial DNA (mtDNA sequences. This presents both opportunities and challenges for forensics, population genetics, evolutionary genetics, conservation biology and the study of DNA from ancient samples. Here we present a case in which difficulties in ascertaining the organellar mtDNA sequence from modern samples hindered their comparison to ancient DNA sequences. Results We obtained mitochondrial hypervariable region (HVR sequences from six ancient samples of tundra muskox (Ovibos moschatus that were reproducible but distinct from modern muskox sequences reported previously. Using the same PCR primers applied to the ancient specimens and the primers used to generate the modern muskox DNA sequences in a previous study, we failed to definitively identify the organellar sequence from the two modern muskox samples tested. Instead of anticipated sequence homogeneity, we obtained multiple unique sequences from both hair and blood of one modern specimen. Sequencing individual clones of a >1 kb PCR fragment from modern samples did not alleviate the problem as there was not a consistent match across the entire length of the sequences to Ovibos when compared to sequences in GenBank. Conclusion In specific taxa, due to nuclear insertions some regions of the mitochondrial genome may not be useful for the characterization of modern or ancient DNA.

  10. Clinical pharmacogenomics testing in the era of next generation sequencing: challenges and opportunities for precision medicine.

    Science.gov (United States)

    Ji, Yuan; Si, Yue; McMillin, Gwendolyn A; Lyon, Elaine

    2018-04-23

    The rapid development and dramatic decrease in cost of sequencing techniques have ushered the implementation of genomic testing in patient care. Next generation DNA sequencing (NGS) techniques have been used increasingly in clinical laboratories to scan the whole or part of the human genome in order to facilitate diagnosis and/or prognostics of genetic disease. Despite many hurdles and debates, pharmacogenomics (PGx) is believed to be an area of genomic medicine where precision medicine could have immediate impact in the near future. Areas covered: This review focuses on lessons learned through early attempts of clinically implementing PGx testing; the challenges and opportunities that PGx testing brings to precision medicine in the era of NGS. Expert commentary: Replacing targeted analysis approach with NGS for PGx testing is neither technically feasible nor necessary currently due to several technical limitations and uncertainty involved in interpreting variants of uncertain significance for PGx variants. However, reporting PGx variants out of clinical whole exome or whole genome sequencing (WES/WGS) might represent additional benefits for patients who are tested by WES/WGS.

  11. Association testing for next-generation sequencing data using score statistics

    DEFF Research Database (Denmark)

    Skotte, Line; Korneliussen, Thorfinn Sand; Albrechtsen, Anders

    2012-01-01

    computationally feasible due to the use of score statistics. As part of the joint likelihood, we model the distribution of the phenotypes using a generalized linear model framework, which works for both quantitative and discrete phenotypes. Thus, the method presented here is applicable to case-control studies...... of genotype calls into account have been proposed; most require numerical optimization which for large-scale data is not always computationally feasible. We show that using a score statistic for the joint likelihood of observed phenotypes and observed sequencing data provides an attractive approach...... to association testing for next-generation sequencing data. The joint model accounts for the genotype classification uncertainty via the posterior probabilities of the genotypes given the observed sequencing data, which gives the approach higher power than methods based on called genotypes. This strategy remains...

  12. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  13. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Thiele Bernhard

    2011-05-01

    Full Text Available Abstract Background Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4 variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Methods Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Results Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%, and defining a minority cutoff of 5%, the results were concordant in all but one isolate. Conclusions The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  14. Genotypic tropism testing by massively parallel sequencing: qualitative and quantitative analysis.

    Science.gov (United States)

    Däumer, Martin; Kaiser, Rolf; Klein, Rolf; Lengauer, Thomas; Thiele, Bernhard; Thielen, Alexander

    2011-05-13

    Inferring viral tropism from genotype is a fast and inexpensive alternative to phenotypic testing. While being highly predictive when performed on clonal samples, sensitivity of predicting CXCR4-using (X4) variants drops substantially in clinical isolates. This is mainly attributed to minor variants not detected by standard bulk-sequencing. Massively parallel sequencing (MPS) detects single clones thereby being much more sensitive. Using this technology we wanted to improve genotypic prediction of coreceptor usage. Plasma samples from 55 antiretroviral-treated patients tested for coreceptor usage with the Monogram Trofile Assay were sequenced with standard population-based approaches. Fourteen of these samples were selected for further analysis with MPS. Tropism was predicted from each sequence with geno2pheno[coreceptor]. Prediction based on bulk-sequencing yielded 59.1% sensitivity and 90.9% specificity compared to the trofile assay. With MPS, 7600 reads were generated on average per isolate. Minorities of sequences with high confidence in CXCR4-usage were found in all samples, irrespective of phenotype. When using the default false-positive-rate of geno2pheno[coreceptor] (10%), and defining a minority cutoff of 5%, the results were concordant in all but one isolate. The combination of MPS and coreceptor usage prediction results in a fast and accurate alternative to phenotypic assays. The detection of X4-viruses in all isolates suggests that coreceptor usage as well as fitness of minorities is important for therapy outcome. The high sensitivity of this technology in combination with a quantitative description of the viral population may allow implementing meaningful cutoffs for predicting response to CCR5-antagonists in the presence of X4-minorities.

  15. Sequence analysis of ribosomal and mitochondrial genes of the giant liver fluke Fascioloides magna (Trematoda: Fasciolidae): intraspecific variation and differentiation from Fasciola hepatica

    Czech Academy of Sciences Publication Activity Database

    Kráľová-Hromadová, I.; Špakulová, M.; Horáčková, Eva; Turčeková, Ĺ.; Novobilský, A.; Beck, R.; Koudela, Břetislav; Marinculić, A.; Rajský, D.; Pybus, M.

    2008-01-01

    Roč. 94, č. 1 (2008), s. 58-67 ISSN 0022-3395 R&D Projects: GA ČR GD524/03/H133; GA AV ČR IAA6022404 Grant - others:Slovak Research and Development Agency(SK) APVV-51-062205 Institutional research plan: CEZ:AV0Z60220518 Keywords : Fascioloides magna * Fasciola hepatica * ribosomal genes * mitochondrial genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.165, year: 2008

  16. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    Science.gov (United States)

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  17. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    NARCIS (Netherlands)

    M.J. Falk (Marni J.); L. Shen (Lishuang); M. Gonzalez (Michael); J. Leipzig (Jeremy); M.T. Lott (Marie T.); A.P.M. Stassen (Alphons P.M.); M.A. Diroma (Maria Angela); D. Navarro-Gomez (Daniel); P. Yeske (Philip); R. Bai (Renkui); R.G. Boles (Richard G.); V. Brilhante (Virginia); D. Ralph (David); J.T. DaRe (Jeana T.); R. Shelton (Robert); S.F. Terry (Sharon); Z. Zhang (Zhe); W.C. Copeland (William C.); M. van Oven (Mannis); H. Prokisch (Holger); D.C. Wallace; M. Attimonelli (Marcella); D. Krotoski (Danuta); S. Zuchner (Stephan); X. Gai (Xiaowu); S. Bale (Sherri); J. Bedoyan (Jirair); D.M. Behar (Doron); P. Bonnen (Penelope); L. Brooks (Lisa); C. Calabrese (Claudia); S. Calvo (Sarah); P.F. Chinnery (Patrick); J. Christodoulou (John); D. Church (Deanna); R. Clima (Rosanna); B.H. Cohen (Bruce H.); R.G.H. Cotton (Richard); I.F.M. de Coo (René); O. Derbenevoa (Olga); J.T. den Dunnen (Johan); D. Dimmock (David); G. Enns (Gregory); G. Gasparre (Giuseppe); A. Goldstein (Amy); I. Gonzalez (Iris); K. Gwinn (Katrina); S. Hahn (Sihoun); R.H. Haas (Richard H.); H. Hakonarson (Hakon); M. Hirano (Michio); D. Kerr (Douglas); D. Li (Dong); M. Lvova (Maria); F. Macrae (Finley); D. Maglott (Donna); E. McCormick (Elizabeth); G. Mitchell (Grant); V.K. Mootha (Vamsi K.); Y. Okazaki (Yasushi); A. Pujol (Aurora); M. Parisi (Melissa); J.C. Perin (Juan Carlos); E.A. Pierce (Eric A.); V. Procaccio (Vincent); S. Rahman (Shamima); H. Reddi (Honey); H. Rehm (Heidi); E. Riggs (Erin); R.J.T. Rodenburg (Richard); Y. Rubinstein (Yaffa); R. Saneto (Russell); M. Santorsola (Mariangela); C. Scharfe (Curt); C. Sheldon (Claire); E.A. Shoubridge (Eric); D. Simone (Domenico); B. Smeets (Bert); J.A.M. Smeitink (Jan); C. Stanley (Christine); A. Suomalainen (Anu); M.A. Tarnopolsky (Mark); I. Thiffault (Isabelle); D.R. Thorburn (David R.); J.V. Hove (Johan Van); L. Wolfe (Lynne); L.-J. Wong (Lee-Jun)

    2015-01-01

    textabstractSuccess rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires

  18. 40 CFR 1065.935 - Emission test sequence for field testing.

    Science.gov (United States)

    2010-07-01

    ... value for the previous 2 min or until an engine thermostat controls engine temperature with coolant or... media, such as evacuated bags or tare-weighed PM sample media. (2) Operate the PEMS according to the... ambient data, and integrate measured values using a PEMS. (3) If engine starting is part of field testing...

  19. Mitochondrial recessive ataxia syndrome mimicking dominant spinocerebellar ataxia.

    Science.gov (United States)

    Palin, Eino J H; Hakonen, Anna H; Korpela, Mari; Paetau, Anders; Suomalainen, Anu

    2012-04-15

    We studied the genetic background of a family with SCA, showing dominant inheritance and anticipation. Muscle histology, POLG1 gene sequence, neuropathology and mitochondrial DNA analyses in a mother and a son showed typical findings for a mitochondrial disorder, and both were shown to be homozygous for a recessive POLG1 mutation, underlying mitochondrial recessive ataxia syndrome, MIRAS. The healthy father was a heterozygous carrier for the same mutation. Recessively inherited MIRAS mutations should be tested in dominantly inherited SCAs cases of unknown cause, as the high carrier frequency of MIRAS may result in two independent introductions of the mutant allele in the family and thereby mimic dominant inheritance. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. When to Suspect and How to Diagnose Mitochondrial Disorders?

    Science.gov (United States)

    Korenev, Sergei; Morris, Andrew A M

    2016-10-01

    Disorders of the mitochondrial respiratory chain are an exceedingly diverse group. The clinical features can affect any tissue or organ and occur at any age, with any mode of inheritance. The diagnosis of mitochondrial disorders requires knowledge of the clinical phenotypes and access to a wide range of laboratory techniques. A few syndromes are associated with a specific genetic defect and in these cases it is appropriate to proceed directly to an appropriate test of blood or urine. In most cases, however, the best strategy starts with biochemical and histochemical studies on a muscle biopsy. Appropriate molecular genetic studies can then be chosen, based on these results and the clinical picture. Unfortunately, there is currently limited availability of respiratory chain studies in India. Exome sequencing is undertaken increasingly often; without preceding mitochondrial studies, this can lead to misleading results.

  1. Genotypic Resistance Tests Sequences Reveal the Role of Marginalized Populations in HIV-1 Transmission in Switzerland.

    Science.gov (United States)

    Shilaih, Mohaned; Marzel, Alex; Yang, Wan Lin; Scherrer, Alexandra U; Schüpbach, Jörg; Böni, Jürg; Yerly, Sabine; Hirsch, Hans H; Aubert, Vincent; Cavassini, Matthias; Klimkait, Thomas; Vernazza, Pietro L; Bernasconi, Enos; Furrer, Hansjakob; Günthard, Huldrych F; Kouyos, Roger

    2016-06-14

    Targeting hard-to-reach/marginalized populations is essential for preventing HIV-transmission. A unique opportunity to identify such populations in Switzerland is provided by a database of all genotypic-resistance-tests from Switzerland, including both sequences from the Swiss HIV Cohort Study (SHCS) and non-cohort sequences. A phylogenetic tree was built using 11,127 SHCS and 2,875 Swiss non-SHCS sequences. Demographics were imputed for non-SHCS patients using a phylogenetic proximity approach. Factors associated with non-cohort outbreaks were determined using logistic regression. Non-B subtype (univariable odds-ratio (OR): 1.9; 95% confidence interval (CI): 1.8-2.1), female gender (OR: 1.6; 95% CI: 1.4-1.7), black ethnicity (OR: 1.9; 95% CI: 1.7-2.1) and heterosexual transmission group (OR:1.8; 95% CI: 1.6-2.0), were all associated with underrepresentation in the SHCS. We found 344 purely non-SHCS transmission clusters, however, these outbreaks were small (median 2, maximum 7 patients) with a strong overlap with the SHCS'. 65% of non-SHCS sequences were part of clusters composed of >= 50% SHCS sequences. Our data suggests that marginalized-populations are underrepresented in the SHCS. However, the limited size of outbreaks among non-SHCS patients in-care implies that no major HIV outbreak in Switzerland was missed by the SHCS surveillance. This study demonstrates the potential of sequence data to assess and extend the scope of infectious-disease surveillance.

  2. Preliminary Validation of a New Measure of Negative Response Bias: The Temporal Memory Sequence Test.

    Science.gov (United States)

    Hegedish, Omer; Kivilis, Naama; Hoofien, Dan

    2015-01-01

    The Temporal Memory Sequence Test (TMST) is a new measure of negative response bias (NRB) that was developed to enrich the forced-choice paradigm. The TMST does not resemble the common structure of forced-choice tests and is presented as a temporal recall memory test. The validation sample consisted of 81 participants: 21 healthy control participants, 20 coached simulators, and 40 patients with acquired brain injury (ABI). The TMST had high reliability and significantly high positive correlations with the Test of Memory Malingering and Word Memory Test effort scales. Moreover, the TMST effort scales exhibited high negative correlations with the Glasgow Coma Scale, thus validating the previously reported association between probable malingering and mild traumatic brain injury. A suggested cutoff score yielded acceptable classification rates in the ABI group as well as in the simulator and control groups. The TMST appears to be a promising measure of NRB detection, with respectable rates of reliability and construct and criterion validity.

  3. Sequencing of bovine herpesvirus 4 v.test strain reveals important genome features

    Directory of Open Access Journals (Sweden)

    Gillet Laurent

    2011-08-01

    Full Text Available Abstract Background Bovine herpesvirus 4 (BoHV-4 is a useful model for the human pathogenic gammaherpesviruses Epstein-Barr virus and Kaposi's Sarcoma-associated Herpesvirus. Although genome manipulations of this virus have been greatly facilitated by the cloning of the BoHV-4 V.test strain as a Bacterial Artificial Chromosome (BAC, the lack of a complete genome sequence for this strain limits its experimental use. Methods In this study, we have determined the complete sequence of BoHV-4 V.test strain by a pyrosequencing approach. Results The long unique coding region (LUR consists of 108,241 bp encoding at least 79 open reading frames and is flanked by several polyrepetitive DNA units (prDNA. As previously suggested, we showed that the prDNA unit located at the left prDNA-LUR junction (prDNA-G differs from the other prDNA units (prDNA-inner. Namely, the prDNA-G unit lacks the conserved pac-2 cleavage and packaging signal in its right terminal region. Based on the mechanisms of cleavage and packaging of herpesvirus genomes, this feature implies that only genomes bearing left and right end prDNA units are encapsulated into virions. Conclusions In this study, we have determined the complete genome sequence of the BAC-cloned BoHV-4 V.test strain and identified genome organization features that could be important in other herpesviruses.

  4. Testing statistical significance scores of sequence comparison methods with structure similarity

    Directory of Open Access Journals (Sweden)

    Leunissen Jack AM

    2006-10-01

    Full Text Available Abstract Background In the past years the Smith-Waterman sequence comparison algorithm has gained popularity due to improved implementations and rapidly increasing computing power. However, the quality and sensitivity of a database search is not only determined by the algorithm but also by the statistical significance testing for an alignment. The e-value is the most commonly used statistical validation method for sequence database searching. The CluSTr database and the Protein World database have been created using an alternative statistical significance test: a Z-score based on Monte-Carlo statistics. Several papers have described the superiority of the Z-score as compared to the e-value, using simulated data. We were interested if this could be validated when applied to existing, evolutionary related protein sequences. Results All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman sequence comparison algorithm with both e-value and Z-score statistics is evaluated, using ROC, CVE and AP measures. The BLAST and FASTA algorithms are used as reference. We find that two out of three Smith-Waterman implementations with e-value are better at predicting structural similarities between proteins than the Smith-Waterman implementation with Z-score. SSEARCH especially has very high scores. Conclusion The compute intensive Z-score does not have a clear advantage over the e-value. The Smith-Waterman implementations give generally better results than their heuristic counterparts. We recommend using the SSEARCH algorithm combined with e-values for pairwise sequence comparisons.

  5. Repeated DNA sequences in fungi

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, S K

    1974-11-01

    Several fungal species, representatives of all broad groups like basidiomycetes, ascomycetes and phycomycetes, were examined for the nature of repeated DNA sequences by DNA:DNA reassociation studies using hydroxyapatite chromatography. All of the fungal species tested contained 10 to 20 percent repeated DNA sequences. There are approximately 100 to 110 copies of repeated DNA sequences of approximately 4 x 10/sup 7/ daltons piece size of each. Repeated DNA sequence homoduplexes showed on average 5/sup 0/C difference of T/sub e/50 (temperature at which 50 percent duplexes dissociate) values from the corresponding homoduplexes of unfractionated whole DNA. It is suggested that a part of repetitive sequences in fungi constitutes mitochondrial DNA and a part of it constitutes nuclear DNA. (auth)

  6. A Method to Select Software Test Cases in Consideration of Past Input Sequence

    International Nuclear Information System (INIS)

    Kim, Hee Eun; Kim, Bo Gyung; Kang, Hyun Gook

    2015-01-01

    In the Korea Nuclear I and C Systems (KNICS) project, the software for the fully-digitalized reactor protection system (RPS) was developed under a strict procedure. Even though the behavior of the software is deterministic, the randomness of input sequence produces probabilistic behavior of software. A software failure occurs when some inputs to the software occur and interact with the internal state of the digital system to trigger a fault that was introduced into the software during the software lifecycle. In this paper, the method to select test set for software failure probability estimation is suggested. This test set reflects past input sequence of software, which covers all possible cases. In this study, the method to select test cases for software failure probability quantification was suggested. To obtain profile of paired state variables, relationships of the variables need to be considered. The effect of input from human operator also have to be considered. As an example, test set of PZR-PR-Lo-Trip logic was examined. This method provides framework for selecting test cases of safety-critical software

  7. Is a sequence of tests during urethral pressure profilometry correlated with symptoms assessment in women?

    Science.gov (United States)

    Valentini, Françoise A; Robain, Gilberte; Marti, Brigitte G

    2012-01-01

    Our purpose was, applying a strictly defined protocol for urethral profilometry, 1) to test the repeatability of same session rest maximum urethral closure pressure (MUCP) and 2) to search for correlation between women complaint and the changes in MUCP value (rest and dynamic tests). A population of 140 consecutive women referred for evaluation of lower urinary tract dysfunction was stratified in 4 groups according with the urinary symptoms: stress, urge, mixed incontinence and continent and in each group in 3 age groups (young, middle age and old). The sequence of tests recorded in supine position was: urethral pressure profile at rest bladder empty, after bladder filling at 250 mL (reference test), stress profile, fatigability (before (rest) and after 10 successive strong coughs), then in standing position. In all groups, there was no significant difference between the two MUCP values at rest bladder filled. In the three incontinent groups, MUCP was higher bladder empty than bladder filled (p rest bladder filled has a good repeatability in individual. However a complex sequence of tests during urethral pressure profilometry remains discussed in middle-age and old age-groups, it allows specifying the stress component of incontinence in young women and the urgency component in all age-groups.

  8. Mitochondrial mutations and polymorphisms in psychiatric disorders

    NARCIS (Netherlands)

    V. Sequeira (Vasco); M.V. Martin (Maureen); S.M. Rollins; E.A. Moon (Emily); W.E. Bunney (William E); F. MacCiardi (Fabio); S. Lupoli (Sara); G.D. Smith; J. Kelsoe (John); C.N. Magnan (Christophe); M. van Oven (Mannis); P. Baldi (Pierre); D.C. Wallace; M.P. Vawter (Marquis)

    2012-01-01

    textabstractMitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of

  9. Hypothesis testing on the fractal structure of behavioral sequences: the Bayesian assessment of scaling methodology.

    Science.gov (United States)

    Moscoso del Prado Martín, Fermín

    2013-12-01

    I introduce the Bayesian assessment of scaling (BAS), a simple but powerful Bayesian hypothesis contrast methodology that can be used to test hypotheses on the scaling regime exhibited by a sequence of behavioral data. Rather than comparing parametric models, as typically done in previous approaches, the BAS offers a direct, nonparametric way to test whether a time series exhibits fractal scaling. The BAS provides a simpler and faster test than do previous methods, and the code for making the required computations is provided. The method also enables testing of finely specified hypotheses on the scaling indices, something that was not possible with the previously available methods. I then present 4 simulation studies showing that the BAS methodology outperforms the other methods used in the psychological literature. I conclude with a discussion of methodological issues on fractal analyses in experimental psychology. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Humans can consciously generate random number sequences: a possible test for artificial intelligence.

    Science.gov (United States)

    Persaud, Navindra

    2005-01-01

    Computer algorithms can only produce seemingly random or pseudorandom numbers whereas certain natural phenomena, such as the decay of radioactive particles, can be utilized to produce truly random numbers. In this study, the ability of humans to generate random numbers was tested in healthy adults. Subjects were simply asked to generate and dictate random numbers. Generated numbers were tested for uniformity, independence and information density. The results suggest that humans can generate random numbers that are uniformly distributed, independent of one another and unpredictable. If humans can generate sequences of random numbers then neural networks or forms of artificial intelligence, which are purported to function in ways essentially the same as the human brain, should also be able to generate sequences of random numbers. Elucidating the precise mechanism by which humans generate random number sequences and the underlying neural substrates may have implications in the cognitive science of decision-making. It is possible that humans use their random-generating neural machinery to make difficult decisions in which all expected outcomes are similar. It is also possible that certain people, perhaps those with neurological or psychiatric impairments, are less able or unable to generate random numbers. If the random-generating neural machinery is employed in decision making its impairment would have profound implications in matters of agency and free will.

  11. Effects of tonal language background on tests of temporal sequencing in children.

    Science.gov (United States)

    Mukari, Siti Zamratol-Mai S; Yu, Xuan; Ishak, Wan Syafira; Mazlan, Rafidah

    2015-01-01

    The aims of the present study were to determine the effects of language background on the performance of the pitch pattern sequence test (PPST) and duration pattern sequence test (DPST). As temporal order sequencing may be affected by age and working memory, these factors were also studied. Performance of tonal and non-tonal language speakers on PPST and DPST were compared. Twenty-eight native Mandarin (tonal language) speakers and twenty-nine native Malay (non-tonal language) speakers between seven to nine years old participated in this study. The results revealed that relative to native Malay speakers, native Mandarin speakers demonstrated better scores on the PPST in both humming and verbal labeling responses. However, a similar language effect was not apparent in the DPST. An age effect was only significant in the PPST (verbal labeling). Finally, no significant effect of working memory was found on the PPST and the DPST. These findings suggest that the PPST is affected by tonal language background, and highlight the importance of developing different normative values for tonal and non-tonal language speakers.

  12. From psychological need satisfaction to intentional behavior: testing a motivational sequence in two behavioral contexts.

    Science.gov (United States)

    Hagger, Martin S; Chatzisarantis, Nikos L D; Harris, Jemma

    2006-02-01

    The present study tested a motivational sequence in which global-level psychological need satisfaction from self-determination theory influenced intentions and behavior directly and indirectly through contextual-level motivation and situational-level decision-making constructs from the theory of planned behavior. Two samples of university students (N = 511) completed measures of global-level psychological need satisfaction, contextual-level autonomous motivation, and situational-level attitudes, subjective norms, perceived behavioral control, intentions, and behavior in two behavioral contexts: exercise and dieting. A structural equation model supported the proposed sequence in both samples. The indirect effect was present for exercise behavior, whereas both direct and indirect effects were found for dieting behavior. Findings independently supported the component theories and provided a comprehensive integrated explanation of volitional behavior.

  13. Is a sequence of tests during urethral pressure profilometry correlated with symptoms assessment in women?

    Directory of Open Access Journals (Sweden)

    Françoise A. Valentini

    2012-12-01

    Full Text Available Introduction Our purpose was, applying a strictly defined protocol for urethral profilometry, 1 to test the repeatability of same session rest maximum urethral closure pressure (MUCP and 2 to search for correlation between women complaint and the changes in MUCP value (rest and dynamic tests. Materials and Methods A population of 140 consecutive women referred for evaluation of lower urinary tract dysfunction was stratified in 4 groups according with the urinary symptoms: stress, urge, mixed incontinence and continent and in each group in 3 age groups (young, middle age and old. The sequence of tests recorded in supine position was: urethral pressure profile at rest bladder empty, after bladder filling at 250 mL (reference test, stress profile, fatigability (before (rest and after 10 successive strong coughs, then in standing position. Results In all groups, there was no significant difference between the two MUCP values at rest bladder filled. In the three incontinent groups, MUCP was higher bladder empty than bladder filled (p < 0.05 except in the young sub-group. Stress incontinence led to significant decrease of MUCP during dynamic tests in the young group. MUCP was not modified after fatigability test in women with urge complaint whatever age. Conclusion When recorded following a strictly defined protocol, MUCP at rest bladder filled has a good repeatability in individual. However a complex sequence of tests during urethral pressure profilometry remains discussed in middle-age and old age-groups, it allows specifying the stress component of incontinence in young women and the urgency component in all age-groups.

  14. Measuring fit of sequence data to phylogenetic model: gain of power using marginal tests.

    Science.gov (United States)

    Waddell, Peter J; Ota, Rissa; Penny, David

    2009-10-01

    Testing fit of data to model is fundamentally important to any science, but publications in the field of phylogenetics rarely do this. Such analyses discard fundamental aspects of science as prescribed by Karl Popper. Indeed, not without cause, Popper (Unended quest: an intellectual autobiography. Fontana, London, 1976) once argued that evolutionary biology was unscientific as its hypotheses were untestable. Here we trace developments in assessing fit from Penny et al. (Nature 297:197-200, 1982) to the present. We compare the general log-likelihood ratio (the G or G (2) statistic) statistic between the evolutionary tree model and the multinomial model with that of marginalized tests applied to an alignment (using placental mammal coding sequence data). It is seen that the most general test does not reject the fit of data to model (P approximately 0.5), but the marginalized tests do. Tests on pairwise frequency (F) matrices, strongly (P < 0.001) reject the most general phylogenetic (GTR) models commonly in use. It is also clear (P < 0.01) that the sequences are not stationary in their nucleotide composition. Deviations from stationarity and homogeneity seem to be unevenly distributed amongst taxa; not necessarily those expected from examining other regions of the genome. By marginalizing the 4( t ) patterns of the i.i.d. model to observed and expected parsimony counts, that is, from constant sites, to singletons, to parsimony informative characters of a minimum possible length, then the likelihood ratio test regains power, and it too rejects the evolutionary model with P < 0.001. Given such behavior over relatively recent evolutionary time, readers in general should maintain a healthy skepticism of results, as the scale of the systematic errors in published trees may really be far larger than the analytical methods (e.g., bootstrap) report.

  15. Quantification of loading in biomechanical testing: the influence of dissection sequence.

    Science.gov (United States)

    Funabashi, Martha; El-Rich, Marwan; Prasad, Narasimha; Kawchuk, Gregory N

    2015-09-18

    Sequential dissection is a technique used to investigate loads experienced by articular tissues. When the joint of interest is tested in an unconstrained manner, its kinematics change with each tissue removal. To address this limitation, sufficiently rigid robots are used to constrain joint kinematics. While this approach can quantify loads experienced by each tissue, it does not assure similar results when removal order is changed. Specifically, structure loading is assumed to be independent of removal order if the structure behaves linearly (i.e. principle of superposition applies), but dependent on removal order when response is affected by material and/or geometry nonlinearities and/or viscoelasticiy (e.g. biological tissues). Therefore, this experiment was conducted to evaluate if structure loading created through robotic testing is dependent on the order in which connectors are removed. Six identical models were 3D printed. Each model was composed of 2 rigid bodies and 3 connecting structures with nonlinear time-dependent behavior. To these models, pure rotations were applied about a predefined static center of rotation using a parallel robot. A unique dissection sequence was used for each of the six models and the same movements applied robotically after each dissection. When comparing the moments experienced by each structure between different removal sequences, a statistically significant difference (probotic testing are specific to removal order. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. An exponential combination procedure for set-based association tests in sequencing studies.

    Science.gov (United States)

    Chen, Lin S; Hsu, Li; Gamazon, Eric R; Cox, Nancy J; Nicolae, Dan L

    2012-12-07

    State-of-the-art next-generation-sequencing technologies can facilitate in-depth explorations of the human genome by investigating both common and rare variants. For the identification of genetic factors that are associated with disease risk or other complex phenotypes, methods have been proposed for jointly analyzing variants in a set (e.g., all coding SNPs in a gene). Variants in a properly defined set could be associated with risk or phenotype in a concerted fashion, and by accumulating information from them, one can improve power to detect genetic risk factors. Many set-based methods in the literature are based on statistics that can be written as the summation of variant statistics. Here, we propose taking the summation of the exponential of variant statistics as the set summary for association testing. From both Bayesian and frequentist perspectives, we provide theoretical justification for taking the sum of the exponential of variant statistics because it is particularly powerful for sparse alternatives-that is, compared with the large number of variants being tested in a set, only relatively few variants are associated with disease risk-a distinctive feature of genetic data. We applied the exponential combination gene-based test to a sequencing study in anticancer pharmacogenomics and uncovered mechanistic insights into genes and pathways related to chemotherapeutic susceptibility for an important class of oncologic drugs. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    Science.gov (United States)

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9

  18. [Population genetic differentiation of Phrynocephalus axillaris in east of Xinjiang Uygur Autonomous Region based on sequence variation of mitochondrial ND4-tRNALeu gene].

    Science.gov (United States)

    Li, Jun; Guo, Xian-Guang; Wang, Yue-Zhao

    2010-08-01

    A 838 bp fragment of mtDNA ND4-tRNALeu gene was sequenced for 66 individuals from five populations (DB: Dabancheng, TU: Turpan, SS: Shanshan, HL: Liushuquan, HD: East district of Hami) of Phrynocephalus axillaris distributed in east of Xinjiang Uygur Autonomous Region. Seventeen haplotypes were identified from 29 nucleotide polymorphic sites in the aligned 838 bp sequence. Excluding DB, there were relatively high haplotype diversity [(0.600+/-0.113)oscillation since Pleistocene and genetic drift.

  19. Use of genome sequence data in the design and testing of SSR markers for Phytophthora species

    Directory of Open Access Journals (Sweden)

    Cardle Linda

    2008-12-01

    Full Text Available Abstract Background Microsatellites or single sequence repeats (SSRs are a powerful choice of marker in the study of Phytophthora population biology, epidemiology, ecology, genetics and evolution. A strategy was tested in which the publicly available unigene datasets extracted from genome sequences of P. infestans, P. sojae and P. ramorum were mined for candidate SSR markers that could be applied to a wide range of Phytophthora species. Results A first approach, aimed at the identification of polymorphic SSR loci common to many Phytophthora species, yielded 171 reliable sequences containing 211 SSRs. Microsatellites were identified from 16 target species representing the breadth of diversity across the genus. Repeat number ranged from 3 to 16 with most having seven repeats or less and four being the most commonly found. Trinucleotide repeats such as (AAGn, (AGGn and (AGCn were the most common followed by pentanucleotide, tetranucleotide and dinucleotide repeats. A second approach was aimed at the identification of useful loci common to a restricted number of species more closely related to P. sojae (P. alni, P. cambivora, P. europaea and P. fragariae. This analysis yielded 10 trinucleotide and 2 tetranucleotide SSRs which were repeated 4, 5 or 6 times. Conclusion Key studies on inter- and intra-specific variation of selected microsatellites remain. Despite the screening of conserved gene coding regions, the sequence diversity between species was high and the identification of useful SSR loci applicable to anything other than the most closely related pairs of Phytophthora species was challenging. That said, many novel SSR loci for species other than the three 'source species' (P. infestans, P. sojae and P. ramorum are reported, offering great potential for the investigation of Phytophthora populations. In addition to the presence of microsatellites, many of the amplified regions may represent useful molecular marker regions for other studies as

  20. Using mitochondrial DNA to test the hypothesis of a European post-glacial human recolonization from the Franco-Cantabrian refuge.

    Science.gov (United States)

    García, O; Fregel, R; Larruga, J M; Álvarez, V; Yurrebaso, I; Cabrera, V M; González, A M

    2011-01-01

    It has been proposed that the distribution patterns and coalescence ages found in Europeans for mitochondrial DNA (mtDNA) haplogroups V, H1 and H3 are the result of a post-glacial expansion from a Franco-Cantabrian refuge that recolonized central and northern areas. In contrast, in this refined mtDNA study of the Cantabrian Cornice that contributes 413 partial and 9 complete new mtDNA sequences, including a large Basque sample and a sample of Asturians, no experimental evidence was found to support the human refuge-expansion theory. In fact, all measures of gene diversity point to the Cantabrian Cornice in general and the Basques in particular, as less polymorphic for V, H1 and H3 than other southern regions in Iberia or in Central Europe. Genetic distances show the Cantabrian Cornice is a very heterogeneous region with significant local differences. The analysis of several minor subhaplogroups, based on complete sequences, also suggests different focal expansions over a local and peninsular range that did not affect continental Europe. Furthermore, all detected clinal trends show stronger longitudinal than latitudinal profiles. In Northern Iberia, it seems that the highest diversity values for some haplogroups with Mesolithic coalescence ages are centred on the Mediterranean side, including Catalonia and South-eastern France.

  1. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  2. Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease.

    Science.gov (United States)

    Ellingford, Jamie M; Barton, Stephanie; Bhaskar, Sanjeev; Williams, Simon G; Sergouniotis, Panagiotis I; O'Sullivan, James; Lamb, Janine A; Perveen, Rahat; Hall, Georgina; Newman, William G; Bishop, Paul N; Roberts, Stephen A; Leach, Rick; Tearle, Rick; Bayliss, Stuart; Ramsden, Simon C; Nemeth, Andrea H; Black, Graeme C M

    2016-05-01

    To compare the efficacy of whole genome sequencing (WGS) with targeted next-generation sequencing (NGS) in the diagnosis of inherited retinal disease (IRD). Case series. A total of 562 patients diagnosed with IRD. We performed a direct comparative analysis of current molecular diagnostics with WGS. We retrospectively reviewed the findings from a diagnostic NGS DNA test for 562 patients with IRD. A subset of 46 of 562 patients (encompassing potential clinical outcomes of diagnostic analysis) also underwent WGS, and we compared mutation detection rates and molecular diagnostic yields. In addition, we compared the sensitivity and specificity of the 2 techniques to identify known single nucleotide variants (SNVs) using 6 control samples with publically available genotype data. Diagnostic yield of genomic testing. Across known disease-causing genes, targeted NGS and WGS achieved similar levels of sensitivity and specificity for SNV detection. However, WGS also identified 14 clinically relevant genetic variants through WGS that had not been identified by NGS diagnostic testing for the 46 individuals with IRD. These variants included large deletions and variants in noncoding regions of the genome. Identification of these variants confirmed a molecular diagnosis of IRD for 11 of the 33 individuals referred for WGS who had not obtained a molecular diagnosis through targeted NGS testing. Weighted estimates, accounting for population structure, suggest that WGS methods could result in an overall 29% (95% confidence interval, 15-45) uplift in diagnostic yield. We show that WGS methods can detect disease-causing genetic variants missed by current NGS diagnostic methodologies for IRD and thereby demonstrate the clinical utility and additional value of WGS. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  3. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  4. Independent mitochondrial origin and historical genetic differentiation in North Eastern Asian cattle.

    Science.gov (United States)

    Mannen, H; Kohno, M; Nagata, Y; Tsuji, S; Bradley, D G; Yeo, J S; Nyamsamba, D; Zagdsuren, Y; Yokohama, M; Nomura, K; Amano, T

    2004-08-01

    In order to clarify the origin and genetic diversity of cattle in North Eastern Asia, this study examined mitochondrial displacement loop sequence variation and frequencies of Bos taurus and Bos indicus Y chromosome haplotypes in Japanese, Mongolian, and Korean native cattle. In mitochondrial analyses, 20% of Mongolian cattle carried B. indicus mitochondrial haplotypes, but Japanese and Korean cattle carried only B. taurus haplotypes. In contrast, all samples revealed B. taurus Y chromosome haplotypes. This may be due to the import of zebu and other cattle during the Mongol Empire era with subsequent crossing with native taurine cattle. B. taurus mtDNA sequences fall into several geographically distributed haplogroups and one of these, termed here T4, is described in each of the test samples, but has not been observed in Near Eastern, European or African cattle. This may have been locally domesticated from an East Eurasian strain of Bos primigenius.

  5. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae in southern Africa

    Directory of Open Access Journals (Sweden)

    Pereira-da-Conceicoa Lyndall L

    2012-02-01

    Full Text Available Abstract Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S] and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]. Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya. Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from

  6. Population genetic structure of cotton pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) using mitochondrial cytochrome oxidase I (COI) gene sequences from India.

    Science.gov (United States)

    Sridhar, J; Chinna Babu Naik, V; Ghodke, A; Kranthi, S; Kranthi, K R; Singh, B P; Choudhary, J S; Krishna, M S R

    2017-11-01

    Pink bollworm (PBW), Pectinophora gossypiella is one of the most destructive pest's globally inflicting huge economic losses in cotton even during later stages of crop growth. In the present investigation, the population genetic structure, distribution, and genetic diversity of P. gossypiella in cotton growing zones of India using partial mitochondrial DNA cytochrome oxidase-I (COI) gene was addressed. The overall haplotype (Hd), number of nucleotide differences (K), and nucleotide diversity (π) were 0.3028, 0.327, and 0.00047, respectively which suggest that entire population exhibited low level of genetic diversity. Zone-wise clustering of population revealed that central zone recorded low level of Hd (0.2730) as compared to north (0.3619) and south (0.3028) zones. The most common haplotype (H1) reported in all 19 locations could be proposed as ancestral/original haplotype. This haplotype with one mutational step formed star-like phylogeny connected with 11 other haplotypes. The phylogenetic relationship studies revealed that most haplotypes of populations are closely related to each other. Haplotype 5 was exclusively present in Dharwad (South zone) shared with populations of Hanumangarh and Bathinda (North zone). The result indicated that there is no isolation by distance effect among the Indian populations of PBW. The present study reports a low genetic diversity among PBW populations of India and H1, as ancestral haplotype from which other haplotypes have evolved suggests that the migration and dispersal over long distance and invasiveness are major factors.

  7. Improved primer sequences for the mitochondrial ND1, ND3/4 and ND5/6 segments in salmonid fishes : application to RFLP analysis of Atlantic salmon

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1998-01-01

    New specific primers for the mtDNA segments ND1, ND3/4 and ND5/6 designed from the rainbow trout sequence, improved PCR amplification for salmonid fishes. RFLP analysis revealed restriction site variation for all three segments in Atlantic salmon. Eleven haplotypes were detected in a screening...

  8. Genetic variation among the Mapuche Indians from the Patagonian region of Argentina: mitochondrial DNA sequence variation and allele frequencies of several nuclear genes.

    Science.gov (United States)

    Ginther, C; Corach, D; Penacino, G A; Rey, J A; Carnese, F R; Hutz, M H; Anderson, A; Just, J; Salzano, F M; King, M C

    1993-01-01

    DNA samples from 60 Mapuche Indians, representing 39 maternal lineages, were genetically characterized for (1) nucleotide sequences of the mtDNA control region; (2) presence or absence of a nine base duplication in mtDNA region V; (3) HLA loci DRB1 and DQA1; (4) variation at three nuclear genes with short tandem repeats; and (5) variation at the polymorphic marker D2S44. The genetic profile of the Mapuche population was compared to other Amerinds and to worldwide populations. Two highly polymorphic portions of the mtDNA control region, comprising 650 nucleotides, were amplified by the polymerase chain reaction (PCR) and directly sequenced. The 39 maternal lineages were defined by two or three generation families identified by the Mapuches. These 39 lineages included 19 different mtDNA sequences that could be grouped into four classes. The same classes of sequences appear in other Amerinds from North, Central, and South American populations separated by thousands of miles, suggesting that the origin of the mtDNA patterns predates the migration to the Americas. The mtDNA sequence similarity between Amerind populations suggests that the migration throughout the Americas occurred rapidly relative to the mtDNA mutation rate. HLA DRB1 alleles 1602 and 1402 were frequent among the Mapuches. These alleles also occur at high frequency among other Amerinds in North and South America, but not among Spanish, Chinese or African-American populations. The high frequency of these alleles throughout the Americas, and their specificity to the Americas, supports the hypothesis that Mapuches and other Amerind groups are closely related.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology.

    Science.gov (United States)

    Vissers, Lisenka E L M; van Nimwegen, Kirsten J M; Schieving, Jolanda H; Kamsteeg, Erik-Jan; Kleefstra, Tjitske; Yntema, Helger G; Pfundt, Rolph; van der Wilt, Gert Jan; Krabbenborg, Lotte; Brunner, Han G; van der Burg, Simone; Grutters, Janneke; Veltman, Joris A; Willemsen, Michèl A A P

    2017-09-01

    Implementation of novel genetic diagnostic tests is generally driven by technological advances because they promise shorter turnaround times and/or higher diagnostic yields. Other aspects, including impact on clinical management or cost-effectiveness, are often not assessed in detail prior to implementation. We studied the clinical utility of whole-exome sequencing (WES) in complex pediatric neurology in terms of diagnostic yield and costs. We analyzed 150 patients (and their parents) presenting with complex neurological disorders of suspected genetic origin. In a parallel study, all patients received both the standard diagnostic workup (e.g., cerebral imaging, muscle biopsies or lumbar punctures, and sequential gene-by-gene-based testing) and WES simultaneously. Our unique study design allowed direct comparison of diagnostic yield of both trajectories and provided insight into the economic implications of implementing WES in this diagnostic trajectory. We showed that WES identified significantly more conclusive diagnoses (29.3%) than the standard care pathway (7.3%) without incurring higher costs. Exploratory analysis of WES as a first-tier diagnostic test indicates that WES may even be cost-saving, depending on the extent of other tests being omitted. Our data support such a use of WES in pediatric neurology for disorders of presumed genetic origin.Genet Med advance online publication 23 March 2017.

  10. Mitochondrial DNA depletion syndrome presenting with ataxia and ...

    African Journals Online (AJOL)

    Laila Selim

    2012-07-24

    Jul 24, 2012 ... Sequencing analysis of the TK2 gene revealed no sequence variation. ... the pathogenesis of the myopathic form of mitochondrial depletion syndrome should be ..... [39,40]. However, the biochemical evidence of deficiency of.

  11. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  12. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    Science.gov (United States)

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  13. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.

    Science.gov (United States)

    Clark, Ira E; Dodson, Mark W; Jiang, Changan; Cao, Joseph H; Huh, Jun R; Seol, Jae Hong; Yoo, Soon Ji; Hay, Bruce A; Guo, Ming

    2006-06-29

    Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease

  14. Mitochondrial Genetic Background Modulates Bioenergetics and Susceptibility to Acute Cardiac Volume – Overload

    Science.gov (United States)

    Fetterman, Jessica L.; Zelickson, Blake R.; Johnson, Larry W.; Moellering, Douglas R.; Westbrook, David G.; Pompilius, Melissa; Sammy, Melissa J.; Johnson, Michelle; Dunham-Snary, Kimberly J.; Cao, Xuemei; Bradley, Wayne E.; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G.; Kesterson, Robert A.; Dell’Italia, Louis J.; Darley-Usmar, Victor M.; Welch, Danny R.; Ballinger, Scott W.

    2013-01-01

    Synopsis Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mitochondrial DNA (mtDNA) sequence variation contributes to disease susceptibility. In this study we present a novel animal model of mtDNA polymorphisms, the mitochondrial nuclear exchange mouse (MNX), in which the mtDNA from C3H/HeN mouse has been inserted onto the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harboring the C57/BL6J mtDNA generate more reactive oxygen species (ROS) and have a higher mitochondrial membrane potential relative to those having the C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the “mitochondrial paradigm” for the development of disease susceptibility, and show that the mtDNA modulates, cellular bioenergetics, mitochondrial reactive oxygen species generation and susceptibility to cardiac stress. PMID:23924350

  15. Phylogenetic relationships of Acheilognathidae (Cypriniformes: Cyprinoidea) as revealed from evidence of both nuclear and mitochondrial gene sequence variation: evidence for necessary taxonomic revision in the family and the identification of cryptic species.

    Science.gov (United States)

    Chang, Chia-Hao; Li, Fan; Shao, Kwang-Tsao; Lin, Yeong-Shin; Morosawa, Takahiro; Kim, Sungmin; Koo, Hyeyoung; Kim, Won; Lee, Jae-Seong; He, Shunping; Smith, Carl; Reichard, Martin; Miya, Masaki; Sado, Tetsuya; Uehara, Kazuhiko; Lavoué, Sébastien; Chen, Wei-Jen; Mayden, Richard L

    2014-12-01

    Bitterlings are relatively small cypriniform species and extremely interesting evolutionarily due to their unusual reproductive behaviors and their coevolutionary relationships with freshwater mussels. As a group, they have attracted a great deal of attention in biological studies. Understanding the origin and evolution of their mating system demands a well-corroborated hypothesis of their evolutionary relationships. In this study, we provide the most comprehensive phylogenetic reconstruction of species relationships of the group based on partitioned maximum likelihood and Bayesian methods using DNA sequence variation of nuclear and mitochondrial genes on 41 species, several subspecies and three undescribed species. Our findings support the monophyly of the Acheilognathidae. Two of the three currently recognized genera are not monophyletic and the family can be subdivided into six clades. These clades are further regarded as genera based on both their phylogenetic relationships and a reappraisal of morphological characters. We present a revised classification for the Acheilognathidae with five genera/lineages: Rhodeus, Acheilognathus (new constitution), Tanakia (new constitution), Paratanakia gen. nov., and Pseudorhodeus gen. nov. and an unnamed clade containing five species currently referred to as "Acheilognathus". Gene trees of several bitterling species indicate that the taxa are not monophyletic. This result highlights a potentially dramatic underestimation of species diversity in this family. Using our new phylogenetic framework, we discuss the evolution of the Acheilognathidae relative to classification, taxonomy and biogeography. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  17. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  18. Using the Δ3 statistic to test for missed levels in mixed sequence neutron resonance data

    International Nuclear Information System (INIS)

    Mulhall, Declan

    2009-01-01

    The Δ 3 (L) statistic is studied as a tool to detect missing levels in the neutron resonance data where two sequences are present. These systems are problematic because there is no level repulsion, and the resonances can be too close to resolve. Δ 3 (L) is a measure of the fluctuations in the number of levels in an interval of length L on the energy axis. The method used is tested on ensembles of mixed Gaussian orthogonal ensemble spectra, with a known fraction of levels (x%) randomly depleted, and can accurately return x. The accuracy of the method as a function of spectrum size is established. The method is used on neutron resonance data for 11 isotopes with either s-wave neutrons on odd-A isotopes, or p-wave neutrons on even-A isotopes. The method compares favorably with a maximum likelihood method applied to the level spacing distribution. Nuclear data ensembles were made from 20 isotopes in total, and their Δ 3 (L) statistics are discussed in the context of random matrix theory.

  19. Goodness-of-fit tests and model diagnostics for negative binomial regression of RNA sequencing data.

    Science.gov (United States)

    Mi, Gu; Di, Yanming; Schafer, Daniel W

    2015-01-01

    This work is about assessing model adequacy for negative binomial (NB) regression, particularly (1) assessing the adequacy of the NB assumption, and (2) assessing the appropriateness of models for NB dispersion parameters. Tools for the first are appropriate for NB regression generally; those for the second are primarily intended for RNA sequencing (RNA-Seq) data analysis. The typically small number of biological samples and large number of genes in RNA-Seq analysis motivate us to address the trade-offs between robustness and statistical power using NB regression models. One widely-used power-saving strategy, for example, is to assume some commonalities of NB dispersion parameters across genes via simple models relating them to mean expression rates, and many such models have been proposed. As RNA-Seq analysis is becoming ever more popular, it is appropriate to make more thorough investigations into power and robustness of the resulting methods, and into practical tools for model assessment. In this article, we propose simulation-based statistical tests and diagnostic graphics to address model adequacy. We provide simulated and real data examples to illustrate that our proposed methods are effective for detecting the misspecification of the NB mean-variance relationship as well as judging the adequacy of fit of several NB dispersion models.

  20. Large-scale mitochondrial COI gene sequence variability reflects the complex colonization history of the invasive soft-shell clam, Mya arenaria (L.) (Bivalvia)

    Science.gov (United States)

    Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej

    2016-11-01

    The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.

  1. Not All Order Memory Is Equal: Test Demands Reveal Dissociations in Memory for Sequence Information

    Science.gov (United States)

    Jonker, Tanya R.; MacLeod, Colin M.

    2017-01-01

    Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that…

  2. 驯鹿的皮蝇蛆线粒体CO1基因序列分析%Sequence analysis of mitochondrial cytochrome oxidase 1 (CO1) gene of warble fly larvae from reindeer

    Institute of Scientific and Technical Information of China (English)

    高慧; 杨晓野; 李云章; 莫内; 阿拉腾保力格; 赵治国; 王瑞

    2011-01-01

    The specificity of mitochondrial cytochrome oxidaae 1 ( CO1) gene sequence of warble fly larvae of unknown species from reindeer in Inner Mongolia region of China were analyzed by molecular biological techniques. The results showed that the size of CO1 gene fragment from UEA7 to UEA10 was approximately 689 bp. The analysis of phylogenic tree showed that the unknown species from the reindeer in Inner Mongolia had high homology with Hypoderma diana France isolate. The differences analysis between the different fly species showed:the sequences between Hypodermatidae and Oestridae were obviously different, ranged from 19. 3% to 25. 5% . The divergences of different fly larvae in deer ranged from 1. 9% to 25. 5% . The divergences of Hypoderma. ranged from 6. 7% to 18. 7%. The divergences of Cephenemyia. ranged from 1. 9% to 9. 6% and the variation of the different Hypoderma diana strains was 6. 0%. It suggested that the nucleotide sequences of the mitochondrial CO1 genes could indicate the phylogenetic relationships among different genera, species and strains to some extent.%利用分子生物学技术对内蒙古驯鹿未定种皮蝇蛆线粒体CO1基因种属特异性序列进行了研究.DNA核苷酸测序结果证实:该种皮蝇线粒体CO1种属特异性基因UEA7到UEA10特殊目标编码区域片段长度约为689 bp;种系发生进化树和同源性分析显示其与鹿皮蝇法国株同源性非常接近,因此确定内蒙古地区感染驯鹿的皮蝇蛆为鹿皮蝇(Hypoderma diana).不同蝇种间差异性分析显示:皮蝇科(Hypodermatidae)与狂蝇科(Oestridae)之间序列差异明显,差异性为19.3%~25.5%;寄生于鹿的不同蝇蛆种间差异性为1.9%~25.5%;皮蝇属(Hypoderma)不同种间差异性为6.7%~18.7%;鹿蝇属(Cephenemyia)不同种间差异性为1.9%~9.6%;而同种不同株的鹿皮蝇差异性为6.0%;说明生物线粒体CO1基因核苷酸序列在一定程度上可反映出种属及株间在进化上的差异性.

  3. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    Science.gov (United States)

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have

  4. Minisequencing mitochondrial DNA pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Carracedo Ángel

    2008-04-01

    Full Text Available Abstract Background There are a number of well-known mutations responsible of common mitochondrial DNA (mtDNA diseases. In order to overcome technical problems related to the analysis of complete mtDNA genomes, a variety of different techniques have been proposed that allow the screening of coding region pathogenic mutations. Methods We here propose a minisequencing assay for the analysis of mtDNA mutations. In a single reaction, we interrogate a total of 25 pathogenic mutations distributed all around the whole mtDNA genome in a sample of patients suspected for mtDNA disease. Results We have detected 11 causal homoplasmic mutations in patients suspected for Leber disease, which were further confirmed by standard automatic sequencing. Mutations m.11778G>A and m.14484T>C occur at higher frequency than expected by change in the Galician (northwest Spain patients carrying haplogroup J lineages (Fisher's Exact test, P-value Conclusion We here developed a minisequencing genotyping method for the screening of the most common pathogenic mtDNA mutations which is simple, fast, and low-cost. The technique is robust and reproducible and can easily be implemented in standard clinical laboratories.

  5. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  6. A Single Lab Test to Aid Pierre Robin Sequence Severity Diagnosis.

    Science.gov (United States)

    Fahradyan, Artur; Azadgoli, Beina; Tsuha, Michaela; Urata, Mark M; Francis, Stacey H

    2018-01-01

    The workup of patients with Pierre Robin sequence (PRS) consists of a physical examination, O 2 saturation, and polysomnography to determine the severity of respiratory obstruction and need for surgery. We suggest that capillary blood gas (CBG) may be a better physiologic representation of airway obstruction and should be routinely used in the management of patients with PRS. This is a multicenter study based on a retrospective review of medical records. The study was performed at tertiary care centers. Patients with PRS <1 year old underwent mandibular distraction osteogenesis. Using successful treatment outcome as a reference standard, receiver operating characteristic (ROC) curve was used to determine the accuracy of the diagnostic test and values for the best sensitivity and specificity to determine the need for surgical intervention. Of 73 patients, 48 had sporadic PRS, 23 had syndromes, 2 had micrognathia, not otherwise specified. Mandibular distraction osteogenesis was performed in 62 patients at a mean age of 39 days. The mean initial Apnea-Hypopnea Index (AHI) in nonsurgical versus surgical groups was 10 versus 31 ( P = .063), pH 7.41 versus 7.34 ( P = .003), pCO 2 43 versus 56 ( P < .001), and HCO 3 27 versus 30 ( P = .022). The ROC curve showed that pCO 2 of 49.5 has the best specificity (100%) and sensitivity (72.6%) profile in terms of need for definitive airway. A simple CBG heel stick may better predict the physiologic effects of obstructive apnea; therefore, it should be added to the algorithm of PRS workup.

  7. Lophotrochozoan mitochondrial genomes

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Yvonne; Boore, Jeffrey L.

    2005-10-01

    Progress in both molecular techniques and phylogeneticmethods has challenged many of the interpretations of traditionaltaxonomy. One example is in the recognition of the animal superphylumLophotrochozoa (annelids, mollusks, echiurans, platyhelminthes,brachiopods, and other phyla), although the relationships within thisgroup and the inclusion of some phyla remain uncertain. While much ofthis progress in phylogenetic reconstruction has been based on comparingsingle gene sequences, we are beginning to see the potential of comparinglarge-scale features of genomes, such as the relative order of genes.Even though tremendous progress is being made on the sequencedetermination of whole nuclear genomes, the dataset of choice forgenome-level characters for many animals across a broad taxonomic rangeremains mitochondrial genomes. We review here what is known aboutmitochondrial genomes of the lophotrochozoans and discuss the promisethat this dataset will enable insight into theirrelationships.

  8. Role of polyhydroxybutyrate in mitochondrial calcium uptake

    Science.gov (United States)

    Smithen, Matthew; Elustondo, Pia A.; Winkfein, Robert; Zakharian, Eleonora; Abramov, Andrey Y.; Pavlov, Evgeny

    2013-01-01

    Polyhydroxybutyrate (PHB) is a biological polymer which belongs to the class of polyesters and is ubiquitously present in all living organisms. Mammalian mitochondrial membranes contain PHB consisting of up to 120 hydroxybutyrate residues. Roles played by PHB in mammalian mitochondria remain obscure. It was previously demonstrated that PHB of the size similar to one found in mitochondria mediates calcium transport in lipid bilayer membranes. We hypothesized that the presence of PHB in mitochondrial membrane might play a significant role in mitochondrial calcium transport. To test this, we investigated how the induction of PHB hydrolysis affects mitochondrial calcium transport. Mitochondrial PHB was altered enzymatically by targeted expression of bacterial PHB hydrolyzing enzyme (PhaZ7) in mitochondria of mammalian cultured cells. The expression of PhaZ7 induced changes in mitochondrial metabolism resulting in decreased mitochondrial membrane potential in HepG2 but not in U87 and HeLa cells. Furthermore, it significantly inhibited mitochondrial calcium uptake in intact HepG2, U87 and HeLa cells stimulated by the ATP or by the application of increased concentrations of calcium to the digitonin permeabilized cells. Calcium uptake in PhaZ7 expressing cells was restored by mimicking calcium uniporter properties with natural electrogenic calcium ionophore - ferutinin. We propose that PHB is a previously unrecognized important component of the mitochondrial calcium uptake system. PMID:23702223

  9. HIV drug resistance testing among patients failing second line antiretroviral therapy. Comparison of in-house and commercial sequencing.

    Science.gov (United States)

    Chimukangara, Benjamin; Varyani, Bhavini; Shamu, Tinei; Mutsvangwa, Junior; Manasa, Justen; White, Elizabeth; Chimbetete, Cleophas; Luethy, Ruedi; Katzenstein, David

    2017-05-01

    HIV genotyping is often unavailable in low and middle-income countries due to infrastructure requirements and cost. We compared genotype resistance testing in patients with virologic failure, by amplification of HIV pol gene, followed by "in-house" sequencing and commercial sequencing. Remnant plasma samples from adults and children failing second-line ART were amplified and sequenced using in-house and commercial di-deoxysequencing, and analyzed in Harare, Zimbabwe and at Stanford, U.S.A, respectively. HIV drug resistance mutations were determined using the Stanford HIV drug resistance database. Twenty-six of 28 samples were amplified and 25 were successfully genotyped. Comparison of average percent nucleotide and amino acid identities between 23 pairs sequenced in both laboratories were 99.51 (±0.56) and 99.11 (±0.95), respectively. All pairs clustered together in phylogenetic analysis. Sequencing analysis identified 6/23 pairs with mutation discordances resulting in differences in phenotype, but these did not impact future regimens. The results demonstrate our ability to produce good quality drug resistance data in-house. Despite discordant mutations in some sequence pairs, the phenotypic predictions were not clinically significant. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Molecular and phylogenetic analyses of the liver amphistome Explanatum explanatum (Creplin, 1847) Fukui, 1929 in ruminants from Bangladesh and Nepal based on nuclear ribosomal ITS2 and mitochondrial nad1 sequences.

    Science.gov (United States)

    Mohanta, U K; Rana, H B; Devkota, B; Itagaki, T

    2017-07-01

    Explanatum explanatum flukes, liver amphistomes of ruminants, cause significant economic loss in the livestock industry by inducing severe liver damage. A total of 66 flukes from 26 buffaloes and 7 cattle in four different geographic areas of Bangladesh and 20 flukes from 10 buffaloes in the Chitwan district of Nepal were subjected for analysis. The sequences (442 bp) of the second internal transcribed spacer (ITS2) of ribosomal DNA and the variable fragments (657 bp) of mitochondrial nicotinamide dehydrogenase subunit 1 (nad1) of E. explanatum flukes from Bangladesh and Nepal were analysed. The aim of this study was molecular characterization of the flukes and to elucidate their origin and biogeography. In the ITS2 region, two genotypes were detected among the flukes from Bangladesh, while flukes from Nepal were of only one genotype. Phylogenetic analyses inferred from the nad1 gene revealed that at least four divergent populations (groups I-IV) are distributed in Bangladesh, whereas two divergent populations were found to be distributed in Nepal. Fst values (pairwise fixation index) suggest that Bangladeshi and Nepalese populations of group I to IV are significantly different from each other; but within groups III and IV, the populations from Bangladesh and Nepal were genetically close. This divergence in the nad1 gene indicates that each lineage of E. explanatum from diverse geography was co-adapted during the multiple domestication events of ruminants. This study, for the first time, provides molecular characterization of E. explanatum in Bangladesh and Nepal, and may provide useful information for elucidating its origin and dispersal route in Asia.

  11. Molecular Identification and Historic Demography of the Marine Tucuxi (Sotalia guianensis at the Amazon River’s Mouth by Means of Mitochondrial Control Region Gene Sequences and Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Joseph Mark Shostell

    2013-09-01

    Full Text Available In 2005, three fishermen, with artisan fishing vessels and drift gillnets, accidentally captured around 200 dolphins between Vigia and Salinópolis in the Amazon River estuary. The dolphins died and they then prepared their vaginas and penises in order to sell them in the Ver-ao-Peso market in the city of Belem within the Brazilian state of Pará. We randomly sampled a minimal quantity of tissue of these sexual organs from 78 of these 200 dolphins and we determined the following results after sequencing 689 base pairs (bp from the mitochondrial control region gene: (1 96.15% (75/78 of these dolphins belonged to the species Sotalia guianensis. The other species detected were Steno brenadensis, Stenella coeruleoalba and Tursiops truncatus; (2 The levels of gene diversity found in this sample of S. guianensis were high (33 haplotypes, haplotype diversity of 0.917 and nucleotide diversity of 0.0045 compared to gene diversities found in other Brazilian S. guianensis locations; (3 All the population genetics methods employed indicated a clear population expansion in this population. This population expansion could have begun 400,000 years ago; (4 The haplotype divergence within this population could have begun around 2.1 millions of years ago (MYA, with posterior splits around 2.0–1.8 MYA, 1.7–1.8 MYA, 1–1.5 MYA, 0.6–0.8 MYA, 0.4–0.2 MYA and 0.16–0.02 MYA, all during the Pleistocene.

  12. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.

    Science.gov (United States)

    Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo

    2015-01-01

    Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve

  13. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    Science.gov (United States)

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  14. Mitochondrial fusion through membrane automata.

    Science.gov (United States)

    Giannakis, Konstantinos; Andronikos, Theodore

    2015-01-01

    Studies have shown that malfunctions in mitochondrial processes can be blamed for diseases. However, the mechanism behind these operations is yet not sufficiently clear. In this work we present a novel approach to describe a biomolecular model for mitochondrial fusion using notions from the membrane computing. We use a case study defined in BioAmbient calculus and we show how to translate it in terms of a P automata variant. We combine brane calculi with (mem)brane automata to produce a new scheme capable of describing simple, realistic models. We propose the further use of similar methods and the test of other biomolecular models with the same behaviour.

  15. A consistency test of white dwarf and main sequence ages: NGC 6791

    Directory of Open Access Journals (Sweden)

    Córsico A.H.

    2013-03-01

    Full Text Available NGC 6791 is an open cluster that it is so close to us that can be imaged down to very faint luminosities. The main sequence turn-off age (∼8 Gyr and the age derived from the cut-off of the white dwarf luminosity function (∼6 Gyr were found to be significantly different. Here we demonstrate that the origin of this age discrepancy lies in an incorrect evaluation of the white dwarf cooling ages, and we show that when the relevant physical separation processes are included in the calculation of white dwarf sequences both ages are coincident.

  16. X-38 Drop Model: Landing Sequence Collage from Cessna Drop Test

    Science.gov (United States)

    1995-01-01

    This sequence of photographs shows a 4-foot-long model of NASA's X-38 gliding to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  17. Characterization of the complete mitochondrial genome of Ortleppascaris sinensis (Nematoda: Heterocheilidae) and comparative mitogenomic analysis of eighteen Ascaridida nematodes.

    Science.gov (United States)

    Zhao, J H; Tu, G J; Wu, X B; Li, C P

    2018-05-01

    Ortleppascaris sinensis (Nematoda: Ascaridida) is a dominant intestinal nematode of the captive Chinese alligator. However, the epidemiology, molecular ecology and population genetics of this parasite remain largely unexplored. In this study, the complete mitochondrial (mt) genome sequence of O. sinensis was first determined using a polymerase chain reaction (PCR)-based primer-walking strategy, and this is also the first sequencing of the complete mitochondrial genome of a member of the genus Ortleppascaris. The circular mitochondrial genome (13,828 bp) of O. sinensis contained 12 protein-coding, 22 transfer RNA and 2 ribosomal RNA genes, but lacked the ATP synthetase subunit 8 gene. Finally, phylogenetic analysis of mtDNAs indicated that the genus Ortleppascaris should be attributed to the family Heterocheilidae. It is necessary to sequence more mtNDAs of Ortleppascaris nematodes in the future to test and confirm our conclusion. The complete mitochondrial genome sequence of O. sinensis reported here should contribute to molecular diagnosis, epidemiological investigations and ecological studies of O. sinensis and other related Ascaridida nematodes.

  18. The role of next generation sequencing for the development and testing of veterinary biologics

    Science.gov (United States)

    Next generation sequencing technology has become widely available and it offers many new opportunities in vaccine technology. Both human and veterinary medicine has numerous examples of adventitious agents being found in live vaccines. In veterinary medicine a continuing trend is the use of viral ...

  19. Application of Massively Parallel Sequencing in the Clinical Diagnostic Testing of Inherited Cardiac Conditions

    Directory of Open Access Journals (Sweden)

    Ivone U. S. Leong

    2014-06-01

    Full Text Available Sudden cardiac death in people between the ages of 1–40 years is a devastating event and is frequently caused by several heritable cardiac disorders. These disorders include cardiac ion channelopathies, such as long QT syndrome, catecholaminergic polymorphic ventricular tachycardia and Brugada syndrome and cardiomyopathies, such as hypertrophic cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Through careful molecular genetic evaluation of DNA from sudden death victims, the causative gene mutation can be uncovered, and the rest of the family can be screened and preventative measures implemented in at-risk individuals. The current screening approach in most diagnostic laboratories uses Sanger-based sequencing; however, this method is time consuming and labour intensive. The development of massively parallel sequencing has made it possible to produce millions of sequence reads simultaneously and is potentially an ideal approach to screen for mutations in genes that are associated with sudden cardiac death. This approach offers mutation screening at reduced cost and turnaround time. Here, we will review the current commercially available enrichment kits, massively parallel sequencing (MPS platforms, downstream data analysis and its application to sudden cardiac death in a diagnostic environment.

  20. Changes of mitochondrial structure, ATPase and Ca2+ concentration in spermatogenic cells of mouse testes induced by low dose radiation

    International Nuclear Information System (INIS)

    Wang Zhicheng; Liu Shuchun; Li Pengwu; Kang Shunai; Liang Shuo; Zhao Gang; Gong Shouliang

    2009-01-01

    Objective: To observe the ultrastructure, ATPase activity and Ca 2+ concentration ([Ca 2+ ]i) of mitochondria in the sperematogenic cells of mouse testes 3-24 h after low dose radiation with 0.025-0.200 Gy X-rays, and illuminate the effects of mitochondrion structure and relative biological function on apoptosis. Methods: The ultrastructure changes of mitochondria in the spermatogenic cells were observed with transmission electron microscope; the ATPase activity was measured with protein enzymic method; [Ca 2+ ]i was measured indirectly by flow cytometry with Fluo-3 probes. Results: The mitochondria swelled and vacuolizated, and their cristae were broken in the spermatogonia and spermatocytes 12 h after irradiation, and their nuclei were karyopyknosis, the acrosomal vesicle structure was ambiguity, the membrane structure was unclear, and the mitochondria in spermatids were vacuolization. The activities of Na + -K + -ATPase in mouse testis tissue 12 h after irradiated with 0.025-0.200 Gy decreased compared with those with 0 Gy, the Na + -K + -ATPase activities of the cells irradiated with 0.05-0.200 Gy decreased significantly compared with those with 0 Gy (P 2+ -ATPase of the cells irradiated with 0.025-0.200 Gy decreased significantly compared with those with 0 Gy (P 2+ ]i in mouse testis spermatogenic cells had similar dose-response relationship, [Ca 2+ ]i after irradiated with 0.075 Gy decreased compared with those with 0 Gy (P + -K + -ATPase in mouse testis tissues decreased obviously compared with those at 0 h (P 2+ -ATPase in mouse testis tissues increased slightly at 3 h, then decreased at 6-24 h compared with those at 0 h (P 2+ ]i in mouse testis spermatogenic cells had similar time course-response relationship, [Ca 2+ ]i at 12 h decreased significantly compared with at 0 h (P 2+ ]i induced by low dose radiation. (authors)

  1. Comparative analysis of the mitochondrial genomes in gastropods

    International Nuclear Information System (INIS)

    Arquez, Moises; Uribe, Juan Esteban; Castro, Lyda Raquel

    2012-01-01

    In this work we presented a comparative analysis of the mitochondrial genomes in gastropods. Nucleotide and amino acids composition was calculated and a comparative visual analysis of the start and termination codons was performed. The organization of the genome was compared calculating the number of intergenic sequences, the location of the genes and the number of reorganized genes (breakpoints) in comparison with the sequence that is presumed to be ancestral for the group. In order to calculate variations in the rates of molecular evolution within the group, the relative rate test was performed. In spite of the differences in the size of the genomes, the amino acids number is conserved. The nucleotide and amino acid composition is similar between Vetigastropoda, Ceanogastropoda and Neritimorpha in comparison to Heterobranchia and Patellogastropoda. The mitochondrial genomes of the group are very compact with few intergenic sequences, the only exception is the genome of Patellogastropoda with 26,828 bp. Start codons of the Heterobranchia and Patellogastropoda are very variable and there is also an increase in genome rearrangements for these two groups. Generally, the hypothesis of constant rates of molecular evolution between the groups is rejected, except when the genomes of Caenogastropoda and Vetigastropoda are compared.

  2. Mitochondrial genetic background modulates bioenergetics and susceptibility to acute cardiac volume overload.

    Science.gov (United States)

    Fetterman, Jessica L; Zelickson, Blake R; Johnson, Larry W; Moellering, Douglas R; Westbrook, David G; Pompilius, Melissa; Sammy, Melissa J; Johnson, Michelle; Dunham-Snary, Kimberly J; Cao, Xuemei; Bradley, Wayne E; Zhang, Jinju; Wei, Chih-Chang; Chacko, Balu; Schurr, Theodore G; Kesterson, Robert A; Dell'italia, Louis J; Darley-Usmar, Victor M; Welch, Danny R; Ballinger, Scott W

    2013-10-15

    Dysfunctional bioenergetics has emerged as a key feature in many chronic pathologies such as diabetes and cardiovascular disease. This has led to the mitochondrial paradigm in which it has been proposed that mtDNA sequence variation contributes to disease susceptibility. In the present study we show a novel animal model of mtDNA polymorphisms, the MNX (mitochondrial-nuclear exchange) mouse, in which the mtDNA from the C3H/HeN mouse has been inserted on to the C57/BL6 nuclear background and vice versa to test this concept. Our data show a major contribution of the C57/BL6 mtDNA to the susceptibility to the pathological stress of cardiac volume overload which is independent of the nuclear background. Mitochondria harbouring the C57/BL6J mtDNA generate more ROS (reactive oxygen species) and have a higher mitochondrial membrane potential relative to those with C3H/HeN mtDNA, independent of nuclear background. We propose this is the primary mechanism associated with increased bioenergetic dysfunction in response to volume overload. In summary, these studies support the 'mitochondrial paradigm' for the development of disease susceptibility, and show that the mtDNA modulates cellular bioenergetics, mitochondrial ROS generation and susceptibility to cardiac stress.

  3. MSeqDR: A Centralized Knowledge Repository and Bioinformatics Web Resource to Facilitate Genomic Investigations in Mitochondrial Disease

    NARCIS (Netherlands)

    L. Shen (Lishuang); M.A. Diroma (Maria Angela); M. Gonzalez (Michael); D. Navarro-Gomez (Daniel); J. Leipzig (Jeremy); M.T. Lott (Marie T.); M. van Oven (Mannis); D.C. Wallace; C.C. Muraresku (Colleen Clarke); Z. Zolkipli-Cunningham (Zarazuela); P.F. Chinnery (Patrick); M. Attimonelli (Marcella); S. Zuchner (Stephan); M.J. Falk (Marni J.); X. Gai (Xiaowu)

    2016-01-01

    textabstractMSeqDR is the Mitochondrial Disease Sequence Data Resource, a centralized and comprehensive genome and phenome bioinformatics resource built by the mitochondrial disease community to facilitate clinical diagnosis and research investigations of individual patient phenotypes, genomes,

  4. Complete mitochondrial genome of threatened mahseer Tor tor ...

    Indian Academy of Sciences (India)

    A.

    In the present study, complete mitochondrial genome of Tor tor has been sequenced .... Most of the genes were encoded on the heavy strand (H- strand), whereas only .... 4 bp in the DHU stem (figure 5 in electronic supplementary material).

  5. Parallel algorithms for testing finite state machines:Generating UIO sequences

    OpenAIRE

    Hierons, RM; Turker, UC

    2016-01-01

    This paper describes an efficient parallel algorithm that uses many-core GPUs for automatically deriving Unique Input Output sequences (UIOs) from Finite State Machines. The proposed algorithm uses the global scope of the GPU's global memory through coalesced memory access and minimises the transfer between CPU and GPU memory. The results of experiments indicate that the proposed method yields considerably better results compared to a single core UIO construction algorithm. Our algorithm is s...

  6. Early Infantile Epileptic Encephalopathy in an STXBP1 Patient with Lactic Acidemia and Normal Mitochondrial Respiratory Chain Function

    Directory of Open Access Journals (Sweden)

    Dong Li

    2016-01-01

    Full Text Available A wide range of clinical findings have been associated with mutations in Syntaxin Binding Protein 1 (STXBP1, including multiple forms of epilepsy, nonsyndromic intellectual disability, and movement disorders. STXBP1 mutations have recently been associated with mitochondrial pathology, although it remains unclear if this phenotype is a part of the core feature for this gene disorder. We report a 7-year-old boy who presented for diagnostic evaluation of intractable epilepsy, episodic ataxia, resting tremor, and speech regression following a period of apparently normal early development. Mild lactic acidemia was detected on one occasion at the time of an intercurrent illness. Due to the concern for mitochondrial disease, ophthalmologic evaluation was performed that revealed bilateral midperiphery pigmentary mottling. Optical coherence tomography (OCT testing demonstrated a bilaterally thickened ganglion cell layer in the perifovea. Skeletal muscle biopsy analysis showed no mitochondrial abnormalities or respiratory chain dysfunction. Exome sequencing identified a de novo c.1651C>T (p.R551C mutation in STXBP1. Although mitochondrial dysfunction has been reported in some individuals, our proband had only mild lactic acidemia and no skeletal muscle tissue evidence of mitochondrial disease pathology. Thus, mitochondrial dysfunction is not an obligate feature of STXBP1 disease.

  7. Complete mitochondrial genome of the fennec fox (Vulpes zerda).

    Science.gov (United States)

    Yang, Xiufeng; Zhao, Chao; Zhang, Honghai; Zhang, Jin; Chen, Lei; Sha, Weilai; Liu, Guangshuai

    2016-01-01

    In this study, the complete mitochondrial genome of the fennec fox (Vulpes zerda) was sequenced using blood samples obtained from a female individual in Shanghai wildlife Park. Sequence analysis showed that the content of T (26.7%) in total composition was no more than C (27.2%), which is different from most of Canide individuals sequenced previously.

  8. Dataset of mitochondrial genome variants in oncocytic tumors

    Directory of Open Access Journals (Sweden)

    Lihua Lyu

    2018-04-01

    Full Text Available This dataset presents the mitochondrial genome variants associated with oncocytic tumors. These data were obtained by Sanger sequencing of the whole mitochondrial genomes of oncocytic tumors and the adjacent normal tissues from 32 patients. The mtDNA variants are identified after compared with the revised Cambridge sequence, excluding those defining haplogroups of our patients. The pathogenic prediction for the novel missense variants found in this study was performed with the Mitimpact 2 program.

  9. Oligoadenylate is present in the mitochondrial RNA of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Yuckenberg, P.D.; Phillips, S.L.

    1982-01-01

    The authors examined Saccharomyces cerevisiae mitochondrial RNA for polyadenylate. Using hybridization to [/sup 3/H]polyuridylate as the assay for adenylate sequences, they found adenylate-rich oligonucleotides approximately 8 residues long. Longer polyadenylate was not detected. Most of the adenylate-rich sequence is associated with the large mitochondrial rRNA. The remainder is associated with the 10-12S group of transcripts

  10. Genotyping using whole-genome sequencing is a realistic alternative to surveillance based on phenotypic antimicrobial susceptibility testing

    DEFF Research Database (Denmark)

    Zankari, Ea; Hasman, Henrik; Kaas, Rolf Sommer

    2013-01-01

    -genome sequencing (WGS) may soon be within reach even for routine surveillance and clinical diagnostics. The aim of this study was to evaluate WGS as a routine tool for surveillance of antimicrobial resistance compared with current phenotypic procedures. Methods: Antimicrobial susceptibility tests were performed...... to the categorizing of isolates as resistant and 2569 as susceptible. Seven cases of disagreement between tested and predicted susceptibility were observed, six of which were related to spectinomycin resistance in Escherichia coli. Correlation between MLST type and resistance profiles was only observed in Salmonella...

  11. Dog Y chromosomal DNA sequence: identification, sequencing and SNP discovery

    Directory of Open Access Journals (Sweden)

    Kirkness Ewen

    2006-10-01

    Full Text Available Abstract Background Population genetic studies of dogs have so far mainly been based on analysis of mitochondrial DNA, describing only the history of female dogs. To get a picture of the male history, as well as a second independent marker, there is a need for studies of biallelic Y-chromosome polymorphisms. However, there are no biallelic polymorphisms reported, and only 3200 bp of non-repetitive dog Y-chromosome sequence deposited in GenBank, necessitating the identification of dog Y chromosome sequence and the search for polymorphisms therein. The genome has been only partially sequenced for one male dog, disallowing mapping of the sequence into specific chromosomes. However, by comparing the male genome sequence to the complete female dog genome sequence, candidate Y-chromosome sequence may be identified by exclusion. Results The male dog genome sequence was analysed by Blast search against the human genome to identify sequences with a best match to the human Y chromosome and to the female dog genome to identify those absent in the female genome. Candidate sequences were then tested for male specificity by PCR of five male and five female dogs. 32 sequences from the male genome, with a total length of 24 kbp, were identified as male specific, based on a match to the human Y chromosome, absence in the female dog genome and male specific PCR results. 14437 bp were then sequenced for 10 male dogs originating from Europe, Southwest Asia, Siberia, East Asia, Africa and America. Nine haplotypes were found, which were defined by 14 substitutions. The genetic distance between the haplotypes indicates that they originate from at least five wolf haplotypes. There was no obvious trend in the geographic distribution of the haplotypes. Conclusion We have identified 24159 bp of dog Y-chromosome sequence to be used for population genetic studies. We sequenced 14437 bp in a worldwide collection of dogs, identifying 14 SNPs for future SNP analyses, and

  12. Mitochondrial haplogroups in patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Duhn, Pernille Hurup; Sode, Jacob; Hagen, Christian Munch

    2017-01-01

    Objective To describe the distribution of specific mitochondrial DNA (mtDNA) haplogroups (hgs) in a cohort of patients with rheumatoid arthritis (RA). Methods Two-hundred nineteen consecutive patients with RA had mtDNA isolated from their blood, sequenced and haplotyped. Patients were diagnosed...

  13. The Application of Next Generation Sequencing Technology on Noninvasive Prenatal Test

    DEFF Research Database (Denmark)

    Jiang, Hui

    There are nearly 7000 rare diseases that have been reported in the world. Although most of them occur with a frequency of less than one in 2000, in total about 6% of the population suffers from rare diseases. These rare diseases are often caused by changes in genes, which is currently lack of eff...... diseases and monogenetic diseases in a noninvasively manner. The new approach has great potential to be wildly used in the worldwide with the decreasing in sequencing costs, and therefore play an incredible role to prevent rare diseases....

  14. An Exponential Combination Procedure for Set-Based Association Tests in Sequencing Studies

    OpenAIRE

    Chen, Lin S.; Hsu, Li; Gamazon, Eric R.; Cox, Nancy J.; Nicolae, Dan L.

    2012-01-01

    State-of-the-art next-generation-sequencing technologies can facilitate in-depth explorations of the human genome by investigating both common and rare variants. For the identification of genetic factors that are associated with disease risk or other complex phenotypes, methods have been proposed for jointly analyzing variants in a set (e.g., all coding SNPs in a gene). Variants in a properly defined set could be associated with risk or phenotype in a concerted fashion, and by accumulating in...

  15. Aging irradiation of polymers. Dose-rate and test sequence influence

    International Nuclear Information System (INIS)

    Alba, C.; Carlin, F.; Chenion, J.; Lemaire, F.; Le Meur, M.; Petitjean, M.

    1984-05-01

    This work brings up results of the irradiation dose-rate influence on mechanical and electrical properties of technical polymer materials evolution. Polymer samples were subjected to 3.3.10 -2 Gy.s -1 and 2.8.10 -1 Gy.s -1 dose-rate. Heat and radiation simultaneous action is usualy simulated sequentialy. The hardest simulation on the polymer is the sequence of irradiation followed by thermal aging not the reverse. This study was carried out on eight polymer materials among those used in the electrical appliances for P.W.R. nuclear power plants [fr

  16. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    Directory of Open Access Journals (Sweden)

    Anthony L Luz

    Full Text Available Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors, carbonyl cyanide 4-(trifluoromethoxy phenylhydrazone (mitochondrial uncoupler and sodium azide (cytochrome c oxidase inhibitor, we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1-, fusion (fzo-1-, mitophagy (pdr-1, pink-1-, and electron transport chain complex III (isp-1-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  17. Analysing Microbial Community Composition through Amplicon Sequencing: From Sampling to Hypothesis Testing

    Directory of Open Access Journals (Sweden)

    Luisa W. Hugerth

    2017-09-01

    Full Text Available Microbial ecology as a scientific field is fundamentally driven by technological advance. The past decade's revolution in DNA sequencing cost and throughput has made it possible for most research groups to map microbial community composition in environments of interest. However, the computational and statistical methodology required to analyse this kind of data is often not part of the biologist training. In this review, we give a historical perspective on the use of sequencing data in microbial ecology and restate the current need for this method; but also highlight the major caveats with standard practices for handling these data, from sample collection and library preparation to statistical analysis. Further, we outline the main new analytical tools that have been developed in the past few years to bypass these caveats, as well as highlight the major requirements of common statistical practices and the extent to which they are applicable to microbial data. Besides delving into the meaning of select alpha- and beta-diversity measures, we give special consideration to techniques for finding the main drivers of community dissimilarity and for interaction network construction. While every project design has specific needs, this review should serve as a starting point for considering what options are available.

  18. Allelic Tests and Sequence Analysis of Three Genes for Resistance to Xanthomonas perforans Race T3 in Tomato

    Institute of Scientific and Technical Information of China (English)

    ZHAO Baimei; CAO Haipeng; DUAN Junjie; YANG Wencai

    2015-01-01

    Three crosses,Hawaii7981×PI128216,Hawaii7981×LA1589,and PI128216×LA1589,were made to develop F2 populations for testing allelism among three genes Xv3,Rx4,and RxLA1589 conferring resistance to bacterial spot caused by Xanthomonas perforans race T3 in tomato. Each population consisted of 535–1 655 individuals. An infiltration method was used to inoculate the leaves of the parental and F2 plants as well as the susceptible control OH88119 for detecting hypersensitive resistance(HR). The results showed that all the tomato plants except OH88119 had HR to race T3,indicating that Xv3,Rx4,and RxLA1589 were allelic genes. Genomic DNA fragments of the Rx4 alleles from Hawaii7981,PI128216,and LA1589 were amplified using gene-specific primers and sequenced. No sequence variation was observed in the coding region of Rx4 in the three resistant lines. Based on the published map positions of these loci as well as the allelic tests and sequence data obtained in this study,we speculated that Xv3,Rx4,and RxLA1589 were the same gene. The results will provide useful information for understanding the mechanism of resistance to race T3 and developing resistant tomato varieties.

  19. Reversible infantile mitochondrial diseases.

    Science.gov (United States)

    Boczonadi, Veronika; Bansagi, Boglarka; Horvath, Rita

    2015-05-01

    Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.

  20. Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data

    DEFF Research Database (Denmark)

    Huber, D.; Bedding, T.R.; Stello, D.

    2011-01-01

    ), and oscillation amplitudes. We show that the difference of the Δν-νmax relation for unevolved and evolved stars can be explained by different distributions in effective temperature and stellar mass, in agreement with what is expected from scaling relations. For oscillation amplitudes, we show that neither (L/M) s......We have analyzed solar-like oscillations in ~1700 stars observed by the Kepler Mission, spanning from the main sequence to the red clump. Using evolutionary models, we test asteroseismic scaling relations for the frequency of maximum power (νmax), the large frequency separation (Δν...... scaling nor the revised scaling relation by Kjeldsen & Bedding is accurate for red-giant stars, and demonstrate that a revised scaling relation with a separate luminosity-mass dependence can be used to calculate amplitudes from the main sequence to red giants to a precision of ~25%. The residuals show...

  1. Description of the PMAD DC test bed architecture and integration sequence

    Science.gov (United States)

    Beach, R. F.; Trash, L.; Fong, D.; Bolerjack, B.

    1991-01-01

    NASA-LEWIS is responsible for the development, fabrication, and assembly of the electric power system (EPS) for the Space Station Freedom (SSF). The SSF power system is radically different from previous spacecraft power systems in both the size and complexity of the system. Unlike past spacecraft power systems, the SSF EPS will grow and be maintained on orbit and must be flexible to meet challenging user power needs. The SSF power system is also unique in comparison with terrestrial power systems because it is dominated by power electronic converters which regulate and control the power. A description is provided of the Power Management and Distribution DC Testbed which was assembled to support the design and early evaluation of the SSF EPS. A description of the integration process used in the assembly sequence is also given along with a description of the support facility.

  2. Retrospective Evaluations of Sequences: Testing the Predictions of a Memory-Based Analysis.

    Science.gov (United States)

    Aldrovandi, Silvio; Poirier, Marie; Kusev, Petko; Ayton, Peter

    2015-01-01

    Retrospective evaluation (RE) of event sequences is known to be biased in various ways. The present paper presents a series of studies that examined the suggestion that the moments that are the most accessible in memory at the point of RE contribute to these biases. As predicted by this memory-based analysis, Experiment 1 showed that pleasantness ratings of word lists were biased by the presentation position of a negative item and by how easy the negative information was to retrieve. Experiment 2 ruled out the hypothesis that these findings were due to the dual nature of the task called upon. Experiment 3 further manipulated the memorability of the negative items--and corresponding changes in RE were as predicted. Finally, Experiment 4 extended the findings to more complex stimuli involving event narratives. Overall, the results suggest that assessments were adjusted based on the retrieval of the most readily available information.

  3. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    Full Text Available Masoumeh Falah,1,2 Massoud Houshmand,3 Mohammad Najafi,2 Maryam Balali,1 Saeid Mahmoudian,1 Alimohamad Asghari,4 Hessamaldin Emamdjomeh,1 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 4Skull base research center, Iran University of Medical Sciences, Tehran, Iran Objectives: Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined.Methods: Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction.Results: Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007. Mitochondrial DNA

  4. tscvh R Package: Computational of the two samples test on microarray-sequencing data

    Science.gov (United States)

    Fajriyah, Rohmatul; Rosadi, Dedi

    2017-12-01

    We present a new R package, a tscvh (two samples cross-variance homogeneity), as we called it. This package is a software of the cross-variance statistical test which has been proposed and introduced by Fajriyah ([3] and [4]), based on the cross-variance concept. The test can be used as an alternative test for the significance difference between two means when sample size is small, the situation which is usually appeared in the bioinformatics research. Based on its statistical distribution, the p-value can be also provided. The package is built under a homogeneity of variance between samples.

  5. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    Science.gov (United States)

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  6. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    Directory of Open Access Journals (Sweden)

    Evgeny I Rogaev

    2006-03-01

    Full Text Available Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius, and the Asian (Elephas maximus and African savanna (Loxodonta africana elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  7. The congruency sequence effect 3.0: a critical test of conflict adaptation.

    Science.gov (United States)

    Duthoo, Wout; Abrahamse, Elger L; Braem, Senne; Boehler, C Nico; Notebaert, Wim

    2014-01-01

    Over the last two decades, the congruency sequence effect (CSE) -the finding of a reduced congruency effect following incongruent trials in conflict tasks- has played a central role in advancing research on cognitive control. According to the influential conflict-monitoring account, the CSE reflects adjustments in selective attention that enhance task focus when needed, often termed conflict adaptation. However, this dominant interpretation of the CSE has been called into question by several alternative accounts that stress the role of episodic memory processes: feature binding and (stimulus-response) contingency learning. To evaluate the notion of conflict adaptation in accounting for the CSE, we construed versions of three widely used experimental paradigms (the colour-word Stroop, picture-word Stroop and flanker task) that effectively control for feature binding and contingency learning. Results revealed that a CSE can emerge in all three tasks. This strongly suggests a contribution of attentional control to the CSE and highlights the potential of these unprecedentedly clean paradigms for further examining cognitive control.

  8. The congruency sequence effect 3.0: a critical test of conflict adaptation.

    Directory of Open Access Journals (Sweden)

    Wout Duthoo

    Full Text Available Over the last two decades, the congruency sequence effect (CSE -the finding of a reduced congruency effect following incongruent trials in conflict tasks- has played a central role in advancing research on cognitive control. According to the influential conflict-monitoring account, the CSE reflects adjustments in selective attention that enhance task focus when needed, often termed conflict adaptation. However, this dominant interpretation of the CSE has been called into question by several alternative accounts that stress the role of episodic memory processes: feature binding and (stimulus-response contingency learning. To evaluate the notion of conflict adaptation in accounting for the CSE, we construed versions of three widely used experimental paradigms (the colour-word Stroop, picture-word Stroop and flanker task that effectively control for feature binding and contingency learning. Results revealed that a CSE can emerge in all three tasks. This strongly suggests a contribution of attentional control to the CSE and highlights the potential of these unprecedentedly clean paradigms for further examining cognitive control.

  9. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    Science.gov (United States)

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. Test procedures to detect a loss of material in a sequence of balance periods

    International Nuclear Information System (INIS)

    Avenhaus, R.; Beedgen, R.; Sellinschegg, D.

    1985-06-01

    A workshop on Near-Real-Time Accountancy (NRTA) was held in KfK which came to a preliminary end in December 1982. In the framework of this workshop a number of sequential statistical test procedures were proposed which can be used in the case of a NRTA based safeguards regime. In the report the most promising test procedures are investigated. The analysis is based on the chemical separation process of a large model reprocessing facility with a throughput or 1000 tonnes per year. (orig.) [de

  11. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus.

    Science.gov (United States)

    Ozga, Andrew T; Nieves-Colón, Maria A; Honap, Tanvi P; Sankaranarayanan, Krithivasan; Hofman, Courtney A; Milner, George R; Lewis, Cecil M; Stone, Anne C; Warinner, Christina

    2016-06-01

    Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Omnibus test for change detection in a time sequence of polarimetric SAR data

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Conradsen, Knut; Skriver, Henning

    2016-01-01

    in the covariance matrix representation is carried out. The omnibus test statistic and its factorization detect if and when change(s) occur. The technique is demonstrated on airborne EMISAR C-band data but may be applied to ALOS, COSMO-SkyMed, RadarSat-2, Sentinel-1, TerraSAR-X, and Yoagan or other dual- and quad...

  13. Study to Analyze the Acquisition of Automatic Test Equipment (ATE) Systems. Data Sequence Number A003

    Science.gov (United States)

    1973-12-27

    Systems Test Equipment Comparator, ASTEC ) at NAEC can provide a very accurate Ion a pin by pin basis) match between the UUT and ATE in their data bank...In addition, abbreviated summary data on the ATE is also available to users. ASTEC will also file the UUT data as part of its data bank so that

  14. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  15. Next generation sequencing for preimplantation genetic testing of blastocysts aneuploidies in women of different ages

    Directory of Open Access Journals (Sweden)

    Krzysztof Lukaszuk

    2015-12-01

    Full Text Available Most of the current preimplantation genetic screening of aneuploidies tests are based on the low quality and low density comparative genomic hybridization arrays. The results are based on fewer than 2,700 probes. Our main outcome was the association of aneuploidy rates and the women’s age. Between August–December 2013, 198 blastocysts from women (mean age 36.3+-4.6 undergoing in vitro fertilization underwent routine trophectoderm biopsy. NGS was performed on Ion Torrent PGM (Life Technologies. The results were analyzed in five age groups ( 40. 85 blastocysts were normal according to NGS results. The results in the investigated groups were (% of normal blastocyst in each group: 40 (38.5%. Our study suggests that NGS PGD is applicable for routine preimplantation genetic testing. It allows also for easy customization of the procedure for each individual patient making personalized diagnostics a reality.

  16. The complete mitochondrial genome of Gossypium hirsutum and evolutionary analysis of higher plant mitochondrial genomes.

    Science.gov (United States)

    Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping

    2013-01-01

    Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses mos